
libg++.info

libg++.info ii

COLLABORATORS

TITLE :

libg++.info

ACTION NAME DATE SIGNATURE

WRITTEN BY January 5, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

libg++.info iii

Contents

1 libg++.info 1

1.1 libg++.info . 1

1.2 libg++.info/Copying . 3

1.3 libg++.info/Contributors . 12

1.4 libg++.info/Installation . 13

1.5 libg++.info/Trouble . 13

1.6 libg++.info/General . 13

1.7 libg++.info/Conventions . 15

1.8 libg++.info/OK . 16

1.9 libg++.info/Proto . 16

1.10 libg++.info/Representations . 22

1.11 libg++.info/Expressions . 23

1.12 libg++.info/Pix . 25

1.13 libg++.info/Headers . 26

1.14 libg++.info/Builtin . 27

1.15 libg++.info/New . 29

1.16 libg++.info/Stream . 30

1.17 libg++.info/Obstack . 33

1.18 libg++.info/AllocRing . 36

1.19 libg++.info/String . 36

1.20 libg++.info/Integer . 43

1.21 libg++.info/Rational . 46

1.22 libg++.info/Complex . 48

1.23 libg++.info/Fix . 50

1.24 libg++.info/Bit . 51

1.25 libg++.info/Random . 57

1.26 libg++.info/Data . 61

1.27 libg++.info/Curses . 62

1.28 libg++.info/List . 63

1.29 libg++.info/LinkList . 67

libg++.info iv

1.30 libg++.info/Vector . 69

1.31 libg++.info/Plex . 72

1.32 libg++.info/Stack . 76

1.33 libg++.info/Queue . 77

1.34 libg++.info/Deque . 78

1.35 libg++.info/PQ . 79

1.36 libg++.info/Set . 81

1.37 libg++.info/Bag . 83

1.38 libg++.info/Map . 85

1.39 libg++.info/GetOpt . 87

1.40 libg++.info/Projects . 88

libg++.info 1 / 90

Chapter 1

libg++.info

1.1 libg++.info

Introduction ************

This manual documents how to install and use the GNU C++ library.

Copying
GNU Library Public License says how you can copy

and share the GNU C++ library.

Contributors
People who have contributed to GNU C++ library.

Installation
How to configure, compile and install GNU C++ library

Trouble
If you have trouble installing GNU C++ library.

General
Aims, objectives, and limitations of the GNU C++ library

Conventions
Stylistic conventions

OK
Support for representation invariants

Proto
Introduction to container class prototypes

Pix
Pseudo-indexes

Representations
How variable-sized objects are represented

Expressions

libg++.info 2 / 90

Some guidance on programming expression-oriented classes

Headers
Header files and other support for interfacing C++ to C

Builtin
Utility functions for builtin types

New
Library dynamic allocation primitives

IOStream
The input/output library (istreams and ostreams).

Stream
obsolete I/O library

Obstack
Obstacks and their uses.

AllocRing
A place to store objects for a while

String
String, SubString, and Regex classes.

Integer
Multiple precision Integer class.

Rational
Multiple precision Rational class

Complex
Complex number class

Fix
Fixed point proportion classes

Bit
BitSet and BitString classes

Random
Random number generators

Data
SampleStatistic and related classes for data ←↩

collection

Curses
CursesWindow class

List
Lisp-like List prototype

LinkList
Singly and doubly linked list class prototypes

Vector

libg++.info 3 / 90

Vector prototypes

Plex
Plex (adjustable array) prototypes

Stack
Stack prototypes

Queue
Queue prototypes

Deque
Double ended queue prototypes

PQ
Heap (priority queue) class prototypes

Set
Set class prototypes

Bag
Bag class prototypes

Map
Map (Associative array) prototypes

GetOpt
C++ class-based version of the GNU/UNIX getopt function

Projects
Things Still Left to do

1.2 libg++.info/Copying

GNU LIBRARY GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is
numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble
========

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change

libg++.info 4 / 90

free software--to make sure the software is free for all its users.

This license, the Library General Public License, applies to some
specially designated Free Software Foundation software, and to any
other libraries whose authors decide to use it. You can use it for
your libraries, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link a program with the library, you must provide
complete object files to the recipients so that they can relink them
with the library, after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright
the library, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain
that everyone understands that there is no warranty for this free
library. If the library is modified by someone else and passed on, we
want its recipients to know that what they have is not the original
version, so that any problems introduced by others will not reflect on
the original authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that companies distributing free
software will individually obtain patent licenses, thus in effect
transforming the program into proprietary software. To prevent this,
we have made it clear that any patent must be licensed for everyone’s
free use or not licensed at all.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License, which was designed for utility
programs. This license, the GNU Library General Public License,
applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don’t
assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is
that they blur the distinction we usually make between modifying or
adding to a program and simply using it. Linking a program with a
library, without changing the library, is in some sense simply using
the library, and is analogous to running a utility program or

libg++.info 5 / 90

application program. However, in a textual and legal sense, the linked
executable is a combined work, a derivative of the original library,
and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General
Public License for libraries did not effectively promote software
sharing, because most developers did not use the libraries. We
concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the
users of those programs of all benefit from the free status of the
libraries themselves. This Library General Public License is intended
to permit developers of non-free programs to use free libraries, while
preserving your freedom as a user of such programs to change the free
libraries that are incorporated in them. (We have not seen how to
achieve this as regards changes in header files, but we have achieved
it as regards changes in the actual functions of the Library.) The
hope is that this will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary
General Public License rather than by this special one.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. This License Agreement applies to any software library which
contains a notice placed by the copyright holder or other
authorized party saying it may be distributed under the terms of
this Library General Public License (also called "this License").
Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or
translated straightforwardly into another language. (Hereinafter,
translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code
means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the library.

Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope. The act

libg++.info 6 / 90

of running a program using the Library is not restricted, and
output from such a program is covered only if its contents
constitute a work based on the Library (independent of the use of
the Library in a tool for writing it). Whether that is true
depends on what the Library does and what the program that uses
the Library does.

2. You may copy and distribute verbatim copies of the Library’s
complete source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the
absence of any warranty; and distribute a copy of this License
along with the Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange
for a fee.

3. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c. You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d. If a facility in the modified Library refers to a function or
a table of data to be supplied by an application program that
uses the facility, other than as an argument passed when the
facility is invoked, then you must make a good faith effort
to ensure that, in the event an application does not supply
such function or table, the facility still operates, and
performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots
has a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function
must be optional: if the application does not supply it, the
square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the
Library, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a
whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

libg++.info 7 / 90

Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of
derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the
Library with the Library (or with a work based on the Library) on
a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

4. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library.
To do this, you must alter all the notices that refer to this
License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer
version than version 2 of the ordinary GNU General Public License
has appeared, then you can specify that version instead if you
wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to
all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

5. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable
form under the terms of Sections 1 and 2 above provided that you
accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software
interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy
the source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

6. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being
compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of
the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because
it contains portions of the Library), rather than a "work that
uses the library". The executable is therefore covered by this
License. Section 6 states terms for distribution of such
executables.

When a "work that uses the Library" uses material from a header
file that is part of the Library, the object code for the work may
be a derivative work of the Library even though the source code is

libg++.info 8 / 90

not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a
library. The threshold for this to be true is not precisely
defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a
derivative work. (Executables containing this object code plus
portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section
6. Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

7. As an exception to the Sections above, you may also compile or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer’s own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered
by this License. You must supply a copy of this License. If the
work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a
reference directing the user to the copy of this License. Also,
you must do one of these things:

a. Accompany the work with the complete corresponding
machine-readable source code for the Library including
whatever changes were used in the work (which must be
distributed under Sections 1 and 2 above); and, if the work
is an executable linked with the Library, with the complete
machine-readable "work that uses the Library", as object code
and/or source code, so that the user can modify the Library
and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who
changes the contents of definitions files in the Library will
not necessarily be able to recompile the application to use
the modified definitions.)

b. Accompany the work with a written offer, valid for at least
three years, to give the same user the materials specified in
Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

c. If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the
above specified materials from the same place.

d. Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

libg++.info 9 / 90

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special
exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that
component itself accompanies the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you
cannot use both them and the Library together in an executable
that you distribute.

8. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other
library facilities not covered by this License, and distribute
such a combined library, provided that the separate distribution
of the work based on the Library and of the other library
facilities is otherwise permitted, and provided that you do these
two things:

a. Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b. Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same
work.

9. You may not copy, modify, sublicense, link with, or distribute the
Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have
received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in
full compliance.

10. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify
or distribute the Library or its derivative works. These actions
are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Library (or any work
based on the Library), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

11. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the
Library subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance

libg++.info 10 / 90

by third parties to this License.

12. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the
Library at all. For example, if a patent license would not permit
royalty-free redistribution of the Library by all those who
receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain
entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is
intended to apply, and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of
any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

13. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Library under this
License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of
this License.

14. The Free Software Foundation may publish revised and/or new
versions of the Library General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library specifies a version number of this License which applies
to it and "any later version", you have the option of following
the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Library
does not specify a license version number, you may choose any
version ever published by the Free Software Foundation.

libg++.info 11 / 90

15. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

16. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE
LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

17. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY
OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries
==

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of
the ordinary General Public License).

To apply these terms, attach the following notices to the library.
It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have
at least the "copyright" line and a pointer to where the full notice is
found.

one line to give the library’s name and an idea of what it does.
Copyright (C) year name of author

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

libg++.info 12 / 90

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

Also add information on how to contact you by electronic and paper
mail.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a "copyright disclaimer" for the library,
if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in
the library ‘Frob’ (a library for tweaking knobs) written
by James Random Hacker.

signature of Ty Coon, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!

1.3 libg++.info/Contributors

Contributors to GNU C++ library

Aside from Michael Tiemann, who worked out the front end for GNU
C++, and Richard Stallman, who worked out the back end, the following
people (not including those who have made their contributions to GNU
CC) should not go unmentioned.

* Doug Lea contributed most otherwise unattributed classes.

* Per Bothner contributed the iostream I/O classes.

* Dirk Grunwald contributed the Random number generation classes,
and PairingHeaps.

* Kurt Baudendistel contributed Fixed precision reals.

* Doug Schmidt contributed ordered hash tables, a perfect hash
function generator, and several other utilities.

* Marc Shapiro contributed the ideas and preliminary code for Plexes.

* Eric Newton contributed the curses window classes.

* Some of the I/O code is derived from BSD 4.4, and was developed by

libg++.info 13 / 90

the University of California, Berkeley.

* The code for converting accurately between floating point numbers
and their string representations was written by David M. Gay of
AT&T.

1.4 libg++.info/Installation

Installing GNU C++ library

1. Read through the README file and the Makefile. Make sure that all
paths, system-dependent compile switches, and program names are
correct.

2. Check that files values.h, stdio.h, and math.h declare and define
values appropriate for your system.

3. Type make all to compile the library, test, and install. Current
details about contents of the tests and utilities are in the
README file.

1.5 libg++.info/Trouble

Trouble in Installation

Here are some of the things that have caused trouble for people
installing GNU C++ library.

1. Make sure that your GNU C++ version number is at least as high as
your libg++ version number. For example, libg++ 1.22.0 requires
g++ 1.22.0 or later releases.

2. Double-check system constants in the header files mentioned above.

1.6 libg++.info/General

GNU C++ library aims, objectives, and limitations

The GNU C++ library, libg++ is an attempt to provide a variety of C++
programming tools and other support to GNU C++ programmers.

Differences in distribution policy are only part of the difference

libg++.info 14 / 90

between libg++.a and AT&T libC.a. libg++ is not intended to be an
exact clone of libC. For one, libg++ contains bits of code that depend
on special features of GNU g++ that are either different or lacking in
the AT&T version, including slightly different inlining and overloading
strategies, dynamic local arrays, etc. All of these differences are
minor. For example, while the AT&T and GNU stream classes are
implemented in very different ways, the vast majority of C++ programs
compile and run under either version with no visible difference.
Additionally, all g++-specific constructs are conditionally compiled;
The library is designed to be compatible with any 2.0 C++ compiler.

libg++ has also contained workarounds for some limitations in g++:
both g++ and libg++ are still undergoing rapid development and
testing--a task that is helped tremendously by the feedback of active
users. This manual is also still under development; it has some
catching up to do to include all the facilities now in the library.

libg++ is not the only freely available source of C++ class
libraries. Some notable alternative sources are Interviews and NIHCL.
(InterViews has been available on the X-windows X11 tapes and also from
interviews.stanford.edu. NIHCL is available by anonymous ftp from GNU
archives (such as the pub directory of prep.ai.mit.edu), although it is
not supported by the FSF - and needs some work before it will work with
g++.)

As every C++ programmer knows, the design (moreso than the
implementation) of a C++ class library is something of a challenge.
Part of the reason is that C++ supports two, partially incompatible,
styles of object-oriented programming - The "forest" approach,
involving a collection of free-standing classes that can be mixed and
matched, versus the completely hierarchical (smalltalk style) approach,
in which all classes are derived from a common ancestor. Of course,
both styles have advantages and disadvantages. So far, libg++ has
adopted the "forest" approach. Keith Gorlen’s OOPS library adopts the
hierarchical approach, and may be an attractive alternative for C++
programmers who prefer this style.

Currently (and/or in the near future) libg++ provides support for a
few basic kinds of classes:

The first kind of support provides an interface between C++ programs
and C libraries. This includes basic header files (like stdio.h) as
well as things like the File and stream classes. Other classes that
interface to other aspects of C libraries (like those that maintain
environmental information) are in various stages of development; all
will undergo implementation modifications when the forthcoming GNU libc
library is released.

The second kind of support contains general-purpose basic classes
that transparently manage variable-sized objects on the freestore. This
includes Obstacks, multiple-precision Integers and Rationals, arbitrary
length Strings, BitSets, and BitStrings.

Third, several classes and utilities of common interest (e.g.,
Complex numbers) are provided.

Fourth, a set of pseudo-generic prototype files are available as a

libg++.info 15 / 90

mechanism for generating common container classes. These are described
in more detail in the introduction to container prototypes. Currently,
only a textual substitution mechanism is available for generic class
creation.

1.7 libg++.info/Conventions

GNU C++ library stylistic conventions

* C++ source files have file extension .cc. Both C-compatibility
header files and class declaration files have extension .h.

* C++ class names begin with capital letters, except for istream and
ostream, for AT&T C++ compatibility. Multi-word class names
capitalize each word, with no underscore separation.

* Include files that define C++ classes begin with capital letters
(as do the names of the classes themselves). stream.h is
uncapitalized for AT&T C++ compatibility.

* Include files that supply function prototypes for other C
functions (system calls and libraries) are all lower case.

* All include files define a preprocessor variable _X_h, where X is
the name of the file, and conditionally compile only if this has
not been already defined. The #pragma once facility is also used
to avoid re-inclusion.

* Structures and objects that must be publicly defined, but are not
intended for public use have names beginning with an underscore.
(for example, the _Srep struct, which is used only by the String
and SubString classes.)

* The underscore is used to separate components of long function
names,
e.g., set_File_exception_handler().

* When a function could be usefully defined either as a member or a
friend, it is generally a member if it modifies and/or returns
itself, else it is a friend. There are cases where naturalness of
expression wins out over this rule.

* Class declaration files are formatted so that it is easy to
quickly check them to determine function names, parameters, and so
on. Because of the different kinds of things that may appear in
class declarations, there is no perfect way to do this. Any
suggestions on developing a common class declaration formatting
style are welcome.

* All classes use the same simple error (exception) handling
strategy. Almost every class has a member function named
error(char* msg) that invokes an associated error handler function
via a pointer to that function, so that the error handling

libg++.info 16 / 90

function may be reset by programmers. By default nearly all call

*lib_error_handler, which prints the message and then aborts
execution. This system is subject to change. In general, errors
are assumed to be non-recoverable: Library classes do not include
code that allows graceful continuation after exceptions.

1.8 libg++.info/OK

Support for representation invariants

Most GNU C++ library classes possess a method named OK(), that is
useful in helping to verify correct performance of class operations.

The OK() operations checks the "representation invariant" of a class
object. This is a test to check whether the object is in a valid state.
In effect, it is a (sometimes partial) verification of the library’s
promise that (1) class operations always leave objects in valid states,
and (2) the class protects itself so that client functions cannot
corrupt this state.

While no simple validation technique can assure that all operations
perform correctly, calls to OK() can at least verify that operations do
not corrupt representations. For example for String a, b, c; ... a = b
+ c;, a call to a.OK(); will guarantee that a is a valid String, but
does not guarantee that it contains the concatenation of b + c.
However, given that a is known to be valid, it is possible to further
verify its properties, for example via a.after(b) == c && a.before(c)
== b. In other words, OK() generally checks only those internal
representation properties that are otherwise inaccessible to users of
the class. Other class operations are often useful for further
validation.

Failed calls to OK() call a class’s error method if one exists, else
directly call abort. Failure indicates an implementation error that
should be reported.

With only rare exceptions, the internal support functions for a class
never themselves call OK() (although many of the test files in the
distribution call OK() extensively).

Verification of representational invariants can sometimes be very
time consuming for complicated data structures.

1.9 libg++.info/Proto

Introduction to container class prototypes

**

As a temporary mechanism enabling the support of generic classes,

libg++.info 17 / 90

the GNU C++ Library distribution contains a directory (g++-include) of
files designed to serve as the basis for generating container classes of
specified elements. These files can be used to generate .h and .cc
files in the current directory via a supplied shell script program that
performs simple textual substitution to create specific classes.

