
termcap

termcap ii

COLLABORATORS

TITLE :

termcap

ACTION NAME DATE SIGNATURE

WRITTEN BY January 5, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

termcap iii

Contents

1 termcap 1

1.1 termcap . 1

1.2 termcap/Introduction . 4

1.3 termcap/Library . 5

1.4 termcap/Preparation . 5

1.5 termcap/Find . 6

1.6 termcap/Interrogate . 7

1.7 termcap/Initialize . 10

1.8 termcap/Padding . 11

1.9 termcap/Why Pad . 11

1.10 termcap/Not Enough . 12

1.11 termcap/Describe Padding . 13

1.12 termcap/Output Padding . 14

1.13 termcap/Parameters . 15

1.14 termcap/Encode Parameters . 16

1.15 termcap/Using Parameters . 19

1.16 termcap/tparam . 19

1.17 termcap/tgoto . 20

1.18 termcap/Data Base . 21

1.19 termcap/Format . 22

1.20 termcap/Capability Format . 23

1.21 termcap/Naming . 24

1.22 termcap/Inheriting . 26

1.23 termcap/Changing . 27

1.24 termcap/Capabilities . 27

1.25 termcap/Basic . 29

1.26 termcap/Screen Size . 31

1.27 termcap/Cursor Motion . 31

1.28 termcap/Wrapping . 35

1.29 termcap/Scrolling . 37

termcap iv

1.30 termcap/Windows . 39

1.31 termcap/Clearing . 39

1.32 termcap/Insdel Line . 40

1.33 termcap/Insdel Char . 42

1.34 termcap/Standout . 46

1.35 termcap/Underlining . 50

1.36 termcap/Cursor Visibility . 51

1.37 termcap/Bell . 51

1.38 termcap/Keypad . 52

1.39 termcap/Meta Key . 54

1.40 termcap/Initialization . 55

1.41 termcap/Pad Specs . 56

1.42 termcap/Status Line . 57

1.43 termcap/Half-Line . 58

1.44 termcap/Printer . 58

1.45 termcap/Summary . 59

1.46 termcap/Var Index . 68

1.47 termcap/Cap Index . 69

1.48 termcap/Index . 76

termcap 1 / 78

Chapter 1

termcap

1.1 termcap

Introduction
What is termcap? Why this manual?

Library
The termcap library functions.

Data Base
What terminal descriptions in /etc/termcap look like.

Capabilities
Definitions of the individual terminal capabilities:

how to write them in descriptions, and how to use
their values to do display updating.

Summary
Brief table of capability names and their meanings.

Var Index
Index of C functions and variables.

Cap Index
Index of termcap capabilities.

Index
Concept index.

-- The Detailed Node Listing --

The Termcap Library

Preparation
Preparing to use the termcap library.

Find
Finding the description of the terminal being used.

termcap 2 / 78

Interrogate
Interrogating the description for particular capabilities.

Initialize
Initialization for output using termcap.

Padding
Outputting padding.

Parameters
Encoding parameters such as cursor positions.

Padding

Why Pad
Explanation of padding.

Not Enough
When there is not enough padding.

Describe Padding
The data base says how much padding a terminal needs.

Output Padding
Using tputs to output the needed padding.

Filling In Parameters

Encode Parameters
The language for encoding parameters.

Using Parameters
Outputting a string command with parameters.

Sending Display Commands with Parameters

tparam
The general case, for GNU termcap only.

tgoto
The special case of cursor motion.

The Format of the Data Base

Format
Overall format of a terminal description.

Capability Format
Format of capabilities within a description.

Naming
Naming conventions for terminal types.

termcap 3 / 78

Inheriting
Inheriting part of a description from

a related terminal type.

Changing
When changes in the data base take effect.

Definitions of the Terminal Capabilities

Basic
Basic characteristics.

Screen Size
Screen size, and what happens when it changes.

Cursor Motion
Various ways to move the cursor.

Wrapping
What happens if you write a character in the last column.

Scrolling
Pushing text up and down on the screen.

Windows
Limiting the part of the window that output affects.

Clearing
Erasing one or many lines.

Insdel Line
Making new blank lines in mid-screen; deleting lines.

Insdel Char
Inserting and deleting characters within a line.

Standout
Highlighting some of the text.

Underlining
Underlining some of the text.

Cursor Visibility
Making the cursor more or less easy to spot.

Bell
Attracts user’s attention; not localized on the screen.

Keypad
Recognizing when function keys or arrows are typed.

Meta Key
META acts like an extra shift key.

Initialization
Commands used to initialize or reset the terminal.

termcap 4 / 78

Pad Specs
Info for the kernel on how much padding is needed.

Status Line
A status line displays "background" information.

Half-Line
Moving by half-lines, for superscripts and subscripts.

Printer
Controlling auxiliary printers of display terminals.

1.2 termcap/Introduction

Introduction

Termcap is a library and data base that enables programs to use
display terminals in a terminal-independent manner. It originated in
Berkeley Unix.

The termcap data base describes the capabilities of hundreds of
different display terminals in great detail. Some examples of the
information recorded for a terminal could include how many columns wide
it is, what string to send to move the cursor to an arbitrary position
(including how to encode the row and column numbers), how to scroll the
screen up one or several lines, and how much padding is needed for such
a scrolling operation.

The termcap library is provided for easy access this data base in
programs that want to do terminal-independent character-based display
output.

This manual describes the GNU version of the termcap library, which
has some extensions over the Unix version. All the extensions are
identified as such, so this manual also tells you how to use the Unix
termcap.

The GNU version of the termcap library is available free as source
code, for use in free programs, and runs on Unix and VMS systems (at
least). You can find it in the GNU Emacs distribution in the files
termcap.c and tparam.c.

This manual was written for the GNU project, whose goal is to
develop a complete free operating system upward-compatible with Unix
for user programs. The project is approximately two thirds complete.
For more information on the GNU project, including the GNU Emacs editor
and the mostly-portable optimizing C compiler, send one dollar to

Free Software Foundation
675 Mass Ave
Cambridge, MA 02139

termcap 5 / 78

1.3 termcap/Library

The Termcap Library

The termcap library is the application programmer’s interface to the
termcap data base. It contains functions for the following purposes:

* Finding the description of the user’s terminal type (tgetent).

* Interrogating the description for information on various topics
(tgetnum, tgetflag, tgetstr).

* Computing and performing padding (tputs).

* Encoding numeric parameters such as cursor positions into the
terminal-specific form required for display commands (tparam,
tgoto).

Preparation
Preparing to use the termcap library.

Find
Finding the description of the terminal being used.

Interrogate
Interrogating the description for particular capabilities.

Initialize
Initialization for output using termcap.

Padding
Outputting padding.

Parameters
Encoding parameters such as cursor positions.

1.4 termcap/Preparation

Preparing to Use the Termcap Library
====================================

To use the termcap library in a program, you need two kinds of
preparation:

* The compiler needs declarations of the functions and variables in

termcap 6 / 78

the library.

On GNU systems, it suffices to include the header file termcap.h
in each source file that uses these functions and variables.

On Unix systems, there is often no such header file. Then you must
explictly declare the variables as external. You can do likewise
for the functions, or let them be implicitly declared and cast
their values from type int to the appropriate type.

We illustrate the declarations of the individual termcap library
functions with ANSI C prototypes because they show how to pass the
arguments. If you are not using the GNU C compiler, you probably
cannot use function prototypes, so omit the argument types and
names from your declarations.

* The linker needs to search the library. Usually either -ltermcap
or -ltermlib as an argument when linking will do this.

1.5 termcap/Find

Finding a Terminal Description: tgetent
=======================================

An application program that is going to use termcap must first look
up the description of the terminal type in use. This is done by calling
tgetent, whose declaration in ANSI Standard C looks like:

int tgetent (char *buffer, char *termtype);

This function finds the description and remembers it internally so that
you can interrogate it about specific terminal capabilities (see

Interrogate
).

The argument termtype is a string which is the name for the type of
terminal to look up. Usually you would obtain this from the environment
variable TERM using getenv ("TERM").

If you are using the GNU version of termcap, you can alternatively
ask tgetent to allocate enough space. Pass a null pointer for buffer,
and tgetent itself allocates the storage using malloc. In this case
the returned value on success is the address of the storage, cast to
int. But normally there is no need for you to look at the address.
Do not free the storage yourself.

With the Unix version of termcap, you must allocate space for the
description yourself and pass the address of the space as the argument
buffer. There is no way you can tell how much space is needed, so the
convention is to allocate a buffer 2048 characters long and assume that
is enough. (Formerly the convention was to allocate 1024 characters and
assume that was enough. But one day, for one kind of terminal, that was
not enough.)

termcap 7 / 78

No matter how the space to store the description has been obtained,
termcap records its address internally for use when you later
interrogate the description with tgetnum, tgetstr or tgetflag. If the
buffer was allocated by termcap, it will be freed by termcap too if you
call tgetent again. If the buffer was provided by you, you must make
sure that its contents remain unchanged for as long as you still plan
to interrogate the description.

The return value of tgetent is -1 if there is some difficulty
accessing the data base of terminal types, 0 if the data base is
accessible but the specified type is not defined in it, and some other
value otherwise.

Here is how you might use the function tgetent:

#ifdef unix
static char term_buffer[2048];
#else
#define term_buffer 0
#endif

init_terminal_data ()
{

char *termtype = getenv ("TERM");
int success;

if (termtype == 0)
fatal ("Specify a terminal type with ‘setenv TERM <yourtype>’.\n");

success = tgetent (term_buffer, termtype);
if (success < 0)

fatal ("Could not access the termcap data base.\n");
if (success == 0)

fatal ("Terminal type ‘%s’ is not defined.\n", termtype);
}

Here we assume the function fatal prints an error message and exits.

If the environment variable TERMCAP is defined, its value is used to
override the terminal type data base. The function tgetent checks the
value of TERMCAP automatically. If the value starts with / then it is
taken as a file name to use as the data base file, instead of
/etc/termcap which is the standard data base. If the value does not
start with / then it is itself used as the terminal description,
provided that the terminal type termtype is among the types it claims
to apply to. See

Data Base
, for information on the format of a

terminal description.

1.6 termcap/Interrogate

termcap 8 / 78

Interrogating the Terminal Description
======================================

Each piece of information recorded in a terminal description is
called a capability. Each defined terminal capability has a two-letter
code name and a specific meaning. For example, the number of columns
is named co. See

Capabilities
, for definitions of all the standard

capability names.

Once you have found the proper terminal description with tgetent
(see

Find
), your application program must interrogate it for various

terminal capabilities. You must specify the two-letter code of the
capability whose value you seek.

Capability values can be numeric, boolean (capability is either
present or absent) or strings. Any particular capability always has
the same value type; for example, co always has a numeric value, while
am (automatic wrap at margin) is always a flag, and cm (cursor motion
command) always has a string value. The documentation of each
capability says which type of value it has.

There are three functions to use to get the value of a capability,
depending on the type of value the capability has. Here are their
declarations in ANSI C:

int tgetnum (char *name);
int tgetflag (char *name);
char *tgetstr (char *name, char **area);

tgetnum
Use tgetnum to get a capability value that is numeric. The
argument name is the two-letter code name of the capability. If
the capability is present, tgetnum returns the numeric value
(which is nonnegative). If the capability is not mentioned in the
terminal description, tgetnum returns -1.

tgetflag
Use tgetflag to get a boolean value. If the capability name is
present in the terminal description, tgetflag returns 1;
otherwise, it returns 0.

tgetstr
Use tgetstr to get a string value. It returns a pointer to a
string which is the capability value, or a null pointer if the
capability is not present in the terminal description.

There are two ways tgetstr can find space to store the string
value:

* You can ask tgetstr to allocate the space. Pass a null
pointer for the argument area, and tgetstr will use malloc to
allocate storage big enough for the value. Termcap will

termcap 9 / 78

never free this storage or refer to it again; you should free
it when you are finished with it.

This method is more robust, since there is no need to guess
how much space is needed. But it is supported only by the GNU
termcap library.

* You can provide the space. Provide for the argument area the
address of a pointer variable of type char *. Before calling
tgetstr, initialize the variable to point at available space.
Then tgetstr will store the string value in that space and
will increment the pointer variable to point after the space
that has been used. You can use the same pointer variable
for many calls to tgetstr.

There is no way to determine how much space is needed for a
single string, and no way for you to prevent or handle
overflow of the area you have provided. However, you can be
sure that the total size of all the string values you will
obtain from the terminal description is no greater than the
size of the description (unless you get the same capability
twice). You can determine that size with strlen on the
buffer you provided to tgetent. See below for an example.

Providing the space yourself is the only method supported by
the Unix version of termcap.

Note that you do not have to specify a terminal type or terminal
description for the interrogation functions. They automatically use the
description found by the most recent call to tgetent.

