
Overview of Performance Guidelines
Logical Optimization
Performance of the database begins when the logical structure is designed. Normalization of
tables, database page size, and indices are critical components of tuning.
Physical Optimization
Database tables by default should be normalized to 3rd Normal Form. There are instances,
especially when dealing with mass amounts of data, which de-normalizing the table will
provide greater performance because all the data are contained in a single table. Query
design will be covered later, but it should be obvious that it is much faster to access a single
table versus multiple tables.
Analysis Tools
Use an InterBase SQL tool, ISQL command line utility or WISQL GUI utility, to define and/or
extract the current physical definition of the database.
Use the InterBase Server Manager to examine how the physical definition of the database
affects storage of data within the database file. From the Server Manager menu bar select
Select Tasks -> Database Statistics to open a pop-up window and select View -> Database
Analysis to see the number of pages allocated and their fill percentages.

How the Optimizer Works
The purpose of the optimizer is to select the most inexpensive method of retrieving
information requested in a query based on the current state of the database. InterBase
performs the optimization for each query the first time that query executes for the database
connection. If the application detaches and reattaches to the database then all the queries
for that database are optimized when they are executed again. The benefits of this method
are that the queries will be optimized based on the current state of the database, i.e., how
many and what types of indices are defined, how useful those indices are, and
approximately how many rows in each table. The optimization strategy or plan, is a series,
from left to right, of retrievals from each individual table with the most expensive being the
outer most retrieval and the most inexpensive being the inner most retrieval. To help clarify
how this is done, we will use the following query on the employee.gdb database as an
example:

SELECT * FROM employee e, department d, job j
WHERE e.dept_no = d.dept_no

AND e.job_code = j.job_code
AND e.job_country = j.job_country
AND e.job_grade = j.job_grade
AND e.dept_no < 120

Retrieve from employee
 Retrieve from jobs

Retrieve from department
The optimizer performs these seven major steps:
1 Decompose the Boolean expression into a set of conjuncts or associations.
2 Distribute the equalities and inequalities.
3 Enumerate those conjuncts that can use an index to create a stream.
4 Enumerate all possible permutations of indexed joins from the streams above into

"rivers."
5 Select the longest river.
6 Remove the selected river from the list and repeat until all rivers have been selected.
7 Finally, take the set of rivers selected and try to generate sort merge joins between

them; otherwise, do a cross product.
To generate the following plan:

PLAN JOIN (E INDEX (RDB$FOREIGN8), J INDEX (RDB$PRIMARY2,
MINSALX, MAXSALX, RDB$FOREIGN3), D INDEX (RDB$PRIMARY5))

Refer to SET PLAN to display the optimizer plan computed for a query.
You can write a custom PLAN to be included with a SELECT statement, this PLAN will
supercede the InterBase optomizer PLAN for the query.

1. Decompose
 Decompose the Boolean expression into a set of conjuncts or associations. Boolean
expressions being equalities, inequalities, etc. From the example, we would end with the
following conjuncts:

 e.dept_no = d.dept_no
 e.dept_no < 120
 e.job_code = j.job_code
 e.job_country = j.job_country

2. Distribute
 Distribute the equalities and inequalities. If a=b and a=c then b=c is added to the set of
conjuncts. The same applies for a constant, e.g., if a=5 and a=c then c=5 is added to the
set of conjuncts. From the example, we would only create one new conjunct:

d.dept_no < 120

3. Create Streams
Enumerate those conjuncts that can use an index to create a stream, which is a set of
records, such as a relation or a relation with restrictions on it. From the example, we would
create the list of streams from the indices defined for employee, department, and job:
Indices:

Employee:
RDB$FOREIGN8: duplicate on field dept_no
RDB$FOREIGN9: duplicate on field job_code, job_grade, job_country

Job:
RDB$PRIMARY2: unique on field emp_no
MINSALX: duplicate on field job_country, min_salary
MAXSALX: duplicate on field job_country, max_salary
RDB$FOREIGN3: duplicate on field job_country

Department:
RDB$PRIMARY5: unique on field dept_no

Streams:
Employee with index RDB$FOREIGN8
Employee with index RDB$FOREIGN9
Job with index RDB$PRIMARY2
Job with index MINSALX
Job with index MAXSALX
Job with index RDB$FOREIGN3
Department with index RDB$PRIMARY5

