Allocating Network Bandwidth to Match Business Priorities

Speaker Peter Sichel Chief Engineer Sustainable Softworks psichel@sustworks.com

MacWorld San Francisco 2006 Session M225 12-Jan-2006 10:30 AM - 12:00 PM

Introduction Speaker Background

Macintosh developer specializing in kernel level TCP/IP networking for the past 10 years.

- IPNetMonitorX Macintosh internet tools
- IPNetTunerX network optimization tuner
- IPNetRouterX native IP connectivity suite
- 14 years prior experience as software architect at Digital Equipment Corporation. Emphasis on user interface design and communications.

Overview

What is this session about:

- Managing Increasing Network Demand
- Improving network throughput and availability
- Tools and techniques for addressing difficult performance problems
- What happens when you push TCP/IP to the extreme?

Bandwidth Allocation

- Packet Shaping and QoS (Quality-of-Service)
- Bandwidth Allocation Examples
- Using proxies for content caching
- Dead Gateway Detection with automatic failover

TCP Tuning

Managing Network Demand General Techniques

• Higher speed links

Great when available, but not always practical or cost effective Beware of stimulating demand

• Partition network to isolate traffic

- Bridging / Routing / Shaping
- Allocate or reserve bandwidth
- Resource location and content caching
- Police unwanted traffic
- Tune for performance Increasingly important for high speed links

Partition to Isolate Traffic

Look at Ethernet frame header

Partition (switching)

Look at TCP/UDP header to classify and rate limit data flows

Packet Shaping and QoS (1)

Each TCP connection tries to use as much bandwidth as it can get, and backs off when packets are lost or delayed.

When a data link becomes heavily saturated by multiple competing applications:

- ACKs can be delayed limiting throughput
- Efficiency drops as data is retransmitted
- Connections back off to avoid congestion

The purpose of Packet Shaping and QoS is to adapt network behavior to incorporate your traffic priorities and increase TCP/IP efficiency over the "slow link" or "last mile".

Packet Shaping and QoS (2)

Three basic techniques:

- Queuing (buffering and waiting) to limit send rate. Since TCP is adaptive, it will self adjust to the impaired data link. Examples: throttled, LinkSys WRT-54, Xincom, WonderShaper (Linux), pf and ALTQ (FreeBSD)
- Expedite higher priority traffic by sending out of order or prioritizing among queues. Handle ACK prioritization as a special case. Example: throttled, pf and ALTQ
- Use TCP's built-in flow control mechanism to modulate the send rate for maximum efficiency.
 Examples: Packeteer, IPNetRouterX (IPNetSentryX)
 No open source implementation at this time

Packet Shaping Techniques (1)

Queue

Queuing (buffering and waiting)

- Easiest to implement, can be applied to any protocol
- Only rate limits send traffic (directly)
- Limited number of queues (compared to TCP itself)
- "Shaping" amounts to delaying, re-ordering, and dropping packets
- Important to prioritize empty TCP ACKs.
- Can be very effective depending on the problem, but not as powerful.

Packet Shaping Techniques (2)

TCP Rate Limiting

- Adjust receive window on the fly to control when and how much the window moves.
- Can rate limit send and receive traffic.
- Avoids congestion for best use of available bandwidth.

Implementation Matters Network Stack Order in Tiger

TCP/UDP

IP filter (NKE) IPSec (if enabled) IP filter (if IPSec enabled) fragment reassembly IP forwarding ipfw (including divert used for natd, throttled)

protocol and interface filters (NKE)

bpf tap (IOKit) IOKit driver

Packet Shaping Example

512 Kbps send limit

1 Mbps receive limit

Bandwidth Allocation (1)

Classify and monitor traffic to identify data flows of interest.

- Devices (Internet router, server, host,...)
- Services (Web, Email, File Transfer, VOIP)

\checkmark	₹2.7	Rate Limiting	Any	÷	==	\$	•	->	;
\checkmark	2.7.1		Dest MAC addr	÷	==	\$ 00:09:5B:18:6C:40	•	Rate Limit out	\$512K
\checkmark	2.7.2		Source MAC addr	ŧ		\$ 00:09:5B:18:6C:40	•	Rate limit in	\$1M

•		Configur	ration		
	Easy	Ports	Advanced		
Network Interface	1:				
en0					
Maximum Upload	Speed:				
48 K	/sec				
6					
E					
	-				
Optional Features					
	isable ACK Driasitu		F		
	Isable ACK Priority	WAN	lunes		
TE: All changes ta	ke effect next time	you star	throttled	Cancel	OK
ter rur enunges tu	te encer next time	,ou star		Cancer	0.0

Network Interface		_					C.	R
en0		•					6	
Throttled Speed:								2
48 K/	/sec							
Application	Startin	g Port	Ending Port	тср	UDP	Client	Server	
IRC	6667		6668					4
iTunes	3689		3689	\checkmark		\checkmark	\checkmark	1
VNC	5900		5900	\checkmark			\checkmark	
KDX	10700	C	10700	\checkmark		\checkmark	\checkmark	4
Hotline	5500		5500	\checkmark		\checkmark		
Blizzard	4000		4000	\checkmark			\checkmark	-1
Blizzard	6112		6119	\checkmark	\checkmark		\checkmark	-1
Unreal Tourname	ent 7787		7787		\checkmark			-1
Unreal Tourname	ent 7777		7778					7
Optional Features						Add	Remo	ve
Cap LAN	isable ACK	Priority	🗹 WANTu	ines 🗹 Er	nable Ca	itch All Ru	ıle	

Bandwidth Allocation (2) What Problems does this solve

Maintain network responsiveness during heavy Email or file transfers.

