



I N S I D E M A C O S X

System Overview

February 2001



Apple Computer, Inc.
© 2000-2001 Apple Computer, Inc.
All rights reserved.
No part of this publication may be re-
produced, stored in a retrieval sys-
tem, or transmitted, in any form or by
any means, mechanical, electronic,
photocopying, recording, or other-
wise, without prior written permis-
sion of Apple Computer, Inc., with
the following exceptions: Any person
is hereby authorized to store docu-
mentation on a single computer for
personal use only and to print copies
of documentation for personal use
provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of Ap-
ple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial pur-
poses without the prior written con-
sent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application devel-
opers to develop applications only for
Apple-labeled or Apple-licensed
computers
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, AppleScript,
AppleShare, AppleTalk, Col-
orSync,Finder, FireWire, Mac, Macin-
tosh, QuickDraw, QuickTime,
PowerBook, and TrueType are trade-
marks of Apple Computer, Inc., regis-
tered in the United States and other
countries.

AirPort, Carbon, Cocoa, iBook, iMac,
Power Mac, Quartz, and Velocity En-
gine are trademarks of Apple Com-
puter, Inc.
Enterprise Objects, Enterprise Objects
Framework, NeXT, Objective-C, and
OpenStep are registered trademarks
of NeXT Software, Inc., registered in
the United States and other countries.
Java and all Java-based trademarks
are trademarks or registered trade-
marks of Sun Microsystems, Inc., in
the United States and other countries.
Netscape Navigator is a trademark of
Netscape Communications Corpora-
tion.
OpenGL is a registered trademark of
Silicon Graphics, Inc.
PostScript is a trademark of Adobe
Systems Incorporated.
PowerPC is a trademark of Interna-
tional Business Machines Corpora-
tion, used under license therefrom.
Simultaneously published in the
United States and Canada

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRAN-
TY OR REPRESENTATION, EITHER EX-
PRESS OR IMPLIED, WITH RESPECT
TO THIS MANUAL, ITS QUALITY, AC-
CURACY, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PUR-
POSE. AS A RESULT, THIS MANUAL IS
SOLD “AS IS,” AND YOU, THE PUR-
CHASER, ARE ASSUMING THE EN-
TIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL, IN-
CIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possi-
bility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification, ex-
tension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liabil-
ity for incidental or consequential damag-
es, so the above limitation or exclusion
may not apply to you. This warranty gives
you specific legal rights, and you may
also have other rights which vary from
state to state.

3



 Apple Computer, Inc. February 2001

Contents

Figures, Listings, and Tables 11

Chapter 1

About This Book

15

Why Read This Book 15
Further Investigations 17

Installed Developer Documentation 17
Other Apple Publications 19
Information on BSD 19
Other Information on the Web 19

Chapter 2

System Technologies

21

The User Experience 22
Aqua 23
The Finder 24
Application Support 26
Multiple Users 27
Internationalization 28
Application Extensibility 28
Exported Application Services 29
Other Parts of the User Experience 30

Darwin 30
Mach 31
BSD 32
Device-Driver Support 32
Networking Extensions 33
File Systems 33
Darwin and Open Source Development 35

Graphics and Imaging 35
Quartz 36
QuickDraw 37

4



 Apple Computer, Inc. February 2001

C O N T E N T S

OpenGL 38
QuickTime 38
Printing 39
Apple Type Solution 40

Networking and the Internet 41
Media Types 41
Standard Protocols 42
Legacy Network Services and Protocols 43
Routing and Multihoming 43
Personal File and Web Services 43

Advanced Hardware Features 44
USB 44
FireWire 45
Velocity Engine 45
AirPort 45

Chapter 3

System Architecture

47

A Layered Perspective 48
Application Environments 53

Carbon 53
Cocoa 56
Java 57

The Graphics and Windowing Environment 60
Core Graphics Services 62
Core Graphics Rendering 63

The Printing System 65
The User Interface of the Printing System 66
Summary of Printing Architecture 67
Printer Discovery 69
The Printing Process 69

Other Application Services 70
Process Manager 70
Carbon Event Manager 71
Apple Events 71
The Clipboard 71

C O N T E N T S

5



 Apple Computer, Inc. February 2001

Core Services 72
Carbon Managers 72
Core Foundation 74
Open Transport 76

Tracking a User Event 77

Chapter 4

Booting and Logging In

81

The Boot Sequence 81
BootROM 82
BootX 82
Kernel Initialization 83
System Initialization 83

The rc.boot and rc Scripts 84
Startup Items 84

The Login Procedure 87
Authenticating Users 88
Setting Up the User Environment 89
Launching the Finder and the Dock 89

System Daemons 90
Logging Out and System Shutdown 92
Customization Techniques 94

Customizing Booting Behavior 95
Customizing the Login Procedure 97

Chapter 5

Bundles

101

Benefits of Using Bundles 102
Anatomy of a Bundle 103
The Finder and Bundles 108
Types of Bundles 109

An Application’s Main Bundle 110
Framework Bundles 110
Loadable Bundles and Dynamic Linking 110

Localized Resources 111
Localized Character Strings 112

6



 Apple Computer, Inc. February 2001

C O N T E N T S

Search Algorithm 113
Bundles and the Resource Manager 115

Chapter 6

Application Packaging

117

An Application Is a Bundle 117
Application Frameworks, Libraries, and Helpers 119

Private Frameworks 120
Shared Frameworks and the Central Directory 121
Other Shared Application Code 122

Applications and Loadable Bundles 123
User Resources in Applications 124

Application Help 124
Application Preferences 125
Document Resources 126

Chapter 7

Frameworks

127

The Framework as a Library Package 128
The Internal Structure of Frameworks 129
Standard Locations for Frameworks 131

Dynamic Shared Libraries 132
Framework Versioning 134

Major Versions 135
Minor Versions 136
Versioning Summary and Guidelines 137

Chapter 8

Umbrella Frameworks

141

Kinds of Frameworks 142
The Purpose of Umbrella Frameworks 143
Linking and Including Guideline 145
The Structure of an Umbrella Framework 146
Restrictions on Subframework Linking 148

C O N T E N T S

7



 Apple Computer, Inc. February 2001

Chapter 9

The File System

151

How the File System Is Organized 151
File-System Domains 153
The System and Local Domains 154
Directories of the Classic Environment 156
The User Domain 157
The Network Domain 161
The Library Directory 162
The Developer Directory 164
Searching Within the File-System Domains 166

Differences Between HFS+ and UFS 167
Aliases and Symbolic Links 168
Resource Forks 170
File Encodings and Fonts 172

Chapter 10

The Finder

175

The Role of the Finder 175
Finder Interfaces to Applications 177

Information Property Lists 177
Information Stored by the Finder 178

Collecting Application Information 178
The Desktop Folder 179
Finder Attributes 179

The Handling of Applications and Documents 180
The Finder and File Operations 181

Copy and Move Operations 182
Management of Aliases and Symbolic Links 183

Chapter 11

Software Configuration

185

Property Lists 185
Information Property Lists 186

Document Configuration 187
An Example of an Information Property List 188
Standard Keys 191

8



 Apple Computer, Inc. February 2001

C O N T E N T S

Finder Keys 193
Application Package Keys 195
Launch Services Keys 197

The Preferences System 197
How Preferences Are Stored 198
Preference Domains 199
The defaults Utility 200

Chapter 12

Internationalization

203

Internationalizing Your Application 204
Language Preferences and Bundle Resources 205

Designating Languages and Locales 207
Tools for Internationalization and Localization 208
Localizing User Interfaces 211
Localizing Strings 212

Composing a Strings File 212
Generating Strings Files 214

Adding Multiscript Support 215

Chapter 13

Installation and Integration

219

Preparing Software for Mac OS X 219
Applications and Documents FAQ 220

What metadata must I specify for an application? 220
Must I package my CFM executable in a bundle? 221
How should I store application resources? 221
How do I indicate document types in Mac OS X? 223
Can I treat my plug-ins as documents? 223
How does the Finder handle documents? 223
Why even have extensions? 224
How should my application save documents? 225

CFM Executables 225
User Interface Issues 228

Icons 229
Custom Controls and System Appearance 229
Carbon Nib Files 230

C O N T E N T S

9



 Apple Computer, Inc. February 2001

Ownership and Permissions 230
Overview of BSD Permissions 231
File Permissions on Mac OS X 233
Permissions for Applications and Documents 234

The Classic Environment and Your Application 235
Overview of the Classic Environment 236
Compatibility With Native Mac OS 9 236
Device Support 237
Integration With Mac OS X 238

User Interface 238
The Classic Environment and File Systems 239
Extensions and Preferences 240
The Finder and the Desktop 240
Networking and Printing 241
Other Classic Integration Issues 242

Installing Your Application 242
Where to Install 242
Manual Installation 243
Installers 244

Installation Packages 246
Creating an Installation Package 246

System-Wide Resources 250

Chapter 14

Issues and Options With Multiple Environments

251

Tasks and Processes 251
Threading Packages 252

Layering Details 254
Usage Guidelines 254

Interprocess Communication 255
Communicating With Apple Events 256
Broadcasting Simple Notifications 257
Transferring Raw Data With CFMessagePort 257
Communicating With BSD Sockets 257
Communicating With BSD Pipes 258
Handling Exceptions With BSD Signals 259
Sharing Large Resources With Shared Memory 259

10



 Apple Computer, Inc. February 2001

C O N T E N T S

Making Services Available to Other Applications 260
Calling Other Processes With Distributed Objects 260
Messaging With the Mach Port Object 260

Library Managers and Executable Formats 261
Comparing the Runtime Environments 261

CFM and dyld 262
PEF and Mach-O 262
Code-Generation Models 262

Vector Libraries 263
CFM Executable and Non-Carbon APIs 264
Should You Use CFM or dyld? 264

Glossary

267

Index

281

11



 Apple Computer, Inc. February 2001

Figures, Listings, and Tables

Chapter 2

System Technologies

21

Figure 2-1 A functional view of Mac OS X 22
Figure 2-2 The Aqua user interface 23
Table 2-1 Supported local volume formats 34
Table 2-2 Supported network file protocols 35
Table 2-3 Quartz graphics capabilities and specifications 36
Table 2-4 Features of the Mac OS X printing system 40
Table 2-5 Network media types 41
Table 2-6 Network protocols 42

Chapter 3

System Architecture

47

Figure 3-1 Mac OS X as layers of system software 49
Figure 3-2 Architecture of the Java environment 59
Figure 3-3 Quartz and the graphics and windowing environment 61
Figure 3-4 The Core Graphics framework 62
Figure 3-5 Core Graphics Rendering inputs and outputs 64
Figure 3-6 Mac OS X printing system 67
Figure 3-7 The handling of an event in Mac OS X 78
Table 3-1 Replacement Carbon Managers 55
Table 3-2 Carbon managers in the Core Services layer 72
Table 3-3 Core Foundation services 75

Chapter 4

Booting and Logging In

81

Figure 4-1 Processes shown in Process Viewer 90
Figure 4-2 The Login Window pane of Login System Preferences 98
Table 4-1 System startup items 85
Table 4-2 Common system daemons and servers 91
Table 4-3 StartupParameters.plist key-value pairs 96
Table 4-4 loginwindow parameters 99

12



 Apple Computer, Inc. February 2001

F I G U R E S , L I S T I N G S , A N D T A B L E S

Chapter 5

Bundles

101

Figure 5-1 The Finder’s bundle bit 108
Figure 5-2 Locating a resource in a bundle 114
Listing 5-1 A minimal bundle 104
Listing 5-2 The bundle layout of a complex application 105

Chapter 6

Application Packaging

117

Listing 6-1 Location of an application’s private framework 120
Listing 6-2 Location of an application’s shared framework 121
Listing 6-3 Location of an application’s shared code (nonframework) 122

Chapter 7

Frameworks

127

Figure 7-1 The directory structure of a framework 130
Figure 7-2 Lazy linking of dynamic shared library modules 133
Table 7-1 Summary of framework versioning 138

Chapter 8

Umbrella Frameworks

141

Figure 8-1 The relationship between an umbrella framework and its
subframeworks 144

Listing 8-1 Structure of an umbrella framework 147

Chapter 9

The File System

151

Figure 9-1 The fragility of symbolic links 169
Figure 9-2 Resources in the data fork 171
Listing 9-1 The top level of the Mac OS X file system 152
Listing 9-2 Directory layout for system and local domains 154
Listing 9-3 Directory layout after installing on a single partition 157
Listing 9-4 Directory layout of user domain local to a computer 158
Listing 9-5 Directory layout of user home directory on a local area

network 160

F I G U R E S , L I S T I N G S , A N D T A B L E S

13



 Apple Computer, Inc. February 2001

Listing 9-6 Directory layout of network domain 161
Listing 9-7 Possible subdirectories of the Library directory 162
Listing 9-8 The contents of the Developer directory 165
Table 9-1 Directories of the system and local domains 155
Table 9-2 Uses of tilde to indicate locations in home directories 158
Table 9-3 Project Builder makefile variables for file-system domains 166

Chapter 11

Software Configuration

185

Listing 11-1 The Info.plist file for the Sketch demo application 188
Listing 11-2 The InfoPlist.strings file for the Sketch demo application 191
Table 11-1 Finder application packaging keys 196
Table 11-2 Keys of APFiles dictionary 196
Table 11-3 Launch Services keys 197
Table 11-4 Preference domains in search order 200

Chapter 12

Internationalization

203

Figure 12-1 Language pane of the System Preferences International
module 206

Figure 12-2 Project Builder’s File Reference Inspector 210

Chapter 13

Installation and Integration

219

Figure 13-1 Types of applications supported in Mac OS X 226
Figure 13-2 Installer application 245
Figure 13-3 The Package Maker user interface 249

Chapter 14

Issues and Options With Multiple Environments

251

Figure 14-1 Threading packages in Mac OS X 253
Figure 14-2 A Carbon application calling BSD system routines 264

14



 Apple Computer, Inc. February 2001

F I G U R E S , L I S T I N G S , A N D T A B L E S

Why Read This Book

15



 Apple Computer, Inc. February 2001

C H A P T E R 1

1 About This Book

Apple Computer’s newest operating system, Mac OS X, is also the most
revolutionary operating system to hit the computer scene in many years. With
Mac OS X, Apple is reasserting its leadership not only in operating systems but in
the technological sophistication and design sensibility that are the hallmarks of the
company. While preserving the famed ease-of-use and personality of its
predecessors, Mac OS X is an industrial-strength modern operating system
engineered for reliability, stability, scalability, and phenomenal performance. As
such, it lays the foundation for another decade of innovation.

This book introduces software developers to Mac OS X. It describes the operating
system’s features and architecture. And it explains some of the concepts and
conventions of Mac OS X that are of interest to those developing software for the
platform.

Why Read This Book

Inside Mac OS X: System Overview

 is intended for anyone who wants to develop
software for Mac OS X. But it is also a resource for people who are just curious about
Mac OS X as a development and deployment platform. Whether your background
is software development for Mac OS or UNIX or Windows or any other platform,
you are likely to find something of value in this book.

16

Why Read This Book



 Apple Computer, Inc. February 2001

C H A P T E R 1

About This Book

This book describes the Mac OS X operating system from both a functional and
architectural perspective and explains some of the concepts, services, and
conventions common to the three primary development environments: Carbon,
Cocoa, and Java. The book attempts to be “API-agnostic,” avoiding as much as
possible details specific to a programming interface or application environment.

The book has the following chapters:

�

System Technologies

. Describes the user experience and summarizes the
features and capabilities of the operating system, including the core operating
system called Darwin, the graphics and windowing system, and supported
networking services and protocols.

�

System Architecture

. Provides a high-level discussion of the design of
Mac OS X, describing the various layers of system software. Also explains how
events are handled and discusses some general programming issues.

�

Booting and Logging In

. Describes the sequence of actions that occur when a
Mac OS X system boots and when users log into the system. Also shows how
you can customize the booting and login sequences.

�

Bundles

. Describes bundles, the basic packaging model for software on
Mac OS X.

�

Application Packaging

. Offers details of application bundles and how they
package their various resources.

�

Frameworks

. Describes frameworks, another type of bundle, which are used to
package dynamic shared libraries and their supporting resources.

�

Umbrella Frameworks

. Provides information about umbrella frameworks, the
primary model for packaging Apple-provided frameworks.

�

The File System

.Discusses topics related to the file system, such as the standard
directory layout, resource forks, and differences between the major volume
formats.

�

The Finder

. Describes the interfaces between the Finder and applications and
explains how the Finder handles various tasks, such as determining application
ownership of documents and copying files between volumes of different
formats.

�

Software Configuration

. Describes the basic mechanisms for configuring
applications and other bundles and for handling user preferences.

�

Internationalization

. Explains how to prepare your application for localization
and how to enable it to display multiscript text.

C H A P T E R 1

About This Book

Further Investigations

17



 Apple Computer, Inc. February 2001

�

Installation and Integration

. Summarizes some key guidelines concerning
documents and applications, discusses some integration issues, and provides an
overview of installation options and techniques.

�

Issues and Options With Multiple Environments

. Discusses some of the
programming issues arising from multiple application environments and
layered architecture in Mac OS X.

Further Investigations

This book serves as a starting point. It defines the broad conceptual terrain of
Mac OS X, and you must go elsewhere to learn about details mentioned or only
suggested by the “map.” For example, for information about creating a bundle you
should see the documentation for Apple’s developer tools.

This section lists sources of Mac OS X information for software developers. It is by
no means an exhaustive list, and Apple’s contribution to this list will grow.

Installed Developer Documentation

When you install the Developer package of Mac OS X, the Installer application puts
developer documentation into four locations:

�

Frameworks. Information that is inextricably associated with a framework is
usually installed in a localized subdirectory of the framework. This method of
packaging ensures that the documentation moves with the framework when
and if it moves (or is copied) to another location. It also makes it possible to have
localized versions of the documentation (although English currently is the only
supported localization).

�

Development applications. Help information for applications such as Project
Builder and Interface Builder is installed with the application. When users
request it from the Help menu, the application launches Help Viewer to display
it.

�

Example code. A variety of sample programs are installed in

/Developer/
Examples

 showing you how to perform common tasks using the primary
Mac OS X application environments—Carbon, Cocoa, and Java.

18

Further Investigations



 Apple Computer, Inc. February 2001

C H A P T E R 1

About This Book

�

All information that is not specific to frameworks or development applications
is installed in

/Developer/Documentation

. The Installer also creates in this
location symbolic links to the framework documentation.

Apple’s developer documentation uses Apple Help, and specifically the Help
Viewer, as a presentation and access mechanism. To view and search developer
documentation, you use a special user interface for the Help Viewer that bears the
title “Developer Help Center.” To access the Developer Help Center:

1. Choose Mac Help from the Finder Help menu.

The first page displayed, named Help Center, is used for accessing user
documentation.

2. Click the Developer Center link on the first (home) page of the Help Center.

3. To return to the Help Center, click the Help Center link on the home page of the
Developer Help Center.

The home page of the Developer Center lists links to the “books” that are currently
installed. The behavior of the Help Viewer is very much like a typical browser.
However, links to external URLs open those URL resources in your preferred Web
browser.

The scope of a search using the Developer Help Center is determined by your
current location within the set of books. If you are browsing through a particular
book—say, Core Foundation —and you search for a term or API symbol, the Help
Viewer first looks at the Apple Help index for that book. If it cannot find the term
or symbol, it searches all books in the Developer Help Center. If you perform a
search from the home page of the Developer Help Center, the Help Viewer searches
the indexes of all books belonging to the Developer Help Center.

Another feature of the Developer Help Center is the linkage between it and the
primary development application, Project Builder. After indexing a project, you can
search for the definition of a function, constant, or other API symbol in Project
Builder; then click the book icon next to an item in the results list, and Project
Builder displays API documentation for that symbol in the Developer Help Center.
Another feature allows you to copy example code in the Developer Help Center to
the Clipboard, and then paste it into your source code.

C H A P T E R 1

About This Book

Further Investigations

19



 Apple Computer, Inc. February 2001

Other Apple Publications

Apple is planning a series of Inside Mac OS X books. This book, the

System Overview

,
is the first of that series. At the time of publication, Apple has a publish-on-demand
arrangement with Fatbrain.com. Through this arrangement you can obtain books in
the Inside Mac OS X series as they become available.

To obtain your printed copy of an Inside Mac OS X book, use your Web browser to
access the page at

www1.fatbrain.com/documentation/apple

. Then follow the
directions.

Information on BSD

Many developers who are new to Mac OS X are also new to BSD, an essential part
of the operating system’s kernel environment. BSD (for Berkeley Software
Distribution) is a variant of UNIX. Several excellent books on BSD and UNIX are
available in most technical bookstores (or bookstores with technical sections).

You can also use the World Wide Web as a resource for information on BSD. Several
organizations, which make available their own free versions of BSD, maintain
websites with manuals, FAQs, and other sources of information:

�

The FreeBSD project,

http://www.FreeBSD.org

�

The NetBSD project,

http://www.NetBSD.org

�

the OpenBSD project,

http://www.OpenBSD.org

See the bibliography in

Inside Mac OS X: The Kernel Environment

 for more references.

Other Information on the Web

Apple maintains several websites where developers can go for general and
technical information on Mac OS X.

�

Apple product information (

www.apple.com/macosx

). Provides general
information on Mac OS X.

�

Apple Developer Connection—Developer Documentation
(

developer.apple.com/techpubs

). Features the same documentation that is
installed on Mac OS X, except that often the documentation is more up-to-date.
Also includes legacy documentation.

20

Further Investigations



 Apple Computer, Inc. February 2001

C H A P T E R 1

About This Book

�

Apple Knowledge Base (

kbase.info.apple.com

). Contains technical articles,
tutorials, FAQs, technical notes, and other information.

�

Apple Developer Connection—Mac OS X (

developer.apple.com/macosx). Offers
SDKs, release notes, product notes and news, and other resources and
information related to Mac OS X.

21
  Apple Computer, Inc. February 2001

C H A P T E R 2

2 System Technologies

Mac OS X is both a radical departure from previous Macintosh operating systems
and a natural evolution from them. It carries on the Macintosh tradition of
ease-of-use, but more than ever it is designed not only to be easy to use but a
pleasure to use.

This next-generation operating system is a synthesis of technologies, some new and
some standard in the computer industry. It is firmly fixed on the solid foundation
of a modern core operating system, bringing benefits such as protected memory and
preemptive multitasking to Macintosh computing. Mac OS X sports a sparkling
new user interface capable of visual effects such as translucence and drop shadows.
These effects, as well as the sharpest graphics ever seen on a personal computer, are
made possible by a graphics technology that Apple developed specifically for
Mac OS X.

But Mac OS X is more than a sophisticated core and a pretty face. With its multiple
application environments, virtually all Macintosh applications can run on it. And
with its support for many networking protocols and services, Mac OS X is the
ultimate platform for using and enjoying the Internet. It also offers a high degree of
interoperability with other operating systems because of its multiple volume
formats and its conformance with established and evolving standards.

From a functional perspective, these are the most important components of
Mac OS X:

� Aqua, the human-interface design behind the user’s experience

� the application environments Classic, Carbon, and Cocoa

� the windowing and graphics system, as implemented by Quartz (and which
includes support for QuickTime and OpenGL)

� Darwin, the advanced core of the operating system

22 The User Experience
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

Figure 2-1 depicts the general dependencies between these components. The rest of
this chapter describes what these and other technologies of Mac OS X have to offer.

Figure 2-1 A functional view of Mac OS X

The User Experience

The user environment for Mac OS X is similar to what Macintosh users have become
comfortably familiar with. But it is also different in important and even spectacular
ways. It features a radical new design for the user interface, a new infrastructure for
localizing the interface, a new way to add application features dynamically, and
both new and familiar mechanisms for exporting and accessing the services of other
applications.

And, of course, the new user experience draws from the benefits obtained through
the core of the operating system (see “Darwin” (page 30)). A Macintosh computer
remains stable even when an application crashes, and no single application or task
can now hog processing resources; applications can execute concurrently.

This section describes the experience that Mac OS X offers to users and the features
and applications that make the experience a productive and enjoyable one.

Aqua

Application environments

OpenGL

Darwin

QuickTimeQuartz

C H A P T E R 2

System Technologies

The User Experience 23
  Apple Computer, Inc. February 2001

Aqua
When Apple designed Aqua, the new graphical user interface for Mac OS X, it had
one goal in mind: to create a modern operating system that is not only easy to use,
but is more appealing than any Mac OS you’ve ever seen (see Figure 2-2 for a screen
shot). As “aqua” suggests, the properties of water infuse the lucid appearance of
Mac OS X. Aqua brings a computer to life with color, depth, clarity, translucence,
and motion. Buttons look like polished blue gems, active buttons pulse, windows
have drop shadows to give them depth, minimized windows swoop into their Dock
icon like a genie into its bottle.

Figure 2-2 The Aqua user interface

24 The User Experience
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

One striking characteristic of Aqua is its icons. In earlier operating systems, icon
sizes were constrained by the limitations of screen resolution. With today’s
dramatically improved display sizes and resolution levels, Aqua sheds these
constraints. It offers richly colored and photo-quality icons that are adjustable up to
128-by-128 pixels. Its icons are more legible, enabling such features as in-place
document previews.

Aqua also improves the user’s experience by better management of screen real
estate. Operating systems are noted for cluttering up screens by spawning window
after window, especially when there are deeply structured file systems and multiple
control panels. Mac OS X eliminates the problem of proliferating windows by
focusing the activities of an application in a single window.

A prime example of this new approach is how Mac OS X handles common
application operations such as opening or printing documents. Time was, when the
operating system presented a dialog to print or save a document, you had to know
which document the dialog was for, even though you might have many documents
open at a time. Mac OS X introduces a new type of dialog that attaches to a
document and makes their relationship clear. These new dialogs appear to slide out
from underneath the window title, and their translucent quality makes them look
as though they’re floating above the document. Also, these dialogs are no longer
modal, hijacking your computer and demanding your immediate attention. You
can proceed to other tasks before dismissing the dialog—without having to
interrupt what you’re doing, even in the same application.

In many respects the Aqua interface is reminiscent of earlier user interfaces for
Macintosh computers. The Mac OS has long been admired for its ease of use. Aqua
incorporates many of the user-interface qualities and characteristics Macintosh
users expect in their computers. Ease of use is factored into just about every feature
and capability in the system.

Many of the effects of Aqua are made possible by Quartz, the 2D graphics and
windowing technology developed by Apple. See “Quartz” (page 36) for more on
this technology.

The Finder
A big part of the Aqua experience for users is the design of the desktop and the
Finder, a system application that acts as the primary interface for file-system
interaction. Users are likely to notice two major innovations in this area: the Dock
and the way the Finder displays the elements of the file system.

C H A P T E R 2

System Technologies

The User Experience 25
  Apple Computer, Inc. February 2001

The Dock reduces desktop clutter. It is an area at the bottom of the screen that holds
just about anything you want to keep handy for instant access: folders, applications,
documents, storage devices, minimized windows, QuickTime movies, links to
websites. An icon identifies each item stored in the Dock; these icons often provide
useful feedback about what they represent. For example, the icon for Mail tells you
if you have any new messages waiting to be read. If you store an image, the Dock
shows it in preview mode, so you can tell what it is without opening it. And because
you can minimize running applications into the Dock, a quick look at the bottom of
the screen tells you what applications you’re currently running. To switch between
tasks, simply click the application or document icon you want to start using, and it
becomes the new active task. If you don’t know what an icon represents, you can
move your mouse pointer over it and the title of the document, folder, or
application appears.

The Dock holds as many things as you want to keep there. As you add items, the
Dock expands until it reaches the edge of the screen. Once it reaches that point, the
icons in the Dock shrink proportionately to accommodate additional items. To
make the smaller icons more legible, however, Mac OS X includes a feature called
magnification: Just pass the cursor over the icons, and they magnify to your preset
level.

The new Finder for Mac OS X has a simple navigation interface that can be
contained within a single window. Intuitive controls in a configurable toolbar
instantly transport you to the most frequently accessed areas on your computer:
your home directory, your applications, your documents, even the people with
whom you often communicate. The items that Finder displays are not only folders,
applications, and documents, but other commonly accessed items such as mounted
network volumes, external storage devices, CD-ROMs, and digital cameras.

In addition to the icon and list views Macintosh users are familiar with, each Finder
window can be set to the new viewing mode called column view. This mode is ideal
for navigating deep file systems; clicking a folder displays the contents of that folder
in the next column to the right. Column view also maintains a history of your
navigation forays so you can always find your way back.

When you double-click Finder items in icon or list view, the Finder by default no
longer brings up a separate window. Instead, the Finder replaces the old folder
view within the single Finder window. (You can change this default to the previous
behavior, however.) By focusing the file system into a single window view, the
Finder reduces the proliferation of windows, a key design goal. Despite this default
behavior, nothing prevents you from opening as many Finder windows as you
wish.

26 The User Experience
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

Application Support
Part of the user experience is a near-seamless interaction among the various pieces
of Mac OS X. This might be expected behavior for any operating system, but it is
quite remarkable. From BSD to QuickTime, Mac OS X consists of technologies with
widely different histories and based on different standards and conventions. A
single Mac OS X system hosts volumes of different formats, supports different
network file-sharing protocols, and can run applications based on radically
different APIs. Mac OS X’s imposition of unity over this rich technological diversity
is one of its singular accomplishments.

Instead of requiring users and developers to switch over abruptly to a brand new
operating system, Apple has designed Mac OS X itself as a staging ground for a
gradual transition. This is especially true in the area of application libraries and
runtimes. Mac OS X supports three application environments, each intended for a
particular type of application:

� The Classic environment lets you run most of your Mac OS 9 applications.
Because Classic is a compatibility environment, it does not support new
Mac OS X features, such as Aqua or core architectural enhancements provided
by Darwin.

� The Carbon environment runs all Mac OS 9 applications whose code has been
optimized for Mac OS X. By converting their code to use the new Carbon APIs,
application developers can ensure that applications take advantage of protected
memory, preemptive multitasking, and other features of Darwin.

� The Cocoa environment offers an advanced object-oriented programming
environments for creating the best next-generation applications.

Mac OS X makes it possible to copy (or cut) almost any piece of data and paste it
into an application executing in another environment. It also enables dragging of
Finder objects (and the data they represent) between most environments. Mac OS X
performs all necessary conversions when, for example, a file stored on a Mac OS
Extended (HFS+) volume is copied to a UFS volume.

A new way of packaging applications makes it possible for multiple application
executables to coexist in a directory that, to a user, looks and behaves like a
double-clickable file. Included in this directory are the resources the executables
need, such as images, sounds, localized strings, plug-ins, and private and shared
libraries. With this scheme, you can install the same application package on a
Mac OS X and a Mac OS 9 system and users can launch and use the application.
Because an application package contains everything an application needs to execute

C H A P T E R 2

System Technologies

The User Experience 27
  Apple Computer, Inc. February 2001

on more than one system, certain advanced features become easier to realize, such
as remotely executing an application on a server, distributing applications over the
Internet, and simplified installation and uninstallation. See the chapter
“Application Packaging” (page 117) for more information.

Multiple Users
Users work on a Mac OS X system in a personally customized environment. They
can select a desktop pattern, their preferred language, the applications to start up at
boot-time, and a number of other preferences. Whenever they log in to their
account, all of their choices are restored.

A user’s personalized environment is potentially one of many such environments.
Another user can log in to the same computer and have an entirely different set of
preferences define his or her computing environment. Mac OS X enforces secure
boundaries between one user’s data and programs and another’s. Each account is
password-protected and users cannot execute applications or edit or even read
documents in another user’s folder without the owner’s permission. The system
gives each user’s folder (and all it contains) a default set of permissions that the user
can thereafter change to restrict access or grant greater access to other users.

More powerful than this single (local) machine/multiple users model is the
multiple machines/multiple users model—in other words, network accounts,
which Mac OS X makes possible through its NetInfo network management system.
People can use any Mac OS X system connected to their NetInfo network—which
can be a home computer, a portable computer, or a system in a friend’s house—to
log in to their account on a remote server. When logged in, they can work in an
environment that is exactly like it was when they last logged out, regardless of
which machine they last used to log in. And if a site is properly administered, their
information on that server is just as secure as any locally maintained data, perhaps
more secure if files on the server are backed up regularly.

The preferences system on Mac OS X is flexible enough to support any combination
of remote and local access. With it, users and administrators can specify sets of
preferences on per-user, per-machine, and per-application bases.

28 The User Experience
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

Internationalization
Mac OS X makes it easy to internationalize software. And it does so in such a way
that a single binary can support localizations for multiple languages and regional
dialects. It also lets software developers dynamically add localized resources for
new languages or regions.

Mac OS X includes comprehensive technology to handle text systems used around
the world. This text system provides Unicode, input methods, and general text
handling services. In Mac OS X, most software comes in the form of a bundle, of
which an application is just one type (see “Application Support” (page 26)). A
bundle is an opaque directory in the file system that contains one or more
executables and the resources that go with those executables. One of the primary
benefits of bundles is the infrastructure they provide for localizing software. For
users, a bundle appears to be a single file object that can be double-clicked or
dragged from folder to folder.

Localized resources such as image and strings files, as well as Mac OS 9–style
resources (.rsrc), can be put in bundle subdirectories whose names reflect a
particular language or regional dialect (for example, Canadian French). A properly
constructed Mac OS X application (or plug-in or shared library) does not hardwire
paths to the resource files in these directories. Instead, when the application needs
a resource, it uses a special system routine to obtain the localization that best
matches the user’s language preferences.

See the chapters “Internationalization” (page 203), “Application Packaging”
(page 117), and “Bundles” (page 101)) for further information.

Application Extensibility
Plug-ins are modules of code and resources that developers and users can
dynamically add to an application to extend its capabilities. Mac OS X supports
plug-ins with a new, generalized, system architecture. The host application
structures its code so that well-defined areas of functionality can be provided by
external plug-ins. The host does not have to be aware of the implementation details
of the plug-in. When the application is launched, it uses mechanisms provided by
the plug-in architecture to locate its plug-ins and load them. An application can let
users add plug-ins at any time while it is running, and it can also give users the
means for removing its plug-ins.

C H A P T E R 2

System Technologies

The User Experience 29
  Apple Computer, Inc. February 2001

Plug-ins offer a range of benefits for both users and developers. Users can customize
the features of an application to suit their requirements, and as new or upgraded
functionality (as encapsulated by a new or replacement plug-in) become available,
users can “plug” these features into the application.

For application developers, plug-ins yield a number of advantages. By providing a
single, standard plug-in architecture, developers no longer have to design and
implement their own architectures. Plug-ins permit an incremental but efficient
implementation of features, making it possible to create a custom version of an
application without changing the original code base. Because they are separate
modules, plug-ins help developers to isolate and correct bugs in the software. They
also make it possible for third-party developers to add value to an application
without the involvement of the original developer.

For details, see the conceptual and reference documentation for Core Foundation
Bundle Services and Plug-in Services.

Exported Application Services
Applications concurrently running in a Mac OS X system don’t have to run in
isolation. Any application can make a service it provides available to other
applications, and any application interested in that service can take advantage of it.
In addition to copy-paste and dragging operations, Mac OS X gives applications
two mechanisms for sharing resources and capabilities: scripting and the Services
menu.

Scripting in Mac OS X, as in Mac OS 8 and Mac OS 9, employs AppleScript as the
primary scripting language and Apple events as the communication model. You
can program behavior into your applications so they act appropriately upon
receiving AppleScript commands. AppleScript is supported in all application
environments as well as in the Classic compatibility environment. Users can thus
write scripts that link together the services of multiple applications in different
environments.

The Services menu provides another avenue for applications to offer their
capabilities to other applications. These “client” applications don’t have to know
what is offered in advance. How the Services menu works is simple. A user selects
a piece of data in an application, such as a string of text, or an image, or an icon
representing a folder or file. Then she selects a command from an application listed
in the Services menu and the command is executed on the selection, invoking that
second application.

30 Darwin
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

The Services facility often works as though the user copies data from one
application, pastes it into another, modifies the data, then copies the result and
pastes it back into the original application. For example, a user might select a folder
in the Finder and choose a Services option that compresses the folder and puts it
into an archive format; the result of this operation is placed back in the same place
as the original folder. But the action can be one way as well; for instance, a user
might select a name in a word-processing document and choose a Services
command that looks up the name using an LDAP server, starts up an email
application, and opens a new message window with the found email address after
the To: line.

Other Parts of the User Experience
As with prior versions of the Mac OS, the user’s experience of Mac OS X begins
when the box containing the CD-ROM is opened. Installation is a simple task and a
set-up assistant has the user up and running locally and on the Internet while her
coffee is still warm. If users have questions, they can use Apple Help to find the
answers.

Mac OS X integrates the Internet into everyday computer use. It makes it easy for
users to access the Internet and to save the locations of favorite websites for later
access. It features Sherlock 2 for searching the Internet or an intranet as well as
searching the local file system (including searching by indexed content). Mac OS X
also includes a powerful, yet incredibly easy-to-use, email application based
completely on Internet standards.

Darwin

Beneath the appealing, easy-to-use interface of Mac OS X is a rock-solid foundation
that is engineered for stability, reliability, and performance. This foundation is a
core operating system commonly known as Darwin, which is also available as Open
Source from www.apple.com/darwin. Darwin integrates a number of technologies,
most importantly Mach 3.0, operating-system services based on 4.4BSD (Berkeley
Software Distribution), high-performance networking facilities, and support for

C H A P T E R 2

System Technologies

Darwin 31
  Apple Computer, Inc. February 2001

multiple integrated file systems. Because the design of Darwin is highly modular,
you can dynamically add such things as device drivers, networking extensions, and
new file systems.

For more information about Darwin, see the book Inside Mac OS X: Kernel
Environment.

Mach
Mach is at the heart of Darwin because it performs a number of the most critical
functions of an operating system. Much of what Mach provides is “under the
cover”—typically, applications enjoy the benefits transparently. It manages
processor resources such as CPU usage and memory, handles scheduling, enforces
memory protection, and implements a messaging-centered infrastructure for
untyped interprocess communication, both local and remote. Mach brings many
important advantages to Macintosh computing:

� Protected memory. The stability of an operating system should not depend on
all executing applications being good “citizens” by not writing data to each
others’s (or the system’s) address space; doing so can result in loss or corruption
of information and can even precipitate system crashes. Mach ensures that an
application cannot write on another application’s memory or on the operating
system’s memory. By walling off applications from each other and from system
processes, Mach makes it virtually impossible for a single poorly behaved
application to hurt the rest of the system. And, perhaps best of all, if an
application crashes, it doesn’t affect the rest of the system and so you don’t need
to restart your computer.