4. Create Rivers
 Enumerate all possible permutations of indexed joins from the streams above into "rivers".
A "river" is a combination of multiple streams joined over the indexed fields.
From the example, we would create these permutations:

1 Employee to Jobs over job_code, job_grade, job_country
2 Employee to Department over dept_no
3 Employee to Job over job_code, job_grade, job_country to Department over dept_no
4 Employee to Department over dept_no to Job over job_code, job_grade, job_country

5. Select River
 Select the longest river (assumed to be the cheapest); if two rivers are of equal length, then
do a cost estimate to select the cheaper river. The cost estimate depends on several
variables: whether there is an index, the selectivity (estimate of usefulness) of that index,
whether there are selection criteria, the cardinality (approximate number of values) of the
underlying relation, and whether the stream needs to be sorted. For example, when
retrieving an indexed equality, the cost is estimated as: cardinality of base relation *
selectivity of index + overhead of index retrieval
The optimizer approximates the cardinality to be equal to the number of data pages for the
relation divided by the maximum number of records per page
Selectivity is equal to the estimated number of distinct values divided by the cardinality. The
cardinality can change over time when new pages are allocated and records are stored,
modified, or deleted. The selectivity is only set on index creation. There is a command that
will re-compute the selectivity for non-unique indices:

 SET STATISTICS INDEX RDB$FOREIGN8;
From the example, there are two rivers with the same length, rivers three and four. Because
they are the same length, we need to compute the cost associated with each river. River
three is chosen because doing an index lookup on Job will be the least expensive retrieval as
compared to Department. That is because there are only fourteen unique job_codes
compared to twenty-four unique departments. Note that the selectivity of a unique index is
"perfect", that is, looking up a value will find only one record with that value. A lookup into
Employee is the most expensive because it uses a duplicate index and there are fifty- nine
duplicate departments.

6. Repeat
Remove the selected river from the list generated in step 4 and repeat step 5 again. Repeat
until all rivers have been selected.

7. Merge Rivers
Take the set of rivers selected and try to generate sort merge joins between them;
otherwise, do a cross product. A sort merge means that both streams are sorted and the
results merged. With the streams sorted, the database engine can scan through both
streams just once to form the join. Otherwise, it must iterate through the second stream for
each record in the first stream. A cross product means that every record in the first stream
joins with every record in the second stream.
This should make it very clear that properly designed indices are a major influence on
performance. What may not be so clear is that the selectivity of an index is only computed
for a duplicate index. If the values in the index are changed, i.e. updated, deleted, new ones
inserted, it is advised to re-compute the selectivity periodically. This would affect only those
applications that attach to the database after re-computing. Any existing queries will still be
optimized using the old selectivity.
 Database pages allocated for the table also impact the cardinality. If you load a great deal
of data into a relation, delete a substantial number of rows, then you may have many pages
that are empty or nearly empty. This will significantly affect the computation of the
cardinality. The only method to correct this is to backup and restore the database.
 So in design queries, it is very important that the primary and foreign keys have an index
defined because these are the fields that tables will be joined across. The program ISQL is an
excellent environment for prototyping queries. Make sure that the data returned are correct.
Partial Cartesian products are much more difficult to detect then full ones.

Indices
InterBase index management is different from other Relational Database vendors. InterBase
can use indices as both navigational or bit-mapped. Navigational means that the index is
stepped through value by value in whatever order it was defined. This allows a query to
access the first record very quickly if there is an index defined that matches the ORDER BY
clause of the query. Bit-mapped means that multiple indices can be used to match the JOIN
and/or ORDER BY clauses and that each index is scanned for matching values before all the
indices are combined using an Boolean OR operation.

Multiple Indices
Indices are probably the most important part of the tuning your InterBase database. As you
can see InterBase depends heavily on indices for query optimization. No indices are defined
by default, but with SQL's Declarative Referential Integrity syntax, the SQL CREATE
TABLE will create unique indices for the primary key fields and duplicate indices for the
foreign key fields.