Here is an example of interrogating a terminal description for
various capabilities, with conditionals to select between the Unix and
GNU methods of providing buffer space.

char *tgetstr ();

char *cl_string, *cm_string;
int height;
int width;
int auto_wrap;

char PC; /* For tputs. */
char *BC; /* For tgoto. */
char *UP;

interrogate_terminal ()
{
#ifdef UNIX

/* Here we assume that an explicit term_buffer
was provided to tgetent. */

char *buffer
= (char *) malloc (strlen (term_buffer));

#define BUFFADDR &buffer
#else
#define BUFFADDR 0
#endif

termcap 10 / 78

char *temp;

/* Extract information we will use. */
cl_string = tgetstr ("cl", BUFFADDR);
cm_string = tgetstr ("cm", BUFFADDR);
auto_wrap = tgetflag ("am");
height = tgetnum ("li");
width = tgetnum ("co");

/* Extract information that termcap functions use. */
temp = tgetstr ("pc", BUFFADDR);
PC = temp ? *temp : 0;
BC = tgetstr ("le", BUFFADDR);
UP = tgetstr ("up", BUFFADDR);

}

See
Padding
, for information on the variable PC. See
Using Parameters
,

for information on UP and BC.

1.7 termcap/Initialize

Initialization for Use of Termcap
=================================

Before starting to output commands to a terminal using termcap, an
application program should do two things:

* Initialize various global variables which termcap library output
functions refer to. These include PC and ospeed for padding (see

Output Padding
) and UP and BC for cursor motion (see
tgoto
).

* Tell the kernel to turn off alteration and padding of
horizontal-tab characters sent to the terminal.

To turn off output processing in Berkeley Unix you would use ioctl
with code TIOCLSET to set the bit named LLITOUT, and clear the bits
ANYDELAY using TIOCSETN. In POSIX or System V, you must clear the bit
named OPOST. Refer to the system documentation for details.

If you do not set the terminal flags properly, some older terminals
will not work. This is because their commands may contain the
characters that normally signify newline, carriage return and
horizontal tab--characters which the kernel thinks it ought to modify
before output.

termcap 11 / 78

When you change the kernel’s terminal flags, you must arrange to
restore them to their normal state when your program exits. This
implies that the program must catch fatal signals such as SIGQUIT and
SIGINT and restore the old terminal flags before actually terminating.

Modern terminals’ commands do not use these special characters, so
if you do not care about problems with old terminals, you can leave the
kernel’s terminal flags unaltered.

1.8 termcap/Padding

Padding
=======

Padding means outputting null characters following a terminal display
command that takes a long time to execute. The terminal description
says which commands require padding and how much; the function tputs,
described below, outputs a terminal command while extracting from it the
padding information, and then outputs the padding that is necessary.

Why Pad
Explanation of padding.

Not Enough
When there is not enough padding.

Describe Padding
The data base says how much padding a terminal needs.

Output Padding
Using tputs to output the needed padding.

1.9 termcap/Why Pad

Why Pad, and How

Most types of terminal have commands that take longer to execute
than they do to send over a high-speed line. For example, clearing the
screen may take 20msec once the entire command is received. During
that time, on a 9600 bps line, the terminal could receive about 20
additional output characters while still busy clearing the screen.
Every terminal has a certain amount of buffering capacity to remember
output characters that cannot be processed yet, but too many slow
commands in a row can cause the buffer to fill up. Then any additional

termcap 12 / 78

output that cannot be processed immediately will be lost.

To avoid this problem, we normally follow each display command with
enough useless charaters (usually null characters) to fill up the time
that the display command needs to execute. This does the job if the
terminal throws away null characters without using up space in the
buffer (which most terminals do). If enough padding is used, no output
can ever be lost. The right amount of padding avoids loss of output
without slowing down operation, since the time used to transmit padding
is time that nothing else could be done.

The number of padding characters needed for an operation depends on
the line speed. In fact, it is proportional to the line speed. A 9600
baud line transmits about one character per msec, so the clear screen
command in the example above would need about 20 characters of padding.
At 1200 baud, however, only about 3 characters of padding are needed
to fill up 20msec.

1.10 termcap/Not Enough

When There Is Not Enough Padding

There are several common manifestations of insufficient padding.

* Emacs displays I-search: ^Q- at the bottom of the screen.

This means that the terminal thought its buffer was getting full of
display commands, so it tried to tell the computer to stop sending
any.

* The screen is garbled intermittently, or the details of garbling
vary when you repeat the action. (A garbled screen could be due
to a command which is simply incorrect, or to user option in the
terminal which doesn’t match the assumptions of the terminal
description, but this usually leads to reproducible failure.)

This means that the buffer did get full, and some commands were
lost. Many changeable factors can change which ones are lost.

* Screen is garbled at high output speeds but not at low speeds.
Padding problems nearly always go away at low speeds, usually even
at 1200 baud.

This means that a high enough speed permits commands to arrive
faster than they can be executed.

Although any obscure command on an obscure terminal might lack
padding, in practice problems arise most often from the clearing
commands cl and cd (see

Clearing
), the scrolling commands sf and sr

(see
Scrolling

termcap 13 / 78

), and the line insert/delete commands al and dl (see

Insdel Line
).

Occasionally the terminal description fails to define sf and some
programs will use do instead, so you may get a problem with do. If so,
first define sf just like do, then add some padding to sf.

The best strategy is to add a lot of padding at first, perhaps 200
msec. This is much more than enough; in fact, it should cause a
visible slowdown. (If you don’t see a slowdown, the change has not
taken effect; see

Changing
.) If this makes the problem go away, you

have found the right place to add padding; now reduce the amount until
the problem comes back, then increase it again. If the problem
remains, either it is in some other capability or it is not a matter of
padding at all.

Keep in mind that on many terminals the correct padding for
insert/delete line or for scrolling is cursor-position dependent. If
you get problems from scrolling a large region of the screen but not
from scrolling a small part (just a few lines moving), it may mean that
fixed padding should be replaced with position-dependent padding.

1.11 termcap/Describe Padding

Specifying Padding in a Terminal Description
--

In the terminal description, the amount of padding required by each
display command is recorded as a sequence of digits at the front of the
command. These digits specify the padding time in milliseconds (msec).
They can be followed optionally by a decimal point and one more digit,
which is a number of tenths of msec.

Sometimes the padding needed by a command depends on the cursor
position. For example, the time taken by an "insert line" command is
usually proportional to the number of lines that need to be moved down
or cleared. An asterisk (*) following the padding time says that the
time should be multiplied by the number of screen lines affected by the
command.

:al=1.3*\E[L:

is used to describe the "insert line" command for a certain terminal.
The padding required is 1.3 msec per line affected. The command itself
is ESC [L.

The padding time specified in this way tells tputs how many pad
characters to output. See

Output Padding

termcap 14 / 78

.

Two special capability values affect padding for all commands.
These are the pc and pb. The variable pc specifies the character to
pad with, and pb the speed below which no padding is needed. The
defaults for these variables, a null character and 0, are correct for
most terminals. See

Pad Specs
.

1.12 termcap/Output Padding

Performing Padding with tputs

Use the termcap function tputs to output a string containing an
optional padding spec of the form described above (see

Describe Padding
). The function tputs strips off and decodes the

padding spec, outputs the rest of the string, and then outputs the
appropriate padding. Here is its declaration in ANSI C:

char PC;
short ospeed;

int tputs (char *string, int nlines, int (*outfun) ());

Here string is the string (including padding spec) to be output;
nlines is the number of lines affected by the operation, which is used
to multiply the amount of padding if the padding spec ends with a *.
Finally, outfun is a function (such as fputchar) that is called to
output each character. When actually called, outfun should expect one
argument, a character.

The operation of tputs is controlled by two global variables, ospeed
and PC. The value of ospeed is supposed to be the terminal output
speed, encoded as in the ioctl system call which gets the speed
information. This is needed to compute the number of padding
characters. The value of PC is the character used for padding.

You are responsible for storing suitable values into these variables
before using tputs. The value stored into the PC variable should be
taken from the pc capability in the terminal description (see

Pad Specs
). Store zero in PC if there is no pc capability.

The argument nlines requires some thought. Normally, it should be
the number of lines whose contents will be cleared or moved by the
command. For cursor motion commands, or commands that do editing
within one line, use the value 1. For most commands that affect
multiple lines, such as al (insert a line) and cd (clear from the

termcap 15 / 78

cursor to the end of the screen), nlines should be the screen height
minus the current vertical position (origin 0). For multiple insert
and scroll commands such as AL (insert multiple lines), that same value
for nlines is correct; the number of lines being inserted is not
correct.

If a "scroll window" feature is used to reduce the number of lines
affected by a command, the value of nlines should take this into
account. This is because the delay time required depends on how much
work the terminal has to do, and the scroll window feature reduces the
work. See

Scrolling
.

Commands such as ic and dc (insert or delete characters) are
problematical because the padding needed by these commands is
proportional to the number of characters affected, which is the number
of columns from the cursor to the end of the line. It would be nice to
have a way to specify such a dependence, and there is no need for
dependence on vertical position in these commands, so it is an obvious
idea to say that for these commands nlines should really be the number
of columns affected. However, the definition of termcap clearly says
that nlines is always the number of lines affected, even in this case,
where it is always 1. It is not easy to change this rule now, because
too many programs and terminal descriptions have been written to follow
it.

Because nlines is always 1 for the ic and dc strings, there is no
reason for them to use *, but some of them do. These should be
corrected by deleting the *. If, some day, such entries have
disappeared, it may be possible to change to a more useful convention
for the nlines argument for these operations without breaking any
programs.

1.13 termcap/Parameters

Filling In Parameters
=====================

Some terminal control strings require numeric parameters. For
example, when you move the cursor, you need to say what horizontal and
vertical positions to move it to. The value of the terminal’s cm
capability, which says how to move the cursor, cannot simply be a
string of characters; it must say how to express the cursor position
numbers and where to put them within the command.

The specifications of termcap include conventions as to which
string-valued capabilities require parameters, how many parameters, and
what the parameters mean; for example, it defines the cm string to take
two parameters, the vertical and horizontal positions, with 0,0 being
the upper left corner. These conventions are described where the
individual commands are documented.

termcap 16 / 78

Termcap also defines a language used within the capability
definition for specifying how and where to encode the parameters for
output. This language uses character sequences starting with %. (This
is the same idea as printf, but the details are different.) The
language for parameter encoding is described in this section.

A program that is doing display output calls the functions tparam or
tgoto to encode parameters according to the specifications. These
functions produce a string containing the actual commands to be output
(as well a padding spec which must be processed with tputs; see

Padding
).

Encode Parameters
The language for encoding parameters.

Using Parameters
Outputting a string command with parameters.

1.14 termcap/Encode Parameters

Describing the Encoding

A terminal command string that requires parameters contains special
character sequences starting with % to say how to encode the
parameters. These sequences control the actions of tparam and tgoto.

The parameters values passed to tparam or tgoto are considered to
form a vector. A pointer into this vector determines the next
parameter to be processed. Some of the %-sequences encode one
parameter and advance the pointer to the next parameter. Other
%-sequences alter the pointer or alter the parameter values without
generating output.

For example, the cm string for a standard ANSI terminal is written
as \E[%i%d;%dH. (\E stands for ESC.) cm by convention always requires
two parameters, the vertical and horizontal goal positions, so this
string specifies the encoding of two parameters. Here %i increments
the two values supplied, and each %d encodes one of the values in
decimal. If the cursor position values 20,58 are encoded with this
string, the result is \E[21;59H.

First, here are the %-sequences that generate output. Except for
%%, each of them encodes one parameter and advances the pointer to
the following parameter.

%%
Output a single %. This is the only way to represent a literal %
in a terminal command with parameters. %% does not use up a

termcap 17 / 78

parameter.

%d
As in printf, output the next parameter in decimal.

%2
Like %02d in printf: output the next parameter in decimal, and
always use at least two digits.

%3
Like %03d in printf: output the next parameter in decimal, and
always use at least three digits. Note that %4 and so on are not
defined.

%.
Output the next parameter as a single character whose ASCII code is
the parameter value. Like %c in printf.

%+char
Add the next parameter to the character char, and output the
resulting character. For example, %+ represents 0 as a space, 1
as !, etc.

The following %-sequences specify alteration of the parameters
(their values, or their order) rather than encoding a parameter for
output. They generate no output; they are used only for their side
effects on the parameters. Also, they do not advance the "next
parameter" pointer except as explicitly stated. Only %i, %r and %> are
defined in standard Unix termcap. The others are GNU extensions.

%i
Increment the next two parameters. This is used for terminals that
expect cursor positions in origin 1. For example, %i%d,%d would
output two parameters with 1 for 0, 2 for 1, etc.

%r
Interchange the next two parameters. This is used for terminals
whose cursor positioning command expects the horizontal position
first.

%s
Skip the next parameter. Do not output anything.

%b
Back up one parameter. The last parameter used will become once
again the next parameter to be output, and the next output command
will use it. Using %b more than once, you can back up any number
of parameters, and you can refer to each parameter any number of
times.

%>c1 c2
Conditionally increment the next parameter. Here c1 and c2 are
characters which stand for their ASCII codes as numbers. If the
next parameter is greater than the ASCII code of c1, the ASCII
code of c2 is added to it.

%a op type pos

termcap 18 / 78

Perform arithmetic on the next parameter, do not use it up, and do
not output anything. Here op specifies the arithmetic operation, while
type and pos together specify the other operand.

Spaces are used above to separate the operands for clarity; the
spaces don’t appear in the data base, where this sequence is
exactly five characters long.

The character op says what kind of arithmetic operation to
perform. It can be any of these characters:

=
assign a value to the next parameter, ignoring its old value.
The new value comes from the other operand.

+
add the other operand to the next parameter.

-
subtract the other operand from the next parameter.