While these classes are generated independently, and thus share no
code, it is possible to create versions that do share code among
subclasses. For example, using typedef void* ent, and then generating a
entList class, other derived classes could be created using the void*
coercion method described in Stroustrup, pp204-210.

This very simple class-generation facility is useful enough to serve
current purposes, but will be replaced with a more coherent mechanism
for handling C++ generics in a way that minimally disrupts current
usage. Without knowing exactly when or how parametric classes might be
added to the C++ language, provision of this simplest possible
mechanism, textual substitution, appears to be the safest strategy,
although it does require certain redundancies and awkward constructions.

Specific classes may be generated via the genclass shell script
program. This program has arguments specifying the kinds of base
types(s) to be used. Specifying base types requires two arguments. The
first is the name of the base type, which may be any named type, like
int or String. Only named types are supported; things like int* are not
accepted. However, pointers like this may be used by supplying the
appropriate typedefs (e.g., editing the resulting files to include
typedef int* intp;). The type name must be followed by one of the words
val or ref, to indicate whether the base elements should be passed to
functions by-value or by-reference.

You can specify basic container classes using genclass base
[val,ref] proto, where proto is the name of the class being generated.
Container classes like dictionaries and maps that require two types may
be specified via genclass -2 keytype [val, ref], basetype [val, ref]
proto, where the key type is specified first and the contents type
second. The resulting classnames and filenames are generated by
prepending the specified type names to the prototype names, and
separating the filename parts with dots. For example, genclass int val
List generates class intList residing in files int.List.h and
int.List.cc. genclass -2 String ref int val VHMap generates (the
awkward, but unavoidable) class name StringintVHMap. Of course,
programmers may use typedef or simple editing to create more
appropriate names. The existence of dot seperators in file names
allows the use of GNU make to help automate configuration and
recompilation. An example Makefile exploiting such capabilities may be
found in the libg++/proto-kit directory.

The genclass utility operates via simple text substitution using
sed. All occurrences of the pseudo-types <T> and <C> (if there are
two types) are replaced with the indicated type, and occurrences of
<T&> and <C&> are replaced by just the types, if val is specified,
or types followed by "&" if ref is specified.

Programmers will frequently need to edit the .h file in order to
insert additional #include directives or other modifications. A simple
utility, prepend-header to prepend other .h files to generated files is

libg++.info 18 / 90

provided in the distribution.

One dubious virtue of the prototyping mechanism is that, because
sources files, not archived library classes, are generated, it is
relatively simple for programmers to modify container classes in the
common case where slight variations of standard container classes are
required.

It is often a good idea for programmers to archive (via ar)
generated classes into .a files so that only those class functions
actually used in a given application will be loaded. The test
subdirectory of the distribution shows an example of this.

Because of #pragma interface directives, the .cc files should be
compiled with -O or -DUSE_LIBGXX_INLINES enabled.

Many container classes require specifications over and above the base
class type. For example, classes that maintain some kind of ordering of
elements require specification of a comparison function upon which to
base the ordering. This is accomplished via a prototype file defs.hP
that contains macros for these functions. While these macros default to
perform reasonable actions, they can and should be changed in
particular cases. Most prototypes require only one or a few of these.
No harm is done if unused macros are defined to perform nonsensical
actions. The macros are:

DEFAULT_INITIAL_CAPACITY
The initial capacity for containers (e.g., hash tables) that
require an initial capacity argument for constructors. Default:
100

<T>EQ(a, b)
return true if a is considered equal to b for the purposes of
locating, etc., an element in a container. Default: (a == b)

<T>LE(a, b)
return true if a is less than or equal to b Default: (a <= b)

<T>CMP(a, b)
return an integer < 0 if a<b, 0 if a==b, or > 0 if a>b. Default:
(a <= b)? (a==b)? 0 : -1 : 1

<T>HASH(a)
return an unsigned integer representing the hash of a. Default:
hash(a) ; where extern unsigned int hash(<T&>). (note: several
useful hash functions are declared in builtin.h and defined in
hash.cc)

Nearly all prototypes container classes support container traversal
via Pix pseudo indices, as described elsewhere.

All object containers must perform either a X::X(X&) (or X::X()
followed by X::operator =(X&)) to copy objects into containers. (The
latter form is used for containers built from C++ arrays, like VHSets).
When containers are destroyed, they invoke X::~X(). Any objects used
in containers must have well behaved constructors and destructors. If
you want to create containers that merely reference (point to) objects

libg++.info 19 / 90

that reside elsewhere, and are not copied or destroyed inside the
container, you must use containers of pointers, not containers of
objects.

All prototypes are designed to generate HOMOGENOUS container
classes. There is no universally applicable method in C++ to support
heterogenous object collections with elements of various subclasses of
some specified base class. The only way to get heterogenous structures
is to use collections of pointers-to-objects, not collections of objects
(which also requires you to take responsibility for managing storage for
the objects pointed to yourself).

For example, the following usage illustrates a commonly encountered
danger in trying to use container classes for heterogenous structures:

class Base { int x; ...}
class Derived : public Base { int y; ... }

BaseVHSet s; // class BaseVHSet generated via something like
// ‘genclass Base ref VHSet’

void f()
{

Base b;
s.add(b); // OK

Derived d;
s.add(d); // (CHOP!)

}

At the line flagged with (CHOP!), a Base::Base(Base&) is called
inside Set::add(Base&)--not Derived::Derived(Derived&). Actually, in
VHSet, a Base::operator =(Base&), is used instead to place the element
in an array slot, but with the same effect. So only the Base part is
copied as a VHSet element (a so-called chopped-copy). In this case, it
has an x part, but no y part; and a Base, not Derived, vtable. Objects
formed via chopped copies are rarely sensible.

To avoid this, you must resort to pointers:

typedef Base* BasePtr;

BasePtrVHSet s; // class BaseVHSet generated via something like
// ‘genclass BasePtr val VHSet’

void f()
{

Base* bp = new Base;
s.add(b);

Base* dp = new Derived;
s.add(d); // works fine.

// Don’t forget to delete bp and dp sometime.
// The VHSet won’t do this for you.

}

libg++.info 20 / 90

Example
=======

The prototypes can be difficult to use on first attempt. Here is an
example that may be helpful. The utilities in the proto-kit simplify
much of the actions described, but are not used here.

Suppose you create a class Person, and want to make an Map that
links the social security numbers associated with each person. You start
off with a file Person.h

#include <String.h>

class Person
{

String nm;
String addr;
//...

public:
const String& name() { return nm; }
const String& address() { return addr; }
void print() { ... }
//...

}

And in file SSN.h,

typedef unsigned int SSN;

Your first decision is what storage/usage strategy to use. There are
several reasonable alternatives here: You might create an "object
collection" of Persons, a "pointer collection" of pointers-to-Persons,
or even a simple String map, housing either copies of pointers to the
names of Persons, since other fields are unused for purposes of the
Map. In an object collection, instances of class Person "live" inside
the Map, while in a pointer collection, the instances live elsewhere.
Also, as above, if instances of subclasses of Person are to be used
inside the Map, you must use pointers. In a String Map, the same
difference holds, but now only for the name fields. Any of these
choices might make sense in particular applications.

The second choice is the Map implementation strategy. Either a tree
or a hash table might make sense. Suppose you want an AVL tree Map.
There are two things to now check. First, as an object collection, the
AVLMap requires that the elsement class contain an X(X&) constructor.
In C++, if you don’t specify such a constructor, one is constructed for
you, but it is a very good idea to always do this yourself, to avoid
surprises. In this example, you’d use something like

class Person
{ ...;

Person(const Person& p) :nm(p.nm), addr(p.addr) {}
};

Also, an AVLMap requires a comparison function for elements in order
to maintain order. Rather than requiring you to write a particular
comparison function, a defs file is consulted to determine how to

libg++.info 21 / 90

compare items. You must create and edit such a file.

Before creating Person.defs.h, you must first make one additional
decision. Should the Map member functions like m.contains(p) take
arguments (p) by reference (i.e., typed as int Map::contains(const
Person& p) or by value (i.e., typed as int Map::contains(const Person
p). Generally, for user-defined classes, you want to pass by
reference, and for builtins and pointers, to pass by value. SO you
should pick by-reference.

You can now create Person.defs.h via genclass Person ref defs. This
creates a simple skeleton that you must edit. First, add #include
"Person.h" to the top. Second, edit the <T>CMP(a,b) macro to compare on
name, via

#define <T>CMP(a, b) (compare(a.name(), b.name()))

which invokes the int compare(const String&, const String&) function
from String.h. Of course, you could define this in any other way as
well. In fact, the default versions in the skeleton turn out to be OK
(albeit inefficient) in this particular example.

You may also want to create file SSN.defs.h. Here, choosing
call-by-value makes sense, and since no other capabilities (like
comparison functions) of the SSNs are used (and the defaults are OK
anyway), you’d type

genclass SSN val defs

and then edit to place #include "SSN.h" at the top.

Finally, you can generate the classes. First, generate the base
class for Maps via

genclass -2 Person ref SSN val Map

This generates only the abstract class, not the implementation, in file
Person.SSN.Map.h and Person.SSN.Map.cc. To create the AVL
implementation, type

genclass -2 Person ref SSN val AVLMap

This creates the class PersonSSNAVLMap, in Person.SSN.AVLMap.h and
Person.SSN.AVLMap.cc.

To use the AVL implementation, compile the two generated .cc files,
and specify #include "Person.SSN.AVLMap.h" in the application program.
All other files are included in the right ways automatically.

One last consideration, peculiar to Maps, is to pick a reasonable
default contents when declaring an AVLMap. Zero might be appropriate
here, so you might declare a Map,

PersonSSNAVLMap m((SSN)0);

Suppose you wanted a VHMap instead of an AVLMap Besides generating
different implementations, there are two differences in how you should

libg++.info 22 / 90

prepare the defs file. First, because a VHMap uses a C++ array
internally, and because C++ array slots are initialized differently
than single elements, you must ensure that class Person contains (1) a
no-argument constructor, and (2) an assignment operator. You could
arrange this via

class Person
{ ...;

Person() {}
void operator = (const Person& p) { nm = p.nm; addr = p.addr; }

};

(The lack of action in the constructor is OK here because Strings
possess usable no-argument constructors.)

You also need to edit Person.defs.h to indicate a usable hash
function and default capacity, via something like

#include <builtin.h>
#define <T>HASH(x) (hashpjw(x.name().chars()))
#define DEFAULT_INITIAL_CAPACITY 1000

Since the hashpjw function from builtin.h is appropriate here.
Changing the default capacity to a value expected to exceed the actual
capacity helps to avoid "hidden" inefficiencies when a new VHMap is
created without overriding the default, which is all too easy to do.

Otherwise, everything is the same as above, substituting VHMap for
AVLMap.

1.10 libg++.info/Representations

Variable-Sized Object Representation

One of the first goals of the GNU C++ library is to enrich the kinds
of basic classes that may be considered as (nearly) "built into" C++. A
good deal of the inspiration for these efforts is derived from
considering features of other type-rich languages, particularly Common
Lisp and Scheme. The general characteristics of most class and friend
operators and functions supported by these classes has been heavily
influenced by such languages.

Four of these types, Strings, Integers, BitSets, and BitStrings (as
well as associated and/or derived classes) require representations
suitable for managing variable-sized objects on the free-store. The
basic technique used for all of these is the same, although various
details necessarily differ from class to class.

The general strategy for representing such objects is to create
chunks of memory that include both header information (e.g., the size
of the object), as well as the variable-size data (an array of some
sort) at the end of the chunk. Generally the maximum size of an object
is limited to something less than all of addressable memory, as a

libg++.info 23 / 90

safeguard. The minimum size is also limited so as not to waste
allocations expanding very small chunks. Internally, chunks are
allocated in blocks well-tuned to the performance of the new operator.

Class elements themselves are merely pointers to these chunks. Most
class operations are performed via inline "translation" functions that
perform the required operation on the corresponding representation.
However, constructors and assignments operate by copying entire
representations, not just pointers.

No attempt is made to control temporary creation in expressions and
functions involving these classes. Users of previous versions of the
classes will note the disappearance of both "Tmp" classes and reference
counting. These were dropped because, while they did improve
performance in some cases, they obscure class mechanics, lead
programmers into the false belief that they need not worry about such
things, and occasionally have paradoxical behavior.

These variable-sized object classes are integrated as well as
possible into C++. Most such classes possess converters that allow
automatic coercion both from and to builtin basic types. (e.g., char*
to and from String, long int to and from Integer, etc.). There are
pro’s and con’s to circular converters, since they can sometimes lead
to the conversion from a builtin type through to a class function and
back to a builtin type without any special attention on the part of the
programmer, both for better and worse.

Most of these classes also provide special-case operators and
functions mixing basic with class types, as a way to avoid constructors
in cases where the operations do not rely on anything special about the
representations. For example, there is a special case concatenation
operator for a String concatenated with a char, since building the
result does not rely on anything about the String header. Again, there
are arguments both for and against this approach. Supporting these cases
adds a non-trivial degree of (mainly inline) function proliferation, but
results in more efficient operations. Efficiency wins out over parsimony
here, as part of the goal to produce classes that provide sufficient
functionality and efficiency so that programmers are not tempted to try
to manipulate or bypass the underlying representations.

1.11 libg++.info/Expressions

Some guidelines for using expression-oriented classes

The fact that C++ allows operators to be overloaded for user-defined
classes can make programming with library classes like Integer, String,
and so on very convenient. However, it is worth becoming familiar with
some of the inherent limitations and problems associated with such
operators.

Many operators are constructive, i.e., create a new object based on
some function of some arguments. Sometimes the creation of such objects
is wasteful. Most library classes supporting expressions contain

libg++.info 24 / 90

facilities that help you avoid such waste.

For example, for Integer a, b, c; ...; c = a + b + a;, the plus
operator is called to sum a and b, creating a new temporary object as
its result. This temporary is then added with a, creating another
temporary, which is finally copied into c, and the temporaries are then
deleted. In other words, this code might have an effect similar to
Integer a, b, c; ...; Integer t1(a); t1 += b; Integer t2(t1); t2 += a;
c = t2;.

For small objects, simple operators, and/or non-time/space critical
programs, creation of temporaries is not a big problem. However, often,
when fine-tuning a program, it may be a good idea to rewrite such code
in a less pleasant, but more efficient manner.

For builtin types like ints, and floats, C and C++ compilers already
know how to optimize such expressions to reduce the need for
temporaries. Unfortunately, this is not true for C++ user defined
types, for the simple (but very annoying, in this context) reason that
nothing at all is guaranteed about the semantics of overloaded operators
and their interrelations. For example, if the above expression just
involved ints, not Integers, a compiler might internally convert the
statement into something like c += a; c += b; c+= a; , or perhaps
something even more clever. But since C++ does not know that Integer
operator += has any relation to Integer operator +, A C++ compiler
cannot do this kind of expression optimization itself.

In many cases, you can avoid construction of temporaries simply by
using the assignment versions of operators whenever possible, since
these versions create no temporaries. However, for maximum flexibility,
most classes provide a set of "embedded assembly code" procedures that
you can use to fully control time, space, and evaluation strategies.
Most of these procedures are "three-address" procedures that take two
const source arguments, and a destination argument. The procedures
perform the appropriate actions, placing the results in the destination
(which is may involve overwriting old contents). These procedures are
designed to be fast and robust. In particular, aliasing is always
handled correctly, so that, for example add(x, x, x); is perfectly OK.
(The names of these procedures are listed along with the classes.)

For example, suppose you had an Integer expression a = (b - a) *
-(d / c);

This would be compiled as if it were Integer t1=b-a; Integer
t2=d/c; Integer t3=-t2; Integer t4=t1*t3; a=t4;

But, with some manual cleverness, you might yourself some up with
sub(a, b, a); mul(a, d, a); div(a, c, a);

A related phenomenon occurs when creating your own constructive
functions returning instances of such types. Suppose you wanted to
write function Integer f(const Integer& a) { Integer r = a; r += a;
return r; }

This function, when called (as in a = f(a);) demonstrates a
similar kind of wasted copy. The returned value r must be copied out of
the function before it can be used by the caller. In GNU C++, there is

libg++.info 25 / 90

an alternative via the use of named return values. Named return values
allow you to manipulate the returned object directly, rather than
requiring you to create a local inside a function and then copy it out
as the returned value. In this example, this can be done via Integer
f(const Integer& a) return r(a) { r += a; return; }

A final guideline: The overloaded operators are very convenient, and
much clearer to use than procedural code. It is almost always a good
idea to make it right, then make it fast, by translating expression
code into procedural code after it is known to be correct.

1.12 libg++.info/Pix

Pseudo-indexes

Many useful classes operate as containers of elements. Techniques for
accessing these elements from a container differ from class to class.
In the GNU C++ library, access methods have been partially standardized
across different classes via the use of pseudo-indexes called Pixes. A
Pix acts in some ways like an index, and in some ways like a pointer.
(Their underlying representations are just void* pointers). A Pix is a
kind of "key" that is translated into an element access by the class.
In virtually all cases, Pixes are pointers to some kind internal
storage cells. The containers use these pointers to extract items.

Pixes support traversal and inspection of elements in a collection
using analogs of array indexing. However, they are pointer-like in that
0 is treated as an invalid Pix, and unsafe insofar as programmers can
attempt to access nonexistent elements via dangling or otherwise
invalid Pixes without first checking for their validity.