CREATE TABLE foo (
foo_num INTEGER,
foo2_num INTEGER,
PRIMARY KEY (foo_num),
FOREIGN KEY (foo2_num) REFERENCES foo2 (foo2_num));

Because of this you must be very careful in defining your own indices as InterBase will use
multiple indices to resolve queries. This can result in a degradation of performance if
multiple indices reference the same fields as needed by the query. An example would be if
the primary key of table first_table is made of three fields, field_1, field_2, and field_3.
Field_2 is a foreign key into table second_table and field_3 is a foreign key into table
third_table. Using the Declarative Referential Integrity syntax above, the following indices
would be created:

RDB$PRIMARY1 UNIQUE ASC (field_1, field_2, field_3);
RDB$FOREIGN1 ASC (field_2);
RDB$FOREIGN2 ASC (field_3);

Now, whenever you queried first_table and supplied values for all three fields, all three
indices would be used when you only really need the unique index. There is an alternative if
you really need to access fields field_2 and field_3 independently of field_1 and you want to
enforce uniqueness for first_table. The alternative is to drop the unique index on the three
fields and create an artificially generated unique id field, field_X, with a unique index on that
field and a duplicate index on field field_1. A trigger would have to be defined to generate
the value for the id field field_X.

CREATE TABLE first_table (
field_X INTEGER,
field_1 INTEGER,
field_2 INTEGER,
field_3 INTEGER,
PRIMARY KEY (field_X),
FOREIGN KEY (field_2) REFERENCES second_table (field_2),
FOREIGN KEY (field_3) REFERENCES third_table (field_3));

CREATE ASC INDEX first_table_fx1 ON first_table(field_1);

CREATE GENERATOR first_table_id;

SET TERM !! ;
CREATE TRIGGER first_table_unique_id FOR first_table
BEFORE INSERT
POSITION 0 AS
BEGIN

new.field_X = gen_id (first_table_id, 1);
END;
SET TERM ;!!

Database Statistics
The InterBase Server Manager (or the GSTAT console utility) can retrieve database statistics
as they relate to the physical layout of the database file(s). The output from the Database
Statistics option will look similar to this:

 EMPLOYEE (34)
Primary pointer page: 251, Index root page: 252
Data pages: 5, data page slots: 5, average fill: 68%
Fill distribution:
 0 - 19% = 0
20 - 39% = 1
40 - 59% = 0
60 - 79% = 2
80 - 99% = 2

Index NAMEX (1)
Depth: 1, leaf buckets: 1, nodes: 42
Average data length: 15.00, total dup: 0, max dup: 0
Fill distribution:
 0 - 19% = 0
20 - 39% = 0
40 - 59% = 0
60 - 79% = 0
80 - 99% = 1

Index RDB$PRIMARY7 (0)
Depth: 1, leaf buckets: 1, nodes: 42
Average data length: 1.00, total dup: 0, max dup: 0
Fill distribution:

 0 - 19% = 0
20 - 39% = 1
40 - 59% = 0
60 - 79% = 0
80 - 99% = 0

The text is information on tables and indices sorted alphabetically by table name. The most
interesting information on a table is the number of data pages and the average fill. The
information is usually only relevant for one table. This table should be the main table for the
database, one that is read and/or updated constantly. If the average fill is below 60 percent
then try backing up and restoring the database. If the average fill is still low then it might be
advisable to increase the database page size to the next value.
The information on indices is more complicated. Essentially the only field you do not need to
check is leaf buckets. InterBase uses a variant of B-tree indices and the field depth refers to
the depth of the tree; the number of levels down from the top bucket. Normally this value
should be three or less. If it is greater than three, the indices should be rebuilt. The
command to do this in ISQL is:

 ALTER INDEX custnamex INACTIVE;
 ALTER INDEX custnamex ACTIVE;

If the depth does not decrease then it might be advisable to increase the database page size
to the next value.
NOTE: The only way to rebuild the indices defined with the Declarative Referential Integrity

syntax is to backup and restore the database.
The nodes is the total number of data values in the index. Total dup is the number of
duplicate values and max dup is the largest number of duplicates for a single value. Average
data length is the total number of compressed bytes for all data values / nodes. The data
values are both pre and postfix compressed. Postfix uses run-length encoding. Prefix
compression is best explained using an example. Using the index custnamex which is an
ascending index on the field customer, a text field of a maximum twenty-five characters.

Given the data values of:
AA Auto Rentals
AAA - California
AAB Incorporated
AAB Towing
ABC Limo Service

Postfix compression would compress out the trailing blanks but the data values after prefix
compression would look like this:

AA Auto Rentals
2A - California
2B Incorporated
3Towing
1BC Limo Service

If the value of average data length is much different from the maximum size of the field(s)
that make up the index then either there are many fields with many trailing blanks, or the
data values are very similar. The index may then be decreasing performance because most
of the index and data pages will be read instead of subsets of each.

