
gawk.info

gawk.info ii

COLLABORATORS

TITLE :

gawk.info

ACTION NAME DATE SIGNATURE

WRITTEN BY January 5, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

gawk.info iii

Contents

1 gawk.info 1

1.1 gawk.info . 1

1.2 gawk.info/Preface . 3

1.3 gawk.info/History . 4

1.4 gawk.info/Copying . 4

1.5 gawk.info/This Manual . 11

1.6 gawk.info/Sample Data Files . 12

1.7 gawk.info/Getting Started . 13

1.8 gawk.info/Very Simple . 14

1.9 gawk.info/Two Rules . 15

1.10 gawk.info/More Complex . 16

1.11 gawk.info/Running gawk . 17

1.12 gawk.info/One-shot . 18

1.13 gawk.info/Read Terminal . 18

1.14 gawk.info/Long . 19

1.15 gawk.info/Executable Scripts . 20

1.16 gawk.info/Comments . 21

1.17 gawk.info/Statements-Lines . 21

1.18 gawk.info/When . 23

1.19 gawk.info/Reading Files . 23

1.20 gawk.info/Records . 24

1.21 gawk.info/Fields . 26

1.22 gawk.info/Non-Constant Fields . 27

1.23 gawk.info/Changing Fields . 28

1.24 gawk.info/Field Separators . 29

1.25 gawk.info/Constant Size . 34

1.26 gawk.info/Multiple Line . 35

1.27 gawk.info/Getline . 36

1.28 gawk.info/Close Input . 41

1.29 gawk.info/Printing . 42

gawk.info iv

1.30 gawk.info/Print . 42

1.31 gawk.info/Print Examples . 43

1.32 gawk.info/Output Separators . 45

1.33 gawk.info/OFMT . 46

1.34 gawk.info/Printf . 46

1.35 gawk.info/Basic Printf . 47

1.36 gawk.info/Control Letters . 47

1.37 gawk.info/Format Modifiers . 49

1.38 gawk.info/Printf Examples . 50

1.39 gawk.info/Redirection . 51

1.40 gawk.info/File-Pipe Redirection . 52

1.41 gawk.info/Close Output . 53

1.42 gawk.info/Special Files . 54

1.43 gawk.info/One-liners . 57

1.44 gawk.info/Patterns . 58

1.45 gawk.info/Kinds of Patterns . 59

1.46 gawk.info/Regexp . 59

1.47 gawk.info/Regexp Usage . 60

1.48 gawk.info/Regexp Operators . 61

1.49 gawk.info/Case-sensitivity . 64

1.50 gawk.info/Comparison Patterns . 65

1.51 gawk.info/Boolean Patterns . 66

1.52 gawk.info/Expression Patterns . 67

1.53 gawk.info/Ranges . 68

1.54 gawk.info/BEGIN-END . 68

1.55 gawk.info/Empty . 69

1.56 gawk.info/Actions . 70

1.57 gawk.info/Expressions . 71

1.58 gawk.info/Constants . 72

1.59 gawk.info/Variables . 75

1.60 gawk.info/Assignment Options . 76

1.61 gawk.info/Arithmetic Ops . 77

1.62 gawk.info/Concatenation . 78

1.63 gawk.info/Comparison Ops . 78

1.64 gawk.info/Boolean Ops . 81

1.65 gawk.info/Assignment Ops . 82

1.66 gawk.info/Increment Ops . 84

1.67 gawk.info/Conversion . 85

1.68 gawk.info/Values . 86

gawk.info v

1.69 gawk.info/Conditional Exp . 88

1.70 gawk.info/Function Calls . 88

1.71 gawk.info/Precedence . 89

1.72 gawk.info/Statements . 91

1.73 gawk.info/If Statement . 92

1.74 gawk.info/While Statement . 93

1.75 gawk.info/Do Statement . 94

1.76 gawk.info/For Statement . 95

1.77 gawk.info/Break Statement . 96

1.78 gawk.info/Continue Statement . 97

1.79 gawk.info/Next Statement . 99

1.80 gawk.info/Next File Statement . 99

1.81 gawk.info/Exit Statement . 101

1.82 gawk.info/Arrays . 102

1.83 gawk.info/Array Intro . 102

1.84 gawk.info/Reference to Elements . 104

1.85 gawk.info/Assigning Elements . 105

1.86 gawk.info/Array Example . 105

1.87 gawk.info/Scanning an Array . 106

1.88 gawk.info/Delete . 107

1.89 gawk.info/Numeric Array Subscripts . 108

1.90 gawk.info/Multi-dimensional . 109

1.91 gawk.info/Multi-scanning . 111

1.92 gawk.info/Built-in . 111

1.93 gawk.info/Calling Built-in . 112

1.94 gawk.info/Numeric Functions . 113

1.95 gawk.info/String Functions . 114

1.96 gawk.info/I-O Functions . 118

1.97 gawk.info/Time Functions . 119

1.98 gawk.info/User-defined . 124

1.99 gawk.info/Definition Syntax . 124

1.100gawk.info/Function Example . 126

1.101gawk.info/Function Caveats . 127

1.102gawk.info/Return Statement . 128

1.103gawk.info/Built-in Variables . 129

1.104gawk.info/User-modified . 130

1.105gawk.info/Auto-set . 132

1.106gawk.info/Command Line . 135

1.107gawk.info/Options . 135

gawk.info vi

1.108gawk.info/Other Arguments . 139

1.109gawk.info/AWKPATH Variable . 140

1.110gawk.info/Obsolete . 140

1.111gawk.info/Undocumented . 141

1.112gawk.info/Language History . 141

1.113gawk.info/V7-S5R3.1 . 142

1.114gawk.info/S5R4 . 144

1.115gawk.info/POSIX . 145

1.116gawk.info/POSIX-GNU . 145

1.117gawk.info/Installation . 146

1.118gawk.info/Gawk Distribution . 147

1.119gawk.info/Extracting . 147

1.120gawk.info/Distribution contents . 148

1.121gawk.info/Unix Installation . 150

1.122gawk.info/Quick Installation . 150

1.123gawk.info/Configuration Philosophy . 151

1.124gawk.info/New Configurations . 152

1.125gawk.info/VMS Installation . 152

1.126gawk.info/VMS Compilation . 153

1.127gawk.info/VMS Installation Details . 154

1.128gawk.info/VMS Running . 154

1.129gawk.info/VMS POSIX . 155

1.130gawk.info/MS-DOS Installation . 156

1.131gawk.info/Atari Installation . 156

1.132gawk.info/Gawk Summary . 158

1.133gawk.info/Command Line Summary . 159

1.134gawk.info/Language Summary . 160

1.135gawk.info/Variables-Fields . 161

1.136gawk.info/Fields Summary . 162

1.137gawk.info/Built-in Summary . 162

1.138gawk.info/Arrays Summary . 164

1.139gawk.info/Data Type Summary . 165

1.140gawk.info/Rules Summary . 166

1.141gawk.info/Pattern Summary . 167

1.142gawk.info/Regexp Summary . 168

1.143gawk.info/Actions Summary . 169

1.144gawk.info/Operator Summary . 169

1.145gawk.info/Control Flow Summary . 171

1.146gawk.info/I-O Summary . 171

gawk.info vii

1.147gawk.info/Printf Summary . 172

1.148gawk.info/Special File Summary . 174

1.149gawk.info/Numeric Functions Summary . 175

1.150gawk.info/String Functions Summary . 175

1.151gawk.info/Time Functions Summary . 177

1.152gawk.info/String Constants Summary . 177

1.153gawk.info/Functions Summary . 178

1.154gawk.info/Historical Features . 179

1.155gawk.info/Sample Program . 179

1.156gawk.info/Bugs . 181

1.157gawk.info/Notes . 182

1.158gawk.info/Compatibility Mode . 183

1.159gawk.info/Future Extensions . 183

1.160gawk.info/Improvements . 184

1.161gawk.info/Glossary . 185

1.162gawk.info/Index . 190

gawk.info 1 / 207

Chapter 1

gawk.info

1.1 gawk.info

General Introduction

This file documents awk, a program that you can use to select
particular records in a file and perform operations upon them.

This is Edition 0.15 of ‘The GAWK Manual’,
for the 2.15 version of the GNU implementation
of AWK.

Preface
What you can do with awk; brief history

and acknowledgements.

Copying
Your right to copy and distribute gawk.

This Manual
Using this manual.

Includes sample input files that you can use.

Getting Started
A basic introduction to using awk.

How to run an awk program.
Command line syntax.

Reading Files
How to read files and manipulate fields.

Printing
How to print using awk. Describes the

print and printf statements.
Also describes redirection of output.

One-liners
Short, sample awk programs.

gawk.info 2 / 207

Patterns
The various types of patterns

explained in detail.

Actions
The various types of actions are

introduced here. Describes
expressions and the various operators in
detail. Also describes comparison expressions.

Expressions
Expressions are the basic building

blocks of statements.

Statements
The various control statements are

described in detail.

Arrays
The description and use of arrays.

Also includes array-oriented control
statements.

Built-in
The built-in functions are summarized here.

User-defined
User-defined functions are described in detail.

Built-in Variables
Built-in Variables

Command Line
How to run gawk.

Language History
The evolution of the awk language.

Installation
Installing gawk under
various operating systems.

Gawk Summary
gawk Options and Language Summary.

Sample Program
A sample awk program with a
complete explanation.

Bugs
Reporting Problems and Bugs.

Notes
Something about the

implementation of gawk.

gawk.info 3 / 207

Glossary
An explanation of some unfamiliar terms.

Index

1.2 gawk.info/Preface

Preface

If you are like many computer users, you would frequently like to
make changes in various text files wherever certain patterns appear, or
extract data from parts of certain lines while discarding the rest. To
write a program to do this in a language such as C or Pascal is a
time-consuming inconvenience that may take many lines of code. The job
may be easier with awk.

The awk utility interprets a special-purpose programming language
that makes it possible to handle simple data-reformatting jobs easily
with just a few lines of code.

The GNU implementation of awk is called gawk; it is fully upward
compatible with the System V Release 4 version of awk. gawk is also
upward compatible with the POSIX (draft) specification of the awk
language. This means that all properly written awk programs should
work with gawk. Thus, we usually don’t distinguish between gawk and
other awk implementations in this manual.

This manual teaches you what awk does and how you can use awk
effectively. You should already be familiar with basic system commands
such as ls. Using awk you can:

* manage small, personal databases

* generate reports

* validate data

* produce indexes, and perform other document preparation tasks

* even experiment with algorithms that can be adapted later to other
computer languages

History
The history of gawk and

awk. Acknowledgements.

gawk.info 4 / 207

1.3 gawk.info/History

History of awk and gawk
=======================

The name awk comes from the initials of its designers: Alfred V.
Aho, Peter J. Weinberger, and Brian W. Kernighan. The original version
of awk was written in 1977. In 1985 a new version made the programming
language more powerful, introducing user-defined functions, multiple
input streams, and computed regular expressions. This new version
became generally available with System V Release 3.1. The version in
System V Release 4 added some new features and also cleaned up the
behavior in some of the "dark corners" of the language. The
specification for awk in the POSIX Command Language and Utilities
standard further clarified the language based on feedback from both the
gawk designers, and the original awk designers.

The GNU implementation, gawk, was written in 1986 by Paul Rubin and
Jay Fenlason, with advice from Richard Stallman. John Woods
contributed parts of the code as well. In 1988 and 1989, David
Trueman, with help from Arnold Robbins, thoroughly reworked gawk for
compatibility with the newer awk. Current development (1992) focuses
on bug fixes, performance improvements, and standards compliance.

We need to thank many people for their assistance in producing this
manual. Jay Fenlason contributed many ideas and sample programs.
Richard Mlynarik and Robert J. Chassell gave helpful comments on early
drafts of this manual. The paper ‘A Supplemental Document for awk’ by
John W. Pierce of the Chemistry Department at UC San Diego, pinpointed
several issues relevant both to awk implementation and to this manual,
that would otherwise have escaped us. David Trueman, Pat Rankin, and
Michal Jaegermann also contributed sections of the manual.

The following people provided many helpful comments on this edition
of the manual: Rick Adams, Michael Brennan, Rich Burridge, Diane Close,
Christopher ("Topher") Eliot, Michael Lijewski, Pat Rankin, Miriam
Robbins, and Michal Jaegermann. Robert J. Chassell provided much
valuable advice on the use of Texinfo.

Finally, we would like to thank Brian Kernighan of Bell Labs for
invaluable assistance during the testing and debugging of gawk, and for
help in clarifying numerous points about the language.

1.4 gawk.info/Copying

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

gawk.info 5 / 207

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble
========

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a

gawk.info 6 / 207

notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on
the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is
included without limitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope. The act
of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange
for a fee.

3. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and
a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an
announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate

gawk.info 7 / 207

works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a
whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on
a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the
following:

a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b. Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either
source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

gawk.info 8 / 207

5. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights,
from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify
or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance
by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is
intended to apply and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of
any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed

gawk.info 9 / 207

to be a consequence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of
this License.

10. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies a version number of this License which applies
to it and "any later version", you have the option of following
the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

gawk.info 10 / 207

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
===

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like
this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than show w and show c;
they could even be mouse-clicks or menu items--whatever suits your
program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a "copyright disclaimer" for the program,
if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

gawk.info 11 / 207

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

1.5 gawk.info/This Manual

Using this Manual

The term awk refers to a particular program, and to the language you
use to tell this program what to do. When we need to be careful, we
call the program "the awk utility" and the language "the awk language."
The term gawk refers to a version of awk developed as part the GNU
project. The purpose of this manual is to explain both the awk
language and how to run the awk utility.

While concentrating on the features of gawk, the manual will also
attempt to describe important differences between gawk and other awk
implementations. In particular, any features that are not in the POSIX
standard for awk will be noted.

The term awk program refers to a program written by you in the awk
programming language.

See
Getting Started with awk
, for the bare essentials you need to

know to start using awk.

Some useful "one-liners" are included to give you a feel for the awk
language (see Useful).

A sample awk program has been provided for you (see
Sample Program
).

If you find terms that you aren’t familiar with, try looking them up
in the glossary (see

Glossary
).

The entire awk language is summarized for quick reference in

gawk Summary
. Look there if you just need to refresh your memory about

a particular feature.

Most of the time complete awk programs are used as examples, but in
some of the more advanced sections, only the part of the awk program

gawk.info 12 / 207

that illustrates the concept being described is shown.

Sample Data Files
Sample data files for use in the awk

programs illustrated in this manual.

1.6 gawk.info/Sample Data Files

Data Files for the Examples
===========================

Many of the examples in this manual take their input from two sample
data files. The first, called BBS-list, represents a list of computer
bulletin board systems together with information about those systems.
The second data file, called inventory-shipped, contains information
about shipments on a monthly basis. Each line of these files is one
record.

In the file BBS-list, each record contains the name of a computer
bulletin board, its phone number, the board’s baud rate, and a code for
the number of hours it is operational. An A in the last column means
the board operates 24 hours a day. A B in the last column means the
board operates evening and weekend hours, only. A C means the board
operates only on weekends.

aardvark 555-5553 1200/300 B
alpo-net 555-3412 2400/1200/300 A
barfly 555-7685 1200/300 A
bites 555-1675 2400/1200/300 A
camelot 555-0542 300 C
core 555-2912 1200/300 C
fooey 555-1234 2400/1200/300 B
foot 555-6699 1200/300 B
macfoo 555-6480 1200/300 A
sdace 555-3430 2400/1200/300 A
sabafoo 555-2127 1200/300 C

The second data file, called inventory-shipped, represents
information about shipments during the year. Each record contains the
month of the year, the number of green crates shipped, the number of
red boxes shipped, the number of orange bags shipped, and the number of
blue packages shipped, respectively. There are 16 entries, covering
the 12 months of one year and 4 months of the next year.

Jan 13 25 15 115
Feb 15 32 24 226
Mar 15 24 34 228
Apr 31 52 63 420
May 16 34 29 208
Jun 31 42 75 492
Jul 24 34 67 436

gawk.info 13 / 207

Aug 15 34 47 316
Sep 13 55 37 277
Oct 29 54 68 525
Nov 20 87 82 577
Dec 17 35 61 401

Jan 21 36 64 620
Feb 26 58 80 652
Mar 24 75 70 495
Apr 21 70 74 514

If you are reading this in GNU Emacs using Info, you can copy the
regions of text showing these sample files into your own test files.
This way you can try out the examples shown in the remainder of this
document. You do this by using the command M-x write-region to copy
text from the Info file into a file for use with awk (See Misc File Ops,
for more information). Using this information, create your own
BBS-list and inventory-shipped files, and practice what you learn
in this manual.

1.7 gawk.info/Getting Started

Getting Started with awk

The basic function of awk is to search files for lines (or other
units of text) that contain certain patterns. When a line matches one
of the patterns, awk performs specified actions on that line. awk
keeps processing input lines in this way until the end of the input
file is reached.

When you run awk, you specify an awk program which tells awk what to
do. The program consists of a series of rules. (It may also contain
function definitions, but that is an advanced feature, so we will
ignore it for now. See

User-defined Functions
.) Each rule specifies

one pattern to search for, and one action to perform when that pattern
is found.

Syntactically, a rule consists of a pattern followed by an action.
The action is enclosed in curly braces to separate it from the pattern.
Rules are usually separated by newlines. Therefore, an awk program
looks like this:

pattern { action }
pattern { action }
...

Very Simple
A very simple example.

gawk.info 14 / 207

Two Rules
A less simple one-line example with two rules.

More Complex
A more complex example.

Running gawk
How to run gawk programs;
includes command line syntax.

Comments
Adding documentation to gawk programs.

Statements-Lines
Subdividing or combining statements into lines.

When
When to use gawk and

when to use other things.

1.8 gawk.info/Very Simple

A Very Simple Example
=====================

The following command runs a simple awk program that searches the
input file BBS-list for the string of characters: foo. (A string of
characters is usually called, a string. The term string is perhaps
based on similar usage in English, such as "a string of pearls," or, "a
string of cars in a train.")

awk ’/foo/ { print $0 }’ BBS-list

When lines containing foo are found, they are printed, because print $0
means print the current line. (Just print by itself means the same
thing, so we could have written that instead.)

You will notice that slashes, /, surround the string foo in the
actual awk program. The slashes indicate that foo is a pattern to
search for. This type of pattern is called a regular expression, and
is covered in more detail later (see

Regular Expressions as Patterns
).

There are single-quotes around the awk program so that the shell won’t
interpret any of it as special shell characters.

Here is what this program prints:

fooey 555-1234 2400/1200/300 B
foot 555-6699 1200/300 B
macfoo 555-6480 1200/300 A
sabafoo 555-2127 1200/300 C

gawk.info 15 / 207

In an awk rule, either the pattern or the action can be omitted, but
not both. If the pattern is omitted, then the action is performed for
every input line. If the action is omitted, the default action is to
print all lines that match the pattern.

Thus, we could leave out the action (the print statement and the
curly braces) in the above example, and the result would be the same:
all lines matching the pattern foo would be printed. By comparison,
omitting the print statement but retaining the curly braces makes an
empty action that does nothing; then no lines would be printed.

1.9 gawk.info/Two Rules

An Example with Two Rules
=========================

The awk utility reads the input files one line at a time. For each
line, awk tries the patterns of each of the rules. If several patterns
match then several actions are run, in the order in which they appear
in the awk program. If no patterns match, then no actions are run.

After processing all the rules (perhaps none) that match the line,
awk reads the next line (however, see

The next Statement
). This

continues until the end of the file is reached.

For example, the awk program:

/12/ { print $0 }
/21/ { print $0 }

contains two rules. The first rule has the string 12 as the pattern
and print $0 as the action. The second rule has the string 21 as the
pattern and also has print $0 as the action. Each rule’s action is
enclosed in its own pair of braces.

This awk program prints every line that contains the string 12 or
the string 21. If a line contains both strings, it is printed twice,
once by each rule.

If we run this program on our two sample data files, BBS-list and
inventory-shipped, as shown here:

awk ’/12/ { print $0 }
/21/ { print $0 }’ BBS-list inventory-shipped

we get the following output:

aardvark 555-5553 1200/300 B
alpo-net 555-3412 2400/1200/300 A
barfly 555-7685 1200/300 A
bites 555-1675 2400/1200/300 A

gawk.info 16 / 207

core 555-2912 1200/300 C
fooey 555-1234 2400/1200/300 B
foot 555-6699 1200/300 B
macfoo 555-6480 1200/300 A
sdace 555-3430 2400/1200/300 A
sabafoo 555-2127 1200/300 C
sabafoo 555-2127 1200/300 C
Jan 21 36 64 620
Apr 21 70 74 514

Note how the line in BBS-list beginning with sabafoo was printed twice,
once for each rule.

1.10 gawk.info/More Complex

A More Complex Example
======================

Here is an example to give you an idea of what typical awk programs
do. This example shows how awk can be used to summarize, select, and
rearrange the output of another utility. It uses features that haven’t
been covered yet, so don’t worry if you don’t understand all the
details.

ls -l | awk ’$5 == "Nov" { sum += $4 }
END { print sum }’

This command prints the total number of bytes in all the files in the
current directory that were last modified in November (of any year).
(In the C shell you would need to type a semicolon and then a backslash
at the end of the first line; in a POSIX-compliant shell, such as the
Bourne shell or the Bourne-Again shell, you can type the example as
shown.)

The ls -l part of this example is a command that gives you a listing
of the files in a directory, including file size and date. Its output
looks like this:

-rw-r--r-- 1 close 1933 Nov 7 13:05 Makefile
-rw-r--r-- 1 close 10809 Nov 7 13:03 gawk.h
-rw-r--r-- 1 close 983 Apr 13 12:14 gawk.tab.h
-rw-r--r-- 1 close 31869 Jun 15 12:20 gawk.y
-rw-r--r-- 1 close 22414 Nov 7 13:03 gawk1.c
-rw-r--r-- 1 close 37455 Nov 7 13:03 gawk2.c
-rw-r--r-- 1 close 27511 Dec 9 13:07 gawk3.c
-rw-r--r-- 1 close 7989 Nov 7 13:03 gawk4.c

The first field contains read-write permissions, the second field
contains the number of links to the file, and the third field
identifies the owner of the file. The fourth field contains the size
of the file in bytes. The fifth, sixth, and seventh fields contain the
month, day, and time, respectively, that the file was last modified.
Finally, the eighth field contains the name of the file.

gawk.info 17 / 207

The $5 == "Nov" in our awk program is an expression that tests
whether the fifth field of the output from ls -l matches the string
Nov. Each time a line has the string Nov in its fifth field, the
action { sum += $4 } is performed. This adds the fourth field (the
file size) to the variable sum. As a result, when awk has finished
reading all the input lines, sum is the sum of the sizes of files whose
lines matched the pattern. (This works because awk variables are
automatically initialized to zero.)

After the last line of output from ls has been processed, the END
rule is executed, and the value of sum is printed. In this example,
the value of sum would be 80600.

These more advanced awk techniques are covered in later sections
(see

Overview of Actions
). Before you can move on to more advanced awk

programming, you have to know how awk interprets your input and displays
your output. By manipulating fields and using print statements, you
can produce some very useful and spectacular looking reports.

1.11 gawk.info/Running gawk

How to Run awk Programs
=======================

There are several ways to run an awk program. If the program is
short, it is easiest to include it in the command that runs awk, like
this:

awk ’program’ input-file1 input-file2 ...

where program consists of a series of patterns and actions, as
described earlier.

When the program is long, it is usually more convenient to put it in
a file and run it with a command like this:

awk -f program-file input-file1 input-file2 ...

One-shot
Running a short throw-away awk program.

Read Terminal
Using no input files (input from
terminal instead).

Long
Putting permanent awk programs in files.

gawk.info 18 / 207

Executable Scripts
Making self-contained awk programs.

1.12 gawk.info/One-shot

One-shot Throw-away awk Programs

Once you are familiar with awk, you will often type simple programs
at the moment you want to use them. Then you can write the program as
the first argument of the awk command, like this:

awk ’program’ input-file1 input-file2 ...

where program consists of a series of patterns and actions, as
described earlier.

This command format instructs the shell to start awk and use the
program to process records in the input file(s). There are single
quotes around program so that the shell doesn’t interpret any awk
characters as special shell characters. They also cause the shell to
treat all of program as a single argument for awk and allow program to
be more than one line long.

This format is also useful for running short or medium-sized awk
programs from shell scripts, because it avoids the need for a separate
file for the awk program. A self-contained shell script is more
reliable since there are no other files to misplace.

1.13 gawk.info/Read Terminal

Running awk without Input Files

You can also run awk without any input files. If you type the
command line:

awk ’program’

then awk applies the program to the standard input, which usually means
whatever you type on the terminal. This continues until you indicate
end-of-file by typing Control-d.

For example, if you execute this command:

awk ’/th/’

whatever you type next is taken as data for that awk program. If you
go on to type the following data:

gawk.info 19 / 207

Kathy
Ben
Tom
Beth
Seth
Karen
Thomas
Control-d

then awk prints this output:

Kathy
Beth
Seth

as matching the pattern th. Notice that it did not recognize Thomas as
matching the pattern. The awk language is case sensitive, and matches
patterns exactly. (However, you can override this with the variable
IGNORECASE. See

Case-sensitivity in Matching
.)

1.14 gawk.info/Long

Running Long Programs

Sometimes your awk programs can be very long. In this case it is
more convenient to put the program into a separate file. To tell awk
to use that file for its program, you type:

awk -f source-file input-file1 input-file2 ...

The -f instructs the awk utility to get the awk program from the
file source-file. Any file name can be used for source-file. For
example, you could put the program:

/th/

into the file th-prog. Then this command:

awk -f th-prog

does the same thing as this one:

awk ’/th/’

which was explained earlier (see
Running awk without Input Files
).

Note that you don’t usually need single quotes around the file name
that you specify with -f, because most file names don’t contain any of

gawk.info 20 / 207

the shell’s special characters. Notice that in th-prog, the awk
program did not have single quotes around it. The quotes are only
needed for programs that are provided on the awk command line.

If you want to identify your awk program files clearly as such, you
can add the extension .awk to the file name. This doesn’t affect the
execution of the awk program, but it does make "housekeeping" easier.

1.15 gawk.info/Executable Scripts

Executable awk Programs

Once you have learned awk, you may want to write self-contained awk
scripts, using the #! script mechanism. You can do this on many Unix
systems (1) (and someday on GNU).

For example, you could create a text file named hello, containing
the following (where BEGIN is a feature we have not yet discussed):

#! /bin/awk -f

a sample awk program
BEGIN { print "hello, world" }

After making this file executable (with the chmod command), you can
simply type:

hello

at the shell, and the system will arrange to run awk (2) as if you had
typed:

awk -f hello

Self-contained awk scripts are useful when you want to write a program
which users can invoke without knowing that the program is written in
awk.

If your system does not support the #! mechanism, you can get a
similar effect using a regular shell script. It would look something
like this:

: The colon makes sure this script is executed by the Bourne shell.
awk ’program’ "$@"

Using this technique, it is vital to enclose the program in single
quotes to protect it from interpretation by the shell. If you omit the
quotes, only a shell wizard can predict the results.

The "$@" causes the shell to forward all the command line arguments
to the awk program, without interpretation. The first line, which
starts with a colon, is used so that this shell script will work even

gawk.info 21 / 207

if invoked by a user who uses the C shell.

---------- Footnotes ----------

(1) The #! mechanism works on Unix systems derived from Berkeley
Unix, System V Release 4, and some System V Release 3 systems.

(2) The line beginning with #! lists the full pathname of an
interpreter to be run, and an optional initial command line argument to
pass to that interpreter. The operating system then runs the
interpreter with the given argument and the full argument list of the
executed program. The first argument in the list is the full pathname
of the awk program. The rest of the argument list will either be
options to awk, or data files, or both.

1.16 gawk.info/Comments

Comments in awk Programs
========================

A comment is some text that is included in a program for the sake of
human readers, and that is not really part of the program. Comments
can explain what the program does, and how it works. Nearly all
programming languages have provisions for comments, because programs are
typically hard to understand without their extra help.

In the awk language, a comment starts with the sharp sign character,
#, and continues to the end of the line. The awk language ignores the
rest of a line following a sharp sign. For example, we could have put
the following into th-prog:

This program finds records containing the pattern th. This is how
you continue comments on additional lines.
/th/

You can put comment lines into keyboard-composed throw-away awk
programs also, but this usually isn’t very useful; the purpose of a
comment is to help you or another person understand the program at a
later time.

1.17 gawk.info/Statements-Lines

awk Statements versus Lines
===========================

Most often, each line in an awk program is a separate statement or
separate rule, like this:

awk ’/12/ { print $0 }
/21/ { print $0 }’ BBS-list inventory-shipped

gawk.info 22 / 207

But sometimes statements can be more than one line, and lines can
contain several statements. You can split a statement into multiple
lines by inserting a newline after any of the following:

, { ? : || && do else

A newline at any other point is considered the end of the statement.
(Splitting lines after ? and : is a minor gawk extension. The ? and :
referred to here is the three operand conditional expression described
in

Conditional Expressions
.)

If you would like to split a single statement into two lines at a
point where a newline would terminate it, you can continue it by ending
the first line with a backslash character, \ . This is allowed
absolutely anywhere in the statement, even in the middle of a string or
regular expression. For example:

awk ’/This program is too long, so continue it\
on the next line/ { print $1 }’

We have generally not used backslash continuation in the sample
programs in this manual. Since in gawk there is no limit on the length
of a line, it is never strictly necessary; it just makes programs
prettier. We have preferred to make them even more pretty by keeping
the statements short. Backslash continuation is most useful when your
awk program is in a separate source file, instead of typed in on the
command line. You should also note that many awk implementations are
more picky about where you may use backslash continuation. For maximal
portability of your awk programs, it is best not to split your lines in
the middle of a regular expression or a string.

Warning: backslash continuation does not work as described above
with the C shell. Continuation with backslash works for awk programs
in files, and also for one-shot programs provided you are using a
POSIX-compliant shell, such as the Bourne shell or the Bourne-again
shell. But the C shell used on Berkeley Unix behaves differently!
There, you must use two backslashes in a row, followed by a newline.

When awk statements within one rule are short, you might want to put
more than one of them on a line. You do this by separating the
statements with a semicolon, ;. This also applies to the rules
themselves. Thus, the previous program could have been written:

/12/ { print $0 } ; /21/ { print $0 }

Note: the requirement that rules on the same line must be separated
with a semicolon is a recent change in the awk language; it was done
for consistency with the treatment of statements within an action.

gawk.info 23 / 207

1.18 gawk.info/When

When to Use awk
===============

You might wonder how awk might be useful for you. Using additional
utility programs, more advanced patterns, field separators, arithmetic
statements, and other selection criteria, you can produce much more
complex output. The awk language is very useful for producing reports
from large amounts of raw data, such as summarizing information from
the output of other utility programs like ls. (See

A More Complex Example
.)

Programs written with awk are usually much smaller than they would
be in other languages. This makes awk programs easy to compose and
use. Often awk programs can be quickly composed at your terminal, used
once, and thrown away. Since awk programs are interpreted, you can
avoid the usually lengthy edit-compile-test-debug cycle of software
development.

Complex programs have been written in awk, including a complete
retargetable assembler for 8-bit microprocessors (see

Glossary
, for

more information) and a microcode assembler for a special purpose Prolog
computer. However, awk’s capabilities are strained by tasks of such
complexity.

If you find yourself writing awk scripts of more than, say, a few
hundred lines, you might consider using a different programming
language. Emacs Lisp is a good choice if you need sophisticated string
or pattern matching capabilities. The shell is also good at string and
pattern matching; in addition, it allows powerful use of the system
utilities. More conventional languages, such as C, C++, and Lisp, offer
better facilities for system programming and for managing the complexity
of large programs. Programs in these languages may require more lines
of source code than the equivalent awk programs, but they are easier to
maintain and usually run more efficiently.

1.19 gawk.info/Reading Files

Reading Input Files

In the typical awk program, all input is read either from the
standard input (by default the keyboard, but often a pipe from another
command) or from files whose names you specify on the awk command line.
If you specify input files, awk reads them in order, reading all the
data from one before going on to the next. The name of the current
input file can be found in the built-in variable FILENAME (see

gawk.info 24 / 207

Built-in Variables
).

The input is read in units called records, and processed by the
rules one record at a time. By default, each record is one line. Each
record is split automatically into fields, to make it more convenient
for a rule to work on its parts.

On rare occasions you will need to use the getline command, which
can do explicit input from any number of files (see

Explicit Input with getline
).

Records
Controlling how data is split into records.

Fields
An introduction to fields.

Non-Constant Fields
Non-constant Field Numbers.

Changing Fields
Changing the Contents of a Field.

Field Separators
The field separator and how to change it.

Constant Size
Reading constant width data.

Multiple Line
Reading multi-line records.

Getline
Reading files under explicit program control

using the getline function.

Close Input
Closing an input file (so you can read from

the beginning once more).

1.20 gawk.info/Records

How Input is Split into Records
===============================

The awk language divides its input into records and fields. Records
are separated by a character called the record separator. By default,

gawk.info 25 / 207

the record separator is the newline character, defining a record to be
a single line of text.

Sometimes you may want to use a different character to separate your
records. You can use a different character by changing the built-in
variable RS. The value of RS is a string that says how to separate
records; the default value is "\n", the string containing just a
newline character. This is why records are, by default, single lines.

RS can have any string as its value, but only the first character of
the string is used as the record separator. The other characters are
ignored. RS is exceptional in this regard; awk uses the full value of
all its other built-in variables.

You can change the value of RS in the awk program with the
assignment operator, = (see

Assignment Expressions
). The new

record-separator character should be enclosed in quotation marks to make
a string constant. Often the right time to do this is at the beginning
of execution, before any input has been processed, so that the very
first record will be read with the proper separator. To do this, use
the special BEGIN pattern (see

BEGIN and END Special Patterns
). For

example:

awk ’BEGIN { RS = "/" } ; { print $0 }’ BBS-list

changes the value of RS to "/", before reading any input. This is a
string whose first character is a slash; as a result, records are
separated by slashes. Then the input file is read, and the second rule
in the awk program (the action with no pattern) prints each record.
Since each print statement adds a newline at the end of its output, the
effect of this awk program is to copy the input with each slash changed
to a newline.

Another way to change the record separator is on the command line,
using the variable-assignment feature (see

Invoking awk
).

awk ’{ print $0 }’ RS="/" BBS-list

This sets RS to / before processing BBS-list.

Reaching the end of an input file terminates the current input
record, even if the last character in the file is not the character in
RS.

The empty string, "" (a string of no characters), has a special
meaning as the value of RS: it means that records are separated only by
blank lines. See

Multiple-Line Records
, for more details.

The awk utility keeps track of the number of records that have been

gawk.info 26 / 207

read so far from the current input file. This value is stored in a
built-in variable called FNR. It is reset to zero when a new file is
started. Another built-in variable, NR, is the total number of input
records read so far from all files. It starts at zero but is never
automatically reset to zero.