In general it is a very bad idea to perform traversals in the the
midst of destructive modifications to containers.

Typical applications might include code using the idiom
for (Pix i = a.first(); i != 0; a.next(i)) use(a(i));

for some container a and function use.

Classes supporting the use of Pixes always contain the following
methods, assuming a container a of element types of Base.

Pix i = a.first()
Set i to index the first element of a or 0 if a is empty.

a.next(i)
advance i to the next element of a or 0 if there is no next
element;

Base x = a(i); a(i) = x;
a(i) returns a reference to the element indexed by i.

int present = a.owns(i)
returns true if Pix i is a valid Pix in a. This is often a

libg++.info 26 / 90

relatively slow operation, since the collection must usually
traverse through elements to see if any correspond to the Pix.

Some container classes also support backwards traversal via

Pix i = a.last()
Set i to the last element of a or 0 if a is empty.

a.prev(i)
sets i to the previous element in a, or 0 if there is none.

Collections supporting elements with an equality operation possess

Pix j = a.seek(x)
sets j to the index of the first occurrence of x, or 0 if x is not
contained in a.

Bag classes possess

Pix j = a.seek(x, Pix from = 0)
sets j to the index of the next occurrence of x following i, or 0
if x is not contained in a. If i == 0, the first occurrence is
returned.

Set, Bag, and PQ classes possess

Pix j = a.add(x) (or a.enq(x) for priority queues)
add x to the collection, returning its Pix. The Pix of an item can
change in collections where further additions and deletions
involve the actual movement of elements (currently in OXPSet,
OXPBag, XPPQ, VOHSet), but in all other cases, an item’s Pix may
be considered a permanent key to its location.

1.13 libg++.info/Headers

Header files for interfacing C++ to C

The following files are provided so that C++ programmers may invoke
common C library and system calls. The names and contents of these
files are subject to change in order to be compatible with the
forthcoming GNU C library. Other files, not listed here, are simply
C++-compatible interfaces to corresponding C library files.

values.h
A collection of constants defining the numbers of bits in builtin
types, minimum and maximum values, and the like. Most names are
the same as those found in values.h found on Sun systems.

std.h
A collection of common system calls and libc.a functions. Only
those functions that can be declared without introducing new type
definitions (socket structures, for example) are provided. Common
char* functions (like strcmp) are among the declarations. All

libg++.info 27 / 90

functions are declared along with their library names, so that
they may be safely overloaded.

string.h
This file merely includes <std.h>, where string function
prototypes are declared. This is a workaround for the fact that
system string.h and strings.h files often differ in contents.

osfcn.h
This file merely includes <std.h>, where system function
prototypes are declared.

libc.h
This file merely includes <std.h>, where C library function
prototypes are declared.

math.h
A collection of prototypes for functions usually found in libm.a,
plus some #defined constants that appear to be consistent with
those provided in the AT&T version. The value of HUGE should be
checked before using. Declarations of all common math functions
are preceded with overload declarations, since these are commonly
overloaded.

stdio.h
Declaration of FILE (_iobuf), common macros (like getc), and
function prototypes for libc.a functions that operate on FILE*’s.
The value BUFSIZ and the declaration of _iobuf should be checked
before using.

assert.h
C++ versions of assert macros.

generic.h
String concatenation macros useful in creating generic classes.
They are similar in function to the AT&T CC versions.

new.h
Declarations of the default global operator new, the two-argument
placement version, and associated error handlers.

1.14 libg++.info/Builtin

Utility functions for built in types

Files builtin.h and corresponding .cc implementation files contain
various convenient inline and non-inline utility functions. These
include useful enumeration types, such as TRUE, FALSE ,the type
definition for pointers to libg++ error handling functions, and the
following functions.

long abs(long x); double abs(double x);
inline versions of abs. Note that the standard libc.a version, int

libg++.info 28 / 90

abs(int) is not declared as inline.

void clearbit(long& x, long b);
clears the b’th bit of x (inline).

void setbit(long& x, long b);
sets the b’th bit of x (inline)

int testbit(long x, long b);
returns the b’th bit of x (inline).

int even(long y);
returns true if x is even (inline).

int odd(long y);
returns true is x is odd (inline).

int sign(long x); int sign(double x);
returns -1, 0, or 1, indicating whether x is less than, equal to,
or greater than zero (inline).

long gcd(long x, long y);
returns the greatest common divisor of x and y.

long lcm(long x, long y);
returns the least common multiple of x and y.

long lg(long x);
returns the floor of the base 2 log of x.

long pow(long x, long y); double pow(double x, long y);
returns x to the integer power y using via the iterative O(log y)
"Russian peasant" method.

long sqr(long x); double sqr(double x);
returns x squared (inline).

long sqrt(long y);
returns the floor of the square root of x.

unsigned int hashpjw(const char* s);
a hash function for null-terminated char* strings using the method
described in Aho, Sethi, & Ullman, p 436.

unsigned int multiplicativehash(int x);
a hash function for integers that returns the lower bits of
multiplying x by the golden ratio times pow(2, 32). See Knuth,
Vol 3, p 508.

unsigned int foldhash(double x);
a hash function for doubles that exclusive-or’s the first and
second words of x, returning the result as an integer.

double start_timer()
Starts a process timer.

double return_elapsed_time(double last_time)

libg++.info 29 / 90

Returns the process time since last_time. If last_time == 0
returns the time since the last start_timer. Returns -1 if
start_timer was not first called.

File Maxima.h includes versions of MAX, MIN for builtin types.

File compare.h includes versions of compare(x, y) for builtin types.
These return negative if the first argument is less than the second,
zero for equal, and positive for greater.

1.15 libg++.info/New

Library dynamic allocation primitives

Libg++ contains versions of malloc, free, realloc that were designed
to be well-tuned to C++ applications. The source file malloc.c contains
some design and implementation details. Here are the major
user-visible differences from most system malloc routines:

1. These routines overwrite storage of freed space. This means that
it is never permissible to use a delete’d object in any way. Doing
so will either result in trapped fatal errors or random aborts
within malloc, free, or realloc.

2. The routines tend to perform well when a large number of objects
of the same size are allocated and freed. You may find that it is
not worth it to create your own special allocation schemes in such
cases.

3. The library sets top-level operator new() to call malloc and
operator delete() to call free. Of course, you may override these
definitions in C++ programs by creating your own operators that
will take precedence over the library versions. However, if you do
so, be sure to define both operator new() and operator delete().

4. These routines do not support the odd convention, maintained by
some versions of malloc, that you may call realloc with a pointer
that has been free’d.

5. The routines automatically perform simple checks on free’d
pointers that can often determine whether users have accidentally
written beyond the boundaries of allocated space, resulting in a
fatal error.

6. The function malloc_usable_size(void* p) returns the number of
bytes actually allocated for p. For a valid pointer (i.e., one
that has been malloc’d or realloc’d but not yet free’d) this will
return a number greater than or equal to the requested size, else
it will normally return 0. Unfortunately, a non-zero return can
not be an absolutely perfect indication of lack of error. If a
chunk has been free’d but then re-allocated for a different
purpose somewhere elsewhere, then malloc_usable_size will return
non-zero. Despite this, the function can be very valuable for

libg++.info 30 / 90

performing run-time consistency checks.

7. malloc requires 8 bytes of overhead per allocated chunk, plus a
mmaximum alignment adjustment of 8 bytes. The number of bytes of
usable space is exactly as requested, rounded to the nearest 8
byte boundary.

8. The routines do not contain any synchronization support for
multiprocessing. If you perform global allocation on a shared
memory multiprocessor, you should disable compilation and use of
libg++ malloc in the distribution Makefile and use your system
version of malloc.

1.16 libg++.info/Stream

The old I/O library

WARNING: This chapter describes classes that are obsolete. These
classes are normally not available when libg++ is installed normally.
The sources are currently included in the distribution, and you can
configure libg++ to use these classes instead of the new iostream
classes. This is only a temporary measure; you should convert your
code to use iostreams as soon as possible. The iostream classes
provide some compatibility support, but it is very incomplete (there is
no longer a File class).

File-based classes
==================

The File class supports basic IO on Unix files. Operations are
based on common C stdio library functions.

File serves as the base class for istreams, ostreams, and other
derived classes. It contains the interface between the Unix stdio file
library and these more structured classes. Most operations are
implemented as simple calls to stdio functions. File class operations
are also fully compatible with raw system file reads and writes (like
the system read and lseek calls) when buffering is disabled (see below).
The FILE* stdio file pointer is, however maintained as protected.
Classes derived from File may only use the IO operations provided by
File, which encompass essentially all stdio capabilities.

The class contains four general kinds of functions: methods for
binding Files to physical Unix files, basic IO methods, file and buffer
control methods, and methods for maintaining logical and physical file
status.

Binding and related tasks are accomplished via File constructors and
destructors, and member functions open, close, remove, filedesc, name,
setname.

If a file name is provided in a constructor or open, it is

libg++.info 31 / 90

maintained as class variable nm and is accessible via name. If no name
is provided, then nm remains null, except that Files bound to the
default files stdin, stdout, and stderr are automatically given the
names (stdin), (stdout), (stderr) respectively. The function setname
may be used to change the internal name of the File. This does not
change the name of the physical file bound to the File.

The member function close closes a file. The ~File destructor
closes a file if it is open, except that stdin, stdout, and stderr are
flushed but left open for the system to close on program exit since
some systems may require this, and on others it does not matter. remove
closes the file, and then deletes it if possible by calling the system
function to delete the file with the name provided in the nm field.

Basic IO
========

* read and write perform binary IO via stdio fread and fwrite.

* get and put for chars invoke stdio getc and putc macros.

* put(const char* s) outputs a null-terminated string via stdio
fputs.

* unget and putback are synonyms. Both call stdio ungetc.

File Control
============

flush, seek, tell, and tell call the corresponding stdio functions.

flush(char) and fill() call stdio _flsbuf and _filbuf respectively.

setbuf is mainly useful to turn off buffering in cases where
nonsequential binary IO is being performed. raw is a synonym for
setbuf(_IONBF). After a f.raw(), using the stdio functions instead of
the system read, write, etc., calls entails very little overhead.
Moreover, these become fully compatible with intermixed system calls
(e.g., lseek(f.filedesc(), 0, 0)). While intermixing File and system IO
calls is not at all recommended, this technique does allow the File
class to be used in conjunction with other functions and libraries
already set up to operate on file descriptors. setbuf should be called
at most once after a constructor or open, but before any IO.

File Status
===========

File status is maintained in several ways.

A File may be checked for accessibility via is_open(), which returns
true if the File is bound to a usable physical file, readable(), which
returns true if the File can be read from (opened for reading, and not
in a _fail state), or writable(), which returns true if the File can be
written to.

File operations return their status via two means: failure and
success are represented via the logical state. Also, the return values

libg++.info 32 / 90

of invoked stdio and system functions that return useful numeric values
(not just failure/success flags) are held in a class variable
accessible via iocount. (This is useful, for example, in determining
the number of items actually read by the read function.)

Like the AT&T i/o-stream classes, but unlike the description in the
Stroustrup book, p238, rdstate() returns the bitwise OR of _eof, _fail
and _bad, not necessarily distinct values. The functions eof(), fail(),
bad(), and good() can be used to test for each of these conditions
independently.

_fail becomes set for any input operation that could not read in the
desired data, and for other failed operations. As with all Unix IO,
_eof becomes true only when an input operations fails because of an
end of file. Therefore, _eof is not immediately true after the last
successful read of a file, but only after one final read attempt. Thus,
for input operations, _fail and _eof almost always become true at the
same time. bad is set for unbound files, and may also be set by
applications in order to communicate input corruption. Conversely,
_good is defined as 0 and is returned by rdstate() if all is well.

The state may be modified via clear(flag), which, despite its name,
sets the corresponding state_value flag. clear() with no arguments
resets the state to _good. failif(int cond) sets the state to _fail
only if cond is true.

Errors occuring during constructors and file opens also invoke the
function error. error in turn calls a resetable error handling
function pointed to by the non-member global variable
File_error_handler only if a system error has been generated.
Since error cannot tell if the current system error is actually
responsible for a failure, it may at times print out spurious messages.
Three error handlers are provided. The default,
verbose_File_error_handler calls the system function perror to print
the corresponding error message on standard error, and then returns to
the caller. quiet_File_error_handler does nothing, and simply returns.
fatal_File_error_handler prints the error and then aborts execution.
These three handlers, or any other user-defined error handlers can be
selected via the non-member function set_File_error_handler.

All read and write operations communicate either logical or physical
failure by setting the _fail flag. All further operations are blocked
if the state is in a _fail or_bad condition. Programmers must
explicitly use clear() to reset the state in order to continue IO
processing after either a logical or physical failure. C programmers
who are unfamiliar with these conventions should note that, unlike the
stdio library, File functions indicate IO success, status, or failure
solely through the state, not via return values of the functions. The
void* operator or rdstate() may be used to test success. In
particular, according to c++ conversion rules, the void* coercion is
automatically applied whenever the File& return value of any File
function is tested in an if or while. Thus, for example, an easy way
to copy all of stdin to stdout until eof (at which point get fails) or
some error is char c; while(cin.get(c) && cout.put(c));.

The current version of istreams and ostreams differs significantly
from previous versions in order to obtain compatibility with AT&T 1.2

libg++.info 33 / 90

streams. Most code using previous versions should still work. However,
the following features of File are not incorporated in streams (they
are still present in File): scan(const char* fmt...), remove(), read(),
write(), setbuf(), raw(). Additionally, the feature of previous streams
that allowed free intermixing of stream and stdio input and output is
no longer guaranteed to always behave as desired.

1.17 libg++.info/Obstack

The Obstack class

The Obstack class is a simple rewrite of the C obstack macros and
functions provided in the GNU CC compiler source distribution.

Obstacks provide a simple method of creating and maintaining a string
table, optimized for the very frequent task of building strings
character-by-character, and sometimes keeping them, and sometimes not.
They seem especially useful in any parsing application. One of the test
files demonstrates usage.

A brief summary:
grow

places something on the obstack without committing to wrap it up
as a single entity yet.

finish
wraps up a constructed object as a single entity, and returns the
pointer to its start address.

copy
places things on the obstack, and does wrap them up. copy is
always equivalent to first grow, then finish.

free
deletes something, and anything else put on the obstack since its
creation.

The other functions are less commonly needed:
blank

is like grow, except it just grows the space by size units without
placing anything into this space

alloc
is like blank, but it wraps up the object and returns its starting
address.

chunk_size, base, next_free, alignment_mask, size, room
returns the appropriate class variables.

grow_fast
places a character on the obstack without checking if there is
enough room.

libg++.info 34 / 90

blank_fast
like blank, but without checking if there is enough room.

shrink(int n)
shrink the current chunk by n bytes.

contains(void* addr)
returns true if the Obstack holds the address addr.

Here is a lightly edited version of the original C documentation:

These functions operate a stack of objects. Each object starts life
small, and may grow to maturity. (Consider building a word syllable by
syllable.) An object can move while it is growing. Once it has been
"finished" it never changes address again. So the "top of the stack"
is typically an immature growing object, while the rest of the stack is
of mature, fixed size and fixed address objects.

These routines grab large chunks of memory, using the GNU C++ new
operator. On occasion, they free chunks, via delete.

Each independent stack is represented by a Obstack.

One motivation for this package is the problem of growing char
strings in symbol tables. Unless you are a "fascist pig with a
read-only mind" [Gosper’s immortal quote from HAKMEM item 154, out of
context] you would not like to put any arbitrary upper limit on the
length of your symbols.

In practice this often means you will build many short symbols and a
few long symbols. At the time you are reading a symbol you don’t know
how long it is. One traditional method is to read a symbol into a
buffer, realloc()ating the buffer every time you try to read a symbol
that is longer than the buffer. This is beaut, but you still will want
to copy the symbol from the buffer to a more permanent symbol-table
entry say about half the time.

With obstacks, you can work differently. Use one obstack for all
symbol names. As you read a symbol, grow the name in the obstack
gradually. When the name is complete, finalize it. Then, if the
symbol exists already, free the newly read name.

The way we do this is to take a large chunk, allocating memory from
low addresses. When you want to build a symbol in the chunk you just
add chars above the current "high water mark" in the chunk. When you
have finished adding chars, because you got to the end of the symbol,
you know how long the chars are, and you can create a new object.
Mostly the chars will not burst over the highest address of the chunk,
because you would typically expect a chunk to be (say) 100 times as
long as an average object.

In case that isn’t clear, when we have enough chars to make up the
object, they are already contiguous in the chunk (guaranteed) so we
just point to it where it lies. No moving of chars is needed and this
is the second win: potentially long strings need never be explicitly
shuffled. Once an object is formed, it does not change its address
during its lifetime.

libg++.info 35 / 90

When the chars burst over a chunk boundary, we allocate a larger
chunk, and then copy the partly formed object from the end of the old
chunk to the beginning of the new larger chunk. We then carry on
accreting characters to the end of the object as we normally would.

A special version of grow is provided to add a single char at a time
to a growing object.

Summary:

* We allocate large chunks.

* We carve out one object at a time from the current chunk.

* Once carved, an object never moves.

* We are free to append data of any size to the currently growing
object.

* Exactly one object is growing in an obstack at any one time.

* You can run one obstack per control block.

* You may have as many control blocks as you dare.

* Because of the way we do it, you can ‘unwind’ a obstack back to a
previous state. (You may remove objects much as you would with a
stack.)