� Preemptive multitasking. In a modern operating system, processes share the
CPU efficiently. Mach watches over the computer’s processor, prioritizing tasks,
making sure activity levels are at the maximum, and ensuring that every task
gets the resources it needs. It uses certain criteria to decide how important a task
is, and therefore how much time to allocate to it before giving another task its
turn. Your process is not dependent on another process yielding its processing
time.

� Advanced virtual memory. Like other virtual memory systems, Mach maintains
address maps that control the translation of a task’s virtual addresses into
physical memory. Typically only a portion of the data or code contained in a
task’s virtual address space is resident in physical memory at any given time. As
pages are needed, they are loaded into physical memory from storage. Mach
augments these semantics with the abstraction of memory objects. Named

32 Darwin
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

memory objects enable one task (at a sufficiently low level) to map a range of
memory, unmap it, and send it to another task. This capability is essential for
implementing separate execution environments on the same system. In
Mac OS X, virtual memory is “on” all the time.

� Real-time support. This feature guarantees low-latency access to processor
resources for time-sensitive media applications.

Darwin also enables cooperative multitasking and preemptive and cooperative
threading.

BSD
Integrated with Mach is a customized version of the BSD operating system
(currently 4.4BSD). Darwin’s implementation of BSD includes many of the POSIX
APIs and exports these APIs to the application layers of the system. BSD serves as
the basis for the file systems and networking facilities of Mac OS X. In addition, it
provides several programming interfaces and services, including

� the process model (process IDs, signals, and so on)

� basic security policies such as user IDs and permissions

� threading support (POSIX threads)

� BSD sockets

Device-Driver Support
For development of device drivers, Darwin offers an object-oriented framework
called the I/O Kit. The I/O Kit not only facilitates the creation of drivers for
Mac OS X, but provides much of the infrastructure those drivers need. It is written
in a restricted subset of C++. The framework, which is designed to support a range
of device families, is both modular and extensible.

Device drivers created with the I/O Kit easily acquire several important features:

� true plug and play

� dynamic device management (“hot plugging”)

� power management (both desktops and portables)

C H A P T E R 2

System Technologies

Darwin 33
  Apple Computer, Inc. February 2001

For descriptions of the device drivers developed by Apple, see “Advanced
Hardware Features” (page 44).

Networking Extensions
Darwin gives kernel developers a new technology for adding networking
capabilities to the operating system, Network Kernel Extensions (NKEs). The NKE
facility allows you to create networking modules and even entire protocol stacks
that can be dynamically loaded into the kernel and unloaded from it. NKEs also
make it possible to configure protocol stacks automatically.

NKE modules have built-in capabilities for monitoring and modifying network
traffic. At the data-link and network layers, they can also receive notifications of
asynchronous events from device drivers, such as when there is a change in the
status of a network interface.

For detailed information on developing networking extensions with NKE, see Inside
Mac OS X: Network Kernel Extensions. For descriptions of the networking services
and protocols natively implemented in Darwin, see “Networking and the Internet”
(page 41).

File Systems
The file-system component of Darwin is based on extensions to BSD and an
enhanced Virtual File System (VFS) design. VFS enables a layered architecture in
which file systems are stackable. The file-system component introduces several new
general features:

� Permissions on removable media. This feature is based on a globally unique ID
registered in a system for each connected removable device (including USB and
FireWire devices).

� URL-based volume mount, which enables users (via a Finder command) to
mount such things as AppleShare and Web servers.

� Unified buffer cache, which consolidates the buffer cache with the
virtual-memory cache.

� Long filenames (255 characters or 755 bytes, based on UTF-8).

34 Darwin
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

Because of its multiple application environments and the various kinds of devices
it supports, Mac OS X must be able to handle file data on many standard volume
formats. Table 2-1 lists the supported formats.

HFS and HFS+ volumes support aliases and UFS volumes support symbolic links
(HFS+ and UFS both support hard links). Although an alias and a symbolic link are
both lightweight references to a file or directory elsewhere in the file system—they
are semantically different in significant ways. See the chapter “The File System”
(page 151) for descriptions of these and other differences.

Table 2-1 Supported local volume formats

Mac OS
Extended
Format

Also called Hierarchical File System Plus, or HFS+. This is the default
root and booting volume format on Mac OS X. This extended version
of HFS optimizes the storage capacity of large hard disks by
decreasing the minimum size of a single file. It is also the standard
volume format on most Mac OS 8 systems and on Mac OS 9.

Mac OS
Standard
Format

Also called Hierarchical File System, or HFS. This is the volume
format on Mac OS systems prior to Mac OS 8.1. HFS (as does HFS+)
stores resources and data in separate “forks” of a file and makes use of
various file attributes, including type and creator codes.

UFS A “flat” (that is, single-fork) disk volume format, based on the 4.4BSD
FFS (Fast File System) that is similar to the standard volume format of
most UNIX operating systems; it supports POSIX file-system
semantics, which are important for many server applications.

UDF The Universal Disk Format for DVD volumes.

ISO 9660 The standard format for CD-ROM volumes.

C H A P T E R 2

System Technologies

Graphics and Imaging 35
  Apple Computer, Inc. February 2001

Because Mac OS X is intended to be deployed in heterogeneous networks linking
together disparate systems, it also supports multiple network file-server protocols.
Table 2-2 lists these protocols.

Some file-system capabilities extend to all writable volume formats on Mac OS X.

Darwin and Open Source Development
Apple is the first major computer company to make open-source development a key
part of its ongoing operating-system strategy. Being Open Source technology,
Darwin is a key part of that strategy. Apple has released the source code to virtually
all of the components of Darwin to the developer community.

The Mac OS X kernel environment is a subset of Darwin. The kernel environment
contains everything in Darwin except the BSD libraries and commands that are
essential to the BSD Commands environment. For more on the kernel environment,
see the book Inside Mac OS X: Kernel Environment.

Graphics and Imaging

Mac OS X combines Quartz, QuickTime, and OpenGL—three of the most powerful
graphics technologies available—to take the graphics capabilities of the Macintosh
beyond anything seen on a desktop operating system. The two-dimensional
graphics and imaging capabilities of Mac OS X are based on Quartz, a new Apple
technology that provides a window server and essential low-level services as well

Table 2-2 Supported network file protocols

AFP client Apple File Protocol, the principal file-sharing protocol on Mac OS 9
systems (available only over TCP/IP transport).

NFS client Network File System, the dominant file-sharing protocol in the UNIX
world.

36 Graphics and Imaging
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

as a graphics rendering library that uses PDF (Portable Document Format) as its
internal model. Integrated into this foundation is a new printing architecture and
other graphics libraries such as QuickDraw and QuickTime.

Quartz
Quartz is a powerful new graphics system that delivers a rich imaging model,
on-the-fly rendering, anti-aliasing, and compositing of PostScript graphics. Quartz
also implements the windowing system for Mac OS X and provides low-level
services such as event handling and cursor management. It also offers facilities for
rendering and printing that use PDF as an internal model for graphics
representation.

Table 2-3 describes some of Quartz’s rendering capabilities and other features.

Table 2-3 Quartz graphics capabilities and specifications

Bit depth A minimum bit depth of 16 bits for typical users. An 8-bit
depth in full-screen mode is available for games and other
multimedia applications.

Minimum
resolution

Supports 1024 pixels by 768 pixels as the minimum screen
resolution for typical users. Resolutions of 640 x 480 and 800 x
600 are available for the iBook as well as games and other
multimedia applications.

Anti-aliasing All graphics and text are anti-aliased.

Frame buffer
access

Includes a mechanism that lets graphics applications (such as
games) gain direct access to the video frame buffer.

Velocity Engine Quartz and QuickDraw both take advantage of the Velocity
Engine to boost performance.

2D graphics
acceleration

Supports two-dimensional graphics acceleration, improving
what is currently available in QuickDraw. (Acceleration is
currently limited to system software and Classic applications;
other applications must draw into backing store in DRAM.)

ColorSync color
management

Quartz uses ColorSync to manage pixel data when drawing
data on the screen, respecting ICC profiles, or applying the
system’s monitor profile as source color space. ColorSync can
also be called when printing occurs.

C H A P T E R 2

System Technologies

Graphics and Imaging 37
  Apple Computer, Inc. February 2001

Quartz has two components, Core Graphics Services and Core Graphics Rendering.
The first of these, Core Graphics Services, is essentially the window server for the
system. The window server provides the fundamental windowing and
event-routing services for all application environments. This high-performance
server is lightweight in that it performs no rendering itself, yet it provides essential
services to all graphics rendering libraries that are clients of it, including Core
Graphics Rendering and QuickDraw. Core Graphics Services features such
advanced capabilities as device-independent color and pixel depth, layered
compositing, and buffered windows for the automatic repair of window damage.

The Core Graphics Rendering component of Quartz is a graphics rendering library
for two-dimensional shapes. It is used for screen rendering, PDF generation, print
preview, and other services. Core Graphics Rendering uses PDF as an internal
model for vector graphics representation. PDF offers several advantages, including
good color management, internal compression, and font independence. Core
Graphics Rendering uses a coordinate system that is flexible and precise (because it
uses floating-point coordinates) and thus permits some degree of device
independence.

Core Graphics Rendering enables a number of important features:

� automatic PDF generation and save-as-PDF

� a consistent feature set for all printers

� automatic onscreen preview of graphics

� conversion of PDF data to printer raster data or PostScript

� high-quality screen rendering

� color management through ColorSync

See “The Graphics and Windowing Environment” (page 60) in the chapter “System
Architecture” for more information on Quartz.

QuickDraw
For Carbon developers, QuickDraw is the primary library for the construction,
manipulation, and display of two-dimensional graphical shapes, pictures, and text.

38 Graphics and Imaging
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

QuickDraw provides a facility for code to send QuickDraw imaging instructions
through an interface to the Core Graphics Rendering library. This interface gives
QuickDraw code access to the PDF-generation, PostScript-generation, and other
graphics and imaging capabilities of Quartz.

OpenGL
Mac OS X includes Apple’s highly optimized implementation of OpenGL as the
system API and library for three-dimensional (3D) graphics. OpenGL is an
industry-wide standard for developing portable 3D graphics applications. OpenGL
is one of the most widely adopted graphics API standards today, which makes code
written to OpenGL highly portable and the generated visual effects highly
consistent. It is specifically designed for games, animation, CAD/CAM, medical
imaging, and other applications that need a rich, robust framework for visualizing
shapes in two and three dimensions. Mac OS X’s version of OpenGL produces
consistently high-quality graphical images at a consistently high level of
performance.

OpenGL offers a broad and powerful set of imaging functions, including texture
mapping, hidden surface removal, alpha blending (transparency), anti-aliasing,
pixel operations, viewing and modeling transformations, atmospheric effects (fog,
smoke, and haze), and other special effects. Each OpenGL command directs a
drawing action or causes special effects, and developers can create lists of these
commands for repetitive effects. Although OpenGL is largely independent of the
windowing characteristics of each operating system, special “glue” routines are
implemented to enable OpenGL to work in an operating system’s windowing
environment.

QuickTime
Mac OS X comes packaged with the latest version of QuickTime. QuickTime is a
powerful multimedia technology for manipulating, enhancing, and storing video,
sound, animation, graphics, text, music, and even 360-degree virtual reality. It also
allows you to stream digital video where the data stream can be either live or stored.
QuickTime is cross-platform technology; besides Mac OS X, it is available on Mac
OS 8, Mac OS 9, Windows 95, Windows 98, Windows NT, and Windows 2000.

C H A P T E R 2

System Technologies

Graphics and Imaging 39
  Apple Computer, Inc. February 2001

QuickTime supports every major file format for images, including PICT, BMP, GIF,
JPEG, TIFF, and PNG. It also supports every significant professional file format for
video, including AVI, AVR, DV, M-JPEG, MPEG-1, and OpenDML. For Web
streaming, it includes support for HTTP as well as RTP and RTSP.

QuickTime streaming allows users to view live and video-on-demand movies using
the industry-standard protocols RTP (Real-Time Transport Protocol) and RTSP
(Real-Time Streaming Protocol). Users can view streaming live broadcasts,
previously recorded movies, or a mixture of both. Broadcasts can be either unicast
(one-to-one) or multicast (one-to-many).

Through the QuickTime plug-in, QuickTime’s digital video streaming capability is
extended to all popular Web browsers, including Internet Explorer, Netscape
Navigator, and America Online browsers. The plug-in supports over thirty
different media types and makes it possible to view over 80 percent of all Internet
media. The Web streaming capabilities of QuickTime include a Fast Start feature,
which presents the first frame of a movie almost immediately and automatically
begins playing a movie as it is downloaded. It also features other advanced
capabilities, such as movie “hot spots” and automatic Web-page launching.

Printing
The printing system for Mac OS X is based on a completely new architecture. It is a
service available for all application environments. Drawing upon the capabilities of
Quartz, the printing system delivers a consistent human interface and makes
possible shorter development cycles for printer vendors. It allows applications to
draw in “virtual pages” and map those pages to physical pages at print time,
breaking the connection between the drawing page and the printing page. The

40 Graphics and Imaging
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

printing system also provides applications with a high degree of control over the
user-interface elements in print dialogs. Table 2-4 describes some additional
features.

Apple Type Solution
The Apple Type Solution (ATS) is the engine for the system-wide management,
layout, and rendering of fonts. With ATS, users can have a single set of fonts
distributed over different parts of the file system or even over a network. ATS
makes the same set of fonts available to all clients. The centralization of font
rendering and layout contributes to overall system performance by consolidating
expensive operations such as synthesizing font data and rendering glyphs. ATS
provides support for a wide variety of font formats including TrueType, PostScript
Type 1, and PostScript OpenType.

Table 2-4 Features of the Mac OS X printing system

Print Center Provides a single interface for finding printers, submitting
jobs, and managing queues.

Native PDF Supports PDF as a native data type. Any application (except
for Classic applications) can easily save textual and graphical
data to device-independent PDF where appropriate. The
printing system provides this capability from a standard
print set-up dialog.

PostScript printing Prints to PostScript Level 1, 2, and 3 compatible printers,
except in the Classic environment.

Raster printers Prints to raster printers in all environments, except in the
Classic environment.

Print preview Provides a print preview capability in all environments,
except in Classic. The printing system implements this
feature by launching a PDF viewing application. This
preview is color-managed by ColorSync.

Print spooling Enables speedy spooling of print jobs.

C H A P T E R 2

System Technologies

Networking and the Internet 41
  Apple Computer, Inc. February 2001

Networking and the Internet

Mac OS X is one of the premier platforms for computing in an interconnected world.
It supports the dominant media types, protocols, and services in the industry as
well as differentiated and innovative services from Apple.

Mac OS X’s network protocol stack is based on BSD. The extensible architecture
provided by Network Kernel Extensions, summarized in “Networking Extensions”
(page 33), facilitates the creation of modules implementing new or existing
protocols that can be added to this stack.

Media Types
Mac OS X supports the network media types listed in Table 2-5.

Table 2-5 Network media types

Ethernet
10/100Base-T

For the Ethernet ports built into every new Macintosh.

Ethernet
1000Base-T

Also known as Gigabit Ethernet. For data transmission over
fiber-optic cable and standardized copper wiring.

Jumbo Frame This Ethernet format is a technology that uses 9 KB frames for
interserver links rather than the standard 1.5 KB frame. Jumbo
Frame decreases network overhead and increases the flow of
server-to-server and server-to-application data.

Serial Supports modem, DSL, and ISDN capabilities.

Wireless See “AirPort” (page 45).

42 Networking and the Internet
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

Standard Protocols
Mac OS X supports a number of protocols that are standard in the computing
industry. Table 2-6 summarizes these protocols.

Table 2-6 Network protocols

TCP/IP and
UDP/IP

Mac OS X provides two transmission-layer protocols, TCP
(Transmission Control Protocol) and UDP (User Datagram
Protocol) to work with the network-layer Internet Protocol
(IP).

PPP For dialup (modem) access, Mac OS X includes PPP
(Point-to-Point Protocol). PPP support includes TCP/IP as
well as the PAP and CHAP authentication protocols.

PAP The Printer Access Protocol is used for spooling print jobs
and printing to network printers.

HTTP The Hypertext Transport Protocol is the standard protocol
for transferring Web pages between a Web server and
browser.

FTP The File Transfer Protocol (part of BSD) is a standard means
of moving files between computers on TCP/IP networks.

DNS Domain Name Services is the standard Internet service for
mapping host names to IP addresses.

SLP Service Location Protocol is a protocol designed for the
automatic discovery of resources (printers, servers, fax
machines, and so on) on an IP network.

DHCP and BOOTP The Dynamic Host Configuration Protocol and the Bootstrap
Protocol automate the assignment of IP addresses in a
particular network.

LDAP The Lightweight Directory Access Protocol lets users locate
organizations, individuals, and resources such as files and
devices in a network, whether on the Internet or on a
corporate intranet.

NTP The Network Time Protocol is used for synchronizing
client clocks.

C H A P T E R 2

System Technologies

Networking and the Internet 43
  Apple Computer, Inc. February 2001

Apple also implements a number of file-sharing protocols; see Table 2-2 (page 35)
for a summary of these protocols.

Legacy Network Services and Protocols
Apple is including a number of its legacy network products in Mac OS X. This will
ease the transition to the new operating system for Mac OS users who currently
depend on these products.

� AppleTalk is a suite of network protocols that is standard on Macintosh and can
be integrated with other network systems, such as the Internet. Mac OS X
includes minimal support for compatibility with legacy AppleTalk
environments and solutions.

� Open Transport implements industry-standard communications and
networking protocols as part of the I/O system. It helps developers to
incorporate networking services in their applications without having to worry
about communication details specific to any one network.

Routing and Multihoming
Mac OS X is a powerful and easy-to-use desktop operating system but can also serve
as the basis for powerful server solutions. Some businesses or organizations have
small networks that could benefit from the services of a router. Mac OS X offers IP
routing support for just these occasions. With IP routing, a Mac OS X machine can
act as a router or even as a gateway to the Internet. The Routing Information
Protocol (RIP) is used in the implementation of this feature.

Mac OS X also allows multihoming and IP aliasing. With multihoming, a computer
host is physically connected to multiple data links that can be on the same or
different networks. IP aliasing allows a network administrator to assign multiple IP
addresses to a single network interface. Thus one computer running Mac OS X can
serve multiple websites by acting as if it were multiple servers.

Personal File and Web Services
Personal Web Sharing, which is also a feature of Mac OS 8 and Mac OS 9, allows
users to share information with other users on an intranet, no matter what type of
computer or browser they are using. Basically, it lets users set up their own intranet

44 Advanced Hardware Features
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

site. Apache, the most popular Web server on the Internet, is integrated as the
system’s HTTP service. The host computer on which the Personal Web Sharing
server is running must be connected to a TCP/IP network.

Advanced Hardware Features

Right out of the box, Mac OS X supplies drivers for most standards-based hard
drives and add-on devices in common use today. For example, it provides support
and drivers for IDE and SCSI disk drives and supports a wide range of Apple
monitors. Mac OS X also includes features such as power management for both
desktop and portable systems.

The rest of this section discusses some of the advanced hardware features of
Mac OS X. For hardware-related information in this book, see “Media Types”
(page 41), “File Systems” (page 33), and “Networking Extensions” (page 33). For
detailed information on hardware support, see the installation guide that comes
with Mac OS X.

USB
USB (Universal Serial Bus) is a high-speed plug-and-play interface between a
computer and add-on devices such as audio players, joysticks, keyboards,
telephones, scanners, and printers. It supports a data speed of 12 megabits per
second. USB permits users to add a new device to their computer without having to
add an adapter card or even having to turn the computer off. Mac OS X includes
USB drivers for the following classes of devices:

� input devices (HID class)

� printers

� modems and other communication devices

� mass storage (Zip and Jaz drives, for instance, and external hard drives)

� imaging

� display

� audio

C H A P T E R 2

System Technologies

Advanced Hardware Features 45
  Apple Computer, Inc. February 2001

FireWire
FireWire is Apple’s implementation of the new IEEE 1394 standard (High
Performance Serial Bus) for peripheral devices. It enables a single plug-and-socket
serial connection on which up to 63 devices can be attached. Because it supports a
data transfer rate up to 400 megabits per second, FireWire is ideal for devices such
as digital cameras, DVDs, digital video tapes, digital camcorders, and music
synthesizers. With FireWire, users can chain devices together in different ways
without the need for terminators or complicated set-up requirements. And devices
can be plugged in and used without the need for a system restart. Because IEEE 1394
is a peer-to-peer interface, you can connect one FireWire-capable device to another
and use both without connecting either to a computer; for example, one camcorder
can dub to another.

Velocity Engine
Support for the Velocity Engine is another important feature of Mac OS X. The
Velocity Engine boosts the performance of any application exploiting data
parallelism, such as those performing 3D graphic imaging, image processing, video
processing, audio compression, and software-based cell telephony. Quartz,
QuickTime, and QuickDraw now incorporate Velocity Engine capabilities; thus any
application using these APIs can tap into the Velocity Engine without making any
changes. The Mac OS X SDK includes a C/C++ compiler with Velocity Engine
support so you can also create new applications that take full advantage of the
Velocity Engine.

AirPort
AirPort is Apple’s wireless network technology that delivers fast and reliable
communications between multiple computers in a local area network and between
that network and the Internet. With AirPort, several users can be online at the same
time—simultaneously surfing the Web, accessing email, competing in games, and
swapping files—all through a single Internet service account. AirPort also lets you
wirelessly transfer files from your computer to another AirPort-equipped iBook,
iMac, PowerBook, or Power Mac G4 from up to 150 feet away.

46 Advanced Hardware Features
  Apple Computer, Inc. February 2001

C H A P T E R 2

System Technologies

The wireless data rate for AirPort is 11 megabits per second for up to 10
simultaneous users per base station. Because it is based on the IEEE 802.11 Direct
Sequence Spread Spectrum (DSSS) worldwide industry standard, AirPort permits
interoperability with other 802.11-based equipment. And because AirPort uses
radio signals, it can communicate through solid objects.

47
  Apple Computer, Inc. February 2001

C H A P T E R 3

3 System Architecture

A key consideration in the design of Mac OS X was the need to integrate a diverse
collection of technologies—some with greatly different histories—and base this
unified set of technologies on an advanced kernel environment. This chapter
explores the general outlines of the architecture that made this possible.

The central characteristic of the Mac OS X architecture is the layering of system
software, with one layer having dependencies on, and interfaces with, the layer
beneath it (see Figure 3-1 (page 49)). Mac OS X has four distinct layers of system
software (in order of dependency):

� Application environments. Encompasses the five application (or execution)
environments: Carbon, Cocoa, Java, Classic, and BSD Commands. For
developers, the first three of these environments are the most significant.
Mac OS X includes development tools and runtimes for these environments.

See “Application Environments” (page 53) for more information.

� Application Services. Incorporates the system services available to all
application environments that have some impact on the graphical user interface.
It includes Quartz, QuickDraw, and OpenGL as well as essential system
managers.

See “The Graphics and Windowing Environment” (page 60) and “Other
Application Services” (page 70) for more information.

� Core Services. Incorporates those system services that have no effect on the
graphical user interface. It includes Core Foundation, Open Transport, and
certain core portions of Carbon.

See “Core Services” (page 72) for more information.

48 A Layered Perspective
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

� Kernel environment. Provides the foundation layer of Mac OS X. Its primary
components are Mach and BSD, but it also includes networking protocol stacks
and services, file systems, and device drivers. The kernel environment offers
facilities for developing device drivers (the I/O Kit) and loadable kernel
extensions, including Network Kernel Extensions (NKEs).

For further information, see the section “A Layered Perspective” (page 48) and
the book Inside Mac OS X: Kernel Environment.

The Core Services and Application Services layers and the Carbon and Cocoa
application environments are packaged in umbrella frameworks (described in the
chapter “Umbrella Frameworks” (page 141)). Many public APIs of the kernel
environment are exported through headers found in /usr/include.

The first part of this chapter, as summarized in the foregoing paragraphs, presents
the architecture of Mac OS X as layers of system software. Following this static
perspective of Mac OS X is a more dynamic view that traces the progress of a user
event through the system. A typical event in Mac OS X originates when the user
manipulates an input device such as a mouse or a keyboard. The device driver
associated with that device, through the I/O Kit, creates a low-level event, puts it in
the window server’s event queue, and notifies the window server. The window
server dispatches the event to the appropriate run-loop port of the target process.
There the event is picked up by the Carbon Event Manager and forwarded to the
event-handling mechanism appropriate to the application environment. Events can
also be asynchronous, such as a network packet containing configuration changes.

A Layered Perspective

A common way to look at complex software is to separate out parts of that software
into “layers.” Visually depicted, one layer sits on top of another, with the most
fundamental layer on the bottom. This kind of diagram suggests the general
interfaces and dependencies between the layers of software. The higher layers of
software, which are the closest to actual application code, depend on the layer
immediately under them, and that intermediate layer depends on an even lower
layer.

Mac OS X is reducible to such a perspective. Figure 3-1 illustrates the general
structure of Mac OS X system software as interdependent layers of libraries,
frameworks, and services.

C H A P T E R 3

System Architecture

A Layered Perspective 49
  Apple Computer, Inc. February 2001

Figure 3-1 Mac OS X as layers of system software

Although this diagram does help clarify the overall architecture, there are dangers
in the necessarily over-simplified view it presents. The Mac OS X services and
subsystems that one application uses—and how it uses them—can be very different
from those used by another application, even one of a similar type. Dependencies
and interfaces at the different levels can vary from program to program depending
on individual requirements and realities.

With that caveat aside, let’s take a guided tour through the layers depicted in this
diagram.

The boxes in the top row of the diagram of Figure 3-1 represent the different
application (or execution) environments of Mac OS X. There are five such
environments. The Classic and the BSD Commands environments are unique in the
way they interact with the underlying layers of the system:

� The Classic “compatibility” environment is where users can run their Mac OS 8
or Mac OS 9 applications. Instead of sitting on top of the Application Services,
the Classic environment in this diagram has lines connecting it to each layer.
These connections indicate that the Classic environment is “hard-wired” into
Mac OS X; it is not an environment that developers can specifically compile code
for on Mac OS X. In other words, there are no public non-Carbon Mac OS 8 or
Mac OS 9 APIs on a Mac OS X system that can be compiled. For further
information on the Classic environment, see “The Classic Environment and
Your Application” (page 235) in the chapter “Installation and Integration”.

BSDCarbon Cocoa Java
(JDK)

BSDClassic

Core Services

Kernel environment

QuickTimeApplication Services

Application
environment

50 A Layered Perspective
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

� The BSD Commands environment provides a shell in which you can execute
BSD programs on the command line. The standard BSD tools, utilities, and
scripts are available for this environment as well as any custom ones you or third
parties create. The diagram shows the BSD Commands environment connected
directly with the kernel-environment layer. Note that you can run programs on
the command line that are built in non-BSD environments, such as programs
based on Cocoa’s Foundation framework.

The kernel environment exports BSD services to the upper layers of the system
through the System library in /usr/lib (the headers are located in /usr/include).
BSD commands are also available to developers; however, BSD commands
might not be included in certain Mac OS X installations. Because the BSD
Commands environment is a special optional environment, it is not described
further in this document.

Carbon, Cocoa, and Java are the three principal application environments for
Mac OS X developers:

� Carbon is an adaptation of the Mac OS 9 APIs and libraries for Mac OS X. It
carries over most of the prior APIs (70 percent of the functions) and includes
some APIs and services specifically developed for Mac OS X. See “Carbon”
(page 53) for a discussion of Carbon.

� Cocoa is a collection of advanced object-oriented APIs for developing
applications written in Java and Objective-C. See “Cocoa” (page 56) for more
information on Cocoa.

� The Java environment is for the development and deployment of 100% Pure Java
and mixed-API Java applications and applets. See “Java” (page 57) for an
overview of this application environment.

Directly supporting the Carbon, Cocoa, and Java environments are the layers of
system software that offer services for all application environments. These layers
are stacked in decreasing widths to suggest that application code can access lower
layers directly—that is, without the mediation of intervening layers. (However, see
the warning about linking outside of umbrella frameworks in “Restrictions on
Subframework Linking” (page 148) in the chapter “Umbrella Frameworks.”)

The first of these layers is the Application Services layer. It contains the graphics
and windowing environment of Mac OS X, principally implemented by Quartz and
QuickDraw. This environment is responsible for screen rendering, printing, event
handling, and low-level window and cursor management. It also holds libraries,

C H A P T E R 3

System Architecture

A Layered Perspective 51
  Apple Computer, Inc. February 2001

frameworks, and background servers useful in the implementation of graphical
user interfaces. See “The Graphics and Windowing Environment” (page 60) and
“Other Application Services” (page 70) for details.

QuickTime is an extension to the operating system that architecturally spans layers
of system software. It is an interactive multimedia environment that has features
and functionality common to both a graphics environment and an application
environment. Figure 3-1 (page 49) presents QuickTime as straddling the line
between Application Services and the application environments. QuickTime
requires a host application environment (or a browser) in which to execute, but the
multimedia components that it offers have unique and sophisticated capabilities
typically found only in application environments.

The Application Services layer sits on top of Core Services. In the Core Services
layer are the common services that are not directly a part of a graphical user
interface. Here you find cross-environment implementations of basic programmatic
abstractions such as strings, run loops, and collections. There are also APIs in Core
Services for managing processes, threads, resources, and virtual memory, and for
interacting with the file system. “Core Services” (page 72) discusses this layer of
system software.

The kernel environment is the lowest stratum of system software, just below the
Core Services layer. The kernel environment provides essential operating-system
functionality to the layers above it, such as

� preemptive multitasking

� advanced virtual memory with memory protection and dynamic memory
allocation

� symmetric multiprocessing

� multi-user access

� file systems based on VFS (Virtual File System)

� device drivers

� networking

� basic threading packages

It is a high-performance and highly modular kernel with support for dynamic
loading of device drivers, networking extensions, and file systems.

The kernel environment consists of five major components:

52 A Layered Perspective
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

� Mach. Provides the fundamental abstractions and implementations of tasks,
threads, ports, virtual addressing, memory management, and intertask
communication. Mach is also the part of the operating system that manages
processor usage, handles scheduling, and enforces memory protection. In
addition it provides timing services, synchronization primitives, and a
messaging-centered infrastructure to the rest of the operating system.

� BSD. A version of 4.4BSD is used, among other things, to support Mach’s
preemptive multitasking, memory protection, dynamic memory allocation, and
symmetric multiprocessing. BSD forms the basis for networking and file
systems in Mac OS X. Some of the other facilities it provides or supports are
process creation and management, signals, system bootstrap and shutdown,
generic I/O operations, basic file operations, and handling of terminals and
other devices. It also implements user and group IDs as well as the related
features of resource limits and access policies for files and other resources. BSD
provides many of the POSIX APIs.

� Device drivers and the I/O Kit. Device drivers in Mac OS X are created with the
I/O Kit, a framework that offers an object-oriented programming model (based
on a restrictive form of C++) to streamline the development of device drivers.
The I/O Kit takes into account underlying operating-system features such as
virtual memory, memory protection, and preemption and thus relieves
device-driver writers from having to worry about them in their code. It is
designed to be modular, reusable, and extensible. The kernel environment
includes a number of ready-made device drivers (see the chapter “System
Technologies” (page 21)).

� Networking. The kernel environment implements numerous native networking
protocols and facilities, which are described in “Networking and the Internet”
(page 41) in the chapter “System Technologies.” Some of the networking
facilities and protocol stacks of Mac OS X are implemented as Network Kernel
Extensions (NKEs). They can extend the networking infrastructure of the kernel
dynamically—that is, without recompiling and relinking the kernel.

� File systems. The kernel environment supports many different file systems and
volume formats, including Mac OS Extended (HFS+), Mac OS Standard (HFS),
UFS, NFS, and ISO 9660 for CD-ROMs. Mac OS Extended is the default file
system, and Mac OS X typically boots and “roots” from it (that is, the kernel uses
the file system on an HFS+ volume as the one to mount first). By using the
Virtual File System (VFS) infrastructure, developers can write kernel extensions
that add support for other file systems and extend file system functionality—
adding file-level compression, for instance. VFS is a set of standard internal

C H A P T E R 3

System Architecture

Application Environments 53
  Apple Computer, Inc. February 2001

file-system interfaces and utilities for building such extensions. For summaries
of the supported formats, see “File Systems” (page 33) in the chapter “System
Technologies.”

As described in “Darwin and Open Source Development” (page 35) in the chapter
“System Technologies,” the kernel environment is a subset of Darwin, Apple’s
Open Source technology. Darwin combines the Mac OS X kernel environment and
the BSD commands and libraries essential to the BSD Commands environment. For
more on the Mac OS X kernel environment and its relation to the Darwin, see the
document Inside Mac OS X: Kernel Environment.

The kernel environment, Core Services, and Application Services layers of
Mac OS X are packaged as umbrella frameworks. Two of the primary Mac OS X
application environments, Carbon and Cocoa, are also packaged as umbrella
frameworks. See the chapter “Umbrella Frameworks” (page 141) for more about
this subject.

Application Environments

An application environment consists of the frameworks, libraries, and services
(along with associated APIs) necessary for the runtime execution of programs
developed with those APIs. The application environments have dependencies on all
underlying layers of system software.

Mac OS X currently has five application environments: Classic, BSD Commands,
Carbon, Cocoa, and Java. This section provides overviews of Carbon, Cocoa, and
Java.

Carbon
Carbon is a set of programming interfaces derived from earlier Mac OS APIs that
have been modified to work with Mac OS X, especially its kernel environment.
Carbon carries forward most of the existing Mac OS managers and APIs;
specifically, this entails about 70 percent of the total functions and 95 percent of
functions used by typical applications.

54 Application Environments
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

The Carbon APIs are too large and complex to summarize adequately here.
However, some of the major differences between Carbon and its Mac OS
predecessors are worth noting.

Memory. In adaptation to the kernel environment’s features of advanced virtual
memory and memory protection, many APIs—particularly the Memory Manager—
have undergone changes that restrict or eliminate the use of zones, system memory,
or temporary memory. For example, temporary memory allocations in Mac OS X
are allocated in the application’s address space. Although there are no longer
functions for accessing the system heap, new routines are provided for the
allocation of shared and persistent memory. In addition, the virtual memory system
in Mac OS X introduces a number of changes in the addressing model. (See Inside
Mac OS X: Kernel Environment for information on this subject.)

Hardware Interfaces. The Mac OS 9 managers used for low-level access to
hardware—for example, the ADB Manager, the Device Manager, and the Ethernet
Driver—are not implemented in Mac OS X. The different device-driver architecture
provided by the I/O Kit mediates all low-level access to hardware devices.

Resources. Because there is no ROM in Mac OS X, functions related to accessing
resources in ROM are unsupported in Carbon. Also the Resource Manager places
greater restrictions on accessing the resource map.

New Managers. Apple has developed new Carbon versions of the Printing
Manager and the Event Manager for Mac OS X. The old Printing Manager is not
supported and developers must use the Carbon Printing Manager. The old Event
Manager is still supported; however, developers are strongly encouraged to adopt
the Carbon event model. This event model provides better multitasking and
improves response time by eliminating the time spent in idle events.

C H A P T E R 3

System Architecture

Application Environments 55
  Apple Computer, Inc. February 2001

Replacement Managers. New Carbon technologies now take the place of earlier
libraries, as listed in Table 3-1.

Developers must use these replacements.

General Changes. Many functions in the various managers have been changed or
removed throughout Carbon. (See the Carbon Specification for complete details.)

� Data structures. To ensure the integrity of system data and to support access to
all system services through preemptive threads, Carbon restricts direct access to
data structures. Instead of functions that return pointers or handles to structures
that can be dereferenced, Carbon now supplies accessor functions for getting
and setting field data. In addition, it includes functions for creating and
disposing of data structures.

� Definition procedures. The Window Manager, Menu Manager, Control
Manager, and List Manager in Carbon still permit you to create and use
standard and custom definition procedures (WDEFs, MDEFs, CDEFs, and
LDEFs), but you must be sure to compile them as PowerPC code. Additionally,
these managers provide new routines for creating and packaging them.

� 68K code. Mac OS X does not support 68K code (except in the Classic
environment). For this reason the Trap Manager (and the trap table), the Mixed
Mode Manager, and the Patch Manager are unavailable or greatly reduced in
scope in Carbon. For the same reason, many other functions have been dropped
from Carbon.

Table 3-1 Replacement Carbon Managers

Instead of Now use

AppleTalk Manager Open Transport

PPC Toolbox Apple events

Standard File Package Navigation Services

QuickDraw 3D OpenGL

Help Manager Help Viewer

56 Application Environments
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

Many of the commonly used parts of Mac OS X are Carbon managers or are
daemons, applications, or frameworks created with Carbon APIs. For example, the
system processes that handle events and manage application processes in Mac OS
X are Carbon managers, many of the managers in the Core Services layer are
Carbon-based (see “Core Services” (page 72)), and the Finder is a Carbon
application.

For more information on Carbon, consult the Carbon documentation website at
http://developer.apple.com/techpubs/carbon/carbon.html. In particular, see the
documents Carbon Porting Guide, which contains specific information about
converting code to the Mac OS X application model, and the Carbon Specification,
which gives details on which managers and functions are supported in Carbon.

Cocoa
The Cocoa application environment is based on two object-oriented frameworks:
Foundation (Foundation.framework) and the Application Kit (AppKit.framework).
These frameworks offer both Java and Objective-C APIs (with most Java classes
simply “bridging” to their Objective-C implementation).

Foundation and the Application Kit are similar in some respects to the Core Services
and Application Services layers, respectively. The classes in the Foundation
framework provide objects and functionality that have no impact on the user
interface; Foundation is directly based on Core Foundation. The classes of the
Application Kit furnish all the objects and behavior that affect what users see in the
user interface, such as windows and buttons, and responsiveness to their mouse
clicks and key presses. The Application Kit directly depends on Foundation.