If you change the value of RS in the middle of an awk run, the new
value is used to delimit subsequent records, but the record currently
being processed (and records already processed) are not affected.

1.21 gawk.info/Fields

Examining Fields
================

When awk reads an input record, the record is automatically
separated or parsed by the interpreter into chunks called fields. By
default, fields are separated by whitespace, like words in a line.
Whitespace in awk means any string of one or more spaces and/or tabs;
other characters such as newline, formfeed, and so on, that are
considered whitespace by other languages are not considered whitespace
by awk.

The purpose of fields is to make it more convenient for you to refer
to these pieces of the record. You don’t have to use them--you can
operate on the whole record if you wish--but fields are what make
simple awk programs so powerful.

To refer to a field in an awk program, you use a dollar-sign, $,
followed by the number of the field you want. Thus, $1 refers to the
first field, $2 to the second, and so on. For example, suppose the
following is a line of input:

This seems like a pretty nice example.

Here the first field, or $1, is This; the second field, or $2, is
seems; and so on. Note that the last field, $7, is example..
Because there is no space between the e and the ., the period is
considered part of the seventh field.

No matter how many fields there are, the last field in a record can
be represented by $NF. So, in the example above, $NF would be the same
as $7, which is example.. Why this works is explained below (see

Non-constant Field Numbers
). If you try to refer to a field beyond the

last one, such as $8 when the record has only 7 fields, you get the
empty string.

Plain NF, with no $, is a built-in variable whose value is the
number of fields in the current record.

$0, which looks like an attempt to refer to the zeroth field, is a

gawk.info 27 / 207

special case: it represents the whole input record. This is what you
would use if you weren’t interested in fields.

Here are some more examples:

awk ’$1 ~ /foo/ { print $0 }’ BBS-list

This example prints each record in the file BBS-list whose first field
contains the string foo. The operator ~ is called a matching operator
(see

Comparison Expressions
); it tests whether a string (here, the

field $1) matches a given regular expression.

By contrast, the following example:

awk ’/foo/ { print $1, $NF }’ BBS-list

looks for foo in the entire record and prints the first field and the
last field for each input record containing a match.

1.22 gawk.info/Non-Constant Fields

Non-constant Field Numbers
==========================

The number of a field does not need to be a constant. Any
expression in the awk language can be used after a $ to refer to a
field. The value of the expression specifies the field number. If the
value is a string, rather than a number, it is converted to a number.
Consider this example:

awk ’{ print $NR }’

Recall that NR is the number of records read so far: 1 in the first
record, 2 in the second, etc. So this example prints the first field
of the first record, the second field of the second record, and so on.
For the twentieth record, field number 20 is printed; most likely, the
record has fewer than 20 fields, so this prints a blank line.

Here is another example of using expressions as field numbers:

awk ’{ print $(2*2) }’ BBS-list

The awk language must evaluate the expression (2*2) and use its
value as the number of the field to print. The * sign represents
multiplication, so the expression 2*2 evaluates to 4. The parentheses
are used so that the multiplication is done before the $ operation;
they are necessary whenever there is a binary operator in the
field-number expression. This example, then, prints the hours of
operation (the fourth field) for every line of the file BBS-list.

If the field number you compute is zero, you get the entire record.

gawk.info 28 / 207

Thus, $(2-2) has the same value as $0. Negative field numbers are not
allowed.

The number of fields in the current record is stored in the built-in
variable NF (see

Built-in Variables
). The expression $NF is not a

special feature: it is the direct consequence of evaluating NF and
using its value as a field number.

1.23 gawk.info/Changing Fields

Changing the Contents of a Field
================================

You can change the contents of a field as seen by awk within an awk
program; this changes what awk perceives as the current input record.
(The actual input is untouched: awk never modifies the input file.)

Consider this example:

awk ’{ $3 = $2 - 10; print $2, $3 }’ inventory-shipped

The - sign represents subtraction, so this program reassigns field
three, $3, to be the value of field two minus ten, $2 - 10. (See

Arithmetic Operators
.) Then field two, and the new value for field

three, are printed.

In order for this to work, the text in field $2 must make sense as a
number; the string of characters must be converted to a number in order
for the computer to do arithmetic on it. The number resulting from the
subtraction is converted back to a string of characters which then
becomes field three. See

Conversion of Strings and Numbers
.

When you change the value of a field (as perceived by awk), the text
of the input record is recalculated to contain the new field where the
old one was. Therefore, $0 changes to reflect the altered field. Thus,

awk ’{ $2 = $2 - 10; print $0 }’ inventory-shipped

prints a copy of the input file, with 10 subtracted from the second
field of each line.

You can also assign contents to fields that are out of range. For
example:

awk ’{ $6 = ($5 + $4 + $3 + $2) ; print $6 }’ inventory-shipped

We’ve just created $6, whose value is the sum of fields $2, $3, $4, and

gawk.info 29 / 207

$5. The + sign represents addition. For the file inventory-shipped, $6
represents the total number of parcels shipped for a particular month.

Creating a new field changes the internal awk copy of the current
input record--the value of $0. Thus, if you do print $0 after adding a
field, the record printed includes the new field, with the appropriate
number of field separators between it and the previously existing
fields.

This recomputation affects and is affected by several features not
yet discussed, in particular, the output field separator, OFS, which is
used to separate the fields (see

Output Separators
), and NF (the number

of fields; see
Examining Fields
). For example, the value of NF is set

to the number of the highest field you create.

Note, however, that merely referencing an out-of-range field does
not change the value of either $0 or NF. Referencing an
out-of-range field merely produces a null string. For example:

if ($(NF+1) != "")
print "can’t happen"

else
print "everything is normal"

should print everything is normal, because NF+1 is certain to be out of
range. (See

The if Statement
, for more information about awk’s if-else

statements.)

It is important to note that assigning to a field will change the
value of $0, but will not change the value of NF, even when you assign
the null string to a field. For example:

echo a b c d | awk ’{ OFS = ":"; $2 = "" ; print ; print NF }’

prints

a::c:d
4

The field is still there, it just has an empty value. You can tell
because there are two colons in a row.

1.24 gawk.info/Field Separators

Specifying how Fields are Separated
===================================

gawk.info 30 / 207

(This section is rather long; it describes one of the most
fundamental operations in awk. If you are a novice with awk, we
recommend that you re-read this section after you have studied the
section on regular expressions,

Regular Expressions as Patterns
.)

The way awk splits an input record into fields is controlled by the
field separator, which is a single character or a regular expression.
awk scans the input record for matches for the separator; the fields
themselves are the text between the matches. For example, if the field
separator is oo, then the following line:

moo goo gai pan

would be split into three fields: m, g and gai pan.

The field separator is represented by the built-in variable FS.
Shell programmers take note! awk does not use the name IFS which is
used by the shell.

You can change the value of FS in the awk program with the
assignment operator, = (see

Assignment Expressions
). Often the right

time to do this is at the beginning of execution, before any input has
been processed, so that the very first record will be read with the
proper separator. To do this, use the special BEGIN pattern (see

BEGIN and END Special Patterns
). For example, here we set the value of

FS to the string ",":

awk ’BEGIN { FS = "," } ; { print $2 }’

Given the input line,

John Q. Smith, 29 Oak St., Walamazoo, MI 42139

this awk program extracts the string 29 Oak St..

Sometimes your input data will contain separator characters that
don’t separate fields the way you thought they would. For instance, the
person’s name in the example we’ve been using might have a title or
suffix attached, such as John Q. Smith, LXIX. From input containing
such a name:

John Q. Smith, LXIX, 29 Oak St., Walamazoo, MI 42139

the previous sample program would extract LXIX, instead of 29 Oak
St.. If you were expecting the program to print the address, you
would be surprised. So choose your data layout and separator
characters carefully to prevent such problems.

As you know, by default, fields are separated by whitespace sequences
(spaces and tabs), not by single spaces: two spaces in a row do not
delimit an empty field. The default value of the field separator is a

gawk.info 31 / 207

string " " containing a single space. If this value were interpreted
in the usual way, each space character would separate fields, so two
spaces in a row would make an empty field between them. The reason
this does not happen is that a single space as the value of FS is a
special case: it is taken to specify the default manner of delimiting
fields.

If FS is any other single character, such as ",", then each
occurrence of that character separates two fields. Two consecutive
occurrences delimit an empty field. If the character occurs at the
beginning or the end of the line, that too delimits an empty field. The
space character is the only single character which does not follow these
rules.

More generally, the value of FS may be a string containing any
regular expression. Then each match in the record for the regular
expression separates fields. For example, the assignment:

FS = ", \t"

makes every area of an input line that consists of a comma followed by a
space and a tab, into a field separator. (\t stands for a tab.)

For a less trivial example of a regular expression, suppose you want
single spaces to separate fields the way single commas were used above.
You can set FS to "[]". This regular expression matches a single
space and nothing else.

FS can be set on the command line. You use the -F argument to do
so. For example:

awk -F, ’program’ input-files

sets FS to be the , character. Notice that the argument uses a capital
F. Contrast this with -f, which specifies a file containing an awk
program. Case is significant in command options: the -F and -f options
have nothing to do with each other. You can use both options at the
same time to set the FS argument and get an awk program from a file.

The value used for the argument to -F is processed in exactly the
same way as assignments to the built-in variable FS. This means that
if the field separator contains special characters, they must be escaped
appropriately. For example, to use a \ as the field separator, you
would have to type:

same as FS = "\"
awk -F\\ ’...’ files ...

Since \ is used for quoting in the shell, awk will see -F\ . Then
awk processes the \ for escape characters (see

Constant Expressions
), finally yielding a single \ to be used for the

field separator.

As a special case, in compatibility mode (see
Invoking awk

gawk.info 32 / 207

), if the
argument to -F is t, then FS is set to the tab character. (This is
because if you type -F\t, without the quotes, at the shell, the \ gets
deleted, so awk figures that you really want your fields to be
separated with tabs, and not ts. Use -v FS="t" on the command line if
you really do want to separate your fields with ts.)

For example, let’s use an awk program file called baud.awk that
contains the pattern /300/, and the action print $1. Here is the
program:

/300/ { print $1 }

Let’s also set FS to be the - character, and run the program on the
file BBS-list. The following command prints a list of the names of the
bulletin boards that operate at 300 baud and the first three digits of
their phone numbers:

awk -F- -f baud.awk BBS-list

It produces this output:

aardvark 555
alpo
barfly 555
bites 555
camelot 555
core 555
fooey 555
foot 555
macfoo 555
sdace 555
sabafoo 555

Note the second line of output. If you check the original file, you
will see that the second line looked like this:

alpo-net 555-3412 2400/1200/300 A

The - as part of the system’s name was used as the field separator,
instead of the - in the phone number that was originally intended.
This demonstrates why you have to be careful in choosing your field and
record separators.

The following program searches the system password file, and prints
the entries for users who have no password:

awk -F: ’$2 == ""’ /etc/passwd

Here we use the -F option on the command line to set the field
separator. Note that fields in /etc/passwd are separated by colons.
The second field represents a user’s encrypted password, but if the
field is empty, that user has no password.

According to the POSIX standard, awk is supposed to behave as if
each record is split into fields at the time that it is read. In
particular, this means that you can change the value of FS after a

gawk.info 33 / 207

record is read, but before any of the fields are referenced. The value
of the fields (i.e. how they were split) should reflect the old value
of FS, not the new one.

However, many implementations of awk do not do this. Instead, they
defer splitting the fields until a field reference actually happens,
using the current value of FS! This behavior can be difficult to
diagnose. The following example illustrates the results of the two
methods. (The sed command prints just the first line of /etc/passwd.)

sed 1q /etc/passwd | awk ’{ FS = ":" ; print $1 }’

will usually print

root

on an incorrect implementation of awk, while gawk will print something
like

root:nSijPlPhZZwgE:0:0:Root:/:

There is an important difference between the two cases of FS = " "
(a single blank) and FS = "[\t]+" (which is a regular expression
matching one or more blanks or tabs). For both values of FS, fields
are separated by runs of blanks and/or tabs. However, when the value of
FS is " ", awk will strip leading and trailing whitespace from the
record, and then decide where the fields are.

For example, the following expression prints b:

echo ’ a b c d ’ | awk ’{ print $2 }’

However, the following prints a:

echo ’ a b c d ’ | awk ’BEGIN { FS = "[\t]+" } ; { print $2 }’

In this case, the first field is null.

The stripping of leading and trailing whitespace also comes into
play whenever $0 is recomputed. For instance, this pipeline

echo ’ a b c d’ | awk ’{ print; $2 = $2; print }’

produces this output:

a b c d
a b c d

The first print statement prints the record as it was read, with
leading whitespace intact. The assignment to $2 rebuilds $0 by
concatenating $1 through $NF together, separated by the value of OFS.
Since the leading whitespace was ignored when finding $1, it is not
part of the new $0. Finally, the last print statement prints the new
$0.

The following table summarizes how fields are split, based on the
value of FS.

gawk.info 34 / 207

FS == " "
Fields are separated by runs of whitespace. Leading and trailing
whitespace are ignored. This is the default.

FS == any single character
Fields are separated by each occurrence of the character. Multiple
successive occurrences delimit empty fields, as do leading and
trailing occurrences.

FS == regexp
Fields are separated by occurrences of characters that match
regexp. Leading and trailing matches of regexp delimit empty
fields.

1.25 gawk.info/Constant Size

Reading Fixed-width Data
========================

(This section discusses an advanced, experimental feature. If you
are a novice awk user, you may wish to skip it on the first reading.)

gawk 2.13 introduced a new facility for dealing with fixed-width
fields with no distinctive field separator. Data of this nature arises
typically in one of at least two ways: the input for old FORTRAN
programs where numbers are run together, and the output of programs
that did not anticipate the use of their output as input for other
programs.

An example of the latter is a table where all the columns are lined
up by the use of a variable number of spaces and empty fields are just
spaces. Clearly, awk’s normal field splitting based on FS will not
work well in this case. (Although a portable awk program can use a
series of substr calls on $0, this is awkward and inefficient for a
large number of fields.)

The splitting of an input record into fixed-width fields is
specified by assigning a string containing space-separated numbers to
the built-in variable FIELDWIDTHS. Each number specifies the width of
the field including columns between fields. If you want to ignore the
columns between fields, you can specify the width as a separate field
that is subsequently ignored.

The following data is the output of the w utility. It is useful to
illustrate the use of FIELDWIDTHS.

10:06pm up 21 days, 14:04, 23 users
User tty login idle JCPU PCPU what
hzuo ttyV0 8:58pm 9 5 vi p24.tex
hzang ttyV3 6:37pm 50 -csh
eklye ttyV5 9:53pm 7 1 em thes.tex
dportein ttyV6 8:17pm 1:47 -csh

gawk.info 35 / 207

gierd ttyD3 10:00pm 1 elm
dave ttyD4 9:47pm 4 4 w
brent ttyp0 26Jun91 4:46 26:46 4:41 bash
dave ttyq4 26Jun9115days 46 46 wnewmail

The following program takes the above input, converts the idle time
to number of seconds and prints out the first two fields and the
calculated idle time. (This program uses a number of awk features that
haven’t been introduced yet.)

BEGIN { FIELDWIDTHS = "9 6 10 6 7 7 35" }
NR > 2 {

idle = $4
sub(/^ */, "", idle) # strip leading spaces
if (idle == "") idle = 0
if (idle ~ /:/) { split(idle, t, ":"); idle = t[1] * 60 + t[2] }
if (idle ~ /days/) { idle *= 24 * 60 * 60 }

print $1, $2, idle
}

Here is the result of running the program on the data:

hzuo ttyV0 0
hzang ttyV3 50
eklye ttyV5 0
dportein ttyV6 107
gierd ttyD3 1
dave ttyD4 0
brent ttyp0 286
dave ttyq4 1296000

Another (possibly more practical) example of fixed-width input data
would be the input from a deck of balloting cards. In some parts of
the United States, voters make their choices by punching holes in
computer cards. These cards are then processed to count the votes for
any particular candidate or on any particular issue. Since a voter may
choose not to vote on some issue, any column on the card may be empty.
An awk program for processing such data could use the FIELDWIDTHS
feature to simplify reading the data.

This feature is still experimental, and will likely evolve over time.

1.26 gawk.info/Multiple Line

Multiple-Line Records
=====================

In some data bases, a single line cannot conveniently hold all the
information in one entry. In such cases, you can use multi-line
records.

The first step in doing this is to choose your data format: when
records are not defined as single lines, how do you want to define them?

gawk.info 36 / 207

What should separate records?

One technique is to use an unusual character or string to separate
records. For example, you could use the formfeed character (written \f
in awk, as in C) to separate them, making each record a page of the
file. To do this, just set the variable RS to "\f" (a string
containing the formfeed character). Any other character could equally
well be used, as long as it won’t be part of the data in a record.

Another technique is to have blank lines separate records. By a
special dispensation, a null string as the value of RS indicates that
records are separated by one or more blank lines. If you set RS to the
null string, a record always ends at the first blank line encountered.
And the next record doesn’t start until the first nonblank line that
follows--no matter how many blank lines appear in a row, they are
considered one record-separator. (End of file is also considered a
record separator.)

The second step is to separate the fields in the record. One way to
do this is to put each field on a separate line: to do this, just set
the variable FS to the string "\n". (This simple regular expression
matches a single newline.)

Another way to separate fields is to divide each of the lines into
fields in the normal manner. This happens by default as a result of a
special feature: when RS is set to the null string, the newline
character always acts as a field separator. This is in addition to
whatever field separations result from FS.

The original motivation for this special exception was probably so
that you get useful behavior in the default case (i.e., FS == " ").
This feature can be a problem if you really don’t want the newline
character to separate fields, since there is no way to prevent it.
However, you can work around this by using the split function to break
up the record manually (see

Built-in Functions for String Manipulation
).

1.27 gawk.info/Getline

Explicit Input with getline
===========================

So far we have been getting our input files from awk’s main input
stream--either the standard input (usually your terminal) or the files
specified on the command line. The awk language has a special built-in
command called getline that can be used to read input under your
explicit control.

This command is quite complex and should not be used by beginners.
It is covered here because this is the chapter on input. The examples
that follow the explanation of the getline command include material
that has not been covered yet. Therefore, come back and study the

gawk.info 37 / 207

getline command after you have reviewed the rest of this manual and
have a good knowledge of how awk works.

getline returns 1 if it finds a record, and 0 if the end of the file
is encountered. If there is some error in getting a record, such as a
file that cannot be opened, then getline returns -1. In this case,
gawk sets the variable ERRNO to a string describing the error that
occurred.

In the following examples, command stands for a string value that
represents a shell command.

getline
The getline command can be used without arguments to read input
from the current input file. All it does in this case is read the
next input record and split it up into fields. This is useful if
you’ve finished processing the current record, but you want to do
some special processing right now on the next record. Here’s an
example:

awk ’{
if (t = index($0, "/*")) {

if (t > 1)
tmp = substr($0, 1, t - 1)

else
tmp = ""

u = index(substr($0, t + 2), "*/")
while (u == 0) {

getline
t = -1
u = index($0, "*/")

}
if (u <= length($0) - 2)

$0 = tmp substr($0, t + u + 3)
else

$0 = tmp
}
print $0

}’

This awk program deletes all C-style comments, /* ... */, from
the input. By replacing the print $0 with other statements, you
could perform more complicated processing on the decommented
input, like searching for matches of a regular expression. (This
program has a subtle problem--can you spot it?)

This form of the getline command sets NF (the number of fields;
see

Examining Fields
), NR (the number of records read so far; see

How Input is Split into Records
), FNR (the number of records read

from this input file), and the value of $0.

Note: the new value of $0 is used in testing the patterns of any
subsequent rules. The original value of $0 that triggered the

gawk.info 38 / 207

rule which executed getline is lost. By contrast, the next
statement reads a new record but immediately begins processing it
normally, starting with the first rule in the program. See

The next Statement
.

getline var
This form of getline reads a record into the variable var. This
is useful when you want your program to read the next record from
the current input file, but you don’t want to subject the record
to the normal input processing.

For example, suppose the next line is a comment, or a special
string, and you want to read it, but you must make certain that it
won’t trigger any rules. This version of getline allows you to
read that line and store it in a variable so that the main
read-a-line-and-check-each-rule loop of awk never sees it.

The following example swaps every two lines of input. For
example, given:

wan
tew
free
phore

it outputs:

tew
wan
phore
free

Here’s the program:

awk ’{
if ((getline tmp) > 0) {

print tmp
print $0

} else
print $0

}’

The getline function used in this way sets only the variables NR
and FNR (and of course, var). The record is not split into
fields, so the values of the fields (including $0) and the value
of NF do not change.

getline < file
This form of the getline function takes its input from the file
file. Here file is a string-valued expression that specifies the
file name. < file is called a redirection since it directs input
to come from a different place.

This form is useful if you want to read your input from a
particular file, instead of from the main input stream. For

gawk.info 39 / 207

example, the following program reads its input record from the
file foo.input when it encounters a first field with a value equal
to 10 in the current input file.

awk ’{
if ($1 == 10) {

getline < "foo.input"
print

} else
print

}’

Since the main input stream is not used, the values of NR and FNR
are not changed. But the record read is split into fields in the
normal manner, so the values of $0 and other fields are changed.
So is the value of NF.

This does not cause the record to be tested against all the
patterns in the awk program, in the way that would happen if the
record were read normally by the main processing loop of awk.
However the new record is tested against any subsequent rules,
just as when getline is used without a redirection.

getline var < file
This form of the getline function takes its input from the file
file and puts it in the variable var. As above, file is a
string-valued expression that specifies the file from which to
read.

In this version of getline, none of the built-in variables are
changed, and the record is not split into fields. The only
variable changed is var.

For example, the following program copies all the input files to
the output, except for records that say @include filename. Such
a record is replaced by the contents of the file filename.

awk ’{
if (NF == 2 && $1 == "@include") {

while ((getline line < $2) > 0)
print line

close($2)
} else

print
}’

Note here how the name of the extra input file is not built into
the program; it is taken from the data, from the second field on
the @include line.

The close function is called to ensure that if two identical
@include lines appear in the input, the entire specified file is
included twice. See

Closing Input Files and Pipes
.

One deficiency of this program is that it does not process nested

gawk.info 40 / 207

@include statements the way a true macro preprocessor would.

command | getline
You can pipe the output of a command into getline. A pipe is
simply a way to link the output of one program to the input of
another. In this case, the string command is run as a shell
command and its output is piped into awk to be used as input.
This form of getline reads one record from the pipe.

For example, the following program copies input to output, except
for lines that begin with @execute, which are replaced by the
output produced by running the rest of the line as a shell command:

awk ’{
if ($1 == "@execute") {

tmp = substr($0, 10)
while ((tmp | getline) > 0)

print
close(tmp)

} else
print

}’

The close function is called to ensure that if two identical
@execute lines appear in the input, the command is run for each
one. See

Closing Input Files and Pipes
.

Given the input:

foo
bar
baz
@execute who
bletch

the program might produce:

foo
bar
baz
hack ttyv0 Jul 13 14:22
hack ttyp0 Jul 13 14:23 (gnu:0)
hack ttyp1 Jul 13 14:23 (gnu:0)
hack ttyp2 Jul 13 14:23 (gnu:0)
hack ttyp3 Jul 13 14:23 (gnu:0)
bletch

Notice that this program ran the command who and printed the
result. (If you try this program yourself, you will get different
results, showing you who is logged in on your system.)

This variation of getline splits the record into fields, sets the
value of NF and recomputes the value of $0. The values of NR and
FNR are not changed.

gawk.info 41 / 207

command | getline var
The output of the command command is sent through a pipe to
getline and into the variable var. For example, the following
program reads the current date and time into the variable
current_time, using the date utility, and then prints it.

awk ’BEGIN {
"date" | getline current_time
close("date")
print "Report printed on " current_time

}’

In this version of getline, none of the built-in variables are
changed, and the record is not split into fields.

1.28 gawk.info/Close Input

Closing Input Files and Pipes
=============================

If the same file name or the same shell command is used with getline
more than once during the execution of an awk program, the file is
opened (or the command is executed) only the first time. At that time,
the first record of input is read from that file or command. The next
time the same file or command is used in getline, another record is
read from it, and so on.

This implies that if you want to start reading the same file again
from the beginning, or if you want to rerun a shell command (rather than
reading more output from the command), you must take special steps.
What you must do is use the close function, as follows:

close(filename)

or

close(command)

The argument filename or command can be any expression. Its value
must exactly equal the string that was used to open the file or start
the command--for example, if you open a pipe with this:

"sort -r names" | getline foo

then you must close it with this:

close("sort -r names")

Once this function call is executed, the next getline from that file
or command will reopen the file or rerun the command.

close returns a value of zero if the close succeeded. Otherwise,
the value will be non-zero. In this case, gawk sets the variable ERRNO

gawk.info 42 / 207

to a string describing the error that occurred.

1.29 gawk.info/Printing

Printing Output

One of the most common things that actions do is to output or print
some or all of the input. For simple output, use the print statement.
For fancier formatting use the printf statement. Both are described in
this chapter.

Print
The print statement.

Print Examples
Simple examples of print statements.

Output Separators
The output separators and how to change them.

OFMT
Controlling Numeric Output With print.

Printf
The printf statement.

Redirection
How to redirect output to multiple

files and pipes.

Special Files
File name interpretation in gawk.
gawk allows access to
inherited file descriptors.

1.30 gawk.info/Print

The print Statement
===================

The print statement does output with simple, standardized
formatting. You specify only the strings or numbers to be printed, in a
list separated by commas. They are output, separated by single spaces,
followed by a newline. The statement looks like this:

print item1, item2, ...

gawk.info 43 / 207

The entire list of items may optionally be enclosed in parentheses. The
parentheses are necessary if any of the item expressions uses a
relational operator; otherwise it could be confused with a redirection
(see

Redirecting Output of print and printf
). The relational operators

are ==, !=, <, >, >=, <=, ~ and !~ (see
Comparison Expressions
).

The items printed can be constant strings or numbers, fields of the
current record (such as $1), variables, or any awk expressions. The
print statement is completely general for computing what values to
print. With two exceptions, you cannot specify how to print them--how
many columns, whether to use exponential notation or not, and so on.
(See

Output Separators
, and
Controlling Numeric Output with print
.) For

that, you need the printf statement (see

Using printf Statements for Fancier Printing
).

The simple statement print with no items is equivalent to print $0:
it prints the entire current record. To print a blank line, use print
"", where "" is the null, or empty, string.

To print a fixed piece of text, use a string constant such as
"Hello there" as one item. If you forget to use the double-quote
characters, your text will be taken as an awk expression, and you will
probably get an error. Keep in mind that a space is printed between
any two items.

Most often, each print statement makes one line of output. But it
isn’t limited to one line. If an item value is a string that contains a
newline, the newline is output along with the rest of the string. A
single print can make any number of lines this way.

1.31 gawk.info/Print Examples

Examples of print Statements
============================

Here is an example of printing a string that contains embedded
newlines:

awk ’BEGIN { print "line one\nline two\nline three" }’

produces output like this:

gawk.info 44 / 207

line one
line two
line three

Here is an example that prints the first two fields of each input
record, with a space between them:

awk ’{ print $1, $2 }’ inventory-shipped

Its output looks like this:

Jan 13
Feb 15
Mar 15
...

A common mistake in using the print statement is to omit the comma
between two items. This often has the effect of making the items run
together in the output, with no space. The reason for this is that
juxtaposing two string expressions in awk means to concatenate them.
For example, without the comma:

awk ’{ print $1 $2 }’ inventory-shipped

prints:

Jan13
Feb15
Mar15
...

Neither example’s output makes much sense to someone unfamiliar with
the file inventory-shipped. A heading line at the beginning would make
it clearer. Let’s add some headings to our table of months ($1) and
green crates shipped ($2). We do this using the BEGIN pattern (see

BEGIN and END Special Patterns
) to force the headings to be printed

only once:

awk ’BEGIN { print "Month Crates"
print "----- ------" }

{ print $1, $2 }’ inventory-shipped

Did you already guess what happens? This program prints the following:

Month Crates
----- ------
Jan 13
Feb 15
Mar 15
...

The headings and the table data don’t line up! We can fix this by
printing some spaces between the two fields:

awk ’BEGIN { print "Month Crates"

gawk.info 45 / 207

print "----- ------" }
{ print $1, " ", $2 }’ inventory-shipped

You can imagine that this way of lining up columns can get pretty
complicated when you have many columns to fix. Counting spaces for two
or three columns can be simple, but more than this and you can get
"lost" quite easily. This is why the printf statement was created (see

Using printf Statements for Fancier Printing
); one of its specialties

is lining up columns of data.

1.32 gawk.info/Output Separators

Output Separators
=================

As mentioned previously, a print statement contains a list of items,
separated by commas. In the output, the items are normally separated
by single spaces. But they do not have to be spaces; a single space is
only the default. You can specify any string of characters to use as
the output field separator by setting the built-in variable OFS. The
initial value of this variable is the string " ", that is, just a
single space.

The output from an entire print statement is called an output
record. Each print statement outputs one output record and then
outputs a string called the output record separator. The built-in
variable ORS specifies this string. The initial value of the variable
is the string "\n" containing a newline character; thus, normally each
print statement makes a separate line.

You can change how output fields and records are separated by
assigning new values to the variables OFS and/or ORS. The usual place
to do this is in the BEGIN rule (see

BEGIN and END Special Patterns
), so

that it happens before any input is processed. You may also do this
with assignments on the command line, before the names of your input
files.

The following example prints the first and second fields of each
input record separated by a semicolon, with a blank line added after
each line:

awk ’BEGIN { OFS = ";"; ORS = "\n\n" }
{ print $1, $2 }’ BBS-list

If the value of ORS does not contain a newline, all your output will
be run together on a single line, unless you output newlines some other
way.

gawk.info 46 / 207

1.33 gawk.info/OFMT

Controlling Numeric Output with print
=====================================

When you use the print statement to print numeric values, awk
internally converts the number to a string of characters, and prints
that string. awk uses the sprintf function to do this conversion. For
now, it suffices to say that the sprintf function accepts a format
specification that tells it how to format numbers (or strings), and
that there are a number of different ways that numbers can be
formatted. The different format specifications are discussed more
fully in

Using printf Statements for Fancier Printing
.

The built-in variable OFMT contains the default format specification
that print uses with sprintf when it wants to convert a number to a
string for printing. By supplying different format specifications as
the value of OFMT, you can change how print will print your numbers.
As a brief example:

awk ’BEGIN { OFMT = "%d" # print numbers as integers
print 17.23 }’

will print 17.

1.34 gawk.info/Printf

Using printf Statements for Fancier Printing
==

If you want more precise control over the output format than print
gives you, use printf. With printf you can specify the width to use
for each item, and you can specify various stylistic choices for
numbers (such as what radix to use, whether to print an exponent,
whether to print a sign, and how many digits to print after the decimal
point). You do this by specifying a string, called the format string,
which controls how and where to print the other arguments.

Basic Printf
Syntax of the printf statement.

Control Letters
Format-control letters.

gawk.info 47 / 207

Format Modifiers
Format-specification modifiers.

Printf Examples
Several examples.

1.35 gawk.info/Basic Printf

Introduction to the printf Statement

The printf statement looks like this:

printf format, item1, item2, ...

The entire list of arguments may optionally be enclosed in parentheses.
The parentheses are necessary if any of the item expressions uses a
relational operator; otherwise it could be confused with a redirection
(see

Redirecting Output of print and printf
). The relational operators

are ==, !=, <, >, >=, <=, ~ and !~ (see
Comparison Expressions
).

The difference between printf and print is the argument format.
This is an expression whose value is taken as a string; it specifies
how to output each of the other arguments. It is called the format
string.

The format string is the same as in the ANSI C library function
printf. Most of format is text to be output verbatim. Scattered among
this text are format specifiers, one per item. Each format specifier
says to output the next item at that place in the format.

The printf statement does not automatically append a newline to its
output. It outputs only what the format specifies. So if you want a
newline, you must include one in the format. The output separator
variables OFS and ORS have no effect on printf statements.

1.36 gawk.info/Control Letters

Format-Control Letters

A format specifier starts with the character % and ends with a
format-control letter; it tells the printf statement how to output one
item. (If you actually want to output a %, write %%.) The

gawk.info 48 / 207

format-control letter specifies what kind of value to print. The rest
of the format specifier is made up of optional modifiers which are
parameters such as the field width to use.

Here is a list of the format-control letters:

c
This prints a number as an ASCII character. Thus, printf "%c", 65
outputs the letter A. The output for a string value is the first
character of the string.

d
This prints a decimal integer.

i
This also prints a decimal integer.

e
This prints a number in scientific (exponential) notation. For
example,

printf "%4.3e", 1950

prints 1.950e+03, with a total of four significant figures of
which three follow the decimal point. The 4.3 are modifiers,
discussed below.

f
This prints a number in floating point notation.

g
This prints a number in either scientific notation or floating
point notation, whichever uses fewer characters.

o
This prints an unsigned octal integer.

s
This prints a string.

x
This prints an unsigned hexadecimal integer.

X
This prints an unsigned hexadecimal integer. However, for the
values 10 through 15, it uses the letters A through F instead of a
through f.

%
This isn’t really a format-control letter, but it does have a
meaning when used after a %: the sequence %% outputs one %. It
does not consume an argument.

gawk.info 49 / 207

1.37 gawk.info/Format Modifiers

Modifiers for printf Formats

A format specification can also include modifiers that can control
how much of the item’s value is printed and how much space it gets. The
modifiers come between the % and the format-control letter. Here are the
possible modifiers, in the order in which they may appear:

-
The minus sign, used before the width modifier, says to
left-justify the argument within its specified width. Normally
the argument is printed right-justified in the specified width.
Thus,

printf "%-4s", "foo"

prints foo .

width
This is a number representing the desired width of a field.
Inserting any number between the % sign and the format control
character forces the field to be expanded to this width. The
default way to do this is to pad with spaces on the left. For
example,

printf "%4s", "foo"

prints foo.

The value of width is a minimum width, not a maximum. If the item
value requires more than width characters, it can be as wide as
necessary. Thus,

printf "%4s", "foobar"

prints foobar.

Preceding the width with a minus sign causes the output to be
padded with spaces on the right, instead of on the left.

.prec
This is a number that specifies the precision to use when printing.
This specifies the number of digits you want printed to the right
of the decimal point. For a string, it specifies the maximum
number of characters from the string that should be printed.

The C library printf’s dynamic width and prec capability (for
example, "%*.*s") is supported. Instead of supplying explicit width
and/or prec values in the format string, you pass them in the argument
list. For example:

w = 5
p = 3
s = "abcdefg"

gawk.info 50 / 207

printf "<%*.*s>\n", w, p, s

is exactly equivalent to

s = "abcdefg"
printf "<%5.3s>\n", s

Both programs output <**abc>. (We have used the bullet symbol "*" to
represent a space, to clearly show you that there are two spaces in the
output.)