*
multiply the next parameter by the other operand.

/
divide the next parameter by the other operand.

The "other operand" may be another parameter’s value or a constant;
the character type says which. It can be:

p
Use another parameter. The character pos says which
parameter to use. Subtract 64 from its ASCII code to get the
position of the desired parameter relative to this one. Thus,
the character A as pos means the parameter after the next
one; the character ? means the parameter before the next one.

c
Use a constant value. The character pos specifies the value
of the constant. The 0200 bit is cleared out, so that 0200
can be used to represent zero.

The following %-sequences are special purpose hacks to compensate
for the weird designs of obscure terminals. They modify the next
parameter or the next two parameters but do not generate output and do
not use up any parameters. %m is a GNU extension; the others are
defined in standard Unix termcap.

%n
Exclusive-or the next parameter with 0140, and likewise the
parameter after next.

%m
Complement all the bits of the next parameter and the parameter
after next.

%B

termcap 19 / 78

Encode the next parameter in BCD. It alters the value of the
parameter by adding six times the quotient of the parameter by ten.
Here is a C statement that shows how the new value is computed:

parm = (parm / 10) * 16 + parm % 10;

%D
Transform the next parameter as needed by Delta Data terminals.
This involves subtracting twice the remainder of the parameter by
16.

parm -= 2 * (parm % 16);

1.15 termcap/Using Parameters

Sending Display Commands with Parameters
--

The termcap library functions tparam and tgoto serve as the analog
of printf for terminal string parameters. The newer function tparam is
a GNU extension, more general but missing from Unix termcap. The
original parameter-encoding function is tgoto, which is preferable for
cursor motion.

tparam
The general case, for GNU termcap only.

tgoto
The special case of cursor motion.

1.16 termcap/tparam

tparam
......

The function tparam can encode display commands with any number of
parameters and allows you to specify the buffer space. It is the
preferred function for encoding parameters for all but the cm
capability. Its ANSI C declaration is as follows:

char *tparam (char *ctlstring, char *buffer, int size, int parm1,...)

The arguments are a control string ctlstring (the value of a terminal
capability, presumably), an output buffer buffer and size, and any
number of integer parameters to be encoded. The effect of tparam is to
copy the control string into the buffer, encoding parameters according
to the % sequences in the control string.

termcap 20 / 78

You describe the output buffer by its address, buffer, and its size
in bytes, size. If the buffer is not big enough for the data to be
stored in it, tparam calls malloc to get a larger buffer. In either
case, tparam returns the address of the buffer it ultimately uses. If
the value equals buffer, your original buffer was used. Otherwise, a
new buffer was allocated, and you must free it after you are done with
printing the results. If you pass zero for size and buffer, tparam
always allocates the space with malloc.

All capabilities that require parameters also have the ability to
specify padding, so you should use tputs to output the string produced
by tparam. See

Padding
. Here is an example.

{
char *buf;
char buffer[40];

buf = tparam (command, buffer, 40, parm);
tputs (buf, 1, fputchar);
if (buf != buffer)
free (buf);
}

If a parameter whose value is zero is encoded with %.-style
encoding, the result is a null character, which will confuse tputs.
This would be a serious problem, but luckily %. encoding is used only
by a few old models of terminal, and only for the cm capability. To
solve the problem, use tgoto rather than tparam to encode the cm
capability.

1.17 termcap/tgoto

tgoto
.....

The special case of cursor motion is handled by tgoto. There are
two reasons why you might choose to use tgoto:

* For Unix compatibility, because Unix termcap does not have tparam.

* For the cm capability, since tgoto has a special feature to avoid
problems with null characters, tabs and newlines on certain old
terminal types that use %. encoding for that capability.

Here is how tgoto might be declared in ANSI C:

char *tgoto (char *cstring, int hpos, int vpos)

There are three arguments, the terminal description’s cm string and
the two cursor position numbers; tgoto computes the parametrized string

termcap 21 / 78

in an internal static buffer and returns the address of that buffer.
The next time you use tgoto the same buffer will be reused.

Parameters encoded with %. encoding can generate null characters,
tabs or newlines. These might cause trouble: the null character because
tputs would think that was the end of the string, the tab because the
kernel or other software might expand it into spaces, and the newline
becaue the kernel might add a carriage-return, or padding characters
normally used for a newline. To prevent such problems, tgoto is
careful to avoid these characters. Here is how this works: if the
target cursor position value is such as to cause a problem (that is to
say, zero, nine or ten), tgoto increments it by one, then compensates by
appending a string to move the cursor back or up one position.

The compensation strings to use for moving back or up are found in
global variables named BC and UP. These are actual external C
variables with upper case names; they are declared char *. It is up to
you to store suitable values in them, normally obtained from the le and
up terminal capabilities in the terminal description with tgetstr.
Alternatively, if these two variables are both zero, the feature of
avoiding nulls, tabs and newlines is turned off.

It is safe to use tgoto for commands other than cm only if you have
stored zero in BC and UP.

Note that tgoto reverses the order of its operands: the horizontal
position comes before the vertical position in the arguments to tgoto,
even though the vertical position comes before the horizontal in the
parameters of the cm string. If you use tgoto with a command such as
AL that takes one parameter, you must pass the parameter to tgoto
as the "vertical position".

1.18 termcap/Data Base

The Format of the Data Base

The termcap data base of terminal descriptions is stored in the file
/etc/termcap. It contains terminal descriptions, blank lines, and
comments.

A terminal description starts with one or more names for the
terminal type. The information in the description is a series of
capability names and values. The capability names have standard
meanings (see

Capabilities
) and their values describe the terminal.

Format
Overall format of a terminal description.

Capability Format

termcap 22 / 78

Format of capabilities within a description.

Naming
Naming conventions for terminal types.

Inheriting
Inheriting part of a description from

a related terminal type.

Changing
When changes in the data base take effect.

1.19 termcap/Format

Terminal Description Format
===========================

Aside from comments (lines starting with #, which are ignored), each
nonblank line in the termcap data base is a terminal description. A
terminal description is nominally a single line, but it can be split
into multiple lines by inserting the two characters \ newline. This
sequence is ignored wherever it appears in a description.

The preferred way to split the description is between capabilities:
insert the four characters : \ newline tab immediately before any colon.
This allows each sub-line to start with some indentation. This works
because, after the \ newline are ignored, the result is : tab :; the
first colon ends the preceding capability and the second colon starts
the next capability. If you split with \ newline alone, you may not
add any indentation after them.

Here is a real example of a terminal description:

dw|vt52|DEC vt52:\
:cr=^M:do=^J:nl=^J:bl=^G:\
:le=^H:bs:cd=\EJ:ce=\EK:cl=\EH\EJ:\
:cm=\EY%+ %+ :co#80:li#24:\
:nd=\EC:ta=^I:pt:sr=\EI:up=\EA:\
:ku=\EA:kd=\EB:kr=\EC:kl=\ED:kb=^H:

Each terminal description begins with several names for the terminal
type. The names are separated by | characters, and a colon ends the
last name. The first name should be two characters long; it exists
only for the sake of very old Unix systems and is never used in modern
systems. The last name should be a fully verbose name such as "DEC
vt52" or "Ann Arbor Ambassador with 48 lines". The other names should
include whatever the user ought to be able to specify to get this
terminal type, such as vt52 or aaa-48. See

Naming
, for information on

how to choose terminal type names.

After the terminal type names come the terminal capabilities,

termcap 23 / 78

separated by colons and with a colon after the last one. Each
capability has a two-letter name, such as cm for "cursor motion string"
or li for "number of display lines".

1.20 termcap/Capability Format

Writing the Capabilities
========================

There are three kinds of capabilities: flags, numbers, and strings.
Each kind has its own way of being written in the description. Each
defined capability has by convention a particular kind of value; for
example, li always has a numeric value and cm always a string value.

A flag capability is thought of as having a boolean value: the value
is true if the capability is present, false if not. When the
capability is present, just write its name between two colons.

A numeric capability has a value which is a nonnegative number.
Write the capability name, a #, and the number, between two colons. For
example, ...:li#48:... is how you specify the li capability for 48
lines.

A string-valued capability has a value which is a sequence of
characters. Usually these are the characters used to perform some
display operation. Write the capability name, a =, and the characters
of the value, between two colons. For example, ...:cm=\E[%i%d;%dH:...
is how the cursor motion command for a standard ANSI terminal would be
specified.

Special characters in the string value can be expressed using \
-escape sequences as in C; in addition, \E stands for ESC. ^ is also a
kind of escape character; ^ followed by char stands for the
control-equivalent of char. Thus, ^a stands for the character
control-a, just like \001. \ and ^ themselves can be represented as \
and \^.

To include a colon in the string, you must write \072. You might
ask, "Why can’t \: be used to represent a colon?" The reason is that
the interrogation functions do not count slashes while looking for a
capability. Even if :ce=ab\:cd: were interpreted as giving the ce
capability the value ab:cd, it would also appear to define cd as a flag.

The string value will often contain digits at the front to specify
padding (see

Padding
) and/or %-sequences within to specify how to encode

parameters (see
Parameters
). Although these things are not to be

output literally to the terminal, they are considered part of the value
of the capability. They are special only when the string value is
processed by tputs, tparam or tgoto. By contrast, \ and ^ are

termcap 24 / 78

considered part of the syntax for specifying the characters in the
string.

Let’s look at the VT52 example again:

dw|vt52|DEC vt52:\
:cr=^M:do=^J:nl=^J:bl=^G:\
:le=^H:bs:cd=\EJ:ce=\EK:cl=\EH\EJ:\
:cm=\EY%+ %+ :co#80:li#24:\
:nd=\EC:ta=^I:pt:sr=\EI:up=\EA:\
:ku=\EA:kd=\EB:kr=\EC:kl=\ED:kb=^H:

Here we see the numeric-valued capabilities co and li, the flags bs
and pt, and many string-valued capabilities. Most of the strings start
with ESC represented as \E. The rest contain control characters
represented using ^. The meanings of the individual capabilities are
defined elsewhere (see

Capabilities
).

1.21 termcap/Naming

Terminal Type Name Conventions
==============================

There are conventions for choosing names of terminal types. For one
thing, all letters should be in lower case. The terminal type for a
terminal in its most usual or most fundamental mode of operation should
not have a hyphen in it.

If the same terminal has other modes of operation which require
different terminal descriptions, these variant descriptions are given
names made by adding suffixes with hyphens. Such alternate descriptions
are used for two reasons:

* When the terminal has a switch that changes its behavior. Since
the computer cannot tell how the switch is set, the user must tell
the computer by choosing the appropriate terminal type name.

For example, the VT-100 has a setup flag that controls whether the
cursor wraps at the right margin. If this flag is set to "wrap",
you must use the terminal type vt100-am. Otherwise you must use
vt100-nam. Plain vt100 is defined as a synonym for either
vt100-am or vt100-nam depending on the preferences of the
local site.

The standard suffix -am stands for "automatic margins".

* To give the user a choice in how to use the terminal. This is done
when the terminal has a switch that the computer normally controls.

For example, the Ann Arbor Ambassador can be configured with many
screen sizes ranging from 20 to 60 lines. Fewer lines make bigger

termcap 25 / 78

characters but more lines let you see more of what you are editing.
As a result, users have different preferences. Therefore, termcap
provides terminal types for many screen sizes. If you choose type
aaa-30, the terminal will be configured to use 30 lines; if you
choose aaa-48, 48 lines will be used, and so on.

Here is a list of standard suffixes and their conventional meanings:

-w
Short for "wide". This is a mode that gives the terminal more
columns than usual. This is normally a user option.

-am
"Automatic margins". This is an alternate description for use when
the terminal’s margin-wrap switch is on; it contains the am flag.
The implication is that normally the switch is off and the usual
description for the terminal says that the switch is off.

-nam
"No automatic margins". The opposite of -am, this names an
alternative description which lacks the am flag. This implies
that the terminal is normally operated with the margin-wrap switch
turned on, and the normal description of the terminal says so.

-na
"No arrows". This terminal description initializes the terminal to
keep its arrow keys in local mode. This is a user option.

-rv
"Reverse video". This terminal description causes text output for
normal video to appear as reverse, and text output for reverse
video to come out as normal. Often this description differs from
the usual one by interchanging the two strings which turn reverse
video on and off.

This is a user option; you can choose either the "reverse video"
variant terminal type or the normal terminal type, and termcap will
obey.

-s
"Status". Says to enable use of a status line which ordinary
output does not touch (see

Status Line
).

Some terminals have a special line that is used only as a status
line. For these terminals, there is no need for an -s variant; the
status line commands should be defined by default. On other
terminals, enabling a status line means removing one screen line
from ordinary use and reducing the effective screen height. For
these terminals, the user can choose the -s variant type to request
use of a status line.

-nlines
Says to operate with nlines lines on the screen, for terminals
such as the Ambassador which provide this as an option. Normally
this is a user option; by choosing the terminal type, you control

termcap 26 / 78

how many lines termcap will use.

-npagesp
Says that the terminal has npages pages worth of screen memory,
for terminals where this is a hardware option.

-unk
Says that description is not for direct use, but only for
reference in tc capabilities. Such a description is a kind of
subroutine, because it describes the common characteristics of
several variant descriptions that would use other suffixes in
place of -unk.