Improve network performance during simultaneous upload and download.

Improve server responsiveness when frequently accessed.

Reserve bandwidth for VOIP.

Good fences make good neighbors.

Simultaneous Upload & Download

Cable modem 5M up, 2M down. First half shows rate caps at 4M up, 2M down. Second half with rate caps turned off.

Server Pacing

Consider a web server behind a T1 line (1.544 Mbps) that recieves two requests for a large web page.

On Mac OS X, the TCP send window defaults to 32K.

The sender ramps up to 32K in flight for each request.

At T1 speeds it takes over 300ms to send the 64K in flight, any other requests will need to wait behind this backlog.

With rate limiting, the total send window is limited to 1/10 the specified rate limit. If we use 1.5 Mbps, the total send window will be 20K or about 100ms.

The server still responds immediately and pages arrive just as quickly. We just parcel out the data more slowly to avoid creating a backlog.

Reserve Bandwidth for VOIP

Does your VOIP phone sound worse than your cell phone?

If downstream is saturated by other file transfers, need to slow these down.

Simple queue and drop won't work since the traffic is inbound and we need to slow the individual data flows, not outbound packets

Good Fences Make Good Neighbors

Want to share your WiFi but limit how much bandwidth it actually gets?

Do your kids sometimes hog your connection?

Back to Partitioning

The intent of partioning is to keep unwanted traffic out of the way.

Another way of doing this is to relocate resources to where they are needed and police unwanted traffic.

Transparent Proxy

Redirect client requests without any special configuration or knowledge at the client.

Cache frequently requested pages or files to reduce WAN traffic.

Police even the most aggressive peer-to-peer protocols.

Content Caching

Squid is the most popular proxy server in use today and even has Macintosh friendly front ends such as SquidMan or Maxum iAssist to keep installation and configuration simple.

Typically, caching can save 20-30% of the bandwidth and improve browsing speeds, especially over slow or congested network connections.

UNIX bind supports local caching DNS server. See "bind9arm" for details or use a GUI front end.

Dead Gateway Detection

- Similar to Windows behavior
- When a connection attempt is retransmitted for the 3rd time, select an alternate gateway by creating a new host route on the fly.
- If more than half of active connections have failed over to alternate gateway, make it the default gateway by selecting a new location.
- Transparent fail over before connection attempt times out.

Tuning for Performance Why is it necessary to tune TCP/IP?

- TCP/IP is not controlled by any manufacturer and is designed to work on almost any kind of underlying network with widely varying characteristics.
- To meet this challenge, the protocol designers made TCP adaptive. TCP is self monitoring and optimizes its own behavior to match the network environment. Adaptation takes time and the default settings cannot optimize for every possible kind of network.
- There are many independent implementations, the protocols continue to evolve in response to practical experience, some implementations have peculiar compatibility constraints.

Typical Tuning Problems

• Asymmetric connections that are much faster downstream than upstream.

• High performance connections with relatively long latency (measured in bytes) such as fiber optic, satellite, or PPP via cellular network.

• PPPoE implementations that restrict the network MTU without support for "Path MTU Discovery" or fragmentation.

Optimization 101 - measure, adjust, repeat

Problematic transfer with duplicate/retransmit data

Efficient transfer (Linear and Log scale)

Don't need to find perfect settings, just get close enough that TCP can work efficiently.

00	Untitled
	Basic Advanced
Tuner Preset A Tuner Preset i common networ select a Preset, menu to see if p settings as a do If you select "Qu your settings, lau	 Apple FiOS Broadband Tuner Bluetooth GPRS EDGE Cable Modem Download + Browse DSL with PPPoE Satellite1 Satellite2
Quit after resto	ring settings
?	Load Defaults Apply

	Basic Advar	nced
stegutil	<interface< th=""><th>2> 🛟</th></interface<>	2> 🛟
stegutil.r	xIntrDelay	•
🗹 Step to next no	on-default setting	Current:
📃 Quit after resto	oring settings	Default: -1
Sets the number before generating receiving each pa every packet rece value based on th	of microseconds to wait fo g an interrupt. The timer is acket. If set to zero, an inte eived. The default value of ne interface MTU.	r another packet to arrive reset after successfully rrupt will be generated for -1 tells the driver to select a

Q & A

More Information: http://www.sustworks.com psichel@sustworks.com

Updated Slides: ftp://sustworks.com/MWSF06_M225.pdf (or send Email)

Partition (wireless)

Switching is not widely available. As power or cell size increases, so does congestion (total available bandwidth decreases)

WDS - time division relay using a single radio