The Foundation framework’s classes fall into several categories:

� object wrappers (or “helpers”) for basic programmatic types and operations,
including strings, arrays, dictionaries, numbers, byte swapping, parsing, and
exception handling

� object wrappers for kernel-environment entities and services, such as tasks,
ports, run loops, timers, threads, and locks

� object-related functionality, particularly memory management (autorelease
pools), remote invocations, archiving, and serialization

� file-system and I/O functionality including URL handling, file seeking, and
dynamic loading of code and localized resources

C H A P T E R 3

System Architecture

Application Environments 57
  Apple Computer, Inc. February 2001

� other services, such as distributed notifications, undo (and redo), data
formatting, and dates and times

Many of the Application Kit’s classes, as might be expected, are designed for the
creation and management of objects that appear in a graphical user interface.
Among these are classes for windows, dialogs, buttons, tables, text fields, sliders,
pop-up menus, scroll views, application (pull-down) menus, and even a movie
view for QuickTime streaming.

However, the Application Kit has features and functionality that make it far more
useful than just a collection of classes for user-interface objects.

� It has sophisticated mechanisms for event handling and application and
document management.

� It gives applications ways to integrate and manage colors, fonts, and printing
(even providing the dialogs for these features).

� It allows you to composite images in many different graphical formats and it
offers a framework for drawing, including the application of vector
transformations.

� It includes facilities for spell checking, dragging, and copy-and-paste
operations.

Other Cocoa frameworks are also available for scripting, network management, and
other purposes.

The Cocoa umbrella framework (Cocoa.framework) imports both Foundation and
the Application Kit. If you are writing an application, link with the Cocoa
framework. If you are writing any Cocoa program that does not have a graphical
user interface (a background server, for example), you should link at least with the
Foundation framework.

Java
The Java application environment allows you to develop and execute Java
programs on Mac OS X, including 100% Pure Java applications and applets. This
environment is implemented in conformance with an industry standard—that is, a
recent version of the Java Development Kit (JDK) including the Java virtual
machine (VM). Because of this, a Java application created with this environment is
very portable. You can copy it to a computer that has entirely different hardware

58 Application Environments
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

and a different operating system and, as long as that system includes a compatible
version of the Java VM, your application should run on it. A Java applet should run
in any Internet browser with the proper capabilities.

The Java application environment on Mac OS X has three major components:

� A development environment, including the Java compiler (javac) and debugger
(jdb) as well as other tools, including javap, javadoc, and appletviewer.

This “command-line” environment requires a BSD shell, such as that provided
by Apple’s Terminal application. Apple supplies the Project Builder application
as a front-end to this environment and third parties may supply their own
front-ends. The command-line tools are located in the JavaVM.framework/
Commands subdirectory, with symbolic links supplied to this directory in
/usr/bin.

� A runtime environment consisting of Sun’s high-performance Hotspot Java
virtual machine, the “just-in-time” (JIT) bytecode compiler, and the basic Java
packages.

The Java virtual machine is located at /System/Library/Frameworks/
JavaVM.framework/Libraries. The basic packages include java.lang, java.util,
java.io, and java.net; they are in the classes.jar archive in the Classes
directory of the same framework.

� An application framework containing the classes necessary for building a Java
application.

The more significant of these packages are java.awt and javax.swing, commonly
known as AWT (Abstract Windowing Toolkit) and Swing. The AWT package
implements standard user-interface components (such as buttons and text
fields), basic drawing capabilities, a layout manager, and the event-handling
mechanism. The Swing package provides a greatly extended set of user interface

Note: The Cocoa application environment includes Java packages corresponding
to the Application Kit and Foundation frameworks. These packages allow you to
develop a Cocoa application using Java as the development language. You can
mix (within reason) the APIs from these packages and native Java APIs
(excluding AWT or Swing APIs). For more on the Cocoa application environment,
see “Cocoa” (page 56). In addition, Apple’s JDirect and Sun’s JNI (Java Native
Interface) programming interfaces allow your Java programs to call other
frameworks, including Carbon. And you can write multimedia Java applications
for the Mac OS and Windows platforms using QuickTime for Java.

C H A P T E R 3

System Architecture

Application Environments 59
  Apple Computer, Inc. February 2001

components. These components automatically take on the look and feel of the
host platform. Swing includes versions of the existing AWT component set plus
a rich set of higher-level components, such as tree view, list box, and tabbed
panes.The AWT and Swing package are in a jar archive located at
JavaVM.framework/Classes/classes.jar.

The architecture of the Java application environment is much different, and more
complex, than the simplified picture in Figure 3-1 (page 49) indicates. Figure 3-2
presents a more realistic view of the Java environment.

Figure 3-2 Architecture of the Java environment

The Java virtual machine along with the basic Java packages—java.lang, java.util,
and java.io—are equivalent to the Core Services layer of system software for the
Carbon and Cocoa environments. They draw on the resources of the kernel
environment to implement low-level services such as process management,
threading, and input/output. They do not need to access anything in the Core
Services layer of system software (Open Transport, Core Foundation, and so on).

All other parts of Java on Mac OS X are layered on top of the VM and the basic
packages. If a Java program does not have a user interface (say, a tool or an
application server), all it needs is this foundation to execute. But a 100% Pure Java

Java
command

environment

Swing

AWT

Carbon

Application Services

Basic JDK packages
(java.lang, java.util, java.io, java.net)

Java virtual machine (VM)

Kernel environment

60 The Graphics and Windowing Environment
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

application or applet (which, by definition, has a graphical user interface) must use
AWT or Swing, both of which bind with many of the frameworks and libraries in
the Application Services layer of system software. Swing itself is layered on a
primitive part of the AWT package. AWT and Swing together are architecturally
equivalent to a GUI-oriented toolbox or framework such as Carbon’s Human
Interface Toolbox or Cocoa’s Application Kit.

Java applications can be double-clickable bundles just as any Carbon or Cocoa
application is. (You use the MRJAppBuilder utility to bundle Java applications.)
They can also be executables that users must run from the command line or that are
executed through the system exec call or the Java Runtime.exec method. In the latter
case, the Java tool used to launch the executable (java or, for applets, appletviewer)
is displayed as the process name (for example, in the Process Viewer).

The Graphics and Windowing Environment

The preeminent application services of Mac OS X are those that make up the
graphics and windowing environment. An application, by its very nature, must
display its windows in a graphical user interface and allow users to manipulate its
controls. A graphics and windowing environment confers these basic capabilities
on applications “for free,” relieving them of the burden of implementing them on
their own. In addition to rendering text and images in windows on a screen (as well
as printing them), this environment also provides essential low-level facilities such
as initial event routing and cursor management.

The core portion of the Mac OS X graphics and windowing environment is called
Quartz. As depicted in Figure 3-3, Quartz has two parts, Core Graphics Services and
Core Graphics Rendering.

C H A P T E R 3

System Architecture

The Graphics and Windowing Environment 61
  Apple Computer, Inc. February 2001

Figure 3-3 Quartz and the graphics and windowing environment

The Core Graphics Rendering part of Quartz is one of several graphics libraries that
provide graphics-rendering services. It is designed for the display of
two-dimensional text and graphics. Peer graphics and multimedia libraries include

� QuickDraw for rendering two-dimensional images

� OpenGL for rendering both two- and three-dimensional images

� QuickTime for rendering streaming digital video and other multimedia

QuickTime is an interactive multimedia environment that includes capabilities
and features found in both a graphics environment and an application
environment. Despite its hybrid status in the Mac OS X architecture, this section,
as a simplification, treats it as a peer graphics library to Core Graphics
Rendering, QuickDraw, and OpenGL.

All of the rendering libraries have direct dependencies on the other part of Quartz,
the Core Graphics Services layer. However, QuickTime and OpenGL have fewer
dependencies because they implement their own versions of certain windowing
capabilities.

Core Graphics Services consists of the Mac OS X window server and the (currently
private) system programming interfaces (SPIs) it implements. The window server
has overall responsibility for displays and windows, including their composition,
positioning, and basic management. It also performs low-level cursor management
and event routing.

Quartz is largely implemented in the Core Graphics framework
(CoreGraphics.framework). The dynamic shared library of this framework, as
illustrated by Figure 3-4, includes the client APIs; the server SPIs are implemented
by the window server itself. Applications or application environments link with the

Core Graphics Services
(window server)

Core Graphics
Rendering

(2D)

QuickDraw
(2D)

OpenGL
(3D)

QuickTime
(streaming,
 multimedia)

Graphics rendering libraries

62 The Graphics and Windowing Environment
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

client side of the library—Core Graphics Rendering—for screen rendering, PDF
generation, and other services. All access to the server SPIs is mediated through the
client APIs.

The Cocoa and Java environments provide their own programming interfaces to
Core Graphics Rendering and, to some extent, the other rendering libraries. You
may use either the Cocoa and Java interfaces, or you may use the programming
interfaces in the Application Services layer.

The remainder of this section discusses the role of Quartz in the graphics and
windowing environment. For conceptual information on QuickDraw, QuickTime,
and OpenGL, consult the relevant Apple developer documentation
(developer.apple.com).

Figure 3-4 The Core Graphics framework

Core Graphics Services
The Core Graphics Services layer of Mac OS X comprises the window server and the
(private) system programming interfaces (SPI) implemented by the window server.
In this layer are the facilities responsible for rudimentary screen displays, window
compositing and management, event routing, and cursor management.

The window server is a single system-wide process that coordinates low-level
windowing behavior and enforces a fundamental uniformity in what appears on
the screen. It is a lightweight server in that it does not do any rendering itself, but
instead communicates with the client graphics libraries layered on top of it. It is
“agnostic” in terms of a drawing model.

Core Graphics
framework

Client API
(rendering)

Applications and
application environments

Window server
(Server SPI)

C H A P T E R 3

System Architecture

The Graphics and Windowing Environment 63
  Apple Computer, Inc. February 2001

The window server has few dependencies on other system services and libraries. It
relies on the kernel environment’s I/O Kit (specifically, device drivers built with the
I/O Kit) in order to communicate with the frame buffer, the input infrastructure,
and input and output devices. It also links with certain frameworks in Core Services
to acquire process-management services such as basic process activation.

One of the primary duties of the window server is window compositing. It
composites and recomposites each pixel of an application’s window as the window
is drawn, redrawn, covered, and uncovered. Each window is represented as a
bitmap that includes both translucency (alpha channel) and anti-aliasing
information. The bitmap is buffered, allowing the window server to “remember” an
application’s window contents and to recomposite it without the application’s
involvement. However, Quartz does not retain vector information that a graphics
library (such as its own Core Graphics Rendering) might have used to create a
window or any other image.

In its Core Graphics Services component, Quartz models the windowing system as
a layered compositing engine. Traditional windowing systems use a “switch” model
in which every pixel on a screen belongs entirely to one window (or the desktop).
Because of this model, transitions are necessarily abrupt; when you close a window,
for example, it disappears immediately. A layered compositing window system, on
the other hand, is based on a “video mixer” model in which every pixel on the
screen—particularly in the attributes of translucency and anti-aliasing—can be
shared among windows in real time. This model allows for smooth transitions
between the states of a graphical user interface, one of the distinctive characteristics
of the Aqua experience.

For the role of the window server in event handling, see “Tracking a User Event”
(page 77).

Core Graphics Rendering
The Core Graphics Rendering part of Quartz is a graphics library with a vector
flavor. Its APIs allow you to create text and images by specifying a sequence of
commands and mathematical statements that place lines, shapes, color, shading,
translucency, and other graphical attributes in two-dimensional space. You do not
need to specify the attributes of individual pixels. As a result, a shape can be
efficiently defined as a series of paths and attributes rather than as a bitmap.

64 The Graphics and Windowing Environment
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

By using vectors, Core Graphics Rendering can also use a coordinate system for
drawing based on, say, inches or centimeters rather than a pixel grid. The
coordinate system is flexible, permitting various measurement standards, and it
enables some degree of display independence since it is not bound to any screen
resolution. It also uses floating-point coordinates. Prior to compositing by Core
Graphics Services, Core Graphics Rendering translates the vector information of an
image, which is described in terms of the coordinate system, to pixel values.

The internal model that Core Graphics Rendering uses for vector graphics
representation is Portable Document Format (PDF). As a superset of Adobe
PostScript, PDF brings several improvements, including better color management,
internal compression, font independence, and interactivity. However, PDF is not a
full-fledged language as is PostScript; it is declaratively, not programmatically,
specified. Consequently a sophisticated and expensive language runtime is not
necessary, as it is for PostScript.

You can think of Core Graphics Rendering as a “black box” that converts input to
PDF and then converts the PDF to various output formats. Figure 3-5 illustrates this.

Figure 3-5 Core Graphics Rendering inputs and outputs

The primary inputs for Core Graphics Rendering are the drawing commands and
statements made with QuickDraw and the native C APIs. (Future APIs in the
front-end may be supported.) Applications using QuickDraw can call into Core
Graphics Rendering through a CGContextRef interface and thereby get its
capabilities. QuickDraw enables them to obtain the CGContextRef from a GrafPort
interface.

C API (native) QuickDraw

PostScriptPDF

Core Graphics Rendering

PDF

Screen
rendering

Raster data

Input

C H A P T E R 3

System Architecture

The Printing System 65
  Apple Computer, Inc. February 2001

The commands and statements from QuickDraw or the native APIs are
immediately converted to the required output format, whether that be bitmap data
for screen rendering, PostScript (for PostScript printers), or raster data for other
types of printers. The PDF can also be published “as is”; this happens automatically
for print preview. Future back-end converters, such as for plotters, may be
supported.

Core Graphics Rendering, as the foregoing paragraph suggests, is the underlying
engine for the Mac OS X printing system. Printing is often a two-pass affair. Core
Graphics Rendering interprets the text and images constructed with the native C or
QuickDraw APIs and stores them in PDF form (the primary spooling format). Then
this PDF is fed through Core Graphics Rendering again to convert it to the
appropriate output format.

The Printing System

The Mac OS X printing system provides a flexible and powerful new printing
environment for Macintosh users. The new printing system presents a refined user
interface that makes setting up a printer easy and intuitive for the average user, yet
it also has the necessary features to support the requirements of advanced users and
administrators. The printing system’s modular architecture

� makes it much easier for printer vendors to write Macintosh drivers and extend
printing dialogs

� uses PDF-based rendering, providing PDF capability for all printers, including
inexpensive raster printers

� allows applications to draw in “virtual pages” and map those pages to “physical
pages” at print time, breaking the connection between the drawing page and the
printing page

� supports asynchronous printing for faster job completion

� provides applications and printer drivers control over individual user interface
elements in the system’s printing dialogs, obviating the need to completely
replace the standard Print or Page Setup dialogs with custom versions

66 The Printing System
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

A key aspect of the new printing system’s design is its robust support for Carbon
applications. Because the Carbon Printing Manager is supported on Mac OS 8 and
9 as well as Mac OS X, a Carbon application is able to print as expected in both
environments. For example, when running on Mac OS 8 and 9, the application
utilizes the traditional user interface and drivers. On Mac OS X, the application
automatically takes advantage of the new printing system’s more consistent set of
printing dialogs and flexible printing architecture.

The User Interface of the Printing System
The Mac OS X printing system’s user interface provides a consistent, easy-to-use
environment for performing printing-related tasks such as locating local and
networked printers, configuring new printers, choosing printers, and managing
print jobs. The new printing system’s human interface allows users to handle
simple, everyday printing tasks and complex, multidocument, multiprinter print
jobs.

The printing system’s user interface consists of the following components:

� Print Center. Allows the user to locate, select, and configure available printers,
and to determine the status of print jobs associated with each.

� Page Setup dialog. Allows the user to specify the format of the document to be
printed.

� Print dialog. Allows the user to specify the parameters of a print job, and to print
a document on a specified printer.

The new printing system’s interface includes a number of important improvements
in both ease-of-use and stability relative to the Mac OS 8 and 9 printing model. The
Chooser—the most common source of user confusion when dealing with printers—
is replaced by Print Center, which combines many of the features of the Chooser
and desktop printing into a single, integrated interface. Unlike the Chooser, Print
Center is a separate application from the Finder, which eliminates the need for the
Finder to support the printing interface, simplifying code and improving system
stability. The Page Setup and Print dialogs are standardized for all printers and are
easily extensible to allow for third-party customization.

C H A P T E R 3

System Architecture

The Printing System 67
  Apple Computer, Inc. February 2001

Summary of Printing Architecture
The Mac OS X printing architecture consists of a set of nine modules. Conceptually,
these modules can be divided into client and server groupings. Four of the
modules—Print Center (with optional printer browser modules) and the Print Job
Creator (with optional printing dialog extensions)—make up the client side. These
modules are responsible for presenting all user interface elements, accepting the
raw drawing commands from applications and passing the data to be printed on to
the print server. The remaining five modules—Queue Manager, Job Manager (with
optional converters), printer modules, and I/O modules—constitute the printing
system’s server back end, which accepts print jobs from local clients and renders
them to the destination printer. These modules and their relationships are depicted
in Figure 3-6.

Figure 3-6 Mac OS X printing system

User

ApplicationPrinter
browser
module

Print
Center

Print
Job

Creator

Printer
dialog

extension

Queue
Manager

Job
Manager

Converter

Printer
module

IO
module

Printer

Raster/
PostScript

PDF

 Job ticket
 Query and status
 Asynchronous status

68 The Printing System
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

Here’s a brief description of the modules shown in Figure 3-6.

� Print Job Creator (PJC) Implements the Carbon Printing Manager API used by
applications. Displays the Print and Page Setup dialogs, captures drawing
information from applications, and passes the data to the Queue Manager for
printing.

� Printing dialog extensions (PDEs). Extends a Print or Page Setup dialog,
allowing third parties to add user interface elements in support of specific
printers. A PDE is paired with a printer module or application, which interprets
and applies the custom settings offered by the PDE.

� Print Center. Allows the user to locate and select printers, as well as control and
obtain status for print jobs.

� Printer browser module (PBM). Extends Print Center by adding UI support for
additional printer connection methods such as SCSI and FireWire. A PBM is
paired with an I/O module, which implements support for the transport type.

� Queue Manager. Handles the queuing of print jobs after they leave the Print Job
Creator. Responds to requests from Print Center to manipulate or return status
information about print jobs in the queue. Reports errors back to Print Center.

� Job Manager. Manages the various processes necessary to convert a single print
job into final printed output. Hosts printer modules and I/O modules.

� Converter. Assists the Job Manager by transforming a print job’s data format. A
converter might transform PDF to raster, for example.

� Printer module. Formats data for the printer (PostScript or PCL, for example)
and handles printer status and error conditions. Printer modules are typically
created by printer vendors to support a particular printer or printer family.

� I/O module. Implements a standard interface for a transport type. Apple
supplies modules for NetInfo, USB, TCP/IP, and AppleTalk. Third parties can
also create modules to support additional transport types.

� Job ticket. Contains all the necessary user choices to control the printing of the
job. Job tickets are created by the Print Job Creator and are updated by each
component at every step in the printing process.

C H A P T E R 3

System Architecture

The Printing System 69
  Apple Computer, Inc. February 2001

Printer Discovery
Before a user can choose a printer, Print Center must first compile a list of available
printers. The process by which Print Center locates available printers is called
“printer discovery.”

During printer discovery, Print Center enumerates all of the I/O and printer
browser modules installed in /System/Library/Printers and /Library/Printers.
The Queue Manager retrieves string representations of the various connection types
from the printer browser modules and passes them to Print Center. Print Center
populates the connection pop-up menu with these strings.

When the user selects a connection type, Print Center enumerates all the printer
modules installed in /System/Library/Printers and /Library/Printers and asks
each printer module if it supports the chosen connection type. If so, Print Center
retrieves icon and lookup information from it. The printer browser modules use this
information as search criteria when searching for printers that support a connection
type and as user interface elements in their display.

When the user clicks a printer to add it to the list of printers, Print Center gets the
selected printer address, icon, and printer model information from the printer
browser module. Print Center then uses this information to create a new print queue
and add the printer to the list.

The Printing Process
Before a document is printed, the user brings up the Page Setup dialog so she can
define the document’s format. The application accomplishes this by calling into the
Print Job Creator (PJC). An optional printing dialog extension (PDE) hosted by the
PJC may extend the Page Setup dialog to include options specific to the
application’s drawing environment—custom page layouts, for example. After page
setup is complete, the user requests that the application display (again using the
PJC) the Print dialog, with which they define the parameters of the print job. As
with the Page Setup dialog, the Print dialog may include application-specific or
printer-specific options added by a PDE.

When the user dismisses the Print dialog, the Print Job Creator accepts drawing
commands from the application (QuickDraw, Core Graphics, or a PDF file) and
passes the data to the Queue Manager along with a job ticket describing the printing
parameters. The Queue Manager then passes the data and job ticket to the Job

70 Other Application Services
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

Manager, which is responsible for managing the rest of the printing process. Once
the job is sent to the Queue Manager, all errors associated with the job are reported
asynchronously back to Print Center.

The Job Manager first consults the job ticket to determine the destination printer
and queries the destination printer’s associated printer module to find out what
data format it requires. If necessary, the Job Manager uses a converter to transform
the incoming data into a format that the destination printer module can accept.
Next, the Job Manager passes the data to the printer module, which is responsible
for converting the incoming data into the raw commands the printer will use to
render the data. Finally the Job Manager receives the printer-specific data from the
printer module and uses the I/O module appropriate to the printer’s connection
type to send the data to the printer.

Other Application Services

The other system services in the Application Services layer support all application
environments by supplying objects and behavior that affect the graphical user
interface. This section discusses some of the more prominent of these services.
Because of the evolving nature of Mac OS X, the composition of the Application
Services layer will change over time. Check the subframeworks of the Application
Services umbrella framework (ApplicationServices.framework) to learn what is
currently included.

Process Manager
The Process Manager manages all processes in Mac OS X. It controls access to
shared resources and manages the scheduling and execution of applications,
allowing multiple applications to share CPU time and other resources. The Finder
uses the Process Manager to launch applications when the user double-clicks an
application or a document icon. The Process Manager also provides a number of
routines that allow you to control the execution of processes, to launch processes,
and to get information about processes.

For related information on the Process Manager, see “Tasks and Processes”
(page 251) in the chapter “Issues and Options With Multiple Environments.”

C H A P T E R 3

System Architecture

Other Application Services 71
  Apple Computer, Inc. February 2001

Carbon Event Manager
The Carbon Event Manager dispatches events to the appropriate event-handler for
that event, based on the type of event and the destination application environment.
The window server puts an event it receives on the run-loop port of the target
application process. The Carbon Event Manager gets the event from the port,
packages it in an appropriate form, and gives it to the deepest “container” possible
within the event-handling structure specific to the application (that is, Carbon,
Cocoa, or Java). To do this, the Carbon Event Manager must often determine which
window is currently the active one, whether there is keyboard focus in the window,
and so on.

For more on event handling in Mac OS X, see “Tracking a User Event” (page 77).

Apple Events
An Apple event is a high-level event that applications can send to other applications
on the same computer, on a remote computer, or even to themselves. Apple events
are the primary mechanism for interapplication communication on Mac OS X.
Applications typically use them to request services and information from other
applications, or to provide services and information in response to such requests.

A related technology, the system-level scripting language AppleScript, is also part
of Mac OS X. Users can use AppleScript to send Apple events to applications.

See “Interprocess Communication” (page 255) in the chapter “Issues and Options
With Multiple Environments” for further discussion of Apple events.

The Clipboard
The Mac OS X Clipboard (also known as the “pasteboard”) is a background server
that allows you to transfer data between applications. It is similar in some respects
to the Mac OS 9 Clipboard, but different in others. The Mac OS X Clipboard can hold
multiple representations of the same data. It is shared by all executing applications
and contains data that the user has cut or copied, as well as other data that one
application wants to transfer to another. It is used in copy-cut-paste operations and
as the data-transfer mechanism in drag-and-drop operations.

72 Core Services
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

Core Services

The Core Services layer contains the system services that do not have any effect on
application’s graphical user interfaces. This level includes Carbon managers that
offer low-level services as well as Core Foundation, and Open Transport. Core
Services is associated with the Core Services umbrella framework
(CoreServices.framework). The remainder of this section talks about the more
prominent technologies in this framework; others (for example, core security
services) are not discussed.

Carbon Managers
The Core Services layer includes a number of Carbon managers that offer low-level
services to all application environments. These services include cooperative and
preemptive threading, resource management, memory management, and
file-system operations. Table 3-2 summarizes these managers.

Table 3-2 Carbon managers in the Core Services layer

Manager Description

Alias Manager Helps locate specified files, directories, or volumes using
aliases. It provides routines for creating and resolving
file-system alias records.

Collection
Manager

Provides an abstract data type for storing collections of
information.

Component
Manager

Enables your application to find and use various software
objects (components) at runtime. Also allows your application
to create and manage components.

Date, Time, and
Measurement
Utilities

Allows applications to obtain and manipulate information on
dates, times, geographic location, time zone, and units of
measurement.

C H A P T E R 3

System Architecture

Core Services 73
  Apple Computer, Inc. February 2001

File Manager Gives programs the ability to access files stored on physical
volumes, including hard disks, CDs, and Zip disks. It handles
Mac OS Extended (HFS+), Mac OS Standard (HFS), UFS, NFS,
and other supported file formats. The File Manager routines
create, open, update, save, and close files; search for specific
files or directories; obtain information about files or
directories; and perform other advanced file-related
operations. The File Manager supports Unicode and its APIs
are thread-safe.

Folder Manager Allows programs to find and search folders, create new ones,
and control how files are routed between folders. It includes
new support for domains.

Memory
Management
Utilities

Provides specialized routines useful for examining or
controlling certain aspects of the memory environment.

Memory
Manager

Controls the dynamic allocation of memory within an
application’s protected address space. It includes new
routines for allocating shared and persistent memory as
well as functions related to the virtual memory system in
Mac OS X.

Multiprocessing
Services

Enables programs to create and manage separate
preemptively scheduled threads. It also includes
synchronization services and atomic instructions.

Resource
Manager

Provides routines for creating, deleting, opening, reading,
modifying, writing, and getting information about resource
files. It includes support for data-fork based resources.

Text Encoding
Conversion
Manager

Provides two facilities—the Text Encoding Converter and the
Unicode Converter—that applications can use to perform text
conversions.

Text Utilities Offers an integrated set of routines for performing a variety of
operations on text, ranging from sorting strings to finding
word boundaries.

Table 3-2 Carbon managers in the Core Services layer (continued)

Manager Description

74 Core Services
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

Core Foundation
Core Foundation is a framework (CoreFoundation.framework) that provides
fundamental software services useful to application services, the application
environments, and to applications themselves. Among the benefits of using
Core Foundation is the increased capability for sharing code and data among
frameworks, libraries, and applications in different environments and layers. Core
Foundation also enables easy internationalization through Unicode strings and
provides abstractions that contribute to operating-system independence.

Core Foundation uses the paradigm of opaque types; using these types, you can
create “objects,” each with its own individual identity and value (or set of values).
It offers special facilities for allocating memory when these objects are created, and
it has generic base types and polymorphic functions to facilitate intertype
operations.

Core Foundation includes opaque types corresponding to such programmatic
entities as strings, arrays, dictionaries, dates, numbers, and trees. It also features
an architecture (and corresponding APIs) for plug-ins as well as a mechanism
(with corresponding APIs) for dynamically finding and loading code and
locale-dependent resources. Additionally, it has services for accessing local and
remote resources via URLs, for setting up distributed notification centers, for
reading and writing XML property lists, for parsing XML, and for writing and
retrieving per-user and per-machine preferences.

Thread Manager Enables programs to create and manage cooperatively
scheduled threads.

Time Manager Gives programs a way to schedule the execution of routines at
a specified time, either once or repetitively. This mechanism
for performing time-related tasks is hardware-independent.

Unicode Utilities Performs various operations on Unicode text, including
Unicode key translation.

Table 3-2 Carbon managers in the Core Services layer (continued)

Manager Description

C H A P T E R 3

System Architecture

Core Services 75
  Apple Computer, Inc. February 2001

Table 3-3 lists the Core Foundation services and their associated opaque types.

Table 3-3 Core Foundation services

Services Types Description

Base
Services

CFAllocator,
base types

Defines the base types and polymorphic
functions that are used throughout the Core
Foundation API.

String
Services

CFString,
CFCharacter-
Set

Provides a full suite of fast and efficient
string manipulation and conversion
functionality. String Services offers seamless
Unicode support and thus greatly simplifies
internationalization. String Services also
facilitates the sharing of string data between
Carbon and Cocoa applications.

Bundle
Services

CFBundle Offers an elegant means of organizing and
locating many types of program resources
including images, sounds, localized strings,
and executable code.

Plug-in
Services

CFPlugIn Provides a standard plug-in architecture for
Mac OS X applications (as well as Mac OS 9
applications).

Collection
Services

CFArray,
CFDictionary,
CFTree, CFSet, CFBag

Provides high-level abstractions of common
data structures—including arrays,
dictionaries (associative arrays or vectors),
and trees—along with associated
functionality.

URL
Services

CFURL
CFURLAccess

Gives programs a way to access, via URLs,
resources stored locally or remotely.

Property
List
Services

Offers a way to organize data into a form
that is meaningfully structured,
transportable, storable, and accessible, but
still as efficient as possible. The property list
API allows you to convert hierarchically
structured combinations of basic data types
to and from standard XML.

76 Core Services
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

Open Transport
Open Transport is the primary user-level networking and communications
software for Mac OS X. It enables applications to use more than one networking
system at once (for example, AppleTalk to communicate with network printers and
TCP/IP to connect to the Internet). With Open Transport, users can save and
modify different networking configurations and switch easily among them.

The version of Open Transport on Mac OS X supports the most commonly used
interfaces in Mac OS 8 and Mac OS 9. For example, it supports the Open Transport
endpoint routines for IP protocols. However, it does not include the
connection-oriented transaction-based endpoint feature (which should affect only
users of AppleTalk protocols such as ASP). Neither does it support the native XTI
(X/Open Transport Interface) interfaces or BSD stream interfaces.

Preferences
Services

CFPreference Enables programs to store and retrieve user
preferences. See “The Preferences System”
(page 197) in the chapter “Software
Configuration” for background information.

XML Parser CFXMLParser Provides a nonvalidating XML parser for
reading and extracting data from XML
documents.

Notification
Services

CFNotificationCenter Implements distributed notifications, a
mechanism that allows a process to send
messages (notifications) to other processes
on the same machine.

Run Loop
Services

CFSocket,
CFRunLoop (and
related)

Provides low-level event-handling and
dispatch services.

Utility
Services

CFDate,
CFTimeZone,
CFNumber,
CFUUID,
CFByteOrder

Provides miscellaneous services such as date
and time computation and representation,
“object” wrapping of numbers, byte
swapping, and UUID generation.

Table 3-3 Core Foundation services (continued)

Services Types Description

C H A P T E R 3

System Architecture

Tracking a User Event 77
  Apple Computer, Inc. February 2001

An important change from prior versions of Open Transport is the addition of client
context parameters to a number of functions. Each client of Open Transport now has
its own context so that Open Transport can track resources it allocates on behalf of
the client. A client in this case is an application or a shared library, and resources are
objects like endpoints, timer tasks, and blocks of memory.

Tracking a User Event

The perspective that Figure 3-1 (page 49) gives of Mac OS X as layers of system
software suffices to illustrate the general interfaces and dependencies among parts
of the system. But it does not adequately convey the dynamism of the operating
system—in other words, how Mac OS X typically “works.” An alternative approach
to this static view of Mac OS X is one that follows a hypothetical user event through
the system, from the click of a mouse to the handling of the event by the appropriate
function or method in the appropriate application environment. It then traces,
through the layers of the system, a hypothetical chain of events set off by the
invocation of the function, resulting, in this case, in the drawing of a new object on
the screen (say, a dialog).

Figure 3-7 depicts the environments and subsystems that generate, repackage, and
forward an event along to its destination.

78 Tracking a User Event
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

Figure 3-7 The handling of an event in Mac OS X

A low-level event originates when the device driver that controls an input device
such as the mouse or the keyboard detects a user action. The I/O Kit, which forms
the foundation of all device drivers on Mac OS X, creates the event and puts it in
the window server’s event queue (see “Core Graphics Services” (page 62) for a
discussion of the window server). This queue is in a block of memory shared by the
I/O Kit and the window server. Once the I/O Kit puts an event in the queue,
it notifies the window server via the Mach interprocess communication
mechanism (IPC).

The window server then takes the event off the queue and consults a database of
currently open windows. It sends the event to the event port of the run loop
belonging to the process that owns the window where the event occurred. The
Carbon Event Manager gets the event from the run-loop port, packages the event in
an appropriate form, and passes it to the event-handling mechanism specific to the

Core and
Application Services

Application processes

Carbon

DefProc EventRef
handler

Callbacks

Cocoa

Target/action, NSEvent,
NSApp, etc.

Darwin

Event Manager

Run loop
Per process

I/O Kit notifications (IPC)

Window server

Driver Driver

C H A P T E R 3

System Architecture

Tracking a User Event 79
  Apple Computer, Inc. February 2001

application environment of the process. This mechanism ensures that the event is
handled by the function or method associated with the control that is clicked (or key
that is pressed).

The event-handling mechanism is different for each application environment:

� Carbon. Carbon has several mechanisms that applications can use to handle
events. The primary mechanism uses EventRefs, opaque low-level event
structures. Handlers of EventRefs are installed on user-interface objects
(including default ones by the Human Interface Toolbox), and these
automatically receive all or some events destined for those objects. The handler
can ignore the event, handle it, or pass it on to the next handler in the enclosing
container. Event handling using DefProc messages and function callbacks is also
possible.

� Cocoa. In Cocoa an event is packaged as an NSEvent object. The object is sent to
the application object responsible for the overall management of an application
process. The application object forwards the NSEvent object to the
first-responder view in the window in which the event occurred. Through a
next-responder mechanism, the event object, if not handled, can travel up the
window’s view hierarchy until it arrives at the application object itself. If the
event is associated with a user-interface control, it is typically handled through
a mechanism called “target-action.”

� Java. Event handling in Java is implemented by the java.awt.Event and
java.awt.Component classes.

80 Tracking a User Event
  Apple Computer, Inc. February 2001

C H A P T E R 3

System Architecture

The Boot Sequence 81
  Apple Computer, Inc. February 2001

C H A P T E R 4

4 Booting and Logging In

This chapter describes in general terms what happens when a Mac OS X system
boots up and when a user logs into the system. “Booting up” refers to the series of
actions the system performs to prepare itself for use. This booting sequence includes
a number of different tasks, from initializing hardware to starting system daemons.
When the booting sequence concludes, users see a login window. After a user logs
in (and the system authenticates that person), the system completes an additional
series of actions that sets up the computing environment for that user. In addition
to describing the boot and log-in procedures, this chapter also explains how to use
the various “hooks” available to you for customizing these procedures.

The Boot Sequence

From the moment a user powers on a Mac OS X system to the moment he or she is
able to log in, Mac OS X executes a booting sequence that readies the system for use.
This section summarizes what happens during this sequence.

Note: Man pages, a form of online documentation, are available for most of the
daemons and utilities mentioned in this chapter. You can consult these man
pages for further information. To display a man page, enter man on the command
line followed by the name; for example, > man getty (where > is the prompt).

82 The Boot Sequence
  Apple Computer, Inc. February 2001

C H A P T E R 4

Booting and Logging In

BootROM
When the power to a Macintosh computer is turned on, the BootROM firmware is
the first code activated. BootROM (which is part of the computer’s hardware) has
two primary responsibilities: to initialize system hardware and to select an
operating system to boot. BootROM has two components to help it carry out these
functions:

� POST (Power-On Self Test) initializes some hardware interfaces and verifies that
sufficient RAM memory is available and is in a good state.

� Open Firmware initializes the rest of the hardware, builds the initial device tree
(a hierarchical representation of devices associated with the computer), and
selects the operating system to use.

BootROM is identical on Mac OS 9 and Mac OS X systems.

BootX
When BootROM (or the user) selects Mac OS X as the operating system to boot,
control passes to the BootX booter (located in /System/Library/CoreServices).
BootX’s principal duty is to load the kernel environment. As it does this, BootX
draws the “booting” image on the screen.

When loading the kernel environment, BootX first attempts to load a previously
cached set of device drivers (called an mkext cache) for hardware that is involved
in the boot process. If this cache is missing or corrupt, BootX searches
/System/Library/Extensions for drivers and other kernel extensions whose
OSBundleRequired property is set to a value appropriate to the type of boot (for
example, local or network boot). See the kernel developer documentation for more
on the OSBundleRequired key and the loading of device drivers during booting.

Once the kernel and all drivers necessary for booting are loaded, BootX starts the
kernel’s initialization procedure. At this point, enough drivers are loaded for the
kernel to find the root device. Also from this point, Open Firmware is no longer
accessible.

After the root file system is mounted, the kextd daemon is started during system
initialization (see “System Initialization” (page 83)). It examines all the drivers
available on the system and unloads any unnecessary drivers, freeing up memory.
From this point onward, kextd attempts to fulfill any requests for loading kernel
extensions.

C H A P T E R 4

Booting and Logging In

The Boot Sequence 83
  Apple Computer, Inc. February 2001

Kernel Initialization
In this phase, the kernel initializes the Mach and BSD data structures and then
initializes the I/O Kit. The I/O Kit links the loaded drivers into the kernel, using the
device tree to determine which drivers to link. Once the kernel finds the root device,
it roots BSD off of it.

Finally, the kernel starts the mach_init process, the first process in user space. The
mach_init process is the Mach bootstrap port server, which enables Mach
messaging.

System Initialization
The mach_init process starts the BSD init process. This latter process, which has a
process ID (PID) of 1, “owns” every other process on the system. Despite its
centrality, the init process is simple. It performs four principal tasks:

1. It determines if the user wants single-user mode or is booting from a CD-ROM.
If either of these conditions apply, an advisory is printed and control is handed
over to the user.

2. It runs the system-initialization shell scripts—/etc/rc.boot and /etc/rc—which
complete basic initialization tasks; for details, see “The rc.boot and rc Scripts”
(page 84).

The /etc/rc script runs the SystemStarter program, which handles more
specialized initialization tasks specified as “startup items”; for details, see
“Startup Items” (page 84).