1.22 termcap/Inheriting

Inheriting from Related Descriptions
====================================

When two terminal descriptions are similar, their identical parts do
not need to be given twice. Instead, one of the two can be defined in
terms of the other, using the tc capability. We say that one
description refers to the other, or inherits from the other.

The tc capability must be the last one in the terminal description,
and its value is a string which is the name of another terminal type
which is referred to. For example,

N9|aaa|ambassador|aaa-30|ann arbor ambassador/30 lines:\
:ti=\E[2J\E[30;0;0;30p:\
:te=\E[60;0;0;30p\E[30;1H\E[J:\
:li#30:tc=aaa-unk:

defines the terminal type aaa-30 (also known as plain aaa) in terms of
aaa-unk, which defines everything about the Ambassador that is
independent of screen height. The types aaa-36, aaa-48 and so on for
other screen heights are likewise defined to inherit from aaa-unk.

The capabilities overridden by aaa-30 include li, which says how
many lines there are, and ti and te, which configure the terminal to
use that many lines.

The effective terminal description for type aaa consists of the text
shown above followed by the text of the description of aaa-unk. The tc
capability is handled automatically by tgetent, which finds the
description thus referenced and combines the two descriptions (see

Find
). Therefore, only the implementor of the terminal descriptions

needs to think about using tc. Users and application programmers do
not need to be concerned with it.

Since the reference terminal description is used last, capabilities
specified in the referring description override any specifications of

termcap 27 / 78

the same capabilities in the reference description.

The referring description can cancel out a capability without
specifying any new value for it by means of a special trick. Write the
capability in the referring description, with the character @ after
the capability name, as follows:

NZ|aaa-30-nam|ann arbor ambassador/30 lines/no automatic-margins:\
:am@:tc=aaa-30:

1.23 termcap/Changing

When Changes in the Data Base Take Effect
===

Each application program must read the terminal description from the
data base, so a change in the data base is effective for all jobs
started after the change is made.

The change will usually have no effect on a job that have been in
existence since before the change. The program probably read the
terminal description once, when it was started, and is continuing to
use what it read then. If the program does not have a feature for
reexamining the data base, then you will need to run it again (probably
killing the old job).

If the description in use is coming from the TERMCAP environment
variable, then the data base file is effectively overridden, and
changes in it will have no effect until you change the TERMCAP variable
as well. For example, some users’ .login files automatically copy the
terminal description into TERMCAP to speed startup of applications. If
you have done this, you will need to change the TERMCAP variable to
make the changed data base take effect.

1.24 termcap/Capabilities

Definitions of the Terminal Capabilities

**

This section is divided into many subsections, each for one aspect of
use of display terminals. For writing a display program, you usually
need only check the subsections for the operations you want to use.
For writing a terminal description, you must read each subsection and
fill in the capabilities described there.

String capabilities that are display commands may require numeric
parameters (see

Parameters
). Most such capabilities do not use

termcap 28 / 78

parameters. When a capability requires parameters, this is explicitly
stated at the beginning of its definition. In simple cases, the first
or second sentence of the definition mentions all the parameters, in
the order they should be given, using a name in upper case for each
one. For example, the rp capability is a command that requires two
parameters; its definition begins as follows:

String of commands to output a graphic character c, repeated n
times.

In complex cases or when there are many parameters, they are
described explicitly.

When a capability is described as obsolete, this means that programs
should not be written to look for it, but terminal descriptions should
still be written to provide it.

When a capability is described as very obsolete, this means that it
should be omitted from terminal descriptions as well.

Basic
Basic characteristics.

Screen Size
Screen size, and what happens when it changes.

Cursor Motion
Various ways to move the cursor.

Wrapping
What happens if you write a character in the last column.

Scrolling
Pushing text up and down on the screen.

Windows
Limiting the part of the window that output affects.

Clearing
Erasing one or many lines.

Insdel Line
Making new blank lines in mid-screen; deleting lines.

Insdel Char
Inserting and deleting characters within a line.

Standout
Highlighting some of the text.

Underlining
Underlining some of the text.

Cursor Visibility
Making the cursor more or less easy to spot.

termcap 29 / 78

Bell
Attracts user’s attention; not localized on the screen.

Keypad
Recognizing when function keys or arrows are typed.

Meta Key
META acts like an extra shift key.

Initialization
Commands used to initialize or reset the terminal.

Pad Specs
Info for the kernel on how much padding is needed.

Status Line
A status line displays "background" information.

Half-Line
Moving by half-lines, for superscripts and subscripts.

Printer
Controlling auxiliary printers of display terminals.

1.25 termcap/Basic

Basic Characteristics
=====================

This section documents the capabilities that describe the basic and
nature of the terminal, and also those that are relevant to the output
of graphic characters.

os
Flag whose presence means that the terminal can overstrike. This
means that outputting a graphic character does not erase whatever
was present in the same character position before. The terminals
that can overstrike include printing terminals, storage tubes (all
obsolete nowadays), and many bit-map displays.

eo
Flag whose presence means that outputting a space erases a
character position even if the terminal supports overstriking. If
this flag is not present and overstriking is supported, output of
a space has no effect except to move the cursor.

(On terminals that do not support overstriking, you can always
assume that outputting a space at a position erases whatever
character was previously displayed there.)

gn
Flag whose presence means that this terminal type is a generic type

termcap 30 / 78

which does not really describe any particular terminal. Generic
types are intended for use as the default type assigned when the
user connects to the system, with the intention that the user
should specify what type he really has. One example of a generic
type is the type network.

Since the generic type cannot say how to do anything interesting
with the terminal, termcap-using programs will always find that the
terminal is too weak to be supported if the user has failed to
specify a real terminal type in place of the generic one. The gn
flag directs these programs to use a different error message: "You
have not specified your real terminal type", rather than "Your
terminal is not powerful enough to be used".

hc
Flag whose presence means this is a hardcopy terminal.

rp
String of commands to output a graphic character c, repeated n
times. The first parameter value is the ASCII code for the desired
character, and the second parameter is the number of times to
repeat the character. Often this command requires padding
proportional to the number of times the character is repeated.
This effect can be had by using parameter arithmetic with
%-sequences to compute the amount of padding, then generating
the result as a number at the front of the string so that tputs
will treat it as padding.

hz
Flag whose presence means that the ASCII character ~ cannot be
output on this terminal because it is used for display commands.

Programs handle this flag by checking all text to be output and
replacing each ~ with some other character(s). If this is not
done, the screen will be thoroughly garbled.

The old Hazeltine terminals that required such treatment are
probably very rare today, so you might as well not bother to
support this flag.

CC
String whose presence means the terminal has a settable command
character. The value of the string is the default command
character (which is usually ESC).

All the strings of commands in the terminal description should be
written to use the default command character. If you are writing
an application program that changes the command character, use the
CC capability to figure out how to translate all the display
commands to work with the new command character.

Most programs have no reason to look at the CC capability.

xb
Flag whose presence identifies Superbee terminals which are unable
to transmit the characters ESC and Control-C. Programs which
support this flag are supposed to check the input for the code

termcap 31 / 78

sequences sent by the F1 and F2 keys, and pretend that ESC or
Control-C (respectively) had been read. But this flag is
obsolete, and not worth supporting.

1.26 termcap/Screen Size

Screen Size
===========

A terminal description has two capabilities, co and li, that
describe the screen size in columns and lines. But there is more to
the question of screen size than this.

On some operating systems the "screen" is really a window and the
effective width can vary. On some of these systems, tgetnum uses the
actual width of the window to decide what value to return for the co
capability, overriding what is actually written in the terminal
description. On other systems, it is up to the application program to
check the actual window width using a system call. For example, on BSD
4.3 systems, the system call ioctl with code TIOCGWINSZ will tell you
the current screen size.

On all window systems, termcap is powerless to advise the application
program if the user resizes the window. Application programs must deal
with this possibility in a system-dependent fashion. On some systems
the C shell handles part of the problem by detecting changes in window
size and setting the TERMCAP environment variable appropriately. This
takes care of application programs that are started subsequently. It
does not help application programs already running.

On some systems, including BSD 4.3, all programs using a terminal get
a signal named SIGWINCH whenever the screen size changes. Programs
that use termcap should handle this signal by using ioctl TIOCGWINSZ to
learn the new screen size.

co
Numeric value, the width of the screen in character positions.
Even hardcopy terminals normally have a co capability.

li
Numeric value, the height of the screen in lines.

1.27 termcap/Cursor Motion

Cursor Motion
=============

Termcap assumes that the terminal has a cursor, a spot on the screen
where a visible mark is displayed, and that most display commands take
effect at the position of the cursor. It follows that moving the cursor

termcap 32 / 78

to a specified location is very important.

There are many terminal capabilities for different cursor motion
operations. A terminal description should define as many as possible,
but most programs do not need to use most of them. One capability, cm,
moves the cursor to an arbitrary place on the screen; this by itself is
sufficient for any application as long as there is no need to support
hardcopy terminals or certain old, weak displays that have only relative
motion commands. Use of other cursor motion capabilities is an
optimization, enabling the program to output fewer characters in some
common cases.

If you plan to use the relative cursor motion commands in an
application program, you must know what the starting cursor position
is. To do this, you must keep track of the cursor position and update
the records each time anything is output to the terminal, including
graphic characters. In addition, it is necessary to know whether the
terminal wraps after writing in the rightmost column. See

Wrapping
.

One other motion capability needs special mention: nw moves the
cursor to the beginning of the following line, perhaps clearing all the
starting line after the cursor, or perhaps not clearing at all. This
capability is a least common denominator that is probably supported
even by terminals that cannot do most other things such as cm or do.
Even hardcopy terminals can support nw.

cm
String of commands to position the cursor at line l, column c.
Both parameters are origin-zero, and are defined relative to the
screen, not relative to display memory.

All display terminals except a few very obsolete ones support cm,
so it is acceptable for an application program to refuse to
operate on terminals lacking cm.

ho
String of commands to move the cursor to the upper left corner of
the screen (this position is called the home position). In
terminals where the upper left corner of the screen is not the
same as the beginning of display memory, this command must go to
the upper left corner of the screen, not the beginning of display
memory.

Every display terminal supports this capability, and many
application programs refuse to operate if the ho capability is
missing.

ll
String of commands to move the cursor to the lower left corner of
the screen. On some terminals, moving up from home position does
this, but programs should never assume that will work. Just
output the ll string (if it is provided); if moving to home
position and then moving up is the best way to get there, the ll
command will do that.

termcap 33 / 78

cr
String of commands to move the cursor to the beginning of the line
it is on. If this capability is not specified, many programs
assume they can use the ASCII carriage return character for this.

le
String of commands to move the cursor left one column. Unless the
bw flag capability is specified, the effect is undefined if the
cursor is at the left margin; do not use this command there. If
bw is present, this command may be used at the left margin, and
it wraps the cursor to the last column of the preceding line.

nd
String of commands to move the cursor right one column. The
effect is undefined if the cursor is at the right margin; do not
use this command there, not even if am is present.

up
String of commands to move the cursor vertically up one line. The
effect of sending this string when on the top line is undefined;
programs should never use it that way.

do
String of commands to move the cursor vertically down one line.
The effect of sending this string when on the bottom line is
undefined; programs should never use it that way.

Some programs do use do to scroll up one line if used at the
bottom line, if sf is not defined but sr is. This is only to
compensate for certain old, incorrect terminal descriptions. (In
principle this might actually lead to incorrect behavior on other
terminals, but that seems to happen rarely if ever.) But the
proper solution is that the terminal description should define sf
as well as do if the command is suitable for scrolling.

The original idea was that this string would not contain a newline
character and therefore could be used without disabling the
kernel’s usual habit of converting of newline into a
carriage-return newline sequence. But many terminal descriptions
do use newline in the do string, so this is not possible; a
program which sends the do string must disable output conversion
in the kernel (see

Initialize
).

bw
Flag whose presence says that le may be used in column zero to
move to the last column of the preceding line. If this flag is
not present, le should not be used in column zero.

nw
String of commands to move the cursor to start of next line,
possibly clearing rest of line (following the cursor) before
moving.

DO, UP, LE, RI
Strings of commands to move the cursor n lines down vertically, up

termcap 34 / 78

vertically, or n columns left or right. Do not attempt to move
past any edge of the screen with these commands; the effect of
trying that is undefined. Only a few terminal descriptions provide
these commands, and most programs do not use them.

CM
String of commands to position the cursor at line l, column c,
relative to display memory. Both parameters are origin-zero.
This capability is present only in terminals where there is a
difference between screen-relative and memory-relative addressing,
and not even in all such terminals.

ch
String of commands to position the cursor at column c in the same
line it is on. This is a special case of cm in which the vertical
position is not changed. The ch capability is provided only when
it is faster to output than cm would be in this special case.
Programs should not assume most display terminals have ch.

cv
String of commands to position the cursor at line l in the same
column. This is a special case of cm in which the horizontal
position is not changed. The cv capability is provided only when
it is faster to output than cm would be in this special case.
Programs should not assume most display terminals have cv.

sc
String of commands to make the terminal save the current cursor
position. Only the last saved position can be used. If this
capability is present, rc should be provided also. Most terminals
have neither.

rc
String of commands to make the terminal restore the last saved
cursor position. If this capability is present, sc should be
provided also. Most terminals have neither.

ff
String of commands to advance to the next page, for a hardcopy
terminal.

ta
String of commands to move the cursor right to the next hardware
tab stop column. Missing if the terminal does not have any kind of
hardware tabs. Do not send this command if the kernel’s terminal
modes say that the kernel is expanding tabs into spaces.

bt
String of commands to move the cursor left to the previous hardware
tab stop column. Missing if the terminal has no such ability; many
terminals do not. Do not send this command if the kernel’s
terminal modes say that the kernel is expanding tabs into spaces.