Earlier versions of awk did not support this capability. You may
simulate it by using concatenation to build up the format string, like
so:

w = 5
p = 3
s = "abcdefg"
printf "<%" w "." p "s>\n", s

This is not particularly easy to read, however.

1.38 gawk.info/Printf Examples

Examples of Using printf

Here is how to use printf to make an aligned table:

awk ’{ printf "%-10s %s\n", $1, $2 }’ BBS-list

prints the names of bulletin boards ($1) of the file BBS-list as a
string of 10 characters, left justified. It also prints the phone
numbers ($2) afterward on the line. This produces an aligned
two-column table of names and phone numbers:

aardvark 555-5553
alpo-net 555-3412
barfly 555-7685
bites 555-1675
camelot 555-0542
core 555-2912
fooey 555-1234
foot 555-6699
macfoo 555-6480
sdace 555-3430
sabafoo 555-2127

Did you notice that we did not specify that the phone numbers be
printed as numbers? They had to be printed as strings because the
numbers are separated by a dash. This dash would be interpreted as a
minus sign if we had tried to print the phone numbers as numbers. This
would have led to some pretty confusing results.

gawk.info 51 / 207

We did not specify a width for the phone numbers because they are the
last things on their lines. We don’t need to put spaces after them.

We could make our table look even nicer by adding headings to the
tops of the columns. To do this, use the BEGIN pattern (see

BEGIN and END Special Patterns
) to force the header to be printed only

once, at the beginning of the awk program:

awk ’BEGIN { print "Name Number"
print "---- ------" }

{ printf "%-10s %s\n", $1, $2 }’ BBS-list

Did you notice that we mixed print and printf statements in the
above example? We could have used just printf statements to get the
same results:

awk ’BEGIN { printf "%-10s %s\n", "Name", "Number"
printf "%-10s %s\n", "----", "------" }

{ printf "%-10s %s\n", $1, $2 }’ BBS-list

By outputting each column heading with the same format specification
used for the elements of the column, we have made sure that the headings
are aligned just like the columns.

The fact that the same format specification is used three times can
be emphasized by storing it in a variable, like this:

awk ’BEGIN { format = "%-10s %s\n"
printf format, "Name", "Number"
printf format, "----", "------" }

{ printf format, $1, $2 }’ BBS-list

See if you can use the printf statement to line up the headings and
table data for our inventory-shipped example covered earlier in the
section on the print statement (see

The print Statement
).

1.39 gawk.info/Redirection

Redirecting Output of print and printf
======================================

So far we have been dealing only with output that prints to the
standard output, usually your terminal. Both print and printf can also
send their output to other places. This is called redirection.

A redirection appears after the print or printf statement.
Redirections in awk are written just like redirections in shell
commands, except that they are written inside the awk program.

gawk.info 52 / 207

File-Pipe Redirection
Redirecting Output to Files and Pipes.

Close Output
How to close output files and pipes.

1.40 gawk.info/File-Pipe Redirection

Redirecting Output to Files and Pipes

Here are the three forms of output redirection. They are all shown
for the print statement, but they work identically for printf also.

print items > output-file
This type of redirection prints the items onto the output file
output-file. The file name output-file can be any expression.
Its value is changed to a string and then used as a file name (see

Expressions as Action Statements
).

When this type of redirection is used, the output-file is erased
before the first output is written to it. Subsequent writes do not
erase output-file, but append to it. If output-file does not
exist, then it is created.

For example, here is how one awk program can write a list of BBS
names to a file name-list and a list of phone numbers to a file
phone-list. Each output file contains one name or number per line.

awk ’{ print $2 > "phone-list"
print $1 > "name-list" }’ BBS-list

print items >> output-file
This type of redirection prints the items onto the output file
output-file. The difference between this and the single->
redirection is that the old contents (if any) of output-file are
not erased. Instead, the awk output is appended to the file.

print items | command
It is also possible to send output through a pipe instead of into a
file. This type of redirection opens a pipe to command and writes
the values of items through this pipe, to another process created
to execute command.

The redirection argument command is actually an awk expression.
Its value is converted to a string, whose contents give the shell
command to be run.

For example, this produces two files, one unsorted list of BBS

gawk.info 53 / 207

names and one list sorted in reverse alphabetical order:

awk ’{ print $1 > "names.unsorted"
print $1 | "sort -r > names.sorted" }’ BBS-list

Here the unsorted list is written with an ordinary redirection
while the sorted list is written by piping through the sort
utility.

Here is an example that uses redirection to mail a message to a
mailing list bug-system. This might be useful when trouble is
encountered in an awk script run periodically for system
maintenance.

report = "mail bug-system"
print "Awk script failed:", $0 | report
print "at record number", FNR, "of", FILENAME | report
close(report)

We call the close function here because it’s a good idea to close
the pipe as soon as all the intended output has been sent to it.
See

Closing Output Files and Pipes
, for more information on this.

This example also illustrates the use of a variable to represent a
file or command: it is not necessary to always use a string
constant. Using a variable is generally a good idea, since awk
requires you to spell the string value identically every time.

Redirecting output using >, >>, or | asks the system to open a file
or pipe only if the particular file or command you’ve specified has not
already been written to by your program, or if it has been closed since
it was last written to.

1.41 gawk.info/Close Output

Closing Output Files and Pipes

When a file or pipe is opened, the file name or command associated
with it is remembered by awk and subsequent writes to the same file or
command are appended to the previous writes. The file or pipe stays
open until awk exits. This is usually convenient.

Sometimes there is a reason to close an output file or pipe earlier
than that. To do this, use the close function, as follows:

close(filename)

or

close(command)

gawk.info 54 / 207

The argument filename or command can be any expression. Its value
must exactly equal the string used to open the file or pipe to begin
with--for example, if you open a pipe with this:

print $1 | "sort -r > names.sorted"

then you must close it with this:

close("sort -r > names.sorted")

Here are some reasons why you might need to close an output file:

* To write a file and read it back later on in the same awk program.
Close the file when you are finished writing it; then you can
start reading it with getline (see

Explicit Input with getline
).

* To write numerous files, successively, in the same awk program.
If you don’t close the files, eventually you may exceed a system
limit on the number of open files in one process. So close each
one when you are finished writing it.

* To make a command finish. When you redirect output through a pipe,
the command reading the pipe normally continues to try to read
input as long as the pipe is open. Often this means the command
cannot really do its work until the pipe is closed. For example,
if you redirect output to the mail program, the message is not
actually sent until the pipe is closed.

* To run the same program a second time, with the same arguments.
This is not the same thing as giving more input to the first run!

For example, suppose you pipe output to the mail program. If you
output several lines redirected to this pipe without closing it,
they make a single message of several lines. By contrast, if you
close the pipe after each line of output, then each line makes a
separate message.

close returns a value of zero if the close succeeded. Otherwise,
the value will be non-zero. In this case, gawk sets the variable ERRNO
to a string describing the error that occurred.

1.42 gawk.info/Special Files

Standard I/O Streams
====================

Running programs conventionally have three input and output streams
already available to them for reading and writing. These are known as
the standard input, standard output, and standard error output. These
streams are, by default, terminal input and output, but they are often
redirected with the shell, via the <, <<, >, >>, >& and | operators.

gawk.info 55 / 207

Standard error is used only for writing error messages; the reason we
have two separate streams, standard output and standard error, is so
that they can be redirected separately.

In other implementations of awk, the only way to write an error
message to standard error in an awk program is as follows:

print "Serious error detected!\n" | "cat 1>&2"

This works by opening a pipeline to a shell command which can access the
standard error stream which it inherits from the awk process. This is
far from elegant, and is also inefficient, since it requires a separate
process. So people writing awk programs have often neglected to do
this. Instead, they have sent the error messages to the terminal, like
this:

NF != 4 {
printf("line %d skipped: doesn’t have 4 fields\n", FNR) > "/dev/tty"

}

This has the same effect most of the time, but not always: although the
standard error stream is usually the terminal, it can be redirected, and
when that happens, writing to the terminal is not correct. In fact, if
awk is run from a background job, it may not have a terminal at all.
Then opening /dev/tty will fail.

gawk provides special file names for accessing the three standard
streams. When you redirect input or output in gawk, if the file name
matches one of these special names, then gawk directly uses the stream
it stands for.

/dev/stdin
The standard input (file descriptor 0).

/dev/stdout
The standard output (file descriptor 1).

/dev/stderr
The standard error output (file descriptor 2).

/dev/fd/N
The file associated with file descriptor N. Such a file must have
been opened by the program initiating the awk execution (typically
the shell). Unless you take special pains, only descriptors 0, 1
and 2 are available.

The file names /dev/stdin, /dev/stdout, and /dev/stderr are aliases
for /dev/fd/0, /dev/fd/1, and /dev/fd/2, respectively, but they are
more self-explanatory.

The proper way to write an error message in a gawk program is to use
/dev/stderr, like this:

NF != 4 {
printf("line %d skipped: doesn’t have 4 fields\n", FNR) > "/dev/stderr"

}

gawk.info 56 / 207

gawk also provides special file names that give access to information
about the running gawk process. Each of these "files" provides a
single record of information. To read them more than once, you must
first close them with the close function (see

Closing Input Files and Pipes
). The filenames are:

/dev/pid
Reading this file returns the process ID of the current process,
in decimal, terminated with a newline.

/dev/ppid
Reading this file returns the parent process ID of the current
process, in decimal, terminated with a newline.

/dev/pgrpid
Reading this file returns the process group ID of the current
process, in decimal, terminated with a newline.

/dev/user
Reading this file returns a single record terminated with a
newline. The fields are separated with blanks. The fields
represent the following information:

$1
The value of the getuid system call.

$2
The value of the geteuid system call.

$3
The value of the getgid system call.

$4
The value of the getegid system call.

If there are any additional fields, they are the group IDs
returned by getgroups system call. (Multiple groups may not be
supported on all systems.)

These special file names may be used on the command line as data
files, as well as for I/O redirections within an awk program. They may
not be used as source files with the -f option.

Recognition of these special file names is disabled if gawk is in
compatibility mode (see

Invoking awk
).

Caution: Unless your system actually has a /dev/fd directory (or
any of the other above listed special files), the interpretation
of these file names is done by gawk itself. For example, using
/dev/fd/4 for output will actually write on file descriptor 4, and
not on a new file descriptor that was dup’ed from file descriptor
4. Most of the time this does not matter; however, it is
important to not close any of the files related to file descriptors

gawk.info 57 / 207

0, 1, and 2. If you do close one of these files, unpredictable
behavior will result.

1.43 gawk.info/One-liners

Useful "One-liners"

Useful awk programs are often short, just a line or two. Here is a
collection of useful, short programs to get you started. Some of these
programs contain constructs that haven’t been covered yet. The
description of the program will give you a good idea of what is going
on, but please read the rest of the manual to become an awk expert!

Since you are reading this in Info, each line of the example code is
enclosed in quotes, to represent text that you would type literally.
The examples themselves represent shell commands that use single quotes
to keep the shell from interpreting the contents of the program. When
reading the examples, focus on the text between the open and close
quotes.

awk ’{ if (NF > max) max = NF }
END { print max }’
This program prints the maximum number of fields on any input line.

awk ’length($0) > 80’
This program prints every line longer than 80 characters. The sole
rule has a relational expression as its pattern, and has no action
(so the default action, printing the record, is used).

awk ’NF > 0’
This program prints every line that has at least one field. This
is an easy way to delete blank lines from a file (or rather, to
create a new file similar to the old file but from which the blank
lines have been deleted).

awk ’{ if (NF > 0) print }’
This program also prints every line that has at least one field.
Here we allow the rule to match every line, then decide in the
action whether to print.

awk ’BEGIN { for (i = 1; i <= 7; i++)
print int(101 * rand()) }’

This program prints 7 random numbers from 0 to 100, inclusive.

ls -l files | awk ’{ x += $4 } ; END { print "total bytes: " x }’
This program prints the total number of bytes used by files.

expand file | awk ’{ if (x < length()) x = length() }
END { print "maximum line length is " x }’

This program prints the maximum line length of file. The input is
piped through the expand program to change tabs into spaces, so
the widths compared are actually the right-margin columns.

gawk.info 58 / 207

awk ’BEGIN { FS = ":" }
{ print $1 | "sort" }’ /etc/passwd
This program prints a sorted list of the login names of all users.

awk ’{ nlines++ }
END { print nlines }’
This programs counts lines in a file.

awk ’END { print NR }’
This program also counts lines in a file, but lets awk do the work.

awk ’{ print NR, $0 }’
This program adds line numbers to all its input files, similar to
cat -n.

1.44 gawk.info/Patterns

Patterns

Patterns in awk control the execution of rules: a rule is executed
when its pattern matches the current input record. This chapter tells
all about how to write patterns.

Kinds of Patterns
A list of all kinds of patterns.

The following subsections describe
them in detail.

Regexp
Regular expressions such as /foo/.

Comparison Patterns
Comparison expressions such as $1 > 10.

Boolean Patterns
Combining comparison expressions.

Expression Patterns
Any expression can be used as a pattern.

Ranges
Pairs of patterns specify record ranges.

BEGIN-END
Specifying initialization and cleanup rules.

Empty
The empty pattern, which matches every ←↩

record.

gawk.info 59 / 207

1.45 gawk.info/Kinds of Patterns

Kinds of Patterns
=================

Here is a summary of the types of patterns supported in awk.

/regular expression/
A regular expression as a pattern. It matches when the text of the
input record fits the regular expression. (See

Regular Expressions as Patterns
.)

expression
A single expression. It matches when its value, converted to a
number, is nonzero (if a number) or nonnull (if a string). (See

Expressions as Patterns
.)

pat1, pat2
A pair of patterns separated by a comma, specifying a range of
records. (See

Specifying Record Ranges with Patterns
.)

BEGIN
END

Special patterns to supply start-up or clean-up information to
awk. (See

BEGIN and END Special Patterns
.)

null
The empty pattern matches every input record. (See

The Empty Pattern
.)

1.46 gawk.info/Regexp

Regular Expressions as Patterns
===============================

A regular expression, or regexp, is a way of describing a class of
strings. A regular expression enclosed in slashes (/) is an awk
pattern that matches every input record whose text belongs to that

gawk.info 60 / 207

class.

The simplest regular expression is a sequence of letters, numbers, or
both. Such a regexp matches any string that contains that sequence.
Thus, the regexp foo matches any string containing foo. Therefore, the
pattern /foo/ matches any input record containing foo. Other kinds of
regexps let you specify more complicated classes of strings.

Regexp Usage
How to Use Regular Expressions

Regexp Operators
Regular Expression Operators

Case-sensitivity
How to do case-insensitive matching.

1.47 gawk.info/Regexp Usage

How to Use Regular Expressions

A regular expression can be used as a pattern by enclosing it in
slashes. Then the regular expression is matched against the entire
text of each record. (Normally, it only needs to match some part of
the text in order to succeed.) For example, this prints the second
field of each record that contains foo anywhere:

awk ’/foo/ { print $2 }’ BBS-list

Regular expressions can also be used in comparison expressions. Then
you can specify the string to match against; it need not be the entire
current input record. These comparison expressions can be used as
patterns or in if, while, for, and do statements.

exp ~ /regexp/
This is true if the expression exp (taken as a character string)
is matched by regexp. The following example matches, or selects,
all input records with the upper-case letter J somewhere in the
first field:

awk ’$1 ~ /J/’ inventory-shipped

So does this:

awk ’{ if ($1 ~ /J/) print }’ inventory-shipped

exp !~ /regexp/
This is true if the expression exp (taken as a character string)
is not matched by regexp. The following example matches, or
selects, all input records whose first field does not contain the

gawk.info 61 / 207

upper-case letter J:

awk ’$1 !~ /J/’ inventory-shipped

The right hand side of a ~ or !~ operator need not be a constant
regexp (i.e., a string of characters between slashes). It may be any
expression. The expression is evaluated, and converted if necessary to
a string; the contents of the string are used as the regexp. A regexp
that is computed in this way is called a dynamic regexp. For example:

identifier_regexp = "[A-Za-z_][A-Za-z_0-9]+"
$0 ~ identifier_regexp

sets identifier_regexp to a regexp that describes awk variable names,
and tests if the input record matches this regexp.

1.48 gawk.info/Regexp Operators

Regular Expression Operators

You can combine regular expressions with the following characters,
called regular expression operators, or metacharacters, to increase the
power and versatility of regular expressions.

Here is a table of metacharacters. All characters not listed in the
table stand for themselves.

^
This matches the beginning of the string or the beginning of a line
within the string. For example:

^@chapter

matches the @chapter at the beginning of a string, and can be used
to identify chapter beginnings in Texinfo source files.

$
This is similar to ^, but it matches only at the end of a string
or the end of a line within the string. For example:

p$

matches a record that ends with a p.

.
This matches any single character except a newline. For example:

.P

matches any single character followed by a P in a string. Using
concatenation we can make regular expressions like U.A, which
matches any three-character sequence that begins with U and ends
with A.

gawk.info 62 / 207

[...]
This is called a character set. It matches any one of the
characters that are enclosed in the square brackets. For example:

[MVX]

matches any one of the characters M, V, or X in a string.

Ranges of characters are indicated by using a hyphen between the
beginning and ending characters, and enclosing the whole thing in
brackets. For example:

[0-9]

matches any digit.

To include the character \ ,], - or ^ in a character set, put a \
in front of it. For example:

[d\]]

matches either d, or].

This treatment of \ is compatible with other awk implementations,
and is also mandated by the POSIX Command Language and Utilities
standard. The regular expressions in awk are a superset of the
POSIX specification for Extended Regular Expressions (EREs).
POSIX EREs are based on the regular expressions accepted by the
traditional egrep utility.

In egrep syntax, backslash is not syntactically special within
square brackets. This means that special tricks have to be used to
represent the characters], - and ^ as members of a character set.

In egrep syntax, to match -, write it as --, which is a range
containing only -. You may also give - as the first or last
character in the set. To match ^, put it anywhere except as the
first character of a set. To match a], make it the first
character in the set. For example:

[]d^]

matches either], d or ^.

[^ ...]
This is a complemented character set. The first character after
the [must be a ^. It matches any characters except those in the
square brackets (or newline). For example:

[^0-9]

matches any character that is not a digit.

|
This is the alternation operator and it is used to specify
alternatives. For example:

gawk.info 63 / 207

^P|[0-9]

matches any string that matches either ^P or [0-9]. This means it
matches any string that contains a digit or starts with P.

The alternation applies to the largest possible regexps on either
side.

(...)
Parentheses are used for grouping in regular expressions as in
arithmetic. They can be used to concatenate regular expressions
containing the alternation operator, |.

*
This symbol means that the preceding regular expression is to be
repeated as many times as possible to find a match. For example:

ph*

applies the * symbol to the preceding h and looks for matches to
one p followed by any number of hs. This will also match just p
if no hs are present.

The * repeats the smallest possible preceding expression. (Use
parentheses if you wish to repeat a larger expression.) It finds
as many repetitions as possible. For example:

awk ’/\(c[ad][ad]*r x\)/ { print }’ sample

prints every record in the input containing a string of the form
(car x), (cdr x), (cadr x), and so on.

+
This symbol is similar to *, but the preceding expression must be
matched at least once. This means that:

wh+y

would match why and whhy but not wy, whereas wh*y would match all
three of these strings. This is a simpler way of writing the last

* example:

awk ’/\(c[ad]+r x\)/ { print }’ sample

?
This symbol is similar to *, but the preceding expression can be
matched once or not at all. For example:

fe?d

will match fed and fd, but nothing else.

\
This is used to suppress the special meaning of a character when
matching. For example:

gawk.info 64 / 207

\$

matches the character $.

The escape sequences used for string constants (see

Constant Expressions
) are valid in regular expressions as well;

they are also introduced by a \ .

In regular expressions, the *, +, and ? operators have the highest
precedence, followed by concatenation, and finally by |. As in
arithmetic, parentheses can change how operators are grouped.

1.49 gawk.info/Case-sensitivity

Case-sensitivity in Matching

Case is normally significant in regular expressions, both when
matching ordinary characters (i.e., not metacharacters), and inside
character sets. Thus a w in a regular expression matches only a lower
case w and not an upper case W.

The simplest way to do a case-independent match is to use a character
set: [Ww]. However, this can be cumbersome if you need to use it
often; and it can make the regular expressions harder for humans to
read. There are two other alternatives that you might prefer.

One way to do a case-insensitive match at a particular point in the
program is to convert the data to a single case, using the tolower or
toupper built-in string functions (which we haven’t discussed yet; see

Built-in Functions for String Manipulation
). For example:

tolower($1) ~ /foo/ { ... }

converts the first field to lower case before matching against it.

Another method is to set the variable IGNORECASE to a nonzero value
(see

Built-in Variables
). When IGNORECASE is not zero, all regexp

operations ignore case. Changing the value of IGNORECASE dynamically
controls the case sensitivity of your program as it runs. Case is
significant by default because IGNORECASE (like most variables) is
initialized to zero.

x = "aB"
if (x ~ /ab/) ... # this test will fail

IGNORECASE = 1

gawk.info 65 / 207

if (x ~ /ab/) ... # now it will succeed

In general, you cannot use IGNORECASE to make certain rules
case-insensitive and other rules case-sensitive, because there is no way
to set IGNORECASE just for the pattern of a particular rule. To do
this, you must use character sets or tolower. However, one thing you
can do only with IGNORECASE is turn case-sensitivity on or off
dynamically for all the rules at once.

IGNORECASE can be set on the command line, or in a BEGIN rule.
Setting IGNORECASE from the command line is a way to make a program
case-insensitive without having to edit it.

The value of IGNORECASE has no effect if gawk is in compatibility
mode (see

Invoking awk
). Case is always significant in compatibility

mode.

1.50 gawk.info/Comparison Patterns

Comparison Expressions as Patterns
==================================

Comparison patterns test relationships such as equality between two
strings or numbers. They are a special case of expression patterns
(see

Expressions as Patterns
). They are written with relational

operators, which are a superset of those in C. Here is a table of them:

x < y
True if x is less than y.

x <= y
True if x is less than or equal to y.

x > y
True if x is greater than y.

x >= y
True if x is greater than or equal to y.

x == y
True if x is equal to y.

x != y
True if x is not equal to y.

x ~ y
True if x matches the regular expression described by y.

x !~ y

gawk.info 66 / 207

True if x does not match the regular expression described by y.

The operands of a relational operator are compared as numbers if they
are both numbers. Otherwise they are converted to, and compared as,
strings (see

Conversion of Strings and Numbers
, for the detailed

rules). Strings are compared by comparing the first character of each,
then the second character of each, and so on, until there is a
difference. If the two strings are equal until the shorter one runs
out, the shorter one is considered to be less than the longer one.
Thus, "10" is less than "9", and "abc" is less than "abcd".

The left operand of the ~ and !~ operators is a string. The right
operand is either a constant regular expression enclosed in slashes (
/regexp/), or any expression, whose string value is used as a
dynamic regular expression (see

How to Use Regular Expressions
).

The following example prints the second field of each input record
whose first field is precisely foo.

awk ’$1 == "foo" { print $2 }’ BBS-list

Contrast this with the following regular expression match, which would
accept any record with a first field that contains foo:

awk ’$1 ~ "foo" { print $2 }’ BBS-list

or, equivalently, this one:

awk ’$1 ~ /foo/ { print $2 }’ BBS-list

1.51 gawk.info/Boolean Patterns

Boolean Operators and Patterns
==============================

A boolean pattern is an expression which combines other patterns
using the boolean operators "or" (||), "and" (&&), and "not" (!).
Whether the boolean pattern matches an input record depends on whether
its subpatterns match.

For example, the following command prints all records in the input
file BBS-list that contain both 2400 and foo.

awk ’/2400/ && /foo/’ BBS-list

The following command prints all records in the input file BBS-list
that contain either 2400 or foo, or both.

awk ’/2400/ || /foo/’ BBS-list

gawk.info 67 / 207

The following command prints all records in the input file BBS-list
that do not contain the string foo.

awk ’! /foo/’ BBS-list

Note that boolean patterns are a special case of expression patterns
(see

Expressions as Patterns
); they are expressions that use the

boolean operators. See
Boolean Expressions
, for complete information

on the boolean operators.

The subpatterns of a boolean pattern can be constant regular
expressions, comparisons, or any other awk expressions. Range patterns
are not expressions, so they cannot appear inside boolean patterns.
Likewise, the special patterns BEGIN and END, which never match any
input record, are not expressions and cannot appear inside boolean
patterns.

1.52 gawk.info/Expression Patterns

Expressions as Patterns
=======================

Any awk expression is also valid as an awk pattern. Then the
pattern "matches" if the expression’s value is nonzero (if a number) or
nonnull (if a string).

The expression is reevaluated each time the rule is tested against a
new input record. If the expression uses fields such as $1, the value
depends directly on the new input record’s text; otherwise, it depends
only on what has happened so far in the execution of the awk program,
but that may still be useful.

Comparison patterns are actually a special case of this. For
example, the expression $5 == "foo" has the value 1 when the value of
$5 equals "foo", and 0 otherwise; therefore, this expression as a
pattern matches when the two values are equal.

Boolean patterns are also special cases of expression patterns.

A constant regexp as a pattern is also a special case of an
expression pattern. /foo/ as an expression has the value 1 if foo
appears in the current input record; thus, as a pattern, /foo/ matches
any record containing foo.

Other implementations of awk that are not yet POSIX compliant are
less general than gawk: they allow comparison expressions, and boolean
combinations thereof (optionally with parentheses), but not necessarily
other kinds of expressions.

gawk.info 68 / 207

1.53 gawk.info/Ranges

Specifying Record Ranges with Patterns
======================================

A range pattern is made of two patterns separated by a comma, of the
form begpat, endpat. It matches ranges of consecutive input records.
The first pattern begpat controls where the range begins, and the
second one endpat controls where it ends. For example,

awk ’$1 == "on", $1 == "off"’

prints every record between on/off pairs, inclusive.

A range pattern starts out by matching begpat against every input
record; when a record matches begpat, the range pattern becomes turned
on. The range pattern matches this record. As long as it stays turned
on, it automatically matches every input record read. It also matches
endpat against every input record; when that succeeds, the range
pattern is turned off again for the following record. Now it goes back
to checking begpat against each record.

The record that turns on the range pattern and the one that turns it
off both match the range pattern. If you don’t want to operate on
these records, you can write if statements in the rule’s action to
distinguish them.

It is possible for a pattern to be turned both on and off by the same
record, if both conditions are satisfied by that record. Then the
action is executed for just that record.

1.54 gawk.info/BEGIN-END

BEGIN and END Special Patterns
==============================

BEGIN and END are special patterns. They are not used to match
input records. Rather, they are used for supplying start-up or
clean-up information to your awk script. A BEGIN rule is executed,
once, before the first input record has been read. An END rule is
executed, once, after all the input has been read. For example:

awk ’BEGIN { print "Analysis of ‘foo’" }
/foo/ { ++foobar }
END { print "‘foo’ appears " foobar " times." }’ BBS-list

This program finds the number of records in the input file BBS-list
that contain the string foo. The BEGIN rule prints a title for the
report. There is no need to use the BEGIN rule to initialize the

gawk.info 69 / 207

counter foobar to zero, as awk does this for us automatically (see

Variables
).

The second rule increments the variable foobar every time a record
containing the pattern foo is read. The END rule prints the value of
foobar at the end of the run.

The special patterns BEGIN and END cannot be used in ranges or with
boolean operators (indeed, they cannot be used with any operators).

An awk program may have multiple BEGIN and/or END rules. They are
executed in the order they appear, all the BEGIN rules at start-up and
all the END rules at termination.

Multiple BEGIN and END sections are useful for writing library
functions, since each library can have its own BEGIN or END rule to do
its own initialization and/or cleanup. Note that the order in which
library functions are named on the command line controls the order in
which their BEGIN and END rules are executed. Therefore you have to be
careful to write such rules in library files so that the order in which
they are executed doesn’t matter. See

Invoking awk
, for more

information on using library functions.

If an awk program only has a BEGIN rule, and no other rules, then
the program exits after the BEGIN rule has been run. (Older versions
of awk used to keep reading and ignoring input until end of file was
seen.) However, if an END rule exists as well, then the input will be
read, even if there are no other rules in the program. This is
necessary in case the END rule checks the NR variable.

BEGIN and END rules must have actions; there is no default action
for these rules since there is no current record when they run.

1.55 gawk.info/Empty

The Empty Pattern
=================

An empty pattern is considered to match every input record. For
example, the program:

awk ’{ print $1 }’ BBS-list

prints the first field of every record.

gawk.info 70 / 207

1.56 gawk.info/Actions

Overview of Actions

An awk program or script consists of a series of rules and function
definitions, interspersed. (Functions are described later. See

User-defined Functions
.)

A rule contains a pattern and an action, either of which may be
omitted. The purpose of the action is to tell awk what to do once a
match for the pattern is found. Thus, the entire program looks
somewhat like this:

[pattern] [{ action }]
[pattern] [{ action }]
...
function name (args) { ... }
...

An action consists of one or more awk statements, enclosed in curly
braces ({ and }). Each statement specifies one thing to be done. The
statements are separated by newlines or semicolons.

The curly braces around an action must be used even if the action
contains only one statement, or even if it contains no statements at
all. However, if you omit the action entirely, omit the curly braces as
well. (An omitted action is equivalent to { print $0 }.)

Here are the kinds of statements supported in awk:

* Expressions, which can call functions or assign values to variables
(see

Expressions as Action Statements
). Executing this kind of

statement simply computes the value of the expression and then
ignores it. This is useful when the expression has side effects
(see

Assignment Expressions
).

* Control statements, which specify the control flow of awk
programs. The awk language gives you C-like constructs (if, for,
while, and so on) as well as a few special ones (see

Control Statements in Actions
).

* Compound statements, which consist of one or more statements
enclosed in curly braces. A compound statement is used in order
to put several statements together in the body of an if, while, do
or for statement.

* Input control, using the getline command (see

gawk.info 71 / 207

Explicit Input with getline
), and the next statement (see

The next Statement
).

* Output statements, print and printf. See
Printing Output
.

* Deletion statements, for deleting array elements. See

The delete Statement
.

1.57 gawk.info/Expressions

Expressions as Action Statements

Expressions are the basic building block of awk actions. An
expression evaluates to a value, which you can print, test, store in a
variable or pass to a function. But beyond that, an expression can
assign a new value to a variable or a field, with an assignment
operator.

An expression can serve as a statement on its own. Most other kinds
of statements contain one or more expressions which specify data to be
operated on. As in other languages, expressions in awk include
variables, array references, constants, and function calls, as well as
combinations of these with various operators.

Constants
String, numeric, and regexp constants.

Variables
Variables give names to values for later use.

Arithmetic Ops
Arithmetic operations (+, -, etc.)

Concatenation
Concatenating strings.

Comparison Ops
Comparison of numbers and strings
with <, etc.

Boolean Ops
Combining comparison expressions

gawk.info 72 / 207

using boolean operators
|| ("or"), && ("and") and ! ("not").

Assignment Ops
Changing the value of a variable or a field.

Increment Ops
Incrementing the numeric value of a variable.

Conversion
The conversion of strings to numbers

and vice versa.

Values
The whole truth about numbers and strings.

Conditional Exp
Conditional expressions select

between two subexpressions under control
of a third subexpression.

Function Calls
A function call is an expression.

Precedence
How various operators nest.

1.58 gawk.info/Constants

Constant Expressions
====================

The simplest type of expression is the constant, which always has
the same value. There are three types of constants: numeric constants,
string constants, and regular expression constants.

A numeric constant stands for a number. This number can be an
integer, a decimal fraction, or a number in scientific (exponential)
notation. Note that all numeric values are represented within awk in
double-precision floating point. Here are some examples of numeric
constants, which all have the same value:

105
1.05e+2
1050e-1

A string constant consists of a sequence of characters enclosed in
double-quote marks. For example:

"parrot"

gawk.info 73 / 207

represents the string whose contents are parrot. Strings in gawk can
be of any length and they can contain all the possible 8-bit ASCII
characters including ASCII NUL. Other awk implementations may have
difficulty with some character codes.

Some characters cannot be included literally in a string constant.
You represent them instead with escape sequences, which are character
sequences beginning with a backslash (\).

One use of an escape sequence is to include a double-quote character
in a string constant. Since a plain double-quote would end the string,
you must use \" to represent a single double-quote character as a part
of the string. The backslash character itself is another character
that cannot be included normally; you write \ to put one backslash in
the string. Thus, the string whose contents are the two characters "\
must be written "\"\".

Another use of backslash is to represent unprintable characters such
as newline. While there is nothing to stop you from writing most of
these characters directly in a string constant, they may look ugly.

Here is a table of all the escape sequences used in awk:

\
Represents a literal backslash, \ .

\a
Represents the "alert" character, control-g, ASCII code 7.

\b
Represents a backspace, control-h, ASCII code 8.

\f
Represents a formfeed, control-l, ASCII code 12.

\n
Represents a newline, control-j, ASCII code 10.

\r
Represents a carriage return, control-m, ASCII code 13.

\t
Represents a horizontal tab, control-i, ASCII code 9.

\v
Represents a vertical tab, control-k, ASCII code 11.

@{i}nnn
Represents the octal value nnn, where nnn are one to three digits
between 0 and 7. For example, the code for the ASCII ESC (escape)
character is \033.

\xhh ...
Represents the hexadecimal value hh, where hh are hexadecimal
digits (0 through 9 and either A through F or a through f). Like
the same construct in ANSI C, the escape sequence continues until
the first non-hexadecimal digit is seen. However, using more than

gawk.info 74 / 207

two hexadecimal digits produces undefined results. (The \x escape
sequence is not allowed in POSIX awk.)

A constant regexp is a regular expression description enclosed in
slashes, such as /^beginning and end$/. Most regexps used in awk
programs are constant, but the ~ and !~ operators can also match
computed or "dynamic" regexps (see

How to Use Regular Expressions
).

Constant regexps may be used like simple expressions. When a
constant regexp is not on the right hand side of the ~ or !~ operators,
it has the same meaning as if it appeared in a pattern, i.e. ($0 ~
/foo/) (see

Expressions as Patterns
). This means that the two code

segments,

if ($0 ~ /barfly/ || $0 ~ /camelot/)
print "found"

and

if (/barfly/ || /camelot/)
print "found"

are exactly equivalent. One rather bizarre consequence of this rule is
that the following boolean expression is legal, but does not do what
the user intended:

if (/foo/ ~ $1) print "found foo"

This code is "obviously" testing $1 for a match against the regexp
/foo/. But in fact, the expression (/foo/ ~ $1) actually means (($0 ~
/foo/) ~ $1). In other words, first match the input record against the
regexp /foo/. The result will be either a 0 or a 1, depending upon the
success or failure of the match. Then match that result against the
first field in the record.

Since it is unlikely that you would ever really wish to make this
kind of test, gawk will issue a warning when it sees this construct in
a program.

Another consequence of this rule is that the assignment statement

matches = /foo/

will assign either 0 or 1 to the variable matches, depending upon the
contents of the current input record.