3. Via the getty command, init launches the loginwindow application, which
displays the login window, validates entered user names and passwords, and
completes the login procedure; for details, see “The Login Procedure” (page 87).

4. As the parent of all processes, init handles all necessary cleanup of processes as
they terminate.

84 The Boot Sequence
  Apple Computer, Inc. February 2001

C H A P T E R 4

Booting and Logging In

The rc.boot and rc Scripts

The rc.boot and rc Bourne shell scripts in /etc perform basic initialization tasks.
First the rc.boot script performs a file-system consistency check (fsck) and
synchronizes memory with the file system (sync). Then the rc script performs the
following actions:

� It mounts the essential local file systems as defined in the various /etc/fstab
configuration files.

� It starts the device-driver loader (kextd).

� It starts the window server.

� It runs the update background process, which periodically flushes the
file-system cache.

� It creates the swap file for the virtual-memory system and starts the dynamic
pager.

� As the final step, the rc script starts the SystemStarter program to process the
local and system startup items (see “Startup Items” (page 84)).

Because the rc scripts are simple Bourne shell scripts, you can read the source to see
exactly what takes place. For more information on the daemons started during
system installation, see “System Daemons” (page 90).

Startup Items

Startup items are procedures run during the last phase of booting to prepare a
Mac OS X system for normal operation. They consist of programs (including shell
scripts) that are run to perform tasks such as clearing away temporary files and
starting system daemons.

The system startup items (that is, those provided by Apple) are located in
/System/Library/StartupItems. You should not modify the items in this directory.
However, you can also define your own startup items; these custom startup items
are stored in /Library/StartupItems. See “Customizing Booting Behavior”
(page 95) for instructions on how to create your own startup items.

Important
The technology of startup items and the services started by it
are in flux and might change.

C H A P T E R 4

Booting and Logging In

The Boot Sequence 85
  Apple Computer, Inc. February 2001

The SystemStarter program, which is the last thing run by the rc script, coordinates
the execution of all startup items. To understand what SystemStarter does, it helps
to understand what a startup item is. A startup item is a folder containing at least
two files:

� a program (typically a shell script) that takes the same name as the folder

� a configuration property list

The property-list file for each startup item is named StartupParameters.plist. The
property list specifies the name of the startup item and, more importantly, the
dependencies for the startup item at multiple levels of granularity. These values
indicate which services the startup item provides, which services must be run
before the startup item, and which services the startup item uses (if available).
SystemStarter reads and processes the dependency information in all property lists
and determines the order in which to run the scripts or programs in the folders.

For more on the key-value pairs in StartupParameters.plist, see “Customizing
Booting Behavior” (page 95). For general information on property lists, see
“Property Lists” (page 185).

Table 4-1 summarizes what the system startup items do. The order given in the table
is the general order in which the items are executed; in order words, there could be
some minor variations in this order.

Table 4-1 System startup items

Startup item Description

SystemTuning Sets up performance values for the system, based on such
factors as available memory.

Cleanup Cleans out unnecessary files and databases left over from
the last system boot.

Network Configures the local network interfaces based on the data in
/etc/iftab, sets the machine’s host name, configures
network routing (if specified), turns IP routing on or off (if
specified), sets the machine’s host ID in the kernel, and
loads the Shared IP kernel extension to enable sharing of
one IP address among all application environments
(including Classic).

86 The Boot Sequence
  Apple Computer, Inc. February 2001

C H A P T E R 4

Booting and Logging In

Accounting Starts up the accounting system (accton), which writes
accounting information for each launched process to
/var/account/acct.

Portmap Starts up the portmap daemon.

Disks Runs the autodiskmount daemon, checks and mounts local
disks.

AppleTalk Runs the AppleTalk startup program in either router mode,
multihoming (nonrouter) mode, or on a single port (as
defined in /etc/hostconfig).

SystemLog Starts the system log daemon (syslogd).

DirectoryServices Starts the NetInfo master server (nibindd), Network
Information Services, and the name-resolver daemon
(lookupd)

NFS Starts the Network File System service that performs
asynchronous block I/O (nfsiod), mounts remote file
systems, starts the automounter, and, if the NetInfo database
indicates that the computer should export a filesystem using
NFS, starts the NFS server.

Apache Runs the Apache HTTP server (if specified).

AppleShare If a network connection is detected, starts the AppleShare
service.

AppServices Launches the desktop database daemon (DesktopDB),
updates the font cache, starts input services, and configures
printing services.

IPServices Starts TCP/IP services (inetd), host configuration services
(BOOTP), and the netboot client management server.

NetworkTime Starts up network time services, which uses the Network
Time Protocol (NTP).

QTServer Starts the QuickTime Streaming Server.

Table 4-1 System startup items (continued)

Startup item Description

C H A P T E R 4

Booting and Logging In

The Login Procedure 87
  Apple Computer, Inc. February 2001

The section “System Daemons” (page 90) briefly describes some of the daemons
and services mentioned in this table.

Finally, it is important to realize that some system services might not be run even
though scripts exist for them in the /System/Library/StartupItems directory. The
system initialization procedure caches the configuration information it finds in
/etc/hostconfig. This information is available to the various scripts run by the
SystemStarter program. It tells them whether users of a computer have requested
that certain services should run on it and sometimes what parameters those services
should run under. Among these services are AppleTalk, AFP, QuickTime
Streaming, outgoing mail, automounting, IP routing, netbooting server, and
(Apache HTTP) Web server.

The Login Procedure

The login procedure is managed by the loginwindow application, which is
launched by init indirectly via getty. The loginwindow application allows users to
log in to the console terminal through a graphical user interface and sets up their
customized computing environments. The loginwindow application has a number
of major responsibilities:

� presenting a user interface for logging in

� authenticating users when they attempt to log in

� setting up a user’s computing environment (including preferences, environment
variables, device and file permissions, keychain access, and so on)

� if an installation is in progress, launching the Setup Assistant

SendMail Runs outgoing mail services (sendmail).

AuthServer Starts the authentication server.

Cron Runs the cron daemon.

Table 4-1 System startup items (continued)

Startup item Description

88 The Login Procedure
  Apple Computer, Inc. February 2001

C H A P T E R 4

Booting and Logging In

� launching the Finder and the Dock

� managing the logout, restart, and shutdown procedures

In addition to these major responsibilities, loginwindow performs a number of
other functions, including

� managing the Application List window (opened by Command-Option-Escape),
which includes monitoring the currently active applications and responding to
user requests to force-quit applications and relaunch the Finder

� displaying alert dialogs upon receiving notifications from hidden applications
(that is, applications with no visible user interface)

� automatically launching applications specified in the Login Items pane of the
Login system preferences

� writing standard-error (stderr) output to a log file (/var/tmp/console.log),
which is then used as input by the Console application

The remainder of this section describes some details of user authentication and then
discusses the significant actions that occur between a successful login and the first
mouse click or key press. For more on the loginwindow application, see the
loginwindow (8) man page.

Authenticating Users
As part of the authentication procedure, the loginwindow application first
attempts, if the system is on a network, to verify the entered user name and
password against the network NetInfo database (via lookupd). If the system is not
on a network, loginwindow goes through lookupd again in an attempt to verify the
user name and password against the local NetInfo database. The loginwindow
application may log in users automatically in two circumstances:

� The “Automatically log in” option is selected in the Login Window pane of the
Login system preferences and the Name and Password fields have valid values
(see Figure 4-2 (page 98)).

� The system is not connected to a network and has only one user, without a
password assigned, in the local NetInfo database.

C H A P T E R 4

Booting and Logging In

The Login Procedure 89
  Apple Computer, Inc. February 2001

Setting Up the User Environment
After a user logs in (or is logged in automatically), loginwindow does the following:

1. Secures the login session from unauthorized remote access. Applications that
are launched remotely are not registered with the pasteboard server’s (that is,
the Clipboard’s) port. As a result, some standard features are blocked for these
processes, including copy, cut and paste, Apple events, window minimization,
and other services.

2. Records the login in the system’s utmp database.

3. Sets owner and permissions for the console terminal.

4. Resets the user’s preferences to include global system defaults
(NSRegistrationDomain).

5. Registers the pasteboard server (pbs) with the bootstrap port and launches pbs.

6. Configures the mouse, the keyboard, system sound, and the power manager
using the user’s preferences.

7. Rebuilds the time-zone and preferences caches, if necessary.

8. Sets the user’s group permissions.

9. Sets the user’s environment variables (HOME, PATH, and so on) as found in his or
her .login file.

10. Obtains the file-creation permissions mask (umask) from the user’s preferences
and sets it.

Launching the Finder and the Dock
After it sets up the logged-in user’s computing environment, the loginwindow
application initializes the Apple events subsystem and then launches the Finder
and the Dock applications, in that order. When these processes have started up, it
launches the applications or documents specified in the Login Items pane of the
Login system preferences. When these items have been launched or opened, the
login procedure is complete.

If the Finder or Dock process dies for some reason, loginwindow automatically
launches it again. In the same vein, if the loginwindow application dies, the init
process automatically restarts it.

90 System Daemons
  Apple Computer, Inc. February 2001

C H A P T E R 4

Booting and Logging In

System Daemons

Just after you log in to a Mac OS X system, if you run the Process Viewer application
(in /Applications/Utilities), you will see the list of processes already running on
the system (see Figure 4-1 (page 90)). Typically around twenty processes are
displayed, of which you are responsible only for Process Viewer (disregarding any
applications automatically launched). Most of these other processes are the system
daemons or servers that perform important functions in the background.

Figure 4-1 Processes shown in Process Viewer

C H A P T E R 4

Booting and Logging In

System Daemons 91
  Apple Computer, Inc. February 2001

Table 4-2 describes some of these daemons and servers. If you have a standalone
system (that is, you aren’t connected to a network), or if you have not requested
some services (through the Preferences application), some of these daemons may
not be started.

Table 4-2 Common system daemons and servers

Daemon Description

mach_init The Mach bootstrap port server, through which Mach
messaging is enabled. It also starts the init process.

kextd The device-driver loader. Initially this daemon loads all device
drivers that remain after BootX loads the drivers needed to
start the kernel. Afterwards, kextd is responsible for
dynamically loading and unloading device drivers.

Window Manager The window server. See “Core Graphics Services” (page 62) for
more information.

update Periodically flushes the file-system cache to help prevent data
loss in the event of a crash.

dynamic_pager Communicates with the kernel’s default pager to create or
delete the swap files (in /private/var/vm); these files are used
as backing store for virtual memory.

ATSServer The Apple Type Solution server, enabling system-wide font
management.

autodiskmount Automatically mounts removable media.

ipconfigd Automatically configures the network

syslogd Logs system error and status messages.

portmap Converts RPC program numbers into Internet (DARPA
protocol) port numbers. It must be running before RPC calls
can be made.

nibindd Finds, creates, and destroys NetInfo servers (see netinfod).

netinfod Netinfo servers, one for each domain served.

lookupd A name resolver, which expedites look-up requests to network
information services such as NetInfo and DNS.

92 Logging Out and System Shutdown
  Apple Computer, Inc. February 2001

C H A P T E R 4

Booting and Logging In

For further information consult the man pages available for most of these daemons.

Logging Out and System Shutdown

The procedures for logging out, restarting the system, or shutting down the system
have similar semantics. The loginwindow application carries out these procedures,
but they are initiated by other processes, typically the Finder. For the requesting
process, the procedure has three steps:

1. It sends a Quit All Apple event (kAEQuitAll) to loginwindow.

DesktopDB The server for the database used by the Finder and the Dock to
cache information on currently known applications and
documents.

inetd An Internet “super-server” that listens for connections on
certain sockets. When a connection occurs, it decides what
service the socket corresponds to and invokes the appropriate
program to service the request.

nfsiod Services asynchronous requests to an NFS server.

automount Automatically mounts NFS file systems when they are first
accessed and later unmounts them when they are idle. A
mount point for a virtual file system first appears as a symbolic
link on a local file system. Reading this symbolic link triggers
automount to mount the associated remote file system.

cron Executes scheduled commands or scripts.

pbs The pasteboard server (similar to the Clipboard on Mac OS 9)
enables the exchange of data between applications. It is also the
data-transfer mechanism used in dragging operations. See
“The Clipboard” (page 71) for more information.

Table 4-2 Common system daemons and servers (continued)

Daemon Description

C H A P T E R 4

Booting and Logging In

Logging Out and System Shutdown 93
  Apple Computer, Inc. February 2001

2. When loginwindow returns noErr, the process sends an Apple event requesting
logout, restart, or shutdown.

3. The requesting process terminates.

When loginwindow receives the Quit All Apple event, it requests termination from
all foreground applications. Upon receiving the logout, restart, or shutdown event,
it requests termination from all background processes (that is, processes without
user interfaces) that link with the Carbon, Cocoa, or Java application environments;
such background processes can refuse to terminate (see below). Other processes,
especially processes run as root, are not terminated, thus preserving the
functionality provided by servers (such as Apache and AppleTalk) across logins.

Important
Note that if the Quit All event originates from an application
in the Classic environment, only the applications in the
Classic environment are terminated and the logout, restart,
or shutdown request applies only to the Classic
environment.

When loginwindow requests termination, there are certain things some processes
can do to stay alive, and certain things other processes must to do prevent a stalled
system.

When loginwindow receives a Quit All event, it consults its list of running
foreground applications and requests termination from each of them, one by one,
by sending a Quit Application Apple event (kAEQuitApplication). An application
should behave appropriately when it receives this event. It should terminate itself
immediately or put up an alert dialog when a user decision is first required (such as
when there is an unsaved document); when that condition is resolved the
application should then quit. If it does not quit, the application could stall the entire
logout process. Periodically loginwindow resends the Quit Application event to the
application and, if the application appears hung, it alerts the user and asks him or
her to quit the application. (An application displaying a sheet or dialog or similar
object is not considered hung.)

For background processes that link with Carbon, Cocoa, or Java, the procedure is a
little different. When loginwindow receives a logout, restart, or shutdown request
from the initiating process, it also sends each of these background processes a Quit
Application Apple event. These processes can refuse to quit by accepting the event
and returning noErr. But if such a process does not handle the Apple event (that is,

94 Customization Techniques
  Apple Computer, Inc. February 2001

C H A P T E R 4

Booting and Logging In

an errAEEventNotHandled is returned), loginwindow kills the process. The
loginwindow application does not stop the logout procedure if a background
process does not quit.

Important
The mechanism enabling a background Carbon, Cocoa, or
Java process to stay alive is intended for cases where the
process needs to finish something before quitting (such as
content indexing). It is not intended as a persistence
mechanism. Persistent processes should not be per-user and
thus should run as root; loginwindow does not terminate
root processes.

Once all applications and cooperating background processes have terminated,
loginwindow initiates the appropriate action:

Customization Techniques

You have several ways to customize what happens when a Mac OS X system boots
and a user logs in. This section describes the currently available procedures.

Logout Before loginwindow returns control to the display of the login window
(and waits for the next login), it dequeues all events in the event
queue, starts the logout-hook program (if one is defined), records the
logout, and resets device permissions and user preferences to their
defaults. (See “Customizing the Login Procedure” (page 97) for more
on the logout hook.)

Shutdown Powers off the system.

Restart Powers off the system, then powers it on, starting up the booting
sequence. As loginwindow restarts, it sets the device permissions and
user preferences to their defaults.

C H A P T E R 4

Booting and Logging In

Customization Techniques 95
  Apple Computer, Inc. February 2001

Customizing Booting Behavior
You can add specialized behavior to the booting sequence using startup items. This
technique allows you to run daemons, launch database servers, delete old files, or
do a number of other things prior to the first login session. Startup items, as
described in “Startup Items” (page 84), are shell scripts or command-line programs
run in a dependency order determined by certain values defined in an
accompanying property list.

Startup items are run (through the SystemStarter program) as the final phase of the
booting sequence. First SystemStarter runs the system startup items located in
/System/Library/StartupItems. Then it runs any startup items defined for the local
domain in /Library/StartupItems. You should put any startup item you create into
one of these locations.

To create a startup item:

1. Make a directory named to describe the behavior you’re providing.

Example: MyDBServer

2. Add to this directory an executable (shell script or command-line executable)
that has the same name as the directory.

Example: MyDBServer/MyDBServer

3. Also add to the directory a file containing a property list and having the name
StartupParameters.plist.

Example: MyDBServer/StartupParameters.plist

The critical part of this procedure is the creation of the property list.
StartupParameters.plist must contain a set of key-value pairs that defines the
services the startup item provides and the dependency relationships to other

96 Customization Techniques
  Apple Computer, Inc. February 2001

C H A P T E R 4

Booting and Logging In

services. The name of the startup item (the folder and executable name) does not
necessarily have to be the same as the name of a provided service. Table 4-3
describes the key-value pairs in the property list.

Other than the rules specified through the Requires and Uses values, there are no
guarantees as to the actual execution order of startup items.

Table 4-3 StartupParameters.plist key-value pairs

Key Type Value

Description String A short description of the startup item, used by
administrative tools.

Provides Array The services provided by this startup item. Although a
startup item can provide multiple services, it typically
provides only one. Should more than one startup item
provide the same service, SystemStarter runs only the
first startup item it encounters. This behavior argues
against putting multiple services in a startup item
because the overriding of one duplicate service can
result in all services in a startup item being overridden.
You should put multiple services in a startup item only
if they are codependent.

Requires Array The services provided by other startup items that must
be run before this startup item can be processed. If the
required services are not available, this startup item is
not run.

Uses Array The services provided by other startup items that
should be started before this startup item. The startup
item will execute, however, even if these services are
not available.

OrderPreference String For those startup items with the same execution order
(as determined by the Requires and Uses values), the
relative order in which they should be started. There
are five order-preference values: First, Early, None,
Late, and Last. The default is None. The order
preference is an advisory value and might be ignored.

C H A P T E R 4

Booting and Logging In

Customization Techniques 97
  Apple Computer, Inc. February 2001

When SystemStarter processes a startup item, it looks for an executable file with the
name of the containing folder and runs that file with the argument start during
system startup. If you want your executable to perform different tasks during
different system activities, it should read this parameter and act accordingly.
Currently, the start argument is always supplied, as startup items are only
executed at system startup. Apple reserves the right to modify SystemStarter to
invoke startup items at other times with other arguments. For example, startup
items could be executed at system shutdown with an argument of stop.

You can use the Property List Editor application in /Developer/Applications to
create an XML-style property list for StartupParameters.plist.

Customizing the Login Procedure
You can customize the behavior of the loginwindow application in three general
ways:

� by changing settings in the Login Window pane of the Login system preferences

� by specifying application parameters, particularly parameters for running
scripts or tools at login and logout time

� by specifying, as loginwindow preferences, alternatives to the Finder
application

Administrators can configure several features of loginwindow through the Login
Window pane. To access this pane, choose System Preferences from the Apple
menu; in the System Preferences window, click the Login button in the preferences
list and then click the Login Window tab. Figure 4-2 shows what the Login Window
pane looks like.

98 Customization Techniques
  Apple Computer, Inc. February 2001

C H A P T E R 4

Booting and Logging In

Figure 4-2 The Login Window pane of Login System Preferences

After authenticating yourself as an administrator (by clicking the lock and entering
your password), you can make the following changes:

� Provide a user name and password that loginwindow should use to log the user
into the system when it first starts up.

� Disable the Shutdown and Restart buttons in the login window. This feature
prevents users from casually powering down a system that provides some
shared service, such as a print server or file server.

� Request that loginwindow display a password hint after the user makes three
attempts to log in. Administrators can set the hint when they create a user
account, or users can set their own hint in the Password preferences pane.

� Select a custom authenticator.

Administrators have additional, more powerful means for affecting the behavior of
loginwindow. The loginwindow application is launched via the console-terminal
definition in /etc/ttys. The first noncommented line of the ttys file contains this
definition:

C H A P T E R 4

Booting and Logging In

Customization Techniques 99
  Apple Computer, Inc. February 2001

console "/System/Library/CoreServices/loginwindow.app/loginwindow" vt100 on
secure window=/System/Library/CoreServices/WindowServer
onoption="/usr/libexec/getty std.9600"

This line tells the init program to launch loginwindow on the console terminal and
to use WindowServer (which is a symbolic link to the process Window Manager) as the
windowing-system process. As with all applications, you can specify any defined
parameters right after the executable name. loginwindow defines four such
parameters, which are listed in Table 4-4.

The -LoginHook and -LogoutHook parameters are particularly useful because they
permit custom administrative, accounting, or security programs to run as part of
the login and logout procedures. An example of a modified console definition in
/etc/ttys might be this:

Table 4-4 loginwindow parameters

Parameter Description of value

-LoginHook The full path to a script or tool to run when a user
successfully logs in.

-LogoutHook The full path to a script or tool to run when a user
successfully logs out.

-HostName An alternative name to display in the login window (other
than “localhost” or the NetInfo host name). You can also set
it to an empty string.

-PowerOffDisabled If “YES, ” the Shutdown and Restart buttons in the login
window are disabled; also, pressing the computer’s power
button quits the Finder and Dock applications but does not
turn off the system. This feature prevents users from casually
powering down a system that provides some shared service,
such as a print server or file server. This parameter invokes
the same behavior as the Login preference that disables the
login window’s Restart and Shut Down buttons (see the
preceding part of this section).

100 Customization Techniques
  Apple Computer, Inc. February 2001

C H A P T E R 4

Booting and Logging In

console "/System/Library/CoreServices/loginwindow.app/loginwindow
-PowerOffDisabled YES -LoginHook
/Users/Administrator/Scripts/mailLoginToAdmin" vt100 on secure
window=/System/Library/CoreServices/WindowServer
onoption="/usr/libexec/getty std.9600"

You can also request loginwindow to launch alternatives to the Finder system
application. For example, if you want to use only a BSD shell for your work, you
might want to replace the Finder with the Terminal application. You specify the
alternatives to the Finder as a loginwindow preference using the defaults utility.
The syntax for the command is

defaults write loginwindow Finder <path>

The specified path must be a full path to the application package (for example,
/Applications/Utility/Terminal.app). You must give the command as root (the
owner of loginwindow). For more on the defaults utility, see “The defaults Utility”
(page 200) in the chapter “Software Configuration” and consult the defaults man
page.

101
  Apple Computer, Inc. February 2001

C H A P T E R 5

5 Bundles

A bundle is a directory in the file system that stores executable code and the
software resources related to that code. (It can contain only executable code or only
software resources, but that is unusual). The bundle directory, in essence,
“bundles” a set of resources in a discrete package. The resources include such things
as images, sounds, and localized character strings that are used by some piece of
software. Because code and associated resources are in one place in the file system,
installation, uninstallation, and other forms of software management are easier.

Applications, frameworks, and loadable bundles (including plug-ins) are types of
bundles. Internally, the structure of these bundle types is (or can be) quite similar.
What primarily differentiates applications, frameworks, and loadable bundles are
the characteristics and purpose of the executable code they contain. Each of these
types has its own required extension: .app, .framework, and .bundle (or whatever
extension is application-defined for a loadable bundle).

In a program, bundles are represented by programmatic entities such as instances
of a class or (in procedural languages) objects of opaque types. Routines of these
entities make bundle resources available to the program code that requests it. Other
routines enable you to load and link executable code into a running application.
Applications can load the code in loadable bundles whenever they need that code.
Frameworks automatically—and dynamically—load and link shared library code.

Bundles can contain multiple sets of resources, each set of which groups resources
by language, locale, and platform. By combining these sets of resources and
executable images into a single package, you can create one version of your
application, framework, or plug-in that executes properly on any supported
platform. Using this model, you can automatically localize an application’s human
interface according to the user’s language preferences.

102 Benefits of Using Bundles
  Apple Computer, Inc. February 2001

C H A P T E R 5

Bundles

Typically the Finder displays a bundle directory to users as a file to avoid
unwarranted tampering with the bundle’s contents. But the directory structure of
some bundles, such as frameworks, is not hidden. Whether the Finder displays a
bundle as a file or folder depends on several factors, including whether the bundle
bit—a Finder attribute—is set in the bundle directory. Finder also hides the
extensions from all application bundle names.

Benefits of Using Bundles

Bundles provide a variety of important advantages over the traditional Mac OS 8
software packaging scheme.

� A single bundle executable can run on Mac OS 8, Mac OS 9, and Mac OS X.

� A single bundle can support multiple chip architectures (PowerPC, x86), library
architectures (CFM, Mach-O), and other special executables (for example,
optimized libraries for the Velocity Engine).

� A single bundle can support multiple languages through an internationalization
architecture. You can easily add new localized resources or remove unwanted
ones.

� Bundles can reside on volumes of many different formats, including multiple
fork formats like HFS, HFS+, and AFP, and single-fork formats like UFS, SMB,
and NFS.

� You can index and access Help files and other bundle information resources
through Sherlock.

� You can install, relocate, and remove bundles simply by dragging them.

Versioned bundles, described in the next section, “Anatomy of a Bundle,” do not
share the first two features in the above list, namely support for multiple chip
architectures and an executable that can run on the various Mac OS systems.

Note: Frameworks in the current release of Mac OS X are “versioned” bundles,
because their different internal structure reflects their scheme for versioning
dynamic shared libraries. This structure lacks many of the features of the newer
types of bundles. See the chapter “Frameworks” (page 127) for more information
on these types of bundles.

C H A P T E R 5

Bundles

Anatomy of a Bundle 103
  Apple Computer, Inc. February 2001

Anatomy of a Bundle

Bundles contain executable code and can contain a variety of resources such as

� images

� sounds

� localized character strings

� Resource Manager–style resource files

� libraries and frameworks

� plug-ins and other loadable bundles

� archived user-interface definitions

Mac OS X supports two different layouts for bundle directories, “new-style” and
versioned. The directory layout for versioned bundles is inherited from Mac OS X’s
predecessor operating systems. The following example depicts this layout:

MyBundle.bundle/
MyBundle (executable code)
Resources/

Pretty.tiff (nonlocalized resource)
English.lproj/ (localized resources)

Stop.eps
MyBundle.nib
MyBundle.strings

French.lproj/ (localized resources)
Stop.eps
MyBundle.nib
MyBundle.strings

Although the newest development tools on Mac OS X create only new-style bundles
(with the exception of frameworks), the system bundle routines can read and
manipulate both styles of bundles.

104 Anatomy of a Bundle
  Apple Computer, Inc. February 2001

C H A P T E R 5

Bundles

The remainder of this section describes the layout of new-style bundles, explaining
where the executable code and resources go within a bundle. On disk, a bundle
exists as a directory hierarchy. Minimally, a bundle has the structure shown in
Listing 5-1:

Listing 5-1 A minimal bundle

- MyBundle/
Contents/

PkgInfo
Info.plist

In other words, the Contents directory and, inside it, the PkgInfo and Info.plist
files must be present in a bundle. These files are important to how the bundle is
treated by Finder and other parts of the operating system. They describe the
bundle’s various attributes.

The information property list, Info.plist, contains key-value pairs stored in XML
format. These pairs specify attributes such as the name of the main executable for
the bundle, version information, type and creator codes, application and document
icons, and other metadata. System routines allow the bundle executable to read
these attributes at runtime. In addition to the default bundle attributes, subsystems
may place their own attribute information in the Info.plist file for easy access at
runtime. You are free to store any application-defined data in the information
property list as well. See “Information Property Lists” (page 186) in the chapter
“Software Configuration” for more on information property lists, including an
example of one.

The other special bundle file is called PkgInfo. This file contains only the type and
creator codes for the bundle. Although the information is redundant—it is kept in
the information property list as well—the PkgInfo file acts as a cache that improves
performance for applications such as the Finder that need quick access to the type
and creator codes for files. See the chapter “The Finder” (page 175) for more
information on how the Finder process the information in the PkgInfo and
Info.plist files.

A special localized resource file named InfoPlist.strings goes with the Info.plist
file. The former file contains keys for the information property list that need to be
localized such as the CFBundleName key.

C H A P T E R 5

Bundles

Anatomy of a Bundle 105
  Apple Computer, Inc. February 2001

From the minimal bundle layout, a bundle directory can expand to a fully
fleshed-out bundle such as you might find in a complex application. Listing 5-2
shows what might go into such a bundle.

Listing 5-2 The bundle layout of a complex application

- MyBundle/
MyApp /* alias to Contents/MacOSClassic/MyApp */
Contents/

MacOSClassic/
MyApp
Helper Tool

MacOS/
MyApp
Helper Tool

Info.plist
PkgInfo
Resources/

MyBundle.icns
Hand.tiff
Horse.jpg
WaterSounds/

 en_US.lproj/
MyApp.nib
bird.tiff
Bye.txt
house.jpg
house-macos.jpg
house-macosclassic.jpg
InfoPlist.strings
Localizable.strings
CitySounds/

 en_GB.lproj
MyApp.nib
bird.tiff
Bye.txt
house.jpg
house-macos.jpg
house-macosclassic.jpg
InfoPlist.strings

106 Anatomy of a Bundle
  Apple Computer, Inc. February 2001

C H A P T E R 5

Bundles

Localizable.strings
CitySounds/

 Japanese.lproj/
MyApp.nib
bird.tiff
Bye.txt
house.jpg
house-macos.jpg
house-macosclassic.jpg
InfoPlist.strings
Localizable.strings
CitySounds/

Frameworks/
Plug-ins/
SharedFrameworks/
SharedSupport/

Although there are different types of bundles, they all share certain features. At the
top level of the bundle there is always a Contents directory. The Resources,
Frameworks, SharedFrameworks, SharedSupport and Plug-ins directories are optional
and appear only as necessary.

Important
You should avoid hard-coding directory paths to items
within bundles because the internal structure of bundles
could change. Instead, use the appropriate bundle APIs
provided by Apple.

Several directories contain, as their names suggest, executable code for specific
platforms. When a bundle’s code is requested, the system searches for code in the
format appropriate to the underlying operating system. The names of the
platform-specific executable directories are MacOSClassic and MacOS. The name of
the executable file inside these directories is typically the same name as the bundle
name (minus the extension).

Resources can be localized or nonlocalized—that is, suitable for all localizations.
Each set of localized resources goes into its own directory in the bundle. The
Resources directory contains resource files grouped according to a language and,
possibly, a region where a variant of that language is spoken. These directories have
the extension of .lproj (the “l” stands for “language”). Each such directory contains
all localizable resources for a particular language and often region-specific versions
of that language. Nonlocalized resources are put in the level directly above the

C H A P T E R 5

Bundles

Anatomy of a Bundle 107
  Apple Computer, Inc. February 2001

.lproj directories as there need be only one version of these files. One of these
nonlocalized resources is the icon file for the bundle (which is the application icon
if it’s an application bundle). By convention, this file takes the name of the bundle
and an extension of .icns; the image format can be any supported type, but if no
extension is specified, the system assumes .icns. See “Localized Resources”
(page 111) for more on bundle resources.

A bundle often stores each resource in its own file instead of grouping them in a
single file, as does the Resource Manager. Localizable strings, however, are stored
together in a “strings” file (so called because it has an extension of .strings). The
reason for storing localizable strings in one file is that the contents can then be easily
cached for better performance.

For more information on bundle resources, including localized strings, see the
chapter “Internationalization” (page 203).

Important
Apple recommends that you do not package resources in the
resource fork of the bundle’s executable files.

The Frameworks directory contains frameworks that are inextricably bound to the
application. These dynamic shared libraries of these frameworks are
revision-locked and will not be superseded by any other, even newer, versions that
may be available to the operating system.

The SharedFrameworks directory contains frameworks that are also part of the
application package; but the versions of these frameworks are checked against the
system registry to see if there are more recent versions available. If a more recent
version is found in the system, the version in the SharedFrameworks directory is
ignored. The inclusion of versioned frameworks in the application package makes
it possible for an application to be completely self-contained. An application can be
installed, relocated, and removed simply by dragging.

The Frameworks, SharedFrameworks, Plug-ins, and SharedSupport directories occur
mostly in application bundles. See the chapter “Application Packaging” (page 117)
for further information on these directories.

108 The Finder and Bundles
  Apple Computer, Inc. February 2001

C H A P T E R 5

Bundles

The Finder and Bundles

When you create a bundle, the build system can set a Finder attribute called a
“bundle bit” in the bundle folder. Before the Mac OS X Finder displays a bundle in
one of its windows, it reads this attribute. If the bundle bit is turned on, the bundle
appears as a file package. A file package is a folder that the Finder presents to users
as if it were a file (see Figure 5-1). In other words, the Finder hides the contents of
the folder from users. This opacity discourages users from inadvertently (or
intentionally) altering the contents of the bundle.

Figure 5-1 The Finder’s bundle bit

Some bundles might not have the bundle bit set; this is the case with
Apple-provided bundles. Yet the Finder can still handle them appropriately. As
explained in the next section (“Types of Bundles” (page 109)), bundle folders
should have extensions indicating their type—.app, .framework, .bundle , and so on.
When the Finder encounters one of these folder extensions and determines that the
folder is indeed a bundle, it does the proper things:

� Except for frameworks, it displays the bundle as a file package.

Frameworks are displayed as folders so that you can browse their header files.

� If the bundle is an application (also known as an application package), Finder
hides the .app extension.

� It extracts or computes the runtime information it needs from the bundle (type
and creator codes, for instance) and updates its databases with it.

Bundle bit ON Bundle bit OFF

C H A P T E R 5

Bundles

Types of Bundles 109
  Apple Computer, Inc. February 2001

For more information on the Finder and how it handles bundles and documents, see
the chapter “The Finder” (page 175).

Types of Bundles

Mac OS X recognizes at least three distinct types of bundles:

� Application. For Mac OS X applications, the application package is a bundle
that contains the resources needed to launch the application, including the
application executables.

� Framework. A framework is a bundle containing a dynamic shared library and
all the resources that go with that library, such as header files, images, and
documentation.

� Loadable bundle. Like an application, a loadable bundle usually contains
executable code and associated resources. Loadable bundles differ from
applications and frameworks in that they must be explicitly loaded into a
running application. There are some special types of loadable bundles, two of
which are especially noteworthy.

� Palette. A palette is a type of loadable bundle specialized for Interface
Builder. It contains custom user-interface objects and compiled code that are
loaded into an Interface Builder palette.

� Plug-in. A plug-in is a special type of loadable bundle that requires an
architecture and an implementation above and beyond the simple
code-loading and function-lookup functionality of the regular bundle
programming interfaces.

In addition, kernel extensions (KEXTs) are a type of loadable bundle that
low-level system routines recognize and load into the kernel environment.
Although they are very similar to other loadable bundles, they cannot be loaded
by applications or other non-kernel software. The KEXT bundles have an
extension of .kext. See Inside Mac OS X: Kernel Environment for further
information on KEXTs.

Bundles must have an extension appropriate to their type. For applications, that
extension is .app. For the developmental variants of applications, the extensions
should be .debug and .profile. The extension for frameworks is .framework.

110 Types of Bundles
  Apple Computer, Inc. February 2001

C H A P T E R 5

Bundles

Plug-ins and other loadable bundles can have any extension, but it should be an
extension claimed by an application that knows how to load the bundle; the generic
extension for loadable bundles is .bundle. The .app extension is not visible in the
user interface because the Finder hides it.

An Application’s Main Bundle
With the exception of some command-line tools, every application has at least one
bundle—its main bundle—which is the folder where its resources and executable
files are located. Application bundles should have an extension of .app (for shipping
applications), .debug (for applications with debug symbols), or .profile (for
applications with profiling data). The Finder hides the .app extension from users.

Framework Bundles
Frameworks are bundles that package dynamic shared libraries,
interface-definition files, images, and other resources that support the executable
code along with the header files and documentation that describe the associated
programming interfaces. As long as your applications are dynamically linked with
frameworks, you should have little need to do anything explicitly with those
frameworks thereafter; in a running application, the framework code is
automatically loaded and linked, as needed. Frameworks should have an extension
of .framework.

Loadable Bundles and Dynamic Linking
In addition to the main bundle and the bundles of linked-in frameworks, an
application can be organized into any number of other bundles. Although these
loadable bundles usually reside inside an application file package, they can be
located anywhere in the file system (but typically are put in the /Library/
Extensions directory of a file-system domain). An application can dynamically load
the code and resources in a bundle when it needs them. For example, an application
for managing PostScript printers may have a bundle containing PostScript code to
be downloaded to printers.

The executable code in loadable bundles can be dynamically linked into an
application while it runs. Using various code-loading programming interfaces,
functions from loadable bundles can be looked up by name and called through

C H A P T E R 5

Bundles

Localized Resources 111
  Apple Computer, Inc. February 2001

function pointers. This newly linked code can then use a bundle identifier to obtain
an instance for its bundle. Through this bundle instance, the code can locate and
load additional resources packaged in the bundle.

Loadable bundles should have an extension. The conventional extension for
loadable bundles is .bundle and, for Interface Builder palette bundles,.palette.
Although the extension can be anything, it ideally should be an extension claimed
by one or more applications that can load the bundle. These bundles are then
associated with your application (by the Finder) and your application launches (if
not started) and loads them when the user double-clicks them.

Localized Resources

If a bundle is to be used in more than one part of the world, its resources may need
to be customized, or localized, for language, country, or cultural region. For
example, an application may need to have separate Japanese, English, French, and
Swedish versions of the character strings that label menu commands. An
application may also need to accommodate regional language variation—British
and American English, for example.

Bundles solve this problem by grouping resources together into directories named
for their region and language with the extension.lproj. Region-specific resource
directories should take their names from the ISO 3166 standard for country codes,
and the ISO 639 standard for language codes (see http://www.iso.ch). You would
place resources specific to the dialect of French spoken in France in a directory
named fr_FR.lproj , whereas you would place resources specific to Canadian
French in a directory named fr_CA.lproj. Localized resources that need not be
region specific should be placed in directories named simply for the language, such
as English.lproj or Japanese.lproj. These localized resource directories are then
placed in a directory named Resources within the bundle’s Contents directory.
Nonlocalized (global) resources are kept in the top level of the Resources directory.
See the section “Anatomy of a Bundle” (page 103) for an example of a complex
bundle’s file system layout.