The following obsolete capabilities should be included in terminal
descriptions when appropriate, but should not be looked at by new
programs.

termcap 35 / 78

nc
Flag whose presence means the terminal does not support the ASCII
carriage return character as cr. This flag is needed because old
programs assume, when the cr capability is missing, that ASCII
carriage return can be used for the purpose. We use nc to tell
the old programs that carriage return may not be used.

New programs should not assume any default for cr, so they need
not look at nc. However, descriptions should contain nc whenever
they do not contain cr.

xt
Flag whose presence means that the ASCII tab character may not be
used for cursor motion. This flag exists because old programs
assume, when the ta capability is missing, that ASCII tab can be
used for the purpose. We use xt to tell the old programs not to
use tab.

New programs should not assume any default for ta, so they need
not look at xt in connection with cursor motion. Note that xt
also has implications for standout mode (see

Standout
). It is

obsolete in regard to cursor motion but not in regard to standout.

In fact, xt means that the terminal is a Teleray 1061.

bc
Very obsolete alternative name for the le capability.

bs
Flag whose presence means that the ASCII character backspace may be
used to move the cursor left. Obsolete; look at le instead.

nl
Obsolete capability which is a string that can either be used to
move the cursor down or to scroll. The same string must scroll
when used on the bottom line and move the cursor when used on any
other line. New programs should use do or sf, and ignore nl.

If there is no nl capability, some old programs assume they can
use the newline character for this purpose. These programs follow
a bad practice, but because they exist, it is still desirable to
define the nl capability in a terminal description if the best way
to move down is not a newline.

1.28 termcap/Wrapping

Wrapping
========

Wrapping means moving the cursor from the right margin to the left
margin of the following line. Some terminals wrap automatically when a

termcap 36 / 78

graphic character is output in the last column, while others do not.
Most application programs that use termcap need to know whether the
terminal wraps. There are two special flag capabilities to describe
what the terminal does when a graphic character is output in the last
column.

am
Flag whose presence means that writing a character in the last
column causes the cursor to wrap to the beginning of the next line.

If am is not present, writing in the last column leaves the cursor
at the place where the character was written.

Writing in the last column of the last line should be avoided on
terminals with am, as it may or may not cause scrolling to occur
(see

Scrolling
). Scrolling is surely not what you would intend.

If your program needs to check the am flag, then it also needs to
check the xn flag which indicates that wrapping happens in a
strange way. Many common terminals have the xn flag.

xn
Flag whose presence means that the cursor wraps in a strange way.
At least two distinct kinds of strange behavior are known; the
termcap data base does not contain anything to distinguish the two.

On Concept-100 terminals, output in the last column wraps the
cursor almost like an ordinary am terminal. But if the next thing
output is a newline, it is ignored.

DEC VT-100 terminals (when the wrap switch is on) do a different
strange thing: the cursor wraps only if the next thing output is
another graphic character. In fact, the wrap occurs when the
following graphic character is received by the terminal, before the
character is placed on the screen.

On both of these terminals, after writing in the last column a
following graphic character will be displayed in the first column
of the following line. But the effect of relative cursor motion
characters such as newline or backspace at such a time depends on
the terminal. The effect of erase or scrolling commands also
depends on the terminal. You can’t assume anything about what
they will do on a terminal that has xn. So, to be safe, you
should never do these things at such a time on such a terminal.

To be sure of reliable results on a terminal which has the xn
flag, output a cm absolute positioning command after writing in
the last column. Another safe thing to do is to output
carriage-return newline, which will leave the cursor at the
beginning of the following line.

termcap 37 / 78

1.29 termcap/Scrolling

Scrolling
=========

Scrolling means moving the contents of the screen up or down one or
more lines. Moving the contents up is forward scrolling; moving them
down is reverse scrolling.

Scrolling happens after each line of output during ordinary output
on most display terminals. But in an application program that uses
termcap for random-access output, scrolling happens only when
explicitly requested with the commands in this section.

Some terminals have a scroll region feature. This lets you limit
the effect of scrolling to a specified range of lines. Lines outside
the range are unaffected when scrolling happens. The scroll region
feature is available if either cs or cS is present.

sf
String of commands to scroll the screen one line up, assuming it is
output with the cursor at the beginning of the bottom line.

sr
String of commands to scroll the screen one line down, assuming it
is output with the cursor at the beginning of the top line.

do
A few programs will try to use do to do the work of sf. This is
not really correct--it is an attempt to compensate for the absence
of a sf command in some old terminal descriptions.

Since these terminal descriptions do define sr, perhaps at one
time the definition of do was different and it could be used for
scrolling as well. But it isn’t desirable to combine these two
functions in one capability, since scrolling often requires more
padding than simply moving the cursor down. Defining sf and do
separately allows you to specify the padding properly. Also, all
sources agree that do should not be relied on to do scrolling.

So the best approach is to add sf capabilities to the descriptions
of these terminals, copying the definition of do if that does
scroll.

SF
String of commands to scroll the screen n lines up, assuming it is
output with the cursor at the beginning of the bottom line.

SR
String of commands to scroll the screen n lines down, assuming it
is output with the cursor at the beginning of the top line.

cs
String of commands to set the scroll region. This command takes
two parameters, start and end, which are the line numbers
(origin-zero) of the first line to include in the scroll region

termcap 38 / 78

and of the last line to include in it. When a scroll region is
set, scrolling is limited to the specified range of lines; lines
outside the range are not affected by scroll commands.

Do not try to move the cursor outside the scroll region. The
region remains set until explicitly removed. To remove the scroll
region, use another cs command specifying the full height of the
screen.

The cursor position is undefined after the cs command is set, so
position the cursor with cm immediately afterward.

cS
String of commands to set the scroll region using parameters in
different form. The effect is the same as if cs were used. Four
parameters are required:

1. Total number of lines on the screen.

2. Number of lines above desired scroll region.

3. Number of lines below (outside of) desired scroll region.

4. Total number of lines on the screen, the same as the first
parameter.

This capability is a GNU extension that was invented to allow the
Ann Arbor Ambassador’s scroll-region command to be described; it
could also be done by putting non-Unix %-sequences into a cs
string, but that would have confused Unix programs that used the
cs capability with the Unix termcap. Currently only GNU Emacs
uses the cS capability.

ns
Flag which means that the terminal does not normally scroll for
ordinary sequential output. For modern terminals, this means that
outputting a newline in ordinary sequential output with the cursor
on the bottom line wraps to the top line. For some obsolete
terminals, other things may happen.

The terminal may be able to scroll even if it does not normally do
so. If the sf capability is provided, it can be used for scrolling
regardless of ns.

da
Flag whose presence means that lines scrolled up off the top of the
screen may come back if scrolling down is done subsequently.

The da and db flags do not, strictly speaking, affect how to
scroll. But programs that scroll usually need to clear the lines
scrolled onto the screen, if these flags are present.

db
Flag whose presence means that lines scrolled down off the bottom
of the screen may come back if scrolling up is done subsequently.

lm

termcap 39 / 78

Numeric value, the number of lines of display memory that the
terminal has. A value of zero means that the terminal has more
display memory than can fit on the screen, but no fixed number of
lines. (The number of lines may depend on the amount of text in
each line.)

Any terminal description that defines SF should also define sf;
likewise for SR and sr. However, many terminals can only scroll by one
line at a time, so it is common to find sf and not SF, or sr without SR.

Therefore, all programs that use the scrolling facilities should be
prepared to work with sf in the case that SF is absent, and likewise
with sr. On the other hand, an application program that uses only sf
and not SF is acceptable, though slow on some terminals.

When outputting a scroll command with tputs, the nlines argument
should be the total number of lines in the portion of the screen being
scrolled. Very often these commands require padding proportional to
this number of lines. See

Padding
.

1.30 termcap/Windows

Windows
=======

A window, in termcap, is a rectangular portion of the screen to which
all display operations are restricted. Wrapping, clearing, scrolling,
insertion and deletion all operate as if the specified window were all
the screen there was.

wi
String of commands to set the terminal output screen window. This
string requires four parameters, all origin-zero:

1. The first line to include in the window.

2. The last line to include in the window.

3. The first column to include in the window.

4. The last column to include in the window.

Most terminals do not support windows.

1.31 termcap/Clearing

Clearing Parts of the Screen
============================

termcap 40 / 78

There are several terminal capabilities for clearing parts of the
screen to blank. All display terminals support the cl string, and most
display terminals support all of these capabilities.

cl
String of commands to clear the entire screen and position the
cursor at the upper left corner.

cd
String of commands to clear the line the cursor is on, and all the
lines below it, down to the bottom of the screen. This command
string should be used only with the cursor in column zero; their
effect is undefined if the cursor is elsewhere.

ce
String of commands to clear from the cursor to the end of the
current line.

ec
String of commands to clear n characters, starting with the
character that the cursor is on. This command string is expected
to leave the cursor position unchanged. The parameter n should
never be large enough to reach past the right margin; the effect
of such a large parameter would be undefined.

Clear to end of line (ce) is extremely important in programs that
maintain an updating display. Nearly all display terminals support this
operation, so it is acceptable for a an application program to refuse to
work if ce is not present. However, if you do not want this
limitation, you can accomplish clearing to end of line by outputting
spaces until you reach the right margin. In order to do this, you must
know the current horizontal position. Also, this technique assumes
that writing a space will erase. But this happens to be true on all
the display terminals that fail to support ce.

1.32 termcap/Insdel Line

Insert/Delete Line
==================

Inserting a line means creating a blank line in the middle of the
screen, and pushing the existing lines of text apart. In fact, the
lines above the insertion point do not change, while the lines below
move down, and one is normally lost at the bottom of the screen.

Deleting a line means causing the line to disappear from the screen,
closing up the gap by moving the lines below it upward. A new line
appears at the bottom of the screen. Usually this line is blank, but
on terminals with the db flag it may be a line previously moved off the
screen bottom by scrolling or line insertion.

Insertion and deletion of lines is useful in programs that maintain
an updating display some parts of which may get longer or shorter.

termcap 41 / 78

They are also useful in editors for scrolling parts of the screen, and
for redisplaying after lines of text are killed or inserted.

Many terminals provide commands to insert or delete a single line at
the cursor position. Some provide the ability to insert or delete
several lines with one command, using the number of lines to insert or
delete as a parameter. Always move the cursor to column zero before
using any of these commands.

al
String of commands to insert a blank line before the line the
cursor is on. The existing line, and all lines below it, are
moved down. The last line in the screen (or in the scroll region,
if one is set) disappears and in most circumstances is discarded.
It may not be discarded if the db is present (see

Scrolling
).

The cursor must be at the left margin before this command is used.
This command does not move the cursor.

dl
String of commands to delete the line the cursor is on. The
following lines move up, and a blank line appears at the bottom of
the screen (or bottom of the scroll region). If the terminal has
the db flag, a nonblank line previously pushed off the screen
bottom may reappear at the bottom.

The cursor must be at the left margin before this command is used.
This command does not move the cursor.

AL
String of commands to insert n blank lines before the line that
the cursor is on. It is like al repeated n times, except that it
is as fast as one al.

DL
String of commands to delete n lines starting with the line that
the cursor is on. It is like dl repeated n times, except that it
is as fast as one dl.

Any terminal description that defines AL should also define al;
likewise for DL and dl. However, many terminals can only insert or
delete one line at a time, so it is common to find al and not AL, or dl
without DL.

Therefore, all programs that use the insert and delete facilities
should be prepared to work with al in the case that AL is absent, and
likewise with dl. On the other hand, it is acceptable to write an
application that uses only al and dl and does not look for AL or DL at
all.

If a terminal does not support line insertion and deletion directly,
but does support a scroll region, the effect of insertion and deletion
can be obtained with scrolling. However, it is up to the individual
user program to check for this possibility and use the scrolling
commands to get the desired result. It is fairly important to implement

termcap 42 / 78

this alternate strategy, since it is the only way to get the effect of
line insertion and deletion on the popular VT100 terminal.

Insertion and deletion of lines is affected by the scroll region on
terminals that have a settable scroll region. This is useful when it is
desirable to move any few consecutive lines up or down by a few lines.
See

Scrolling
.

The line pushed off the bottom of the screen is not lost if the
terminal has the db flag capability; instead, it is pushed into display
memory that does not appear on the screen. This is the same thing that
happens when scrolling pushes a line off the bottom of the screen.
Either reverse scrolling or deletion of a line can bring the apparently
lost line back onto the bottom of the screen. If the terminal has the
scroll region feature as well as db, the pushed-out line really is lost
if a scroll region is in effect.

When outputting an insert or delete command with tputs, the nlines
argument should be the total number of lines from the cursor to the
bottom of the screen (or scroll region). Very often these commands
require padding proportional to this number of lines. See

Padding
.

For AL and DL the nlines argument should not depend on the number of
lines inserted or deleted; only the total number of lines affected.
This is because it is just as fast to insert two or n lines with AL as
to insert one line with al.