Multi-Generational Architecture

What Is Multi-Generational Architecture?
Multi-Generational architecture derives it name from process by which InterBase updates a
record. Each time a record is updated or deleted a new copy (called a generation, or version)
of the record is created. Its main benefit is that writers do not block readers. This means you
can run a single query for weeks while people are updating the database. The answer you
get from the query will be consistent with the committed contents of the database when you
started your query transaction. How does this work?

Every operation on the database, whether it is a read or a write, is time stamped with a
transaction number. They are assigned sequentially in ascending order. A user who has
transaction number 20 started work with the database earlier in time than someone with
transaction 21. How much earlier one cannot tell, all you know is that transaction 20 started
before transaction 21. And you know what state transaction 20 was in when you started
transaction 21. It was either active, committed, rolled back, limbo, or dead. We are just
concerned with active, committed, and rolled back for this discussion.

Every record in the database is stamped with the transaction number that inserted, updated,
or deleted the record. This number is embedded in the record header. When a record is
changed, the old version of the record is kept with the old transaction number and the new
version gets the transaction number that changed it. The new version of the record has a
pointer to the old version of the record. The old version of the record has a pointer to the
prior version of it, and so on. There is a mechanism in place to determine how many old
versions need to be kept. If necessary, it will keep every version that has been created.

When you update a record in the database, the old version is compared to the new version
to create a Back Difference Record (BDR). The BDR is moved to a new location and the new
version is written in same the location where the original version was. Even though we keep
old versions or records around, the BDR will never be larger than its ancestor. Usually, it will
be very small unless you are changing the whole record. With deleted versions it is even
smaller. The version being deleted is kept intact as a BDR with the new version just having
the current transaction number and a flag indicating that the record is deleted.

Now lets take a look at an added benefit, the ability to lock a record without taking out an
explicit record lock. Assume that transaction 21 (t21) wants to update a record that you are
viewing with transaction 20 (t20). If t21 updates the record before you can issue the update,
then they have effectively locked the record because the new version of the record will be
stamped with transaction number 21. If t20 tries later, or just a split-second later, the
system will immediately detect there is a new version of the record and deny the update.
There are simple rules for dealing with transactions and record versions:

· If your transaction number is less than the record's transaction number, then you cannot
see or update it.

· If your transaction number is equal to the record's transaction number, then you can see
and/or update it.

· If your transaction number is greater than the record's transaction number AND that
transaction was committed before you started your transaction, then you can see and/or
update it.

Garbage Collecting
Even with our efficiencies in keeping the BDRs few in number, the database can still
accumulate a great deal of unnecessary record versions, i.e. garbage. There are two ways to
clean out all the garbage from the database. The first is called Cooperative Garbage
Collection. It happens automatically every time a record is touched, on a select, update, or
delete operation. When the record is touched, the InterBase kernel follows the pointers to
each BDR and compares its transaction number with what is called the Oldest Interesting
Transaction (OIT). This number is kept in the header page for the database. If the BDR's
transaction number is less than the OIT, then the BDR can be purged from the database and
the space reclaimed for new data. This will not clean up deleted records and their BDRs.
For more information on the OIT and sweeping, refer to the article Explanation of the Oldest
Interesting Transaction and Oldest Active Transaction on Borland's Web site,
http//www.borland.com/techsupport/interbase/tech/oit.html.

Sweeping
The second method is called sweeping the database. It can either be kicked off manually or
automatically. By default, when the OIT is 20,001 transactions less then the Oldest Active
Transaction number, the process that tried to start the transaction will sweep the entire
database and remove as many BDRs as possible. While this is happening, other users can
continue to use the database. This threshold can be changed.
If you are going to start the sweep manually then it is advised that you first make sure there
is no one connected to the database. This will not only clean out the BDRs and clean out the
erased records, but also update the OIT number on the header page to be one less than the
Oldest Active Transaction number. It can do this because there are no other active
transactions that might need to see any of the BDRs.
For more information on the OIT and sweeping, refer to the article Explanation of the Oldest
Interesting Transaction and Oldest Active Transaction on Borland's Web site,
http//www.borland.com/techsupport/interbase/tech/oit.html.