The obstack data structure is used in many places in the GNU C++
compiler.

Differences from the the GNU C version
1. The obvious differences stemming from the use of classes and

inline functions instead of structs and macros. The C init and
begin macros are replaced by constructors.

2. Overloaded function names are used for grow (and others), rather
than the C grow, grow0, etc.

3. All dynamic allocation uses the the built-in new operator. This
restricts flexibility by a little, but maintains compatibility
with usual C++ conventions.

4. There are now two versions of finish:

1. finish() behaves like the C version.

2. finish(char terminator) adds terminator, and then calls
finish(). This enables the normal invocation of finish(0) to
wrap up a string being grown character-by-character.

5. There are special versions of grow(const char* s) and copy(const
char* s) that add the null-terminated string s after computing its
length.

libg++.info 36 / 90

6. The shrink and contains functions are provided.

1.18 libg++.info/AllocRing

The AllocRing class

An AllocRing is a bounded ring (circular list), each of whose
elements contains a pointer to some space allocated via new
char[some_size]. The entries are used cyclicly. The size, n, of the
ring is fixed at construction. After that, every nth use of the ring
will reuse (or reallocate) the same space. AllocRings are needed in
order to temporarily hold chunks of space that are needed transiently,
but across constructor-destructor scopes. They mainly useful for storing
strings containing formatted characters to print across various
functions and coercions. These strings are needed across routines, so
may not be deleted in any one of them, but should be recovered at some
point. In other words, an AllocRing is an extremely simple minded
garbage collection mechanism. The GNU C++ library used to use one
AllocRing for such formatting purposes, but it is being phased out, and
is now only used by obsolete functions. These days, AllocRings are
probably not very useful.

Support includes:

AllocRing a(int n)
constructs an Alloc ring with n entries, all null.

void* mem = a.alloc(sz)
moves the ring pointer to the next entry, and reuses the space if
their is enough, also allocates space via new char[sz].

int present = a.contains(void* ptr)
returns true if ptr is held in one of the ring entries.

a.clear()
deletes all space pointed to in any entry. This is called
automatically upon destruction.

a.free(void* ptr)
If ptr is one of the entries, calls delete of the pointer, and
resets to entry pointer to null.

1.19 libg++.info/String

The String class

The String class is designed to extend GNU C++ to support string

libg++.info 37 / 90

processing capabilities similar to those in languages like Awk. The
class provides facilities that ought to be convenient and efficient
enough to be useful replacements for char* based processing via the C
string library (i.e., strcpy, strcmp, etc.) in many applications. Many
details about String representations are described in the
Representation section.

A separate SubString class supports substring extraction and
modification operations. This is implemented in a way that user
programs never directly construct or represent substrings, which are
only used indirectly via String operations.

Another separate class, Regex is also used indirectly via String
operations in support of regular expression searching, matching, and the
like. The Regex class is based entirely on the GNU Emacs regex
functions. See Syntax of Regular Expressions, for a full explanation
of regular expression syntax. (For implementation details, see the
internal documentation in files regex.h and regex.c.)

Constructors
============

Strings are initialized and assigned as in the following examples:

String x; String y = 0; String z = "";
Set x, y, and z to the nil string. Note that either 0 or "" may
always be used to refer to the nil string.

String x = "Hello"; String y("Hello");
Set x and y to a copy of the string "Hello".

String x = ’A’; String y(’A’);
Set x and y to the string value "A"

String u = x; String v(x);
Set u and v to the same string as String x

String u = x.at(1,4); String v(x.at(1,4));
Set u and v to the length 4 substring of x starting at position 1
(counting indexes from 0).

String x("abc", 2);
Sets x to "ab", i.e., the first 2 characters of "abc".

String x = dec(20);
Sets x to "20". As here, Strings may be initialized or assigned
the results of any char* function.

There are no directly accessible forms for declaring SubString
variables.

The declaration Regex r("[a-zA-Z_][a-zA-Z0-9_]*"); creates a
compiled regular expression suitable for use in String operations
described below. (In this case, one that matches any C++ identifier).
The first argument may also be a String. Be careful in distinguishing
the role of backslashes in quoted GNU C++ char* constants versus those
in Regexes. For example, a Regex that matches either one or more tabs

libg++.info 38 / 90

or all strings beginning with "ba" and ending with any number of
occurrences of "na" could be declared as Regex r =
"\(\t+\)\|\(ba\(na\)*\)" Note that only one backslash is needed
to signify the tab, but two are needed for the parenthesization and
virgule, since the GNU C++ lexical analyzer decodes and strips
backslashes before they are seen by Regex.

There are three additional optional arguments to the Regex
constructor that are less commonly useful:

fast (default 0)
fast may be set to true (1) if the Regex should be
"fast-compiled". This causes an additional compilation step that
is generally worthwhile if the Regex will be used many times.

bufsize (default max(40, length of the string))
This is an estimate of the size of the internal compiled
expression. Set it to a larger value if you know that the
expression will require a lot of space. If you do not know, do not
worry: realloc is used if necessary.

transtable (default none == 0)
The address of a byte translation table (a char[256]) that
translates each character before matching.

As a convenience, several Regexes are predefined and usable in any
program. Here are their declarations from String.h.

extern Regex RXwhite; // = "[\n\t]+"
extern Regex RXint; // = "-?[0-9]+"
extern Regex RXdouble; // = "-?\(\([0-9]+\.[0-9]*\)\|

// \([0-9]+\)\|
// \(\.[0-9]+\)\)
// \([eE][---+]?[0-9]+\)?"

extern Regex RXalpha; // = "[A-Za-z]+"
extern Regex RXlowercase; // = "[a-z]+"
extern Regex RXuppercase; // = "[A-Z]+"
extern Regex RXalphanum; // = "[0-9A-Za-z]+"
extern Regex RXidentifier; // = "[A-Za-z_][A-Za-z0-9_]*"

Examples
========

Most String class capabilities are best shown via example. The
examples below use the following declarations.

String x = "Hello";
String y = "world";
String n = "123";
String z;
char* s = ",";
String lft, mid, rgt;
Regex r = "e[a-z]*o";
Regex r2("/[a-z]*/");
char c;
int i, pos, len;
double f;

libg++.info 39 / 90

String words[10];
words[0] = "a";
words[1] = "b";
words[2] = "c";

Comparing, Searching and Matching
=================================

The usual lexicographic relational operators (==, !=, <, <=, >, >=)
are defined. A functional form compare(String, String) is also
provided, as is fcompare(String, String), which compares Strings
without regard for upper vs. lower case.

All other matching and searching operations are based on some form
of the (non-public) match and search functions. match and search
differ in that match attempts to match only at the given starting
position, while search starts at the position, and then proceeds left
or right looking for a match. As seen in the following examples, the
second optional startpos argument to functions using match and search
specifies the starting position of the search: If non-negative, it
results in a left-to-right search starting at position startpos, and if
negative, a right-to-left search starting at position x.length() +
startpos. In all cases, the index returned is that of the beginning of
the match, or -1 if there is no match.

Three String functions serve as front ends to search and match.
index performs a search, returning the index, matches performs a match,
returning nonzero (actually, the length of the match) on success, and
contains is a boolean function performing either a search or match,
depending on whether an index argument is provided:

x.index("lo")
returns the zero-based index of the leftmost occurrence of
substring "lo" (3, in this case). The argument may be a String,
SubString, char, char*, or Regex.

x.index("l", 2)
returns the index of the first of the leftmost occurrence of "l"
found starting the search at position x[2], or 2 in this case.

x.index("l", -1)
returns the index of the rightmost occurrence of "l", or 3 here.

x.index("l", -3)
returns the index of the rightmost occurrence of "l" found by
starting the search at the 3rd to the last position of x,
returning 2 in this case.

pos = r.search("leo", 3, len, 0)
returns the index of r in the char* string of length 3, starting
at position 0, also placing the length of the match in reference
parameter len.

x.contains("He")
returns nonzero if the String x contains the substring "He". The
argument may be a String, SubString, char, char*, or Regex.

libg++.info 40 / 90

x.contains("el", 1)
returns nonzero if x contains the substring "el" at position 1.
As in this example, the second argument to contains, if present,
means to match the substring only at that position, and not to
search elsewhere in the string.

x.contains(RXwhite);
returns nonzero if x contains any whitespace (space, tab, or
newline). Recall that RXwhite is a global whitespace Regex.

x.matches("lo", 3)
returns nonzero if x starting at position 3 exactly matches "lo",
with no trailing characters (as it does in this example).

x.matches(r)
returns nonzero if String x as a whole matches Regex r.

int f = x.freq("l")
returns the number of distinct, nonoverlapping matches to the
argument (2 in this case).

Substring extraction
====================

Substrings may be extracted via the at, before, through, from, and
after functions. These behave as either lvalues or rvalues.

z = x.at(2, 3)
sets String z to be equal to the length 3 substring of String x
starting at zero-based position 2, setting z to "llo" in this
case. A nil String is returned if the arguments don’t make sense.

x.at(2, 2) = "r"
Sets what was in positions 2 to 3 of x to "r", setting x to "Hero"
in this case. As indicated here, SubString assignments may be of
different lengths.

x.at("He") = "je";
x("He") is the substring of x that matches the first occurrence of
it’s argument. The substitution sets x to "jello". If "He" did not
occur, the substring would be nil, and the assignment would have
no effect.

x.at("l", -1) = "i";
replaces the rightmost occurrence of "l" with "i", setting x to
"Helio".

z = x.at(r)
sets String z to the first match in x of Regex r, or "ello" in this
case. A nil String is returned if there is no match.

z = x.before("o")
sets z to the part of x to the left of the first occurrence of
"o", or "Hell" in this case. The argument may also be a String,
SubString, or Regex. (If there is no match, z is set to "".)

x.before("ll") = "Bri";

libg++.info 41 / 90

sets the part of x to the left of "ll" to "Bri", setting x to
"Brillo".

z = x.before(2)
sets z to the part of x to the left of x[2], or "He" in this case.

z = x.after("Hel")
sets z to the part of x to the right of "Hel", or "lo" in this
case.

z = x.through("el")
sets z to the part of x up and including "el", or "Hel" in this
case.

z = x.from("el")
sets z to the part of x from "el" to the end, or "ello" in this
case.

x.after("Hel") = "p";
sets x to "Help";

z = x.after(3)
sets z to the part of x to the right of x[3] or "o" in this case.

z = " ab c"; z = z.after(RXwhite)
sets z to the part of its old string to the right of the first
group of whitespace, setting z to "ab c"; Use gsub(below) to strip
out multiple occurrences of whitespace or any pattern.

x[0] = ’J’;
sets the first element of x to ’J’. x[i] returns a reference to
the ith element of x, or triggers an error if i is out of range.

common_prefix(x, "Help")
returns the String containing the common prefix of the two Strings
or "Hel" in this case.

common_suffix(x, "to")
returns the String containing the common suffix of the two Strings
or "o" in this case.

Concatenation
=============

z = x + s + ’ ’ + y.at("w") + y.after("w") + ".";
sets z to "Hello, world."

x += y;
sets x to "Helloworld"

cat(x, y, z)
A faster way to say z = x + y.

cat(z, y, x, x)
Double concatenation; A faster way to say x = z + y + x.

y.prepend(x);

libg++.info 42 / 90

A faster way to say y = x + y.

z = replicate(x, 3);
sets z to "HelloHelloHello".

z = join(words, 3, "/")
sets z to the concatenation of the first 3 Strings in String array
words, each separated by "/", setting z to "a/b/c" in this case.
The last argument may be "" or 0, indicating no separation.

Other manipulations
===================

z = "this string has five words"; i = split(z, words, 10, RXwhite);
sets up to 10 elements of String array words to the parts of z
separated by whitespace, and returns the number of parts actually
encountered (5 in this case). Here, words[0] = "this", words[1] =
"string", etc. The last argument may be any of the usual. If
there is no match, all of z ends up in words[0]. The words array
is not dynamically created by split.

int nmatches x.gsub("l","ll")
substitutes all original occurrences of "l" with "ll", setting x
to "Hellllo". The first argument may be any of the usual,
including Regex. If the second argument is "" or 0, all
occurrences are deleted. gsub returns the number of matches that
were replaced.

z = x + y; z.del("loworl");
deletes the leftmost occurrence of "loworl" in z, setting z to
"Held".

z = reverse(x)
sets z to the reverse of x, or "olleH".

z = upcase(x)
sets z to x, with all letters set to uppercase, setting z to
"HELLO"

z = downcase(x)
sets z to x, with all letters set to lowercase, setting z to
"hello"

z = capitalize(x)
sets z to x, with the first letter of each word set to uppercase,
and all others to lowercase, setting z to "Hello"

x.reverse(), x.upcase(), x.downcase(), x.capitalize()
in-place, self-modifying versions of the above.

Reading, Writing and Conversion
===============================

cout << x
writes out x.

cout << x.at(2, 3)

libg++.info 43 / 90

writes out the substring "llo".

cin >> x
reads a whitespace-bounded string into x.

x.length()
returns the length of String x (5, in this case).

s = (const char*)x
can be used to extract the char* char array. This coercion is
useful for sending a String as an argument to any function
expecting a const char* argument (like atoi, and File::open). This
operator must be used with care, since the conversion returns a
pointer to String internals without copying the characters: The
resulting (char*) is only valid until the next String operation,
and you must not modify it. (The conversion is defined to return
a const value so that GNU C++ will produce warning and/or error
messages if changes are attempted.)

1.20 libg++.info/Integer

The Integer class.

The Integer class provides multiple precision integer arithmetic
facilities. Some representation details are discussed in the
Representation section.

Integers may be up to b * ((1 << b) - 1) bits long, where b is the
number of bits per short (typically 1048560 bits when b = 16). The
implementation assumes that a long is at least twice as long as a
short. This assumption hides beneath almost all primitive
operations, and would be very difficult to change. It also relies on
correct behavior of unsigned arithmetic operations.

Some of the arithmetic algorithms are very loosely based on those
provided in the MIT Scheme bignum.c release, which is Copyright (c)
1987 Massachusetts Institute of Technology. Their use here falls within
the provisions described in the Scheme release.

Integers may be constructed in the following ways:
Integer x;

Declares an uninitialized Integer.

Integer x = 2; Integer y(2);
Set x and y to the Integer value 2;

Integer u(x); Integer v = x;
Set u and v to the same value as x.

- Method: long Integer::as_long() const
Used to coerce an Integer back into longs via the long coercion
operator. If the Integer cannot fit into a long, this returns
MINLONG or MAXLONG (depending on the sign) where MINLONG is the

libg++.info 44 / 90

most negative, and MAXLONG is the most positive representable long.

- Method: int Integer::fits_in_long() const
Returns true iff the Integer is < MAXLONG and > MINLONG.

- Method: double Integer::as_double() const
Coerce the Integer to a double, with potential loss of precision.
+/-HUGE is returned if the Integer cannot fit into a double.

- Method: int Integer::fits_in_double() const
Returns true iff the Integer can fit into a double.

All of the usual arithmetic operators are provided (+, -, *, /, %,
+=, ++, -=, -, *=, /=, %=, ==, !=, <, <=, >, >=). All operators
support special versions for mixed arguments of Integers and regular
C++ longs in order to avoid useless coercions, as well as to allow
automatic promotion of shorts and ints to longs, so that they may be
applied without additional Integer coercion operators. The only
operators that behave differently than the corresponding int or long
operators are ++ and -. Because C++ does not distinguish prefix from
postfix application, these are declared as void operators, so that no
confusion can result from applying them as postfix. Thus, for Integers
x and y, ++x; y = x; is correct, but y = ++x; and y = x++; are
not.

Bitwise operators (~, &, |, ^, <<, >>, &=, |=, ^=, <<=, >>=) are
also provided. However, these operate on sign-magnitude, rather than
two’s complement representations. The sign of the result is arbitrarily
taken as the sign of the first argument. For example, Integer(-3) &
Integer(5) returns Integer(-1), not -3, as it would using two’s
complement. Also, ~, the complement operator, complements only those
bits needed for the representation. Bit operators are also provided in
the BitSet and BitString classes. One of these classes should be used
instead of Integers when the results of bit manipulations are not
interpreted numerically.

The following utility functions are also provided. (All arguments
are Integers unless otherwise noted).

- Function: void divide(const Integer& x , const Integer& y , Integer&
q , Integer& r)

Sets q to the quotient and r to the remainder of x and y. (q and
r are returned by reference).

- Function: Integer pow(const Integer& x , const Integer& p)
Returns x raised to the power p.

- Function: Integer Ipow(long x , long p)
Returns x raised to the power p.

- Function: Integer gcd(const Integer& x , const Integer& p)
Returns the greatest common divisor of x and y.

- Function: Integer lcm(const Integer& x , const Integer& p)
Returns the least common multiple of x and y.

- Function: Integer abs(const Integer& x

libg++.info 45 / 90

Returns the absolute value of x.

- Method: void Integer::negate()
Negates this in place.

Integer sqr(x)
returns x * x;

Integer sqrt(x)
returns the floor of the square root of x.

long lg(x);
returns the floor of the base 2 logarithm of abs(x)

int sign(x)
returns -1 if x is negative, 0 if zero, else +1. Using if
(sign(x) == 0) is a generally faster method of testing for zero
than using relational operators.

int even(x)
returns true if x is an even number

int odd(x)
returns true if x is an odd number.

void setbit(Integer& x, long b)
sets the b’th bit (counting right-to-left from zero) of x to 1.

void clearbit(Integer& x, long b)
sets the b’th bit of x to 0.

int testbit(Integer x, long b)
returns true if the b’th bit of x is 1.