112 Localized Character Strings
  Apple Computer, Inc. February 2001

C H A P T E R 5

Bundles

The user determines which set of localized resources are actually used by the
bundle at runtime. Bundle-related system routines rely on the language preferences
set by the user in the Preferences application. Preferences lets users create an
ordered list of available regions so that the most preferred region is first, the second
most preferred region is next, and so on. When a bundle is asked for a resource file,
it returns the file-system location of the resource that best matches the user’s region
preferences. See the section “Search Algorithm” (page 113) for details on the exact
process Mac OS X uses to locate a bundle resource. Also see the chapter
“Internationalization” (page 203) for more detailed information about the naming
of .lproj directories.

Localized Character Strings

One very common resource type is a strings file (which, by convention, has an
extension of .strings). Strings files are used for character strings that must be
localized. They are essentially dictionaries that map a string in the development
language to the localized version of the string. The key is not required to be the
development language version of the string, but this convention is usually used.

System routines know how to locate and load the strings file (like any other
resource) and then look up the string you want all in one step. They also provide
caching so multiple lookups from the same table do not require locating and
loading the strings file again.

Because strings files are used so frequently, the Mac OS X development
environments provide special macros and tools for working with them. For details,
see “Localizing Strings” (page 212).

C H A P T E R 5

Bundles

Search Algorithm 113
  Apple Computer, Inc. February 2001

Search Algorithm

When you use a bundle-specific programming interface to locate a given resource,
it performs a search to ensure that the right version of the resource is returned to
you. Because resources can be global or localized as well as platform specific, the
search may be complex. Various resource-finding APIs insulate you from potential
changes to the bundle packaging scheme and handle a lot of tricky searching issues
for you. You should always use these APIs instead of groping around inside the
bundle yourself.

The Figure 5-2 details the steps a system routine uses to locate a resource.

114 Search Algorithm
  Apple Computer, Inc. February 2001

C H A P T E R 5

Bundles

Figure 5-2 Locating a resource in a bundle

Search for a
Global Resource

Search for a
global resource

Search for a
Platform Specific

Resource

Search for a
platform-specific

resource

Return the
Platform-Generic

Resource

Return the
platform-generic

resource

Return the
Platform-Specific

Resource

Return the
platform-specific

resource

Yes No

Search for a localized resource

Resource
Found

Resource
found

Resource
Found

Resource
found

Yes No

Yes No

Yes No

Yes No

Search for a resource in
bundle’s development region

Search Failed
Return NULL
Search failed,
return NULLYes No

Search for a region-specific resource
using user’s region preference

Search for a resource matching
preferred region’s language

Search for a resource in
bundle’s development language

Resource
Found

Resource
found

Resource
Found

Resource
found

Resource
Found

Resource
found

Resource
Found

Resource
found

C H A P T E R 5

Bundles

Bundles and the Resource Manager 115
  Apple Computer, Inc. February 2001

Notice that global resources take precedence over localized resources. In fact, there
should never be both a global and localized version of a given resource. If there is a
global version of a given resource, localized versions of that same resource will
never be found. The reason for this precedence is performance. If the localizable
resources were searched first, the bundle routines might search needlessly in
several localized resource folders before discovering the global resource. Also
notice that in order to find a platform-specific resource, the platform-generic
version must exist. Again, the reason is performance. You should generally make
one platform’s version of the resource generic and provide platform-specific
versions for any other platforms.

When a resource-locating routine finds a resource, it checks to see if a
platform-specific version exists. Platform-specific resources are named using
standard identifiers. The names you can use when making platform-specific
resources are macosclassic (on Mac OS 8 and Mac OS 9) and macos (on Mac OS X).
You construct the name of a platform-specific resource by combining the
platform-generic name with the platform identifier string. For example, if you have
a resource named Fish.jpg, its name, when specific to Mac OS 8 or Mac OS 9, would
be Fish-macosclassic.jpg. When an application running on Mac OS 8 requests the
resource Fish.jpg, the bundle routine also checks to see if Fish-macosclassic.jpg
exists in that same folder. If it does, the routine returns the path to the
platform-specific resource; if it does not, it returns the path to Fish.jpg. As was
mentioned previously, for Fish-macosclassic.jpg to be found, a file named
Fish.jpg must exist in the same folder (including language-specific resource
directories).

Bundles and the Resource Manager

A bundle can contain any number of files containing Resource Manager–style
resources in their data forks. These resource files—which, by convention, have an
extension of .rsrc —are treated as bundle resources just as any other kind of file
under the Resources directory. It is possible to use Core Foundation Bundle Servics
to get a CFURL type to such a file, convert that to an FSRef type, and then open it
using the Resource Manager. There are, however, two special resource files that
Bundle Services manages for you if you provide them. One is for nonlocalized
resources, and it is called executable name.rsrc, where executable name is the name of
your main executable. This file is stored with the other nonlocalized resources, in

116 Bundles and the Resource Manager
  Apple Computer, Inc. February 2001

C H A P T E R 5

Bundles

the Resources directory. The other file is for localized resources, and it is called
Localized.rsrc. This file is stored in the appropriate .lproj directory, one version
for each language or region. Be sure that the resources are stored in the file’s data
fork, not the resource fork.

When an application is launched, Bundle Services automatically attempts to open
these files so that your application's resources are always available. For other
bundles—frameworks and loadable bundles—you must do this yourself using the
Bundle Services function provided specifically for this purpose.

If for some reason you are unable to convert your Carbon application to the bundle
scheme, you can include the information property list (Info.plist) in your
single-file application as a resource of type 'plst', id 0. See “CFM Executables”
(page 225) for more information.

An Application Is a Bundle 117
  Apple Computer, Inc. February 2001

C H A P T E R 6

6 Application Packaging

A typical application in Mac OS X is not a single executable file but a package of files
that includes one or more executable binaries. An application is a type of bundle—
a directory in the system that contains, in a hierarchical organization, the
application executable and the resources to support that code. An application is also
a file package, a directory that the Finder presents to users as a file.

The design of application packages arises from the recognition that a running
application is more than just the executable code that gets launched. Several
advantages come with this internal organization, among them ease of installation
and uninstallation, the inclusion of multiple localizations, support for multiple
architectures and volume formats, and the capability for a single application to run,
without modification, on Mac OS 8, Mac OS 9 and Mac OS X.

Although an application is structurally a bundle, some bundle components are
found mainly, and sometimes only, in applications. Users tend to think of such
things as help information, preferences, assistants, and plug-ins as application
resources. Although, technically, nothing prevents these resources from belonging
to, say, a loadable bundle, they are commonly associated with applications. This
chapter focuses on how these resources are packaged in an application bundle. For
a general description of bundles, see the chapter “Bundles” (page 101).

An Application Is a Bundle

An application in Mac OS X is packaged as a type of bundle. A bundle, to echo the
definition in the chapter “Bundles” (page 101), is a directory containing executable
code and the resources to support that code. Application bundles as well as

118 An Application Is a Bundle
  Apple Computer, Inc. February 2001

C H A P T E R 6

Application Packaging

loadable bundles (such as plug-ins) are file packages, directories that the Finder
presents to users as a single file. The major distinguishing characteristic between the
types of bundles—applications, frameworks, plug-ins, and other dynamically
loadable packages of code and resources—is the nature of the executable.
Application executables are generally self-sufficient binaries that users can launch
from the Finder, usually by double-clicking. Applications may or may not contain
secondary bundles, such as plug-ins, but they always contain their main bundle.

Bundles bring a number of benefits that are either specific to applications or that
apply mostly to them:

� The same (Carbon) application bundle can run, without modification, on
Mac OS 8, Mac OS 9, and Mac OS X.

� Applications can include different localizations. Applications can automatically
display the set of localized resources that matches a user’s language preference.
Moreover, you can add a new localization to the application package, and it
displays those resources (if they are for a preferred language) after the user
relaunches the application.

� Client computers can run applications on a server.

� Customers can easily download applications from a website or obtain them
through email.

� Applications are easy to install and uninstall; all the user must do is drag the
application package onto a volume or, for uninstall, drag it to the Trash. (This
feature does not preclude more complicated installations from taking place.)

� Because applications are file packages, users cannot “break” them by removing
or changing essential parts of them. Users can, however, change the names of
applications without affecting them.

� Applications can support multiple architectures as well as multiple volume
formats.

What makes these features possible is the hierarchical internal organization of
bundles. The different pieces of an application go in specific named locations within
the application package. This standard internal organization of the pieces of an
application enables related parts of the operating system—such as the Finder and
the resource-finding and code-loading mechanisms of the system—to perform their
functions. For example, executable files for multiple platforms (Mac OS 9 and
Mac OS X) are put in separate subdirectories with standard names. The same goes
for localized resources, plug-ins, and private and versioned frameworks.

C H A P T E R 6

Application Packaging

Application Frameworks, Libraries, and Helpers 119
  Apple Computer, Inc. February 2001

The Finder, Sherlock, Navigation Services, and other Apple-provided applications
and services that browse or examine the file system do not descend into application
packages. The Finder responds to double-clicks on an application package by
launching the application.

As they do with other bundles, Apple’s development tools support the creation of
application packages.

For additional general information about bundles, see the chapter “Bundles”
(page 101). For further information about the Finder and its role in relation to
applications, see the chapter “The Finder” (page 175).

Application Frameworks, Libraries, and Helpers

Applications sometimes have supplementary code modules—that is, code that isn’t
compiled into the application executable. This supplementary code may take the
form of a framework, a shared library (CFM or otherwise), a plug-in, a helper
application, or some other type of software.

There are various reasons for this compartmentalizing of application code. One is
efficiency; for example, a software developer might have a suite of applications that
all rely on the same framework or that make use of the same helper application,
such as a custom document viewer. Another reason is performance; an application
may decide to defer loading a module such as a plug-in until the user requests it. Or
an application may be designed from the outset to be extensible.

The frameworks and shared libraries in the application package are those needed
for the application to run, or at least to be complete. However, the application
package does not include the Apple-supplied frameworks the application links
with. These are installed in the standard system location /System/Library/
Frameworks. Installers should not delete frameworks in an application package
or move them somewhere else; this includes frameworks that are shared (see
“Shared Frameworks and the Central Directory” (page 121) for the handling
of shared frameworks).

The application bundle has four directories for the various types of supplementary
code:

120 Application Frameworks, Libraries, and Helpers
  Apple Computer, Inc. February 2001

C H A P T E R 6

Application Packaging

Frameworks/

SharedFrameworks/

SharedSupport/

Plug-ins/

The remainder of this section explains the purposes and issues related to the first
three of these directories. For a description of the Plug-ins directory, see
“Applications and Loadable Bundles” (page 123).

Private Frameworks
The Frameworks directory contains frameworks (or shared libraries) that are
inextricably bound to the application. These frameworks are private to the
application. Only the application itself uses the frameworks in this directory, and
no other application does, including applications in the same “suite” or from the
same developer. The dynamic shared libraries of these private frameworks are
revision-locked and will not be superseded by any other, even newer, versions that
may be available to the operating system.

An application always uses the code in Frameworks whereas it may or may not use
the code in SharedFrameworks. If a framework or shared library is missing from
Frameworks, the application cannot launch.

Listing 6-1 illustrates how a typical private framework might be stored in the
application bundle.

Listing 6-1 Location of an application’s private framework

FantasticApp.app/
Contents/

PkgInfo
Info-macos.plist
MacOS/
Resources/
Frameworks/

GoodStuff.framework/
SharedFrameworks/
SharedSupport/
Plug-ins/

C H A P T E R 6

Application Packaging

Application Frameworks, Libraries, and Helpers 121
  Apple Computer, Inc. February 2001

Shared Frameworks and the Central Directory
The SharedFrameworks directory contains frameworks that are also part of the
application package, but these frameworks are meant to be shared with other
applications. Shared frameworks of an application are guaranteed to be forward
compatible, whereas frameworks private to an application don’t have to be.

To facilitate sharing of the most recent version of code in SharedFrameworks,
Mac OS X uses a central directory, or registry. This central directory tracks the
versions of shared frameworks and other shared software in all installed
application packages. Before an application dynamically loads framework code, the
system checks the version of the required framework in SharedFrameworks against
the central directory to see if more a recent version of the same framework is
available. If a more recent version exists, the framework in the SharedFrameworks
directory is ignored and the one identified by the central directory is used. If no
corresponding framework is found in the central directory, or if the version of the
framework is earlier, the framework in the application’s SharedFrameworks directory
is used.

The inclusion of shared frameworks and other shareable software in the application
package contributes to application self-sufficiency. To install, relocate, or remove an
application, users simply drag the application icon and drop it the appropriate
place. An application so installed might not use the most recent version of a shared
framework, but at least it should be able to execute with the frameworks packaged
with it. By keeping track of versioned frameworks within all application packages,
the central directory ensures that an application remains “read-only” and that
pieces of it are not duplicated all over a system. At the same time, the central
directory makes it possible for related applications to use the latest shared
frameworks installed on a system.

Listing 6-2 shows where shared frameworks go in an application package.

Listing 6-2 Location of an application’s shared framework

FantasticApp.app/
Contents/

PkgInfo
Info-macos.plist
MacOS/
Resources/

122 Application Frameworks, Libraries, and Helpers
  Apple Computer, Inc. February 2001

C H A P T E R 6

Application Packaging

Frameworks/
SharedFrameworks/

GreatStuff.framework/
SharedSupport/
Plug-ins/

Other Shared Application Code
Any supplementary, shareable application code that is not a framework, shared
library, or loadable bundle (including plug-ins) goes in the SharedSupport directory
of the application package. Examples of this class of code are helper applications,
assistants, and tools. As with shared frameworks, the latest version of software in
this directory is shared among related applications using the central-directory
mechanism.

In the example in Listing 6-3, FantasticSpreadsheet, which is part of an
office-productivity suite of applications, includes a small graphing application in
SharedSupport. The FantasticSpreadsheet application and its sibling application,
FantasticDatabase, jointly use FantasticGrapher.

When FantasticSpreadsheet is installed, the version of FantasticGrapher is recorded
in the central directory. When the user attempts to run FantasticGrapher, the system
checks the version of the helper application in SharedSupport against the latest
version of the same application in the central directory. It runs whichever version is
most recent.

Listing 6-3 Location of an application’s shared code (nonframework)

FantasticSpreadsheet.app/
Contents/

PkgInfo
Info-macos.plist
MacOS/
Resources/
Frameworks/
SharedFrameworks/
SharedSupport/

FantasticGrapher
Plug-ins/

C H A P T E R 6

Application Packaging

Applications and Loadable Bundles 123
  Apple Computer, Inc. February 2001

Applications and Loadable Bundles

Loadable bundles contain code and programming resources that an application can
dynamically load at runtime. The most common type of loadable bundle is a
plug-in, but there can be others, such as Interface Builder palettes. Loadable bundles
are somewhat different from frameworks and can have a slightly different relation
with applications.

Loadable bundles are bundles just as much as application packages. They can thus
contain all the things an application can, such as private frameworks, shared
frameworks, and other supplementary code, including other plug-ins and other
loadable bundles. (Frameworks, on the other hand, are “versioned” bundles with a
different internal organization, among other differences. See the chapter
“Frameworks” (page 127) for more information on frameworks.)

Plug-ins and other loadable modules are divided into three categories based on how
essential they are to an application:

� those that an application requires to run

� those that are not essential to execution but that are considered part of an
application because users generally want to use them (a tools palette, for
example)

� those that meet neither of the above criteria but offer some additional
functionality (often provided by third-party developers)

Plug-ins and other loadable bundles that meet the first two criteria should be
packaged in the Plug-ins directory of the application bundle. They should always
be packaged with the application so they come along if the user moves the
application to another location. If a loadable bundle is in the third category, the
convention for users is to install it in the Library/Application Support directory of
the logged-in user’s home directory (local or remote). System administrators or
expert users can install such a loadable bundle in the Library/Application Support
directory of the system-local or network domains to make it more widely available.

124 User Resources in Applications
  Apple Computer, Inc. February 2001

C H A P T E R 6

Application Packaging

Regardless of where a plug-in or loadable module is stored, it is the responsibility
of the application to provide some human-interface mechanism enabling users to
select them (as files, not directories). As an example, an application might display a
dialog listing all plug-ins available for loading.

User Resources in Applications

An application can come packaged with a variety of resources. These resource can
range from those that are closely tied to the application’s executable, such as sound
files and localized strings, to more “external” resources such as application help,
preferences, and clip art. Resources are typically stored in the Resources directory
of the application bundle.

However, application resources might not be stored in the application package for
a variety of reasons. One reason for this separation is to make it possible for
applications to run in a net-booted environment. Other reasons are to make the
resources accessible in the file system and to separate resources provided by
third-party contributors from those provided by the application’s developer. The
following sections give information about the preferred locations for several types
of resources.

Application Help
On Mac OS X, the Help Viewer application displays help information for
applications as well as more general help. (Help Viewer is part of the Apple Help
product.) You should store application help files in the appropriate location in the
application’s Resource directory. You put the files in a help book, which is also the
standard format for help on Mac OS 9. You internationalize help books by localizing
their contents (text and images) and putting them in .lproj directories in the
application bundle’s Resource directory. The text files must be HTML 3.2-compliant
and otherwise conform to the specification for Apple Help books. See Inside Carbon:
Providing User Assistance With Apple Help for instructions on preparing and indexing
help files.

C H A P T E R 6

Application Packaging

User Resources in Applications 125
  Apple Computer, Inc. February 2001

The information property list (Info.plist) of an application must contain a key,
CFBundleHelpBookFolder, whose value usually is a string that specifies the name of
a help-book directory in the application’s Resources directory. If the key
CFHelpBookName is also present, and the string value of this key is the AppleTitle tag
of the book, Help Viewer automatically handles the display of the book when the
user chooses the Help menu item. Note that the name of each help-book directory,
regardless of localization, must be the same as the CFBundleHelpBookFolder value—
that is, directory names should not be localized. Your application also can control
how help is opened and presented. The Apple Help APIs give applications several
options related to help, such as opening a help book using the title, opening a help
file using the full directory path to the file, and performing a search for a particular
term or anchor. For more information, see Inside Carbon: Providing User
Assistance With Apple Help.

Although Apple strongly recommends that you put help for an application in an
application bundle, you can also put application help as well as more general help
outside the application package. Such help should go in one of the standard
locations for third-party help, including /Library/Documentation/Help and Library/
Documentation/Help in a user’s home directory. When the user launches the Help
Center from the Finder, Help Viewer scans these locations and displays a link to the
application help. If your application help is installed in one of the standard locations
for help, you do not need to specify any special key-value pairs in the application’s
information property list for Help Viewer to handle it.

Application Preferences
Applications typically are installed with a default set of preferences that users can
then change to suit their working habits. Part of any application’s code is devoted
to displaying the range of preference options, accepting user choices, and writing
these choices to the preferences system (see “The Preferences System” (page 197) in
the chapter “Software Configuration”).

Your application should never write user-preference data inside the application
package. Preferences are stored in the Library/Preferences directory of the
logged-in user’s account (local or network) or in the same location in the
machine-local or network domains. You should never write preferences data
directly to these locations; instead use the APIs offered by Core Foundation
Preference Services (CFPreferences) or, for Cocoa applications, NSUserDefaults.
Part of the reason for the separation of user preferences from the application
package is to make it possible for applications to run in a net-booted environment.

126 User Resources in Applications
  Apple Computer, Inc. February 2001

C H A P T E R 6

Application Packaging

Document Resources
Applications that are document-centric—word processors, spreadsheets, drawing
applications, to name a few—often include resources such as templates, clip art,
tutorials, and assistants. These items can either be packaged in the application
bundle or in a location external to the application package. The rule of thumb for
deciding where such a resource goes is similar to that for plug-ins and other
loadable bundles (see “Applications and Loadable Bundles” (page 123):

� If the resource is provided by the application developer, it should go in the
SharedSupport directory of the application bundle.

� If the resource is from a third party, it should go in one of the standard directory
locations for application resources, such as in the user’s Library/Application
Support folder.

As with loadable bundles, the application should provide some kind of resource
browser that displays application resources (both internal and external to the
package) and allows the user to select from them. The browser, however, should not
divulge the inner structure of the application package.

127
  Apple Computer, Inc. February 2001

C H A P T E R 7

7 Frameworks

A framework is a type of bundle that packages a dynamic shared library with the
resources that the library requires, including header files and reference
documentation. This consolidation of code and resources brings with it a number of
benefits. For example, it makes it easier for the library to locate its resources, and it
makes installation and uninstallation easier on the user.

A framework bundle has an extension of .framework. Inside the bundle there can be
multiple major versions of the framework. A network of symbolic links at the top
level of the framework folder points to the most recent versions of library code and
resources. The dynamic link editor writes the directory location in which to install
a framework into the framework executable. When a program is launched, if the
dynamic link editor cannot find a framework in this location, it looks in the
standard directory locations for the framework. System and third-party
frameworks are often installed in standard directory locations. Third-party
frameworks can also be included in application packages that need those
frameworks.

The executable code in a framework is a dynamic shared library. Multiple,
concurrently running programs can share the code in this library without requiring
their own copy. Unlike statically linked shared libraries, the binding of undefined
symbols in a program linked with a dynamic shared library is delayed until the
execution of the program. The dynamic link editor attempts to resolve undefined
symbols at runtime when those symbols are referenced in the program. If a symbol
in a library module is not referenced in a program, that module is not linked. The
installation paths of dynamic shared libraries are written into all executables built
with those libraries.

Frameworks can have major (or incompatible) versions and minor (or compatible)
versions. The major versioning scheme provides for backward compatibility.
Frameworks that are incompatible with programs linked with a previous version of
the library are given a new major version. Those programs must link with an earlier

128 The Framework as a Library Package
  Apple Computer, Inc. February 2001

C H A P T E R 7

Frameworks

version, which is kept inside the framework bundle. The minor versioning scheme
provides for forward compatibility. A major version of a framework can
incorporate a number of minor versions. A minor version denotes the framework
compatibility of programs linked with later builds of the framework.

The Framework as a Library Package

When libraries are installed in some computing environments, they are put in one
location in the file system and resources related to that code are installed elsewhere.
These related resources include header files as well as things such as images and
localized strings. This scattering of code and resources can contribute to several
problems:

� It complicates uninstallation of the library and its resources.

� It leads to a greater risk of mismatches between libraries and header files.

� It can make it more difficult for library code to locate resources.

Frameworks solve this problem by bundling a dynamic shared library with the
resources used by the library or otherwise related to it. Indeed, “bundling” is an apt
term because frameworks are bundles as much as applications and plug-ins are.
However, frameworks differ in some significant ways from other types of bundles:

� Frameworks include a unique type of resource—header files. They can also
contain as a resource anything else that is appropriate, such as private static
libraries.

� The bundle bit is not set when a framework is built. As a result, the Finder does
not treat the framework as a file package—a directory presented as a file—and
thus developers can browse the packaged header files.

� Frameworks are versioned bundles, which are described in “The Internal
Structure of Frameworks” (page 129).

Note: Frameworks in the current release of Mac OS X are “versioned” bundles.
Their internal directory structure lacks many of the features of the newer types of
bundles, applications and loadable bundles. See “Anatomy of a Bundle”
(page 103) in the chapter “Bundles” for a description of new-style bundles.

C H A P T E R 7

Frameworks

The Framework as a Library Package 129
  Apple Computer, Inc. February 2001

Versioned bundles have an internal structure derived from Mac OS X Server (and
prior) bundles. Apple will eventually convert frameworks to the new internal
structure. Until then, Mac OS X will support both styles of bundles; the system
routines for bundles can deal with both versioned bundles and the more recent type
of bundles.

The Internal Structure of Frameworks
A framework in Mac OS X is a directory with an extension of .framework. When you
open the directory, the first level of its contents looks something like this:

GreatSoftware.framework/
GreatSoftware
Headers/
PrivateHeaders/
Resources/
Versions/

The GreatSoftware item is, in this example, the dynamic shared library. Headers and
PrivateHeaders are subdirectories that store the framework’s public and private
header files. The framework’s resources—items such as interface definition files,
images, sounds, and localized strings—go in the Resources subdirectory.

The Versions subdirectory is the only one at this level that is a “real” directory.
GreatSoftware, Headers, PrivateHeaders, and Resources are all symbolic links
(similar to aliases) to the library and directories of the current major version of the
framework. Figure 7-1 illustrates how this linking is done.

130 The Framework as a Library Package
  Apple Computer, Inc. February 2001

C H A P T E R 7

Frameworks

Figure 7-1 The directory structure of a framework

A framework directory can contain multiple major versions of dynamic shared
libraries (along with their resources). A new major version of a framework is
typically required when the dynamic shared library is not compatible with
programs linked with prior versions of the library. Those applications will not run
with the newest version but will run with an older one, so the older version is
included in the framework bundle. Each version of the framework is contained in a
subdirectory of Versions named, by convention, with letters of the alphabet. For
more on major and minor framework versions, and on versioning in general, see
“Framework Versioning” (page 134).

The contents of the Resources directory of frameworks is similar to that for
new-style bundles. Localized resources are put in subdirectories of Resources. Each
of these subdirectories has a name indicating a language (and possibly a region
where that language is spoken) and an extension of .lproj. Resources specific to a
region in which a language dialect is spoken should take their names from the ISO
3166 standard for country codes and the ISO 639 standard for language codes (with
an underbar separating the codes). For example, resources specific to Canadian
French would go in resource directory fr_CA.lproj. But if you want one directory
to hold all resources for all dialects of French, its name would be French.lproj.

Links to contents
of Current

Links to
most recent

C H A P T E R 7

Frameworks

The Framework as a Library Package 131
  Apple Computer, Inc. February 2001

The .lproj directories hold strings, images, sounds, and interface definitions
localized to that language and locale. An important way in which frameworks differ
from new-style bundles is that nonlocalized resources in frameworks do not go in a
Nonlocalized Resources subdirectory of Resources; instead, they are put in the top
level of the Resources directory.

Standard Locations for Frameworks
Important
Much of the information in this section will be out of date as
soon as frameworks are converted to use the new bundle
structure and the new file-system layout.

A system framework is a framework provided by Apple, such as the Application
Kit or the QuickTime framework. The shared library code in system frameworks is
intended for use by all applications on a system. System frameworks are installed
in /System/Library/Frameworks. Third-party frameworks can go in a number of
different file-system locations, depending on certain factors.

� If they are to be used only by a single user, they should be installed in the
Library/Frameworks subdirectory of the user’s home directory.

� If they are to be used by all users of a particular Mac OS X system, they should
be installed in /Library/Frameworks.

� If they are to be used across a local area network, they should be installed in
/Network/Library/Frameworks.

When you build an application or other executable, the compiler looks for imported
frameworks in/System/Library/Frameworks as well as any other location specified to
the compiler. The paths where required frameworks are expected to be installed are
written into the executable itself, along with version information.

When an application is run, the dynamic link editor first tries to link with the
frameworks whose installation paths are written into the executable. If it cannot
find a framework in a specified location (perhaps it has been moved or deleted), it
looks for frameworks in these standard fallback locations, in this order:

~/Library/Frameworks

/Library/Frameworks

/Network/Library/Frameworks

/System/Library/Frameworks

132 Dynamic Shared Libraries
  Apple Computer, Inc. February 2001

C H A P T E R 7

Frameworks

If the dynamic link editor cannot locate a required framework, it generates a link
edit error and the application will not launch.

Dynamic Shared Libraries

The executable code in a framework bundle is a dynamically linked shared
library—or, simply, a dynamic shared library. This is a library whose code can be
shared by multiple, concurrently running programs. Programs share exactly one
physical copy of the library code and do not require their own copies of that code.
Dynamic shared libraries bring several benefits. They enable more efficient use of
memory and allow developers to fix bugs in library code and test those fixes
without the need to rebuild programs that use those libraries.

Dynamic shared libraries have characteristics that set them apart from statically
linked shared libraries. With dynamic shared libraries, the binding of undefined
symbols in a program is delayed until the execution of that program. In other
words, the dynamic link editor not only attempts to resolve all undefined symbols
at runtime, but attempts to do so only when those symbols are referenced during
program execution. If an undefined symbol is not referenced, the binding is not
needed for that particular execution of the program.

This dynamic behavior derives from the composition of dynamic shared libraries.
The object-code modules from which a dynamic shared library is built retain their
individual boundaries; that is, the code from the source modules is not merged into
a single code base. When a program linked with a dynamic shared library is
launched, the dynamic link editor automatically loads and links modules in the
library, but it links them only as they are needed; in other words, a module is linked
only if a symbol is referenced or a function is invoked that is defined in that module.
If code in a module is not referenced or invoked, the module is not linked. Figure
7-2 illustrates this “lazy linking” behavior. In this example, module a.o is linked in

Note: Although you can create dynamic shared libraries that reside outside a
framework, this is an uncommon approach. Stand-alone dynamic shared
libraries take, by convention, the extension .dylib and typically are installed in
the standard file-system locations for libraries.

C H A P T E R 7

Frameworks

Dynamic Shared Libraries 133
  Apple Computer, Inc. February 2001

the program’s main routine when library function a is called; module b.o is linked
when library function b in program function doThat is invoked; module c.o is never
linked because its function is never called.

Figure 7-2 Lazy linking of dynamic shared library modules

As a framework developer, you should design your dynamic shared library with
this as-needed linking of separate modules in mind. Because the dynamic link
editor always attempts to bind unresolved symbols within the same module before
going on to other modules and other libraries, you should ensure that
interdependent code is put in its own module. For example, custom allocation and
deallocation routines should go in the same module. This technique prevents the
wrong symbol definitions from being used. This problem can occur when
definitions of a symbol exist in more than one dynamic shared library and those
other symbol definitions override the correct one.

#include <Boffo/Boffo.h>;
#include "main.h";
#include "doThat.h";

int main() {
a();
doThat(1);
return 0;

}
...

main.c

#include <Boffo/Boffo.h>;
#include "doThat.h";

void doThat (int n) {
b();
if (!n);

c();
}

doThat.c

MyApp.app Boffo.framework

a.o
#include "a.h";

void a() {
...

}

.........
.....

..............

b.o
#include "b.h";

void b() {
...

}

.........
.....

..............

c.o
#include "c.h";

void c() {
...

}

.........
.....

..............

links

links

134 Framework Versioning
  Apple Computer, Inc. February 2001

C H A P T E R 7

Frameworks

When you create a framework, you must ensure that each symbol is defined only
once in a library. In addition, “common” symbols are not allowed in the library; you
must use a single true definition and precede all other definitions with the extern
keyword in C code.

When you build a program, linking it against a dynamic shared library, the
installation path of the library is recorded in the program. For the system
frameworks supplied by Apple, the path is absolute. For third-party frameworks,
the path is relative to the application package that contains the framework. This
capture of the library path improves launching performance for the program.
Instead of having to search the file system, the dynamic link editor goes directly to
the dynamic shared library and links it into the program. This means, obviously,
that for a program to run, any required library must be installed where the recorded
path indicates it can be found, or it must be installed in one of the standard fallback
locations for frameworks and libraries.

Dynamic shared libraries can have dependencies on other dynamic shared libraries
and these dependencies are recorded in the library executable. When the dynamic
link editor links a program against the first dynamic shared library, it can obtain the
paths of these dependent libraries and link against those as well. Thus the users of
a dynamic shared library do not have to be aware of any dependencies when
linking their programs against it.

Dynamic shared libraries can also be versioned, enabling backward compatibility
and some degree of forward compatibility. See “Framework Versioning” (page 134)
for more on this subject.

Framework Versioning

You can create different versions of frameworks based on the type of changes made
to their dynamic shared libraries. There are two types of versions: major (or
incompatible) and minor (or compatible) versions.

C H A P T E R 7

Frameworks

Framework Versioning 135
  Apple Computer, Inc. February 2001

Major Versions
A major version of a framework, also known as an incompatible version, is
incompatible with programs linked with a previous version of the framework’s
dynamic shared library. If any such program tries to run against the newer version
of the framework, it will probably experience runtime errors.

Because all major versions of a framework are typically kept within the framework
bundle, a program that is incompatible with the current version can still run against
the version it is compatible with. The path of each major version of a framework
encodes the version (see “The Internal Structure of Frameworks” (page 129)). For
example, the letter “A” in the path below indicates the major version of a
hypothetical framework:

/System/Library/Frameworks/Boffo.framework/Versions/A/Boffo

When the program is built, this path is recorded in the program executable itself.
When the program is run, the dynamic link editor uses this path to find the
compatible version of the framework’s library. Thus the major versioning scheme
enables backward compatibility of a framework by including all major versions and
recording the major version for each executable to run against.

You should make a new major version of a framework when any of the following
changes renders the dynamic shared library incompatible with programs linked
with previous versions of the library:

� removing public API, such as a class, function, method, or structure

� renaming public API

� changing the data layout of a structure or adding to, changing, or reordering the
instance variables of a class

� adding methods to a C++ class

� changing the programmatic interfaces of public API

An example of the last sort of change would be changing the order of parameters in
a function.

The most recently built major version of a framework is typically made the
“current” version. Unless you specify otherwise, each program you build is linked
against the current version of a library; older programs that you rebuild are
linked against the current version as well. When frameworks are built, the build

136 Framework Versioning
  Apple Computer, Inc. February 2001

C H A P T E R 7

Frameworks

system automatically generates a network of symbolic links that point to the current
major version of a framework. See “The Internal Structure of Frameworks”
(page 129) for details.

When you create a new major version of a framework, your integrated development
environment takes care of most of the implementation details for you. All you need
to do is specify the major-version designator. A popular convention for this
designator is the letters of the alphabet, with each new version designator
“incremented” from the previous one. However, you can use whatever convention
is suitable for your needs, for example “2.0” or “Two”.

You can also make major incompatible versions of stand-alone dynamic shared
libraries (that is, libraries not contained within a framework bundle). The major
version of this type of library is encoded in the filename itself, for example:

libMyLib.B.dylib

Then, assuming that this library is the most recent major version, the symbolic link
libMyLib.dylib is created to point to it. This creates the current major version of the
dynamic shared library.

Minor Versions
Within a major version of a framework there can be a series of minor, or compatible,
versions. The minor versioning of a framework determines its compatibility with
programs linked with later builds of the framework within the same major version.
The minor versioning scheme thus helps to establish forward compatibility. If
programming interfaces have been introduced to a recent version of a framework,
programs that are built against this framework may not work with earlier minor
versions of the framework. The program might have references to those new APIs
and thus, if it is launched, it would probably crash with link-edit errors. Minor
versioning gives framework developers control over how old a version of the
framework can be used with an executable linked with a more recent version.

The relationship between two version numbers—the current version and the
compatibility version—specifies a framework’s minor-version status in relation to
a particular program. The current version of a framework is a number that is
incremented each time a framework is rebuilt after a compatible change is made to
it (that is, a change not requiring a new major version).

C H A P T E R 7

Frameworks

Framework Versioning 137
  Apple Computer, Inc. February 2001

The type of change introduced in a framework affects the value of the second minor
version number, the compatibility version. If the change is merely a bug fix or an
enhancement that does not affect any public API, the compatibility version is left
unchanged from its current value. If, however, you have added classes, methods,
functions, structures, or any other public API to the framework, the compatibility
version number should be set to the same value as the current version number.

Important
The addition of instance variables to Objective-C or C++
classes or the addition of C++ methods constitutes a major
incompatible change, not a minor compatible change.

When a framework is built or rebuilt, its current version number and its
compatibility version number are recorded in the framework’s dynamic shared
library. When you build a program that links against this framework, these same
numbers are encoded in the program executable, along with the path of the
framework (which contains the major version designator). When you try to run the
program, the dynamic link editor compares the program’s compatibility version
number and the framework’s compatibility version number; if the program’s
compatibility version is greater than the framework’s compatibility version, the
program does not launch.

The minor versioning scheme applies as much to stand-alone dynamic shared
libraries as to frameworks.

Versioning Summary and Guidelines
In Mac OS X there are two types of versions for frameworks and dynamic shared
libraries:

� Major incompatible version—Designates a framework that is incompatible with
programs linked with a previous version of the framework’s dynamic shared
library (backward compatibility).

� Minor compatible version—Designates a framework that is compatible with
programs linked with later builds of the framework within the same major
version (forward compatibility).

138 Framework Versioning
  Apple Computer, Inc. February 2001

C H A P T E R 7

Frameworks

Table 7-1 summarizes the salient facts about each type of version.

The otool command-line program displays output that can give you an idea of how
versioning information is recorded in a program executable. To use this program,
change directories to any Mac OS X application and enter the following in a
Terminal shell: otool -L appName where appName is the name of the application.

If you don’t change the framework’s major version number when you need to,
programs linked with it will fail in unpredictable ways. If you change the major
version number and you don’t need to, you’re cluttering up the system with
unnecessary frameworks.

The main trick is to avoid having to change the version number in the first place.
Here are some ways to do this:

Table 7-1 Summary of framework versioning

Type of version When required What happens

Major/incompatible
(backward compatible)

API changes (such as renamed
functions); deleted API; new or
reordered instance variables;
new C++ methods.

Major version designator
changed; new designator is
reflected in framework path.
Path of dynamic shared library
recorded in programs built with
framework.

Minor/compatible
(forward compatible)

New function, method, class,
structure, and so forth.

Current (minor) version number
incremented; compatibility
version set to the same value as
current (minor) version. Values
recorded in programs built with
this framework.

None Bug fixes, enhancements not
affecting programmatic
interfaces

Current (minor) version
incremented; compatibility
version remains the same. Values
are recorded in programs built
with this framework.

C H A P T E R 7

Frameworks

Framework Versioning 139
  Apple Computer, Inc. February 2001

� Pad classes and structures with reserved fields. Whenever you add an instance
variable to a public class, you must change the major version number because
subclasses depend on a superclass’s size. However, you can pad a class and a
structure by defining unused (“reserved”) instance variables and fields. Then, if
you need to add instance variables to the class, you can instead define a whole
new class containing the storage you need and have your reserved instance
variable point to it.

Keep in mind that padding the instance variables of frequently instantiated
classes or the fields of frequently allocated structures has a cost in memory.

� Don’t publish API unless you want your users to use it. You can freely change
private API because you can be sure no programs are using it. Declare any API
in danger of changing in a private header.

� Don’t delete things. If a method or function no longer has any useful work to
perform, leave it in the API for compatibility purposes. Make sure it returns
some reasonable value. Even if you add additional arguments to a method or
function, leave the old form around if at all possible.

� Remember that if you add API rather than change or delete it, you don't have to
change the major version number because the old API still exists. The exception
to this rule is instance variables. (You do have to change the compatibility
version number, however.)