Backup and Restore as Database Maintenance
Periodically you will want to shut down the database and backup and restore it. Note that
the backup is performed as a transaction, which means that it sees only a snapshot of the
committed records in the database at the time the backup began. This will backup only the
current committed version of each record while also putting all the data for each relation on
contiguous pages in the database. It will also rebuild all the indices and reset the statistics
for each. This usually will increase performance significantly.
Now take this one step further. All of the metadata is stored in InterBase tables. This means
that it is also multi-generational and has transaction numbers associated with it. If you
change the metadata (like a field type) you are actually changing records in an InterBase
table. The old versions are kept, and data that used the structure specified by old metadata
versions are not changed to match your alteration of the database structure. Because the
metadata has old versions, it is possible to have one record with the most current version
with one structure and the next record with a different structure. InterBase resolves these
via the transaction numbers and the metadata. When you do a query that returns data that
is in an old structure, InterBase retrieves the data and must dynamically convert the data to
the current structure. If the data are in a structure that is three generations old, it goes
through three conversions before being returned to you. Do a backup and restore, and finally
the data are physically converted to the current structure.
All this is done in the name of performance. When you commit a transaction, the record
versions created by operations during that transaction are already written in the database,
so only the status of the transaction has to be updated. Thus, commit and rollback are fast.
Similarly, when you make a metadata change, InterBase does not change all the data to
match the new structure; there may be gigabytes of data to change. Thus, metadata
changes are fast.

Changing Database Physical Properties

Database Page Size
The database page size determines how much data will be retrieved with one logical access
from the database. The values permitted by InterBase are 1Kb, 2Kb, 4Kb and 8Kb. The
default is 1Kb. A single logical access from the database may involve multiple physical
accesses. For example, on most UNIX systems, the default number of bytes retrieved in a
single physical access is 512. For a 1Kb page size, two physical accesses occur for every
logical access. There is a tradeoff then between reading/writing the most data versus
physical I/O. The proper page size will be determined by your database requirements. Is the
database mostly for reading, update intensive, or a combination? Is accessing BLObS or
ARRAYS a priority? What is the record size of your main table, the table that will be accessed
most often?
Database page size will also influence the tuning of indices. The section Database Statistics
describes performance monitoring using the command line tool GSTAT or the Server
Manager GUI. The layout of an index is analyzed. If there are too many levels in the index
then increasing the page size will reduce the depth of the index structures and usually
improve performance. Another rule of thumb is to try to keep the indices on the main table
to three or fewer levels.
Another effect of increasing the database page size is to implicitly increase the InterBase
cache.
You can specify a page size when the database is created. For example, the statement,
CREATE DATABASE "employee.gdb" PAGE_SIZE 2048;

creates a single-file database with a page size of 2048 bytes. If you need to change the
database's page size after creation, you can do this by doing a backup and then restore the
database with a different page size. Use the Server Manager Database Restore dialog box.

Multi-File Databases
The database can also be made up of many different files. This allows you to effectively use
the available disk space on multiple volumes. The user always refers to the first file, the
database name, and never has to know about the secondary files. This also allows a
database to be larger than the operating system limit for a single file. This does not allow
the DBA to specify in which file individual objects in the database may be placed. In other
words, you cannot assign Relation A to the first file, Relation B to the second file and the
indices for both to the third file. The files are used and filled in sequential order and can
contain data from any table or index in the database. In fact, as data grows over time, the
pages used for individual tables or indices are likely to become roughly interleaved.
You can add new files to the database without taking the database off-line or interrupting
users who are doing work. One reason to do this is if your database is growing and threatens
to outgrow the disk volume it resides on. Adding an additional file means that when the
primary database file fills up, subsequent data are automatically stored in the secondary
file(s). Below is an example of the ISQL command to ad a second file to the database. By
doing this, the primary database will top off at 50,000 database pages.
 ALTER DATABASE ADD FILE "second_file.gdb" STARTING AT 50001;
If you need to rearrange the distribution of pages in a multi-file database, you can do it by
doing a backup and then restore the database, specifying the secondary files and the
attributes.    Use the Server Manager Multi-File Database Restore dialog box.