Integer atoI(char* asciinumber, int base = 10);
converts the base base char* string into its Integer form.

void Integer::printon(ostream& s, int base = 10, int width = 0);
prints the ascii string value of (*this) as a base base number, in
field width at least width.

ostream << x;
prints x in base ten format.

istream >> x;
reads x as a base ten number.

int compare(Integer x, Integer y)
returns a negative number if x<y, zero if x==y, or positive if x>y.

int ucompare(Integer x, Integer y)
like compare, but performs unsigned comparison.

add(x, y, z)
A faster way to say z = x + y.

sub(x, y, z)

libg++.info 46 / 90

A faster way to say z = x - y.

mul(x, y, z)
A faster way to say z = x * y.

div(x, y, z)
A faster way to say z = x / y.

mod(x, y, z)
A faster way to say z = x % y.

and(x, y, z)
A faster way to say z = x & y.

or(x, y, z)
A faster way to say z = x | y.

xor(x, y, z)
A faster way to say z = x ^ y.

lshift(x, y, z)
A faster way to say z = x << y.

rshift(x, y, z)
A faster way to say z = x >> y.

pow(x, y, z)
A faster way to say z = pow(x, y).

complement(x, z)
A faster way to say z = ~x.

negate(x, z)
A faster way to say z = -x.

1.21 libg++.info/Rational

The Rational Class

Class Rational provides multiple precision rational number
arithmetic. All rationals are maintained in simplest form (i.e., with
the numerator and denominator relatively prime, and with the
denominator strictly positive). Rational arithmetic and relational
operators are provided (+, -, *, /, +=, -=, *=, /=, ==, !=, <, <=, >,
>=). Operations resulting in a rational number with zero
denominator trigger an exception.

Rationals may be constructed and used in the following ways:

Rational x;
Declares an uninitialized Rational.

Rational x = 2; Rational y(2);

libg++.info 47 / 90

Set x and y to the Rational value 2/1;

Rational x(2, 3);
Sets x to the Rational value 2/3;

Rational x = 1.2;
Sets x to a Rational value close to 1.2. Any double precision value
may be used to construct a Rational. The Rational will possess
exactly as much precision as the double. Double values that do not
have precise floating point equivalents (like 1.2) produce
similarly imprecise rational values.

Rational x(Integer(123), Integer(4567));
Sets x to the Rational value 123/4567.

Rational u(x); Rational v = x;
Set u and v to the same value as x.

double(Rational x)
A Rational may be coerced to a double with potential loss of
precision. +/-HUGE is returned if it will not fit.

Rational abs(x)
returns the absolute value of x.

void x.negate()
negates x.

void x.invert()
sets x to 1/x.

int sign(x)
returns 0 if x is zero, 1 if positive, and -1 if negative.

Rational sqr(x)
returns x * x.

Rational pow(x, Integer y)
returns x to the y power.

Integer x.numerator()
returns the numerator.

Integer x.denominator()
returns the denominator.

Integer floor(x)
returns the greatest Integer less than x.

Integer ceil(x)
returns the least Integer greater than x.

Integer trunc(x)
returns the Integer part of x.

Integer round(x)
returns the nearest Integer to x.

libg++.info 48 / 90

int compare(x, y)
returns a negative, zero, or positive number signifying whether x
is less than, equal to, or greater than y.

ostream << x;
prints x in the form num/den, or just num if the denominator is
one.

istream >> x;
reads x in the form num/den, or just num in which case the
denominator is set to one.

add(x, y, z)
A faster way to say z = x + y.

sub(x, y, z)
A faster way to say z = x - y.

mul(x, y, z)
A faster way to say z = x * y.

div(x, y, z)
A faster way to say z = x / y.

pow(x, y, z)
A faster way to say z = pow(x, y).

negate(x, z)
A faster way to say z = -x.

1.22 libg++.info/Complex

The Complex class.

Class Complex is implemented in a way similar to that described by
Stroustrup. In keeping with libg++ conventions, the class is named
Complex, not complex. Complex arithmetic and relational operators are
provided (+, -, *, /, +=, -=, *=, /=, ==, !=). Attempted division by
(0, 0) triggers an exception.

Complex numbers may be constructed and used in the following ways:

Complex x;
Declares an uninitialized Complex.

Complex x = 2; Complex y(2.0);
Set x and y to the Complex value (2.0, 0.0);

Complex x(2, 3);
Sets x to the Complex value (2, 3);

Complex u(x); Complex v = x;

libg++.info 49 / 90

Set u and v to the same value as x.

double real(Complex& x);
returns the real part of x.

double imag(Complex& x);
returns the imaginary part of x.

double abs(Complex& x);
returns the magnitude of x.

double norm(Complex& x);
returns the square of the magnitude of x.

double arg(Complex& x);
returns the argument (amplitude) of x.

Complex polar(double r, double t = 0.0);
returns a Complex with abs of r and arg of t.

Complex conj(Complex& x);
returns the complex conjugate of x.

Complex cos(Complex& x);
returns the complex cosine of x.

Complex sin(Complex& x);
returns the complex sine of x.

Complex cosh(Complex& x);
returns the complex hyperbolic cosine of x.

Complex sinh(Complex& x);
returns the complex hyperbolic sine of x.

Complex exp(Complex& x);
returns the exponential of x.

Complex log(Complex& x);
returns the natural log of x.

Complex pow(Complex& x, long p);
returns x raised to the p power.

Complex pow(Complex& x, Complex& p);
returns x raised to the p power.

Complex sqrt(Complex& x);
returns the square root of x.

ostream << x;
prints x in the form (re, im).

istream >> x;
reads x in the form (re, im), or just (re) or re in which case the
imaginary part is set to zero.

libg++.info 50 / 90

1.23 libg++.info/Fix

Fixed precision numbers

Classes Fix16, Fix24, Fix32, and Fix48 support operations on 16, 24,
32, or 48 bit quantities that are considered as real numbers in the
range [-1, +1). Such numbers are often encountered in digital signal
processing applications. The classes may be be used in isolation or
together. Class Fix32 operations are entirely self-contained. Class
Fix16 operations are self-contained except that the multiplication
operation Fix16 * Fix16 returns a Fix32. Fix24 and Fix48 are similarly
related.

The standard arithmetic and relational operations are supported (=,
+, -, *, /, <<, >>, +=, -=, *=, /=, <<=, >>=, ==, !=, <, <=, >, >=).
All operations include provisions for special handling in cases where
the result exceeds +/- 1.0. There are two cases that may be handled
separately: "overflow" where the results of addition and subtraction
operations go out of range, and all other "range errors" in which
resulting values go off-scale (as with division operations, and
assignment or initialization with off-scale values). In signal
processing applications, it is often useful to handle these two cases
differently. Handlers take one argument, a reference to the integer
mantissa of the offending value, which may then be manipulated. In
cases of overflow, this value is the result of the (integer) arithmetic
computation on the mantissa; in others it is a fully saturated (i.e.,
most positive or most negative) value. Handling may be reset to any of
several provided functions or any other user-defined function via
set_overflow_handler and set_range_error_handler. The provided
functions for Fix16 are as follows (corresponding functions are also
supported for the others).

Fix16_overflow_saturate
The default overflow handler. Results are "saturated": positive
results are set to the largest representable value (binary
0.111111...), and negative values to -1.0.

Fix16_ignore
Performs no action. For overflow, this will allow addition and
subtraction operations to "wrap around" in the same manner as
integer arithmetic, and for saturation, will leave values
saturated.

Fix16_overflow_warning_saturate
Prints a warning message on standard error, then saturates the
results.

Fix16_warning
The default range_error handler. Prints a warning message on
standard error; otherwise leaving the argument unmodified.

Fix16_abort

libg++.info 51 / 90

prints an error message on standard error, then aborts execution.

In addition to arithmetic operations, the following are provided:

Fix16 a = 0.5;
Constructs fixed precision objects from double precision values.
Attempting to initialize to a value outside the range invokes the
range_error handler, except, as a convenience, initialization to
1.0 sets the variable to the most positive representable value
(binary 0.1111111...) without invoking the handler.

short& mantissa(a); long& mantissa(b);
return a * pow(2, 15) or b * pow(2, 31) as an integer. These are
returned by reference, to enable "manual" data manipulation.

double value(a); double value(b);
return a or b as floating point numbers.

1.24 libg++.info/Bit

Classes for Bit manipulation

libg++ provides several different classes supporting the use and
manipulation of collections of bits in different ways.

* Class Integer provides "integer" semantics. It supports
manipulation of bits in ways that are often useful when treating
bit arrays as numerical (integer) quantities. This class is
described elsewhere.

* Class BitSet provides "set" semantics. It supports operations
useful when treating collections of bits as representing
potentially infinite sets of integers.

* Class BitSet32 supports fixed-length BitSets holding exactly 32
bits.

* Class BitSet256 supports fixed-length BitSets holding exactly 256
bits.

* Class BitString provides "string" (or "vector") semantics. It
supports operations useful when treating collections of bits as
strings of zeros and ones.

These classes also differ in the following ways:

* BitSets are logically infinite. Their space is dynamically altered
to adjust to the smallest number of consecutive bits actually
required to represent the sets. Integers also have this property.
BitStrings are logically finite, but their sizes are internally
dynamically managed to maintain proper length. This means that,
for example, BitStrings are concatenatable while BitSets and
Integers are not.

libg++.info 52 / 90

* BitSet32 and BitSet256 have precisely the same properties as
BitSets, except that they use constant fixed length bit vectors.

* While all classes support basic unary and binary operations ~, &,
|, ^, -, the semantics differ. BitSets perform bit operations that
precisely mirror those for infinite sets. For example,
complementing an empty BitSet returns one representing an infinite
number of set bits. Operations on BitStrings and Integers operate
only on those bits actually present in the representation. For
BitStrings and Integers, the the & operation returns a BitString
with a length equal to the minimum length of the operands, and |,
^ return one with length of the maximum.

* Only BitStrings support substring extraction and bit pattern
matching.

BitSet
======

BitSets are objects that contain logically infinite sets of
nonnegative integers. Representational details are discussed in the
Representation chapter. Because they are logically infinite, all
BitSets possess a trailing, infinitely replicated 0 or 1 bit, called
the "virtual bit", and indicated via 0* or 1*.

BitSet32 and BitSet256 have they same properties, except they are of
fixed length, and thus have no virtual bit.

BitSets may be constructed as follows:

BitSet a;
declares an empty BitSet.

BitSet a = atoBitSet("001000");
sets a to the BitSet 0010*, reading left-to-right. The "0*"
indicates that the set ends with an infinite number of zero
(clear) bits.

BitSet a = atoBitSet("00101*");
sets a to the BitSet 00101*, where "1*" means that the set ends
with an infinite number of one (set) bits.

BitSet a = longtoBitSet((long)23);
sets a to the BitSet 111010*, the binary representation of decimal
23.

BitSet a = utoBitSet((unsigned)23);
sets a to the BitSet 111010*, the binary representation of decimal
23.

The following functions and operators are provided (Assume the
declaration of BitSets a = 0011010*, b = 101101*, throughout, as
examples).

~a
returns the complement of a, or 1100101* in this case.

libg++.info 53 / 90

a.complement()
sets a to ~a.

a & b; a &= b;
returns a intersected with b, or 0011010*.

a | b; a |= b;
returns a unioned with b, or 1011111*.

a - b; a -= b;
returns the set difference of a and b, or 000010*.

a ^ b; a ^= b;
returns the symmetric difference of a and b, or 1000101*.

a.empty()
returns true if a is an empty set.

a == b;
returns true if a and b contain the same set.

a <= b;
returns true if a is a subset of b.

a < b;
returns true if a is a proper subset of b;

a != b; a >= b; a > b;
are the converses of the above.

a.set(7)
sets the 7th (counting from 0) bit of a, setting a to 001111010*

a.clear(2)
clears the 2nd bit bit of a, setting a to 00011110*

a.clear()
clears all bits of a;

a.set()
sets all bits of a;

a.invert(0)
complements the 0th bit of a, setting a to 10011110*

a.set(0,1)
sets the 0th through 1st bits of a, setting a to 110111110* The
two-argument versions of clear and invert are similar.

a.test(3)
returns true if the 3rd bit of a is set.

a.test(3, 5)
returns true if any of bits 3 through 5 are set.

int i = a[3]; a[3] = 0;

libg++.info 54 / 90

The subscript operator allows bits to be inspected and changed via
standard subscript semantics, using a friend class BitSetBit. The
use of the subscript operator a[i] rather than a.test(i) requires
somewhat greater overhead.

a.first(1) or a.first()
returns the index of the first set bit of a (2 in this case), or
-1 if no bits are set.

a.first(0)
returns the index of the first clear bit of a (0 in this case), or
-1 if no bits are clear.

a.next(2, 1) or a.next(2)
returns the index of the next bit after position 2 that is set (3
in this case) or -1. first and next may be used as iterators, as in
for (int i = a.first(); i >= 0; i = a.next(i))....

a.last(1)
returns the index of the rightmost set bit, or -1 if there or no
set bits or all set bits.

a.prev(3, 0)
returns the index of the previous clear bit before position 3.

a.count(1)
returns the number of set bits in a, or -1 if there are an
infinite number.

a.virtual_bit()
returns the trailing (infinitely replicated) bit of a.

a = atoBitSet("ababX", ’a’, ’b’, ’X’);
converts the char* string into a bitset, with ’a’ denoting false,
’b’ denoting true, and ’X’ denoting infinite replication.

a.printon(cout, ’-’, ’.’, 0)
prints a to cout represented with ’-’ for falses, ’.’ for trues,
and no replication marker.

cout << a
prints a to cout (representing lases by ’f’, trues by ’t’, and
using ’*’ as the replication marker).

diff(x, y, z)
A faster way to say z = x - y.

and(x, y, z)
A faster way to say z = x & y.

or(x, y, z)
A faster way to say z = x | y.

xor(x, y, z)
A faster way to say z = x ^ y.

complement(x, z)

libg++.info 55 / 90

A faster way to say z = ~x.

BitString
=========

BitStrings are objects that contain arbitrary-length strings of
zeroes and ones. BitStrings possess some features that make them behave
like sets, and others that behave as strings. They are useful in
applications (such as signature-based algorithms) where both
capabilities are needed. Representational details are discussed in the
Representation chapter. Most capabilities are exact analogs of those
supported in the BitSet and String classes. A BitSubString is used
with substring operations along the same lines as the String SubString
class. A BitPattern class is used for masked bit pattern searching.

Only a default constructor is supported. The declaration BitString
a; initializes a to be an empty BitString. BitStrings may often be
initialized via atoBitString and longtoBitString.

Set operations (~, complement, &, &=, |, |=, -, ^, ^=) behave just
as the BitSet versions, except that there is no "virtual bit":
complementing complements only those bits in the BitString, and all
binary operations across unequal length BitStrings assume a virtual bit
of zero. The & operation returns a BitString with a length equal to the
minimum length of the operands, and |, ^ return one with length of the
maximum.

Set-based relational operations (==, !=, <=, <, >=, >) follow the
same rules. A string-like lexicographic comparison function, lcompare,
tests the lexicographic relation between two BitStrings. For example,
lcompare(1100, 0101) returns 1, since the first BitString starts with 1
and the second with 0.

Individual bit setting, testing, and iterator operations (set,
clear, invert, test, first, next, last, prev) are also like those for
BitSets. BitStrings are automatically expanded when setting bits at
positions greater than their current length.

The string-based capabilities are just as those for class String.
BitStrings may be concatenated (+, +=), searched (index, contains,
matches), and extracted into BitSubStrings (before, at, after) which
may be assigned and otherwise manipulated. Other string-based utility
functions (reverse, common_prefix, common_suffix) are also provided.
These have the same capabilities and descriptions as those for Strings.

String-oriented operations can also be performed with a mask via
class BitPattern. BitPatterns consist of two BitStrings, a pattern and
a mask. On searching and matching, bits in the pattern that correspond
to 0 bits in the mask are ignored. (The mask may be shorter than the
pattern, in which case trailing mask bits are assumed to be 0). The
pattern and mask are both public variables, and may be individually
subjected to other bit operations.

Converting to char* and printing ((atoBitString, atoBitPattern,
printon, ostream <<)) are also as in BitSets, except that no virtual
bit is used, and an ’X’ in a BitPattern means that the pattern bit is
masked out.

libg++.info 56 / 90

The following features are unique to BitStrings.