When you do a “make clean” with your integrated development environment, you
delete the entire framework bundle in the project directory, which means it deletes
the old binaries in addition to the current binary. The subsequent build creates only
the current version. You have no way of retrieving the earlier versions. If you must
perform a make clean, you’ll need to create multiple copies of the project: one that
builds the current version and one for each of the previous versions.

140 Framework Versioning
  Apple Computer, Inc. February 2001

C H A P T E R 7

Frameworks

141
  Apple Computer, Inc. February 2001

C H A P T E R 8

8 Umbrella Frameworks

An umbrella framework is a public system framework that includes and links with
constituent subframeworks and other public frameworks provided by Apple. A
subframework is a public but restricted system framework that typically packages
a specific Apple technology such as Open Transport or QuickDraw.

As the word “umbrella” implies, an umbrella framework encompasses all the
technologies and APIs that define an application environment or a layer of system
software. It provides a layer of abstraction between what outside developers link
their programs with and what Apple engineering provides as implementation. The
internal composition of subframeworks is an implementation detail subject to
change. Apple has put mechanisms in place to discourage developers from directly
including and linking with subframeworks.

Umbrella frameworks are not recommended for third-party developers. Apple
instead recommends that external developers package their frameworks in
applications. See the chapter “Application Packaging” (page 117) for more
information.

This chapter describes the various kinds of private and public frameworks,
defines umbrella frameworks and subframeworks, illustrates the internal structure
of umbrella frameworks, and offers guidelines for linking with umbrella
frameworks.

142 Kinds of Frameworks
  Apple Computer, Inc. February 2001

C H A P T E R 8

Umbrella Frameworks

Kinds of Frameworks

The major application environments of Mac OS X as well as the layers of system
software—the Application Services, Core Services, and kernel environment
layers—are packaged as umbrella frameworks. The definition of this term depends
on a few concepts that require several stages of explanation.

First, what is a framework? A framework is a hierarchically structured directory
that holds a dynamic shared library along with supporting resources. These
resources include header files, reference documentation, image files, and localized
strings. The chapter “Frameworks” (page 127) describes frameworks in detail. A
framework is also a type of bundle, but it differs in significant ways from other
types of bundles, such as applications and plug-ins; see the chapter “Bundles”
(page 101) for detailed information on bundles.

Second, a framework can be one of several types, or “flavors.” To begin with, a
frameworks is either private or public. Private frameworks are used only for
internal development and their APIs are not exposed to customers. By convention,
they go in the PrivateFrameworks folder of the system’s, network’s, or a user’s
Library directory; however, if frameworks are closely bound to an application, they
typically go inside the application package (see “Application Packaging”
(page 117)). Public frameworks are shipped to customers and their APIs are
exposed through their header files. By convention, they are installed in the
Frameworks directory in the appropriate Library location.

Third, the public frameworks that Apple ships with Mac OS X come in three
varieties: the simple kind of public framework, the subframework, and the umbrella
framework. These frameworks are installed on the installation hard disk in /System/
Library/Frameworks. Public frameworks in this directory may be of the simple
sort—that is, neither umbrella framework or subframework—only if they have
been widely used in prior versions of the operating system, such as Mac OS X
Server. The Cocoa application environment’s Foundation and Application Kit
frameworks fall into this category.

C H A P T E R 8

Umbrella Frameworks

The Purpose of Umbrella Frameworks 143
  Apple Computer, Inc. February 2001

The Purpose of Umbrella Frameworks

An umbrella framework simply includes and links with constituent subframeworks
and other public frameworks. An umbrella framework encompasses all the
technologies and APIs that define an application environment or a layer of system
software. It provides a layer of abstraction between what outside developers link
their programs with and what Apple engineering provides as implementation.

A subframework is structurally a public framework that packages a specific Apple
technology, such as Apple events or Quartz or Open Transport. However, a
subframework is public with restrictions. Although the APIs of subframeworks are
public, Apple has put mechanisms in place to prevent developers from linking
directly with subframeworks (see “Restrictions on Subframework Linking”
(page 148)). A subframework always resides in an umbrella framework installed in
/System/Library/Frameworks, and within this umbrella framework, its header files
are exposed (see “The Structure of an Umbrella Framework” (page 146)).

Some umbrella frameworks include other umbrella frameworks; this is particularly
this case with the umbrella frameworks for the Carbon and Cocoa application
environments. For example, both Carbon and Cocoa (directly or indirectly) import
and link with the Core Services umbrella framework (CoreServices.framework).
This umbrella framework, in turn, imports and links with subframeworks such as
Core Foundation and Open Transport. Listing 8-1 (page 147) illustrates these
relationships.

144 The Purpose of Umbrella Frameworks
  Apple Computer, Inc. February 2001

C H A P T E R 8

Umbrella Frameworks

Figure 8-1 The relationship between an umbrella framework and its subframeworks

The exact composition of the subframeworks within an umbrella framework is an
internal implementation detail subject to change. But by providing a level of
indirection, umbrella frameworks insulate developers from these changes. Apple
might restructure the subframeworks within an umbrella framework and might
add, rename, or remove the header files within subframeworks. But these changes
should not affect programs that link with the umbrella framework.

The value of an umbrella framework is that, by linking with it and only it, you can
be assured that you have access to all the APIs necessary for programming in a
particular application environment or layer of system software. Umbrella
frameworks hide the complex cross-dependencies among the many different pieces
of system software. Thus you do not need to know what set of frameworks and
libraries you must import to accomplish a particular task. Umbrella frameworks
also make faster builds possible because a precompiled header is included along
with any umbrella header file or framework header file.

Subframeworks

Subframeworks
Carbon application

#includes

Umbrella framework

dynamically loads

Core Foundation

Open Transport

Subframework1

Subframework2

Core Services

OSStatus err;
err =
InitOpenTransport(void);

Umbrella framework

Carbon

...

...

...

...

C H A P T E R 8

Umbrella Frameworks

Linking and Including Guideline 145
  Apple Computer, Inc. February 2001

Linking and Including Guideline

For Mac OS X software developers the guideline for including header files and
linking with system software is fairly straightforward: Include only the umbrella
header file and link only with the umbrella framework appropriate to the program
you are creating.

An umbrella header file includes the framework header files of its subframeworks.
A framework header file (such as in a subframework) includes all the header files
of the framework. You should never directly include the header files from
subframeworks or link directly with them (and, in fact, you are prevented from
doing so).

The general syntax of the command for including framework header files in
Mac OS X is

#include <Framework/Header.h>

Where Framework is the name of the framework and Header is the name of a header
file.

To specify umbrella frameworks when developing software for Mac OS X, use the
same #include syntax that is used for framework header files. In other words, to
specify the Carbon umbrella framework, use the following command:

#include <Carbon/Carbon.h>

However, Apple provides an interim solution for Carbon developers porting their
source code from Mac OS 9 to Mac OS X or otherwise writing code to be built on
both operating systems. This “flat header” alternative allows them to continue
using their present #include commands. In /Developer/Headers/FlatCarbon are stub
files for all public Mac OS 9 header files. These stub files redirect the compiler to the

Note: For Objective-C projects, the #import directive may be used instead of
#include; this directive is identical to #include, except that it makes sure that the
same file is never included more than once.

146 The Structure of an Umbrella Framework
  Apple Computer, Inc. February 2001

C H A P T E R 8

Umbrella Frameworks

appropriate umbrella header file or contain warnings if the API is not valid on
Mac OS X. To make use of the stub files, you must use the compiler’s -I flag (that is
capital “I”, not lowercase “l”) to include the files in the FlatCarbon folder:

-I/Developer/Headers/FlatCarbon

Make sure that you include both MacWindows.h and MacTypes.h.

Once you are only compiling code for Mac OS X, you should start using the native
syntax for including umbrella frameworks. (As a side effect of doing this, build time
will decrease.) You can also conditionalize your #include commands so that they
include umbrella frameworks directly (for example, #include <Carbon/Carbon.h>)
when you are building on Mac OS X and include flat headers (for example, #include
<Dialogs.h>) when you are building on Mac OS 9. This conditional approach
obviates the need for the -I flag.

The book Inside Carbon: Carbon Porting Guide contains a more detailed discussion of
the flat-header #include technique. Also see “The Structure of an Umbrella
Framework” (page 146) for more information about umbrella header files.

Do not worry about bloating your program’s memory footprint by linking it with
an umbrella framework and including its (potentially) dozens of header files.
Because the executable code of a framework is a dynamic shared library, a
subframework’s code is loaded into memory only when one of its functions or
methods is first called. If your program does not use a subframework, it is not
loaded. See “Dynamic Shared Libraries” (page 132) in the chapter “Frameworks”
for more on this subject.

The Structure of an Umbrella Framework

Two things determine the structure of an umbrella framework. The first is the
manner in which it includes header files. The second is how it, as a bundle directory,
organizes its subframeworks.

The #include examples in the previous section suggests how umbrella header files
and framework header files are used to accomplish the level of abstraction afforded
by umbrella frameworks. To reiterate, the general syntax of the #include command
for including framework header files and umbrella header files is

C H A P T E R 8

Umbrella Frameworks

The Structure of an Umbrella Framework 147
  Apple Computer, Inc. February 2001

#include <Framework/Header.h>

In this convention, the framework and the umbrella header file have the same name.

An umbrella header file includes the framework header files of its subframeworks.
For example, the umbrella header for the Core Services umbrella framework,
CoreServices.h, has contents similar to the following:

#include <CoreFoundation/CoreFoundation.h>
#include <OT/OT.h>
#include ...

The framework header file includes all the header files defining the public interface
of a particular technology. CoreFoundation.h, for example, is the framework header
for the Core Foundation subframework (CoreFoundation.framework). Its contents
are similar to the following:

#include <CoreFoundation/CFBase.h>
#include <CoreFoundation/CFArray.h>
#include <CoreFoundation/CFBag.h>
#include ...

Physically, umbrella frameworks contain their subframeworks using a structure
constructed from subdirectories and symbolic links (a mechanism similar to
aliases). Listing 8-1 depicts a hypothetical framework. (Symbolic links in this
example are items followed by an “at” sign (@); they include the referenced path.)

Listing 8-1 Structure of an umbrella framework

Umbrella.framework/
Headers@ -> Versions/Current/Headers/
PrivateHeaders@ - > Versions/Current/PrivateHeaders/
Resources@ -> Versions/Current/Resources/
Umbrella@ -> Versions/Current/Umbrella
Versions/
Frameworks/

SubFW1.framework/
SubFW1@ -> Versions/Current/SubFW1
Headers@ -> Versions/Current/Headers/
PrivateHeaders@ -> /Versions/Current/PrivateHeaders/
Resources@ -> Versions/Current/Resources/

148 Restrictions on Subframework Linking
  Apple Computer, Inc. February 2001

C H A P T E R 8

Umbrella Frameworks

Versions/
SubFW2.framework/

SubFW2@ -> Versions/Current/SubFW2
Headers@ -> Versions/Current/Headers/
PrivateHeaders@ -> /Versions/Current/PrivateHeaders/
Resources@ -> Versions/Current/Resources/
Versions/

Each subframework of the umbrella framework goes in the Frameworks directory.
The Headers directory referenced by the umbrella framework’s symbolic link
contains the umbrella header file (Umbrella.h in the above example). The umbrella
header file includes a #pragma command that tells the compiler where the
subframeworks are located.

There are a couple of things to note about the structure of frameworks in general:

� The PrivateHeaders directory contains header files used in internal development
and is not shipped to customers.

� Aside from the umbrella framework’s Frameworks directory, the Versions
subdirectory of a framework is the only “real” one—that is, the only directory at
that level that isn’t a symbolic link. It contains the major versions of a
framework. The Current directory is a symbolic link that typically points to the
most recent version. For more on the general structure of frameworks, see “The
Framework as a Library Package” (page 128) in the chapter “Frameworks.”

Restrictions on Subframework Linking

Mac OS X includes two mechanisms for ensuring that developers link only with
umbrella frameworks. One mechanism is triggered when you attempt to include
subframework header files. The other mechanism prevents linking with
subframeworks.

If, as an external developer, you try to link with a subframework, the linker causes
the link to fail and displays a message explaining why. For example, if you try to
link directly with the Open Transport framework (OT.framework), the link fails and
the linker prints the following message: “OT.framework is a subframework. Link
against the umbrella framework CoreServices.framework instead.”

C H A P T E R 8

Umbrella Frameworks

Restrictions on Subframework Linking 149
  Apple Computer, Inc. February 2001

If you try to include a header file that is in a subframework, you get a compile-time
error message. The umbrella header files and the subframework header files
contain preprocessor variables and checks to guard against the inclusion of
subframework header files. If you compile your project with an improper #include
statement, the compiler generates an error message.

150 Restrictions on Subframework Linking
  Apple Computer, Inc. February 2001

C H A P T E R 8

Umbrella Frameworks

How the File System Is Organized 151
  Apple Computer, Inc. February 2001

C H A P T E R 9

9 The File System

From an architectural perspective, Mac OS X implements multiple file systems,
most importantly Mac OS Extended (HFS+), Mac OS Standard (HFS), UFS, ISO
9660, NFS, and AFP. But from a user perspective, the file systems are monolithic;
when users copy, move, or drag files and folders, there is (or seems to be) one file
system.

This chapter looks at file systems from both perspectives and discusses topics that
are of interest to software developers. First it describes the standard directory
layout on Mac OS X—where things like applications, documents, frameworks, and
resources go in a multiuser, networked computing environment. Then it describes
differences and issues of interoperability between the various file systems,
particularly the dominant ones: HFS+ and UFS. It also explains the implementation
of HFS resource forks and the policies related to this implementation.

How the File System Is Organized

In Mac OS X almost every file in the file system has its proper place—a standard
directory location for files of that type. For users, this doesn’t mean they must put
their applications and application resources in the recommended locations.
Applications, after all, are packaged so they can be self-sufficient wherever they’re
installed. But if users do not put certain things where system software expects them,
they might lose out. For example, the Finder first populates an application database
by looking in the standard locations for applications (“Collecting Application
Information” (page 178)). As a result, a document belonging to an application that
is not in one of those locations might not immediately open when double-clicked.

152 How the File System Is Organized
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

Before exploring the rationale behind the file-system organization, let’s consider
what the Finder displays at the top level of the file system. Listing 9-1 illustrates a
hypothetical installation.

Listing 9-1 The top level of the Mac OS X file system

/Mac OS X/
/Network/
/OtherDevice/

The layout of a file system is often represented as a hierarchical tree structure that
begins at a “root.” At the root of a typical Mac OS X file system (root indicated by
an initial /) are

� /Mac OS X/—The volume from which the operating system boots and on which
system software and resources are installed. This volume is typically a hard disk
formatted to be a Mac OS Extended (HFS+) volume (although it can be a UFS
volume). The name “Mac OS X” is the default volume name, which users can
change.

� /Network/—The root of the local area network, as mounted on the user’s system.
The /Network/ directory (whose icon is a globe) always appears whether the user
is connected to a network or not.

� /OtherDevice/—Represents externally connected devices or internal devices
that are not the boot volume or partitions of such devices. These could include
items such as Zip drives, CD-ROM drives, or digital cameras as well as hard
disks. (“OtherDevice” is only representative; the actual name of each connected
device will be different.)

All non-boot volumes appear as they are mounted and disappear when they are
unmounted. An exception to this is the user’s iDisk volume, which appears even
when it is unmounted.

At the root level, but hidden from users by the Finder, are the standard BSD
directories such as /usr, /bin, and /etc.

Note: Keep in mind that the foregoing describes the top level of the file system as
presented by the Finder. The actual organization, which you can see in a BSD shell
(using the Terminal application) is slightly different. Some of these differences
are noted below in passing.

C H A P T E R 9

The File System

How the File System Is Organized 153
  Apple Computer, Inc. February 2001

So, at the uppermost level, the organization of file systems on a Mac OS X computer
is by hard (boot) disk, network, and external devices and non-boot volumes. But the
full organization goes deeper than that.

File-System Domains
The directories of the Mac OS X file system are arranged so that resources local to
the user’s computer are segregated from those on the network, and, on a computer,
system resources are segregated from those under the control of the user or system
administrator. Applications, documents, fonts, and other resources should go in
one of several file-system domains. A domain is an area of the file system
segregated from other domains and with structural elements identical to other
domains.

Which domain an item goes in depends on how accessible you want that item to be.
There are four domains:

� User. The domain specific to the user who is logged into the system. This
domain is defined by the user’s home directory, which can either be on the boot
volume (/Mac OS X/) or on the network. The user has complete control of what
goes into this domain.

� Local. The domain for applications, documents, and resources shared among all
users of a particular computer and not needed for the computer to run. Users
with system administrator privileges can add, remove, and modify items in this
domain. This domain is located on the local boot (and root) volume.

� Network. The domain for applications, documents, and resources shared
among all users of a local area network. Items in this domain are typically
located on network file servers and are under the control of a network
administrator.

� System. The domain for system software installed by Apple, also on the boot
(and root) volume. The system domain contains the software the system needs
to run. Users cannot add to, remove anything from, or alter the contents of this
domain.

The domain a program or resource is placed in defines the scope of applicability or
accessibility for that program or resource. For example, if a user installs a custom
font in the standard location for fonts in his home directory, that font is available to
his documents only. If an administrator installs the same font in the network
location for fonts, the font is available to everyone on the network.

154 How the File System Is Organized
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

The replication of directory structure and the names of directories themselves
within each domain achieves a regularity that various system routines use when
they look for a particular item. This regularity of structure and naming forms the
basis of several conventions used by system software to locate applications,
frameworks, fonts, help, preferences, and other resources; without it, many system
services might not work. When system software searches for something, it generally
searches the domains in the order given above: first user domain, then local domain,
then network domain, and finally system domain.

Your code should never explicitly specify the paths to a location within a file-system
domain. Those paths could change in the future. Instead, always use the constants
provided by the public APIs Apple provides for this purpose. See “Searching
Within the File-System Domains” (page 166) for more on searching for items within
the domains.

The System and Local Domains
The applications and resources in the system and local domains are available to all
users of a computer system. The difference between them is that the system domain
(with rare exceptions) is exclusive; users cannot install their resources in the system
domain or modify its contents.

Listing 9-2 shows the directory layout for the system and local domains.

Listing 9-2 Directory layout for system and local domains

/Mac OS X/
Applications/

Extras/
Utilities/

Library/
System/
Users/

When the Classic compatibility environment is installed, the installer can place
additional directories at the root of the boot volume (/Mac OS X); see “Directories of
the Classic Environment” (page 156) for details.

C H A P T E R 9

The File System

How the File System Is Organized 155
  Apple Computer, Inc. February 2001

The base installation package installs the directories of the system and local
domains. Table 9-1 describes the properties and contents of these directories.

Table 9-1 Directories of the system and local domains

Location Description

/Mac OS X/Applications/ Combines the system and local domains for
applications that are available to all users of the same
computer. It contains the applications shipped by
Apple plus third-party applications. The contents of
this directory can be modified by an administrator of
the local system (which is any user in the “admin”
group). The subdirectory Utilities contains
administrative and utility applications; the
subdirectory Extras contains demonstration and
miscellaneous applications.

/Mac OS X/Library/ The part of the local domain containing resources—
except applications—available to all users of the
machine. These resources, contributed by both Apple
and third parties, are not essential to running the
operating system. They include fonts, keyboards,
color pickers, plug-ins, and user documentation
(including Apple’s). Only system administrators
(users with “admin” group privileges) can modify
the contents of this directory. For more on the
Library directory, see “The Library Directory”
(page 162).

/Mac OS X/System/ The part of the system domain containing the
Apple-provided files essential to a bootable system.
It includes resources such as system frameworks and
fonts. Only the “root” user can modify the contents
of this directory; users with “admin” group
privileges cannot modify it. Never try to change
what is in this directory because doing so could
render the system unbootable; for that reason,
enabling the root user is discouraged. Note that
Apple-provided applications and documentation are
not put here.

/Mac OS X/Users/ See the section, “The User Domain” (page 157).

156 How the File System Is Organized
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

A major difference between what the Finder presents and the actual location of
items is the directory where mounted volumes are stored, including the root
volume itself. This is the directory /Mac OS X/Volumes/. The Finder displays these
volumes, plus the /Network directory, at the top level of the file-system hierarchy in
its windows.

Directories of the Classic Environment
You must install Mac OS X for the first time on a Mac OS 9 system, and that system
should be Mac OS 9.1 (or later). What happens to the Mac OS 9 system depends on
whether the computer has a single partition or multiple partitions (or external hard
disks).

If you are installing Mac OS X on a separate partition of the computer (formatted
either for HFS+ or UFS), the Mac OS 9 volume remains basically undisturbed if it is
Mac OS 9.1 or later. If not, the user must install an appropriately recent version of
Mac OS 9. The Classic pane of the System Preferences application lets you associate
the Classic compatibility environment with this volume; then, when you first start
Classic, the system adds some required files to the System Folder in the Mac OS 9
volume. It also adds the Mac OS 9 directory to the root of the boot volume (/
Mac OS X); this directory contains the System Disk control panel which allows users
to switch between boot volumes. This scheme allows you to boot into the Mac OS 9
volume and use it as the home for your Classic environment.

If you install Mac OS X onto a single-partition system containing Mac OS 9.1 (or
later), the Installer creates a directory named Mac OS 9 Files under Mac OS X and,
except for the exceptions described below, moves to it all files and directories not
included in a clean install. It also does the following:

1. The Installer creates a directory named Applications (Mac OS 9) under Mac OS X
and moves all preexisting applications to it.

2. It moves the System Folder and the Documents folder (if one exists) to the root of
the Mac OS X volume.

3. If the Mac OS 9 system has the Multiple Users feature enabled, the Installer
creates a home directory in the Users folder for each specified user.

4. The Installer creates an alias to /Desktop Folder in the /Mac OS 9 Files directory.

If the single-partition Mac OS 9 system is earlier than Mac OS 9.1, the Installer
advises the user to upgrade to Mac OS 9.1 (or later) before installing Mac OS X.

C H A P T E R 9

The File System

How the File System Is Organized 157
  Apple Computer, Inc. February 2001

Listing 9-3 illustrates what the layout of the Mac OS X directory looks like after such
an installation.

Listing 9-3 Directory layout after installing on a single partition

/Mac OS X/
Mac OS 9 Files/

Desktop Folder alias
System Folder/
Applications (Mac OS 9)/
Documents/
Applications/
Library/
System/
Users/
Volumes/

The User Domain
Each user of a Mac OS X computer system must have an account on that system or
on a local area network to which that system is connected. An administrator sets up
each user account on a local system or on a network. To access his or her account, a
user must log in by entering a user name and a password in the login window.

A user’s account grants him or her an area in the file system to store programs,
resources, and documents. The topmost directory in this area is the user’s home
directory, which is conventionally named to identify the user. A user’s account also
gives the user certain resources within the home directory, and it protects files in
that directory from outside interference by a set of default file permissions (which
the user is free to change). The user domain references the “current” (logged-in)
user’s home directory.

The user domain makes a customized working environment possible for each user.
When users log in, the Finder restores their working environment to what it was
when they last logged out. Applications and system software execute with the set
of preferences selected by the user; network, Internet, and email settings are
restored; font sets and ColorSync profiles are also restored.

158 How the File System Is Organized
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

Mac OS X uses the convention of a ~ (tilde) character to indicate a user’s home
directory; it can be used to specify (by itself) the current user’s home directory and
to specify any other user’s home directory. Table 9-2 illustrates this.

Listing 9-4 shows the directory layout of a typical user domain local to a computer
system.

Listing 9-4 Directory layout of user domain local to a computer

/Mac OS X/
Mac OS 9/
Applications/
System/
Library/
Users/

Shared/
Steve/

Documents/
Library/
Public/
Desktop/
Movies/
Music/
Pictures/
Sites/

Table 9-2 Uses of tilde to indicate locations in home directories

~ Top level of current user’s home directory

~/Library/Fonts Where fonts are stored in current user’s home directory

~Steve Top level of user Steve’s home directory

C H A P T E R 9

The File System

How the File System Is Organized 159
  Apple Computer, Inc. February 2001

Each of the directories created in a user’s home directory has a specific purpose. The
names of some of these directories mirror those found in iDisk accounts; for more
information on iDisk, see the iTools section of http://www.apple.com. The default
directories in a user’s home directory are:

Location in /Mac OS X Description

Users/Shared A directory whose contents are shareable by any user of
the local computer system. Any user of this computer can
write documents to, retrieve documents from, and read
documents in this directory. Although this directory is
not really associated with the user domain, it provides a
convenient means for users to exchange documents and
other files.

Users/<username> The home directory of a particular user (<username>) on
this computer system. The system provides each home
directory with its own Desktop, Documents, Library, and
Public directories. The Desktop directory contains the
items Finder displays on the desktop for the logged-in
user. For more on the Library direction, see “The Library
Directory” (page 162)..

User Directory Description

Desktop Contains the items the Finder displays on the desktop or the
logged-in user.

Documents Contains all documents belonging to the user.

Library See “The Library Directory” (page 162).

Public Contains items the user wishes to share with other users, who
can see and copy the items in this directory.

Movies Contains digital movies in QuickTime and other formats.

Music Contains digital music files (.aiff, .mp3, and other formats).

Pictures Contains image files in a variety of formats.

Sites Contains bookmarks (URLs) to frequently visited websites.

160 How the File System Is Organized
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

When a user account is created, an Applications directory is not automatically
added to the home directory. However, users can create an Applications directory
and put their own applications in it. The system automatically searches for
applications in this location.

Listing 9-5 shows the directory layout of a typical home directory on a local area
network.

Listing 9-5 Directory layout of user home directory on a local area network

/Network/
Mac OS 9/
Applications/
System/
Library/
Users/

Shared/
Steve/

Documents/
Library/
Public/
Desktop/
Movies/
Music/
Pictures/
Sites/

The same information about home directories local to a computer system applies to
home directories on a network. The Users directory in this example is just one way
an administrator can organize user accounts on a network; other schemes are
possible.

The /Network subdirectories other than Users are part of the network domain. See
“The Network Domain” for further information.

C H A P T E R 9

The File System

How the File System Is Organized 161
  Apple Computer, Inc. February 2001

The Network Domain
The network domain defines the file-system scope of applications, documents, and
resources available to all users of a local area network (including AppleShare and
Web servers). The exact composition of the network domain depends on
institutional or corporate policy; the implementation of the network domain is a
responsibility of the network administrator.

Listing 9-6 shows a typical directory layout for the network domain.

Listing 9-6 Directory layout of network domain

/Network/
Applications/
Library/
Servers/
Connected Servers/
Shared/

Location Description

/Network/Applications Applications that can be run by all users on the local
area network.

/Network/Library Resources—such as plug-ins, sound files,
documentation, frameworks, colors, and fonts—
available to all users of a local area network. For more
on the Library directory, see “The Library Directory”
(page 162).

162 How the File System Is Organized
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

The Library Directory
The Library directory is replicated in each file-system domain of Mac OS X. The
Library directory contains resources used by applications but not the applications
themselves. The Library directory has a common set of subdirectories, some of
which must be there and others that, by convention, should be there.

Some system routines expect certain subdirectories of Library; among these are the
routines for reading and writing preferences and those that dynamically link with
frameworks. However, the search algorithm used by some system software does
not proceed beyond the Library directory itself. What this means is that if your
application is looking for anything in a particular subdirectory of Library, it usually
should know the name of that directory in advance.

Listing 9-7 shows the possible directories that can appear in the Library directory;
many of these subdirectories are more likely to appear in the local or network
domains than in the Library directory in a user’s home directory.

Listing 9-7 Possible subdirectories of the Library directory

Library/
Application Support/
Assistants/

/Network/Servers Mount points for NFS file servers that make up the
local area network.

/Network/Connected
Servers

Appears when any AppleShare or Web servers (HTTP
and WebDAV) are mounted through the Finder’s Go >
Connect to Server command. These volumes and
servers are initially presented in a new Finder window
but are also retained in this location. However, they do
not persist across login sessions.

/Network/Shared A directory whose contents are shareable by all users of
the local area network. See “The User Domain”
(page 157) for the description of the user domain’s
Shared directory.

Location Description

C H A P T E R 9

The File System

How the File System Is Organized 163
  Apple Computer, Inc. February 2001

Audio/
Documentation/
Extensions/
Favorites/
ColorPickers/
ColorSync/
Components/
Fonts/
Frameworks/
Internet Plug-Ins/
Keyboards/
Mail/
Preferences/
Printers/
QuickTime/
Scripting Additions/
Sherlock Plug-Ins
Web Server/

Directory Description

Application Support Third-party plug-ins, helper applications, templates, and
other resources for a specific application in a domain. By
convention, these items should be put in a subdirectory
named according to the application. Thus third-party
resources for the application MyApp would go in
Application Support/MyApp. Note that resources created
by the developer of an application should go in the
application package itself. See “Application Packaging”
(page 117) for more information.

Assistants Programs that assist users in configuration or other
tasks.

Audio Sounds, alerts, and audio plug-ins.

ColorPickers A resource for picking colors according to certain model,
such as the HLS (Hue Angle, Saturation, Lightness)
picker or the Crayon picker.

ColorSync ColorSync profiles and scripts.

Components System-wide components and extensions.

164 How the File System Is Organized
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

The Developer Directory
You install the applications, tools, documentation, and other resources for
developing software for Mac OS X as an optional package. Most of these items are
installed in the Developer directory, which is immediately under the boot volume
(/Mac OS X).

Listing 9-8 shows the contents of the Developer directory.

Documentation Documentation files and Apple Help packages (in
subdirectory Help) intended for the users and
administrators of the computer. In the local domain, it
includes the help packages shipped by Apple (excluding
developer documentation).

Extensions Device drivers and other kernel extensions (system
domain only).

Favorites Aliases to frequently accessed folders, files, or websites
(user domain only).

Fonts Font files for both display and printing.

Frameworks Frameworks and shared libraries.

Internet Plug-ins Plug-ins, libraries, and filters for the Internet.

Keyboards Keyboard definitions

Mail Contains the user’s mailboxes (user domain only).

Preferences User preferences. See the “The Preferences System”
(page 197) in the chapter “Software Configuration.”

Printers Print drivers (by vendor) and PPD plug-ins.

QuickTime QuickTime components and extensions.

Scripting Additions Scripts and scripting resources that extend the
capabilities of AppleScript.

Sherlock Plug-ins Plug-ins for extending the capabilities of Sherlock.

Web Server Where the Web server resides by default, including the
document root.

Directory Description

C H A P T E R 9

The File System

How the File System Is Organized 165
  Apple Computer, Inc. February 2001

Listing 9-8 The contents of the Developer directory

/Mac OS X/
...
Developer/

Applications/
Documentation/
Examples/
Java/
Makefiles/
Palettes/
PBBundles/
ProjectTypes/
Tools/

/Developer
directory Description

Applications Applications used to manage software projects and build
projects (Project Builder), to create user interfaces (Interface
Builder), and to performance-tune programs.

Documentation Developer documentation.

Examples Example projects organized by general type (Carbon, Java, and
so on).

Headers Special header files, such as the stub “flat” Carbon headers.

Java Files needed for Java bridging in the Cocoa application
environment.

Makefiles Makefiles and jamfiles for building and converting projects.

Palettes Apple-supplied Interface Builder palettes.

PBBundles Loadable bundles used by Project Builder.

ProjectTypes Definitions of project types used by Project Builder.

Tools Command-line development tools, including those for creating
and manipulating HFS resource forks.

166 How the File System Is Organized
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

Project Builder defines a set of makefile variables that your projects should use
when specifying locations within file-system domains. You should use these
variables instead of hard-coding directory paths because those locations are subject
to change. Table 9-3 lists these variables.

Searching Within the File-System Domains
Mac OS X includes two public programmatic interfaces you can use to search for
resources, plug-ins, and other items within specific directory locations of specific
(or all) domains. One of these APIs—the FindFolder function of the Folder
Manager—is for Carbon programs. The other API—the functions and constants
defined in NSSystemDirectories.h in the System framework—is for any other type
of program.

Table 9-3 Project Builder makefile variables for file-system domains

Variable Directory location

SYSTEM_APPS_DIR /Applications

SYSTEM_ADMIN_APPS_DIR /Applications/Utilities

SYSTEM_DEMOS_DIR /Applications/Extras

SYSTEM_DEVELOPER_DIR /Developer

SYSTEM_DEVELOPER_APPS_DIR /Developer/Applications

SYSTEM_DOCUMENTATION_DIR /Library/Documentation

LOCAL_ADMIN_APPS_DIR /Applications/Utilities

LOCAL_APPS_DIR /Applications

LOCAL_DEVELOPER_DIR /Library/Developer

LOCAL_LIBRARY_DIR /Library

USER_APPS_DIR $(HOME)/Applications

USER_LIBRARY_DIR $(HOME)/Library

C H A P T E R 9

The File System

Differences Between HFS+ and UFS 167
  Apple Computer, Inc. February 2001

Both APIs help you search through all file-system domains for a particular item. By
convention, searches typically begin with the most specific domain and end with
the most general. This domain order is as follows:

1. User

2. Local

3. Network

4. System

Most system software follows this order when it searches for items through all
file-system domains. However, you may search in any domain order that is
appropriate to your application’s needs.

Differences Between HFS+ and UFS

There are many significant differences between the two major file systems on
Mac OS X: HFS+ and UFS. In many cases, these differences have some bearing on
programs developed for Mac OS X. The following list summarizes the major
differences between these file systems (many of these statements apply to HFS as
well as HFS+):

� Case sensitivity. UFS is sensitive to case; although HFS+ is case-insensitive it is
case-preserving.

� Multiple forks. HFS+ supports multiple forks (and additional metadata)
whereas UFS supports only a single fork. (Carbon simulates multiple forks on
file systems that do not support them, such as UFS.)

� Path separators. HFS+ uses colons as path separators whereas UFS follows the
convention of forward slashes. The system translates between these separators.

� Modification dates. HFS+ supports both creation and modification dates as file
metadata; UFS supports modification dates but not creation dates. If you copy a
file with a command that understands modification dates but not creation dates,
the command might reset the modification date as it creates a new file for the
copy. Because of this behavior, it is possible to have a file with a creation date
later than its modification date.

168 Aliases and Symbolic Links
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

� Sparse files and zero filling. UFS supports sparse files, which are a way for the
file system to store the data in files without storing unused space allocated for
those files. HFS+ does not support sparse files and, in fact, zero-fills all bytes
allocated for a file until end-of-file.

� Lightweight references to file-system items. See “Aliases and Symbolic Links”
(page 168).

In addition, the APIs historically associated with each file system sometimes have
different behaviors. For example, a program using BSD (or BSD-derived) APIs can
delete a file that is open; on the other hand, a Carbon program may only delete a file
that is closed.

Aliases and Symbolic Links

Aliases and symbolic links are lightweight references to files and folders. Aliases are
associated with Mac OS Standard (HFS) and Mac OS Extended (HFS+) volume
formats; symbolic links are a feature of UFS file systems. Both aliases and symbolic
links allow multiple references to files and folders without requiring multiple
copies of these items. However, they are implemented differently, which causes
them to behave differently when a referenced file or folder moves or changes.

Symbolic links are implemented as a reference to a path in the file system. The UFS
file system tries to resolve a symbolic link by parsing the path information. Thus if
you move a file that a symbolic link references to a different location in the file
system, the symbolic link breaks (see Figure 9-1). Therefore a symbolic link is a
fragile reference to a specific file or folder.

C H A P T E R 9

The File System

Aliases and Symbolic Links 169
  Apple Computer, Inc. February 2001

Figure 9-1 The fragility of symbolic links

Despite this fragility, it is useful sometimes to have a reference to a file known to
always exist at a specific path in the file system, thus assigning importance to the
file at that location. For these cases a symbolic link works very well; even if the file
at the specified location is replaced with a new file, the symbolic link still refers to
the file at that location in the file system. For example, the frameworks of Mac OS X
use symbolic links extensively to implement their versioning system.

By contrast, HFS+ implements aliases by identifying the volume and location on
disk of a referenced file or folder. Each such reference has a unique identity. As a
result, aliases always refer to the same file or folder regardless of where it’s moved
in the file system—as long as the file or folder stays on the same volume. This
capability makes aliases a good way to refer to files or applications that might move
around on a given volume.

However, aliases are not a good way to refer to a file or folder at a specific location
in the file system. When you replace a file at a given location with a new version of
the file, the alias continues to refer to the old version of the file. Also, aliases break
when a referenced file is copied from one volume to another. And if the application
you use to edit a referenced file writes out a new copy of the file (instead of just
updating the old file), any alias to the original file is broken.

/

A

/A

B

/

C

/A

B

?

170 Resource Forks
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

Resource Forks

Before Mac OS X and Carbon, application resources were put in the resource fork of
the application executable. That policy has now changed. In Mac OS X and for
Carbon applications generally, resources should be put in the data fork of a separate
resource file, not the resource fork of the executable.

The Carbon APIs now read and process resources in a resource file’s data fork as if
they were in the resource fork. (In fact, the system routines that read resources—
which are primarily Resource Manager functions—now do most of the work for
you.) If application resources are stored in the resource fork, you can use these APIs
to access them, but now you must explicitly specify the resource fork in order for
this to happen.

The primary reason for moving application resources out of resource forks is to
enable applications to be seamlessly moved around different file systems without
loss of their resources; this would include methods such as BSD commands, FTP,
email, and Windows and DOS copy commands. Most other computing
environments, including the Web, recognize single-fork files only, and tend to lop
off the resource fork of HFS and HFS+ files. Moreover, moving resources into the
data fork eliminates the need for compressing applications to preserve resource
information (using Stuffit archives, bin-hex, or similar means).

Even though Apple now recommends storing resources in the data fork of a
resource file, this—by itself—is an incomplete solution. For example, application
resources stored in a single file are much harder to localize. In addition to moving
application resources out of resource forks, you should use the application
packaging scheme (see “Application Packaging” (page 117)) and do either of the
following:

� In the localized (or nonlocalized) areas of the application bundle, put a file that
contains the application resources for that locale (or for all locales). By
convention, this file has an extension of .rsrc, although it can have any
extension or no extension.

� Instead of putting all localized resources in a single .rsrc file, put each resource
(or groups of related resources) in its own file.