Constant regular expressions are also used as the first argument for
the sub and gsub functions (see

Built-in Functions for String Manipulation
).

This feature of the language was never well documented until the

gawk.info 75 / 207

POSIX specification.

You may be wondering, when is

$1 ~ /foo/ { ... }

preferable to

$1 ~ "foo" { ... }

Since the right-hand sides of both ~ operators are constants, it is
more efficient to use the /foo/ form: awk can note that you have
supplied a regexp and store it internally in a form that makes pattern
matching more efficient. In the second form, awk must first convert
the string into this internal form, and then perform the pattern
matching. The first form is also better style; it shows clearly that
you intend a regexp match.

1.59 gawk.info/Variables

Variables
=========

Variables let you give names to values and refer to them later. You
have already seen variables in many of the examples. The name of a
variable must be a sequence of letters, digits and underscores, but it
may not begin with a digit. Case is significant in variable names; a
and A are distinct variables.

A variable name is a valid expression by itself; it represents the
variable’s current value. Variables are given new values with
assignment operators and increment operators. See

Assignment Expressions
.

A few variables have special built-in meanings, such as FS, the
field separator, and NF, the number of fields in the current input
record. See

Built-in Variables
, for a list of them. These built-in

variables can be used and assigned just like all other variables, but
their values are also used or changed automatically by awk. Each
built-in variable’s name is made entirely of upper case letters.

Variables in awk can be assigned either numeric or string values.
By default, variables are initialized to the null string, which is
effectively zero if converted to a number. There is no need to
"initialize" each variable explicitly in awk, the way you would in C or
most other traditional languages.

gawk.info 76 / 207

Assignment Options
Setting variables on the command line

and a summary of command line syntax.
This is an advanced method of input.

1.60 gawk.info/Assignment Options

Assigning Variables on the Command Line

You can set any awk variable by including a variable assignment
among the arguments on the command line when you invoke awk (see

Invoking awk
). Such an assignment has this form:

variable=text

With it, you can set a variable either at the beginning of the awk run
or in between input files.

If you precede the assignment with the -v option, like this:

-v variable=text

then the variable is set at the very beginning, before even the BEGIN
rules are run. The -v option and its assignment must precede all the
file name arguments, as well as the program text.

Otherwise, the variable assignment is performed at a time determined
by its position among the input file arguments: after the processing of
the preceding input file argument. For example:

awk ’{ print $n }’ n=4 inventory-shipped n=2 BBS-list

prints the value of field number n for all input records. Before the
first file is read, the command line sets the variable n equal to 4.
This causes the fourth field to be printed in lines from the file
inventory-shipped. After the first file has finished, but before the
second file is started, n is set to 2, so that the second field is
printed in lines from BBS-list.

Command line arguments are made available for explicit examination by
the awk program in an array named ARGV (see

Built-in Variables
).

awk processes the values of command line assignments for escape
sequences (see

Constant Expressions
).

gawk.info 77 / 207

1.61 gawk.info/Arithmetic Ops

Arithmetic Operators
====================

The awk language uses the common arithmetic operators when
evaluating expressions. All of these arithmetic operators follow normal
precedence rules, and work as you would expect them to. This example
divides field three by field four, adds field two, stores the result
into field one, and prints the resulting altered input record:

awk ’{ $1 = $2 + $3 / $4; print }’ inventory-shipped

The arithmetic operators in awk are:

x + y
Addition.

x - y
Subtraction.

- x
Negation.

+ x
Unary plus. No real effect on the expression.

x * y
Multiplication.

x / y
Division. Since all numbers in awk are double-precision floating
point, the result is not rounded to an integer: 3 / 4 has the
value 0.75.

x % y
Remainder. The quotient is rounded toward zero to an integer,
multiplied by y and this result is subtracted from x. This
operation is sometimes known as "trunc-mod." The following
relation always holds:

b * int(a / b) + (a % b) == a

One possibly undesirable effect of this definition of remainder is
that x % y is negative if x is negative. Thus,

-17 % 8 = -1

In other awk implementations, the signedness of the remainder may
be machine dependent.

x ^ y
x ** y

gawk.info 78 / 207

Exponentiation: x raised to the y power. 2 ^ 3 has the value 8.
The character sequence ** is equivalent to ^. (The POSIX standard
only specifies the use of ^ for exponentiation.)

1.62 gawk.info/Concatenation

String Concatenation
====================

There is only one string operation: concatenation. It does not have
a specific operator to represent it. Instead, concatenation is
performed by writing expressions next to one another, with no operator.
For example:

awk ’{ print "Field number one: " $1 }’ BBS-list

produces, for the first record in BBS-list:

Field number one: aardvark

Without the space in the string constant after the :, the line would
run together. For example:

awk ’{ print "Field number one:" $1 }’ BBS-list

produces, for the first record in BBS-list:

Field number one:aardvark

Since string concatenation does not have an explicit operator, it is
often necessary to insure that it happens where you want it to by
enclosing the items to be concatenated in parentheses. For example, the
following code fragment does not concatenate file and name as you might
expect:

file = "file"
name = "name"
print "something meaningful" > file name

It is necessary to use the following:

print "something meaningful" > (file name)

We recommend you use parentheses around concatenation in all but the
most common contexts (such as in the right-hand operand of =).

1.63 gawk.info/Comparison Ops

Comparison Expressions
======================

gawk.info 79 / 207

Comparison expressions compare strings or numbers for relationships
such as equality. They are written using relational operators, which
are a superset of those in C. Here is a table of them:

x < y
True if x is less than y.

x <= y
True if x is less than or equal to y.

x > y
True if x is greater than y.

x >= y
True if x is greater than or equal to y.

x == y
True if x is equal to y.

x != y
True if x is not equal to y.

x ~ y
True if the string x matches the regexp denoted by y.

x !~ y
True if the string x does not match the regexp denoted by y.

subscript in array
True if array array has an element with the subscript subscript.

Comparison expressions have the value 1 if true and 0 if false.

The rules gawk uses for performing comparisons are based on those in
draft 11.2 of the POSIX standard. The POSIX standard introduced the concept
of a numeric string, which is simply a string that looks like a number,
for example, " +2".

When performing a relational operation, gawk considers the type of an
operand to be the type it received on its last assignment, rather than
the type of its last use (see

Numeric and String Values
). This type is

unknown when the operand is from an "external" source: field variables,
command line arguments, array elements resulting from a split
operation, and the value of an ENVIRON element. In this case only, if
the operand is a numeric string, then it is considered to be of both
string type and numeric type. If at least one operand of a comparison
is of string type only, then a string comparison is performed. Any
numeric operand will be converted to a string using the value of CONVFMT
(see

Conversion of Strings and Numbers
). If one operand of a

comparison is numeric, and the other operand is either numeric or both
numeric and string, then gawk does a numeric comparison. If both
operands have both types, then the comparison is numeric. Strings are

gawk.info 80 / 207

compared by comparing the first character of each, then the second
character of each, and so on. Thus "10" is less than "9". If there
are two strings where one is a prefix of the other, the shorter string
is less than the longer one. Thus "abc" is less than "abcd".

Here are some sample expressions, how gawk compares them, and what
the result of the comparison is.

1.5 <= 2.0
numeric comparison (true)

"abc" >= "xyz"
string comparison (false)

1.5 != " +2"
string comparison (true)

"1e2" < "3"
string comparison (true)

a = 2; b = "2"
a == b

string comparison (true)

echo 1e2 3 | awk ’{ print ($1 < $2) ? "true" : "false" }’

prints false since both $1 and $2 are numeric strings and thus have
both string and numeric types, thus dictating a numeric comparison.

The purpose of the comparison rules and the use of numeric strings is
to attempt to produce the behavior that is "least surprising," while
still "doing the right thing."

String comparisons and regular expression comparisons are very
different. For example,

$1 == "foo"

has the value of 1, or is true, if the first field of the current input
record is precisely foo. By contrast,

$1 ~ /foo/

has the value 1 if the first field contains foo, such as foobar.

The right hand operand of the ~ and !~ operators may be either a
constant regexp (/.../), or it may be an ordinary expression, in which
case the value of the expression as a string is a dynamic regexp (see

How to Use Regular Expressions
).

In very recent implementations of awk, a constant regular expression
in slashes by itself is also an expression. The regexp /regexp/ is an
abbreviation for this comparison expression:

$0 ~ /regexp/

gawk.info 81 / 207

In some contexts it may be necessary to write parentheses around the
regexp to avoid confusing the gawk parser. For example, (/x/ - /y/) >
threshold is not allowed, but ((/x/) - (/y/)) > threshold parses
properly.

One special place where /foo/ is not an abbreviation for $0 ~ /foo/
is when it is the right-hand operand of ~ or !~! See

Constant Expressions
, where this is discussed in more detail.

1.64 gawk.info/Boolean Ops

Boolean Expressions
===================

A boolean expression is a combination of comparison expressions or
matching expressions, using the boolean operators "or" (||), "and"
(&&), and "not" (!), along with parentheses to control
nesting. The truth of the boolean expression is computed by combining
the truth values of the component expressions.

Boolean expressions can be used wherever comparison and matching
expressions can be used. They can be used in if, while do and for
statements. They have numeric values (1 if true, 0 if false), which
come into play if the result of the boolean expression is stored in a
variable, or used in arithmetic.

In addition, every boolean expression is also a valid boolean
pattern, so you can use it as a pattern to control the execution of
rules.

Here are descriptions of the three boolean operators, with an
example of each. It may be instructive to compare these examples with
the analogous examples of boolean patterns (see

Boolean Operators and Patterns
), which use the same boolean operators

in patterns instead of expressions.

boolean1 && boolean2
True if both boolean1 and boolean2 are true. For example, the
following statement prints the current input record if it contains
both 2400 and foo.

if ($0 ~ /2400/ && $0 ~ /foo/) print

The subexpression boolean2 is evaluated only if boolean1 is true.
This can make a difference when boolean2 contains expressions that
have side effects: in the case of $0 ~ /foo/ && ($2 == bar++), the
variable bar is not incremented if there is no foo in the record.

gawk.info 82 / 207

boolean1 || boolean2
True if at least one of boolean1 or boolean2 is true. For
example, the following command prints all records in the input
file BBS-list that contain either 2400 or foo, or both.

awk ’{ if ($0 ~ /2400/ || $0 ~ /foo/) print }’ BBS-list

The subexpression boolean2 is evaluated only if boolean1 is false.
This can make a difference when boolean2 contains expressions
that have side effects.

!boolean
True if boolean is false. For example, the following program
prints all records in the input file BBS-list that do not contain
the string foo.

awk ’{ if (! ($0 ~ /foo/)) print }’ BBS-list

1.65 gawk.info/Assignment Ops

Assignment Expressions
======================

An assignment is an expression that stores a new value into a
variable. For example, let’s assign the value 1 to the variable z:

z = 1

After this expression is executed, the variable z has the value 1.
Whatever old value z had before the assignment is forgotten.

Assignments can store string values also. For example, this would
store the value "this food is good" in the variable message:

thing = "food"
predicate = "good"
message = "this " thing " is " predicate

(This also illustrates concatenation of strings.)

The = sign is called an assignment operator. It is the simplest
assignment operator because the value of the right-hand operand is
stored unchanged.

Most operators (addition, concatenation, and so on) have no effect
except to compute a value. If you ignore the value, you might as well
not use the operator. An assignment operator is different; it does
produce a value, but even if you ignore the value, the assignment still
makes itself felt through the alteration of the variable. We call this
a side effect.

The left-hand operand of an assignment need not be a variable (see

gawk.info 83 / 207

Variables
); it can also be a field (see

Changing the Contents of a Field
) or an array element (see

Arrays in awk
). These are all called lvalues, which means they can

appear on the left-hand side of an assignment operator. The right-hand
operand may be any expression; it produces the new value which the
assignment stores in the specified variable, field or array element.

It is important to note that variables do not have permanent types.
The type of a variable is simply the type of whatever value it happens
to hold at the moment. In the following program fragment, the variable
foo has a numeric value at first, and a string value later on:

foo = 1
print foo
foo = "bar"
print foo

When the second assignment gives foo a string value, the fact that it
previously had a numeric value is forgotten.

An assignment is an expression, so it has a value: the same value
that is assigned. Thus, z = 1 as an expression has the value 1. One
consequence of this is that you can write multiple assignments together:

x = y = z = 0

stores the value 0 in all three variables. It does this because the
value of z = 0, which is 0, is stored into y, and then the value of y =
z = 0, which is 0, is stored into x.

You can use an assignment anywhere an expression is called for. For
example, it is valid to write x != (y = 1) to set y to 1 and then test
whether x equals 1. But this style tends to make programs hard to
read; except in a one-shot program, you should rewrite it to get rid of
such nesting of assignments. This is never very hard.

Aside from =, there are several other assignment operators that do
arithmetic with the old value of the variable. For example, the
operator += computes a new value by adding the right-hand value to the
old value of the variable. Thus, the following assignment adds 5 to
the value of foo:

foo += 5

This is precisely equivalent to the following:

foo = foo + 5

Use whichever one makes the meaning of your program clearer.

Here is a table of the arithmetic assignment operators. In each
case, the right-hand operand is an expression whose value is converted

gawk.info 84 / 207

to a number.

lvalue += increment
Adds increment to the value of lvalue to make the new value of
lvalue.

lvalue -= decrement
Subtracts decrement from the value of lvalue.

lvalue *= coefficient
Multiplies the value of lvalue by coefficient.

lvalue /= quotient
Divides the value of lvalue by quotient.

lvalue %= modulus
Sets lvalue to its remainder by modulus.

lvalue ^= power
lvalue **= power

Raises lvalue to the power power. (Only the ^= operator is
specified by POSIX.)

1.66 gawk.info/Increment Ops

Increment Operators
===================

Increment operators increase or decrease the value of a variable by
1. You could do the same thing with an assignment operator, so the
increment operators add no power to the awk language; but they are
convenient abbreviations for something very common.

The operator to add 1 is written ++. It can be used to increment a
variable either before or after taking its value.

To pre-increment a variable v, write ++v. This adds 1 to the value
of v and that new value is also the value of this expression. The
assignment expression v += 1 is completely equivalent.

Writing the ++ after the variable specifies post-increment. This
increments the variable value just the same; the difference is that the
value of the increment expression itself is the variable’s old value.
Thus, if foo has the value 4, then the expression foo++ has the value
4, but it changes the value of foo to 5.

The post-increment foo++ is nearly equivalent to writing (foo += 1)
- 1. It is not perfectly equivalent because all numbers in awk are
floating point: in floating point, foo + 1 - 1 does not necessarily
equal foo. But the difference is minute as long as you stick to
numbers that are fairly small (less than a trillion).

Any lvalue can be incremented. Fields and array elements are

gawk.info 85 / 207

incremented just like variables. (Use $(i++) when you wish to do a
field reference and a variable increment at the same time. The
parentheses are necessary because of the precedence of the field
reference operator, $.)

The decrement operator - works just like ++ except that it subtracts
1 instead of adding. Like ++, it can be used before the lvalue to
pre-decrement or after it to post-decrement.

Here is a summary of increment and decrement expressions.

++lvalue
This expression increments lvalue and the new value becomes the
value of this expression.

lvalue++
This expression causes the contents of lvalue to be incremented.
The value of the expression is the old value of lvalue.

-lvalue
Like ++lvalue, but instead of adding, it subtracts. It decrements
lvalue and delivers the value that results.

lvalue-
Like lvalue++, but instead of adding, it subtracts. It decrements
lvalue. The value of the expression is the old value of lvalue.

1.67 gawk.info/Conversion

Conversion of Strings and Numbers
=================================

Strings are converted to numbers, and numbers to strings, if the
context of the awk program demands it. For example, if the value of
either foo or bar in the expression foo + bar happens to be a string,
it is converted to a number before the addition is performed. If
numeric values appear in string concatenation, they are converted to
strings. Consider this:

two = 2; three = 3
print (two three) + 4

This eventually prints the (numeric) value 27. The numeric values of
the variables two and three are converted to strings and concatenated
together, and the resulting string is converted back to the number 23,
to which 4 is then added.

If, for some reason, you need to force a number to be converted to a
string, concatenate the null string with that number. To force a string
to be converted to a number, add zero to that string.

A string is converted to a number by interpreting a numeric prefix
of the string as numerals: "2.5" converts to 2.5, "1e3" converts to
1000, and "25fix" has a numeric value of 25. Strings that can’t be

gawk.info 86 / 207

interpreted as valid numbers are converted to zero.

The exact manner in which numbers are converted into strings is
controlled by the awk built-in variable CONVFMT (see

Built-in Variables
). Numbers are converted using a special version of

the sprintf function (see
Built-in Functions
) with CONVFMT as the format

specifier.

CONVFMT’s default value is "%.6g", which prints a value with at
least six significant digits. For some applications you will want to
change it to specify more precision. Double precision on most modern
machines gives you 16 or 17 decimal digits of precision.

Strange results can happen if you set CONVFMT to a string that
doesn’t tell sprintf how to format floating point numbers in a useful
way. For example, if you forget the % in the format, all numbers will
be converted to the same constant string.

As a special case, if a number is an integer, then the result of
converting it to a string is always an integer, no matter what the
value of CONVFMT may be. Given the following code fragment:

CONVFMT = "%2.2f"
a = 12
b = a ""

b has the value "12", not "12.00".

Prior to the POSIX standard, awk specified that the value of OFMT
was used for converting numbers to strings. OFMT specifies the output
format to use when printing numbers with print. CONVFMT was introduced
in order to separate the semantics of conversions from the semantics of
printing. Both CONVFMT and OFMT have the same default value: "%.6g".
In the vast majority of cases, old awk programs will not change their
behavior. However, this use of OFMT is something to keep in mind if
you must port your program to other implementations of awk; we recommend
that instead of changing your programs, you just port gawk itself!

1.68 gawk.info/Values

Numeric and String Values
=========================

Through most of this manual, we present awk values (such as
constants, fields, or variables) as either numbers or strings. This is
a convenient way to think about them, since typically they are used in
only one way, or the other.

In truth though, awk values can be both string and numeric, at the

gawk.info 87 / 207

same time. Internally, awk represents values with a string, a
(floating point) number, and an indication that one, the other, or both
representations of the value are valid.

Keeping track of both kinds of values is important for execution
efficiency: a variable can acquire a string value the first time it is
used as a string, and then that string value can be used until the
variable is assigned a new value. Thus, if a variable with only a
numeric value is used in several concatenations in a row, it only has
to be given a string representation once. The numeric value remains
valid, so that no conversion back to a number is necessary if the
variable is later used in an arithmetic expression.

Tracking both kinds of values is also important for precise numerical
calculations. Consider the following:

a = 123.321
CONVFMT = "%3.1f"
b = a " is a number"
c = a + 1.654

The variable a receives a string value in the concatenation and
assignment to b. The string value of a is "123.3". If the numeric
value was lost when it was converted to a string, then the numeric use
of a in the last statement would lose information. c would be assigned
the value 124.954 instead of 124.975. Such errors accumulate rapidly,
and very adversely affect numeric computations.

Once a numeric value acquires a corresponding string value, it stays
valid until a new assignment is made. If CONVFMT (see

Conversion of Strings and Numbers
) changes in the meantime, the old

string value will still be used. For example:

BEGIN {
CONVFMT = "%2.2f"
a = 123.456
b = a "" # force ‘a’ to have string value too
printf "a = %s\n", a
CONVFMT = "%.6g"
printf "a = %s\n", a
a += 0 # make ‘a’ numeric only again
printf "a = %s\n", a # use ‘a’ as string

}

This program prints a = 123.46 twice, and then prints a = 123.456.

See
Conversion of Strings and Numbers
, for the rules that specify

how string values are made from numeric values.

gawk.info 88 / 207

1.69 gawk.info/Conditional Exp

Conditional Expressions
=======================

A conditional expression is a special kind of expression with three
operands. It allows you to use one expression’s value to select one of
two other expressions.

The conditional expression looks the same as in the C language:

selector ? if-true-exp : if-false-exp

There are three subexpressions. The first, selector, is always
computed first. If it is "true" (not zero and not null) then
if-true-exp is computed next and its value becomes the value of the
whole expression. Otherwise, if-false-exp is computed next and its
value becomes the value of the whole expression.

For example, this expression produces the absolute value of x:

x > 0 ? x : -x

Each time the conditional expression is computed, exactly one of
if-true-exp and if-false-exp is computed; the other is ignored. This
is important when the expressions contain side effects. For example,
this conditional expression examines element i of either array a or
array b, and increments i.

x == y ? a[i++] : b[i++]

This is guaranteed to increment i exactly once, because each time one
or the other of the two increment expressions is executed, and the
other is not.

1.70 gawk.info/Function Calls

Function Calls
==============

A function is a name for a particular calculation. Because it has a
name, you can ask for it by name at any point in the program. For
example, the function sqrt computes the square root of a number.

A fixed set of functions are built-in, which means they are
available in every awk program. The sqrt function is one of these.
See

Built-in Functions
, for a list of built-in functions and their

descriptions. In addition, you can define your own functions in the
program for use elsewhere in the same program. See

User-defined Functions

gawk.info 89 / 207

, for how to do this.

The way to use a function is with a function call expression, which
consists of the function name followed by a list of arguments in
parentheses. The arguments are expressions which give the raw
materials for the calculation that the function will do. When there is
more than one argument, they are separated by commas. If there are no
arguments, write just () after the function name. Here are some
examples:

sqrt(x^2 + y^2) # One argument
atan2(y, x) # Two arguments
rand() # No arguments

Do not put any space between the function name and the
open-parenthesis! A user-defined function name looks just like the
name of a variable, and space would make the expression look like
concatenation of a variable with an expression inside parentheses.
Space before the parenthesis is harmless with built-in functions, but
it is best not to get into the habit of using space to avoid mistakes
with user-defined functions.

Each function expects a particular number of arguments. For
example, the sqrt function must be called with a single argument, the
number to take the square root of:

sqrt(argument)

Some of the built-in functions allow you to omit the final argument.
If you do so, they use a reasonable default. See

Built-in Functions
,

for full details. If arguments are omitted in calls to user-defined
functions, then those arguments are treated as local variables,
initialized to the null string (see

User-defined Functions
).

Like every other expression, the function call has a value, which is
computed by the function based on the arguments you give it. In this
example, the value of sqrt(argument) is the square root of the
argument. A function can also have side effects, such as assigning the
values of certain variables or doing I/O.

Here is a command to read numbers, one number per line, and print the
square root of each one:

awk ’{ print "The square root of", $1, "is", sqrt($1) }’

1.71 gawk.info/Precedence

Operator Precedence (How Operators Nest)
==

gawk.info 90 / 207

Operator precedence determines how operators are grouped, when
different operators appear close by in one expression. For example, *
has higher precedence than +; thus, a + b * c means to multiply b and
c, and then add a to the product (i.e., a + (b * c)).

You can overrule the precedence of the operators by using
parentheses. You can think of the precedence rules as saying where the
parentheses are assumed if you do not write parentheses yourself. In
fact, it is wise to always use parentheses whenever you have an unusual
combination of operators, because other people who read the program may
not remember what the precedence is in this case. You might forget,
too; then you could make a mistake. Explicit parentheses will help
prevent any such mistake.

When operators of equal precedence are used together, the leftmost
operator groups first, except for the assignment, conditional and
exponentiation operators, which group in the opposite order. Thus, a -
b + c groups as (a - b) + c; a = b = c groups as a = (b = c).

The precedence of prefix unary operators does not matter as long as
only unary operators are involved, because there is only one way to
parse them--innermost first. Thus, $++i means $(++i) and ++$x means
++($x). However, when another operator follows the operand, then the
precedence of the unary operators can matter. Thus, $x^2 means ($x)^2,
but -x^2 means -(x^2), because - has lower precedence than ^ while $
has higher precedence.

Here is a table of the operators of awk, in order of increasing
precedence:

assignment
=, +=, -=, *=, /=, %=, ^=, **=. These operators group
right-to-left. (The **= operator is not specified by POSIX.)

conditional
?:. This operator groups right-to-left.

logical "or".
||.

logical "and".
&&.

array membership
in.

matching
~, !~.

relational, and redirection
The relational operators and the redirections have the same
precedence level. Characters such as > serve both as relationals
and as redirections; the context distinguishes between the two
meanings.

The relational operators are <, <=, ==, !=, >= and >.

gawk.info 91 / 207

The I/O redirection operators are <, >, >> and |.

Note that I/O redirection operators in print and printf statements
belong to the statement level, not to expressions. The
redirection does not produce an expression which could be the
operand of another operator. As a result, it does not make sense
to use a redirection operator near another operator of lower
precedence, without parentheses. Such combinations, for example
print foo > a ? b : c, result in syntax errors.

concatenation
No special token is used to indicate concatenation. The operands
are simply written side by side.

add, subtract
+, -.

multiply, divide, mod

*, /, %.

unary plus, minus, "not"
+, -, !.

exponentiation
^, **. These operators group right-to-left. (The ** operator is
not specified by POSIX.)

increment, decrement
++, -.

field
$.

1.72 gawk.info/Statements

Control Statements in Actions

Control statements such as if, while, and so on control the flow of
execution in awk programs. Most of the control statements in awk are
patterned on similar statements in C.

All the control statements start with special keywords such as if
and while, to distinguish them from simple expressions.

Many control statements contain other statements; for example, the
if statement contains another statement which may or may not be
executed. The contained statement is called the body. If you want to
include more than one statement in the body, group them into a single
compound statement with curly braces, separating them with newlines or
semicolons.

gawk.info 92 / 207

If Statement
Conditionally execute
some awk statements.

While Statement
Loop until some condition is satisfied.

Do Statement
Do specified action while looping until some
condition is satisfied.

For Statement
Another looping statement, that provides
initialization and increment clauses.

Break Statement
Immediately exit the innermost enclosing loop.

Continue Statement
Skip to the end of the innermost

enclosing loop.

Next Statement
Stop processing the current input record.

Next File Statement
Stop processing the current file.

Exit Statement
Stop execution of awk.

1.73 gawk.info/If Statement

The if Statement
================

The if-else statement is awk’s decision-making statement. It looks
like this:

if (condition) then-body [else else-body]

condition is an expression that controls what the rest of the statement
will do. If condition is true, then-body is executed; otherwise,
else-body is executed (assuming that the else clause is present). The
else part of the statement is optional. The condition is considered
false if its value is zero or the null string, and true otherwise.

Here is an example:

if (x % 2 == 0)
print "x is even"

else

gawk.info 93 / 207

print "x is odd"

In this example, if the expression x % 2 == 0 is true (that is, the
value of x is divisible by 2), then the first print statement is
executed, otherwise the second print statement is performed.

If the else appears on the same line as then-body, and then-body is
not a compound statement (i.e., not surrounded by curly braces), then a
semicolon must separate then-body from else. To illustrate this, let’s
rewrite the previous example:

awk ’{ if (x % 2 == 0) print "x is even"; else
print "x is odd" }’

If you forget the ;, awk won’t be able to parse the statement, and you
will get a syntax error.

We would not actually write this example this way, because a human
reader might fail to see the else if it were not the first thing on its
line.

1.74 gawk.info/While Statement

The while Statement
===================

In programming, a loop means a part of a program that is (or at
least can be) executed two or more times in succession.

The while statement is the simplest looping statement in awk. It
repeatedly executes a statement as long as a condition is true. It
looks like this:

while (condition)
body

Here body is a statement that we call the body of the loop, and
condition is an expression that controls how long the loop keeps
running.

The first thing the while statement does is test condition. If
condition is true, it executes the statement body. (condition is true
when the value is not zero and not a null string.) After body has been
executed, condition is tested again, and if it is still true, body is
executed again. This process repeats until condition is no longer
true. If condition is initially false, the body of the loop is never
executed.

This example prints the first three fields of each record, one per
line.

awk ’{ i = 1
while (i <= 3) {

print $i

gawk.info 94 / 207

i++
}

}’

Here the body of the loop is a compound statement enclosed in braces,
containing two statements.

The loop works like this: first, the value of i is set to 1. Then,
the while tests whether i is less than or equal to three. This is the
case when i equals one, so the i-th field is printed. Then the i++
increments the value of i and the loop repeats. The loop terminates
when i reaches 4.

As you can see, a newline is not required between the condition and
the body; but using one makes the program clearer unless the body is a
compound statement or is very simple. The newline after the open-brace
that begins the compound statement is not required either, but the program
would be hard to read without it.

1.75 gawk.info/Do Statement

The do-while Statement
======================

The do loop is a variation of the while looping statement. The do
loop executes the body once, then repeats body as long as condition is
true. It looks like this:

do
body

while (condition)

Even if condition is false at the start, body is executed at least
once (and only once, unless executing body makes condition true).
Contrast this with the corresponding while statement:

while (condition)
body

This statement does not execute body even once if condition is false to
begin with.

Here is an example of a do statement:

awk ’{ i = 1
do {

print $0
i++

} while (i <= 10)
}’

prints each input record ten times. It isn’t a very realistic example,
since in this case an ordinary while would do just as well. But this
reflects actual experience; there is only occasionally a real use for a

gawk.info 95 / 207

do statement.

1.76 gawk.info/For Statement

The for Statement
=================

The for statement makes it more convenient to count iterations of a
loop. The general form of the for statement looks like this:

for (initialization; condition; increment)
body

This statement starts by executing initialization. Then, as long as
condition is true, it repeatedly executes body and then increment.
Typically initialization sets a variable to either zero or one,
increment adds 1 to it, and condition compares it against the desired
number of iterations.

Here is an example of a for statement:

awk ’{ for (i = 1; i <= 3; i++)
print $i

}’

This prints the first three fields of each input record, one field per
line.

In the for statement, body stands for any statement, but
initialization, condition and increment are just expressions. You
cannot set more than one variable in the initialization part unless you
use a multiple assignment statement such as x = y = 0, which is
possible only if all the initial values are equal. (But you can
initialize additional variables by writing their assignments as
separate statements preceding the for loop.)

The same is true of the increment part; to increment additional
variables, you must write separate statements at the end of the loop.
The C compound expression, using C’s comma operator, would be useful in
this context, but it is not supported in awk.

Most often, increment is an increment expression, as in the example
above. But this is not required; it can be any expression whatever.
For example, this statement prints all the powers of 2 between 1 and
100:

for (i = 1; i <= 100; i *= 2)
print i

Any of the three expressions in the parentheses following the for may
be omitted if there is nothing to be done there. Thus, for (;x > 0;)
is equivalent to while (x > 0). If the condition is omitted, it is
treated as true, effectively yielding an infinite loop (i.e., a loop
that will never terminate).

gawk.info 96 / 207

In most cases, a for loop is an abbreviation for a while loop, as
shown here:

initialization
while (condition) {

body
increment

}

The only exception is when the continue statement (see

The continue Statement
) is used inside the loop; changing a for

statement to a while statement in this way can change the effect of the
continue statement inside the loop.

There is an alternate version of the for loop, for iterating over
all the indices of an array:

for (i in array)
do something with array[i]

See
Arrays in awk
, for more information on this version of the for loop.

The awk language has a for statement in addition to a while
statement because often a for loop is both less work to type and more
natural to think of. Counting the number of iterations is very common
in loops. It can be easier to think of this counting as part of
looping rather than as something to do inside the loop.

The next section has more complicated examples of for loops.

1.77 gawk.info/Break Statement

The break Statement
===================

The break statement jumps out of the innermost for, while, or
do-while loop that encloses it. The following example finds
the smallest divisor of any integer, and also identifies prime numbers:

awk ’# find smallest divisor of num
{ num = $1

for (div = 2; div*div <= num; div++)
if (num % div == 0)

break
if (num % div == 0)

printf "Smallest divisor of %d is %d\n", num, div
else

printf "%d is prime\n", num }’

gawk.info 97 / 207

When the remainder is zero in the first if statement, awk
immediately breaks out of the containing for loop. This means that awk
proceeds immediately to the statement following the loop and continues
processing. (This is very different from the exit statement which
stops the entire awk program. See

The exit Statement
.)

Here is another program equivalent to the previous one. It
illustrates how the condition of a for or while could just as well be
replaced with a break inside an if:

awk ’# find smallest divisor of num
{ num = $1

for (div = 2; ; div++) {
if (num % div == 0) {

printf "Smallest divisor of %d is %d\n", num, div
break

}
if (div*div > num) {

printf "%d is prime\n", num
break

}
}

}’

1.78 gawk.info/Continue Statement

The continue Statement
======================

The continue statement, like break, is used only inside for, while,
and do-while loops. It skips over the rest of the loop body, causing
the next cycle around the loop to begin immediately. Contrast this
with break, which jumps out of the loop altogether. Here is an example:

print names that don’t contain the string "ignore"

first, save the text of each line
{ names[NR] = $0 }

print what we’re interested in
END {

for (x in names) {
if (names[x] ~ /ignore/)

continue
print names[x]

}
}

If one of the input records contains the string ignore, this example
skips the print statement for that record, and continues back to the

gawk.info 98 / 207

first statement in the loop.

This is not a practical example of continue, since it would be just
as easy to write the loop like this:

for (x in names)
if (names[x] !~ /ignore/)

print names[x]

The continue statement in a for loop directs awk to skip the rest of
the body of the loop, and resume execution with the
increment-expression of the for statement. The following program
illustrates this fact:

awk ’BEGIN {
for (x = 0; x <= 20; x++) {

if (x == 5)
continue

printf ("%d ", x)
}
print ""

}’

This program prints all the numbers from 0 to 20, except for 5, for
which the printf is skipped. Since the increment x++ is not skipped, x
does not remain stuck at 5. Contrast the for loop above with the while
loop:

awk ’BEGIN {
x = 0
while (x <= 20) {

if (x == 5)
continue

printf ("%d ", x)
x++

}
print ""

}’

This program loops forever once x gets to 5.

As described above, the continue statement has no meaning when used
outside the body of a loop. However, although it was never documented,
historical implementations of awk have treated the continue statement
outside of a loop as if it were a next statement (see

The next Statement
). By default, gawk silently supports this usage.

However, if -W posix has been specified on the command line (see

Invoking awk
), it will be treated as an error, since the POSIX standard

specifies that continue should only be used inside the body of a loop.

gawk.info 99 / 207

1.79 gawk.info/Next Statement

The next Statement
==================

The next statement forces awk to immediately stop processing the
current record and go on to the next record. This means that no
further rules are executed for the current record. The rest of the
current rule’s action is not executed either.

Contrast this with the effect of the getline function (see

Explicit Input with getline
). That too causes awk to read the next

record immediately, but it does not alter the flow of control in any
way. So the rest of the current action executes with a new input
record.

At the highest level, awk program execution is a loop that reads an
input record and then tests each rule’s pattern against it. If you
think of this loop as a for statement whose body contains the rules,
then the next statement is analogous to a continue statement: it skips
to the end of the body of this implicit loop, and executes the
increment (which reads another record).

For example, if your awk program works only on records with four
fields, and you don’t want it to fail when given bad input, you might
use this rule near the beginning of the program:

NF != 4 {
printf("line %d skipped: doesn’t have 4 fields", FNR) > "/dev/stderr"
next

}

so that the following rules will not see the bad record. The error
message is redirected to the standard error output stream, as error
messages should be. See

Standard I/O Streams
.