Assume declarations of BitString a = atoBitString("01010110") and b =
atoBitSTring("1101").

a = b + c;
Sets a to the concatenation of b and c;

a = b + 0; a = b + 1;
sets a to b, appended with a zero (one).

a += b;
appends b to a;

a += 0; a += 1;
appends a zero (one) to a.

a << 2; a <<= 2
return a with 2 zeros prepended, setting a to 0001010110. (Note
the necessary confusion of << and >> operators. For consistency
with the integer versions, << shifts low bits to high, even though
they are printed low bits first.)

a >> 3; a >>= 3
return a with the first 3 bits deleted, setting a to 10110.

a.left_trim(0)
deletes all 0 bits on the left of a, setting a to 1010110.

a.right_trim(0)
deletes all trailing 0 bits of a, setting a to 0101011.

cat(x, y, z)
A faster way to say z = x + y.

diff(x, y, z)
A faster way to say z = x - y.

and(x, y, z)
A faster way to say z = x & y.

or(x, y, z)
A faster way to say z = x | y.

xor(x, y, z)
A faster way to say z = x ^ y.

lshift(x, y, z)
A faster way to say z = x << y.

rshift(x, y, z)
A faster way to say z = x >> y.

complement(x, z)
A faster way to say z = ~x.

libg++.info 57 / 90

1.25 libg++.info/Random

Random Number Generators and related classes

**

The two classes RNG and Random are used together to generate a
variety of random number distributions. A distinction must be made
between random number generators, implemented by class RNG, and random
number distributions. A random number generator produces a series of
randomly ordered bits. These bits can be used directly, or cast to
other representations, such as a floating point value. A random number
generator should produce a uniform distribution. A random number
distribution, on the other hand, uses the randomly generated bits of a
generator to produce numbers from a distribution with specific
properties. Each instance of Random uses an instance of class RNG to
provide the raw, uniform distribution used to produce the specific
distribution. Several instances of Random classes can share the same
instance of RNG, or each instance can use its own copy.

RNG
===

Random distributions are constructed from members of class RNG, the
actual random number generators. The RNG class contains no data; it
only serves to define the interface to random number generators. The
RNG::asLong member returns an unsigned long (typically 32 bits) of
random bits. Applications that require a number of random bits can use
this directly. More often, these random bits are transformed to a
uniform random number:

//
// Return random bits converted to either a float or a double
//
float asFloat();
double asDouble();

};

using either asFloat or asDouble. It is intended that asFloat and
asDouble return differing precisions; typically, asDouble will draw two
random longwords and transform them into a legal double, while asFloat
will draw a single longword and transform it into a legal float. These
members are used by subclasses of the Random class to implement a
variety of random number distributions.

ACG
===

Class ACG is a variant of a Linear Congruential Generator (Algorithm
M) described in Knuth, Art of Computer Programming, Vol III. This
result is permuted with a Fibonacci Additive Congruential Generator to
get good independence between samples. This is a very high quality
random number generator, although it requires a fair amount of memory
for each instance of the generator.

libg++.info 58 / 90

The ACG::ACG constructor takes two parameters: the seed and the
size. The seed is any number to be used as an initial seed. The
performance of the generator depends on having a distribution of bits
through the seed. If you choose a number in the range of 0 to 31, a
seed with more bits is chosen. Other values are deterministically
modified to give a better distribution of bits. This provides a good
random number generator while still allowing a sequence to be repeated
given the same initial seed.

The size parameter determines the size of two tables used in the
generator. The first table is used in the Additive Generator; see the
algorithm in Knuth for more information. In general, this table is size
longwords long. The default value, used in the algorithm in Knuth,
gives a table of 220 bytes. The table size affects the period of the
generators; smaller values give shorter periods and larger tables give
longer periods. The smallest table size is 7 longwords, and the longest
is 98 longwords. The size parameter also determines the size of the
table used for the Linear Congruential Generator. This value is chosen
implicitly based on the size of the Additive Congruential Generator
table. It is two powers of two larger than the power of two that is
larger than size. For example, if size is 7, the ACG table is 7
longwords and the LCG table is 128 longwords. Thus, the default size
(55) requires 55 + 256 longwords, or 1244 bytes. The largest table
requires 2440 bytes and the smallest table requires 100 bytes.
Applications that require a large number of generators or applications
that aren’t so fussy about the quality of the generator may elect to
use the MLCG generator.

MLCG
====

The MLCG class implements a Multiplicative Linear Congruential
Generator. In particular, it is an implementation of the double MLCG
described in "Efficient and Portable Combined Random Number Generators"
by Pierre L’Ecuyer, appearing in Communications of the ACM, Vol. 31.
No. 6. This generator has a fairly long period, and has been
statistically analyzed to show that it gives good inter-sample
independence.

The MLCG::MLCG constructor has two parameters, both of which are
seeds for the generator. As in the MLCG generator, both seeds are
modified to give a "better" distribution of seed digits. Thus, you can
safely use values such as ‘0’ or ‘1’ for the seeds. The MLCG generator
used much less state than the ACG generator; only two longwords (8
bytes) are needed for each generator.

Random
======

A random number generator may be declared by first declaring a RNG
and then a Random. For example, ACG gen(10, 20); NegativeExpntl rnd
(1.0, &gen); declares an additive congruential generator with seed 10
and table size 20, that is used to generate exponentially distributed
values with mean of 1.0.

The virtual member Random::operator() is the common way of

libg++.info 59 / 90

extracting a random number from a particular distribution. The base
class, Random does not implement operator(). This is performed by each
of the subclasses. Thus, given the above declaration of rnd, new random
values may be obtained via, for example, double next_exp_rand = rnd();
Currently, the following subclasses are provided.

Binomial
========

The binomial distribution models successfully drawing items from a
pool. The first parameter to the constructor, n, is the number of
items in the pool, and the second parameter, u, is the probability of
each item being successfully drawn. The member asDouble returns the
number of samples drawn from the pool. Although it is not checked, it
is assumed that n>0 and 0 <= u <= 1. The remaining members allow you
to read and set the parameters.

Erlang
======

The Erlang class implements an Erlang distribution with mean mean
and variance variance.

Geometric
=========

The Geometric class implements a discrete geometric distribution.
The first parameter to the constructor, mean, is the mean of the
distribution. Although it is not checked, it is assumed that 0 <= mean
<= 1. Geometric() returns the number of uniform random samples that
were drawn before the sample was larger than mean. This quantity is
always greater than zero.

HyperGeometric
==============

The HyperGeometric class implements the hypergeometric distribution.
The first parameter to the constructor, mean, is the mean and the
second, variance, is the variance. The remaining members allow you to
inspect and change the mean and variance.

NegativeExpntl
==============

The NegativeExpntl class implements the negative exponential
distribution. The first parameter to the constructor is the mean. The
remaining members allow you to inspect and change the mean.

Normal
======

The Normalclass implements the normal distribution. The first
parameter to the constructor, mean, is the mean and the second,
variance, is the variance. The remaining members allow you to
inspect and change the mean and variance. The LogNormal class is a
subclass of Normal.

libg++.info 60 / 90

LogNormal
=========

The LogNormalclass implements the logarithmic normal distribution.
The first parameter to the constructor, mean, is the mean and the
second, variance, is the variance. The remaining members allow you to
inspect and change the mean and variance. The LogNormal class is a
subclass of Normal.

Poisson
=======

The Poisson class implements the poisson distribution. The first
parameter to the constructor is the mean. The remaining members allow
you to inspect and change the mean.

DiscreteUniform
===============

The DiscreteUniform class implements a uniform random variable over
the closed interval ranging from [low..high]. The first parameter to
the constructor is low, and the second is high, although the order of
these may be reversed. The remaining members allow you to inspect and
change low and high.

Uniform
=======

The Uniform class implements a uniform random variable over the open
interval ranging from [low..high). The first parameter to the
constructor is low, and the second is high, although the order of these
may be reversed. The remaining members allow you to inspect and change
low and high.

Weibull
=======

The Weibull class implements a weibull distribution with parameters
alpha and beta. The first parameter to the class constructor is alpha,
and the second parameter is beta. The remaining members allow you to
inspect and change alpha and beta.

RandomInteger
=============

The RandomInteger class is not a subclass of Random, but a
stand-alone integer-oriented class that is dependent on the RNG
classes. RandomInteger returns random integers uniformly from the
closed interval [low..high]. The first parameter to the constructor is
low, and the second is high, although both are optional. The last
argument is always a generator. Additional members allow you to
inspect and change low and high. Random integers are generated using
asInt() or asLong(). Operator syntax (()) is also available as a
shorthand for asLong(). Because RandomInteger is often used in
simulations for which uniform random integers are desired over a
variety of ranges, asLong() and asInt have high as an optional
argument. Using this optional argument produces a single value from

libg++.info 61 / 90

the new range, but does not change the default range.

1.26 libg++.info/Data

Data Collection

Libg++ currently provides two classes for data collection and
analysis of the collected data.

SampleStatistic
===============

Class SampleStatistic provides a means of accumulating samples of
double values and providing common sample statistics.

Assume declaration of double x.

SampleStatistic a;
declares and initializes a.

a.reset();
re-initializes a.

a += x;
adds sample x.

int n = a.samples();
returns the number of samples.

x = a.mean;
returns the means of the samples.

x = a.var()
returns the sample variance of the samples.

x = a.stdDev()
returns the sample standard deviation of the samples.

x = a.min()
returns the minimum encountered sample.

x = a.max()
returns the maximum encountered sample.

x = a.confidence(int p)
returns the p-percent (0 <= p < 100) confidence interval.

x = a.confidence(double p)
returns the p-probability (0 <= p < 1) confidence interval.

SampleHistogram
===============

libg++.info 62 / 90

Class SampleHistogram is a derived class of SampleStatistic that
supports collection and display of samples in bucketed intervals. It
supports the following in addition to SampleStatisic operations.

SampleHistogram h(double lo, double hi, double width);
declares and initializes h to have buckets of size width from lo
to hi. If the optional argument width is not specified, 10
buckets are created. The first bucket and also holds samples less
than lo, and the last one holds samples greater than hi.

int n = h.similarSamples(x)
returns the number of samples in the same bucket as x.

int n = h.inBucket(int i)
returns the number of samples in bucket i.

int b = h.buckets()
returns the number of buckets.

h.printBuckets(ostream s)
prints bucket counts on ostream s.

double bound = h.bucketThreshold(int i)
returns the upper bound of bucket i.

1.27 libg++.info/Curses

Curses-based classes

The CursesWindow class is a repackaging of standard curses library
features into a class. It relies on curses.h.

The supplied curses.h is a fairly conservative declaration of curses
library features, and does not include features like "screen" or
X-window support. It is, for the most part, an adaptation, rather than
an improvement of C-based curses.h files. The only substantive changes
are the declarations of many functions as inline functions rather than
macros, which was done solely to allow overloading.

The CursesWindow class encapsulates curses window functions within a
class. Only those functions that control windows are included: Terminal
control functions and macros like cbreak are not part of the class.
All CursesWindows member functions have names identical to the
corresponding curses library functions, except that the "w" prefix is
generally dropped. Descriptions of these functions may be found in your
local curses library documentation.

A CursesWindow may be declared via

CursesWindow w(WINDOW* win)
attaches w to the existing WINDOW* win. This is constructor is
normally used only in the following special case.

libg++.info 63 / 90

CursesWindow w(stdscr)
attaches w to the default curses library standard screen window.

CursesWindow w(int lines, int cols, int begin_y, int begin_x)
attaches to an allocated curses window with the indicated size and
screen position.

CursesWindow sub(CursesWindow& w,int l,int c,int by,int bx,char ar=’a’)
attaches to a subwindow of w created via the curses ‘subwin’
command. If ar is sent as ‘r’, the origin (by, bx) is relative to
the parent window, else it is absolute.

The class maintains a static counter that is used in order to
automatically call the curses library initscr and endscr functions at
the proper times. These need not, and should not be called "manually".

CursesWindows maintain a tree of their subwindows. Upon destruction
of a CursesWindow, all of their subwindows are also invalidated if they
had not previously been destroyed.

It is possible to traverse trees of subwindows via the following
member functions

CursesWindow* w.parent()
returns a pointer to the parent of the subwindow, or 0 if there is
none.

CursesWindow* w.child()
returns the first child subwindow of the window, or 0 if there is
none.

CursesWindow* w.sibling()
returns the next sibling of the subwindow, or 0 if there is none.

For example, to call some function visit for all subwindows of a
window, you could write

void traverse(CursesWindow& w)
{

visit(w);
if (w.child() != 0) traverse(*w.child);
if (w.sibling() != 0) traverse(*w.sibling);

}

1.28 libg++.info/List

List classes

The files g++-include/List.hP and g++-include/List.ccP provide
pseudo-generic Lisp-type List classes. These lists are homogeneous
lists, more similar to lists in statically typed functional languages
like ML than Lisp, but support operations very similar to those found

libg++.info 64 / 90

in Lisp. Any particular kind of list class may be generated via the
genclass shell command. However, the implementation assumes that the
base class supports an equality operator ==. All equality tests use the
== operator, and are thus equivalent to the use of equal, not eq in
Lisp.

All list nodes are created dynamically, and managed via reference
counts. List variables are actually pointers to these list nodes.
Lists may also be traversed via Pixes, as described in the section
describing Pixes. See

Pix
.

Supported operations are mirrored closely after those in Lisp.
Generally, operations with functional forms are constructive,
functional operations, while member forms (often with the same name)
are sometimes procedural, possibly destructive operations.

As with Lisp, destructive operations are supported. Programmers are
allowed to change head and tail fields in any fashion, creating
circular structures and the like. However, again as with Lisp, some
operations implicitly assume that they are operating on pure lists, and
may enter infinite loops when presented with improper lists. Also, the
reference-counting storage management facility may fail to reclaim
unused circularly-linked nodes.

Several Lisp-like higher order functions are supported (e.g., map).
Typedef declarations for the required functional forms are provided int
the .h file.

For purposes of illustration, assume the specification of class
intList. Common Lisp versions of supported operations are shown in
brackets for comparison purposes.

Constructors and assignment
===========================

intList a; [(setq a nil)]
Declares a to be a nil intList.

intList b(2); [(setq b (cons 2 nil))]
Declares b to be an intList with a head value of 2, and a nil tail.

intList c(3, b); [(setq c (cons 3 b))]
Declares c to be an intList with a head value of 3, and b as its
tail.

b = a; [(setq b a)]
Sets b to be the same list as a.

Assume the declarations of intLists a, b, and c in the following.
See

Pix
.

List status
===========

libg++.info 65 / 90

a.null(); OR !a; [(null a)]
returns true if a is null.

a.valid(); [(listp a)]
returns true if a is non-null. Inside a conditional test, the
void* coercion may also be used as in if (a)

intList(); [nil]
intList() may be used to null terminate a list, as in intList
f(int x) {if (x == 0) return intList(); ... } .

a.length(); [(length a)]
returns the length of a.

a.list_length(); [(list-length a)]
returns the length of a, or -1 if a is circular.

heads and tails
===============

a.get(); OR a.head() [(car a)]
returns a reference to the head field.

a[2]; [(elt a 2)]
returns a reference to the second (counting from zero) head field.

a.tail(); [(cdr a)]
returns the intList that is the tail of a.

a.last(); [(last a)]
returns the intList that is the last node of a.

a.nth(2); [(nth a 2)]
returns the intList that is the nth node of a.

a.set_tail(b); [(rplacd a b)]
sets a’s tail to b.

a.push(2); [(push 2 a)]
equivalent to a = intList(2, a);

int x = a.pop() [(setq x (car a)) (pop a)]
returns the head of a, also setting a to its tail.

Constructive operations
=======================

b = copy(a); [(setq b (copy-seq a))]
sets b to a copy of a.

b = reverse(a); [(setq b (reverse a))]
Sets b to a reversed copy of a.

c = concat(a, b); [(setq c (concat a b))]
Sets c to a concatenated copy of a and b.

libg++.info 66 / 90

c = append(a, b); [(setq c (append a b))]
Sets c to a concatenated copy of a and b. All nodes of a are
copied, with the last node pointing to b.

b = map(f, a); [(setq b (mapcar f a))]
Sets b to a new list created by applying function f to each node
of a.

c = combine(f, a, b);
Sets c to a new list created by applying function f to successive
pairs of a and b. The resulting list has length the shorter of a
and b.

b = remove(x, a); [(setq b (remove x a))]
Sets b to a copy of a, omitting all occurrences of x.

b = remove(f, a); [(setq b (remove-if f a))]
Sets b to a copy of a, omitting values causing function f to
return true.

b = select(f, a); [(setq b (remove-if-not f a))]
Sets b to a copy of a, omitting values causing function f to
return false.

c = merge(a, b, f); [(setq c (merge a b f))]
Sets c to a list containing the ordered elements (using the
comparison function f) of the sorted lists a and b.

Destructive operations
======================

a.append(b); [(rplacd (last a) b)]
appends b to the end of a. No new nodes are constructed.

a.prepend(b); [(setq a (append b a))]
prepends b to the beginning of a.

a.del(x); [(delete x a)]
deletes all nodes with value x from a.

a.del(f); [(delete-if f a)]
deletes all nodes causing function f to return true.

a.select(f); [(delete-if-not f a)]
deletes all nodes causing function f to return false.

a.reverse(); [(nreverse a)]
reverses a in-place.

a.sort(f); [(sort a f)]
sorts a in-place using ordering (comparison) function f.

a.apply(f); [(mapc f a)]
Applies void function f (int x) to each element of a.

a.subst(int old, int repl); [(nsubst repl old a)]
substitutes repl for each occurrence of old in a. Note the

libg++.info 67 / 90

different argument order than the Lisp version.

Other operations
================

a.find(int x); [(find x a)]
returns the intList at the first occurrence of x.

a.find(b); [(find b a)]
returns the intList at the first occurrence of sublist b.

a.contains(int x); [(member x a)]
returns true if a contains x.

a.contains(b); [(member b a)]
returns true if a contains sublist b.

a.position(int x); [(position x a)]
returns the zero-based index of x in a, or -1 if x does not occur.

int x = a.reduce(f, int base); [(reduce f a :initial-value base)]
Accumulates the result of applying int function f(int, int) to
successive elements of a, starting with base.