C H A P T E R 9

The File System

Resource Forks 171
  Apple Computer, Inc. February 2001

Figure 9-2 depicts how resources can be stored in Mac OS X in contrast to the way
they are stored on earlier Mac OS systems.

Figure 9-2 Resources in the data fork

1000110100010111011000101101
0001010011010001011100101110
1010001010010010001010100010

MyApp

data fork

resource fork

MyApp.app/
 Contents/
 Info.plist
 PkgInfo
 MacOS/
 MyApp
 Resources/
 MyApp.rsrc
 AnImage.pict
 AnIcon.icns
 English.lproj/
 Localized.rsrc
 MyApp.strings
 ASound.snd

Mac OS 9 (single-file executable)

Mac OS X (application package)

MyApp.rsrc

data

resource empty

AnImage.pict

data

resource empty

AnIcon.icns

data

resource empty

MyApp.strings

data

resource empty

ASound.snd

data

resource empty

or

172 File Encodings and Fonts
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

Although Apple supports the all-resources-in-one-file model, it strongly
recommends that developers put their resources in separate files. One consideration
behind this is the emerging use of XML as a way to specify resources. Carbon has
an XML-based runtime that tools such as Interface Builder use to export user
interfaces as XML.

As with applications, documents on Mac OS X should have their resources put in
the data fork. The reasons for this are the same as the reasons for having application
resources in the data fork. It makes it possible to exchange these documents,
without loss of resource data, between Macintosh and non-Macintosh systems,
including most Web servers.

Files residing on HFS and HFS+ file systems have their Finder attributes stored in a
private fork separate from both resource and data forks. These attributes include
type and creator codes. Mac OS X maintains these attributes because they enable the
Finder to enhance the user’s experience. At the same time, however, Apple strongly
encourages developers to use file extensions as alternative means for identifying
document types. Mac OS X does a very good job of recognizing and handling
document extensions. And, as “Copy and Move Operations” (page 182) in the
chapter “The Finder” makes clear, if you copy an HFS or HFS+ document to a
different platform (including Web servers), file extensions help ensure that the
document’s type information is preserved.

File Encodings and Fonts

Although Unicode is considered the native encoding for Mac OS X, there is no file
encoding that is the default for all situations. The file encoding that is (or should be)
used depends on what you want to do, on the API you use, and on the underlying
file system.

For example, the encoding used for filenames differs among the various file
systems. Mac OS Extended (HFS+) uses one particular form of Unicode for
filenames: canonically decomposed Unicode 2.1 in UTF-16 format (a sequence of
16-bit codes). The UFS file system uses a different form of Unicode for filenames; it
allows any character from Unicode 2.1 or later, but uses UTF-8 format (a sequence
of 8-bit codes). And Mac OS Standard (HFS) uses legacy Mac encodings, such as

C H A P T E R 9

The File System

File Encodings and Fonts 173
  Apple Computer, Inc. February 2001

MacRoman. Note that, because of implementation differences, erroneous Unicode
in filenames on HFS+ volumes displays correctly on Mac OS 9 systems, but always
appear with garbled characters on Mac OS X.

In addition, all code that calls BSD system routines should ensure that the const
*char parameters of these routines are in UTF-8 encoding. All BSD system functions
expect their string parameters to be in UTF-8 encoding and nothing else. An
additional caveat is that string parameters for files, paths, and other file-system
entities must be in canonical UTF-8. In a canonical UTF-8 Unicode string, all
decomposable characters are decomposed; for example, é (0x00E9) is represented as
e (0x0065) + ´ (0x0301). To put things in canonical UTF-8 encoding, use the
“file-system representation” APIs defined in Cocoa and Carbon (including Core
Foundation). For example, to get a canonical UTF-8 character string in Cocoa, use
NSString’s fileSystemRepresentation method; for noncanonical UTF-8 strings, use
NSString’s UTF8String method.

If you use regular QuickDraw and want to draw text, you should be aware of some
potential problems. The Carbon File Manager has some file-system calls that return
Mac encodings and others that return Unicode. If you get Unicode text, you will
have problems drawing it using QuickDraw Text because that API doesn't directly
support Unicode. On the other hand, if you get a Mac encoding and you want to use
Cocoa or Carbon's ATSUI APIs, you must convert it to Unicode first.

Generally, the encoding that is used depends upon the API you use and not the font.
Fonts are not necessarily limited to particular encodings. TrueType fonts, for
example, declare the set of glyphs they implement and provide encoding tables that
map those glyphs to character values in particular encodings. PostScript fonts have
similar encoding tables. Various parts of the operating system know how to map
characters from one encoding to another. Cocoa and ATSUI use Unicode as the
“destination” mapping for a font. QuickDraw Text in Carbon uses the Mac
encodings, selected according to the script that the ‘FOND’ resource of the font
corresponds to.

The fonts that are installed with Mac OS X have large character sets supporting a
wide range of encodings and scripts. For example, Lucida, the system font, supports
extended Latin, Greek, Cyrillic, Arabic, Hebrew, and Thai. But if you draw text
through QuickDraw Text, you have access only to the MacRoman repertoire. To
access the rest, you must use Cocoa or ATSUI. Similarly, the Hiragino fonts also
have a large repertoire of characters beyond that supported by MacJapanese, and
these are accessible only through Cocoa or ATSUI. Both Cocoa and ATSUI also
substitute glyphs from other fonts when the requested one isn't available; however,
their algorithms for font substitution are different.

174 File Encodings and Fonts
  Apple Computer, Inc. February 2001

C H A P T E R 9

The File System

For information on file encodings in the context of multiscript support, see “Adding
Multiscript Support” (page 215) in the chapter “Internationalization.”

The Role of the Finder 175
  Apple Computer, Inc. February 2001

C H A P T E R 1 0

10 The Finder

The Finder is the primary application of Mac OS X. Running from the moment you
log in, it works with the system software to track and manage the Dock, the file
system (including mounted network volumes), and connected devices. Through the
windows of the Finder, users can view and manipulate items in the file system such
as folders, applications, and documents.

This chapter does not go into detail about the human-interface elements related to
the Finder. Instead it focuses on those aspects of the Finder that are of special
interest to Mac OS X software developers. This information includes

� application interfaces to the Finder

� the stores of information the Finder maintains

� how the Finder handles applications and documents

� how the Finder handles file operations that take place between volumes of
different formats

The Role of the Finder

In general, the nature and role of the Finder in Mac OS X is much the same as it is
in Mac OS 9. The Finder in Mac OS X is an application—specifically, a Carbon
application—that manages the user’s desktop and mediates user access
to applications, documents, and other items in the file system. Users launch
applications and open documents through the agency of the Finder. In a sense, it
is the primary application, the one that is constantly running while users are logged
in to the system.

176 The Role of the Finder
  Apple Computer, Inc. February 2001

C H A P T E R 1 0

The Finder

There are, however, several striking differences in Mac OS X that affect the nature
and role of the Finder:

� The Aqua human interface. This interface affects not only the presentation of
desktop elements, but the logic and mechanics behind their use. The Dock and
the controls of Finder windows, for example, introduce paradigms absent from
Mac OS 9.

� Multiple users. Yes, Mac OS 9 supports multiple users (through the Multiple
Users control panel), but there it is an option. On a Mac OS X system, multiple
users is the norm. Users must log in to a Mac OS X system (even if they request
logging in to happen automatically). Once logged in, they work in an
environment largely customized to their own specifications.

� Multiple application environments. Again, the difference in this respect is not
absolute; if you take Java into consideration, Mac OS 9 does (or can) have
multiple application environments. However, the difference in degree is
significant. Mac OS X must deal with the Carbon, Cocoa, Java, Classic, and
(in some cases) the BSD Commands application environments.

� Multiple volume formats. Mac OS X supports various volume formats, both
multiple-fork formats such as Mac OS Extended (HFS+) and flat-file formats
(UFS, among others). It tries to make all file-system operations between volumes
of different formats as seamless as possible. See “The Finder and File
Operations” (page 181) for further information.

The Finder attempts to make the user’s experience of all application environments
as much the same as possible. However, there are a few issues with the
Classic environment. Classic applications cannot run from volumes that are not
Mac OS Standard (HFS) or Mac OS Extended (HFS+). Applications from all other
environments can run from any volume, regardless of format. In the same vein,
Classic applications cannot open or save documents on any volume that is not HFS
or HFS+. For more on the Classic environment, see “The Classic Environment and
Your Application” (page 235).

C H A P T E R 1 0

The Finder

Finder Interfaces to Applications 177
  Apple Computer, Inc. February 2001

Finder Interfaces to Applications

At present, the Finder offers the information property list as an interface for
applications. Through this interface, applications can communicate their essential
data to the Finder.

Other interfaces are planned, including a suite of Apple events that applications can
send to and receive from the Finder to accomplish a number of functions, including
opening documents and launching applications.

Information Property Lists
When you develop an application or any other bundle for Mac OS X, you must
specify as part of the project certain key-value pairs for the bundle’s information
property list. This property list is in a file named Info.plist that, when the
application is built, is made part of the bundle. It contains the following
Finder-specific information:

� name of application (displayed by the Finder)

� type and creator codes (type is 'APPL' for applications)

� icon filename

� version string

� descriptive information (displayed by the Finder)

� documents handled by this application, including document name, icon, role,
types, and extensions

� URLs handled by this application, including URL name, icon, and schemes

This form of Finder interface is more passive than the other interfaces; all a
developer must do is make this information available to the Finder. When the
Finder encounters an application, it extracts the information in Info.plist and
populates its databases with it (see “Information Stored by the Finder” (page 178)
for details).

178 Information Stored by the Finder
  Apple Computer, Inc. February 2001

C H A P T E R 1 0

The Finder

For more information on information property lists and the keys that are specific to
the Finder, see “Information Property Lists” (page 186) in the chapter “Software
Configuration.” For related information, see the chapters “Bundles” (page 101) and
“Application Packaging” (page 117).

Information Stored by the Finder

The Finder maintains a number of (private) databases that give it a comprehensive,
if not entirely complete, view of the desktop, applications, documents, and other
items that are part of the user experience. This section describes how the Finder
populates these databases and gives some idea of the information that resides in
them. It also describes file attributes of specific interest to the Finder.

Collecting Application Information
The way that the Finder stores information on the file system differs from the way
Mac OS 9 stores information. The Finder in Mac OS 9 associates a desktop database
with each mounted volume on the system. Each database contains information
about all files and directories on the volume. When the system is booted, the Finder
builds these databases and, thereafter, dynamically updates them as files and
directories are added, changed, and removed.

In Mac OS X the situation is different. Because of the multi-user nature of Mac OS X,
the Finder maintains an application database for each user who has an account
(local or network) on a system. This database contains information about all the
applications the Finder has encountered for that user and includes information
about the document types understood by each application. The Finder extracts this
information from the information property lists of applications (see “Information
Property Lists” (page 177) for a summary of this information).

The way the Finder in Mac OS X builds its databases is also different from the Finder
in Mac OS 9.

� The Finder first adds applications at boot time by scanning the standard
locations for applications in the user, local (plus system), and network domains.

� When users navigate through the file system, the Finder adds applications in
each visited directory to its databases.

C H A P T E R 1 0

The Finder

Information Stored by the Finder 179
  Apple Computer, Inc. February 2001

� When users try to open a document or attempt any other action that requires an
application, and the Finder cannot find an appropriate application, it displays a
dialog, allowing the user to select an application. This application is added to the
user’s application database.

Because there may be locations in the file system a user has never visited, or
documents of a type she has never attempted to open, the Finder might have an
incomplete view of the applications available on a system. Yet it has a built-in
capability for “lazily” updating its view of the file system.

The Desktop Folder
The Finder in both Mac OS 9 and the Mac OS X Finder store the contents of the
user’s desktop in an invisible folder (named, appropriately enough, Desktop
Folder). Although the name and invisibility of this folder are the same, the folder
location and desktop semantics are quite different for the two operating systems.

� In Mac OS 9 the Desktop Folder is at the root of a volume; in Mac OS X a Desktop
directory is in each user’s home directory (~/Desktop/).

� In Mac OS 9 what is displayed on the desktop is the union of each Desktop
Folder on all volumes; in Mac OS X, what is displayed on the desktop is the
contents of the Desktop directory in the logged-in user’s home directory.

Finder Attributes
Finder attributes (also known as Finder Info) can be associated with files and folders
in the Mac OS X file system. These attributes affect how the Finder displays or
handles these files and folders. The Finder in Mac OS X recognizes fewer such
attributes than the Finder in Mac OS 9. The supported attributes include

� bundle bit

� invisible bit

� type and creator codes

� custom icons

The attributes not supported in Mac OS X are

� icon position

� view type

180 The Handling of Applications and Documents
  Apple Computer, Inc. February 2001

C H A P T E R 1 0

The Finder

� label

In Mac OS X the Finder stores attributes in an invisible per-folder file that contains
a data structure that is extensible and volume-format “agnostic.”

The Handling of Applications and Documents

As described in “Information Stored by the Finder” (page 178), the Finder collects
information from applications in the file system and populates a number of
databases with that information. When the Finder encounters a file or folder, it often
uses this information to determine how to present the file or folder and how to
manage the user’s interaction with it.

The Finder uses a combination of bundle bit, type and creator codes, and filename
extension to identify and appropriately handle documents (including loadable
bundles) and applications. The following steps outline the general logic of the
Finder when it comes across an item in the file system:

1. Determine whether it is a file or a folder.

If it is a folder, the Finder determines if it is a bundle (step 2); if it is a file, it
determines the kind of file (step 4).

2. Determine whether the folder is a bundle or a regular folder.

The Finder uses either the bundle bit or the folder extension to determine if a
folder is a bundle. The presence of the bundle bit is not necessary and, in fact,
the system frameworks provided by Apple do not have the bundle bit set.

3. Find out the type of bundle.

The Finder obtains the type and creator codes from the information stored
within the bundle (see “Anatomy of a Bundle” (page 103) in the chapter
“Bundles”). From the type code (or from the extension if the type code is not
available) it determines the kind of bundle. Unless the bundle is a framework, it
treats the bundle as a file (in other words, it is a file package).

4. Determine whether the file (including file packages from step 3) is an
application.

C H A P T E R 1 0

The Finder

The Finder and File Operations 181
  Apple Computer, Inc. February 2001

If the file is a bundle, and the bundle is an application (as determined by type
code or extension), the Finder hides the .app extension, if it exists. The Finder
adds the information in the application’s information property list to its
application database for the user (if such information is absent from the
database); this is described in “Collecting Application Information” (page 178).
If the file is not an application, it is a document (step 5).

5. Display the document appropriately.

The Finder consults the application database and locates the icon to display next
to the filename. If no such icon exists, it displays the default document icon.

When a user double-clicks or otherwise tries to open a document in the file system,
the Finder checks the document’s type and creator codes (if it is an HFS or HFS+ file)
or the document’s file extension. It uses this information as a key to look up the
application (or applications) that claims the document type.

� If there is only one such application, the Finder opens the document in the
application, launching it if necessary.

� If there are no applications claiming the document type, the Finder puts up a
dialog in which the user can select an appropriate application; this information
is added to the application database.

� If there are multiple applications claiming the document, and the document has
no associated type and creator codes, the Finder opens the document in one of
the applications claiming that document type through its extension.

If the document has neither type and creator codes nor file extension, the Finder
does nothing when the user attempts to open the document. Through the Finder,
users can also select an application with which to open a document when there are
multiple applications claiming that document.

The Finder and File Operations

The Finder is the “traffic manager” for most if not all file operations that take place
in Mac OS X. Unless you use shell commands such as cp and mv (something
generally not recommended), or AppleScript, or some other programmatic means,
you must use the Finder to copy, move, and delete files, as well as to make aliases.

182 The Finder and File Operations
  Apple Computer, Inc. February 2001

C H A P T E R 1 0

The Finder

Obviously, there are issues related to these operations that relate to multiple
volume formats. This section discusses how the Finder manages file operations
across volumes of different formats.

Copy and Move Operations
When the Finder copies or moves a file, it uses the richest model available, given the
formats of the source and destination volumes. The formats that are most significant
in these kinds of operations are HFS+ (or HFS) and UFS. These operations
particularly affect the representation of the HFS and HFS+ resource fork and the
Finder attributes, especially the type and creator codes.

As one might expect, the Finder preserves the resource fork and Finder attributes of
an HFS+ file “as is” when it copies the file to an HFS+ (or HFS) volume. The more
interesting case, however, is when it copies an HFS+ file to a UFS volume. When this
happens, the Finder splits out the information that is not in the data fork
(particularly the type and creator codes) and writes this information to a hidden file
in the same directory location as the copied file. This hidden file has the same name
as the UFS file, except that it has a “dot-underscore” prefix. Thus, if you have an
HFS+ file named MyMug.jpeg, when you copy it to a UFS volume, there will be a file
named ._MyMug.jpeg in the same location.

When the Finder copies a UFS file to an HFS or HFS+ volume, it looks for the hidden
“dot-underscore” file. If one exists, it creates an HFS+ (or HFS) file reintegrating the
information in the hidden file into the file’s resource fork and Finder attributes. If
the hidden file does not exist, the copied file has no resource fork.

Note that the Finder accomplishes these operations through the Carbon APIs on
which it is based.

Note: You can use the BSD cp or mv commands on a application package (or any
other bundle) without ill effect. However, if you use those commands on a
single-file CFM application, the copied (or moved) application is rendered
useless. For the latter purpose, Apple includes the CpMac command-line utility.

C H A P T E R 1 0

The Finder

The Finder and File Operations 183
  Apple Computer, Inc. February 2001

Management of Aliases and Symbolic Links
Mac OS Standard (HFS) and Mac OS Extended (HFS+) file systems include the file
system entity known as an alias. An alias bears some similarities to a symbolic link
in a UFS file system, but the differences are significant. See the section “Aliases and
Symbolic Links” (page 168) in the chapter “The File System”for a description of
these differences.

How the Finder manages a file-system world in which both aliases and symbolic
links coexist is simple. It recognizes symbolic links but creates only aliases (when
given the appropriate menu command). Even when it encounters a symbolic link in
the file system, it presents it as an alias—that is, there is no visual differentiation
between the two. The only way to make a symbolic link in Mac OS X is to give the
BSD command ln -s.

184 The Finder and File Operations
  Apple Computer, Inc. February 2001

C H A P T E R 1 0

The Finder

Property Lists 185
  Apple Computer, Inc. February 2001

C H A P T E R 1 1

11 Software Configuration

Mac OS X gives you a number of ways to configure your software. It stores all
configuration data persistently using various mechanisms. These mechanisms
permit dynamic updating of this data and make it available to programs at runtime.

Mac OS X has three basic configuration options:

� Property lists. A textual way to represent data, using XML as the structuring
medium. Elements of the property list represent data of certain types, such as
arrays, dictionaries, and strings. System routines allow programs to read
property lists into memory and convert the represented data into “real” data.

� Information property lists. A special form of property list with predefined keys
for specifying basic bundle attributes and information of interest to the Finder
and other applications. The information property list is stored inside a bundle.
It specifies information such as supported document types, URL schemes, and
copyright and version information. The information property list also allows the
specification of user-defined keys.

� Preferences system. Allows you to create, write, and read preferences per user,
per application, and per host.

Property Lists

A property list in Mac OS X is a textual representation of data that uses the
Extensible Markup Language (XML) as the formal structuring medium. The
flexibility that such structuring affords is a great programmatic convenience.

186 Information Property Lists
  Apple Computer, Inc. February 2001

C H A P T E R 1 1

Software Configuration

(See http://www.w3.org/XML/1999/XML-in-10-points for an excellent summary of
XML.) Elements of XML correspond to programmatic entities such as arrays,
dictionaries, and strings.

You can create a property list with the Property List Editor application or, if that is
not available, any text editor. Then you add the file to your project. Property lists
are stored as a bundle resource (usually nonlocalized). Once your program is built
and run, it can easily access the information in the property list by using special
routines that read the property list and convert the data represented in it to the
appropriate types. The supported property-list types are dictionary, array (vector),
string, data, date, number, and Boolean.

Custom property lists are sometimes used to specify certain types of initialization
data, such as key bindings. A file named CustomInfo.plist is often used for this
purpose.

Information Property Lists

Information property lists are system property lists (see “Property Lists”
(page 185)) that contain essential configuration information for bundles. This
information is readily available to system and program code at runtime. As
described in the section “Types of Bundles” (page 109) of the chapter “Bundles,” a
bundle is a packaging scheme and generic programmatic type for such things as
applications, frameworks, and plug-ins. Information property lists are thus a
pervasive and important means for configuring software of almost all kinds. They
make available information that the Finder (and possibly other applications) need,
and they enable applications to deal with HFS and HFS+ files.

By convention, information property lists are found in files with the name
Info.plist. They can contain platform-specific information, in which case the tag
for the platform is embedded in the filename; the standard platform-specific names
are the following:

Info-macos.plist

Info-macosclassic.plist

C H A P T E R 1 1

Software Configuration

Information Property Lists 187
  Apple Computer, Inc. February 2001

If the configuration information is generic to all platforms (as is ideally the case), the
name is Info.plist. When the bundle code is executed, it looks first for the
platform-specific file; if that does not exist in the bundle, it reads the
platform-generic file. Because the search algorithm searches for a file and not a
particular key, if you have both a platform-specific file and a platform-generic file,
make sure each contains a corresponding set of key-value pairs. Information
property list files are located in the Contents directories of bundles.

The Info.plist file for a bundle can contain all kinds of information. At the top level
of the property list, this information is specified as key-value pairs (that is, as a
dictionary). Mac OS X defines a set of standard keys for basic configuration
information, such as the name of the executable and the version of the bundle. The
Finder also defines keys for such things as documents, icons, and the information it
displays to users. You are free to define and use your own keys. The integrated
development environment (IDE) provides the human interface for entering
standard, Finder, and custom configuration data in the Info.plist file as key-value
pairs. For the standard information property list keys, see “Standard Keys”
(page 191); for the Finder keys, see “Finder Keys” (page 193).

A special localized resource file named InfoPlist.strings goes with the Info.plist
file. The InfoPlist.strings file contains keys for the information property list that
might need to be localized. These keys are the values specified for associated keys
in the Info.plist file. Commonly localized keys are CFBundleName,
CFBundleShortVersionString, CFBundleGetInfoString, CFBundleGetInfoHTML, and the
values of the CFBundleTypeName and CFBundleURLName types. See “Bundles”
(page 101) for more about localized bundles, particularly where they go in the
bundle and how they are located.

Document Configuration
Information property lists for applications that create or “understand” documents
permit the definitions of abstract types and roles. These definitions apply to
Clipboard (pasteboard) data as well as documents.

An abstract type defines general characteristics of a family of documents. Each
abstract type has corresponding concrete types, such as a filename extension or a
4-byte identifier. Concrete types are ways that an abstract type is encoded in various
file systems or persistent formats. The notion of abstract types improves general
application interoperability by removing the current dichotomy between the
pasteboard type system and the filename-extension type system. Abstract type
names should have a copyright to ensure uniqueness.

188 Information Property Lists
  Apple Computer, Inc. February 2001

C H A P T E R 1 1

Software Configuration

A role defines an application’s relation to a document type. There are five roles:

� Editor. The application can read, manipulate, and save the type.

� Viewer. The application can read and present the data.

� Printer. The application can print the data only.

� Shell. The application provides runtime services for other processes—for
example, a Java applet viewer. The name of the document is the name of the
hosted process (instead of the name of the application), and a new process is
created for each document opened.

� None. The application does not understand the data, but is just declaring
information about the type (for example, the Finder declaring an icon for fonts).

An Example of an Information Property List
Listing 11-1 contains an example of an Info.plist file. This information property
list, which is taken from the Sketch demonstration application, is interesting
because it shows how document types for this application are specified.

Listing 11-1 The Info.plist file for the Sketch demo application

<?xml version="1.0" encoding="UTF-8"?>
<plist version="0.9">
<dict>

<key>CFAppleHelpAnchor</key>
<string>sktch001</string>
<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleDocumentTypes</key>
<array>

<dict>
<key>CFBundleTypeExtensions</key>
<array>

<string>sketch</string>
<string>draw2</string>

</array>
<key>CFBundleTypeIconFile</key>
<string>Draw2File</string>

C H A P T E R 1 1

Software Configuration

Information Property Lists 189
  Apple Computer, Inc. February 2001

<key>CFBundleTypeName</key>
<string>Apple Sketch Graphic Format</string>
<key>CFBundleTypeOSTypes</key>
<array>

<string>sktc</string>
</array>
<key>CFBundleTypeRole</key>
<string>Editor</string>
<key>NSDocumentClass</key>
<string>SKTDrawDocument</string>
<key>NSExportableAs</key>
<array>

<string>NSPDFPboardType</string>
<string>NSTIFFPboardType</string>

</array>
</dict>
<dict>

<key>CFBundleTypeExtensions</key>
<array>

<string>pdf</string>
</array>
<key>CFBundleTypeName</key>
<string>NSPDFPboardType</string>
<key>CFBundleTypeOSTypes</key>
<array>

<string>pdf </string>
</array>
<key>CFBundleTypeRole</key>
<string>None</string>

</dict>
<dict>

<key>CFBundleTypeExtensions</key>
<array>

<string>tiff</string>
</array>
<key>CFBundleTypeName</key>
<string>NSTIFFPboardType</string>
<key>CFBundleTypeOSTypes</key>
<array>

<string>tiff</string>
</array>

190 Information Property Lists
  Apple Computer, Inc. February 2001

C H A P T E R 1 1

Software Configuration

<key>CFBundleTypeRole</key>
<string>None</string>

</dict>
</array>
<key>CFBundleExecutable</key>
<string>Sketch</string>
<key>CFBundleIconFile</key>
<string>Draw2App</string>
<key>CFBundleIdentifier</key>
<string>com.apple.CocoaExamples.Sketch</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundlePackageType</key>
<string>APPL</string>
<key>CFBundleSignature</key>
<string>sktc</string>
<key>CFBundleVersion</key>
<string>1.2.0</string>
<key>NSAppleHelpFile</key>
<string>osxa444.htm</string>
<key>NSAppleScriptEnabled</key>
<string>YES</string>
<key>NSJavaNeeded</key>
<string>YES</string>
<key>NSJavaPath</key>
<array>

<string>Sketch.jar</string>
</array>
<key>NSJavaRoot</key>
<string>Contents/Resources/Java</string>
<key>NSMainNibFile</key>
<string>Draw2Java.nib</string>
<key>NSPrincipalClass</key>
<string>NSApplication</string>

</dict>
</plist>

The Sketch application associates with this Info.plist file (actually
Info-macos.plist) an InfoPlist.strings file in the English-localized resource
directory.

C H A P T E R 1 1

Software Configuration

Information Property Lists 191
  Apple Computer, Inc. February 2001

Listing 11-2 The InfoPlist.strings file for the Sketch demo application

{
CFBundleName = "Sketch";
CFBundleShortVersionString = "Apple Sketch Application Example 1.1.0";
CFBundleGetInfoString = "Apple Sketch Application Example 1.1.0.

Copyright \U00A9 1998-2000, Apple Computer, Inc.";
NSHumanReadableCopyright = "Copyright \U00A9 1998-2000, Apple Computer,

Inc.";
// Document type human-readable names.
"Apple Sketch Graphic Format" = "Apple Sketch Graphic Format";
"NSPDFPboardType" = "Portable Document Format (PDF)";
"NSTIFFPboardType" = "Tagged Image File Format (TIFF)";

}

Standard Keys
Mac OS X defines a small set of standard keys. Some of these keys are given default
values by the integrated development environment.

CFBundleInfoDictionaryVersion. Used to support future versioning of the
Info.plist format. It is automatically generated by the development environment
when you are building a bundle.

CFBundleExecutable. The name of the main executable for the bundle. For an
application, this is the application executable. For a loadable bundle, it is the binary
that will be loaded dynamically by the bundle. For a framework, it is the shared
library for the framework (in the case of a framework, the executable name is
required to be the same as the framework name for launch-performance reasons).
The executable name should not include any extension that may be used on various
platforms.

CFBundleIdentifier. The unique identifier string for the bundle. This identifier
should be in the form of a Java-style package name, for example com.apple.foo.bar.
The bundle identifier can be used to locate the bundle at runtime. The preferences
system uses this string to identify applications uniquely.

CFBundleVersion. A version number suitable for Mac OS 'vers' resource. The
value of this key should be a string. The value is application-specific; however, if the
standard form “2.5.3d5” is used, the system’s bundle routines can correctly retrieve

192 Information Property Lists
  Apple Computer, Inc. February 2001

C H A P T E R 1 1

Software Configuration

the value. If the value is an arbitrary number, the bundle routines treat it as a string,
but then the routines are not guaranteed to return the proper numeric
representation.

CFBundleDevelopmentRegion. The “native” region for the bundle. Usually this is
the native language of the person who wrote the bundle. The development region
is used as the last resort if a resource cannot be located for the user’s preferred
region or language.

The following keys are applicable to Cocoa bundles only:

NSJavaNeeded. If given a “true” Boolean value, then the Java VM is loaded and
started up, if necessary. A “true” Boolean value can be either a CFBoolean object set
to true (in XML) or a “YES” string value.

NSJavaPath. An array of paths to classes whose components are preceded by
NSJavaRoot if they are not absolute locations. The development environment (or,
specifically, its jamfiles) automatically maintains the values in the array.

NSJavaRoot. A string specifying the root of the directory location where the
application’s Java classes are.

NSMainNibFile. The name of an application’s main nib file. A nib file is an
Interface Builder archive containing the description of a human interface along with
connections between objects of that interface. The main nib file is automatically
loaded when an application is launched. By default, this filename is the name of the
application with an extension of .nib.

NSPrincipalClass. The name of a bundle’s principal class in the Cocoa
environment. The principal class is designated the main class because of its central
relation to other classes in the bundle. By default, this name is the application name.

NSServices. An array of dictionaries specifying the services provided by an
application. Keys for this subdictionary are NSPortName, NSSendTypes, NSMenuItem,
and NSMessage.

NSHumanReadableCopyright. A string containing copyright information to put in
the About dialog of Cocoa applications. This key is usually in the InfoPlist.strings
file because it needs to be localized.

CFAppleHelpAnchor. The name of the bundle’s initial HTML help file, minus the
.html or .htm extension. This file is located in the bundle’s localized resource
directories or, if nonlocalized, directly under the Resources directory.

C H A P T E R 1 1

Software Configuration

Information Property Lists 193
  Apple Computer, Inc. February 2001

Finder Keys
These keys are used by the Mac OS X Finder to store important information about
a bundle. Among other things, the Finder uses these properties to locate and display
an application’s icon and recognize associated document types.

CFBundleName. The short name of the bundle suitable for displaying in various
places in the user interface, such as the menu and the About box. This key is usually
in the InfoPlist.strings file because it needs to be localized.

CFBundlePackageType. The four-letter type code for the bundle. This is 'APPL' for
applications, 'FMWK' for frameworks, and 'BNDL' for loadable bundles. You can
choose a type code that is more specific than 'BNDL' for loadable bundles.

CFBundleSignature. The four-letter creator code for the bundle.

CFBundleIconFile. The filename of the bundle resource that contains the icon to be
used to display this bundle in the Finder (or other applications). The filename can
have an extension or be without one. If it is without an extension, the system
appends an extension appropriate to the platform (for example, .icns on Mac OS 9).

CFBundleShortVersionString. A human-readable description of the bundle’s
version displayed in the Info window. This can be a string different from the string
that can be generated from the CFBundleVersion key, if present. This key is in the
InfoPlist.strings file if it needs to be localized. A recommended format is n.n.n
where n represents a number; either one of the minor version numbers can be
omitted. Thus “1”, “10.1”, and “2.0.11” are valid version numbers.

CFBundleGetInfoString. A human-readable plain text string displayed in the
Finder’s Info window (known as the long version string in Mac OS 9). The format
of the key should conform to the long version string of Mac OS 9, for example,
“2.2.1, © Great Software, Inc, 1999”.This key is usually in the InfoPlist.strings file
because it needs to be localized.

CFBundleGetInfoHTML. A human-readable HTML string displayed in the
Finder’s Info window. This key is usually in the InfoPlist.strings file because
it needs to be localized. You can specify this key-value pair instead of the plain
text CFBundleGetInfoString if you want a richer representation.
If CFBundleGetInfoString and CFBundleGetInfoHTML are both present,
CFBundleGetInfoHTML is used.

194 Information Property Lists
  Apple Computer, Inc. February 2001

C H A P T E R 1 1

Software Configuration

CFBundleDocumentTypes. An array of the type definitions for any document
types an application understands. Each type definition is a dictionary in the array.
These keys are supported in the type-definition dictionary:

� CFBundleTypeName. The abstract name for the document type, which must be
present for the type to be valid. This is the main way to refer to a type, and is
used by the system when data is on the Clipboard (pasteboard). To ensure
uniqueness, it is recommended that you use a Java-package style identifier. This
identifier is also used as a key in the InfoPlist.strings file to provide the
human-readable version of the type name. If the type is a system type, you can
use one of the symbol names for common Clipboard types:

NSStringPboardType
NSFilenamesPboardType
NSPostScriptPboardType
NSTIFFPboardType
NSRTFPboardType
NSTabularTextPboardType
NSFontPboardType
NSRulerPboardType
NSFileContentsPboardType
NSColorPboardType
NSPICTPboardType
NSPDFPboardType
NSURLPboardType

� CFBundleTypeIconFile. Specifies the filename (minus the extension) of the
resource in the bundle that contains the icon the Finder should display for the
type. The filename can have an extension or be without one. If it is without an
extension, the system appends an extension appropriate to the platform (for
example, .icns on Mac OS 9).

� CFBundleTypeRole. Defines the application’s role with respect to the type. The
value can be Editor, Viewer , Printer, Shell, or None. See “Document
Configuration” (page 187) for descriptions of these values.

� CFBundleTypeOSTypes. An array of four-letter type codes that map to this
type.

� CFBundleTypeExtensions. An array of filename extensions that map to this
type.

C H A P T E R 1 1

Software Configuration

Information Property Lists 195
  Apple Computer, Inc. February 2001

� NSDocumentClass. The NSDocument subclass used to instantiate instances of
this document. Used for Cocoa applications only.

� NSExportableAs. An array of other types that documents of this type can be
exported as (write-only types). Used for Cocoa applications only.

CFBundleURLTypes. An array of dictionaries similar to CFBundleDocumentTypes,
but it describes URL schemes that the application can handle. These keys are
supported in a URL-type dictionary:

� CFBundleURLName. The abstract name for this URL type. This is the main way
to refer to a particular type. To ensure uniqueness, it is recommended that you
use a Java-package style identifier. This name is also used as a key in the
InfoPlist.strings file to provide the human-readable version of the type name.

� CFBundleURLIconFile. Specifies the filename (minus the extension) of the
resource in the bundle that contains the icon to be used for this type.

� CFBundleURLSchemes. An array of URL schemes handled by this type (http,
ftp, and so forth).

Application Package Keys
The application package keys enable an application bundle on Mac OS X to control
how and where its resources get installed. Installation of an application package
takes place in two stages. In most cases, the user or administrator merely copies the
package to the desired installation location (assuming that person has the proper
permissions for the copy). However, the application package keys are a mechanism
for installing bundled resources in specific places outside the bundle. In the Info
window for the application (accessed via the Finder’s Show Info command), the
user or administrator selects the resources to be installed and clicks the Install
button. Resources can be uninstalled in a similar manner.

196 Information Property Lists
  Apple Computer, Inc. February 2001

C H A P T E R 1 1

Software Configuration

Table 11-1 describes the application packaging keys.

Each dictionary in an APFiles array contains the keys described in Table 11-2.

Table 11-1 Finder application packaging keys

Key Description

APInstallerURL A URL identifying the program used to install the items in the
application package. The only URL scheme currently
supported is file:

APFiles An array of dictionaries describing the files or directories that
can be installed.

Table 11-2 Keys of APFiles dictionary

Key Description

APFileName The name of the file or folder.

APFileDescriptionKey A short description of the item to display in the
Finder’s Info window.

APFileSourcePath The path to the component in the application
package relative to the installer.

APFileDestinationPath Where to install the component as a path relative to
the application bundle.

APInstallAction The action to take with the component: “Copy” or
“Open”.

APDisplayedAsContainer If “true” the item displayed in the inspector is
shown with a folder icon; if “false” it is shown with
a document icon.

C H A P T E R 1 1

Software Configuration

The Preferences System 197
  Apple Computer, Inc. February 2001

Launch Services Keys
The Launch Services keys restrict how a CFM-based executable is launched on
Mac OS X. Normally, the Finder Info window displays for each selected CFM
application a “Launch in Classic” control in the Info window; if the user sets this
control, Finder launches the application in the Classic environment. When either of
the Launch Services keys are specified, the Finder Info window does not display the
control and the application must launch in the indicated environment. See the
section “CFM Executables” (page 225) in the chapter “Installation and Integration”
for additional information.

Table 11-3 describes the keys.

The Preferences System

Preferences are application or system options that users can select to customize their
working environment. For example, automatic save, default font, and smart quotes
are common preferences for document-based applications. Almost all applications
need to store and retrieve preferences. The preferences system of Mac OS X not only

Table 11-3 Launch Services keys

Key Description

LSRequireClassic If set to “true”, the application should be launched in the
Classic environment only (and not in the Carbon
environment).

LSRequireCarbon If set to “true”, the application should be launched in the
Carbon environment only (and not in the Classic
environment).

LSBackgroundOnly If set to “true”, makes your application background-only.
This is necessary only for processes that use higher-level
frameworks that connect to the window server but are not
intended to be visible to users.

198 The Preferences System
  Apple Computer, Inc. February 2001

C H A P T E R 1 1

Software Configuration

let users customize the behavior of applications and system software, but it
provides a way to preserve preference settings across multiple launches.
Preferences are not limited to applications; frameworks and libraries can write and
read preferences including, on occasion, user preferences. For creating, writing,
reading, and removing preferences, use Core Foundation’s Preference Services or,
for Cocoa developers, the NSUserDefaults class.

Important
You should not store data needed to configure an
application at launch time as a preference. The assumption
with user preferences is that they are not critical; if somehow
they are lost, the application can recreate the default set of
preferences. Initial configuration information is critical and
should be stored in the information property list or some
other property list stored inside the application package.