According to the POSIX standard, the behavior is undefined if the
next statement is used in a BEGIN or END rule. gawk will treat it as a
syntax error.

If the next statement causes the end of the input to be reached,
then the code in the END rules, if any, will be executed. See

BEGIN and END Special Patterns
.

1.80 gawk.info/Next File Statement

gawk.info 100 / 207

The next file Statement
=======================

The next file statement is similar to the next statement. However,
instead of abandoning processing of the current record, the next file
statement instructs awk to stop processing the current data file.

Upon execution of the next file statement, FILENAME is updated to
the name of the next data file listed on the command line, FNR is reset
to 1, and processing starts over with the first rule in the progam.
See

Built-in Variables
.

If the next file statement causes the end of the input to be reached,
then the code in the END rules, if any, will be executed. See

BEGIN and END Special Patterns
.

The next file statement is a gawk extension; it is not (currently)
available in any other awk implementation. You can simulate its
behavior by creating a library file named nextfile.awk, with the
following contents. (This sample program uses user-defined functions,
a feature that has not been presented yet. See

User-defined Functions
,

for more information.)

nextfile --- function to skip remaining records in current file

this should be read in before the "main" awk program

function nextfile() { _abandon_ = FILENAME; next }

abandon == FILENAME && FNR > 1 { next }
abandon == FILENAME && FNR == 1 { _abandon_ = "" }

The nextfile function simply sets a "private" variable(1) to the
name of the current data file, and then retrieves the next record.
Since this file is read before the main awk program, the rules that
follows the function definition will be executed before the rules in
the main program. The first rule continues to skip records as long as
the name of the input file has not changed, and this is not the first
record in the file. This rule is sufficient most of the time. But
what if the same data file is named twice in a row on the command line?
This rule would not process the data file the second time. The second
rule catches this case: If the data file name is what was being
skipped, but FNR is 1, then this is the second time the file is being
processed, and it should not be skipped.

The next file statement would be useful if you have many data files
to process, and due to the nature of the data, you expect that you
would not want to process every record in the file. In order to move
on to the next data file, you would have to continue scanning the
unwanted records (as described above). The next file statement

gawk.info 101 / 207

accomplishes this much more efficiently.

---------- Footnotes ----------

(1) Since all variables in awk are global, this program uses the
common practice of prefixing the variable name with an underscore. In
fact, it also suffixes the variable name with an underscore, as extra
insurance against using a variable name that might be used in some
other library file.

1.81 gawk.info/Exit Statement

The exit Statement
==================

The exit statement causes awk to immediately stop executing the
current rule and to stop processing input; any remaining input is
ignored.

If an exit statement is executed from a BEGIN rule the program stops
processing everything immediately. No input records are read.
However, if an END rule is present, it is executed (see

BEGIN and END Special Patterns
).

If exit is used as part of an END rule, it causes the program to
stop immediately.

An exit statement that is part of an ordinary rule (that is, not part
of a BEGIN or END rule) stops the execution of any further automatic
rules, but the END rule is executed if there is one. If you do not
want the END rule to do its job in this case, you can set a variable to
nonzero before the exit statement, and check that variable in the END rule.

If an argument is supplied to exit, its value is used as the exit
status code for the awk process. If no argument is supplied, exit
returns status zero (success).

For example, let’s say you’ve discovered an error condition you
really don’t know how to handle. Conventionally, programs report this
by exiting with a nonzero status. Your awk program can do this using
an exit statement with a nonzero argument. Here’s an example of this:

BEGIN {
if (("date" | getline date_now) < 0) {

print "Can’t get system date" > "/dev/stderr"
exit 4

}
}

gawk.info 102 / 207

1.82 gawk.info/Arrays

Arrays in awk

An array is a table of values, called elements. The elements of an
array are distinguished by their indices. Indices may be either
numbers or strings. Each array has a name, which looks like a variable
name, but must not be in use as a variable name in the same awk program.

Array Intro
Introduction to Arrays

Reference to Elements
How to examine one element of an array.

Assigning Elements
How to change an element of an array.

Array Example
Basic Example of an Array

Scanning an Array
A variation of the for statement.

It loops through the indices of
an array’s existing elements.

Delete
The delete statement removes

an element from an array.

Numeric Array Subscripts
How to use numbers as subscripts in awk.

Multi-dimensional
Emulating multi-dimensional arrays in awk.

Multi-scanning
Scanning multi-dimensional arrays.

1.83 gawk.info/Array Intro

Introduction to Arrays
======================

The awk language has one-dimensional arrays for storing groups of
related strings or numbers.

Every awk array must have a name. Array names have the same syntax
as variable names; any valid variable name would also be a valid array

gawk.info 103 / 207

name. But you cannot use one name in both ways (as an array and as a
variable) in one awk program.

Arrays in awk superficially resemble arrays in other programming
languages; but there are fundamental differences. In awk, you don’t
need to specify the size of an array before you start to use it.
Additionally, any number or string in awk may be used as an array index.

In most other languages, you have to declare an array and specify
how many elements or components it contains. In such languages, the
declaration causes a contiguous block of memory to be allocated for that
many elements. An index in the array must be a positive integer; for
example, the index 0 specifies the first element in the array, which is
actually stored at the beginning of the block of memory. Index 1
specifies the second element, which is stored in memory right after the
first element, and so on. It is impossible to add more elements to the
array, because it has room for only as many elements as you declared.

A contiguous array of four elements might look like this,
conceptually, if the element values are 8, "foo", "" and 30:

+---------+---------+--------+---------+
| 8 | "foo" | "" | 30 | value
+---------+---------+--------+---------+

0 1 2 3 index

Only the values are stored; the indices are implicit from the order of
the values. 8 is the value at index 0, because 8 appears in the
position with 0 elements before it.

Arrays in awk are different: they are associative. This means that
each array is a collection of pairs: an index, and its corresponding
array element value:

Element 4 Value 30
Element 2 Value "foo"
Element 1 Value 8
Element 3 Value ""

We have shown the pairs in jumbled order because their order is
irrelevant.

One advantage of an associative array is that new pairs can be added
at any time. For example, suppose we add to the above array a tenth
element whose value is "number ten". The result is this:

Element 10 Value "number ten"
Element 4 Value 30
Element 2 Value "foo"
Element 1 Value 8
Element 3 Value ""

Now the array is sparse (i.e., some indices are missing): it has
elements 1-4 and 10, but doesn’t have elements 5, 6, 7, 8, or 9.

Another consequence of associative arrays is that the indices don’t
have to be positive integers. Any number, or even a string, can be an

gawk.info 104 / 207

index. For example, here is an array which translates words from
English into French:

Element "dog" Value "chien"
Element "cat" Value "chat"
Element "one" Value "un"
Element 1 Value "un"

Here we decided to translate the number 1 in both spelled-out and
numeric form--thus illustrating that a single array can have both
numbers and strings as indices.

When awk creates an array for you, e.g., with the split built-in
function, that array’s indices are consecutive integers starting at 1.
(See

Built-in Functions for String Manipulation
.)

1.84 gawk.info/Reference to Elements

Referring to an Array Element
=============================

The principal way of using an array is to refer to one of its
elements. An array reference is an expression which looks like this:

array[index]

Here, array is the name of an array. The expression index is the index
of the element of the array that you want.

The value of the array reference is the current value of that array
element. For example, foo[4.3] is an expression for the element of
array foo at index 4.3.

If you refer to an array element that has no recorded value, the
value of the reference is "", the null string. This includes elements
to which you have not assigned any value, and elements that have been
deleted (see

The delete Statement
). Such a reference automatically

creates that array element, with the null string as its value. (In
some cases, this is unfortunate, because it might waste memory inside
awk).

You can find out if an element exists in an array at a certain index
with the expression:

index in array

This expression tests whether or not the particular index exists,
without the side effect of creating that element if it is not present.
The expression has the value 1 (true) if array[index] exists, and 0

gawk.info 105 / 207

(false) if it does not exist.

For example, to test whether the array frequencies contains the
index "2", you could write this statement:

if ("2" in frequencies) print "Subscript \"2\" is present."

Note that this is not a test of whether or not the array frequencies
contains an element whose value is "2". (There is no way to do that
except to scan all the elements.) Also, this does not create
frequencies["2"], while the following (incorrect) alternative would do
so:

if (frequencies["2"] != "") print "Subscript \"2\" is present."

1.85 gawk.info/Assigning Elements

Assigning Array Elements
========================

Array elements are lvalues: they can be assigned values just like
awk variables:

array[subscript] = value

Here array is the name of your array. The expression subscript is the
index of the element of the array that you want to assign a value. The
expression value is the value you are assigning to that element of the
array.

1.86 gawk.info/Array Example

Basic Example of an Array
=========================

The following program takes a list of lines, each beginning with a
line number, and prints them out in order of line number. The line
numbers are not in order, however, when they are first read: they are
scrambled. This program sorts the lines by making an array using the
line numbers as subscripts. It then prints out the lines in sorted
order of their numbers. It is a very simple program, and gets confused
if it encounters repeated numbers, gaps, or lines that don’t begin with
a number.

{
if ($1 > max)

max = $1
arr[$1] = $0

}

gawk.info 106 / 207

END {
for (x = 1; x <= max; x++)

print arr[x]
}

The first rule keeps track of the largest line number seen so far;
it also stores each line into the array arr, at an index that is the
line’s number.

The second rule runs after all the input has been read, to print out
all the lines.

When this program is run with the following input:

5 I am the Five man
2 Who are you? The new number two!
4 . . . And four on the floor
1 Who is number one?
3 I three you.

its output is this:

1 Who is number one?
2 Who are you? The new number two!
3 I three you.
4 . . . And four on the floor
5 I am the Five man

If a line number is repeated, the last line with a given number
overrides the others.

Gaps in the line numbers can be handled with an easy improvement to
the program’s END rule:

END {
for (x = 1; x <= max; x++)

if (x in arr)
print arr[x]

}

1.87 gawk.info/Scanning an Array

Scanning all Elements of an Array
=================================

In programs that use arrays, often you need a loop that executes
once for each element of an array. In other languages, where arrays are
contiguous and indices are limited to positive integers, this is easy:
the largest index is one less than the length of the array, and you can
find all the valid indices by counting from zero up to that value. This
technique won’t do the job in awk, since any number or string may be an
array index. So awk has a special kind of for statement for scanning
an array:

gawk.info 107 / 207

for (var in array)
body

This loop executes body once for each different value that your program
has previously used as an index in array, with the variable var set to
that index.

Here is a program that uses this form of the for statement. The
first rule scans the input records and notes which words appear (at
least once) in the input, by storing a 1 into the array used with the
word as index. The second rule scans the elements of used to find all
the distinct words that appear in the input. It prints each word that
is more than 10 characters long, and also prints the number of such
words. See

Built-in Functions
, for more information on the built-in

function length.

Record a 1 for each word that is used at least once.
{

for (i = 1; i <= NF; i++)
used[$i] = 1

}

Find number of distinct words more than 10 characters long.
END {

for (x in used)
if (length(x) > 10) {

++num_long_words
print x

}
print num_long_words, "words longer than 10 characters"

}

See
Sample Program
, for a more detailed example of this type.

The order in which elements of the array are accessed by this
statement is determined by the internal arrangement of the array
elements within awk and cannot be controlled or changed. This can lead
to problems if new elements are added to array by statements in body;
you cannot predict whether or not the for loop will reach them.
Similarly, changing var inside the loop can produce strange results.
It is best to avoid such things.

1.88 gawk.info/Delete

The delete Statement
====================

You can remove an individual element of an array using the delete

gawk.info 108 / 207

statement:

delete array[index]

You can not refer to an array element after it has been deleted; it
is as if you had never referred to it and had never given it any value.
You can no longer obtain any value the element once had.

Here is an example of deleting elements in an array:

for (i in frequencies)
delete frequencies[i]

This example removes all the elements from the array frequencies.

If you delete an element, a subsequent for statement to scan the
array will not report that element, and the in operator to check for
the presence of that element will return 0:

delete foo[4]
if (4 in foo)

print "This will never be printed"

It is not an error to delete an element which does not exist.

1.89 gawk.info/Numeric Array Subscripts

Using Numbers to Subscript Arrays
=================================

An important aspect of arrays to remember is that array subscripts
are always strings. If you use a numeric value as a subscript, it will
be converted to a string value before it is used for subscripting (see

Conversion of Strings and Numbers
).

This means that the value of the CONVFMT can potentially affect how
your program accesses elements of an array. For example:

a = b = 12.153
data[a] = 1
CONVFMT = "%2.2f"
if (b in data)

printf "%s is in data", b
else

printf "%s is not in data", b

should print 12.15 is not in data. The first statement gives both a
and b the same numeric value. Assigning to data[a] first gives a the
string value "12.153" (using the default conversion value of CONVFMT,
"%.6g"), and then assigns 1 to data["12.153"]. The program then changes
the value of CONVFMT. The test (b in data) forces b to be converted to
a string, this time "12.15", since the value of CONVFMT only allows two

gawk.info 109 / 207

significant digits. This test fails, since "12.15" is a different string
from "12.153".

According to the rules for conversions (see

Conversion of Strings and Numbers
), integer values are always converted

to strings as integers, no matter what the value of CONVFMT may happen
to be. So the usual case of

for (i = 1; i <= maxsub; i++)
do something with array[i]

will work, no matter what the value of CONVFMT.

Like many things in awk, the majority of the time things work as you
would expect them to work. But it is useful to have a precise
knowledge of the actual rules, since sometimes they can have a subtle
effect on your programs.

1.90 gawk.info/Multi-dimensional

Multi-dimensional Arrays
========================

A multi-dimensional array is an array in which an element is
identified by a sequence of indices, not a single index. For example, a
two-dimensional array requires two indices. The usual way (in most
languages, including awk) to refer to an element of a two-dimensional
array named grid is with grid[x,y].

Multi-dimensional arrays are supported in awk through concatenation
of indices into one string. What happens is that awk converts the
indices into strings (see

Conversion of Strings and Numbers
) and

concatenates them together, with a separator between them. This creates
a single string that describes the values of the separate indices. The
combined string is used as a single index into an ordinary,
one-dimensional array. The separator used is the value of the built-in
variable SUBSEP.

For example, suppose we evaluate the expression foo[5,12]="value"
when the value of SUBSEP is "@". The numbers 5 and 12 are converted
to strings and concatenated with an @ between them, yielding "5@12";
thus, the array element foo["5@12"] is set to "value".

Once the element’s value is stored, awk has no record of whether it
was stored with a single index or a sequence of indices. The two
expressions foo[5,12] and foo[5 SUBSEP 12] always have the same value.

The default value of SUBSEP is the string "\034", which contains a
nonprinting character that is unlikely to appear in an awk program or

gawk.info 110 / 207

in the input data.

The usefulness of choosing an unlikely character comes from the fact
that index values that contain a string matching SUBSEP lead to
combined strings that are ambiguous. Suppose that SUBSEP were "@";
then foo["a@b", "c"] and foo["a", "b@c"] would be indistinguishable
because both would actually be stored as foo["a@b@c"]. Because SUBSEP
is "\034", such confusion can arise only when an index contains the
character with ASCII code 034, which is a rare event.

You can test whether a particular index-sequence exists in a
"multi-dimensional" array with the same operator in used for single
dimensional arrays. Instead of a single index as the left-hand operand,
write the whole sequence of indices, separated by commas, in
parentheses:

(subscript1, subscript2, ...) in array

The following example treats its input as a two-dimensional array of
fields; it rotates this array 90 degrees clockwise and prints the
result. It assumes that all lines have the same number of elements.

awk ’{
if (max_nf < NF)

max_nf = NF
max_nr = NR
for (x = 1; x <= NF; x++)

vector[x, NR] = $x
}

END {
for (x = 1; x <= max_nf; x++) {

for (y = max_nr; y >= 1; --y)
printf("%s ", vector[x, y])

printf("\n")
}

}’

When given the input:

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3

it produces:

4 3 2 1
5 4 3 2
6 5 4 3
1 6 5 4
2 1 6 5
3 2 1 6

gawk.info 111 / 207

1.91 gawk.info/Multi-scanning

Scanning Multi-dimensional Arrays
=================================

There is no special for statement for scanning a "multi-dimensional"
array; there cannot be one, because in truth there are no
multi-dimensional arrays or elements; there is only a multi-dimensional
way of accessing an array.

However, if your program has an array that is always accessed as
multi-dimensional, you can get the effect of scanning it by combining
the scanning for statement (see

Scanning all Elements of an Array
) with

the split built-in function (see

Built-in Functions for String Manipulation
). It works like this:

for (combined in array) {
split(combined, separate, SUBSEP)
...

}

This finds each concatenated, combined index in the array, and splits it
into the individual indices by breaking it apart where the value of
SUBSEP appears. The split-out indices become the elements of the array
separate.

Thus, suppose you have previously stored in array[1, "foo"]; then an
element with index "1\034foo" exists in array. (Recall that the
default value of SUBSEP contains the character with code 034.) Sooner
or later the for statement will find that index and do an iteration
with combined set to "1\034foo". Then the split function is called as
follows:

split("1\034foo", separate, "\034")

The result of this is to set separate[1] to 1 and separate[2] to "foo".
Presto, the original sequence of separate indices has been recovered.

1.92 gawk.info/Built-in

Built-in Functions

Built-in functions are functions that are always available for your
awk program to call. This chapter defines all the built-in functions
in awk; some of them are mentioned in other sections, but they are
summarized here for your convenience. (You can also define new
functions yourself. See

gawk.info 112 / 207

User-defined Functions
.)

Calling Built-in
How to call built-in functions.

Numeric Functions
Functions that work with numbers,

including int, sin and rand.

String Functions
Functions for string manipulation,

such as split, match, and sprintf.

I-O Functions
Functions for files and shell commands.

Time Functions
Functions for dealing with time stamps.

1.93 gawk.info/Calling Built-in

Calling Built-in Functions
==========================

To call a built-in function, write the name of the function followed
by arguments in parentheses. For example, atan2(y + z, 1) is a call to
the function atan2, with two arguments.

Whitespace is ignored between the built-in function name and the
open-parenthesis, but we recommend that you avoid using whitespace
there. User-defined functions do not permit whitespace in this way, and
you will find it easier to avoid mistakes by following a simple
convention which always works: no whitespace after a function name.

Each built-in function accepts a certain number of arguments. In
most cases, any extra arguments given to built-in functions are
ignored. The defaults for omitted arguments vary from function to
function and are described under the individual functions.

When a function is called, expressions that create the function’s
actual parameters are evaluated completely before the function call is
performed. For example, in the code fragment:

i = 4
j = sqrt(i++)

the variable i is set to 5 before sqrt is called with a value of 4 for
its actual parameter.

gawk.info 113 / 207

1.94 gawk.info/Numeric Functions

Numeric Built-in Functions
==========================

Here is a full list of built-in functions that work with numbers:

int(x)
This gives you the integer part of x, truncated toward 0. This
produces the nearest integer to x, located between x and 0.

For example, int(3) is 3, int(3.9) is 3, int(-3.9) is -3, and
int(-3) is -3 as well.

sqrt(x)
This gives you the positive square root of x. It reports an error
if x is negative. Thus, sqrt(4) is 2.

exp(x)
This gives you the exponential of x, or reports an error if x is
out of range. The range of values x can have depends on your
machine’s floating point representation.

log(x)
This gives you the natural logarithm of x, if x is positive;
otherwise, it reports an error.

sin(x)
This gives you the sine of x, with x in radians.

cos(x)
This gives you the cosine of x, with x in radians.

atan2(y, x)
This gives you the arctangent of y / x in radians.

rand()
This gives you a random number. The values of rand are
uniformly-distributed between 0 and 1. The value is never 0 and
never 1.

Often you want random integers instead. Here is a user-defined
function you can use to obtain a random nonnegative integer less
than n:

function randint(n) {
return int(n * rand())

}

The multiplication produces a random real number greater than 0
and less than n. We then make it an integer (using int) between 0
and n - 1.

Here is an example where a similar function is used to produce
random integers between 1 and n. Note that this program will
print a new random number for each input record.

gawk.info 114 / 207

awk ’
Function to roll a simulated die.
function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and print total number of points.
{

printf("%d points\n", roll(6)+roll(6)+roll(6))
}’

Note: rand starts generating numbers from the same point, or seed,
each time you run awk. This means that a program will produce the
same results each time you run it. The numbers are random within
one awk run, but predictable from run to run. This is convenient
for debugging, but if you want a program to do different things
each time it is used, you must change the seed to a value that
will be different in each run. To do this, use srand.

srand(x)
The function srand sets the starting point, or seed, for
generating random numbers to the value x.

Each seed value leads to a particular sequence of "random" numbers.
Thus, if you set the seed to the same value a second time, you
will get the same sequence of "random" numbers again.

If you omit the argument x, as in srand(), then the current date
and time of day are used for a seed. This is the way to get random
numbers that are truly unpredictable.

The return value of srand is the previous seed. This makes it
easy to keep track of the seeds for use in consistently reproducing
sequences of random numbers.

1.95 gawk.info/String Functions

Built-in Functions for String Manipulation
==

The functions in this section look at or change the text of one or
more strings.

index(in, find)
This searches the string in for the first occurrence of the string
find, and returns the position in characters where that occurrence
begins in the string in. For example:

awk ’BEGIN { print index("peanut", "an") }’

prints 3. If find is not found, index returns 0. (Remember that
string indices in awk start at 1.)

length(string)
This gives you the number of characters in string. If string is a

gawk.info 115 / 207

number, the length of the digit string representing that number is
returned. For example, length("abcde") is 5. By contrast,
length(15 * 35) works out to 3. How? Well, 15 * 35 = 525, and
525 is then converted to the string "525", which has three
characters.

If no argument is supplied, length returns the length of $0.

In older versions of awk, you could call the length function
without any parentheses. Doing so is marked as "deprecated" in the
POSIX standard. This means that while you can do this in your
programs, it is a feature that can eventually be removed from a
future version of the standard. Therefore, for maximal
portability of your awk programs you should always supply the
parentheses.

match(string, regexp)
The match function searches the string, string, for the longest,
leftmost substring matched by the regular expression, regexp. It
returns the character position, or index, of where that substring
begins (1, if it starts at the beginning of string). If no match
if found, it returns 0.

The match function sets the built-in variable RSTART to the index.
It also sets the built-in variable RLENGTH to the length in
characters of the matched substring. If no match is found, RSTART
is set to 0, and RLENGTH to -1.

For example:

awk ’{
if ($1 == "FIND")

regex = $2
else {

where = match($0, regex)
if (where)

print "Match of", regex, "found at", where, "in", $0
}

}’

This program looks for lines that match the regular expression
stored in the variable regex. This regular expression can be
changed. If the first word on a line is FIND, regex is changed to
be the second word on that line. Therefore, given:

FIND fo*bar
My program was a foobar
But none of it would doobar
FIND Melvin
JF+KM
This line is property of The Reality Engineering Co.
This file created by Melvin.

awk prints:

Match of fo*bar found at 18 in My program was a foobar
Match of Melvin found at 26 in This file created by Melvin.

gawk.info 116 / 207

split(string, array, fieldsep)
This divides string into pieces separated by fieldsep, and stores
the pieces in array. The first piece is stored in array[1], the
second piece in array[2], and so forth. The string value of the
third argument, fieldsep, is a regexp describing where to split
string (much as FS can be a regexp describing where to split input
records). If the fieldsep is omitted, the value of FS is used.
split returns the number of elements created.

The split function, then, splits strings into pieces in a manner
similar to the way input lines are split into fields. For example:

split("auto-da-fe", a, "-")

splits the string auto-da-fe into three fields using - as the
separator. It sets the contents of the array a as follows:

a[1] = "auto"
a[2] = "da"
a[3] = "fe"

The value returned by this call to split is 3.

As with input field-splitting, when the value of fieldsep is " ",
leading and trailing whitespace is ignored, and the elements are
separated by runs of whitespace.

sprintf(format, expression1,...)
This returns (without printing) the string that printf would have
printed out with the same arguments (see

Using printf Statements for Fancier Printing
). For example:

sprintf("pi = %.2f (approx.)", 22/7)

returns the string "pi = 3.14 (approx.)".

sub(regexp, replacement, target)
The sub function alters the value of target. It searches this
value, which should be a string, for the leftmost substring
matched by the regular expression, regexp, extending this match as
far as possible. Then the entire string is changed by replacing
the matched text with replacement. The modified string becomes
the new value of target.

This function is peculiar because target is not simply used to
compute a value, and not just any expression will do: it must be a
variable, field or array reference, so that sub can store a
modified value there. If this argument is omitted, then the
default is to use and alter $0.

For example:

str = "water, water, everywhere"
sub(/at/, "ith", str)

gawk.info 117 / 207

sets str to "wither, water, everywhere", by replacing the
leftmost, longest occurrence of at with ith.

The sub function returns the number of substitutions made (either
one or zero).

If the special character & appears in replacement, it stands for
the precise substring that was matched by regexp. (If the regexp
can match more than one string, then this precise substring may
vary.) For example:

awk ’{ sub(/candidate/, "& and his wife"); print }’

changes the first occurrence of candidate to candidate and his
wife on each input line.

Here is another example:

awk ’BEGIN {
str = "daabaaa"
sub(/a*/, "c&c", str)
print str

}’

prints dcaacbaaa. This show how & can represent a non-constant
string, and also illustrates the "leftmost, longest" rule.

The effect of this special character (&) can be turned off by
putting a backslash before it in the string. As usual, to insert
one backslash in the string, you must write two backslashes.
Therefore, write \& in a string constant to include a literal &
in the replacement. For example, here is how to replace the first
| on each line with an &:

awk ’{ sub(/\|/, "\&"); print }’

Note: as mentioned above, the third argument to sub must be an
lvalue. Some versions of awk allow the third argument to be an
expression which is not an lvalue. In such a case, sub would
still search for the pattern and return 0 or 1, but the result of
the substitution (if any) would be thrown away because there is no
place to put it. Such versions of awk accept expressions like
this:

sub(/USA/, "United States", "the USA and Canada")

But that is considered erroneous in gawk.

gsub(regexp, replacement, target)
This is similar to the sub function, except gsub replaces all of
the longest, leftmost, nonoverlapping matching substrings it can
find. The g in gsub stands for "global," which means replace
everywhere. For example:

awk ’{ gsub(/Britain/, "United Kingdom"); print }’

gawk.info 118 / 207

replaces all occurrences of the string Britain with United Kingdom
for all input records.

The gsub function returns the number of substitutions made. If
the variable to be searched and altered, target, is omitted, then
the entire input record, $0, is used.

As in sub, the characters & and \ are special, and the third
argument must be an lvalue.

substr(string, start, length)
This returns a length-character-long substring of string, starting
at character number start. The first character of a string is
character number one. For example, substr("washington", 5, 3)
returns "ing".

If length is not present, this function returns the whole suffix of
string that begins at character number start. For example,
substr("washington", 5) returns "ington". This is also the case
if length is greater than the number of characters remaining in
the string, counting from character number start.

tolower(string)
This returns a copy of string, with each upper-case character in
the string replaced with its corresponding lower-case character.
Nonalphabetic characters are left unchanged. For example,
tolower("MiXeD cAsE 123") returns "mixed case 123".

toupper(string)
This returns a copy of string, with each lower-case character in
the string replaced with its corresponding upper-case character.
Nonalphabetic characters are left unchanged. For example,
toupper("MiXeD cAsE 123") returns "MIXED CASE 123".

1.96 gawk.info/I-O Functions

Built-in Functions for Input/Output
===================================

close(filename)
Close the file filename, for input or output. The argument may
alternatively be a shell command that was used for redirecting to
or from a pipe; then the pipe is closed.

See
Closing Input Files and Pipes
, regarding closing input files

and pipes. See
Closing Output Files and Pipes
, regarding closing

output files and pipes.

system(command)

gawk.info 119 / 207

The system function allows the user to execute operating system
commands and then return to the awk program. The system function
executes the command given by the string command. It returns, as
its value, the status returned by the command that was executed.

For example, if the following fragment of code is put in your awk
program:

END {
system("mail -s ’awk run done’ operator < /dev/null")

}

the system operator will be sent mail when the awk program
finishes processing input and begins its end-of-input processing.

Note that much the same result can be obtained by redirecting
print or printf into a pipe. However, if your awk program is
interactive, system is useful for cranking up large self-contained
programs, such as a shell or an editor.

Some operating systems cannot implement the system function.
system causes a fatal error if it is not supported.

Controlling Output Buffering with system
--

Many utility programs will buffer their output; they save information
to be written to a disk file or terminal in memory, until there is
enough to be written in one operation. This is often more efficient
than writing every little bit of information as soon as it is ready.
However, sometimes it is necessary to force a program to flush its
buffers; that is, write the information to its destination, even if a
buffer is not full. You can do this from your awk program by calling
system with a null string as its argument:

system("") # flush output

gawk treats this use of the system function as a special case, and is
smart enough not to run a shell (or other command interpreter) with the
empty command. Therefore, with gawk, this idiom is not only useful, it
is efficient. While this idiom should work with other awk
implementations, it will not necessarily avoid starting an unnecessary
shell.

1.97 gawk.info/Time Functions

Functions for Dealing with Time Stamps
======================================

A common use for awk programs is the processing of log files. Log
files often contain time stamp information, indicating when a
particular log record was written. Many programs log their time stamp
in the form returned by the time system call, which is the number of

gawk.info 120 / 207

seconds since a particular epoch. On POSIX systems, it is the number
of seconds since Midnight, January 1, 1970, UTC.

In order to make it easier to process such log files, and to easily
produce useful reports, gawk provides two functions for working with
time stamps. Both of these are gawk extensions; they are not specified
in the POSIX standard, nor are they in any other known version of awk.

systime()
This function returns the current time as the number of seconds
since the system epoch. On POSIX systems, this is the number of
seconds since Midnight, January 1, 1970, UTC. It may be a
different number on other systems.

strftime(format, timestamp)
This function returns a string. It is similar to the function of
the same name in the ANSI C standard library. The time specified
by timestamp is used to produce a string, based on the contents of
the format string.

The systime function allows you to compare a time stamp from a log
file with the current time of day. In particular, it is easy to
determine how long ago a particular record was logged. It also allows
you to produce log records using the "seconds since the epoch" format.

The strftime function allows you to easily turn a time stamp into
human-readable information. It is similar in nature to the sprintf
function, copying non-format specification characters verbatim to the
returned string, and substituting date and time values for format
specifications in the format string. If no timestamp argument is
supplied, gawk will use the current time of day as the time stamp.

strftime is guaranteed by the ANSI C standard to support the
following date format specifications:

%a
The locale’s abbreviated weekday name.

%A
The locale’s full weekday name.

%b
The locale’s abbreviated month name.

%B
The locale’s full month name.

%c
The locale’s "appropriate" date and time representation.

%d
The day of the month as a decimal number (01-31).

%H
The hour (24-hour clock) as a decimal number (00-23).

%I

gawk.info 121 / 207

The hour (12-hour clock) as a decimal number (01-12).

%j
The day of the year as a decimal number (001-366).

%m
The month as a decimal number (01-12).

%M
The minute as a decimal number (00-59).

%p
The locale’s equivalent of the AM/PM designations associated with
a 12-hour clock.

%S
The second as a decimal number (00-61). (Occasionally there are
minutes in a year with one or two leap seconds, which is why the
seconds can go from 0 all the way to 61.)

%U
The week number of the year (the first Sunday as the first day of
week 1) as a decimal number (00-53).

%w
The weekday as a decimal number (0-6). Sunday is day 0.

%W
The week number of the year (the first Monday as the first day of
week 1) as a decimal number (00-53).

%x
The locale’s "appropriate" date representation.

%X
The locale’s "appropriate" time representation.

%y
The year without century as a decimal number (00-99).

%Y
The year with century as a decimal number.

%Z
The time zone name or abbreviation, or no characters if no time
zone is determinable.

%%
A literal %.

If a conversion specifier is not one of the above, the behavior is
undefined. (This is because the ANSI standard for C leaves the
behavior of the C version of strftime undefined, and gawk will use the
system’s version of strftime if it’s there. Typically, the conversion
specifier will either not appear in the returned string, or it will
appear literally.)

gawk.info 122 / 207

Informally, a locale is the geographic place in which a program is
meant to run. For example, a common way to abbreviate the date
September 4, 1991 in the United States would be "9/4/91". In many
countries in Europe, however, it would be abbreviated "4.9.91". Thus,
the %x specification in a "US" locale might produce 9/4/91, while in a
"EUROPE" locale, it might produce 4.9.91. The ANSI C standard defines
a default "C" locale, which is an environment that is typical of what
most C programmers are used to.

A public-domain C version of strftime is shipped with gawk for
systems that are not yet fully ANSI-compliant. If that version is used
to compile gawk (see

Installing gawk
), then the following additional

format specifications are available:

%D
Equivalent to specifying %m/%d/%y.

%e
The day of the month, padded with a blank if it is only one digit.

%h
Equivalent to %b, above.

%n
A newline character (ASCII LF).

%r
Equivalent to specifying %I:%M:%S %p.

%R
Equivalent to specifying %H:%M.

%T
Equivalent to specifying %H:%M:%S.

%t
A TAB character.

%k
is replaced by the hour (24-hour clock) as a decimal number (0-23).
Single digit numbers are padded with a blank.

%l
is replaced by the hour (12-hour clock) as a decimal number (1-12).
Single digit numbers are padded with a blank.

%C
The century, as a number between 00 and 99.

%u
is replaced by the weekday as a decimal number [1 (Monday)-7].

%V
is replaced by the week number of the year (the first Monday as
the first day of week 1) as a decimal number (01-53). The method

gawk.info 123 / 207

for determining the week number is as specified by ISO 8601 (to
wit: if the week containing January 1 has four or more days in the
new year, then it is week 1, otherwise it is week 53 of the
previous year and the next week is week 1).

%Ec %EC %Ex %Ey %EY %Od %Oe %OH %OI
%Om %OM %OS %Ou %OU %OV %Ow %OW %Oy

These are "alternate representations" for the specifications that
use only the second letter (%c, %C, and so on). They are
recognized, but their normal representations are used. (These
facilitate compliance with the POSIX date utility.)

%v
The date in VMS format (e.g. 20-JUN-1991).

Here are two examples that use strftime. The first is an awk
version of the C ctime function. (This is a user defined function,
which we have not discussed yet. See

User-defined Functions
, for more

information.)

ctime.awk
#
awk version of C ctime(3) function

function ctime(ts, format)
{

format = "%a %b %e %H:%M:%S %Z %Y"
if (ts == 0)

ts = systime() # use current time as default
return strftime(format, ts)

}

This next example is an awk implementation of the POSIX date
utility. Normally, the date utility prints the current date and time
of day in a well known format. However, if you provide an argument to
it that begins with a +, date will copy non-format specifier characters
to the standard output, and will interpret the current time according
to the format specifiers in the string. For example:

date ’+Today is %A, %B %d, %Y.’

might print

Today is Thursday, July 11, 1991.