1.29 libg++.info/LinkList

Linked Lists

SLLists provide pseudo-generic singly linked lists. DLLists provide
doubly linked lists. The lists are designed for the simple maintenance
of elements in a linked structure, and do not provide the more extensive
operations (or node-sharing) of class List. They behave similarly to
the slist and similar classes described by Stroustrup.

All list nodes are created dynamically. Assignment is performed via
copying.

Class DLList supports all SLList operations, plus additional
operations described below.

For purposes of illustration, assume the specification of class
intSLList. In addition to the operations listed here, SLLists support
traversal via Pixes. See

Pix
.

intSLList a;
Declares a to be an empty list.

intSLList b = a;
Sets b to an element-by-element copy of a.

libg++.info 68 / 90

a.empty()
returns true if a contains no elements

a.length();
returns the number of elements in a.

a.prepend(x);
places x at the front of the list.

a.append(x);
places x at the end of the list.

a.join(b)
places all nodes from b to the end of a, simultaneously destroying
b.

x = a.front()
returns a reference to the item stored at the head of the list, or
triggers an error if the list is empty.

a.rear()
returns a reference to the rear of the list, or triggers an error
if the list is empty.

x = a.remove_front()
deletes and returns the item stored at the head of the list.

a.del_front()
deletes the first element, without returning it.

a.clear()
deletes all items from the list.

a.ins_after(Pix i, item);
inserts item after position i. If i is null, insertion is at the
front.

a.del_after(Pix i);
deletes the element following i. If i is 0, the first item is
deleted.

Doubly linked lists
===================

Class DLList supports the following additional operations, as well
as backward traversal via Pixes.

x = a.remove_rear();
deletes and returns the item stored at the rear of the list.

a.del_rear();
deletes the last element, without returning it.

a.ins_before(Pix i, x)
inserts x before the i.

a.del(Pix& iint dir = 1)

libg++.info 69 / 90

deletes the item at the current position, then advances forward if
dir is positive, else backward.

1.30 libg++.info/Vector

Vector classes

The files g++-include/Vec.ccP and g++-include/AVec.ccP provide
pseudo-generic standard array-based vector operations. The
corresponding header files are g++-include/Vec.hP and
g++-include/AVec.hP. Class Vec provides operations suitable for any
base class that includes an equality operator. Subclass AVec provides
additional arithmetic operations suitable for base classes that include
the full complement of arithmetic operators.

Vecs are constructed and assigned by copying. Thus, they should
normally be passed by reference in applications programs.

Several mapping functions are provided that allow programmers to
specify operations on vectors as a whole.

For illustrative purposes assume that classes intVec and intAVec
have been generated via genclass.

Constructors and assignment
===========================

intVec a;
declares a to be an empty vector. Its size may be changed via
resize.

intVec a(10);
declares a to be an uninitialized vector of ten elements (numbered
0-9).

intVec b(6, 0);
declares b to be a vector of six elements, all initialized to
zero. Any value can be used as the initial fill argument.

a = b;
Copies b to a. a is resized to be the same as b.

a = b.at(2, 4)
constructs a from the 4 elements of b starting at b[2].

Assume declarations of intVec a, b, c and int i, x in the following.

Status and access
=================

a.capacity();
returns the number of elements that can be held in a.

libg++.info 70 / 90

a.resize(20);
sets a’s length to 20. All elements are unchanged, except that if
the new size is smaller than the original, than trailing elements
are deleted, and if greater, trailing elements are uninitialized.

a[i];
returns a reference to the i’th element of a, or produces an error
if i is out of range.

a.elem(i)
returns a reference to the i’th element of a. Unlike the []
operator, i is not checked to ensure that it is within range.

a == b;
returns true if a and b contain the same elements in the same
order.

a != b;
is the converse of a == b.

Constructive operations
=======================

c = concat(a, b);
sets c to the new vector constructed from all of the elements of a
followed by all of b.

c = map(f, a);
sets c to the new vector constructed by applying int function
f(int) to each element of a.

c = merge(a, b, f);
sets c to the new vector constructed by merging the elements of
ordered vectors a and b using ordering (comparison) function f.

c = combine(f, a, b);
sets c to the new vector constructed by applying int function
f(int, int) to successive pairs of a and b. The result has length
the shorter of a and b.

c = reverse(a)
sets c to a, with elements in reverse order.

Destructive operations
======================

a.reverse();
reverses a in-place.

a.sort(f)
sorts a in-place using comparison function f. The sorting method
is a variation of the quicksort functions supplied with GNU emacs.

a.fill(0, 4, 2)
fills the 2 elements starting at a[4] with zero.

libg++.info 71 / 90

Other operations
================

a.apply(f)
applies function f to each element in a.

x = a.reduce(f, base)
accumulates the results of applying function f to successive
elements of a starting with base.

a.index(int targ);
returns the index of the leftmost occurrence of the target, or -1,
if it does not occur.

a.error(char* msg)
invokes the error handler. The default version prints the error
message, then aborts.

AVec operations.
================

AVecs provide additional arithmetic operations. All vector-by-vector
operators generate an error if the vectors are not the same length. The
following operations are provided, for AVecs a, b and base element
(scalar) s.

a = b;
Copies b to a. a and b must be the same size.

a = s;
fills all elements of a with the value s. a is not resized.

a + s; a - s; a * s; a / s
adds, subtracts, multiplies, or divides each element of a with the
scalar.

a += s; a -= s; a *= s; a /= s;
adds, subtracts, multiplies, or divides the scalar into a.

a + b; a - b; product(a, b), quotient(a, b)
adds, subtracts, multiplies, or divides corresponding elements of
a and b.

a += b; a -= b; a.product(b); a.quotient(b);
adds, subtracts, multiplies, or divides corresponding elements of
b into a.

s = a * b;
returns the inner (dot) product of a and b.

x = a.sum();
returns the sum of elements of a.

x = a.sumsq();
returns the sum of squared elements of a.

x = a.min();

libg++.info 72 / 90

returns the minimum element of a.

x = a.max();
returns the maximum element of a.

i = a.min_index();
returns the index of the minimum element of a.

i = a.max_index();
returns the index of the maximum element of a.

Note that it is possible to apply vector versions other arithmetic
operators via the mapping functions. For example, to set vector b
to the cosines of doubleVec a, use b = map(cos, a);. This is
often more efficient than performing the operations in an
element-by-element fashion.

1.31 libg++.info/Plex

Plex classes

A "Plex" is a kind of array with the following properties:

* Plexes may have arbitrary upper and lower index bounds. For example
a Plex may be declared to run from indices -10 .. 10.

* Plexes may be dynamically expanded at both the lower and upper
bounds of the array in steps of one element.

* Only elements that have been specifically initialized or added may
be accessed.

* Elements may be accessed via indices. Indices are always checked
for validity at run time. Plexes may be traversed via simple
variations of standard array indexing loops.

* Plex elements may be accessed and traversed via Pixes.

* Plex-to-Plex assignment and related operations on entire Plexes
are supported.

* Plex classes contain methods to help programmers check the validity
of indexing and pointer operations.

* Plexes form "natural" base classes for many restricted-access data
structures relying on logically contiguous indices, such as
array-based stacks and queues.

* Plexes are implemented as pseudo-generic classes, and must be
generated via the genclass utility.

Four subclasses of Plexes are supported: A FPlex is a Plex that may
only grow or shrink within declared bounds; an XPlex may dynamically

libg++.info 73 / 90

grow or shrink without bounds; an RPlex is the same as an XPlex but
better supports indexing with poor locality of reference; a MPlex may
grow or shrink, and additionally allows the logical deletion and
restoration of elements. Because these classes are virtual subclasses
of the "abstract" class Plex, it is possible to write user code such as
void f(Plex& a) ... that operates on any kind of Plex. However, as with
nearly any virtual class, specifying the particular Plex class being
used results in more efficient code.

Plexes are implemented as a linked list of IChunks. Each chunk
contains a part of the array. Chunk sizes may be specified within Plex
constructors. Default versions also exist, that use a #define’d
default. Plexes grow by filling unused space in existing chunks, if
possible, else, except for FPlexes, by adding another chunk. Whenever
Plexes grow by a new chunk, the default element constructors (i.e.,
those which take no arguments) for all chunk elements are called at
once. When Plexes shrink, destructors for the elements are not called
until an entire chunk is freed. For this reason, Plexes (like C++
arrays) should only be used for elements with default constructors and
destructors that have no side effects.

Plexes may be indexed and used like arrays, although traversal
syntax is slightly different. Even though Plexes maintain elements in
lists of chunks, they are implemented so that iteration and other
constructs that maintain locality of reference require very little
overhead over that for simple array traversal Pix-based traversal is
also supported. For example, for a plex, p, of ints, the following
traversal methods could be used.

for (int i = p.low(); i < p.fence(); p.next(i)) use(p[i]);
for (int i = p.high(); i > p.ecnef(); p.prev(i)) use(p[i]);
for (Pix t = p.first(); t != 0; p.next(t)) use(p(i));
for (Pix t = p.last(); t != 0; p.prev(t)) use(p(i));

Except for MPlexes, simply using ++i and -i works just as well as
p.next(i) and p.prev(i) when traversing by index. Index-based
traversal is generally a bit faster than Pix-based traversal.

XPlexes and MPlexes are less than optimal for applications in which
widely scattered elements are indexed, as might occur when using Plexes
as hash tables or "manually" allocated linked lists. In such
applications, RPlexes are often preferable. RPlexes use a secondary
chunk index table that requires slightly greater, but entirely uniform
overhead per index operation.

Even though they may grow in either direction, Plexes are normally
constructed so that their "natural" growth direction is upwards, in
that default chunk construction leaves free space, if present, at the
end of the plex. However, if the chunksize arguments to constructors
are negative, they leave space at the beginning.

All versions of Plexes support the following basic capabilities.
(letting Plex stand for the type name constructed via the genclass
utility (e.g., intPlex, doublePlex)). Assume declarations of Plex p,
q, int i, j, base element x, and Pix pix.

Plex p;

libg++.info 74 / 90

Declares p to be an initially zero-sized Plex with low index of
zero, and the default chunk size. For FPlexes, chunk sizes
represent maximum sizes.

Plex p(int size);
Declares p to be an initially zero-sized Plex with low index of
zero, and the indicated chunk size. If size is negative, then the
Plex is created with free space at the beginning of the Plex,
allowing more efficient add_low() operations. Otherwise, it leaves
space at the end.

Plex p(int low, int size);
Declares p to be an initially zero-sized Plex with low index of
low, and the indicated chunk size.

Plex p(int low, int high, Base initval, int size = 0);
Declares p to be a Plex with indices from low to high, initially
filled with initval, and the indicated chunk size if specified,
else the default or (high - low + 1), whichever is greater.

Plex q(p);
Declares q to be a copy of p.

p = q;
Copies Plex q into p, deleting its previous contents.

p.length()
Returns the number of elements in the Plex.

p.empty()
Returns true if Plex p contains no elements.

p.full()
Returns true if Plex p cannot be expanded. This always returns
false for XPlexes and MPlexes.

p[i]
Returns a reference to the i’th element of p. An exception (error)
occurs if i is not a valid index.

p.valid(i)
Returns true if i is a valid index into Plex p.

p.low(); p.high();
Return the minimum (maximum) valid index of the Plex, or the high
(low) fence if the plex is empty.

p.ecnef(); p.fence();
Return the index one position past the minimum (maximum) valid
index.

p.next(i); i = p.prev(i);
Set i to the next (previous) index. This index may not be within
bounds.

p(pix)
returns a reference to the item at Pix pix.

libg++.info 75 / 90

pix = p.first(); pix = p.last();
Return the minimum (maximum) valid Pix of the Plex, or 0 if the
plex is empty.

p.next(pix); p.prev(pix);
set pix to the next (previous) Pix, or 0 if there is none.

p.owns(pix)
Returns true if the Plex contains the element associated with pix.

p.Pix_to_index(pix)
If pix is a valid Pix to an element of the Plex, returns its
corresponding index, else raises an exception.

ptr = p.index_to_Pix(i)
if i is a valid index, returns a the corresponding Pix.

p.low_element(); p.high_element();
Return a reference to the element at the minimum (maximum) valid
index. An exception occurs if the Plex is empty.

p.can_add_low(); p.can_add_high();
Returns true if the plex can be extended one element downward
(upward). These always return true for XPlex and MPlex.

j = p.add_low(x); j = p.add_high(x);
Extend the Plex by one element downward (upward). The new minimum
(maximum) index is returned.

j = p.del_low(); j = p.del_high()
Shrink the Plex by one element on the low (high) end. The new
minimum (maximum) element is returned. An exception occurs if the
Plex is empty.

p.append(q);
Append all of Plex q to the high side of p.

p.prepend(q);
Prepend all of q to the low side of p.

p.clear()
Delete all elements, resetting p to a zero-sized Plex.

p.reset_low(i);
Resets p to be indexed starting at low() = i. For example. if p
were initially declared via Plex p(0, 10, 0), and then re-indexed
via p.reset_low(5), it could then be indexed from indices 5 .. 14.

p.fill(x)
sets all p[i] to x.

p.fill(x, lo, hi)
sets all of p[i] from lo to hi, inclusive, to x.

p.reverse()
reverses p in-place.

libg++.info 76 / 90

p.chunk_size()
returns the chunk size used for the plex.

p.error(const char * msg)
calls the resettable error handler.

MPlexes are plexes with bitmaps that allow items to be logically
deleted and restored. They behave like other plexes, but also support
the following additional and modified capabilities:

p.del_index(i); p.del_Pix(pix)
logically deletes p[i] (p(pix)). After deletion, attempts to
access p[i] generate a error. Indexing via low(), high(), prev(),
and next() skip the element. Deleting an element never changes the
logical bounds of the plex.

p.undel_index(i); p.undel_Pix(pix)
logically undeletes p[i] (p(pix)).

p.del_low(); p.del_high()
Delete the lowest (highest) undeleted element, resetting the
logical bounds of the plex to the next lowest (highest) undeleted
index. Thus, MPlex del_low() and del_high() may shrink the bounds
of the plex by more than one index.

p.adjust_bounds()
Resets the low and high bounds of the Plex to the indexes of the
lowest and highest actual undeleted elements.

int i = p.add(x)
Adds x in an unused index, if possible, else performs add_high.

p.count()
returns the number of valid (undeleted) elements.

p.available()
returns the number of available (deleted) indices.

int i = p.unused_index()
returns the index of some deleted element, if one exists, else
triggers an error. An unused element may be reused via undel.

pix = p.unused_Pix()
returns the pix of some deleted element, if one exists, else 0.
An unused element may be reused via undel.

1.32 libg++.info/Stack

Stacks

Stacks are declared as an "abstract" class. They are currently
implemented in any of three ways.

libg++.info 77 / 90

VStack
implement fixed sized stacks via arrays.

XPStack
implement dynamically-sized stacks via XPlexes.

SLStack
implement dynamically-size stacks via linked lists.

All possess the same capabilities. They differ only in constructors.
VStack constructors require a fixed maximum capacity argument. XPStack
constructors optionally take a chunk size argument. SLStack
constructors take no argument.

Assume the declaration of a base element x.

Stack s; or Stack s(int capacity)
declares a Stack.

s.empty()
returns true if stack s is empty.

s.full()
returns true if stack s is full. XPStacks and SLStacks never
become full.

s.length()
returns the current number of elements in the stack.

s.push(x)
pushes x on stack s.

x = s.pop()
pops and returns the top of stack

s.top()
returns a reference to the top of stack.

s.del_top()
pops, but does not return the top of stack. When large items are
held on the stack it is often a good idea to use top() to inspect
and use the top of stack, followed by a del_top()

s.clear()
removes all elements from the stack.

1.33 libg++.info/Queue

Queues

Queues are declared as an "abstract" class. They are currently
implemented in any of three ways.

libg++.info 78 / 90

VQueue
implement fixed sized Queues via arrays.

XPQueue
implement dynamically-sized Queues via XPlexes.

SLQueue
implement dynamically-size Queues via linked lists.

All possess the same capabilities; they differ only in constructors.
VQueue constructors require a fixed maximum capacity argument. XPQueue
constructors optionally take a chunk size argument. SLQueue
constructors take no argument.

Assume the declaration of a base element x.

Queue q; or Queue q(int capacity);
declares a queue.

q.empty()
returns true if queue q is empty.

q.full()
returns true if queue q is full. XPQueues and SLQueues are never
full.

q.length()
returns the current number of elements in the queue.

q.enq(x)
enqueues x on queue q.

x = q.deq()
dequeues and returns the front of queue

q.front()
returns a reference to the front of queue.

q.del_front()
dequeues, but does not return the front of queue

q.clear()
removes all elements from the queue.

1.34 libg++.info/Deque

Double ended Queues

Deques are declared as an "abstract" class. They are currently
implemented in two ways.

XPDeque

libg++.info 79 / 90

implement dynamically-sized Deques via XPlexes.

DLDeque
implement dynamically-size Deques via linked lists.

All possess the same capabilities. They differ only in constructors.
XPDeque constructors optionally take a chunk size argument. DLDeque
constructors take no argument.

Double-ended queues support both stack-like and queue-like
capabilities:

Assume the declaration of a base element x.

Deque d; or Deque d(int initial_capacity)
declares a deque.

d.empty()
returns true if deque d is empty.

d.full()
returns true if deque d is full. Always returns false in current
implementations.

d.length()
returns the current number of elements in the deque.

d.enq(x)
inserts x at the rear of deque d.

d.push(x)
inserts x at the front of deque d.

x = d.deq()
dequeues and returns the front of deque

d.front()
returns a reference to the front of deque.

d.rear()
returns a reference to the rear of the deque.

d.del_front()
deletes, but does not return the front of deque

d.del_rear()
deletes, but does not return the rear of the deque.

d.clear()
removes all elements from the deque.