1.33 termcap/Insdel Char

Insert/Delete Character
=======================

Inserting a character means creating a blank space in the middle of a
line, and pushing the rest of the line rightward. The character in the
rightmost column is lost.

Deleting a character means causing the character to disappear from
the screen, closing up the gap by moving the rest of the line leftward.
A blank space appears in the rightmost column.

Insertion and deletion of characters is useful in programs that
maintain an updating display some parts of which may get longer or
shorter. It is also useful in editors for redisplaying the results of
editing within a line.

Many terminals provide commands to insert or delete a single
character at the cursor position. Some provide the ability to insert
or delete several characters with one command, using the number of
characters to insert or delete as a parameter.

termcap 43 / 78

Many terminals provide an insert mode in which outputting a graphic
character has the added effect of inserting a position for that
character. A special command string is used to enter insert mode and
another is used to exit it. The reason for designing a terminal with
an insert mode rather than an insert command is that inserting
character positions is usually followed by writing characters into
them. With insert mode, this is as fast as simply writing the
characters, except for the fixed overhead of entering and leaving
insert mode. However, when the line speed is great enough, padding may
be required for the graphic characters output in insert mode.

Some terminals require you to enter insert mode and then output a
special command for each position to be inserted. Or they may require
special commands to be output before or after each graphic character to
be inserted.

Deletion of characters is usually accomplished by a straightforward
command to delete one or several positions; but on some terminals, it
is necessary to enter a special delete mode before using the delete
command, and leave delete mode afterward. Sometimes delete mode and
insert mode are the same mode.

Some terminals make a distinction between character positions in
which a space character has been output and positions which have been
cleared. On these terminals, the effect of insert or delete character
runs to the first cleared position rather than to the end of the line.
In fact, the effect may run to more than one line if there is no
cleared position to stop the shift on the first line. These terminals
are identified by the in flag capability.

On terminals with the in flag, the technique of skipping over
characters that you know were cleared, and then outputting text later
on in the same line, causes later insert and delete character
operations on that line to do nonstandard things. A program that has
any chance of doing this must check for the in flag and must be careful
to write explicit space characters into the intermediate columns when
in is present.

A plethora of terminal capabilities are needed to describe all of
this complexity. Here is a list of them all. Following the list, we
present an algorithm for programs to use to take proper account of all
of these capabilities.

im
String of commands to enter insert mode.

If the terminal has no special insert mode, but it can insert
characters with a special command, im should be defined with a
null value, because the vi editor assumes that insertion of a
character is impossible if im is not provided.

New programs should not act like vi. They should pay attention to
im only if it is defined.

ei
String of commands to leave insert mode. This capability must be

termcap 44 / 78

present if im is.

On a few old terminals the same string is used to enter and exit
insert mode. This string turns insert mode on if it was off, and
off it it was on. You can tell these terminals because the ei
string equals the im string. If you want to support these
terminals, you must always remember accurately whether insert mode
is in effect. However, these terminals are obsolete, and it is
reasonable to refuse to support them. On all modern terminals, you
can safely output ei at any time to ensure that insert mode is
turned off.

ic
String of commands to insert one character position at the cursor.
The cursor does not move.

If outputting a graphic character while in insert mode is
sufficient to insert the character, then the ic capability should
be defined with a null value.

If your terminal offers a choice of ways to insert--either use
insert mode or use a special command--then define im and do not
define ic, since this gives the most efficient operation when
several characters are to be inserted. Do not define both
strings, for that means that both must be used each time insertion
is done.

ip
String of commands to output following an inserted graphic
character in insert mode. Often it is used just for a padding
spec, when padding is needed after an inserted character (see

Padding
).

IC
String of commands to insert n character positions at and after
the cursor. It has the same effect as repeating the ic string and
a space, n times.

If IC is provided, application programs may use it without first
entering insert mode.

mi
Flag whose presence means it is safe to move the cursor while in
insert mode and assume the terminal remains in insert mode.

in
Flag whose presence means that the terminal distinguishes between
character positions in which space characters have been output and
positions which have been cleared.

An application program can assume that the terminal can do character
insertion if any one of the capabilities IC, im, ic or ip is provided.

To insert n blank character positions, move the cursor to the place
to insert them and follow this algorithm:

termcap 45 / 78

1. If an IC string is provided, output it with parameter n and you
are finished. Otherwise (or if you don’t want to bother to look
for an IC string) follow the remaining steps.

2. Output the im string, if there is one, unless the terminal is
already in insert mode.

3. Repeat steps 4 through 6, n times.

4. Output the ic string if any.

5. Output a space.

6. Output the ip string if any.

7. Output the ei string, eventually, to exit insert mode. There is
no need to do this right away. If the mi flag is present, you can
move the cursor and the cursor will remain in insert mode; then
you can do more insertion elsewhere without reentering insert mode.

To insert n graphic characters, position the cursor and follow this
algorithm:

1. If an IC string is provided, output it with parameter n, then
output the graphic characters, and you are finished. Otherwise
(or if you don’t want to bother to look for an IC string) follow
the remaining steps.

2. Output the im string, if there is one, unless the terminal is
already in insert mode.

3. For each character to be output, repeat steps 4 through 6.

4. Output the ic string if any.

5. Output the next graphic character.

6. Output the ip string if any.

7. Output the ei string, eventually, to exit insert mode. There is
no need to do this right away. If the mi flag is present, you can
move the cursor and the cursor will remain in insert mode; then
you can do more insertion elsewhere without reentering insert mode.

Note that this is not the same as the original Unix termcap
specifications in one respect: it assumes that the IC string can be
used without entering insert mode. This is true as far as I know, and
it allows you be able to avoid entering and leaving insert mode, and
also to be able to avoid the inserted-character padding after the
characters that go into the inserted positions.

Deletion of characters is less complicated; deleting one column is
done by outputting the dc string. However, there may be a delete mode
that must be entered with dm in order to make dc work.

dc

termcap 46 / 78

String of commands to delete one character position at the cursor.
If dc is not present, the terminal cannot delete characters.

DC
String of commands to delete n characters starting at the cursor.
It has the same effect as repeating the dc string n times. Any
terminal description that has DC also has dc.

dm
String of commands to enter delete mode. If not present, there is
no delete mode, and dc can be used at any time (assuming there is
a dc).

ed
String of commands to exit delete mode. This must be present if
dm is.

To delete n character positions, position the cursor and follow these
steps:

1. If the DC string is present, output it with parameter n and you
are finished. Otherwise, follow the remaining steps.

2. Output the dm string, unless you know the terminal is already in
delete mode.

3. Output the dc string n times.

4. Output the ed string eventually. If the flag capability mi is
present, you can move the cursor and do more deletion without
leaving and reentering delete mode.

As with the IC string, we have departed from the original termcap
specifications by assuming that DC works without entering delete mode
even though dc would not.

If the dm and im capabilities are both present and have the same
value, it means that the terminal has one mode for both insertion and
deletion. It is useful for a program to know this, because then it can
do insertions after deletions, or vice versa, without leaving
insert/delete mode and reentering it.

1.34 termcap/Standout

Standout and Appearance Modes
=============================

Appearance modes are modifications to the ways characters are
displayed. Typical appearance modes include reverse video, dim, bright,
blinking, underlined, invisible, and alternate character set. Each
kind of terminal supports various among these, or perhaps none.

For each type of terminal, one appearance mode or combination of

termcap 47 / 78

them that looks good for highlighted text is chosen as the standout
mode. The capabilities so and se say how to enter and leave
standout mode. Programs that use appearance modes only to highlight
some text generally use the standout mode so that they can work on as
many terminals as possible. Use of specific appearance modes other
than "underlined" and "alternate character set" is rare.

Terminals that implement appearance modes fall into two general
classes as to how they do it.

In some terminals, the presence or absence of any appearance mode is
recorded separately for each character position. In these terminals,
each graphic character written is given the appearance modes current at
the time it is written, and keeps those modes until it is erased or
overwritten. There are special commands to turn the appearance modes
on or off for characters to be written in the future.

In other terminals, the change of appearance modes is represented by
a marker that belongs to a certain screen position but affects all
following screen positions until the next marker. These markers are
traditionally called magic cookies.

The same capabilities (so, se, mb and so on) for turning appearance
modes on and off are used for both magic-cookie terminals and
per-character terminals. On magic cookie terminals, these give the
commands to write the magic cookies. On per-character terminals, they
change the current modes that affect future output and erasure. Some
simple applications can use these commands without knowing whether or
not they work by means of cookies.

However, a program that maintains and updates a display needs to know
whether the terminal uses magic cookies, and exactly what their effect
is. This information comes from the sg capability.

The sg capability is a numeric capability whose presence indicates
that the terminal uses magic cookies for appearance modes. Its value is
the number of character positions that a magic cookie occupies. Usually
the cookie occupies one or more character positions on the screen, and
these character positions are displayed as blank, but in some terminals
the cookie has zero width.

The sg capability describes both the magic cookie to turn standout
on and the cookie to turn it off. This makes the assumption that both
kinds of cookie have the same width on the screen. If that is not true,
the narrower cookie must be "widened" with spaces until it has the same
width as the other.

On some magic cookie terminals, each line always starts with normal
display; in other words, the scope of a magic cookie never extends over
more than one line. But on other terminals, one magic cookie affects
all the lines below it unless explicitly canceled. Termcap does not
define any way to distinguish these two ways magic cookies can work.
To be safe, it is best to put a cookie at the beginning of each line.

On some per-character terminals, standout mode or other appearance
modes may be canceled by moving the cursor. On others, moving the
cursor has no effect on the state of the appearance modes. The latter

termcap 48 / 78

class of terminals are given the flag capability ms ("can move in
standout"). All programs that might have occasion to move the cursor
while appearance modes are turned on must check for this flag; if it is
not present, they should reset appearance modes to normal before doing
cursor motion.

A program that has turned on only standout mode should use se to
reset the standout mode to normal. A program that has turned on only
alternate character set mode should use ae to return it to normal. If
it is possible that any other appearance modes are turned on, use the
me capability to return them to normal.

Note that the commands to turn on one appearance mode, including so
and mb ... mr, if used while some other appearance modes are turned on,
may combine the two modes on some terminals but may turn off the mode
previously enabled on other terminals. This is because some terminals
do not have a command to set or clear one appearance mode without
changing the others. Programs should not attempt to use appearance
modes in combination except with sa, and when switching from one single
mode to another should always turn off the previously enabled mode and
then turn on the new desired mode.

On some old terminals, the so and se commands may be the same
command, which has the effect of turning standout on if it is off, or
off it is on. It is therefore risky for a program to output extra se
commands for good measure. Fortunately, all these terminals are
obsolete.

Programs that update displays in which standout-text may be replaced
with non-standout text must check for the xs flag. In a per-character
terminal, this flag says that the only way to remove standout once
written is to clear that portion of the line with the ce string or
something even more powerful (see

Clearing
); just writing new

characters at those screen positions will not change the modes in
effect there. In a magic cookie terminal, xs says that the only way to
remove a cookie is to clear a portion of the line that includes the
cookie; writing a different cookie at the same position does not work.

Such programs must also check for the xt flag, which means that the
terminal is a Teleray 1061. On this terminal it is impossible to
position the cursor at the front of a magic cookie, so the only two
ways to remove a cookie are (1) to delete the line it is on or (2) to
position the cursor at least one character before it (possibly on a
previous line) and output the se string, which on these terminals finds
and removes the next so magic cookie on the screen. (It may also be
possible to remove a cookie which is not at the beginning of a line by
clearing that line.) The xt capability also has implications for the
use of tab characters, but in that regard it is obsolete (See

Cursor Motion
.).

so
String of commands to enter standout mode.

termcap 49 / 78

se
String of commands to leave standout mode.

sg
Numeric capability, the width on the screen of the magic cookie.
This capability is absent in terminals that record appearance modes
character by character.

ms
Flag whose presence means that it is safe to move the cursor while
the appearance modes are not in the normal state. If this flag is
absent, programs should always reset the appearance modes to
normal before moving the cursor.

xs
Flag whose presence means that the only way to reset appearance
modes already on the screen is to clear to end of line. On a
per-character terminal, you must clear the area where the modes
are set. On a magic cookie terminal, you must clear an area
containing the cookie. See the discussion above.

xt
Flag whose presence means that the cursor cannot be positioned
right in front of a magic cookie, and that se is a command to
delete the next magic cookie following the cursor. See discussion
above.

mb
String of commands to enter blinking mode.

md
String of commands to enter double-bright mode.

mh
String of commands to enter half-bright mode.

mk
String of commands to enter invisible mode.

mp
String of commands to enter protected mode.

mr
String of commands to enter reverse-video mode.

me
String of commands to turn off all appearance modes, including
standout mode and underline mode. On some terminals it also turns
off alternate character set mode; on others, it may not. This
capability must be present if any of mb ... mr is present.

as
String of commands to turn on alternate character set mode. This
mode assigns some or all graphic characters an alternate picture
on the screen. There is no standard as to what the alternate
pictures look like.

termcap 50 / 78

ae
String of commands to turn off alternate character set mode.

sa
String of commands to turn on an arbitrary combination of
appearance modes. It accepts 9 parameters, each of which controls
a particular kind of appearance mode. A parameter should be 1 to
turn its appearance mode on, or zero to turn that mode off. Most
terminals do not support the sa capability, even among those that
do have various appearance modes.