Database Shadows
Another physical property is the ability to create shadows of the database. Shadows are
carbon copies of the database, an exact duplicate. The main reason for shadows is to protect
yourself from hardware failure. First you have to set up one or more shadows on other disk
partitions or better still, other machines. If your primary disk or server fails the users can
reconnect to the shadow after the DBA has enabled it. This is much quicker than restoring
from a backup. Users can be working normally in minutes, rather than hours.
Shadows can also be composed of multiple files just like normal databases. The files
comprising a shadow are not required to match the sizes or filenames of the files comprising
the master database.
The major drawback to shadows is that they increase the number of writes the database
server does. If you have only one shadow then every write is duplicated. If you have two
shadows then every write is tripled. If the shadow is located on another machine and the
writing is going through NFS, then it takes even longer. There is a tradeoff in this case
between I/O performance and data protection.

Changing Database Runtime Properties
Delphi 2.0 included InterBase WI-V4.1.0. This version of InterBase introduced some new
controls for tuning performance on the server. These controls will be in future versions of
InterBase.

Classic Architecture
Prior to version V4.1.0 of InterBase, the server was designed in a way that is now called the
Classic Architecture. In this design, each client connection to the server spawns a separate
process. Each process does I/O directly to the database files, and negotiates access to the
database files by interprocess communication methods like semaphores. The parameters
are contained in the system configuration file,    isc_config for Unix platforms, or IBCONFIG
for Windows.
Each of these server processes also keeps a cache of database pages in its own address
space. The cache contains data pages, index pages, BLOb pages, and all other pages that
the process reads from the database and may have to write back to the database.
The size of the cache is tunable programmatically, as an entry in the database parameter
block to the InterBase API function isc_attach_database. Cache can also be specified using
the CONNECT statement option CACHE.
The size is specified in database pages. By default the size is 75 pages. Increasing the cache
can decrease the frequency of I/O operations that are required as the client does database
operations. But this is a tradeoff with the memory requirements of the process. 60 processes
that each have 300 2Kb database pages use over 35 Mb of memory. At some point, the
cache can no longer be kept in physical RAM and it begins swapping out to virtual memory.
When the cache pages are being swapped to the hard disk, the benefit of having a cache at
all is defeated. Your InterBase cache size should be tempered with the amount of physical
RAM on the machine in mind.
Also note that if you increase the database's page size, the actual memory used in the cache
is increased proportionally. The cache is configured in number of database pages, not in
kilobytes. This principle holds for the Superserver cache as well.

Classic system configuration parameters
Parameter Factory setting
V4_LOCK_MEM_SIZE 98304
V4_LOCK_SEM_COUNT 32    (25 on some platforms)
V4_LOCK_SIGNAL 16    (do not change this entry)
V4_EVENT_MEM_SIZE3278
The file also contains ANY_LOCK_MEM_SIZE, ANY_LOCK_SEM_COUNT, ANY_LOCK_SIGNAL and
ANY_EVENT_MEM_SIZE. These parameters are not version specific and are reserved for
future releases of the product.
The following parameter may be included in the configuration file.   
V4_LOCK_GRANT_ORDER 1 (on)
These parameters are contained in the file isc_config for Unix systems or IBCONFIG for
Windows based systems.    The file is located in the InterBase installation directory
(/usr/interbase by default) and can be accessed using a text editor.

V4_LOCK_SEM_COUNT
Defines how many semaphores are used by the lock table. Maximum allowed, 65,536.

The V4 lock manager requires 25 or 32 semaphores, depending upon the platform.
One semaphore is required by the event manager if applications running at your site use
Events.
If V3 databases are being used on the server, an additional 32+1 semaphores are
required.

If an InterBase application requires more than V4_LOCK_SEM_COUNT semaphores for locking
then InterBase will return the fatal lock manager error
semaphores exhausted

V4_LOCK_MEM_SIZE
The size required is based on the number of users and the size and complexity of your
database. If you receive a shared memory error, double the setting for V4_LOCK_MEM_SIZE.
Memory requirements are computed are based on the following:

90 bytes for each buffer, relation, database, and concurrent transaction.
36 bytes for each process attached to a database.
388 bytes for the lock manager.

On platforms where the lock table expands dynamically, this parameter does not need to be
changed. On platforms where the lock table is static, you may need to increase the default
setting.
If an InterBase application requires more than V4_LOCK_MEM_SIZE shared memory for
locking then InterBase will return the fatal lock manager error
not enough shared memory

V4_LOCK_SIGNAL
Do not change this entry. This defines the signal number used by InterBase.

V4_EVENT_MEM_SIZE
You do not need to change this entry. If the events table expands dynamically on your
platform this is the starting size for the events table. If the table is static, this is the
maximum size for the events table.