1.35 libg++.info/PQ

libg++.info 80 / 90

Priority Queue class prototypes.

Priority queues maintain collections of objects arranged for fast
access to the least element.

Several prototype implementations of priority queues are supported.

XPPQs
implement 2-ary heaps via XPlexes.

SplayPQs
implement PQs via Sleator and Tarjan’s (JACM 1985) splay trees.
The algorithms use a version of "simple top-down splaying"
(described on page 669 of the article). The simple-splay
mechanism for priority queue functions is loosely based on the one
used by D. Jones in the C splay tree functions available from
volume 14 of the uunet.uu.net archives.

PHPQs
implement pairing heaps (as described by Fredman and Sedgewick in
‘Algorithmica’, Vol 1, p111-129). Storage for heap elements is
managed via an internal freelist technique. The constructor allows
an initial capacity estimate for freelist space. The storage is
automatically expanded if necessary to hold new items. The
deletion technique is a fast "lazy deletion" strategy that marks
items as deleted, without reclaiming space until the items come to
the top of the heap.

All PQ classes support the following operations, for some PQ class
Heap, instance h, Pix ind, and base class variable x.

h.empty()
returns true if there are no elements in the PQ.

h.length()
returns the number of elements in h.

ind = h.enq(x)
Places x in the PQ, and returns its index.

x = h.deq()
Dequeues the minimum element of the PQ into x, or generates an
error if the PQ is empty.

h.front()
returns a reference to the minimum element.

h.del_front()
deletes the minimum element.

h.clear();
deletes all elements from h;

h.contains(x)
returns true if x is in h.

libg++.info 81 / 90

h(ind)
returns a reference to the item indexed by ind.

ind = h.first()
returns the Pix of first item in the PQ or 0 if empty. This need
not be the Pix of the least element.

h.next(ind)
advances ind to the Pix of next element, or 0 if there are no more.

ind = h.seek(x)
Sets ind to the Pix of x, or 0 if x is not in h.

h.del(ind)
deletes the item with Pix ind.

1.36 libg++.info/Set

Set class prototypes

Set classes maintain unbounded collections of items containing no
duplicate elements.

These are currently implemented in several ways, differing in
representation strategy, algorithmic efficiency, and appropriateness for
various tasks. (Listed next to each are average (followed by worst-case,
if different) time complexities for [a] adding, [f] finding (via seek,
contains), [d] deleting, elements, and [c] comparing (via ==, <=) and
[m] merging (via |=, -=, &=) sets).

XPSets
implement unordered sets via XPlexes. ([a O(n)], [f O(n)], [d
O(n)], [c O(n^2)] [m O(n^2)]).

OXPSets
implement ordered sets via XPlexes. ([a O(n)], [f O(log n)], [d
O(n)], [c O(n)] [m O(n)]).

SLSets
implement unordered sets via linked lists ([a O(n)], [f O(n)], [d
O(n)], [c O(n^2)] [m O(n^2)]).

OSLSets
implement ordered sets via linked lists ([a O(n)], [f O(n)], [d
O(n)], [c O(n)] [m O(n)]).

AVLSets
implement ordered sets via threaded AVL trees ([a O(log n)], [f
O(log n)], [d O(log n)], [c O(n)] [m O(n)]).

BSTSets
implement ordered sets via binary search trees. The trees may be
manually rebalanced via the O(n) balance() member function. ([a

libg++.info 82 / 90

O(log n)/O(n)], [f O(log n)/O(n)], [d O(log n)/O(n)], [c O(n)] [m
O(n)]).

SplaySets
implement ordered sets via Sleator and Tarjan’s (JACM 1985) splay
trees. The algorithms use a version of "simple top-down splaying"
(described on page 669 of the article). (Amortized: [a O(log n)],
[f O(log n)], [d O(log n)], [c O(n)] [m O(n log n)]).

VHSets
implement unordered sets via hash tables. The tables are
automatically resized when their capacity is exhausted. ([a
O(1)/O(n)], [f O(1)/O(n)], [d O(1)/O(n)], [c O(n)/O(n^2)] [m
O(n)/O(n^2)]).

VOHSets
implement unordered sets via ordered hash tables The tables are
automatically resized when their capacity is exhausted. ([a
O(1)/O(n)], [f O(1)/O(n)], [d O(1)/O(n)], [c O(n)/O(n^2)] [m
O(n)/O(n^2)]).

CHSets
implement unordered sets via chained hash tables. ([a O(1)/O(n)],
[f O(1)/O(n)], [d O(1)/O(n)], [c O(n)/O(n^2)] [m O(n)/O(n^2)]).

The different implementations differ in whether their constructors
require an argument specifying their initial capacity. Initial
capacities are required for plex and hash table based Sets. If none is
given DEFAULT_INITIAL_CAPACITY (from <T>defs.h) is used.

Sets support the following operations, for some class Set, instances
a and b, Pix ind, and base element x. Since all implementations are
virtual derived classes of the <T>Set class, it is possible to mix and
match operations across different implementations, although, as usual,
operations are generally faster when the particular classes are
specified in functions operating on Sets.

Pix-based operations are more fully described in the section on
Pixes. See

Pix
.

Set a; or Set a(int initial_size);
Declares a to be an empty Set. The second version is allowed in
set classes that require initial capacity or sizing specifications.

a.empty()
returns true if a is empty.

a.length()
returns the number of elements in a.

Pix ind = a.add(x)
inserts x into a, returning its index.

a.del(x)
deletes x from a.

libg++.info 83 / 90

a.clear()
deletes all elements from a;

a.contains(x)
returns true if x is in a.

a(ind)
returns a reference to the item indexed by ind.

ind = a.first()
returns the Pix of first item in the set or 0 if the Set is empty.
For ordered Sets, this is the Pix of the least element.

a.next(ind)
advances ind to the Pix of next element, or 0 if there are no more.

ind = a.seek(x)
Sets ind to the Pix of x, or 0 if x is not in a.

a == b
returns true if a and b contain all the same elements.

a != b
returns true if a and b do not contain all the same elements.

a <= b
returns true if a is a subset of b.

a |= b
Adds all elements of b to a.

a -= b
Deletes all elements of b from a.

a &= b
Deletes all elements of a not occurring in b.

1.37 libg++.info/Bag

Bag class prototypes

Bag classes maintain unbounded collections of items potentially
containing duplicate elements.

These are currently implemented in several ways, differing in
representation strategy, algorithmic efficiency, and appropriateness for
various tasks. (Listed next to each are average (followed by worst-case,
if different) time complexities for [a] adding, [f] finding (via seek,
contains), [d] deleting elements).

XPBags

libg++.info 84 / 90

implement unordered Bags via XPlexes. ([a O(1)], [f O(n)], [d
O(n)]).

OXPBags
implement ordered Bags via XPlexes. ([a O(n)], [f O(log n)], [d
O(n)]).

SLBags
implement unordered Bags via linked lists ([a O(1)], [f O(n)], [d
O(n)]).

OSLBags
implement ordered Bags via linked lists ([a O(n)], [f O(n)], [d
O(n)]).

SplayBags
implement ordered Bags via Sleator and Tarjan’s (JACM 1985) splay
trees. The algorithms use a version of "simple top-down splaying"
(described on page 669 of the article). (Amortized: [a O(log n)],
[f O(log n)], [d O(log n)]).

VHBags
implement unordered Bags via hash tables. The tables are
automatically resized when their capacity is exhausted. ([a
O(1)/O(n)], [f O(1)/O(n)], [d O(1)/O(n)]).

CHBags
implement unordered Bags via chained hash tables. ([a O(1)/O(n)],
[f O(1)/O(n)], [d O(1)/O(n)]).

The implementations differ in whether their constructors require an
argument to specify their initial capacity. Initial capacities are
required for plex and hash table based Bags. If none is given
DEFAULT_INITIAL_CAPACITY (from <T>defs.h) is used.

Bags support the following operations, for some class Bag, instances
a and b, Pix ind, and base element x. Since all implementations are
virtual derived classes of the <T>Bag class, it is possible to mix and
match operations across different implementations, although, as usual,
operations are generally faster when the particular classes are
specified in functions operating on Bags.

Pix-based operations are more fully described in the section on
Pixes. See

Pix
.

Bag a; or Bag a(int initial_size)
Declares a to be an empty Bag. The second version is allowed in
Bag classes that require initial capacity or sizing specifications.

a.empty()
returns true if a is empty.

a.length()
returns the number of elements in a.

libg++.info 85 / 90

ind = a.add(x)
inserts x into a, returning its index.

a.del(x)
deletes one occurrence of x from a.

a.remove(x)
deletes all occurrences of x from a.

a.clear()
deletes all elements from a;

a.contains(x)
returns true if x is in a.

a.nof(x)
returns the number of occurrences of x in a.

a(ind)
returns a reference to the item indexed by ind.

int = a.first()
returns the Pix of first item in the Bag or 0 if the Bag is empty.
For ordered Bags, this is the Pix of the least element.

a.next(ind)
advances ind to the Pix of next element, or 0 if there are no more.

ind = a.seek(x. Pix from = 0)
Sets ind to the Pix of the next occurrence x, or 0 if there are
none. If from is 0, the first occurrence is returned, else the
following from.

1.38 libg++.info/Map

Map Class Prototypes

Maps support associative array operations (insertion, deletion, and
membership of records based on an associated key). They require the
specification of two types, the key type and the contents type.

These are currently implemented in several ways, differing in
representation strategy, algorithmic efficiency, and appropriateness for
various tasks. (Listed next to each are average (followed by worst-case,
if different) time complexities for [a] accessing (via op [],
contains), [d] deleting elements).

AVLMaps
implement ordered Maps via threaded AVL trees ([a O(log n)], [d
O(log n)]).

RAVLMaps

libg++.info 86 / 90

Similar, but also maintain ranking information, used via
ranktoPix(int r), that returns the Pix of the item at rank r, and
rank(key) that returns the rank of the corresponding item. ([a
O(log n)], [d O(log n)]).

SplayMaps
implement ordered Maps via Sleator and Tarjan’s (JACM 1985) splay
trees. The algorithms use a version of "simple top-down splaying"
(described on page 669 of the article). (Amortized: [a O(log n)],
[d O(log n)]).

VHMaps
implement unordered Maps via hash tables. The tables are
automatically resized when their capacity is exhausted. ([a
O(1)/O(n)], [d O(1)/O(n)]).

CHMaps
implement unordered Maps via chained hash tables. ([a O(1)/O(n)],
[d O(1)/O(n)]).

The different implementations differ in whether their constructors
require an argument specifying their initial capacity. Initial
capacities are required for hash table based Maps. If none is given
DEFAULT_INITIAL_CAPACITY (from <T>defs.h) is used.

All Map classes share the following operations (for some Map class,
Map instance d, Pix ind and key variable k, and contents variable x).

Pix-based operations are more fully described in the section on
Pixes. See

Pix
.

Map d(x); Map d(x, int initial_capacity)
Declare d to be an empty Map. The required argument, x, specifies
the default contents, i.e., the contents of an otherwise
uninitialized location. The second version, specifying initial
capacity is allowed for Maps with an initial capacity argument.

d.empty()
returns true if d contains no items.

d.length()
returns the number of items in d.

d[k]
returns a reference to the contents of item with key k. If no such
item exists, it is installed with the default contents. Thus d[k]
= x installs x, and x = d[k] retrieves it.

d.contains(k)
returns true if an item with key field k exists in d.

d.del(k)
deletes the item with key k.

d.clear()

libg++.info 87 / 90

deletes all items from the table.

x = d.dflt()
returns the default contents.

k = d.key(ind)
returns a reference to the key at Pix ind.

x = d.contents(ind)
returns a reference to the contents at Pix ind.

ind = d.first()
returns the Pix of the first element in d, or 0 if d is empty.

d.next(ind)
advances ind to the next element, or 0 if there are no more.

ind = d.seek(k)
returns the Pix of element with key k, or 0 if k is not in d.

1.39 libg++.info/GetOpt

C++ version of the GNU getopt function

The GetOpt class provides an efficient and structured mechanism for
processing command-line options from an application program. The sample
program fragment below illustrates a typical use of the GetOpt class
for some hypothetical application program:

#include <stdio.h>
#include <GetOpt.h>
//...
int debug_flag, compile_flag, size_in_bytes;

int
main (int argc, char **argv)
{

// Invokes ctor ‘GetOpt (int argc, char **argv,
// char *optstring);’
GetOpt getopt (argc, argv, "dcs:");
int option_char;

// Invokes member function ‘int operator ()(void);’
while ((option_char = getopt ()) != EOF)

switch (option_char)
{

case ’d’: debug_flag = 1; break;
case ’c’: compile_flag = 1; break;
case ’s’: size_in_bytes = atoi (getopt.optarg); break;
case ’?’: fprintf (stderr,

"usage: %s [dcs<size>]\n", argv[0]);
}

libg++.info 88 / 90

}

Unlike the C library version, the libg++ GetOpt class uses its
constructor to initialize class data members containing the argument
count, argument vector, and the option string. This simplifies the
interface for each subsequent call to member function int operator
()(void).

The C version, on the other hand, uses hidden static variables to
retain the option string and argument list values between calls to
getopt. This complicates the getopt interface since the argument
count, argument vector, and option string must be passed as parameters
for each invocation. For the C version, the loop in the previous
example becomes:

while ((option_char = getopt (argc, argv, "dcs:")) != EOF)
// ...

which requires extra overhead to pass the parameters for every call.

Along with the GetOpt constructor and int operator ()(void), the
other relevant elements of class GetOpt are:

char *optarg
Used for communication from operator ()(void) to the caller. When
operator ()(void) finds an option that takes an argument, the
argument value is stored here.

int optind
Index in argv of the next element to be scanned. This is used for
communication to and from the caller and for communication between
successive calls to operator ()(void).

When operator ()(void) returns EOF, this is the index of the first
of the non-option elements that the caller should itself scan.

Otherwise, optind communicates from one call to the next how much
of argv has been scanned so far.

The libg++ version of GetOpt acts like standard UNIX getopt for the
calling routine, but it behaves differently for the user, since it
allows the user to intersperse the options with the other arguments.

As GetOpt works, it permutes the elements of argv so that, when it
is done, all the options precede everything else. Thus all application
programs are extended to handle flexible argument order.

Setting the environment variable _POSIX_OPTION_ORDER disables
permutation. Then the behavior is completely standard.

1.40 libg++.info/Projects

Projects and other things left to do

libg++.info 89 / 90

Coming Attractions
==================

Some things that will probably be available in libg++ in the near
future:

* Revamped C-compatibility header files that will be compatible with
the forthcoming (ANSI-based) GNU libc.a

* A revision of the File-based classes that will use the GNU stdio
library, and also be 100% compatible (even at the streambuf level)
with the AT&T 2.0 stream classes.

* Additional container class prototypes.

* generic Matrix class prototypes.

* A task package probably based on Dirk Grunwald’s threads package.

Wish List
=========

Some things that people have mentioned that they would like to see
in libg++, but for which there have not been any offers:

* A method to automatically convert or incorporate libg++ classes so
they can be used directly in Gorlen’s OOPS environment.

* A class browser.

* A better general exception-handling strategy.

* Better documentation.

How to contribute
=================

Programmers who have written C++ classes that they believe to be of
general interest are encourage to write to dl at rocky.oswego.edu.
Contributing code is not difficult. Here are some general guidelines:

* FSF must maintain the right to accept or reject potential
contributions. Generally, the only reasons for rejecting
contributions are cases where they duplicate existing or
nearly-released code, contain unremovable specific machine
dependencies, or are somehow incompatible with the rest of the
library.

* Acceptance of contributions means that the code is accepted for
adaptation into libg++. FSF must reserve the right to make
various editorial changes in code. Very often, this merely entails
formatting, maintenance of various conventions, etc. Contributors
are always given authorship credit and shown the final version for
approval.

* Contributors must assign their copyright to FSF via a form sent out

libg++.info 90 / 90

upon acceptance. Assigning copyright to FSF ensures that the code
may be freely distributed.

* Assistance in providing documentation, test files, and debugging
support is strongly encouraged.

Extensions, comments, and suggested modifications of existing libg++
features are also very welcome.

	libg++.info
	libg++.info
	libg++.info/Copying
	libg++.info/Contributors
	libg++.info/Installation
	libg++.info/Trouble
	libg++.info/General
	libg++.info/Conventions
	libg++.info/OK
	libg++.info/Proto
	libg++.info/Representations
	libg++.info/Expressions
	libg++.info/Pix
	libg++.info/Headers
	libg++.info/Builtin
	libg++.info/New
	libg++.info/Stream
	libg++.info/Obstack
	libg++.info/AllocRing
	libg++.info/String
	libg++.info/Integer
	libg++.info/Rational
	libg++.info/Complex
	libg++.info/Fix
	libg++.info/Bit
	libg++.info/Random
	libg++.info/Data
	libg++.info/Curses
	libg++.info/List
	libg++.info/LinkList
	libg++.info/Vector
	libg++.info/Plex
	libg++.info/Stack
	libg++.info/Queue
	libg++.info/Deque
	libg++.info/PQ
	libg++.info/Set
	libg++.info/Bag
	libg++.info/Map
	libg++.info/GetOpt
	libg++.info/Projects