Here is the awk version of the date utility.

#! /bin/gawk -f
#
date --- implement the P1003.2 Draft 11 ’date’ command
#
Bug: does not recognize the -u argument.

BEGIN \
{

gawk.info 124 / 207

format = "%a %b %e %H:%M:%S %Z %Y"
exitval = 0

if (ARGC > 2)
exitval = 1

else if (ARGC == 2) {
format = ARGV[1]
if (format ~ /^\+/)

format = substr(format, 2) # remove leading +
}
print strftime(format)
exit exitval

}

1.98 gawk.info/User-defined

User-defined Functions

Complicated awk programs can often be simplified by defining your
own functions. User-defined functions can be called just like built-in
ones (see

Function Calls
), but it is up to you to define them--to tell

awk what they should do.

Definition Syntax
How to write definitions and what they mean.

Function Example
An example function definition and

what it does.

Function Caveats
Things to watch out for.

Return Statement
Specifying the value a function returns.

1.99 gawk.info/Definition Syntax

Syntax of Function Definitions
==============================

Definitions of functions can appear anywhere between the rules of the
awk program. Thus, the general form of an awk program is extended to

gawk.info 125 / 207

include sequences of rules and user-defined function definitions.

The definition of a function named name looks like this:

function name (parameter-list) {
body-of-function

}

name is the name of the function to be defined. A valid function name
is like a valid variable name: a sequence of letters, digits and
underscores, not starting with a digit. Functions share the same pool
of names as variables and arrays.

parameter-list is a list of the function’s arguments and local
variable names, separated by commas. When the function is called, the
argument names are used to hold the argument values given in the call.
The local variables are initialized to the null string.

The body-of-function consists of awk statements. It is the most
important part of the definition, because it says what the function
should actually do. The argument names exist to give the body a way to
talk about the arguments; local variables, to give the body places to
keep temporary values.

Argument names are not distinguished syntactically from local
variable names; instead, the number of arguments supplied when the
function is called determines how many argument variables there are.
Thus, if three argument values are given, the first three names in
parameter-list are arguments, and the rest are local variables.

It follows that if the number of arguments is not the same in all
calls to the function, some of the names in parameter-list may be
arguments on some occasions and local variables on others. Another way
to think of this is that omitted arguments default to the null string.

Usually when you write a function you know how many names you intend
to use for arguments and how many you intend to use as locals. By
convention, you should write an extra space between the arguments and
the locals, so other people can follow how your function is supposed to
be used.

During execution of the function body, the arguments and local
variable values hide or shadow any variables of the same names used in
the rest of the program. The shadowed variables are not accessible in
the function definition, because there is no way to name them while
their names have been taken away for the local variables. All other
variables used in the awk program can be referenced or set normally in
the function definition.

The arguments and local variables last only as long as the function
body is executing. Once the body finishes, the shadowed variables come
back.

The function body can contain expressions which call functions. They
can even call this function, either directly or by way of another
function. When this happens, we say the function is recursive.

gawk.info 126 / 207

There is no need in awk to put the definition of a function before
all uses of the function. This is because awk reads the entire program
before starting to execute any of it.

In many awk implementations, the keyword function may be abbreviated
func. However, POSIX only specifies the use of the keyword function.
This actually has some practical implications. If gawk is in
POSIX-compatibility mode (see

Invoking awk
), then the following

statement will not define a function:

func foo() { a = sqrt($1) ; print a }

Instead it defines a rule that, for each record, concatenates the value
of the variable func with the return value of the function foo, and
based on the truth value of the result, executes the corresponding
action. This is probably not what was desired. (awk accepts this
input as syntactically valid, since functions may be used before they
are defined in awk programs.)

1.100 gawk.info/Function Example

Function Definition Example
===========================

Here is an example of a user-defined function, called myprint, that
takes a number and prints it in a specific format.

function myprint(num)
{

printf "%6.3g\n", num
}

To illustrate, here is an awk rule which uses our myprint function:

$3 > 0 { myprint($3) }

This program prints, in our special format, all the third fields that
contain a positive number in our input. Therefore, when given:

1.2 3.4 5.6 7.8
9.10 11.12 -13.14 15.16

17.18 19.20 21.22 23.24

this program, using our function to format the results, prints:

5.6
21.2

Here is a rather contrived example of a recursive function. It
prints a string backwards:

gawk.info 127 / 207

function rev (str, len) {
if (len == 0) {

printf "\n"
return

}
printf "%c", substr(str, len, 1)
rev(str, len - 1)

}

1.101 gawk.info/Function Caveats

Calling User-defined Functions
==============================

Calling a function means causing the function to run and do its job.
A function call is an expression, and its value is the value returned by
the function.

A function call consists of the function name followed by the
arguments in parentheses. What you write in the call for the arguments
are awk expressions; each time the call is executed, these expressions
are evaluated, and the values are the actual arguments. For example,
here is a call to foo with three arguments (the first being a string
concatenation):

foo(x y, "lose", 4 * z)

Caution: whitespace characters (spaces and tabs) are not allowed
between the function name and the open-parenthesis of the argument
list. If you write whitespace by mistake, awk might think that
you mean to concatenate a variable with an expression in
parentheses. However, it notices that you used a function name
and not a variable name, and reports an error.

When a function is called, it is given a copy of the values of its
arguments. This is called call by value. The caller may use a
variable as the expression for the argument, but the called function
does not know this: it only knows what value the argument had. For
example, if you write this code:

foo = "bar"
z = myfunc(foo)

then you should not think of the argument to myfunc as being "the
variable foo." Instead, think of the argument as the string value,
"bar".

If the function myfunc alters the values of its local variables,
this has no effect on any other variables. In particular, if myfunc
does this:

function myfunc (win) {
print win
win = "zzz"

gawk.info 128 / 207

print win
}

to change its first argument variable win, this does not change the
value of foo in the caller. The role of foo in calling myfunc ended
when its value, "bar", was computed. If win also exists outside of
myfunc, the function body cannot alter this outer value, because it is
shadowed during the execution of myfunc and cannot be seen or changed
from there.

However, when arrays are the parameters to functions, they are not
copied. Instead, the array itself is made available for direct
manipulation by the function. This is usually called call by reference.
Changes made to an array parameter inside the body of a function are
visible outside that function. This can be very dangerous if you do
not watch what you are doing. For example:

function changeit (array, ind, nvalue) {
array[ind] = nvalue

}

BEGIN {
a[1] = 1 ; a[2] = 2 ; a[3] = 3
changeit(a, 2, "two")
printf "a[1] = %s, a[2] = %s, a[3] = %s\n", a[1], a[2], a[3]

}

prints a[1] = 1, a[2] = two, a[3] = 3, because calling changeit stores
"two" in the second element of a.

1.102 gawk.info/Return Statement

The return Statement
====================

The body of a user-defined function can contain a return statement.
This statement returns control to the rest of the awk program. It can
also be used to return a value for use in the rest of the awk program.
It looks like this:

return expression

The expression part is optional. If it is omitted, then the returned
value is undefined and, therefore, unpredictable.

A return statement with no value expression is assumed at the end of
every function definition. So if control reaches the end of the
function body, then the function returns an unpredictable value. awk
will not warn you if you use the return value of such a function; you
will simply get unpredictable or unexpected results.

Here is an example of a user-defined function that returns a value
for the largest number among the elements of an array:

gawk.info 129 / 207

function maxelt (vec, i, ret) {
for (i in vec) {

if (ret == "" || vec[i] > ret)
ret = vec[i]

}
return ret

}

You call maxelt with one argument, which is an array name. The local
variables i and ret are not intended to be arguments; while there is
nothing to stop you from passing two or three arguments to maxelt, the
results would be strange. The extra space before i in the function
parameter list is to indicate that i and ret are not supposed to be
arguments. This is a convention which you should follow when you
define functions.

Here is a program that uses our maxelt function. It loads an array,
calls maxelt, and then reports the maximum number in that array:

awk ’
function maxelt (vec, i, ret) {

for (i in vec) {
if (ret == "" || vec[i] > ret)

ret = vec[i]
}
return ret

}

Load all fields of each record into nums.
{

for(i = 1; i <= NF; i++)
nums[NR, i] = $i

}

END {
print maxelt(nums)

}’

Given the following input:

1 5 23 8 16
44 3 5 2 8 26
256 291 1396 2962 100
-6 467 998 1101
99385 11 0 225

our program tells us (predictably) that:

99385

is the largest number in our array.

1.103 gawk.info/Built-in Variables

gawk.info 130 / 207

Built-in Variables

Most awk variables are available for you to use for your own
purposes; they never change except when your program assigns values to
them, and never affect anything except when your program examines them.

A few variables have special built-in meanings. Some of them awk
examines automatically, so that they enable you to tell awk how to do
certain things. Others are set automatically by awk, so that they
carry information from the internal workings of awk to your program.

This chapter documents all the built-in variables of gawk. Most of
them are also documented in the chapters where their areas of activity
are described.

User-modified
Built-in variables that you change
to control awk.

Auto-set
Built-in variables where awk

gives you information.

1.104 gawk.info/User-modified

Built-in Variables that Control awk
===================================

This is a list of the variables which you can change to control how
awk does certain things.

CONVFMT
This string is used by awk to control conversion of numbers to
strings (see

Conversion of Strings and Numbers
). It works by

being passed, in effect, as the first argument to the sprintf
function. Its default value is "%.6g". CONVFMT was introduced by
the POSIX standard.

FIELDWIDTHS
This is a space separated list of columns that tells gawk how to
manage input with fixed, columnar boundaries. It is an
experimental feature that is still evolving. Assigning to
FIELDWIDTHS overrides the use of FS for field splitting. See

Reading Fixed-width Data
, for more information.

gawk.info 131 / 207

If gawk is in compatibility mode (see
Invoking awk
), then

FIELDWIDTHS has no special meaning, and field splitting operations
are done based exclusively on the value of FS.

FS
FS is the input field separator (see

Specifying how Fields are Separated
). The value is a

single-character string or a multi-character regular expression
that matches the separations between fields in an input record.

The default value is " ", a string consisting of a single space.
As a special exception, this value actually means that any
sequence of spaces and tabs is a single separator. It also causes
spaces and tabs at the beginning or end of a line to be ignored.

You can set the value of FS on the command line using the -F
option:

awk -F, ’program’ input-files

If gawk is using FIELDWIDTHS for field-splitting, assigning a
value to FS will cause gawk to return to the normal, regexp-based,
field splitting.

IGNORECASE
If IGNORECASE is nonzero, then all regular expression matching is
done in a case-independent fashion. In particular, regexp
matching with ~ and !~, and the gsub index, match, split and sub
functions all ignore case when doing their particular regexp
operations. Note: since field splitting with the value of the FS
variable is also a regular expression operation, that too is done
with case ignored. See

Case-sensitivity in Matching
.

If gawk is in compatibility mode (see
Invoking awk
), then

IGNORECASE has no special meaning, and regexp operations are
always case-sensitive.

OFMT
This string is used by awk to control conversion of numbers to
strings (see

Conversion of Strings and Numbers
) for printing with

the print statement. It works by being passed, in effect, as the
first argument to the sprintf function. Its default value is
"%.6g". Earlier versions of awk also used OFMT to specify the
format for converting numbers to strings in general expressions;
this has been taken over by CONVFMT.

OFS

gawk.info 132 / 207

This is the output field separator (see
Output Separators
). It is

output between the fields output by a print statement. Its
default value is " ", a string consisting of a single space.

ORS
This is the output record separator. It is output at the end of
every print statement. Its default value is a string containing a
single newline character, which could be written as "\n". (See

Output Separators
.)

RS
This is awk’s input record separator. Its default value is a
string containing a single newline character, which means that an
input record consists of a single line of text. (See

How Input is Split into Records
.)

SUBSEP
SUBSEP is the subscript separator. It has the default value of
"\034", and is used to separate the parts of the name of a
multi-dimensional array. Thus, if you access foo[12,3], it really
accesses foo["12\0343"] (see

Multi-dimensional Arrays
).

1.105 gawk.info/Auto-set

Built-in Variables that Convey Information
==

This is a list of the variables that are set automatically by awk on
certain occasions so as to provide information to your program.

ARGC
ARGV

The command-line arguments available to awk programs are stored in
an array called ARGV. ARGC is the number of command-line
arguments present. See

Invoking awk
. ARGV is indexed from zero

to ARGC - 1. For example:

awk ’BEGIN {
for (i = 0; i < ARGC; i++)

print ARGV[i]
}’ inventory-shipped BBS-list

In this example, ARGV[0] contains "awk", ARGV[1] contains

gawk.info 133 / 207

"inventory-shipped", and ARGV[2] contains "BBS-list". The value
of ARGC is 3, one more than the index of the last element in ARGV
since the elements are numbered from zero.

The names ARGC and ARGV, as well the convention of indexing the
array from 0 to ARGC - 1, are derived from the C language’s method
of accessing command line arguments.

Notice that the awk program is not entered in ARGV. The other
special command line options, with their arguments, are also not
entered. But variable assignments on the command line are treated
as arguments, and do show up in the ARGV array.

Your program can alter ARGC and the elements of ARGV. Each time
awk reaches the end of an input file, it uses the next element of
ARGV as the name of the next input file. By storing a different
string there, your program can change which files are read. You
can use "-" to represent the standard input. By storing
additional elements and incrementing ARGC you can cause additional
files to be read.

If you decrease the value of ARGC, that eliminates input files
from the end of the list. By recording the old value of ARGC
elsewhere, your program can treat the eliminated arguments as
something other than file names.

To eliminate a file from the middle of the list, store the null
string ("") into ARGV in place of the file’s name. As a special
feature, awk ignores file names that have been replaced with the
null string.

ARGIND
The index in ARGV of the current file being processed. Every time
gawk opens a new data file for processing, it sets ARGIND to the
index in ARGV of the file name. Thus, the condition FILENAME ==
ARGV[ARGIND] is always true.

This variable is useful in file processing; it allows you to tell
how far along you are in the list of data files, and to
distinguish between multiple successive instances of the same
filename on the command line.

While you can change the value of ARGIND within your awk program,
gawk will automatically set it to a new value when the next file
is opened.

This variable is a gawk extension; in other awk implementations it
is not special.

ENVIRON
This is an array that contains the values of the environment. The
array indices are the environment variable names; the values are
the values of the particular environment variables. For example,
ENVIRON["HOME"] might be /u/close. Changing this array does not
affect the environment passed on to any programs that awk may
spawn via redirection or the system function. (In a future
version of gawk, it may do so.)

gawk.info 134 / 207

Some operating systems may not have environment variables. On
such systems, the array ENVIRON is empty.

ERRNO
If a system error occurs either doing a redirection for getline,
during a read for getline, or during a close operation, then ERRNO
will contain a string describing the error.

This variable is a gawk extension; in other awk implementations it
is not special.

FILENAME
This is the name of the file that awk is currently reading. If
awk is reading from the standard input (in other words, there
are no files listed on the command line), FILENAME is set to "-".
FILENAME is changed each time a new file is read (see

Reading Input Files
).

FNR
FNR is the current record number in the current file. FNR is
incremented each time a new record is read (see

Explicit Input with getline
). It is reinitialized to 0 each time

a new input file is started.

NF
NF is the number of fields in the current input record. NF is set
each time a new record is read, when a new field is created, or
when $0 changes (see

Examining Fields
).

NR
This is the number of input records awk has processed since the
beginning of the program’s execution. (see

How Input is Split into Records
). NR is set each time a new

record is read.

RLENGTH
RLENGTH is the length of the substring matched by the match
function (see

Built-in Functions for String Manipulation
).

RLENGTH is set by invoking the match function. Its value is
the length of the matched string, or -1 if no match was found.

RSTART
RSTART is the start-index in characters of the substring matched
by the match function (see

Built-in Functions for String Manipulation

gawk.info 135 / 207

). RSTART is set by
invoking the match function. Its value is the position of the
string where the matched substring starts, or 0 if no match was
found.

1.106 gawk.info/Command Line

Invoking awk

There are two ways to run awk: with an explicit program, or with one
or more program files. Here are templates for both of them; items
enclosed in [...] in these templates are optional.

Besides traditional one-letter POSIX-style options, gawk also
supports GNU long named options.

awk [POSIX or GNU style options] -f progfile [--] file ...
awk [POSIX or GNU style options] [--] ’program’ file ...

Options
Command line options and their meanings.

Other Arguments
Input file names and variable assignments.

AWKPATH Variable
Searching directories for awk programs.

Obsolete
Obsolete Options and/or features.

Undocumented
Undocumented Options and Features.

1.107 gawk.info/Options

Command Line Options
====================

Options begin with a minus sign, and consist of a single character.
GNU style long named options consist of two minus signs and a keyword
that can be abbreviated if the abbreviation allows the option to be
uniquely identified. If the option takes an argument, then the keyword
is immediately followed by an equals sign (=) and the argument’s value.
For brevity, the discussion below only refers to the traditional short

gawk.info 136 / 207

options; however the long and short options are interchangeable in all
contexts.

Each long named option for gawk has a corresponding POSIX-style
option. The options and their meanings are as follows:

-F fs
-field-separator=fs

Sets the FS variable to fs (see

Specifying how Fields are Separated
).

-f source-file
-file=source-file

Indicates that the awk program is to be found in source-file
instead of in the first non-option argument.

-v var=val
-assign=var=val

Sets the variable var to the value val before execution of the
program begins. Such variable values are available inside the
BEGIN rule (see below for a fuller explanation).

The -v option can only set one variable, but you can use it more
than once, setting another variable each time, like this: -v foo=1
-v bar=2.

-W gawk-opt
Following the POSIX standard, options that are implementation
specific are supplied as arguments to the -W option. With gawk,
these arguments may be separated by commas, or quoted and
separated by whitespace. Case is ignored when processing these
options. These options also have corresponding GNU style long
named options. The following gawk-specific options are available:

-W compat
-compat

Specifies compatibility mode, in which the GNU extensions in
gawk are disabled, so that gawk behaves just like Unix awk.
See

Extensions in gawk not in POSIX awk
, which summarizes the

extensions. Also see
Downward Compatibility and Debugging
.

-W copyleft
-W copyright
-copyleft
-copyright

Print the short version of the General Public License. This
option may disappear in a future version of gawk.

-W help
-W usage
-help

gawk.info 137 / 207

-usage
Print a "usage" message summarizing the short and long style
options that gawk accepts, and then exit.

-W lint
-lint

Provide warnings about constructs that are dubious or
non-portable to other awk implementations. Some warnings are
issued when gawk first reads your program. Others are issued
at run-time, as your program executes.

-W posix
-posix

Operate in strict POSIX mode. This disables all gawk
extensions (just like -W compat), and adds the following
additional restrictions:

* \x escape sequences are not recognized (see

Constant Expressions
).

* The synonym func for the keyword function is not
recognized (see
Syntax of Function Definitions
).

* The operators ** and **= cannot be used in place of ^
and ^= (see
Arithmetic Operators
, and also see

Assignment Expressions
).

* Specifying -Ft on the command line does not set the value
of FS to be a single tab character (see

Specifying how Fields are Separated
).

Although you can supply both -W compat and -W posix on the
command line, -W posix will take precedence.

-W source=program-text
-source=program-text

Program source code is taken from the program-text. This
option allows you to mix awk source code in files with
program source code that you would enter on the command line.
This is particularly useful when you have library functions
that you wish to use from your command line programs (see

The AWKPATH Environment Variable
).

-W version
-version

gawk.info 138 / 207

Prints version information for this particular copy of gawk.
This is so you can determine if your copy of gawk is up to
date with respect to whatever the Free Software Foundation is
currently distributing. This option may disappear in a
future version of gawk.

-
Signals the end of the command line options. The following
arguments are not treated as options even if they begin with -.
This interpretation of - follows the POSIX argument parsing
conventions.

This is useful if you have file names that start with -, or in
shell scripts, if you have file names that will be specified by
the user which could start with -.

Any other options are flagged as invalid with a warning message, but
are otherwise ignored.

In compatibility mode, as a special case, if the value of fs supplied
to the -F option is t, then FS is set to the tab character ("\t").
This is only true for -W compat, and not for -W posix (see

Specifying how Fields are Separated
).

If the -f option is not used, then the first non-option command line
argument is expected to be the program text.

The -f option may be used more than once on the command line. If it
is, awk reads its program source from all of the named files, as if
they had been concatenated together into one big file. This is useful
for creating libraries of awk functions. Useful functions can be
written once, and then retrieved from a standard place, instead of
having to be included into each individual program. You can still type
in a program at the terminal and use library functions, by specifying
-f /dev/tty. awk will read a file from the terminal to use as part of
the awk program. After typing your program, type Control-d (the
end-of-file character) to terminate it. (You may also use -f - to read
program source from the standard input, but then you will not be able
to also use the standard input as a source of data.)

Because it is clumsy using the standard awk mechanisms to mix source
file and command line awk programs, gawk provides the -source option.
This does not require you to pre-empt the standard input for your
source code, and allows you to easily mix command line and library
source code (see

The AWKPATH Environment Variable
).

If no -f or -source option is specified, then gawk will use the
first non-option command line argument as the text of the program
source code.

gawk.info 139 / 207

1.108 gawk.info/Other Arguments

Other Command Line Arguments
============================

Any additional arguments on the command line are normally treated as
input files to be processed in the order specified. However, an
argument that has the form var=value, means to assign the value value
to the variable var--it does not specify a file at all.

All these arguments are made available to your awk program in the
ARGV array (see

Built-in Variables
). Command line options and the

program text (if present) are omitted from the ARGV array. All other
arguments, including variable assignments, are included.

The distinction between file name arguments and variable-assignment
arguments is made when awk is about to open the next input file. At
that point in execution, it checks the "file name" to see whether it is
really a variable assignment; if so, awk sets the variable instead of
reading a file.

Therefore, the variables actually receive the specified values after
all previously specified files have been read. In particular, the
values of variables assigned in this fashion are not available inside a
BEGIN rule (see

BEGIN and END Special Patterns
), since such rules are

run before awk begins scanning the argument list. The values given on
the command line are processed for escape sequences (see

Constant Expressions
).

In some earlier implementations of awk, when a variable assignment
occurred before any file names, the assignment would happen before the
BEGIN rule was executed. Some applications came to depend upon this
"feature." When awk was changed to be more consistent, the -v option
was added to accommodate applications that depended upon this old
behavior.

The variable assignment feature is most useful for assigning to
variables such as RS, OFS, and ORS, which control input and output
formats, before scanning the data files. It is also useful for
controlling state if multiple passes are needed over a data file. For
example:

awk ’pass == 1 { pass 1 stuff }
pass == 2 { pass 2 stuff }’ pass=1 datafile pass=2 datafile

Given the variable assignment feature, the -F option is not strictly
necessary. It remains for historical compatibility.

gawk.info 140 / 207

1.109 gawk.info/AWKPATH Variable

The AWKPATH Environment Variable
================================

The previous section described how awk program files can be named on
the command line with the -f option. In some awk implementations, you
must supply a precise path name for each program file, unless the file
is in the current directory.

But in gawk, if the file name supplied in the -f option does not
contain a /, then gawk searches a list of directories (called the
search path), one by one, looking for a file with the specified name.

The search path is actually a string consisting of directory names
separated by colons. gawk gets its search path from the AWKPATH
environment variable. If that variable does not exist, gawk uses the
default path, which is .:/local/lib/awk:/gnu/lib/awk. (Programs
written by system administrators should use an AWKPATH variable that
does not include the current directory, ..)

The search path feature is particularly useful for building up
libraries of useful awk functions. The library files can be placed in a
standard directory that is in the default path, and then specified on
the command line with a short file name. Otherwise, the full file name
would have to be typed for each file.

By combining the -source and -f options, your command line awk
programs can use facilities in awk library files.

Path searching is not done if gawk is in compatibility mode. This
is true for both -W compat and -W posix. See

Command Line Options
.

Note: if you want files in the current directory to be found, you
must include the current directory in the path, either by writing . as
an entry in the path, or by writing a null entry in the path. (A null
entry is indicated by starting or ending the path with a colon, or by
placing two colons next to each other (::).) If the current directory
is not included in the path, then files cannot be found in the current
directory. This path search mechanism is identical to the shell’s.

1.110 gawk.info/Obsolete

Obsolete Options and/or Features
================================

This section describes features and/or command line options from the
previous release of gawk that are either not available in the current
version, or that are still supported but deprecated (meaning that they
will not be in the next release).

gawk.info 141 / 207

For version 2.15 of gawk, the following command line options from
version 2.11.1 are no longer recognized.

-c
Use -W compat instead.

-V
Use -W version instead.

-C
Use -W copyright instead.

-a
-e

These options produce an "unrecognized option" error message but
have no effect on the execution of gawk. The POSIX standard now
specifies traditional awk regular expressions for the awk utility.

The public-domain version of strftime that is distributed with gawk
changed for the 2.14 release. The %V conversion specifier that used to
generate the date in VMS format was changed to %v. This is because the
POSIX standard for the date utility now specifies a %V conversion
specifier. See

Functions for Dealing with Time Stamps
, for details.

1.111 gawk.info/Undocumented

Undocumented Options and Features
=================================

This section intentionally left blank.

1.112 gawk.info/Language History

The Evolution of the awk Language

This manual describes the GNU implementation of awk, which is
patterned after the POSIX specification. Many awk users are only
familiar with the original awk implementation in Version 7 Unix, which
is also the basis for the version in Berkeley Unix (through 4.3-Reno).
This chapter briefly describes the evolution of the awk language.

V7-S5R3.1
The major changes between V7 and

gawk.info 142 / 207

System V Release 3.1.

S5R4
Minor changes between System V

Releases 3.1 and 4.

POSIX
New features from the POSIX standard.

POSIX-GNU
The extensions in gawk

not in POSIX awk.

1.113 gawk.info/V7-S5R3.1

Major Changes between V7 and S5R3.1
===================================

The awk language evolved considerably between the release of Version
7 Unix (1978) and the new version first made widely available in System
V Release 3.1 (1987). This section summarizes the changes, with
cross-references to further details.

* The requirement for ; to separate rules on a line (see

awk Statements versus Lines
).

* User-defined functions, and the return statement (see

User-defined Functions
).

* The delete statement (see
The delete Statement
).

* The do-while statement (see
The do-while Statement
).

* The built-in functions atan2, cos, sin, rand and srand (see

Numeric Built-in Functions
).

* The built-in functions gsub, sub, and match (see

Built-in Functions for String Manipulation
).

* The built-in functions close, which closes an open file, and
system, which allows the user to execute operating system

gawk.info 143 / 207

commands (see
Built-in Functions for Input/Output
).

* The ARGC, ARGV, FNR, RLENGTH, RSTART, and SUBSEP built-in
variables (see

Built-in Variables
).

* The conditional expression using the operators ? and : (see

Conditional Expressions
).

* The exponentiation operator ^ (see
Arithmetic Operators
) and its

assignment operator form ^= (see
Assignment Expressions
).

* C-compatible operator precedence, which breaks some old awk
programs (see

Operator Precedence (How Operators Nest)
).

* Regexps as the value of FS (see

Specifying how Fields are Separated
), and as the third argument to

the split function (see

Built-in Functions for String Manipulation
).

* Dynamic regexps as operands of the ~ and !~ operators (see

How to Use Regular Expressions
).

* Escape sequences (see
Constant Expressions
) in regexps.

* The escape sequences \b, \f, and \r (see
Constant Expressions
).

* Redirection of input for the getline function (see

Explicit Input with getline
).

* Multiple BEGIN and END rules (see
BEGIN and END Special Patterns
).

gawk.info 144 / 207

* Simulated multi-dimensional arrays (see
Multi-dimensional Arrays
).

1.114 gawk.info/S5R4

Changes between S5R3.1 and S5R4
===============================

The System V Release 4 version of Unix awk added these features
(some of which originated in gawk):

* The ENVIRON variable (see
Built-in Variables
).

* Multiple -f options on the command line (see
Invoking awk
).

* The -v option for assigning variables before program execution
begins (see

Invoking awk
).

* The - option for terminating command line options.

* The \a, \v, and \x escape sequences (see
Constant Expressions
).

* A defined return value for the srand built-in function (see

Numeric Built-in Functions
).

* The toupper and tolower built-in string functions for case
translation (see

Built-in Functions for String Manipulation
).

* A cleaner specification for the %c format-control letter in the
printf function (see

Using printf Statements for Fancier Printing
).

* The ability to dynamically pass the field width and precision
("%*.*d") in the argument list of the printf function (see

Using printf Statements for Fancier Printing
).

* The use of constant regexps such as /foo/ as expressions, where

gawk.info 145 / 207

they are equivalent to use of the matching operator, as in $0 ~
/foo/ (see

Constant Expressions
).

1.115 gawk.info/POSIX

Changes between S5R4 and POSIX awk
==================================

The POSIX Command Language and Utilities standard for awk introduced
the following changes into the language:

* The use of -W for implementation-specific options.

* The use of CONVFMT for controlling the conversion of numbers to
strings (see

Conversion of Strings and Numbers
).

* The concept of a numeric string, and tighter comparison rules to go
with it (see

Comparison Expressions
).

* More complete documentation of many of the previously undocumented
features of the language.

1.116 gawk.info/POSIX-GNU

Extensions in gawk not in POSIX awk
===================================

The GNU implementation, gawk, adds these features:

* The AWKPATH environment variable for specifying a path search for
the -f command line option (see

Invoking awk
).

* The various gawk specific features available via the -W command
line option (see

Invoking awk
).

* The ARGIND variable, that tracks the movement of FILENAME through
ARGV. (see

Built-in Variables

gawk.info 146 / 207

).

* The ERRNO variable, that contains the system error message when
getline returns -1, or when close fails. (see

Built-in Variables
).

* The IGNORECASE variable and its effects (see

Case-sensitivity in Matching
).

* The FIELDWIDTHS variable and its effects (see

Reading Fixed-width Data
).

* The next file statement for skipping to the next data file (see

The next file Statement
).

* The systime and strftime built-in functions for obtaining and
printing time stamps (see

Functions for Dealing with Time Stamps
).

* The /dev/stdin, /dev/stdout, /dev/stderr, and /dev/fd/n file name
interpretation (see

Standard I/O Streams
).

* The -W compat option to turn off these extensions (see

Invoking awk
).

* The -W posix option for full POSIX compliance (see
Invoking awk
).

1.117 gawk.info/Installation

Installing gawk

This chapter provides instructions for installing gawk on the
various platforms that are supported by the developers. The primary
developers support Unix (and one day, GNU), while the other ports were
contributed. The file ACKNOWLEDGMENT in the gawk distribution lists
the electronic mail addresses of the people who did the respective
ports.

gawk.info 147 / 207

Gawk Distribution
What is in the gawk distribution.

Unix Installation
Installing gawk under various versions

of Unix.

VMS Installation
Installing gawk on VMS.

MS-DOS Installation
Installing gawk on MS-DOS.

Atari Installation
Installing gawk on the Atari ST.

1.118 gawk.info/Gawk Distribution

The gawk Distribution
=====================

This section first describes how to get and extract the gawk
distribution, and then discusses what is in the various files and
subdirectories.

Extracting
How to get and extract the distribution.

Distribution contents
What is in the distribution.

1.119 gawk.info/Extracting

Getting the gawk Distribution

gawk is distributed as a tar file compressed with the GNU Zip
program, gzip. You can get it via anonymous ftp to the Internet host
prep.ai.mit.edu. Like all GNU software, it will be archived at other
well known systems, from which it will be possible to use some sort of
anonymous uucp to obtain the distribution as well. You can also order
gawk on tape or CD-ROM directly from the Free Software Foundation.
(The address is on the copyright page.) Doing so directly contributes
to the support of the foundation and to the production of more free

gawk.info 148 / 207

software.

Once you have the distribution (for example, gawk-2.15.0.tar.z),
first use gzip to expand the file, and then use tar to extract it. You
can use the following pipeline to produce the gawk distribution:

Under System V, add ’o’ to the tar flags
gzip -d -c gawk-2.15.0.tar.z | tar -xvpf -

This will create a directory named gawk-2.15 in the current directory.

The distribution file name is of the form gawk-2.15.n.tar.Z. The n
represents a patchlevel, meaning that minor bugs have been fixed in the
major release. The current patchlevel is 0, but when retrieving
distributions, you should get the version with the highest patchlevel.

If you are not on a Unix system, you will need to make other
arrangements for getting and extracting the gawk distribution. You
should consult a local expert.

1.120 gawk.info/Distribution contents

Contents of the gawk Distribution

gawk has a number of C source files, documentation files,
subdirectories and files related to the configuration process (see

Compiling and Installing gawk on Unix
), and several subdirectories

related to different, non-Unix, operating systems.

various .c, .y, and .h files
The C and YACC source files are the actual gawk source code.

README
README.VMS
README.dos
README.rs6000
README.ultrix

Descriptive files: README for gawk under Unix, and the rest for
the various hardware and software combinations.

PORTS
A list of systems to which gawk has been ported, and which have
successfully run the test suite.

ACKNOWLEDGMENT
A list of the people who contributed major parts of the code or
documentation.

NEWS
A list of changes to gawk since the last release or patch.

gawk.info 149 / 207

COPYING
The GNU General Public License.

FUTURES
A brief list of features and/or changes being contemplated for
future releases, with some indication of the time frame for the
feature, based on its difficulty.

LIMITATIONS
A list of those factors that limit gawk’s performance. Most of
these depend on the hardware or operating system software, and are
not limits in gawk itself.

PROBLEMS
A file describing known problems with the current release.

gawk.1
The troff source for a manual page describing gawk.

gawk.texinfo
The texinfo source file for this Info file. It should be
processed with TeX to produce a printed manual, and with makeinfo
to produce the Info file.

Makefile.in
config
config.in
configure
missing
mungeconf

These files and subdirectories are used when configuring gawk for
various Unix systems. They are explained in detail in

Compiling and Installing gawk on Unix
.

atari
Files needed for building gawk on an Atari ST. See

Installing gawk on the Atari ST
, for details.

pc
Files needed for building gawk under MS-DOS. See

Installing gawk on MS-DOS
, for details.

vms
Files needed for building gawk under VMS. See

Compiling Installing and Running gawk on VMS
, for details.

test
Many interesting awk programs, provided as a test suite for gawk.
You can use make test from the top level gawk directory to run

gawk.info 150 / 207

your version of gawk against the test suite. If gawk successfully
passes make test then you can be confident of a successful port.

1.121 gawk.info/Unix Installation

Compiling and Installing gawk on Unix
=====================================

Often, you can compile and install gawk by typing only two commands.
However, if you do not use a supported system, you may need to
configure gawk for your system yourself.

Quick Installation
Compiling gawk on a

supported Unix version.

Configuration Philosophy
How it’s all supposed to work.

New Configurations
What to do if there is no supplied

configuration for your system.

1.122 gawk.info/Quick Installation

Compiling gawk for a Supported Unix Version

After you have extracted the gawk distribution, cd to gawk-2.15.
Look in the config subdirectory for a file that matches your
hardware/software combination. In general, only the software is
relevant; for example sunos41 is used for SunOS 4.1, on both Sun 3 and
Sun 4 hardware.