V4_LOCK_GRANT_ORDER
This parameter is applicable to InterBase classic architecture only. It toggles the behavior of
lock allocation.    If set to 1, the factory default, lock requests for a specified page are
allocated in the order received.    If set to 0, all requests for a shared lock on a specified page
are allocated before requests for an exclusive lock.   

Superserver Architecture
Local InterBase V4.1 introduced the Superserver Architecture on Windows platforms. A
version of Superserver was implemented for InterBase V4.0 on NetWare. Superserver is now
included in InterBase Server V4.2 for Windows and InterBase Server V4.2 for NT. In this
design, all client connections are associated with one server process. This server process
keeps a database page cache for all clients to share. The parameters are contained in the
system configuration file, IBCONFIG.

Super Server Configuration
Parameter Factory setting
V4_LOCK_MEM_SIZE 98304
V4_LOCK_SEM_COUNT 32    (25 on some platforms)
V4_LOCK_SIGNAL 16    (do not change this entry)
V4_EVENT_MEM_SIZE3278
DATABASE_CACHE_PAGES 75
SERVER_PRIORITY_CLASS 1
SERVER_CLIENT_MAPPING 4096
SERVER_WORKING_SIZE_MIN 0 (NT only)
SERVER_WORKING_SIZE_MAX 0 (NT only)
The file also contains ANY_LOCK_MEM_SIZE, ANY_LOCK_SEM_COUNT, ANY_LOCK_SIGNAL and
ANY_EVENT_MEM_SIZE. These parameters are not version specific and are reserved for
future releases of the product.
These parameters are contained in the file IBCONFIG for DOS based systems.    The file is
located in the InterBase installation directory and can be accessed using a text editor.    The
parameters    can also be accessed using the Properties dialog box which is opened by right
clicking the Server Manager icon.

Cache size
The size of the Superserver cache is tunable with the DATABASE_CACHE_PAGES parameter in
the IBCONFIG file (in the directory \Program Files\Borland\IntrBase by default). New database
attachments may specify a larger cache size programmatically, as in the Classic
architecture. These may cause the Superserver cache to expand beyond 256 pages, and this
is accomplished as the client attaches.

Client Map Size
A memory-mapped file is used for interprocess communication on the server. Each client
attachment gets a segment of the file equal to the client map size in bytes. The file is
initially 10 times the client map size. Additional clients attaching and detaching will cause
the file to grow and shrink by 1 increment of the client map size. This is tunable with the
SERVER_CLIENT_MAPPING keyword in IBCONFIG. This configuration takes effect when the
InterBase server restarts.

Priority Class
The superserver process may be given a relative priority class, to allow it to demand more
system resources. There are two options through the InterBase interface, Low (1) or High (2).
This parameter is specified by the keyword SERVER_PRIORITY_CLASS in IBCONFIG. This
configuration takes effect immediately.
NOTE: On Windows NT, the screen saver process does not run at a reduced priority. When

running a screen saver that is computationally expensive, such as the OpenGL screen
savers demos, all other services running on the NT machine suffer in performance as
they compete for CPU resources. Some measurements have indicated that InterBase
slows to one tenth of the speed it is capable of. One should disable screen savers on
database servers. Or at least configure the screen saver to be a simple black screen.

Working Set
This refers to the set of RAM dedicated for the InterBase process. The minimum working set
size specifies the amount of physical RAM that is guaranteed for the InterBase process. The
system may swap out memory in excess of this figure. The maximum working set size
specifies a threshold above which memory used by the InterBase process will be swapped
out to virtual memory.
NOTE: Working set is only relevant on the Windows NT version of InterBase.

Using the Windows NT Performance Monitor, a database administrator should watch for
excessive Page Faults. Raise the minimum working set size in this case. If memory resources
permit, set the minimum working set size to at least the amount of cache allocated for the
InterBase server. Certainly the maximum should be greater than the size of the InterBase
cache, so the cache is not forced to swap.
The default values are zero for both minimum and maximum. This is a special case in which
the system determines the working set for the InterBase server process. Both values must
be less than the amount of physical RAM on the machine. The minimum must be less than
the maximum. These parameters are specified by the keywords
SERVER_WORKING_SIZE_MIN and SERVER_WORKING_SIZE_MAX in IBCONFIG. This
configuration takes effect when the InterBase server is restarted.