The nine parameters are, in order, standout, underline, reverse,
blink, half-bright, double-bright, blank, protect, alt char set.

1.35 termcap/Underlining

Underlining
===========

Underlining on most terminals is a kind of appearance mode, much like
standout mode. Therefore, it may be implemented using magic cookies or
as a flag in the terminal whose current state affects each character
that is output. See

Standout
, for a full explanation.

The ug capability is a numeric capability whose presence indicates
that the terminal uses magic cookies for underlining. Its value is the
number of character positions that a magic cookie for underlining
occupies; it is used for underlining just as sg is used for standout.
Aside from the simplest applications, it is impossible to use
underlining correctly without paying attention to the value of ug.

us
String of commands to turn on underline mode or to output a magic
cookie to start underlining.

ue
String of commands to turn off underline mode or to output a magic
cookie to stop underlining.

ug
Width of magic cookie that represents a change of underline mode;
or missing, if the terminal does not use a magic cookie for this.

ms
Flag whose presence means that it is safe to move the cursor while
the appearance modes are not in the normal state. Underlining is
an appearance mode. If this flag is absent, programs should
always turn off underlining before moving the cursor.

There are two other, older ways of doing underlining: there can be a
command to underline a single character, or the output of _, the ASCII

termcap 51 / 78

underscore character, as an overstrike could cause a character to be
underlined. New programs need not bother to handle these capabilities
unless the author cares strongly about the obscure terminals which
support them. However, terminal descriptions should provide these
capabilities when appropriate.

uc
String of commands to underline the character under the cursor, and
move the cursor right.

ul
Flag whose presence means that the terminal can underline by
overstriking an underscore character (_); some terminals can do
this even though they do not support overstriking in general. An
implication of this flag is that when outputting new text to
overwrite old text, underscore characters must be treated
specially lest they underline the old text instead.

1.36 termcap/Cursor Visibility

Cursor Visibility
=================

Some terminals have the ability to make the cursor invisible, or to
enhance it. Enhancing the cursor is often done by programs that plan
to use the cursor to indicate to the user a position of interest that
may be anywhere on the screen--for example, the Emacs editor enhances
the cursor on entry. Such programs should always restore the cursor to
normal on exit.

vs
String of commands to enhance the cursor.

vi
String of commands to make the cursor invisible.

ve
String of commands to return the cursor to normal.

If you define either vs or vi, you must also define ve.

1.37 termcap/Bell

Bell
====

Here we describe commands to make the terminal ask for the user to
pay attention to it.

termcap 52 / 78

bl
String of commands to cause the terminal to make an audible sound.
If this capability is absent, the terminal has no way to make a
suitable sound.

vb
String of commands to cause the screen to flash to attract
attention ("visible bell"). If this capability is absent, the
terminal has no way to do such a thing.

1.38 termcap/Keypad

Keypad and Function Keys
========================

Many terminals have arrow and function keys that transmit specific
character sequences to the computer. Since the precise sequences used
depend on the terminal, termcap defines capabilities used to say what
the sequences are. Unlike most termcap string-valued capabilities,
these are not strings of commands to be sent to the terminal, rather
strings that are received from the terminal.

Programs that expect to use keypad keys should check, initially, for
a ks capability and send it, to make the keypad actually transmit.
Such programs should also send the ke string when exiting.

ks
String of commands to make the function keys transmit. If this
capability is not provided, but the others in this section are,
programs may assume that the function keys always transmit.

ke
String of commands to make the function keys work locally. This
capability is provided only if ks is.

kl
String of input characters sent by typing the left-arrow key. If
this capability is missing, you cannot expect the terminal to have
a left-arrow key that transmits anything to the computer.

kr
String of input characters sent by typing the right-arrow key.

ku
String of input characters sent by typing the up-arrow key.

kd
String of input characters sent by typing the down-arrow key.

kh
String of input characters sent by typing the "home-position" key.

K1 ... K5
Strings of input characters sent by the five other keys in a 3-by-3

termcap 53 / 78

array that includes the arrow keys, if the keyboard has such a
3-by-3 array. Note that one of these keys may be the
"home-position" key, in which case one of these capabilities will
have the same value as the kh key.

k0
String of input characters sent by function key 10 (or 0, if the
terminal has one labeled 0).

k1 ... k9
Strings of input characters sent by function keys 1 through 9,
provided for those function keys that exist.

kn
Number: the number of numbered function keys, if there are more
than 10.

l0 ... l9
Strings which are the labels appearing on the keyboard on the keys
described by the capabilities k0 ... l9. These capabilities
should be left undefined if the labels are f0 or f10 and f1 ... f9.

kH
String of input characters sent by the "home down" key, if there is
one.

kb
String of input characters sent by the "backspace" key, if there is
one.

ka
String of input characters sent by the "clear all tabs" key, if
there is one.

kt
String of input characters sent by the "clear tab stop this column"
key, if there is one.

kC
String of input characters sent by the "clear screen" key, if
there is one.

kD
String of input characters sent by the "delete character" key, if
there is one.

kL
String of input characters sent by the "delete line" key, if there
is one.

kM
String of input characters sent by the "exit insert mode" key, if
there is one.

kE
String of input characters sent by the "clear to end of line" key,
if there is one.

termcap 54 / 78

kS
String of input characters sent by the "clear to end of screen"
key, if there is one.

kI
String of input characters sent by the "insert character" or "enter
insert mode" key, if there is one.

kA
String of input characters sent by the "insert line" key, if there
is one.

kN
String of input characters sent by the "next page" key, if there is
one.

kP
String of input characters sent by the "previous page" key, if
there is one.

kF
String of input characters sent by the "scroll forward" key, if
there is one.

kR
String of input characters sent by the "scroll reverse" key, if
there is one.

kT
String of input characters sent by the "set tab stop in this
column" key, if there is one.

ko
String listing the other function keys the terminal has. This is a
very obsolete way of describing the same information found in the
kH ... kT keys. The string contains a list of two-character
termcap capability names, separated by commas. The meaning is
that for each capability name listed, the terminal has a key which
sends the string which is the value of that capability. For
example, the value :ko=cl,ll,sf,sr: says that the terminal has
four function keys which mean "clear screen", "home down", "scroll
forward" and "scroll reverse".

1.39 termcap/Meta Key

Meta Key
========

A Meta key is a key on the keyboard that modifies each character you
type by controlling the 0200 bit. This bit is on if and only if the
Meta key is held down when the character is typed. Characters typed
using the Meta key are called Meta characters. Emacs uses Meta
characters as editing commands.

termcap 55 / 78

km
Flag whose presence means that the terminal has a Meta key.

mm
String of commands to enable the functioning of the Meta key.

mo
String of commands to disable the functioning of the Meta key.

If the terminal has km but does not have mm and mo, it means that
the Meta key always functions. If it has mm and mo, it means that the
Meta key can be turned on or off. Send the mm string to turn it on,
and the mo string to turn it off. I do not know why one would ever not
want it to be on.

1.40 termcap/Initialization

Initialization
==============

ti
String of commands to put the terminal into whatever special modes
are needed or appropriate for programs that move the cursor
nonsequentially around the screen. Programs that use termcap to do
full-screen display should output this string when they start up.

te
String of commands to undo what is done by the ti string.
Programs that output the ti string on entry should output this
string when they exit.

is
String of commands to initialize the terminal for each login
session.

if
String which is the name of a file containing the string of
commands to initialize the terminal for each session of use.
Normally is and if are not both used.

i1
i3

Two more strings of commands to initialize the terminal for each
login session. The i1 string (if defined) is output before is or
if, and the i3 string (if defined) is output after.

The reason for having three separate initialization strings is to
make it easier to define a group of related terminal types with
slightly different initializations. Define two or three of the
strings in the basic type; then the other types can override one
or two of the strings.

rs

termcap 56 / 78

String of commands to reset the terminal from any strange mode it
may be in. Normally this includes the is string (or other commands
with the same effects) and more. What would go in the rs string
but not in the is string are annoying or slow commands to bring
the terminal back from strange modes that nobody would normally
use.

it
Numeric value, the initial spacing between hardware tab stop
columns when the terminal is powered up. Programs to initialize
the terminal can use this to decide whether there is a need to set
the tab stops. If the initial width is 8, well and good; if it is not
8, then the tab stops should be set; if they cannot be set, the
kernel is told to convert tabs to spaces, and other programs will
observe this and do likewise.

ct
String of commands to clear all tab stops.

st
String of commands to set tab stop at current cursor column on all
lines.

1.41 termcap/Pad Specs

Padding Capabilities
====================

There are two terminal capabilities that exist just to explain the
proper way to obey the padding specifications in all the command string
capabilities. One, pc, must be obeyed by all termcap-using programs.

pb
Numeric value, the lowest baud rate at which padding is actually
needed. Programs may check this and refrain from doing any
padding at lower speeds.

pc
String of commands for padding. The first character of this
string is to be used as the pad character, instead of using null
characters for padding. If pc is not provided, use null
characters. Every program that uses termcap must look up this
capability and use it to set the variable PC that is used by tputs.
See

Padding
.

Some termcap capabilities exist just to specify the amount of
padding that the kernel should give to cursor motion commands used in
ordinary sequential output.

dC
Numeric value, the number of msec of padding needed for the
carriage-return character.

termcap 57 / 78

dN
Numeric value, the number of msec of padding needed for the newline
(linefeed) character.

dB
Numeric value, the number of msec of padding needed for the
backspace character.

dF
Numeric value, the number of msec of padding needed for the
formfeed character.

dT
Numeric value, the number of msec of padding needed for the tab
character.

In some systems, the kernel uses the above capabilities; in other
systems, the kernel uses the paddings specified in the string
capabilities cr, sf, le, ff and ta. Descriptions of terminals which
require such padding should contain the dC ... dT capabilities and
also specify the appropriate padding in the corresponding string
capabilities. Since no modern terminals require padding for ordinary
sequential output, you probably won’t need to do either of these things.

1.42 termcap/Status Line

Status Line
===========

A status line is a line on the terminal that is not used for ordinary
display output but instead used for a special message. The intended
use is for a continuously updated description of what the user’s
program is doing, and that is where the name "status line" comes from,
but in fact it could be used for anything. The distinguishing
characteristic of a status line is that ordinary output to the terminal
does not affect it; it changes only if the special status line commands
of this section are used.

hs
Flag whose presence means that the terminal has a status line. If
a terminal description specifies that there is a status line, it
must provide the ts and fs capabilities.

ts
String of commands to move the terminal cursor into the status
line. Usually these commands must specifically record the old
cursor position for the sake of the fs string.

fs
String of commands to move the cursor back from the status line to
its previous position (outside the status line).

termcap 58 / 78

es
Flag whose presence means that other display commands work while
writing the status line. In other words, one can clear parts of
it, insert or delete characters, move the cursor within it using ch
if there is a ch capability, enter and leave standout mode, and so
on.

ds
String of commands to disable the display of the status line. This
may be absent, if there is no way to disable the status line
display.

ws
Numeric value, the width of the status line. If this capability is
absent in a terminal that has a status line, it means the status
line is the same width as the other lines.

Note that the value of ws is sometimes as small as 8.

1.43 termcap/Half-Line

Half-Line Motion
================

Some terminals have commands for moving the cursor vertically by
half-lines, useful for outputting subscripts and superscripts. Mostly
it is hardcopy terminals that have such features.

hu
String of commands to move the cursor up half a line. If the
terminal is a display, it is your responsibility to avoid moving
up past the top line; however, most likely the terminal that
supports this is a hardcopy terminal and there is nothing to be
concerned about.

hd
String of commands to move the cursor down half a line. If the
terminal is a display, it is your responsibility to avoid moving
down past the bottom line, etc.

1.44 termcap/Printer

Controlling Printers Attached to Terminals
==

Some terminals have attached hardcopy printer ports. They may be
able to copy the screen contents to the printer; they may also be able
to redirect output to the printer. Termcap does not have anything to
tell the program whether the redirected output appears also on the
screen; it does on some terminals but not all.

termcap 59 / 78

ps
String of commands to cause the contents of the screen to be
printed. If it is absent, the screen contents cannot be printed.

po
String of commands to redirect further output to the printer.

pf
String of commands to terminate redirection of output to the
printer. This capability must be present in the description if po
is.

pO
String of commands to redirect output to the printer for next n
characters of output, regardless of what they are. Redirection
will end automatically after n characters of further output. Until
then, nothing that is output can end redirection, not even the pf
string if there is one. The number n should not be more than 255.

One use of this capability is to send non-text byte sequences
(such as bit-maps) to the printer.

Most terminals with printers do not support all of ps, po and pO;
any one or two of them may be supported. To make a program that can
send output to all kinds of printers, it is necessary to check for all
three of these capabilities, choose the most convenient of the ones that
are provided, and use it in its own appropriate fashion.

1.45 termcap/Summary

Summary of Capability Names

Here are all the terminal capability names in alphabetical order
with a brief description of each. For cross references to their
definitions, see the index of capability names (see

Cap Index
).

ae
String to turn off alternate character set mode.

al
String to insert a blank line before the cursor.