If you find such a file, run the command:

assume you have SunOS 4.1
./configure sunos41

This produces a Makefile and config.h tailored to your system. You
may wish to edit the Makefile to use a different C compiler, such as
gcc, the GNU C compiler, if you have it. You may also wish to
change the CFLAGS variable, which controls the command line options
that are passed to the C compiler (such as optimization levels, or
compiling for debugging).

gawk.info 151 / 207

After you have configured Makefile and config.h, type:

make

and shortly thereafter, you should have an executable version of gawk.
That’s all there is to it!

1.123 gawk.info/Configuration Philosophy

The Configuration Process

(This section is of interest only if you know something about using
the C language and the Unix operating system.)

The source code for gawk generally attempts to adhere to industry
standards wherever possible. This means that gawk uses library
routines that are specified by the ANSI C standard and by the POSIX
operating system interface standard. When using an ANSI C compiler,
function prototypes are provided to help improve the compile-time
checking.

Many older Unix systems do not support all of either the ANSI or the
POSIX standards. The missing subdirectory in the gawk distribution
contains replacement versions of those subroutines that are most likely
to be missing.

The config.h file that is created by the configure program contains
definitions that describe features of the particular operating system
where you are attempting to compile gawk. For the most part, it lists
which standard subroutines are not available. For example, if your
system lacks the getopt routine, then GETOPT_MISSING would be defined.

config.h also defines constants that describe facts about your
variant of Unix. For example, there may not be an st_blksize element
in the stat structure. In this case BLKSIZE_MISSING would be defined.

Based on the list in config.h of standard subroutines that are
missing, missing.c will do a #include of the appropriate file(s) from
the missing subdirectory.

Conditionally compiled code in the other source files relies on the
other definitions in the config.h file.

Besides creating config.h, configure produces a Makefile from
Makefile.in. There are a number of lines in Makefile.in that are
system or feature specific. For example, there is line that begins
with ##MAKE_ALLOCA_C##. This is normally a comment line, since it
starts with #. If a configuration file has MAKE_ALLOCA_C in it, then
configure will delete the ##MAKE_ALLOCA_C## from the beginning of the
line. This will enable the rules in the Makefile that use a C version
of alloca. There are several similar features that work in this
fashion.

gawk.info 152 / 207

1.124 gawk.info/New Configurations

Configuring gawk for a New System

(This section is of interest only if you know something about using
the C language and the Unix operating system, and if you have to install
gawk on a system that is not supported by the gawk distribution. If
you are a C or Unix novice, get help from a local expert.)

If you need to configure gawk for a Unix system that is not
supported in the distribution, first see

The Configuration Process
.

Then, copy config.in to config.h, and copy Makefile.in to Makefile.

Next, edit both files. Both files are liberally commented, and the
necessary changes should be straightforward.

While editing config.h, you need to determine what library routines
you do or do not have by consulting your system documentation, or by
perusing your actual libraries using the ar or nm utilities. In the
worst case, simply do not define any of the macros for missing
subroutines. When you compile gawk, the final link-editing step will
fail. The link editor will provide you with a list of unresolved
external references--these are the missing subroutines. Edit config.h
again and recompile, and you should be set.

Editing the Makefile should also be straightforward. Enable or
disable the lines that begin with ##MAKE_whatever##, as appropriate.
Select the correct C compiler and CFLAGS for it. Then run make.

Getting a correct configuration is likely to be an iterative process.
Do not be discouraged if it takes you several tries. If you have no
luck whatsoever, please report your system type, and the steps you took.
Once you do have a working configuration, please send it to the
maintainers so that support for your system can be added to the
official release.

See
Reporting Problems and Bugs
, for information on how to report

problems in configuring gawk. You may also use the same mechanisms for
sending in new configurations.

1.125 gawk.info/VMS Installation

gawk.info 153 / 207

Compiling, Installing, and Running gawk on VMS
==

This section describes how to compile and install gawk under VMS.

VMS Compilation
How to compile gawk under VMS.

VMS Installation Details
How to install gawk under VMS.

VMS Running
How to run gawk under VMS.

VMS POSIX
Alternate instructions for VMS POSIX.

1.126 gawk.info/VMS Compilation

Compiling gawk under VMS

To compile gawk under VMS, there is a DCL command procedure that
will issue all the necessary CC and LINK commands, and there is also a
Makefile for use with the MMS utility. From the source directory, use
either

$ @[.VMS]VMSBUILD.COM

or

$ MMS/DESCRIPTION=[.VMS]DECSRIP.MMS GAWK

Depending upon which C compiler you are using, follow one of the sets
of instructions in this table:

VAX C V3.x
Use either vmsbuild.com or descrip.mms as is. These use
CC/OPTIMIZE=NOLINE, which is essential for Version 3.0.

VAX C V2.x
You must have Version 2.3 or 2.4; older ones won’t work. Edit
either vmsbuild.com or descrip.mms according to the comments in
them. For vmsbuild.com, this just entails removing two !
delimiters. Also edit config.h (which is a copy of file
[.config]vms-conf.h) and comment out or delete the two lines
#define __STDC__ 0 and #define VAXC_BUILTINS near the end.

GNU C
Edit vmsbuild.com or descrip.mms; the changes are different from

gawk.info 154 / 207

those for VAX C V2.x, but equally straightforward. No changes to
config.h should be needed.

DEC C
Edit vmsbuild.com or descrip.mms according to their comments. No
changes to config.h should be needed.

gawk 2.15 has been tested under VAX/VMS 5.5-1 using VAX C V3.2, GNU
C 1.40 and 2.3. It should work without modifications for VMS V4.6 and
up.

1.127 gawk.info/VMS Installation Details

Installing gawk on VMS

To install gawk, all you need is a "foreign" command, which is a DCL
symbol whose value begins with a dollar sign.

$ GAWK :== $device:[directory]GAWK

(Substitute the actual location of gawk.exe for device:[directory].)
The symbol should be placed in the login.com of any user who wishes to
run gawk, so that it will be defined every time the user logs on.
Alternatively, the symbol may be placed in the system-wide sylogin.com
procedure, which will allow all users to run gawk.

Optionally, the help entry can be loaded into a VMS help library:

$ LIBRARY/HELP SYS$HELP:HELPLIB [.VMS]GAWK.HLP

(You may want to substitute a site-specific help library rather than
the standard VMS library HELPLIB.) After loading the help text,

$ HELP GAWK

will provide information about both the gawk implementation and the awk
programming language.

The logical name AWK_LIBRARY can designate a default location for
awk program files. For the -f option, if the specified filename
has no device or directory path information in it, gawk will look in
the current directory first, then in the directory specified by the
translation of AWK_LIBRARY if the file was not found. If after
searching in both directories, the file still is not found, then gawk
appends the suffix .awk to the filename and the file search will be
re-tried. If AWK_LIBRARY is not defined, that portion of the file
search will fail benignly.

1.128 gawk.info/VMS Running

gawk.info 155 / 207

Running gawk on VMS

Command line parsing and quoting conventions are significantly
different on VMS, so examples in this manual or from other sources
often need minor changes. They are minor though, and all awk programs
should run correctly.

Here are a couple of trivial tests:

$ gawk -- "BEGIN {print ""Hello, World!""}"
$ gawk -"W" version ! could also be -"W version" or "-W version"

Note that upper-case and mixed-case text must be quoted.

The VMS port of gawk includes a DCL-style interface in addition to
the original shell-style interface (see the help entry for details).
One side-effect of dual command line parsing is that if there is only a
single parameter (as in the quoted string program above), the command
becomes ambiguous. To work around this, the normally optional - flag
is required to force Unix style rather than DCL parsing. If any other
dash-type options (or multiple parameters such as data files to be
processed) are present, there is no ambiguity and - can be omitted.

The default search path when looking for awk program files specified
by the -f option is "SYS$DISK:[],AWK_LIBRARY:". The logical name
AWKPATH can be used to override this default. The format of AWKPATH is
a comma-separated list of directory specifications. When defining it,
the value should be quoted so that it retains a single translation, and
not a multi-translation RMS searchlist.

1.129 gawk.info/VMS POSIX

Building and using gawk under VMS POSIX

Ignore the instructions above, although vms/gawk.hlp should still be
made available in a help library. Make sure that the two scripts,
configure and mungeconf, are executable; use chmod +x on them if
necessary. Then execute the following commands:

$ POSIX
psx> configure vms-posix
psx> make awktab.c gawk

The first command will construct files config.h and Makefile out of
templates. The second command will compile and link gawk. Due to a
make bug in VMS POSIX V1.0 and V1.1, the file awktab.c must be given as
an explicit target or it will not be built and the final link step will
fail. Ignore the warning "Could not find lib m in lib list"; it is
harmless, caused by the explicit use of -lm as a linker option which is
not needed under VMS POSIX. Under V1.1 (but not V1.0) a problem with
the yacc skeleton /etc/yyparse.c will cause a compiler warning for

gawk.info 156 / 207

awktab.c, followed by a linker warning about compilation warnings in
the resulting object module. These warnings can be ignored.

Once built, gawk will work like any other shell utility. Unlike the
normal VMS port of gawk, no special command line manipulation is needed
in the VMS POSIX environment.

1.130 gawk.info/MS-DOS Installation

Installing gawk on MS-DOS
=========================

The first step is to get all the files in the gawk distribution onto
your PC. Move all the files from the pc directory into the main
directory where the other files are. Edit the file make.bat so that it
will be an acceptable MS-DOS batch file. This means making sure that
all lines are terminated with the ASCII carriage return and line feed
characters. restrictions.

gawk has only been compiled with version 5.1 of the Microsoft C
compiler. The file make.bat from the pc directory assumes that you
have this compiler.

Copy the file setargv.obj from the library directory where it
resides to the gawk source code directory.

Run make.bat. This will compile gawk for you, and link it. That’s
all there is to it!

1.131 gawk.info/Atari Installation

Installing gawk on the Atari ST
===============================

This section assumes that you are running TOS. It applies to other
Atari models (STe, TT) as well.

In order to use gawk, you need to have a shell, either text or
graphics, that does not map all the characters of a command line to
upper case. Maintaining case distinction in option flags is very
important (see

Invoking awk
). Popular shells like gulam or gemini will

work, as will newer versions of desktop. Support for I/O redirection
is necessary to make it easy to import awk programs from other
environments. Pipes are nice to have, but not vital.

If you have received an executable version of gawk, place it, as
usual, anywhere in your PATH where your shell will find it.

gawk.info 157 / 207

While executing, gawk creates a number of temporary files. gawk
looks for either of the environment variables TEMP or TMPDIR, in that
order. If either one is found, its value is assumed to be a directory
for temporary files. This directory must exist, and if you can spare
the memory, it is a good idea to put it on a RAM drive. If neither
TEMP nor TMPDIR are found, then gawk uses the current directory for
its temporary files.

The ST version of gawk searches for its program files as described
in

The AWKPATH Environment Variable
. On the ST, the default value for

the AWKPATH variable is ".,c:\lib\awk,c:\gnu\lib\awk". The search path
can be modified by explicitly setting AWKPATH to whatever you wish.
Note that colons cannot be used on the ST to separate elements in the
AWKPATH variable, since they have another, reserved, meaning. Instead,
you must use a comma to separate elements in the path. If you are
recompiling gawk on the ST, then you can choose a new default search
path, by setting the value of DEFPATH in the file ...\config\atari.
You may choose a different separator character by setting the value of
ENVSEP in the same file. The new values will be used when creating the
header file config.h.

Although awk allows great flexibility in doing I/O redirections from
within a program, this facility should be used with care on the ST. In
some circumstances the OS routines for file handle pool processing lose
track of certain events, causing the computer to crash, and requiring a
reboot. Often a warm reboot is sufficient. Fortunately, this happens
infrequently, and in rather esoteric situations. In particular, avoid
having one part of an awk program using print statements explicitly
redirected to "/dev/stdout", while other print statements use the
default standard output, and a calling shell has redirected standard
output to a file.

When gawk is compiled with the ST version of gcc and its usual
libraries, it will accept both / and \ as path separators. While this
is convenient, it should be remembered that this removes one,
technically legal, character (/) from your file names, and that it may
create problems for external programs, called via the system()
function, which may not support this convention. Whenever it is
possible that a file created by gawk will be used by some other program,
use only backslashes. Also remember that in awk, backslashes in
strings have to be doubled in order to get literal backslashes.

The initial port of gawk to the ST was done with gcc. If you wish
to recompile gawk from scratch, you will need to use a compiler that
accepts ANSI standard C (such as gcc, Turbo C, or Prospero C). If
sizeof(int) != sizeof(int *), the correctness of the generated code
depends heavily on the fact that all function calls have function
prototypes in the current scope. If your compiler does not accept
function prototypes, you will probably have to add a number of casts to
the code.

If you are using gcc, make sure that you have up-to-date libraries.
Older versions have problems with some library functions (atan2(),
strftime(), the %g conversion in sprintf()) which may affect the
operation of gawk.

gawk.info 158 / 207

In the atari subdirectory of the gawk distribution is a version of
the system() function that has been tested with gulam and msh; it
should work with other shells as well. With gulam, it passes the
string to be executed without spawning an extra copy of a shell. It is
possible to replace this version of system() with a similar function
from a library or from some other source if that version would be a
better choice for the shell you prefer.

The files needed to recompile gawk on the ST can be found in the
atari directory. The provided files and instructions below assume that
you have the GNU C compiler (gcc), the gulam shell, and an ST version
of sed. The Makefile is set up to use byacc as a yacc replacement.
With a different set of tools some adjustments and/or editing will be
needed.

cd to the atari directory. Copy Makefile.st to makefile in the
source (parent) directory. Possibly adjust ../config/atari to suit
your system. Execute the script mkconf.g which will create the header
file ../config.h. Go back to the source directory. If you are not
using gcc, check the file missing.c. It may be necessary to change
forward slashes in the references to files from the atari subdirectory
into backslashes. Type make and enjoy.

Compilation with gcc of some of the bigger modules, like awk_tab.c,
may require a full four megabytes of memory. On smaller machines you
would need to cut down on optimizations, or you would have to switch to
another, less memory hungry, compiler.

1.132 gawk.info/Gawk Summary

gawk Summary

This appendix provides a brief summary of the gawk command line and
the awk language. It is designed to serve as "quick reference." It is
therefore terse, but complete.

Command Line Summary
Recapitulation of the command line.

Language Summary
A terse review of the language.

Variables-Fields
Variables, fields, and arrays.

Rules Summary
Patterns and Actions, and their
component parts.

gawk.info 159 / 207

Functions Summary
Defining and calling functions.

Historical Features
Some undocumented but supported "features".

1.133 gawk.info/Command Line Summary

Command Line Options Summary
============================

The command line consists of options to gawk itself, the awk program
text (if not supplied via the -f option), and values to be made
available in the ARGC and ARGV predefined awk variables:

awk [POSIX or GNU style options] -f source-file [--] file ...
awk [POSIX or GNU style options] [--] ’program’ file ...

The options that gawk accepts are:

-F fs
-field-separator=fs

Use fs for the input field separator (the value of the FS
predefined variable).

-f program-file
-file=program-file

Read the awk program source from the file program-file, instead of
from the first command line argument.

-v var=val
-assign=var=val

Assign the variable var the value val before program execution
begins.

-W compat
-compat

Specifies compatibility mode, in which gawk extensions are turned
off.

-W copyleft
-W copyright
-copyleft
-copyright

Print the short version of the General Public License on the error
output. This option may disappear in a future version of gawk.

-W help
-W usage
-help
-usage

Print a relatively short summary of the available options on the
error output.

gawk.info 160 / 207

-W lint
-lint

Give warnings about dubious or non-portable awk constructs.

-W posix
-posix

Specifies POSIX compatibility mode, in which gawk extensions are
turned off and additional restrictions apply.

-W source=program-text
-source=program-text

Use program-text as awk program source code. This option allows
mixing command line source code with source code from files, and is
particularly useful for mixing command line programs with library
functions.

-W version
-version

Print version information for this particular copy of gawk on the
error output. This option may disappear in a future version of
gawk.

-
Signal the end of options. This is useful to allow further
arguments to the awk program itself to start with a -. This is
mainly for consistency with the argument parsing conventions of
POSIX.

Any other options are flagged as invalid, but are otherwise ignored.
See

Invoking awk
, for more details.

1.134 gawk.info/Language Summary

Language Summary
================

An awk program consists of a sequence of pattern-action statements
and optional function definitions.

pattern { action statements }

function name(parameter list) { action statements }

gawk first reads the program source from the program-file(s) if
specified, or from the first non-option argument on the command line.
The -f option may be used multiple times on the command line. gawk
reads the program text from all the program-file files, effectively
concatenating them in the order they are specified. This is useful for
building libraries of awk functions, without having to include them in
each new awk program that uses them. To use a library function in a

gawk.info 161 / 207

file from a program typed in on the command line, specify -f /dev/tty;
then type your program, and end it with a Control-d. See

Invoking awk
.

The environment variable AWKPATH specifies a search path to use when
finding source files named with the -f option. The default path, which
is .:/local/lib/awk:/gnu/lib/awk is used if AWKPATH is not set. If a
file name given to the -f option contains a / character, no path search
is performed. See

The AWKPATH Environment Variable
, for a full

description of the AWKPATH environment variable.

gawk compiles the program into an internal form, and then proceeds to
read each file named in the ARGV array. If there are no files named on
the command line, gawk reads the standard input.

If a "file" named on the command line has the form var=val, it is
treated as a variable assignment: the variable var is assigned the
value val. If any of the files have a value that is the null string,
that element in the list is skipped.

For each line in the input, gawk tests to see if it matches any
pattern in the awk program. For each pattern that the line matches,
the associated action is executed.

1.135 gawk.info/Variables-Fields

Variables and Fields
====================

awk variables are dynamic; they come into existence when they are
first used. Their values are either floating-point numbers or strings.
awk also has one-dimension arrays; multiple-dimensional arrays may be
simulated. There are several predefined variables that awk sets as a
program runs; these are summarized below.

Fields Summary
Input field splitting.

Built-in Summary
awk’s built-in variables.

Arrays Summary
Using arrays.

Data Type Summary
Values in awk are numbers or strings.

gawk.info 162 / 207

1.136 gawk.info/Fields Summary

Fields

As each input line is read, gawk splits the line into fields, using
the value of the FS variable as the field separator. If FS is a single
character, fields are separated by that character. Otherwise, FS is
expected to be a full regular expression. In the special case that FS
is a single blank, fields are separated by runs of blanks and/or tabs.
Note that the value of IGNORECASE (see

Case-sensitivity in Matching
)

also affects how fields are split when FS is a regular expression.

Each field in the input line may be referenced by its position, $1,
$2, and so on. $0 is the whole line. The value of a field may be
assigned to as well. Field numbers need not be constants:

n = 5
print $n

prints the fifth field in the input line. The variable NF is set to
the total number of fields in the input line.

References to nonexistent fields (i.e., fields after $NF) return the
null-string. However, assigning to a nonexistent field (e.g., $(NF+2)
= 5) increases the value of NF, creates any intervening fields with the
null string as their value, and causes the value of $0 to be recomputed,
with the fields being separated by the value of OFS.

See
Reading Input Files
, for a full description of the way awk

defines and uses fields.

1.137 gawk.info/Built-in Summary

Built-in Variables

awk’s built-in variables are:

ARGC
The number of command line arguments (not including options or the
awk program itself).

ARGIND

gawk.info 163 / 207

The index in ARGV of the current file being processed. It is
always true that FILENAME == ARGV[ARGIND].

ARGV
The array of command line arguments. The array is indexed from 0
to ARGC - 1. Dynamically changing the contents of ARGV can
control the files used for data.

CONVFMT
The conversion format to use when converting numbers to strings.

FIELDWIDTHS
A space separated list of numbers describing the fixed-width input
data.

ENVIRON
An array containing the values of the environment variables. The
array is indexed by variable name, each element being the value of
that variable. Thus, the environment variable HOME would be in
ENVIRON["HOME"]. Its value might be /u/close.

Changing this array does not affect the environment seen by
programs which gawk spawns via redirection or the system function.
(This may change in a future version of gawk.)

Some operating systems do not have environment variables. The
array ENVIRON is empty when running on these systems.

ERRNO
The system error message when an error occurs using getline or
close.

FILENAME
The name of the current input file. If no files are specified on
the command line, the value of FILENAME is -.

FNR
The input record number in the current input file.

FS
The input field separator, a blank by default.

IGNORECASE
The case-sensitivity flag for regular expression operations. If
IGNORECASE has a nonzero value, then pattern matching in rules,
field splitting with FS, regular expression matching with ~ and
!~, and the gsub, index, match, split and sub predefined
functions all ignore case when doing regular expression operations.

NF
The number of fields in the current input record.

NR
The total number of input records seen so far.

OFMT
The output format for numbers for the print statement, "%.6g" by

gawk.info 164 / 207

default.

OFS
The output field separator, a blank by default.

ORS
The output record separator, by default a newline.

RS
The input record separator, by default a newline. RS is
exceptional in that only the first character of its string value
is used for separating records. If RS is set to the null string,
then records are separated by blank lines. When RS is set to the
null string, then the newline character always acts as a field
separator, in addition to whatever value FS may have.

RSTART
The index of the first character matched by match; 0 if no match.

RLENGTH
The length of the string matched by match; -1 if no match.

SUBSEP
The string used to separate multiple subscripts in array elements,
by default "\034".

See
Built-in Variables
, for more information.

1.138 gawk.info/Arrays Summary

Arrays

Arrays are subscripted with an expression between square brackets ([
and]). Array subscripts are always strings; numbers are converted to
strings as necessary, following the standard conversion rules (see

Conversion of Strings and Numbers
).

If you use multiple expressions separated by commas inside the square
brackets, then the array subscript is a string consisting of the
concatenation of the individual subscript values, converted to strings,
separated by the subscript separator (the value of SUBSEP).

The special operator in may be used in an if or while statement to
see if an array has an index consisting of a particular value.

if (val in array)
print array[val]

gawk.info 165 / 207

If the array has multiple subscripts, use (i, j, ...) in array to
test for existence of an element.

The in construct may also be used in a for loop to iterate over all
the elements of an array. See

Scanning all Elements of an Array
.

An element may be deleted from an array using the delete statement.

See
Arrays in awk
, for more detailed information.

1.139 gawk.info/Data Type Summary

Data Types

The value of an awk expression is always either a number or a string.

Certain contexts (such as arithmetic operators) require numeric
values. They convert strings to numbers by interpreting the text of
the string as a numeral. If the string does not look like a numeral,
it converts to 0.

Certain contexts (such as concatenation) require string values.
They convert numbers to strings by effectively printing them with
sprintf. See

Conversion of Strings and Numbers
, for the details.

To force conversion of a string value to a number, simply add 0 to
it. If the value you start with is already a number, this does not
change it.

To force conversion of a numeric value to a string, concatenate it
with the null string.

The awk language defines comparisons as being done numerically if
both operands are numeric, or if one is numeric and the other is a
numeric string. Otherwise one or both operands are converted to
strings and a string comparison is performed.

Uninitialized variables have the string value "" (the null, or
empty, string). In contexts where a number is required, this is
equivalent to 0.

See
Variables
, for more information on variable naming and

initialization; see
Conversion of Strings and Numbers

gawk.info 166 / 207

, for more
information on how variable values are interpreted.

1.140 gawk.info/Rules Summary

Patterns and Actions
====================

Pattern Summary
Quick overview of patterns.

Regexp Summary
Quick overview of regular expressions.

Actions Summary
Quick overview of actions.

An awk program is mostly composed of rules, each consisting of a
pattern followed by an action. The action is enclosed in { and }.
Either the pattern may be missing, or the action may be missing, but,
of course, not both. If the pattern is missing, the action is executed
for every single line of input. A missing action is equivalent to this
action,

{ print }

which prints the entire line.

Comments begin with the # character, and continue until the end of
the line. Blank lines may be used to separate statements. Normally, a
statement ends with a newline, however, this is not the case for lines
ending in a ,, {, ?, :, &&, or ||. Lines ending in do or else also
have their statements automatically continued on the following line.
In other cases, a line can be continued by ending it with a \ , in
which case the newline is ignored.

Multiple statements may be put on one line by separating them with a
;. This applies to both the statements within the action part of a
rule (the usual case), and to the rule statements.

See
Comments in awk Programs
, for information on awk’s commenting

convention; see
awk Statements versus Lines
, for a description of the

line continuation mechanism in awk.

gawk.info 167 / 207

1.141 gawk.info/Pattern Summary

Patterns

awk patterns may be one of the following:

/regular expression/
relational expression
pattern && pattern
pattern || pattern
pattern ? pattern : pattern
(pattern)
! pattern
pattern1, pattern2
BEGIN
END

BEGIN and END are two special kinds of patterns that are not tested
against the input. The action parts of all BEGIN rules are merged as
if all the statements had been written in a single BEGIN rule. They
are executed before any of the input is read. Similarly, all the END
rules are merged, and executed when all the input is exhausted (or when
an exit statement is executed). BEGIN and END patterns cannot be
combined with other patterns in pattern expressions. BEGIN and END
rules cannot have missing action parts.

For /regular-expression/ patterns, the associated statement is
executed for each input line that matches the regular expression.
Regular expressions are extensions of those in egrep, and are
summarized below.

A relational expression may use any of the operators defined below in
the section on actions. These generally test whether certain fields
match certain regular expressions.

The &&, ||, and ! operators are logical "and," logical "or," and
logical "not," respectively, as in C. They do short-circuit
evaluation, also as in C, and are used for combining more primitive
pattern expressions. As in most languages, parentheses may be used to
change the order of evaluation.

The ?: operator is like the same operator in C. If the first
pattern matches, then the second pattern is matched against the input
record; otherwise, the third is matched. Only one of the second and
third patterns is matched.

The pattern1, pattern2 form of a pattern is called a range pattern.
It matches all input lines starting with a line that matches pattern1,
and continuing until a line that matches pattern2, inclusive. A range
pattern cannot be used as an operand to any of the pattern operators.

See
Patterns
, for a full description of the pattern part of awk

rules.

gawk.info 168 / 207

1.142 gawk.info/Regexp Summary

Regular Expressions

Regular expressions are the extended kind found in egrep. They are
composed of characters as follows:

c
matches the character c (assuming c is a character with no special
meaning in regexps).

@{i}c
matches the literal character c.

.
matches any character except newline.

^
matches the beginning of a line or a string.

$
matches the end of a line or a string.

[abc ...]
matches any of the characters abc ... (character class).

[^abc ...]
matches any character except abc ... and newline (negated
character class).

r1|r2
matches either r1 or r2 (alternation).

r1r2
matches r1, and then r2 (concatenation).

r+
matches one or more r’s.

r*
matches zero or more r’s.

r?
matches zero or one r’s.

(r)
matches r (grouping).

See
Regular Expressions as Patterns
, for a more detailed explanation

gawk.info 169 / 207

of regular expressions.

The escape sequences allowed in string constants are also valid in
regular expressions (see

Constant Expressions
).

1.143 gawk.info/Actions Summary

Actions

Action statements are enclosed in braces, { and }. Action
statements consist of the usual assignment, conditional, and looping
statements found in most languages. The operators, control statements,
and input/output statements available are patterned after those in C.

Operator Summary
awk operators.

Control Flow Summary
The control statements.

I-O Summary
The I/O statements.

Printf Summary
A summary of printf.

Special File Summary
Special file names interpreted internally.

Numeric Functions Summary
Built-in numeric functions.

String Functions Summary
Built-in string functions.

Time Functions Summary
Built-in time functions.

String Constants Summary
Escape sequences in strings.

1.144 gawk.info/Operator Summary

gawk.info 170 / 207

Operators
.........

The operators in awk, in order of increasing precedence, are:

= += -= *= /= %= ^=
Assignment. Both absolute assignment (var=value) and operator
assignment (the other forms) are supported.

?:
A conditional expression, as in C. This has the form expr1 ?
expr2 : expr3. If expr1 is true, the value of the expression is
expr2; otherwise it is expr3. Only one of expr2 and expr3 is
evaluated.

||
Logical "or".

&&
Logical "and".

~ !~
Regular expression match, negated match.

< <= > >= != ==
The usual relational operators.

blank
String concatenation.

+ -
Addition and subtraction.

* / %
Multiplication, division, and modulus.

+ - !
Unary plus, unary minus, and logical negation.

^
Exponentiation (** may also be used, and **= for the assignment
operator, but they are not specified in the POSIX standard).

++ -
Increment and decrement, both prefix and postfix.

$
Field reference.

See
Expressions as Action Statements
, for a full description of all

the operators listed above. See
Examining Fields
, for a description of

the field reference operator.

gawk.info 171 / 207

1.145 gawk.info/Control Flow Summary

Control Statements
..................

The control statements are as follows:

if (condition) statement [else statement]
while (condition) statement
do statement while (condition)
for (expr1; expr2; expr3) statement
for (var in array) statement
break
continue
delete array[index]
exit [expression]
{ statements }

See
Control Statements in Actions
, for a full description of all the

control statements listed above.

1.146 gawk.info/I-O Summary

I/O Statements
..............

The input/output statements are as follows:

getline
Set $0 from next input record; set NF, NR, FNR.

getline <file
Set $0 from next record of file; set NF.

getline var
Set var from next input record; set NF, FNR.

getline var <file
Set var from next record of file.

next
Stop processing the current input record. The next input record
is read and processing starts over with the first pattern in the
awk program. If the end of the input data is reached, the END
rule(s), if any, are executed.

gawk.info 172 / 207

next file
Stop processing the current input file. The next input record
read comes from the next input file. FILENAME is updated, FNR is
set to 1, and processing starts over with the first pattern in the
awk program. If the end of the input data is reached, the END
rule(s), if any, are executed.

print
Prints the current record.

print expr-list
Prints expressions.

print expr-list > file
Prints expressions on file.

printf fmt, expr-list
Format and print.

printf fmt, expr-list > file
Format and print on file.

Other input/output redirections are also allowed. For print and
printf, >> file appends output to the file, and | command writes on a
pipe. In a similar fashion, command | getline pipes input into getline.
getline returns 0 on end of file, and -1 on an error.

See
Explicit Input with getline
, for a full description of the

getline statement. See
Printing Output
, for a full description of

print and printf. Finally, see
The next Statement
, for a

description of how the next statement works.

1.147 gawk.info/Printf Summary

printf Summary
..............

The awk printf statement and sprintf function accept the following
conversion specification formats:

%c
An ASCII character. If the argument used for %c is numeric, it is
treated as a character and printed. Otherwise, the argument is
assumed to be a string, and the only first character of that
string is printed.

gawk.info 173 / 207

%d
%i

A decimal number (the integer part).

%e
A floating point number of the form [-]d.ddddddE[+-]dd.

%f
A floating point number of the form [-]ddd.dddddd.

%g
Use %e or %f conversion, whichever produces a shorter string, with
nonsignificant zeros suppressed.

%o
An unsigned octal number (again, an integer).

%s
A character string.

%x
An unsigned hexadecimal number (an integer).

%X
Like %x, except use A through F instead of a through f for decimal
10 through 15.

%%
A single % character; no argument is converted.

There are optional, additional parameters that may lie between the %
and the control letter:

-
The expression should be left-justified within its field.

width
The field should be padded to this width. If width has a leading
zero, then the field is padded with zeros. Otherwise it is padded
with blanks.

.prec
A number indicating the maximum width of strings or digits to the
right of the decimal point.

Either or both of the width and prec values may be specified as *.
In that case, the particular value is taken from the argument list.

See
Using printf Statements for Fancier Printing
, for examples and

for a more detailed description.

gawk.info 174 / 207

1.148 gawk.info/Special File Summary

Special File Names
..................

When doing I/O redirection from either print or printf into a file,
or via getline from a file, gawk recognizes certain special file names
internally. These file names allow access to open file descriptors
inherited from gawk’s parent process (usually the shell). The file
names are:

/dev/stdin
The standard input.

/dev/stdout
The standard output.

/dev/stderr
The standard error output.

/dev/fd/n
The file denoted by the open file descriptor n.

In addition the following files provide process related information
about the running gawk program.

/dev/pid
Reading this file returns the process ID of the current process,
in decimal, terminated with a newline.

/dev/ppid
Reading this file returns the parent process ID of the current
process, in decimal, terminated with a newline.

/dev/pgrpid
Reading this file returns the process group ID of the current
process, in decimal, terminated with a newline.

/dev/user
Reading this file returns a single record terminated with a
newline. The fields are separated with blanks. The fields
represent the following information:

$1
The value of the getuid system call.

$2
The value of the geteuid system call.

$3
The value of the getgid system call.

$4
The value of the getegid system call.

If there are any additional fields, they are the group IDs

gawk.info 175 / 207

returned by getgroups system call. (Multiple groups may not be
supported on all systems.)

These file names may also be used on the command line to name data
files. These file names are only recognized internally if you do not
actually have files by these names on your system.

See
Standard I/O Streams
, for a longer description that provides the

motivation for this feature.

1.149 gawk.info/Numeric Functions Summary

Numeric Functions
.................

awk has the following predefined arithmetic functions:

atan2(y, x)
returns the arctangent of y/x in radians.

cos(expr)
returns the cosine in radians.

exp(expr)
the exponential function.

int(expr)
truncates to integer.

log(expr)
the natural logarithm function.

rand()
returns a random number between 0 and 1.

sin(expr)
returns the sine in radians.

sqrt(expr)
the square root function.

srand(expr)
use expr as a new seed for the random number generator. If no expr
is provided, the time of day is used. The return value is the
previous seed for the random number generator.

1.150 gawk.info/String Functions Summary

gawk.info 176 / 207

String Functions
................

awk has the following predefined string functions:

gsub(r, s, t)
for each substring matching the regular expression r in the string
t, substitute the string s, and return the number of substitutions.
If t is not supplied, use $0.

index(s, t)
returns the index of the string t in the string s, or 0 if t is
not present.

length(s)
returns the length of the string s. The length of $0 is returned
if no argument is supplied.

match(s, r)
returns the position in s where the regular expression r occurs,
or 0 if r is not present, and sets the values of RSTART and
RLENGTH.

split(s, a, r)
splits the string s into the array a on the regular expression r,
and returns the number of fields. If r is omitted, FS is used
instead.

sprintf(fmt, expr-list)
prints expr-list according to fmt, and returns the resulting
string.

sub(r, s, t)
this is just like gsub, but only the first matching substring is
replaced.

substr(s, i, n)
returns the n-character substring of s starting at i. If n is
omitted, the rest of s is used.

tolower(str)
returns a copy of the string str, with all the upper-case
characters in str translated to their corresponding lower-case
counterparts. Nonalphabetic characters are left unchanged.

toupper(str)
returns a copy of the string str, with all the lower-case
characters in str translated to their corresponding upper-case
counterparts. Nonalphabetic characters are left unchanged.

system(cmd-line)
Execute the command cmd-line, and return the exit status.

gawk.info 177 / 207

1.151 gawk.info/Time Functions Summary

Built-in time functions
.......................

The following two functions are available for getting the current
time of day, and for formatting time stamps.

systime()
returns the current time of day as the number of seconds since a
particular epoch (Midnight, January 1, 1970 UTC, on POSIX systems).

strftime(format, timestamp)
formats timestamp according to the specification in format. The
current time of day is used if no timestamp is supplied. See

Functions for Dealing with Time Stamps
, for the details on the

conversion specifiers that strftime accepts.

1.152 gawk.info/String Constants Summary

String Constants
................

String constants in awk are sequences of characters enclosed between
double quotes ("). Within strings, certain escape sequences are
recognized, as in C. These are:

\
A literal backslash.

\a
The "alert" character; usually the ASCII BEL character.

\b
Backspace.

\f
Formfeed.

\n
Newline.

\r
Carriage return.

\t
Horizontal tab.

\v
Vertical tab.

gawk.info 178 / 207

\xhex digits
The character represented by the string of hexadecimal digits
following the \x. As in ANSI C, all following hexadecimal digits
are considered part of the escape sequence. (This feature should
tell us something about language design by committee.) E.g.,
"\x1B" is a string containing the ASCII ESC (escape) character.
(The \x escape sequence is not in POSIX awk.)

@{i}ddd
The character represented by the 1-, 2-, or 3-digit sequence of
octal digits. Thus, "\033" is also a string containing the ASCII
ESC (escape) character.

@{i}c
The literal character c.

The escape sequences may also be used inside constant regular
expressions (e.g., the regexp /[\t\f\n\r\v]/ matches whitespace
characters).

See
Constant Expressions
.

1.153 gawk.info/Functions Summary

Functions
=========

Functions in awk are defined as follows:

function name(parameter list) { statements }

Actual parameters supplied in the function call are used to
instantiate the formal parameters declared in the function. Arrays are
passed by reference, other variables are passed by value.

If there are fewer arguments passed than there are names in
parameter-list, the extra names are given the null string as value.
Extra names have the effect of local variables.

The open-parenthesis in a function call of a user-defined function
must immediately follow the function name, without any intervening
white space. This is to avoid a syntactic ambiguity with the
concatenation operator.

The word func may be used in place of function (but not in POSIX
awk).

Use the return statement to return a value from a function.

See

gawk.info 179 / 207

User-defined Functions
, for a more complete description.

1.154 gawk.info/Historical Features

Historical Features
===================

There are two features of historical awk implementations that gawk
supports. First, it is possible to call the length built-in function
not only with no arguments, but even without parentheses!

a = length

is the same as either of

a = length()
a = length($0)

This feature is marked as "deprecated" in the POSIX standard, and gawk
will issue a warning about its use if -W lint is specified on the
command line.

The other feature is the use of the continue statement outside the
body of a while, for, or do loop. Traditional awk implementations have
treated such usage as equivalent to the next statement. gawk will
support this usage if -W posix has not been specified.

1.155 gawk.info/Sample Program

Sample Program

The following example is a complete awk program, which prints the
number of occurrences of each word in its input. It illustrates the
associative nature of awk arrays by using strings as subscripts. It
also demonstrates the for x in array construction. Finally, it shows
how awk can be used in conjunction with other utility programs to do a
useful task of some complexity with a minimum of effort. Some
explanations follow the program listing.

awk ’
Print list of word frequencies
{

for (i = 1; i <= NF; i++)
freq[$i]++

}

END {

gawk.info 180 / 207

for (word in freq)
printf "%s\t%d\n", word, freq[word]

}’

The first thing to notice about this program is that it has two
rules. The first rule, because it has an empty pattern, is executed on
every line of the input. It uses awk’s field-accessing mechanism (see

Examining Fields
) to pick out the individual words from the line, and

the built-in variable NF (see
Built-in Variables
) to know how many

fields are available.

For each input word, an element of the array freq is incremented to
reflect that the word has been seen an additional time.

The second rule, because it has the pattern END, is not executed
until the input has been exhausted. It prints out the contents of the
freq table that has been built up inside the first action.

Note that this program has several problems that would prevent it
from being useful by itself on real text files:

* Words are detected using the awk convention that fields are
separated by whitespace and that other characters in the input
(except newlines) don’t have any special meaning to awk. This
means that punctuation characters count as part of words.

* The awk language considers upper and lower case characters to be
distinct. Therefore, foo and Foo are not treated by this program
as the same word. This is undesirable since in normal text, words
are capitalized if they begin sentences, and a frequency analyzer
should not be sensitive to that.

* The output does not come out in any useful order. You’re more
likely to be interested in which words occur most frequently, or
having an alphabetized table of how frequently each word occurs.

The way to solve these problems is to use some of the more advanced
features of the awk language. First, we use tolower to remove case
distinctions. Next, we use gsub to remove punctuation characters.
Finally, we use the system sort utility to process the output of the
awk script. First, here is the new version of the program:

awk ’
Print list of word frequencies
{

$0 = tolower($0) # remove case distinctions
gsub(/[^a-z0-9_ \t]/, "", $0) # remove punctuation
for (i = 1; i <= NF; i++)

freq[$i]++
}

END {
for (word in freq)

gawk.info 181 / 207

printf "%s\t%d\n", word, freq[word]
}’

Assuming we have saved this program in a file named frequency.awk,
and that the data is in file1, the following pipeline

awk -f frequency.awk file1 | sort +1 -nr

produces a table of the words appearing in file1 in order of decreasing
frequency.

The awk program suitably massages the data and produces a word
frequency table, which is not ordered.

The awk script’s output is then sorted by the sort command and
printed on the terminal. The options given to sort in this example
specify to sort using the second field of each input line (skipping one
field), that the sort keys should be treated as numeric quantities
(otherwise 15 would come before 5), and that the sorting should be done
in descending (reverse) order.

We could have even done the sort from within the program, by
changing the END action to:

END {
sort = "sort +1 -nr"
for (word in freq)

printf "%s\t%d\n", word, freq[word] | sort
close(sort)

}’

See the general operating system documentation for more information
on how to use the sort command.

1.156 gawk.info/Bugs

Reporting Problems and Bugs

If you have problems with gawk or think that you have found a bug,
please report it to the developers; we cannot promise to do anything
but we might well want to fix it.

Before reporting a bug, make sure you have actually found a real bug.
Carefully reread the documentation and see if it really says you can do
what you’re trying to do. If it’s not clear whether you should be able
to do something or not, report that too; it’s a bug in the
documentation!

Before reporting a bug or trying to fix it yourself, try to isolate
it to the smallest possible awk program and input data file that
reproduces the problem. Then send us the program and data file, some
idea of what kind of Unix system you’re using, and the exact results

gawk.info 182 / 207

gawk gave you. Also say what you expected to occur; this will help us
decide whether the problem was really in the documentation.

Once you have a precise problem, send e-mail to (Internet)
bug-gnu-utils@prep.ai.mit.edu or (UUCP)
mit-eddie!prep.ai.mit.edu!bug-gnu-utils. Please include the version
number of gawk you are using. You can get this information with the
command gawk -W version ’{}’ /dev/null. You should send carbon copies
of your mail to David Trueman at david@cs.dal.ca, and to Arnold
Robbins, who can be reached at arnold@skeeve.atl.ga.us. David is most
likely to fix code problems, while Arnold is most likely to fix
documentation problems.

Non-bug suggestions are always welcome as well. If you have
questions about things that are unclear in the documentation or are
just obscure features, ask Arnold Robbins; he will try to help you out,
although he may not have the time to fix the problem. You can send him
electronic mail at the Internet address above.

If you find bugs in one of the non-Unix ports of gawk, please send
an electronic mail message to the person who maintains that port. They
are listed below, and also in the README file in the gawk distribution.
Information in the README file should be considered authoritative if
it conflicts with this manual.

The people maintaining the non-Unix ports of gawk are:

MS-DOS
The port to MS-DOS is maintained by Scott Deifik. His electronic
mail address is scottd@amgen.com.

VMS
The port to VAX VMS is maintained by Pat Rankin. His electronic
mail address is rankin@eql.caltech.edu.

Atari ST
The port to the Atari ST is maintained by Michal Jaegermann. His
electronic mail address is ntomczak@vm.ucs.ualberta.ca.

If your bug is also reproducible under Unix, please send copies of
your report to the general GNU bug list, as well as to Arnold Robbins
and David Trueman, at the addresses listed above.

1.157 gawk.info/Notes

Implementation Notes

This appendix contains information mainly of interest to
implementors and maintainers of gawk. Everything in it applies
specifically to gawk, and not to other implementations.

gawk.info 183 / 207

Compatibility Mode
How to disable certain gawk extensions.

Future Extensions
New features we may implement soon.

Improvements
Suggestions for improvements by volunteers.

1.158 gawk.info/Compatibility Mode

Downward Compatibility and Debugging
====================================

See
Extensions in gawk not in POSIX awk
, for a summary of the GNU

extensions to the awk language and program. All of these features can
be turned off by invoking gawk with the -W compat option, or with the
-W posix option.

If gawk is compiled for debugging with -DDEBUG, then there is one
more option available on the command line:

-W parsedebug
Print out the parse stack information as the program is being
parsed.

This option is intended only for serious gawk developers, and not
for the casual user. It probably has not even been compiled into your
version of gawk, since it slows down execution.

1.159 gawk.info/Future Extensions

Probable Future Extensions
==========================

This section briefly lists extensions that indicate the directions
we are currently considering for gawk. The file FUTURES in the gawk
distributions lists these extensions, as well as several others.

RS as a regexp
The meaning of RS may be generalized along the lines of FS.

Control of subprocess environment
Changes made in gawk to the array ENVIRON may be propagated to
subprocesses run by gawk.

gawk.info 184 / 207

Databases
It may be possible to map a GDBM/NDBM/SDBM file into an awk array.

Single-character fields
The null string, "", as a field separator, will cause field
splitting and the split function to separate individual characters.
Thus, split(a, "abcd", "") would yield a[1] == "a", a[2] == "b",
and so on.

More lint warnings
There are more things that could be checked for portability.

RECLEN variable for fixed length records
Along with FIELDWIDTHS, this would speed up the processing of
fixed-length records.

RT variable to hold the record terminator
It is occasionally useful to have access to the actual string of
characters that matched the RS variable. The RT variable would
hold these characters.

A restart keyword
After modifying $0, restart would restart the pattern matching
loop, without reading a new record from the input.

A |& redirection
The |& redirection, in place of |, would open a two-way pipeline
for communication with a sub-process (via getline and print and
printf).

IGNORECASE affecting all comparisons
The effects of the IGNORECASE variable may be generalized to all
string comparisons, and not just regular expression operations.

A way to mix command line source code and library files
There may be a new option that would make it possible to easily
use library functions from a program entered on the command line.

GNU-style long options
We will add GNU-style long options to gawk for compatibility with
other GNU programs. (For example, -field-separator=: would be
equivalent to -F:.)

1.160 gawk.info/Improvements

Suggestions for Improvements
============================

Here are some projects that would-be gawk hackers might like to take
on. They vary in size from a few days to a few weeks of programming,
depending on which one you choose and how fast a programmer you are.
Please send any improvements you write to the maintainers at the GNU
project.

gawk.info 185 / 207

1. Compilation of awk programs: gawk uses a Bison (YACC-like) parser
to convert the script given it into a syntax tree; the syntax tree
is then executed by a simple recursive evaluator. This method
incurs a lot of overhead, since the recursive evaluator performs
many procedure calls to do even the simplest things.

It should be possible for gawk to convert the script’s parse tree
into a C program which the user would then compile, using the
normal C compiler and a special gawk library to provide all the
needed functions (regexps, fields, associative arrays, type
coercion, and so on).

An easier possibility might be for an intermediate phase of awk to
convert the parse tree into a linear byte code form like the one
used in GNU Emacs Lisp. The recursive evaluator would then be
replaced by a straight line byte code interpreter that would be
intermediate in speed between running a compiled program and doing
what gawk does now.

This may actually happen for the 3.0 version of gawk.

2. An error message section has not been included in this version of
the manual. Perhaps some nice beta testers will document some of
the messages for the future.

3. The programs in the test suite could use documenting in this
manual.

4. The programs and data files in the manual should be available in
separate files to facilitate experimentation.

5. See the FUTURES file for more ideas. Contact us if you would
seriously like to tackle any of the items listed there.

1.161 gawk.info/Glossary

Glossary

Action
A series of awk statements attached to a rule. If the rule’s
pattern matches an input record, the awk language executes the
rule’s action. Actions are always enclosed in curly braces. See

Overview of Actions
.

Amazing awk Assembler
Henry Spencer at the University of Toronto wrote a retargetable
assembler completely as awk scripts. It is thousands of lines
long, including machine descriptions for several 8-bit
microcomputers. It is a good example of a program that would have
been better written in another language.

gawk.info 186 / 207

ANSI
The American National Standards Institute. This organization
produces many standards, among them the standard for the C
programming language.

Assignment
An awk expression that changes the value of some awk variable or
data object. An object that you can assign to is called an
lvalue. See

Assignment Expressions
.

awk Language
The language in which awk programs are written.

awk Program
An awk program consists of a series of patterns and actions,
collectively known as rules. For each input record given to the
program, the program’s rules are all processed in turn. awk
programs may also contain function definitions.

awk Script
Another name for an awk program.

Built-in Function
The awk language provides built-in functions that perform various
numerical, time stamp related, and string computations. Examples
are sqrt (for the square root of a number) and substr (for a
substring of a string). See

Built-in Functions
.

Built-in Variable
ARGC, ARGIND, ARGV, CONVFMT, ENVIRON, ERRNO, FIELDWIDTHS,
FILENAME, FNR, FS, IGNORECASE, NF, NR, OFMT, OFS, ORS,
RLENGTH, RSTART, RS, and SUBSEP, are the variables that have
special meaning to awk. Changing some of them affects awk’s
running environment. See

Built-in Variables
.

Braces
See "Curly Braces."

C
The system programming language that most GNU software is written
in. The awk programming language has C-like syntax, and this
manual points out similarities between awk and C when appropriate.

CHEM
A preprocessor for pic that reads descriptions of molecules and
produces pic input for drawing them. It was written by Brian
Kernighan, and is available from netlib@research.att.com.

Compound Statement
A series of awk statements, enclosed in curly braces. Compound
statements may be nested. See

gawk.info 187 / 207

Control Statements in Actions
.

Concatenation
Concatenating two strings means sticking them together, one after
another, giving a new string. For example, the string foo
concatenated with the string bar gives the string foobar. See

String Concatenation
.

Conditional Expression
An expression using the ?: ternary operator, such as expr1 ? expr2
: expr3. The expression expr1 is evaluated; if the result is
true, the value of the whole expression is the value of expr2
otherwise the value is expr3. In either case, only one of expr2
and expr3 is evaluated. See

Conditional Expressions
.

Constant Regular Expression
A constant regular expression is a regular expression written
within slashes, such as /foo/. This regular expression is chosen
when you write the awk program, and cannot be changed doing its
execution. See

How to Use Regular Expressions
.

Comparison Expression
A relation that is either true or false, such as (a < b).
Comparison expressions are used in if, while, and for statements,
and in patterns to select which input records to process. See

Comparison Expressions
.

Curly Braces
The characters { and }. Curly braces are used in awk for
delimiting actions, compound statements, and function bodies.

Data Objects
These are numbers and strings of characters. Numbers are
converted into strings and vice versa, as needed. See

Conversion of Strings and Numbers
.

Dynamic Regular Expression
A dynamic regular expression is a regular expression written as an
ordinary expression. It could be a string constant, such as
"foo", but it may also be an expression whose value may vary.
See

How to Use Regular Expressions
.

Escape Sequences
A special sequence of characters used for describing nonprinting

gawk.info 188 / 207

characters, such as \n for newline, or \033 for the ASCII ESC
(escape) character. See

Constant Expressions
.

Field
When awk reads an input record, it splits the record into pieces
separated by whitespace (or by a separator regexp which you can
change by setting the built-in variable FS). Such pieces are
called fields. If the pieces are of fixed length, you can use the
built-in variable FIELDWIDTHS to describe their lengths. See

How Input is Split into Records
.

Format
Format strings are used to control the appearance of output in the
printf statement. Also, data conversions from numbers to strings
are controlled by the format string contained in the built-in
variable CONVFMT. See

Format-Control Letters
.

Function
A specialized group of statements often used to encapsulate general
or program-specific tasks. awk has a number of built-in
functions, and also allows you to define your own. See

Built-in Functions
. Also, see
User-defined Functions
.

gawk
The GNU implementation of awk.

GNU
"GNU’s not Unix". An on-going project of the Free Software
Foundation to create a complete, freely distributable,
POSIX-compliant computing environment.

Input Record
A single chunk of data read in by awk. Usually, an awk input
record consists of one line of text. See

How Input is Split into Records
.

Keyword
In the awk language, a keyword is a word that has special meaning.
Keywords are reserved and may not be used as variable names.

awk’s keywords are: if, else, while, do...while, for, for...in,
break, continue, delete, next, function, func, and exit.

Lvalue
An expression that can appear on the left side of an assignment

gawk.info 189 / 207

operator. In most languages, lvalues can be variables or array
elements. In awk, a field designator can also be used as an
lvalue.

Number
A numeric valued data object. The gawk implementation uses double
precision floating point to represent numbers.

Pattern
Patterns tell awk which input records are interesting to which
rules.

A pattern is an arbitrary conditional expression against which
input is tested. If the condition is satisfied, the pattern is
said to match the input record. A typical pattern might compare
the input record against a regular expression. See

Patterns
.

POSIX
The name for a series of standards being developed by the IEEE
that specify a Portable Operating System interface. The "IX"
denotes the Unix heritage of these standards. The main standard
of interest for awk users is P1003.2, the Command Language and
Utilities standard.

Range (of input lines)
A sequence of consecutive lines from the input file. A pattern
can specify ranges of input lines for awk to process, or it can
specify single lines. See

Patterns
.

Recursion
When a function calls itself, either directly or indirectly. If
this isn’t clear, refer to the entry for "recursion."

Redirection
Redirection means performing input from other than the standard
input stream, or output to other than the standard output stream.

You can redirect the output of the print and printf statements to
a file or a system command, using the >, >>, and | operators. You
can redirect input to the getline statement using the < and |
operators. See

Redirecting Output of print and printf
.

Regular Expression
See "regexp."

Regexp
Short for regular expression. A regexp is a pattern that denotes a
set of strings, possibly an infinite set. For example, the regexp
R.*xp matches any string starting with the letter R and ending
with the letters xp. In awk, regexps are used in patterns and in
conditional expressions. Regexps may contain escape sequences.

gawk.info 190 / 207

See
Regular Expressions as Patterns
.

Rule
A segment of an awk program, that specifies how to process single
input records. A rule consists of a pattern and an action. awk
reads an input record; then, for each rule, if the input record
satisfies the rule’s pattern, awk executes the rule’s action.
Otherwise, the rule does nothing for that input record.

Side Effect
A side effect occurs when an expression has an effect aside from
merely producing a value. Assignment expressions, increment
expressions and function calls have side effects. See

Assignment Expressions
.

Special File
A file name interpreted internally by gawk, instead of being handed
directly to the underlying operating system. For example,
/dev/stdin. See

Standard I/O Streams
.

Stream Editor
A program that reads records from an input stream and processes
them one or more at a time. This is in contrast with batch
programs, which may expect to read their input files in entirety
before starting to do anything, and with interactive programs,
which require input from the user.

String
A datum consisting of a sequence of characters, such as I am a
string. Constant strings are written with double-quotes in the
awk language, and may contain escape sequences. See

Constant Expressions
.

Whitespace
A sequence of blank or tab characters occurring inside an input
record or a string.

1.162 gawk.info/Index

Index

$ (field operator)
Fields

gawk.info 191 / 207

-assign option
Options

-compat option
Options

-copyleft option
Options

-copyright option
Options

-field-separator option
Options

-file option
Options

-help option
Options

-lint option
Options

-posix option
Options

-source option
Options

-usage option
Options

-version option
Options

AWKPATH environment variable
AWKPATH Variable

awk language
This Manual

awk program
This Manual

BEGIN special pattern
BEGIN-END

break statement
Break Statement

continue statement
Continue Statement

delete statement
Delete

gawk.info 192 / 207

END special pattern
BEGIN-END

exit statement
Exit Statement

for (x in ...)
Scanning an Array

for statement
For Statement

if statement
If Statement

next file statement
Next File Statement

next statement
Next Statement

printf statement, syntax of
Basic Printf

printf, format-control characters
Control Letters

printf, modifiers
Format Modifiers

print statement
Print

return statement
Return Statement

while statement
While Statement

/dev/fd/
Special Files

/dev/pgrpid
Special Files

/dev/pid
Special Files

/dev/ppid
Special Files

/dev/stderr
Special Files

/dev/stdin
Special Files

gawk.info 193 / 207

/dev/stdout
Special Files

/dev/user
Special Files

BBS-list file
Sample Data Files

inventory-shipped file
Sample Data Files

#!
Executable Scripts

#
Comments

-F option
Field Separators

-f option
Long

-v option
Options

-W option
Options

print $0
Very Simple

accessing fields
Fields

acronym
History

action, curly braces
Actions

action, default
Very Simple

action, definition of
Actions

action, separating statements
Actions

addition
Arithmetic Ops

and operator
Boolean Ops

gawk.info 194 / 207

anonymous ftp
Extracting

anonymous uucp
Extracting

applications of awk
When

ARGIND
Auto-set

arguments in function call
Function Calls

arguments, command line
Command Line

ARGV
Other Arguments

arithmetic operators
Arithmetic Ops

array assignment
Assigning Elements

array reference
Reference to Elements

arrays
Array Intro

arrays, definition of
Array Intro

arrays, deleting an element
Delete

arrays, multi-dimensional subscripts
Multi-dimensional

arrays, presence of elements
Reference to Elements

arrays, special for statement
Scanning an Array

assignment operators
Assignment Ops

assignment to fields
Changing Fields

associative arrays
Array Intro

gawk.info 195 / 207

backslash continuation
Statements-Lines

basic function of gawk
Getting Started

body of a loop
While Statement

boolean expressions
Boolean Ops

boolean operators
Boolean Ops

boolean patterns
Boolean Patterns

buffering output
I-O Functions

buffers, flushing
I-O Functions

built-in functions
Built-in

built-in variables
Built-in Variables

built-in variables, user modifiable
User-modified

call by reference
Function Caveats

call by value
Function Caveats

calling a function
Function Calls

case sensitivity
Read Terminal

changing contents of a field
Changing Fields

close
Close Input

close
Close Output

closing input files and pipes
Close Input

gawk.info 196 / 207

closing output files and pipes
Close Output

command line
Command Line

command line formats
Running gawk

command line, setting FS on
Field Separators

comments
Comments

comparison expressions
Comparison Ops

comparison expressions as patterns
Comparison Patterns

computed regular expressions
Regexp Usage

concatenation
Concatenation

conditional expression
Conditional Exp

constants, types of
Constants

continuation of lines
Statements-Lines

control statement
Statements

conversion of strings and numbers
Conversion

conversion of strings and numbers
Values

conversions, during subscripting
Numeric Array Subscripts

CONVFMT
Numeric Array Subscripts

CONVFMT
Comparison Ops

CONVFMT
Conversion

gawk.info 197 / 207

curly braces
Actions

default action
Very Simple

default pattern
Very Simple

defining functions
Definition Syntax

deleting elements of arrays
Delete

deprecated features
Obsolete

deprecated options
Obsolete

differences: gawk and awk
Getline

directory search
AWKPATH Variable

division
Arithmetic Ops

documenting awk programs
Comments

dynamic regular expressions
Regexp Usage

element assignment
Assigning Elements

element of array
Reference to Elements

empty pattern
Empty

ENVIRON
Auto-set

ERRNO
Getline

escape sequence notation
Constants

examining fields
Fields

gawk.info 198 / 207

executable scripts
Executable Scripts

explicit input
Getline

exponentiation
Arithmetic Ops

expression
Expressions

expression, conditional
Conditional Exp

expressions, assignment
Assignment Ops

expressions, boolean
Boolean Ops

expressions, comparison
Comparison Ops

field separator, FS
Field Separators

field separator, choice of
Field Separators

field separator: on command line
Field Separators

field, changing contents of
Changing Fields

fields
Fields

fields, separating
Field Separators

file descriptors
Special Files

file, awk program
Long

FILENAME
Reading Files

flushing buffers
I-O Functions

FNR
Records

gawk.info 199 / 207

format specifier
Control Letters

format string
Basic Printf

formatted output
Printf

FS
Field Separators

ftp, anonymous
Extracting

function call
Function Calls

function definition
Definition Syntax

functions, user-defined
User-defined

getline
Getline

getting gawk
Extracting

gsub
String Functions

history of awk
History

how awk works
Two Rules

increment operators
Increment Ops

input
Reading Files

input file, sample
Sample Data Files

input redirection
Getline

input, getline command
Getline

input, explicit
Getline

gawk.info 200 / 207

input, multiple line records
Multiple Line

input, standard
Read Terminal

installation, atari
Atari Installation

installation, ms-dos
MS-DOS Installation

installation, unix
Quick Installation

installation, vms
VMS Installation

interaction, awk and other programs
I-O Functions

invocation of gawk
Command Line

language, awk
This Manual

length
String Functions

logical operations
Boolean Ops

long options
Command Line

loop
While Statement

loops, exiting
Break Statement

lvalue
Assignment Ops

manual, using this
This Manual

match
String Functions

match
String Functions

metacharacters
Regexp Operators

gawk.info 201 / 207

modifiers (in format specifiers)
Format Modifiers

multi-dimensional subscripts
Multi-dimensional

multiple line records
Multiple Line

multiple passes over data
Other Arguments

multiple statements on one line
Statements-Lines

multiplication
Arithmetic Ops

NF
Fields

not operator
Boolean Ops

NR
Records

number of fields, NF
Fields

number of records, NR or FNR
Records

numbers, used as subscripts
Numeric Array Subscripts

numeric constant
Constants

numeric value
Constants

obsolete features
Obsolete

obsolete options
Obsolete

OFMT
Conversion

OFMT
OFMT

OFS
Output Separators

gawk.info 202 / 207

one-liners
One-liners

operator precedence
Precedence

operators, $
Fields

operators, arithmetic
Arithmetic Ops

operators, assignment
Assignment Ops

operators, boolean
Boolean Ops

operators, increment
Increment Ops

operators, regexp matching
Regexp Usage

operators, relational
Comparison Patterns

operators, relational
Comparison Ops

operators, string
Concatenation

operators, string-matching
Regexp Usage

options, command line
Command Line

options, long
Command Line

or operator
Boolean Ops

ORS
Output Separators

output
Printing

output field separator, OFS
Output Separators

output record separator, ORS
Output Separators

gawk.info 203 / 207

output redirection
Redirection

output, buffering
I-O Functions

output, formatted
Printf

output, piping
File-Pipe Redirection

passes, multiple
Other Arguments

path, search
AWKPATH Variable

pattern, case sensitive
Read Terminal

pattern, comparison expressions
Comparison Patterns

pattern, default
Very Simple

pattern, definition of
Patterns

pattern, empty
Empty

pattern, regular expressions
Regexp

patterns, BEGIN
BEGIN-END

patterns, END
BEGIN-END

patterns, boolean
Boolean Patterns

patterns, range
Ranges

patterns, types of
Kinds of Patterns

pipes for output
File-Pipe Redirection

precedence
Precedence

gawk.info 204 / 207

printing
Printing

program file
Long

program, awk
This Manual

program, definition of
Getting Started

program, self contained
Executable Scripts

programs, documenting
Comments

quotient
Arithmetic Ops

range pattern
Ranges

reading files
Reading Files

reading files, getline command
Getline

reading files, multiple line records
Multiple Line

record separator
Records

records, multiple line
Multiple Line

redirection of input
Getline

redirection of output
Redirection

reference to array
Reference to Elements

regexp
Regexp

regexp as expression
Comparison Ops

regexp operators
Comparison Ops

gawk.info 205 / 207

regexp search operators
Regexp Usage

regular expression matching operators
Regexp Usage

regular expression metacharacters
Regexp Operators

regular expressions as field separators
Field Separators

regular expressions as patterns
Regexp

regular expressions, computed
Regexp Usage

relational operators
Comparison Ops

relational operators
Comparison Patterns

remainder
Arithmetic Ops

removing elements of arrays
Delete

RLENGTH
String Functions

RS
Records

RSTART
String Functions

rule, definition of
Getting Started

running awk programs
Running gawk

running long programs
Long

sample input file
Sample Data Files

scanning an array
Scanning an Array

script, definition of
Getting Started

gawk.info 206 / 207

scripts, executable
Executable Scripts

scripts, shell
Executable Scripts

search path
AWKPATH Variable

self contained programs
Executable Scripts

shell scripts
Executable Scripts

side effect
Assignment Ops

single quotes, why needed
One-shot

split
String Functions

sprintf
String Functions

standard error output
Special Files

standard input
Read Terminal

standard input
Reading Files

standard input
Special Files

standard output
Special Files

strftime
Time Functions

string constants
Constants

string operators
Concatenation

string-matching operators
Regexp Usage

sub
String Functions

gawk.info 207 / 207

subscripts in arrays
Multi-dimensional

SUBSEP
Multi-dimensional

substr
String Functions

subtraction
Arithmetic Ops

system
I-O Functions

systime
Time Functions

time of day
Time Functions

time stamps
Time Functions

tolower
String Functions

toupper
String Functions

use of comments
Comments

user-defined functions
User-defined

user-defined variables
Variables

uses of awk
Preface

using this manual
This Manual

uucp, anonymous
Extracting

variables, user-defined
Variables

when to use awk
When

	gawk.info
	gawk.info
	gawk.info/Preface
	gawk.info/History
	gawk.info/Copying
	gawk.info/This Manual
	gawk.info/Sample Data Files
	gawk.info/Getting Started
	gawk.info/Very Simple
	gawk.info/Two Rules
	gawk.info/More Complex
	gawk.info/Running gawk
	gawk.info/One-shot
	gawk.info/Read Terminal
	gawk.info/Long
	gawk.info/Executable Scripts
	gawk.info/Comments
	gawk.info/Statements-Lines
	gawk.info/When
	gawk.info/Reading Files
	gawk.info/Records
	gawk.info/Fields
	gawk.info/Non-Constant Fields
	gawk.info/Changing Fields
	gawk.info/Field Separators
	gawk.info/Constant Size
	gawk.info/Multiple Line
	gawk.info/Getline
	gawk.info/Close Input
	gawk.info/Printing
	gawk.info/Print
	gawk.info/Print Examples
	gawk.info/Output Separators
	gawk.info/OFMT
	gawk.info/Printf
	gawk.info/Basic Printf
	gawk.info/Control Letters
	gawk.info/Format Modifiers
	gawk.info/Printf Examples
	gawk.info/Redirection
	gawk.info/File-Pipe Redirection
	gawk.info/Close Output
	gawk.info/Special Files
	gawk.info/One-liners
	gawk.info/Patterns
	gawk.info/Kinds of Patterns
	gawk.info/Regexp
	gawk.info/Regexp Usage
	gawk.info/Regexp Operators
	gawk.info/Case-sensitivity
	gawk.info/Comparison Patterns
	gawk.info/Boolean Patterns
	gawk.info/Expression Patterns
	gawk.info/Ranges
	gawk.info/BEGIN-END
	gawk.info/Empty
	gawk.info/Actions
	gawk.info/Expressions
	gawk.info/Constants
	gawk.info/Variables
	gawk.info/Assignment Options
	gawk.info/Arithmetic Ops
	gawk.info/Concatenation
	gawk.info/Comparison Ops
	gawk.info/Boolean Ops
	gawk.info/Assignment Ops
	gawk.info/Increment Ops
	gawk.info/Conversion
	gawk.info/Values
	gawk.info/Conditional Exp
	gawk.info/Function Calls
	gawk.info/Precedence
	gawk.info/Statements
	gawk.info/If Statement
	gawk.info/While Statement
	gawk.info/Do Statement
	gawk.info/For Statement
	gawk.info/Break Statement
	gawk.info/Continue Statement
	gawk.info/Next Statement
	gawk.info/Next File Statement
	gawk.info/Exit Statement
	gawk.info/Arrays
	gawk.info/Array Intro
	gawk.info/Reference to Elements
	gawk.info/Assigning Elements
	gawk.info/Array Example
	gawk.info/Scanning an Array
	gawk.info/Delete
	gawk.info/Numeric Array Subscripts
	gawk.info/Multi-dimensional
	gawk.info/Multi-scanning
	gawk.info/Built-in
	gawk.info/Calling Built-in
	gawk.info/Numeric Functions
	gawk.info/String Functions
	gawk.info/I-O Functions
	gawk.info/Time Functions
	gawk.info/User-defined
	gawk.info/Definition Syntax
	gawk.info/Function Example
	gawk.info/Function Caveats
	gawk.info/Return Statement
	gawk.info/Built-in Variables
	gawk.info/User-modified
	gawk.info/Auto-set
	gawk.info/Command Line
	gawk.info/Options
	gawk.info/Other Arguments
	gawk.info/AWKPATH Variable
	gawk.info/Obsolete
	gawk.info/Undocumented
	gawk.info/Language History
	gawk.info/V7-S5R3.1
	gawk.info/S5R4
	gawk.info/POSIX
	gawk.info/POSIX-GNU
	gawk.info/Installation
	gawk.info/Gawk Distribution
	gawk.info/Extracting
	gawk.info/Distribution contents
	gawk.info/Unix Installation
	gawk.info/Quick Installation
	gawk.info/Configuration Philosophy
	gawk.info/New Configurations
	gawk.info/VMS Installation
	gawk.info/VMS Compilation
	gawk.info/VMS Installation Details
	gawk.info/VMS Running
	gawk.info/VMS POSIX
	gawk.info/MS-DOS Installation
	gawk.info/Atari Installation
	gawk.info/Gawk Summary
	gawk.info/Command Line Summary
	gawk.info/Language Summary
	gawk.info/Variables-Fields
	gawk.info/Fields Summary
	gawk.info/Built-in Summary
	gawk.info/Arrays Summary
	gawk.info/Data Type Summary
	gawk.info/Rules Summary
	gawk.info/Pattern Summary
	gawk.info/Regexp Summary
	gawk.info/Actions Summary
	gawk.info/Operator Summary
	gawk.info/Control Flow Summary
	gawk.info/I-O Summary
	gawk.info/Printf Summary
	gawk.info/Special File Summary
	gawk.info/Numeric Functions Summary
	gawk.info/String Functions Summary
	gawk.info/Time Functions Summary
	gawk.info/String Constants Summary
	gawk.info/Functions Summary
	gawk.info/Historical Features
	gawk.info/Sample Program
	gawk.info/Bugs
	gawk.info/Notes
	gawk.info/Compatibility Mode
	gawk.info/Future Extensions
	gawk.info/Improvements
	gawk.info/Glossary
	gawk.info/Index