AL
String to insert n blank lines before the cursor.

am
Flag: output to last column wraps cursor to next line.

as
String to turn on alternate character set mode.like.

termcap 60 / 78

bc
Very obsolete alternative name for the le capability.

bl
String to sound the bell.

bs
Obsolete flag: ASCII backspace may be used for leftward motion.

bt
String to move the cursor left to the previous hardware tab stop
column.

bw
Flag: le at left margin wraps to end of previous line.

CC
String to change terminal’s command character.

cd
String to clear the line the cursor is on, and following lines.

ce
String to clear from the cursor to the end of the line.

ch
String to position the cursor at column c in the same line.

cl
String to clear the entire screen and put cursor at upper left
corner.

cm
String to position the cursor at line l, column c.

CM
String to position the cursor at line l, column c, relative to
display memory.

co
Number: width of the screen.

cr
String to move cursor sideways to left margin.

cs
String to set the scroll region.

cS
Alternate form of string to set the scroll region.

ct
String to clear all tab stops.

cv
String to position the cursor at line l in the same column.

termcap 61 / 78

da
Flag: data scrolled off top of screen may be scrolled back.

db
Flag: data scrolled off bottom of screen may be scrolled back.

dB
Obsolete number: msec of padding needed for the backspace
character.

dc
String to delete one character position at the cursor.

dC
Obsolete number: msec of padding needed for the carriage-return
character.

DC
String to delete n characters starting at the cursor.

dF
Obsolete number: msec of padding needed for the formfeed character.

dl
String to delete the line the cursor is on.

DL
String to delete n lines starting with the cursor’s line.

dm
String to enter delete mode.

dN
Obsolete number: msec of padding needed for the newline character.

do
String to move the cursor vertically down one line.

DO
String to move cursor vertically down n lines.

ds
String to disable the display of the status line.

dT
Obsolete number: msec of padding needed for the tab character.

ec
String of commands to clear n characters at cursor.

ed
String to exit delete mode.

ei
String to leave insert mode.

termcap 62 / 78

eo
Flag: output of a space can erase an overstrike.

es
Flag: other display commands work while writing the status line.

ff
String to advance to the next page, for a hardcopy terminal.

fs
String to move the cursor back from the status line to its
previous position (outside the status line).

gn
Flag: this terminal type is generic, not real.

hc
Flag: hardcopy terminal.

hd
String to move the cursor down half a line.

ho
String to position cursor at upper left corner.

hs
Flag: the terminal has a status line.

hu
String to move the cursor up half a line.

hz
Flag: terminal cannot accept ~ as output.

i1
String to initialize the terminal for each login session.

i3
String to initialize the terminal for each login session.

ic
String to insert one character position at the cursor.

IC
String to insert n character positions at the cursor.

if
String naming a file of commands to initialize the terminal.

im
String to enter insert mode.

in
Flag: outputting a space is different from moving over empty
positions.

ip

termcap 63 / 78

String to output following an inserted character in insert mode.

is
String to initialize the terminal for each login session.

it
Number: initial spacing between hardware tab stop columns.

k0
String of input sent by function key 0 or 10.

k1 ... k9
Strings of input sent by function keys 1 through 9.

K1 ... K5
Strings sent by the five other keys in 3-by-3 array with arrows.

ka
String of input sent by the "clear all tabs" key.

kA
String of input sent by the "insert line" key.

kb
String of input sent by the "backspace" key.

kC
String of input sent by the "clear screen" key.

kd
String of input sent by typing the down-arrow key.

kD
String of input sent by the "delete character" key.

ke
String to make the function keys work locally.

kE
String of input sent by the "clear to end of line" key.

kF
String of input sent by the "scroll forward" key.

kh
String of input sent by typing the "home-position" key.

kH
String of input sent by the "home down" key.

kI
String of input sent by the "insert character" or "enter insert
mode" key.

kl
String of input sent by typing the left-arrow key.

termcap 64 / 78

kL
String of input sent by the "delete line" key.

km
Flag: the terminal has a Meta key.

kM
String of input sent by the "exit insert mode" key.

kn
Numeric value, the number of numbered function keys.

kN
String of input sent by the "next page" key.

ko
Very obsolete string listing the terminal’s named function keys.

kP
String of input sent by the "previous page" key.

kr
String of input sent by typing the right-arrow key.

kR
String of input sent by the "scroll reverse" key.

ks
String to make the function keys transmit.

kS
String of input sent by the "clear to end of screen" key.

kt
String of input sent by the "clear tab stop this column" key.

kT
String of input sent by the "set tab stop in this column" key.

ku
String of input sent by typing the up-arrow key.

l0
String on keyboard labelling function key 0 or 10.

l1 ... l9
Strings on keyboard labelling function keys 1 through 9.

le
String to move the cursor left one column.

LE
String to move cursor left n columns.

li
Number: height of the screen.

termcap 65 / 78

ll
String to position cursor at lower left corner.

lm
Number: lines of display memory.

mb
String to enter blinking mode.

md
String to enter double-bright mode.

me
String to turn off all appearance modes

mh
String to enter half-bright mode.

mi
Flag: cursor motion in insert mode is safe.

mk
String to enter invisible mode.

mm
String to enable the functioning of the Meta key.

mo
String to disable the functioning of the Meta key.

mp
String to enter protected mode.

mr
String to enter reverse-video mode.

ms
Flag: cursor motion in standout mode is safe.

nc
Obsolete flag: do not use ASCII carriage-return on this terminal.

nd
String to move the cursor right one column.

nl
Obsolete alternative name for the do and sf capabilities.

ns
Flag: the terminal does not normally scroll for sequential output.

nw
String to move to start of next line, possibly clearing rest of
old line.

os
Flag: terminal can overstrike.

termcap 66 / 78

pb
Number: the lowest baud rate at which padding is actually needed.

pc
String containing character for padding.

pf
String to terminate redirection of output to the printer.

po
String to redirect further output to the printer.

pO
String to redirect n characters ofoutput to the printer.

ps
String to print the screen on the attached printer.

rc
String to move to last saved cursor position.

RI
String to move cursor right n columns.

rp
String to output character c repeated n times.

rs
String to reset the terminal from any strange modes.

sa
String to turn on an arbitrary combination of appearance modes.

sc
String to save the current cursor position.

se
String to leave standout mode.

sf
String to scroll the screen one line up.

SF
String to scroll the screen n lines up.

sg
Number: width of magic standout cookie. Absent if magic cookies
are not used.

so
String to enter standout mode.

sr
String to scroll the screen one line down.

SR

termcap 67 / 78

String to scroll the screen n line down.

st
String to set tab stop at current cursor column on all lines.
programs.

ta
String to move the cursor right to the next hardware tab stop
column.

te
String to return terminal to settings for sequential output.

ti
String to initialize terminal for random cursor motion.

ts
String to move the terminal cursor into the status line.

uc
String to underline one character and move cursor right.

ue
String to turn off underline mode

ug
Number: width of underlining magic cookie. Absent if underlining
doesn’t use magic cookies.

ul
Flag: underline by overstriking with an underscore.

up
String to move the cursor vertically up one line.

UP
String to move cursor vertically up n lines.

us
String to turn on underline mode

vb
String to make the screen flash.

ve
String to return the cursor to normal.

vi
String to make the cursor invisible.

vs
String to enhance the cursor.

wi
String to set the terminal output screen window.

ws

termcap 68 / 78

Number: the width of the status line.

xb
Flag: superbee terminal.

xn
Flag: cursor wraps in a strange way.

xs
Flag: clearing a line is the only way to clear the appearance
modes of positions in that line (or, only way to remove magic
cookies on that line).

xt
Flag: Teleray 1061; several strange characteristics.

1.46 termcap/Var Index

Variable and Function Index

BC
tgoto

ospeed
Output Padding

PC
Output Padding

tgetent
Find

tgetflag
Interrogate

tgetnum
Interrogate

tgetstr
Interrogate

tgoto
tgoto

tparam
tparam

tputs
Output Padding

termcap 69 / 78

UP
tgoto

1.47 termcap/Cap Index

Capability Index

ae
Standout

AL
Insdel Line

al
Insdel Line

am
Wrapping

as
Standout

bc
Cursor Motion

bl
Bell

bs
Cursor Motion

bt
Cursor Motion

bw
Cursor Motion

CC
Basic

cd
Clearing

ce
Clearing

ch
Cursor Motion

termcap 70 / 78

cl
Clearing

CM
Cursor Motion

cm
Cursor Motion

co
Screen Size

cr
Cursor Motion

cs
Scrolling

cS
Scrolling

ct
Initialization

cv
Cursor Motion

da
Scrolling

dB
Pad Specs

db
Scrolling

dC
Pad Specs

DC
Insdel Char

dc
Insdel Char

dF
Pad Specs

dl
Insdel Line

DL
Insdel Line

dm
Insdel Char

termcap 71 / 78

dN
Pad Specs

DO
Cursor Motion

do
Cursor Motion

ds
Status Line

dT
Pad Specs

ec
Clearing

ed
Insdel Char

ei
Insdel Char

eo
Basic

es
Status Line

ff
Cursor Motion

fs
Status Line

gn
Basic

hc
Basic

hd
Half-Line

ho
Cursor Motion

hs
Status Line

hu
Half-Line

hz
Basic

termcap 72 / 78

i1
Initialization

i3
Initialization

IC
Insdel Char

ic
Insdel Char

if
Initialization

im
Insdel Char

in
Insdel Char

ip
Insdel Char

is
Initialization

it
Initialization

K1...K5
Keypad

k1...k9
Keypad

kA...kT
Keypad

ka...ku
Keypad

km
Meta Key

l0...l9
Keypad

le
Cursor Motion

LE
Cursor Motion

li
Screen Size

termcap 73 / 78

ll
Cursor Motion

lm
Scrolling

mb
Standout

md
Standout

me
Standout

mh
Standout

mi
Insdel Char

mk
Standout

mm
Meta Key

mo
Meta Key

mp
Standout

mr
Standout

ms
Standout

ms
Underlining

nc
Cursor Motion

nd
Cursor Motion

nl
Cursor Motion

ns
Scrolling

nw
Cursor Motion

termcap 74 / 78

os
Basic

pb
Pad Specs

pc
Pad Specs

pf
Printer

po
Printer

pO
Printer

ps
Printer

rc
Cursor Motion

RI
Cursor Motion

rp
Basic

rs
Initialization

sa
Standout

sc
Cursor Motion

se
Standout

sf
Scrolling

SF
Scrolling

sg
Standout

so
Standout

SR
Scrolling

termcap 75 / 78

sr
Scrolling

st
Initialization

ta
Cursor Motion

te
Initialization

ti
Initialization

ts
Status Line

uc
Underlining

ue
Underlining

ug
Underlining

ul
Underlining

up
Cursor Motion

UP
Cursor Motion

us
Underlining

vb
Bell

ve
Cursor Visibility

vi
Cursor Visibility

vs
Cursor Visibility

wi
Windows

ws
Status Line

termcap 76 / 78

xb
Basic

xn
Wrapping

xs
Standout

xt
Cursor Motion

xt
Standout

1.48 termcap/Index

Concept Index

%
Encode Parameters

appearance modes
Standout

bell
Bell

clearing the screen
Clearing

command character
Basic

cursor motion
Cursor Motion

delete character
Insdel Char

delete line
Insdel Line

delete mode
Insdel Char

description format
Format

erasing

termcap 77 / 78

Clearing

generic terminal type
Basic

home position
Cursor Motion

inheritance
Inheriting

initialization
Initialization

insert character
Insdel Char

insert line
Insdel Line

insert mode
Insdel Char

line speed
Output Padding

magic cookie
Standout

meta key
Meta Key

names of terminal types
Naming

overstrike
Basic

padding
Pad Specs

padding
Padding

parameters
Parameters

printer
Printer

repeat output
Basic

reset
Initialization

screen size

termcap 78 / 78

Screen Size

screen size
Naming

screen size
Screen Size

scrolling
Scrolling

standout
Standout

status line
Status Line

Superbee
Basic

tab stops
Initialization

termcap
Introduction

terminal flags (kernel)
Initialize

underlining
Underlining

visibility
Cursor Visibility

visible bell
Bell

window
Windows

wrapping
Wrapping

wrapping
Naming

	termcap
	termcap
	termcap/Introduction
	termcap/Library
	termcap/Preparation
	termcap/Find
	termcap/Interrogate
	termcap/Initialize
	termcap/Padding
	termcap/Why Pad
	termcap/Not Enough
	termcap/Describe Padding
	termcap/Output Padding
	termcap/Parameters
	termcap/Encode Parameters
	termcap/Using Parameters
	termcap/tparam
	termcap/tgoto
	termcap/Data Base
	termcap/Format
	termcap/Capability Format
	termcap/Naming
	termcap/Inheriting
	termcap/Changing
	termcap/Capabilities
	termcap/Basic
	termcap/Screen Size
	termcap/Cursor Motion
	termcap/Wrapping
	termcap/Scrolling
	termcap/Windows
	termcap/Clearing
	termcap/Insdel Line
	termcap/Insdel Char
	termcap/Standout
	termcap/Underlining
	termcap/Cursor Visibility
	termcap/Bell
	termcap/Keypad
	termcap/Meta Key
	termcap/Initialization
	termcap/Pad Specs
	termcap/Status Line
	termcap/Half-Line
	termcap/Printer
	termcap/Summary
	termcap/Var Index
	termcap/Cap Index
	termcap/Index