The preferences system stores values that are associated with a key; later you can
use the key to look up the preference value when you need it. Key-value pairs are
assigned a scope using a combination of user name, application ID, and host
(computer) name. This mechanism allows you to create preferences that apply to
different classes of users. For example, you can save a preference value that applies
to

� the current user of your application on the current host

� all users of your application on a specific host connected to the local network

� the current user of your application on any host connected to the local network
(the usual category for user preferences)

� any user of any application on any host connected to the local network

How Preferences Are Stored
The preferences system stores preference data in files located in the Library/
Preferences folder in the appropriate file-system domain. For example, if the
preference applies to a single user, the file is written to the Library/Preferences
folder in the user’s home directory. If the preference applies to all users on a
network, it goes in /Network/Library/Preferences.

Each of the files in Library/Preferences takes a name that uniquely identifies an
application. Each name is from application’s bundle identifier. You assign the
bundle identifier (using the key CFBundleIdentifier) in your application project as

C H A P T E R 1 1

Software Configuration

The Preferences System 199
  Apple Computer, Inc. February 2001

part of its information property list (see “Standard Keys” (page 191) for details). The
system routines related to preferences use the bundle identifier to find the
preferences for a given application.

To ensure that there are no naming conflicts, Apple strongly recommends that
bundle identifiers be the same form as Java package names—your company’s
unique domain name followed by the application or library name. Some examples
are com.apple.Finder, com.adobe.Photoshop, and com.foo.ImageImport. Using this
scheme minimizes the possibility of name collision and leaves you responsible for
managing the identifier name space under your corporate domain.

Core Foundation’s Bundle Services and, for Cocoa applications, the NSBundle class
provide routines for accessing an application’s bundle identifier. You should
always use these routines and never hard-code the application identifier.

The preferences files in Library/Preferences have the extension of .plist. This
extension indicates that they contain property lists. If you wish, you can directly
modify these XML property lists to add or change application preferences. By doing
so, however, you can introduce editing errors into the XML data; if this happens, the
application might not be able to load the file and thus would lose all its preferences.
If you must edit preferences files, use the Property List Editor application.

Problems might ensue if an application tries to write preferences to a location other
than Library/Preferences in the appropriate file-system domain. For one thing, the
preferences APIs aren’t designed for this difference. But more importantly,
preferences stored in unexpected locations are excluded from the preferences
search list and so might not be noticed by other applications, frameworks, or system
services.

Preference Domains
When you create a new preference or search for an existing one, the preferences
system uses the notion of preference domains to specify the scope and location of
the preference. A preference domain consists of three pieces of information: an

200 The Preferences System
  Apple Computer, Inc. February 2001

C H A P T E R 1 1

Software Configuration

application identifier, a host name, and a user name. Table 11-4 shows all of the
preference domains, listed in the order they are searched when the preference
system attempts to locate a preference value.

The search routines look through the various preference domains in the order given
above until they find the key you have specified. If a preference has been set in a
less-specific domain—”Any Application,” for example—its value is retrieved with
this call if a more specific version cannot be found. This means that values in
more-specific domains override those for the same key in less-specific domains.

The defaults Utility
The preferences system of Mac OS X includes a command-line utility named
defaults for reading, writing, and removing preferences (or, user defaults) from
application and other domains. The defaults utility is invaluable as an aid for
debugging applications. Much of the preferences information is accessible through
an application’s Preference dialog (or the equivalent), but some of it isn’t, such as
the position of a window. You can access this information with the defaults utility.

To run the utility, launch the Terminal application and, in a BSD shell, enter
defaults plus all appropriate command options. For a terse description of syntax
and arguments, run the defaults command by itself. For a fuller description, read
the man page for defaults or run the command with the usage argument:

Table 11-4 Preference domains in search order

1 Current User Current Application Current Host

2 Current User Current Application Any Host

3 Current User Any Application Current Host

4 Current User Any Application Any Host

5 Any User Current Application Current Host

6 Any User Current Application Any Host

7 Any User Any Application Current Host

8 Any User Any Application Any Host

C H A P T E R 1 1

Software Configuration

The Preferences System 201
  Apple Computer, Inc. February 2001

$ defaults usage

Because applications access the preferences system while they are running, you
should not modify the defaults of a running application using defaults. If you
change a default in a domain that belongs to a running application, the application
probably won’t see the change and might overwrite the default.

202 The Preferences System
  Apple Computer, Inc. February 2001

C H A P T E R 1 1

Software Configuration

203
  Apple Computer, Inc. February 2001

C H A P T E R 1 2

12 Internationalization

Mac OS X is an internationalized operating system. As such, it not only facilitates
the localization of software resources (text, images, sounds, and so on) but it also
can display text containing more than one script. However, Mac OS X cannot fully
meet the claim of being internationalized without the cooperation of developers.
You must play a part and ensure that any software intended for markets outside
your own country or region is properly internationalized and localized. You should
also ensure that your application supports the presentation of multiscript text.

Before going further, it might be helpful to distinguish the seemingly similar terms
localization, internationalization, and multiscript support.

� Localization is the adaptation of a software product, including online help and
documentation, for use in one or more regions of the world, in addition to the
region for which the original product was created. Localization of software can
include translating user-interface text, resizing text-related graphical elements,
and modifying images and sound to conform to local conventions.

� Internationalization is the design or modification of a software product to
facilitate localization. With its Unicode-based text storage, bundled resources,
and preferences system, Mac OS X is an internationalized operating system that
enables the input, display, formatting, and manipulation of localized resources.
To internationalize software, you must write code that makes use of these
locale-aware services.

� Multiscript support refers to a set of programming practices that ensures
software can appropriately handle multilingual text. A program with such
support can, for example, accurately display a single document that contains
multiple scripts such as English, Japanese, and Arabic.

Except for user-interface tweaking, this chapter does not cover localization because
this discipline falls outside software development. Translating text is typically done
by professional translators, and recreating images and sounds is usually done by

204 Internationalizing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 2

Internationalization

artists and technicians. Of course, developers often perform these functions
themselves, but this work does not require them to modify source code. However,
it is important for developers to become involved in the localization effort. For
example, they should always verify how the translated text of a user interface fits
within each user-interface element and either adjust those elements appropriately
or request another translation.

Internationalizing Your Application

Internationalization is the process of making your application
language-independent in such a way that a user can choose a version of the
application that is localized to any of a number of languages or regions. It is only
the resources of the application—its text, images, sounds, and so on—that are
localized. The executable used for all localized versions of the application is the
same.

Internationalizing your application makes your application localizable. That is, you
build localization support into your application by placing the text, images, and
sounds specific to a language in files in a language-specific subdirectory of your
project directory and by using the proper locale-savvy APIs for accessing those
resources.

Even if you don’t have immediate plans to support multiple languages in your
application, there are advantages to designing your application with
internationalization in mind. If your application is properly designed, you won’t
have to touch its source code to introduce future localizations; therefore, you won’t
run the risk of introducing bugs by putting the necessary hooks in later. Second, you
can test the localization code along with the initial monolingual product, thereby
minimizing the amount of testing needed for any future localized version.

The internationalization system of Mac OS X relies on a number of technologies:

� Unicode. Mac OS X uses Unicode as its native character encoding because
Unicode makes it possible to represent most of the languages of the world. With
Unicode, the file systems of Mac OS X have no need to change localizations for
any encoding. By being Unicode-based, the operating system makes it possible
for a speaker of one language to name a file or volume using a script from
another language. However, current text systems do not support some writing

C H A P T E R 1 2

Internationalization

Internationalizing Your Application 205
  Apple Computer, Inc. February 2001

systems (vertical and right-to-left), so it’s not practical to localize to those
languages. Additionally, Mac OS X expects either the UTF-8 or the UTF-16
encoding for Unicode, depending on the level of software. You use the former
for routines at the lower levels of the system (BSD, NetInfo, and so on) and you
use UTF-16 encoding at higher levels of the system.

A properly internationalized application, because it is Unicode-aware, would
also include multiscript support (see “Adding Multiscript Support” (page 215)).

� Bundles. Bundles and the APIs related to bundles provide a convenient way to
package and access resources localized for a particular language and region.
Read the chapter “Bundles” (page 101) for further information.

� Preferences system. The preferences system for Mac OS X provides a way to
capture and store user preferences, including language preferences. See
“Language Preferences and Bundle Resources” (page 205) for details on this set
of preferences.

And, of course, the necessary fonts and input services for a particular script must be
installed on a Mac OS X system.

Language Preferences and Bundle Resources
The Language pane of the International system preferences lets users set the order
of the languages and locales (that is, regional variants of a language) they prefer for
their computing environment. The preferences system (described in “The
Preferences System” (page 197)) stores this ordered list of languages and locales as
a per-user default under the key AppleLanguages. Thus a user who understands
more than one language can specify alternatives if an application does not include
a localization of his primary language.

206 Internationalizing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 2

Internationalization

Figure 12-1 Language pane of the System Preferences International module

Each string in the list of languages potentially corresponds to the base name of an
.lproj directory in the Resources directory of a bundle. The system’s
bundle-management routines use this string to find the localized resources in the
corresponding .lproj directory. If that directory does not exist, they use the second
language preference to search for a bundle localization. It continues until they find
a localization, the default localization being the language used in development.

Core Foundation Bundle Services (CFBundle) provides this search functionality for
Carbon and Java applications; for Cocoa applications, it is provided by the
NSBundle class. Once your application contains translated versions of
language-specific resources, it can load these localized resources from

C H A P T E R 1 2

Internationalization

Internationalizing Your Application 207
  Apple Computer, Inc. February 2001

the appropriate set of files, based on the user’s language preferences. Thus, your
application automatically presents itself to each user in one of that user’s preferred
languages—ideally (but not necessarily) the user’s first choice.

See the chapter “Bundles” (page 101) for information on how bundles store
resources.

Designating Languages and Locales

Mac OS X gives you three different ways of expressing language preferences and
bundle localizations, and each way carries with it a different degree of specificity.
The language designation can be

� a language name (for example, “English”)

� a language abbreviation conforming to ISO 639 (for example, “en”)

� a locale abbreviation, identifying a regional variant of a language, conforming to
ISO 3166 (for example, “en_US”

Generally, the recommended approach is to use the ISO 639 language abbreviation
or, if appropriate, the ISO 3166 locale abbreviation. However, CFBundle and
NSBundle recognize the language names English, French, German, Japanese,
Chinese, Spanish, Italian, Swedish, and Portuguese and can map ISO 639
abbreviations to these names.

Because of the way the system attempts to match language preference with
localization, the user’s language preferences should be as specific as possible and
the localizations stored in a bundle should be as general as possible. As noted
earlier, the system bundle routines try to match the designation given for a
language preference to the base name of an .lproj directory in a bundle. Failing an
exact match, it tries to find a localization at a more general level.

An example will help clarify this. Say a user has specified her primary language
preference as U.S. English (“en_US”). She launches an application that has only two
localizations, French.lproj and English.lproj. When the system is asked to fetch a
localized resource, it looks first for a directory named en_US.lproj, next for
directory en.lproj, and finally finds the resource in English.lproj.

Note: To obtain copies of the ISO 639 and ISO 3166 standards, go to the
International Standards Organization website http://www.iso.ch.

208 Internationalizing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 2

Internationalization

When the bundle routines look for resources, they check both the localization for a
single locale and, if the resource isn’t found there, the localization for the language
of which the locale is a variant. This behavior enables you to put resources that are
specific to locales and those that are general to a language in their own .lproj
directories, and yet have these resources logically combined. The system looks first
in a locale-specific localization (say, en_US.lproj) and if it doesn’t find the resource
it’s looking for, it looks in a language-specific localization such as en.lproj or
English.lproj. If it can’t find it there, it goes on to the user’s next preferred language
or locale. Apple recommends that applications with a localization for a particular
locale should include a localization for the corresponding language; this
localization should contain all resources that are generic to the language.

Because they make reference to the abbreviations in the ISO 639 standard,
CFBundle and NSBundle can handle most known languages. (To give an idea of
how comprehensive their coverage is, the languages include Manx, Faroese, and
Oromo.) Except for the language names listed earlier in this section, CFBundle and
NSBundle are not able to map these abbreviations to English-name equivalents.
However, for this purpose you can use the Carbon functions in MacLocales.h that
convert ISO 639 abbreviations to user-visible names in a particular language. You
may also use a language or locale abbreviation that is not known to CFBundle and
NSBundle; however, if you do, you must ensure that there is an exact match of the
abbreviation (or at least the first two characters) used for the language preference
and the .lproj directory base name.

The list of locale abbreviations known to CFBundle and NSBundle is much shorter
because it involves only eight languages: English, Chinese, French, German,
Spanish, Dutch, Italian, and Portuguese. CFBundle and NSBundle can always map
an ISO 3166 locale abbreviation to the “parent” ISO 639 abbreviation by performing
a simple truncation.

Tools for Internationalization and Localization
Internationalizing applications for Mac OS X involves, in part, putting the resources
localized for a particular language or region in the proper bundle location. In some
situations, you might have to do this task by hand, such as with Code Fragment
Manager (CFM) applications (see “CFM Executables” (page 225) for details).
Fortunately, for most occasions there are tools to help you.

Project Builder provides the File Reference Inspector to assist you with
internationalization. To internationalize a resource file, complete the
following steps:

C H A P T E R 1 2

Internationalization

Internationalizing Your Application 209
  Apple Computer, Inc. February 2001

1. Add the resource file to Project Builder.

a. Select the Resources folder under the Groups and Files pane for a target (you
might have to click the Files tab to get the Groups and Files pane).

b. Choose Add Files from the Project menu.

c. Use the file browser to navigate to the resource, select it, and click Open.

d. In the dialog that Project Builder displays, select “Copy into group folder”,
choose one of the “relative” reference styles (for example, Project Relative),
and make sure the correct target is selected. Click Add.

2. Select the resource file and choose Show Inspector from the Project menu.

3. In the File Reference Inspector (Figure 12-2 (page 210)), choose Make Localized
from the Localization & Platforms pop-up menu.

4. In the dialog that appears, either select one of the standard languages from the
pop-up menu or enter a language that is not in the list.

If you have an existing resource that you want to use as a placeholder or
template for another localization, choose Add Localized Variant and select (or
enter) the other language. Project Builder copies the resource to the other .lproj
directory.

5. If the resource is a text file, choose Unicode from the File Encoding pop-up
menu.

210 Internationalizing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 2

Internationalization

Figure 12-2 Project Builder’s File Reference Inspector

To create “strings” files—which contain localized versions of the strings embedded
in your source code—you can use the genstrings command-line utility or you can
create these files by hand. See “Localizing Strings” (page 212) for more information.

Finally, a word must be said about the tools to use for localizing resources. For
images and sounds, use the appropriate application (for example, Photoshop).
For text, always use a word processor or text editor that can save files in the UTF-16
encoding; the TextEdit application included with Mac OS X provides such
capabilities. If you can define and archive user interfaces using an application such
as Interface Builder, you should provide localized versions of these interface
archives; see the following section for more information on this topic.

C H A P T E R 1 2

Internationalization

Internationalizing Your Application 211
  Apple Computer, Inc. February 2001

Localizing User Interfaces
The native integrated development environment (IDE) for Mac OS X consists of
Project Builder, Interface Builder, and a suite of build, debugging, and performance
tools. Developers use Interface Builder to create user interfaces for their
applications. Interface Builder saves these interfaces as XML archives called nib
files. You can localize nib files just as you can localize image and sound files.

Nib files store the user interface of an application, including windows, dialogs, and
user-interface elements such as buttons, sliders, text objects, and help tags for these
elements. A nib file also holds the connections between these objects that cause
actions to be performed when the user activates controls. Nib files are typically
localized all at once; the localizer takes a nib file, translates all the user-visible
strings and makes other adjustments as necessary (such as resizing the visible
elements).

In any medium-size or large application, it’s usually a good idea to put each
window or panel (that is, dialog) in its own nib file. This practice not only makes it
possible to load the user interface lazily (that is, to load it as necessary), but it also
permits localization to progress in more incremental steps. It’s also a good idea to
put the menus of the application in a separate nib file.

You should use Interface Builder to localize nib files. To do this, open all of the nib
files in a language.lproj directory, localize all the strings, change the sizes of the
user-interface elements to accommodate the new strings, and save the nib files.
There are a few other things to watch out for:

� Objects in a nib file typically have connections between them that should not be
broken. You should lock all connections (an option in Interface Builder
preferences) before editing the nibs.

� Numeric and date fields often have formatters attached to them. Change the
format, if necessary, to be appropriate for the new locale; an example is the
thousands-separator character, which is a comma in the United States and a
period in continental Europe. (Consult the Interface Builder documentation for
instructions on doing this.)

Note: This section talks about Interface Builder and its nib files. However, much
of the discussion is applicable to localizable user-interface archives created by
other IDEs.

212 Internationalizing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 2

Internationalization

� Dialogs and windows usually have minimum or maximum sizes that are
specified through the inspector. If you must make a dialog or window wider for
a given language, it’s likely that the minimum size also needs to be modified.

� Some user-interface objects support help tags—bits of explanatory text that
appear when the user moves the mouse over the object for a short period. You
can define the help tags for an object in Interface Builder’s inspector, where they
can also be localized.

Localizing Strings
Strings files enable you to externalize and localize the strings that are embedded in
your application’s source code. They are called strings files because they have the
extension of .strings, for example Localizable.strings. There is typically at least
one strings file per localization (that is, per .lproj directory) in a bundle.

Note that strings files are not intended for strings that appear in an archived user
interface (for example, a nib file created by Interface Builder). For such strings, you
can localize them using the appropriate development application (see “Localizing
User Interfaces” (page 211)).

Also keep in mind that there are two kinds of embedded strings: those that the user
sees, and those that the user doesn’t see. An example of a string the user doesn’t see
is contained in the following statement:

if (CFStringHasPrefix(value, CFSTR("-")) {
 CFArrayAppendValue(myArray, value);
};

The string “-” does not need to be localized since the user never sees it, and it has
no effect on anything that the user does see. On the other hand, a string that appears
in an alert dialog should be localized.

Composing a Strings File

Place strings that need to be localized in a strings file, whose format is illustrated
below:

/* A comment */
"Yes" = "Oui";
"The same text in English" = "Le meme texte en francais";

C H A P T E R 1 2

Internationalization

Internationalizing Your Application 213
  Apple Computer, Inc. February 2001

The string on the left is used as a key in code for locating the string on the right in
the strings file. Carbon and Cocoa provide APIs for accessing localized strings from
a strings file. Cocoa applications should use the following macros (declared in the
header for the Foundation framework’s NSBundle class) to extract strings out of a
strings file:

NSLocalizedString(key, comment)
NSLocalizedStringFromTable(key, table, comment)

Carbon and other non-Cocoa programs should use the equivalent macros defined
in Core Foundation Bundle Services (CFBundle):

CFCopyLocalizedString(key, comment)
CFCopyLocalizedStringFromTable(key, table, comment)
CFCopyLocalizedStringFromTableInBundle(key, table, bundle, comment)

For instance, assuming the French localization was selected

NSLocalizedString (@"Yes", @"")

would return “Oui” from the above table. The arguments to the above macros are
as follows:

key
The string used in looking up the localized value.

table
The name of the strings file to look in (by default, “Localizable”, which
causes the macro to look for Localizable.strings).

comment
The comment to put in the strings file when generating the strings file.

Some functions and methods (such as the Cocoa stringWithFormat: method and the
Core Foundation CFStringCreateWithFormat function) allow string arguments with
formatting characters in the string. For these functions and methods, you can
specify formatting characters in both keys and values, as in this example:

"Windows must have at least %d columns and %d rows." =
"Les fenetres doivent etre composes de %d colonnes et %d lignes au minimum.";

214 Internationalizing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 2

Internationalization

"File %@ not found." = "Le fichier %@ n'existe pas.";

The localizer can reorder the arguments in the translated string if that is necessary.
If a string contains multiple variable arguments, you can change the order of the
arguments by using the n$ modifier where n indicates the order of the argument.
For example:

/* Message in alert dialog when something fails */
"Oh %@! %@ failed!" = "%2$@ blah blah, %1$@ oh!";

Just as in C, some characters must be prefixed with a backslash to be included in the
string properly. These characters include double quotations marks, backslash, and
carriage return. You can also specify carriage returns with \n:

"File \"%@\" cannot be opened" = " ... ";
"Type \"OK\" when done" = " ... ";

Strings can include arbitrary Unicode characters with \U followed by up to four
hexadecimal digits denoting the Unicode character; for instance, space, which is
hexadecimal 20, is represented as \U0020. This option is useful if strings must
include Unicode characters that cannot be typed for some reason.

Strings files are best saved in Unicode format. This allows them to be
encoding-independent, and simplifies the encoding to use when an application
loads strings files. The TextEdit application can save in Unicode format. You can
select the encoding either from the Save dialog in Plain Text mode, or as a general
preference for TextEdit.

Generating Strings Files

Although you can create a strings files by hand, you can also generate one
automatically from your source code using the command-line program genstrings.

The program works by parsing the source files that you specify, extracting the
information from each call to Cocoa’s NSLocalizedString macro (and variant) and
Core Foundation’s CFCopyLocalizedString macro (and variants), and adding that
information to the appropriate strings file. Every entry generated from a call to one

Note: The “%@” specifier is an extension to the standard printf() formatting
characters. It represents arbitrary Cocoa and Core Foundation objects. See Inside
Cocoa: Object-Oriented Programming and the Objective-C Language for the complete
list of specifiers.

C H A P T E R 1 2

Internationalization

Adding Multiscript Support 215
  Apple Computer, Inc. February 2001

of the relevant macros is placed in a file called table.strings where table derives
from the “table” argument of the macro (Localizable.strings by default if no table
is specified). Using separate tables creates separate domains for sets of strings,
allowing different translations of the same string depending on the context.

The comment provided in these calls is also written out to the strings file, allowing
the translator to get a better idea of what the string is used for. It’s important to
understand that genstrings generates one entry for each call to one of the related
macros and duplicates any identical entries. If your code has more than one of these
macros with the same arguments, you’ll have to edit the strings file after you run
genstrings to remove the redundant entries. Although a key can occur multiple
times in a source file, each key in a strings file must be unique. (However, you can
have multiple strings files, or “tables,” per localization, and each of these files
can contain the same key.)

Whether you want to generate strings files automatically or create them by hand is
up to you. In some cases you might find it convenient to generate your strings files
once in the lifetime of your application development, then tweak them by hand.
However, in most cases, it’s better to generate new strings files from the source
whenever you change or add any localized strings.

Adding Multiscript Support

An application that includes multiscript support can accurately display text in
various scripts simultaneously. Such an application can accept textual input,
display text, and print text containing the scripts of different languages in the same
document, regardless of a user’s language preferences. If the application is not
prepared to offer multiscript support, some of this text probably appears garbled.

Multiscript support is becoming an increasingly important and expected feature not
only for operating systems but for third-party applications. With an
internationalized operating system such as Mac OS X, some users expect to be able
to create a document in one language and script, change their language preference,
and then open the document as they last saved it. In addition, the Internet is
fostering more expectations for this support; users frequently download
foreign-language text that is different from the user’s primary language.

216 Adding Multiscript Support
  Apple Computer, Inc. February 2001

C H A P T E R 1 2

Internationalization

On a general level, you attain multiscript support on Mac OS X by using the
appropriate Unicode technologies and APIs. Specifically, this entails the following
for Carbon applications:

� When possible, use CFString from Core Foundation String Services instead of C
or Pascal strings.

CFString objects internally store and handle Unicode data without requiring
you to have any specific knowledge of the global character-set standard. If you
need to convert between Unicode and C and Pascal strings in other encodings,
use the facilities that CFString provides. However, you should avoid converting
CFString objects to and from C strings or Pascal strings as much as possible.
Such conversions are not only costly but frequently introduce bugs affecting
multiscript presentation. If you cannot find any CFString or Unicode-aware
APIs to use in a certain situation, you should convert the encoding to the
per-user default system encoding.

� For localized strings, use Core Foundation’s CFCopyLocalizedString (and related
macros) instead of GetIndString.

GetIndString is based on the script system so it cannot represent multiscript text.
CFCopyLocalizedString can represent such text because it returns a
Unicode-based CFString object. Generally, your code should use dynamic text
processing (such as is afforded by the localized-string mechanism described in
“Localizing Strings” (page 212)) over static text in your code.

� Avoid directly accessing system layers below Core Services.

You should be able to obtain most of the functionality available in the kernel
environment (particularly BSD and Mach calls) by using the Core Services
frameworks, Core Foundation, in particular. As much as possible, avoid calling
BSD functions directly. For accessing the file system, use Core Foundation URL
Services (CFURL), the File Manager data type FSRef, or (in Cocoa)
NSFileManager.

� Avoid using the TextEdit API.

The TextEdit API is capable of dealing with multiscript text. However, it
requires you to manage script fonts and style runs yourself. MLTE provides a
much simpler API to handle multiscript text based on Unicode.

� Never assume text data to be in the MacRoman encoding.

You can no longer assume that all text data is in MacRoman or ignore text
encoding issues altogether. You must be prepared to handle text encoding
issues. Untagged text data unaccompanied by script code is not necessarily in

C H A P T E R 1 2

Internationalization

Adding Multiscript Support 217
  Apple Computer, Inc. February 2001

the system script (Roman) anymore. If this assumption is wrong, as it can often
be, users are presented with garbled text. Worse, it could lead to anomalies that
corrupt user data or even crash the system.

The Cocoa APIs, properly used, automatically provide multiscript support.

For more information on file encodings in Mac OS X, see “File Encodings and Fonts”
(page 172) in the chapter “The File System” (page 151).”

218 Adding Multiscript Support
  Apple Computer, Inc. February 2001

C H A P T E R 1 2

Internationalization

Preparing Software for Mac OS X 219
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

13 Installation and Integration

The moment arrives. You’ve worked for months on your Mac OS X application,
designing, coding, redesigning, debugging, testing, tuning, and fixing bugs. Now,
with one final build, your application should emerge as what it was meant to be: an
elegant, rock-steady feat of engineering, purring with power and potential.

But wait. Are you sure it’s ready? Is it truly in shape for deployment? Is it of
commercial quality, and can customers easily install it and use it? Is there anything
you have overlooked?

This chapter tries to help you answer these questions. First, it provides a checklist
of important tasks that you should complete (or at least consider completing) before
deploying your application. Some of these tasks are in the realm of fit-and-finish but
others are essential to a well-designed application. Second, it discusses issues
affecting how your application can best be integrated with the various pieces of
Mac OS X as well as with other applications. Finally, this chapter describes the
various approaches you can take and tools you can use for installing your
application. You’ve worked hard to produce a great application with the feature set
your customers value. Now take the time to ensure that they can enjoy your
application by delivering a great installation and setup experience.

Preparing Software for Mac OS X

To software developers, Mac OS X is a very accommodating system. It often gives
you alternative approaches for accomplishing the same goal, with one approach the
same as (or close to) what has been done traditionally. Areas where such
alternatives exist include application packaging, resource handling, and document

220 Preparing Software for Mac OS X
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

typing. However, one approach is often better than another and sometimes you can
combine approaches. The following section describes various important facets of
application design, discussing not only what you can do, but more importantly
what you should do for reasons of performance, interoperability, or robustness.

Applications and Documents FAQ
Information about applications and documents is scattered throughout this book
because many different factors affect the nature, structure, and handling of
applications and documents. These factors include bundles, executable formats, file
systems, and the Finder. This section brings together this information in a
question-answer format, summarizing the salient points about documents and
applications for developers.

What metadata must I specify for an application?

For users to launch your (bundled) application, the Finder application must be able
to detect that a folder is a bundle, and then it must be able to discover that the
bundle is an application. To make this determination, the Finder first checks for one
of two things:

� whether the bundle bit is set on the bundle folder

� whether the extension of the bundle is one of those reserved for bundles
(including .app)

If the Finder determines the folder is a bundle, it reads the type code stored in the
bundle’s PkgInfo file; if this code is 'APPL', it knows that the bundle is an
application. If the Finder finds no type code, it uses the bundle extension (.app in
the case of applications) to determine bundle type.

Because the bundle bit, as with other forms of HFS and HFS+ metadata, can easily
be stripped in a networked environment involving multiple file systems, it is
important that your application bundles always have the extension of .app. Project
Builder automatically appends this extension when you build an application, but
other IDEs might not. In no case should you remove the extension or encourage
your users to. If the “unsightliness” of .app bothers you, don’t worry; the Mac OS X
Finder suppresses the display of the .app extension.

Although Apple does not set the bundle bit on its applications, you may set this
attribute on the bundle folder of your application when you build it.

C H A P T E R 1 3

Installation and Integration

Preparing Software for Mac OS X 221
  Apple Computer, Inc. February 2001

For more on this subject, see “The Finder and Bundles” (page 108) and “The
Handling of Applications and Documents” (page 180).

Must I package my CFM executable in a bundle?

The short answer is “no, but you probably should.” See “CFM Executables”
(page 225) for the long answer.

How should I store application resources?

In Mac OS 9 and prior releases of the Mac OS, applications put their resources in the
resource fork of the application executable. For Mac OS X, this is no longer the
recommended approach. Instead, applications should have their resources in the
data fork of a separate file in the application bundle.

The reason for this recommendation is the same reason behind having filename
extensions as well as Finder metadata for document typing (see “Why even have
extensions?” (page 224)). The HFS and HFS+ volume formats permit files with
multiple forks, or data streams. However, anything not in the data fork of a file can
easily be stripped away as the file travels between heterogeneous computer systems
in a local area network, an intranet, or the Internet. The point is to make resources
and all other forms of data persistent in an increasingly networked world.

Developers of Carbon applications have to consider other factors related to
resources on Mac OS X, especially if those applications depend on the Code
Fragment Manager (CFM). If the application is a single-file executable managed by
CFM (that is, not a bundled CFM application), the resources should go in the
executable’s resource fork. By default, applications packaged as a single-file CFM
executable have their resource forks opened when they are launched. Conversely,
applications that are packaged as bundles have their localized data-fork resources
opened by default when they are launched.

More possibilities for resources open up if a Carbon application is packaged in a
bundle. Instead of combining a resource with other resources managed by the
Resource Manager, you can put a resource of a certain type in its own file. For
example, if your application uses a TIFF image, you could put the TIFF image data
in the data fork of a file having an extension of .tiff. Then, using the proper bundle
APIs, you can access the resource directly. There are advantages to putting each
resource in its own file. Such an approach, for instance, makes it easier to “export”
resources specified in XML property lists and makes it easier on localizers, since
they don’t have know how to use another tool.

222 Preparing Software for Mac OS X
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

Carbon applications, whether they are CFM-based or dyld-based, can always use
Resource Manager–style resources. However, if you package your application in a
bundle (as is recommended) you should put your resources in files in the Resources
directory of the bundle and you should use only the data forks of these files. These
files, which should have an extension of .rsrc, are treated as bundle resources just
like any other file, and are easily internationalized. Although .rsrc files can have
any base name, if you give them standard names and put them in the standard
bundle locations for resources, the system bundle routines manage the resources
automatically. It works like this:

� Put nonlocalized resources in a file named executableName.rsrc and place this
file in the bundle location for such resources (that is, directly in the Resources
directory).

� Put localized resources in files named Localized.rsrc and place these files in the
appropriate bundle locations (that is, the .lproj directories) for localized
resources.

When the application is launched, the system bundle routines automatically open
these resources and make them available to the application.

To summarize, the following options are available for application resources:

� Each resource of a particular type goes in its own file, which has an extension
appropriate to the type. This approach is appropriate for bundled applications
of any application environment. The exception to this “one-per-file” model is
localized strings, which are collected for each localization and put in a file
conventionally named Localized.strings; see “Localizing Strings” (page 212)
for more information.

� Bundled Carbon applications can put their Resource Manager–style resources in
the data forks of files, each with an extension of .rsrc. These files can be placed
in the bundle locations for nonlocalized and localized resources.

� Nonbundled Carbon applications must put their Resource Manager–style
resources in the resource fork of the application executable.

If you want the Finder to handle the application and its documents properly,
you must specify the key-value pairs otherwise found in a bundle’s information
property list as a resource of type 'plst', ID 0.

For further information on this subject, see “Bundles and the Resource Manager”
(page 115) and “Resource Forks” (page 170).

C H A P T E R 1 3

Installation and Integration

Preparing Software for Mac OS X 223
  Apple Computer, Inc. February 2001

How do I indicate document types in Mac OS X?

In Mac OS X, you indicate the type of a document by specifying two things:

� Type and creator codes stored as attributes of a file (if it is created on an HFS or
HFS+ volume)

� One or more file extensions relevant to the type (for example, .html and .htm)

Apple recommends that your applications make use of both forms of document
typing. If your application owns a document, you can specify both type and creator
codes and file extensions in the information property list (Info.plist) of the
application project (see “Information Property Lists” (page 186)). Project Builder
provides a means for entering this information: the Application Settings pane for a
build target. Your application should enforce the setting of all valid types for its
documents, particularly file extensions. See “How should my application save
documents?” (page 225).

There is one final caveat with regard to extensions. Applications in general should
be prepared to open documents that have extensions but no type and creator codes.
This behavior is especially expected for common (and hence cross-platform)
document types, such as image files, text files, and HTML files.

Can I treat my plug-ins as documents?

Plug-ins or any other loadable bundles are file packages, which the Finder presents
as files. Applications can claim loadable bundles as documents just as they can files.
So the advice given in “How do I indicate document types in Mac OS X?” (page 223)
applies to them. Always include extensions for loadable bundles and, if applicable,
the type ('BNDL') and creator codes to be written to the bundle’s PkgInfo and
Info.plist files. See “What metadata must I specify for an application?” (page 220)
for the typing information to associate with all bundles.

How does the Finder handle documents?

The Finder uses both a file’s type and creator codes and the file’s extension to
determine the document’s type and owning application. When the Finder displays
a file in one of its windows, it uses this information to find the appropriate icon to
show for the document. When the Finder responds to a user action with a file—let’s
say the user double-clicks an icon to open a document—it uses the document type

224 Preparing Software for Mac OS X
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

as a key to look up the application to use for that action. Depending on the
specificity of the typing information (for example, there is an extension but no type
or creator codes), the Finder might

� immediately open the document in an application

� display a dialog enabling the user to select an application

� open the document in one of the applications claiming that document type

If a file has neither type and creator codes nor extension, the Finder treats it as a
nondocument file; the file is displayed with a generic icon and double-clicking it
does not open it in any application.

Keep in mind that applications can treat loadable bundles as documents.
Double-clicking a bundle should cause the application, if it recognizes the bundle,
to load it. As it does with any other document, the application specifies the bundle’s
extension, type and creator codes, role, and other information in its information
property list. Before it can handle the loadable bundle as a document, the Finder
must determine that it is a bundle.

For more information, see “The Handling of Applications and Documents”
(page 180).

Why even have extensions?

Some Macintosh software developers react to file extensions with dismay. As a
means for specifying document type and ownership, extensions seem primitive
compared to the type and creator codes and the other rich metadata made possible
by the multifork HFS and HFS+ volume formats. Using extensions seems to be a
step backwards.

This is true, but only in a limited context. Macintosh users do not live anymore
within a parochial Macintosh world. In the Internet age, documents frequently
travel around a heterogeneous network, going, for instance, from a home
Macintosh to a Linux network server to a Windows computer on a corporate local
area network. Each computer on this path may have a different notion not only of
what constitutes a document type but what constitutes a file. Many computer
systems define a document’s type solely by well-known extensions (such as .jpg,
.mp3, and .html). They might not know what to do with an extensionless file and
treat it as an unknown type. They would also ignore the HFS+ metadata—or worse,
strip it out altogether, so that it is irretrievably lost.

C H A P T E R 1 3

Installation and Integration

Preparing Software for Mac OS X 225
  Apple Computer, Inc. February 2001

How should my application save documents?

Your application should save its documents only as one of the types that it claims
an Editor role for. When your application saves a document file, Apple
recommends that it associate the proper filename extension with it, as well as any
defined type and creator codes. A user can later change or remove the extension
(and pay the consequences for doing so), but your application should always apply
all valid forms of document typing, including extensions, when it saves its
documents. (See “Why even have extensions?” (page 224) for the reasons why.)

When your application can save documents under more than one type, Apple
recommends that it present those types in a pop-up menu in the Save dialog (with
any “native” document type being preselected). Applications then would handle
extensions in the following way:

� If users type no extension in the filename field, add it for them.

� If users type the wrong extension, remove it and add the correct one.

� If users type the correct extension, accept it.

Another possible approach is to display an “untitled” filename with the correct
extension appended but only the base filename selected; an example might be
“Untitled-1.txt” where “Untitled-1” is selected.

CFM Executables
As noted earlier, Mac OS X is a very accommodating operating system. It supports
multiple file systems, multiple application environments, multiple programming
models, multiple graphics-rendering libraries, and multiple network protocol
stacks. It also supports multiple runtime environments and executable formats.
Specifically, the following types of binaries execute on Mac OS X:

� Mach-O code modules managed by the dynamic link editor (dyld)

� PEF code fragments managed by the Code Fragment Manager (CFM)

� Java class files managed by the Java virtual machine

Of the three executable formats, the Mach-O is preeminent. It is the native format
upon which the others ultimately depend. CFM and PEF technology, which are the
preeminent library manager and executable format on Mac OS 9, are bridges to the
Mach-O/dyld technology, much in the manner CFM-68K was a bridge to PowerPC.
Saying that Mach-O and dyld are the native executable format and library manager

226 Preparing Software for Mac OS X
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

on Mac OS X means that all system frameworks, even Carbon frameworks, are built
as dyld-managed binaries in the Mach-O format. However, CFM is the traditional
Macintosh library manager and PEF is the traditional executable format for code
fragments, and so many Macintosh IDEs currently generate application executables
for this runtime environment (which includes the Classic compatibility
environment).

As “Library Managers and Executable Formats” (page 261) observes, there are good
reasons for building applications for Mac OS X as Mach-O executables. Foremost
among these reasons is performance. The CFM/PEF runtime environment is
layered on top of the dyld/Mach-O runtime environment; thus, code that is
CFM/PEF-based must go through an additional layer of software in order to
execute.

However, there is nothing to prevent you from building applications as
CFM-managed binaries. Such binaries run without problems on Mac OS X,
including in the Classic application environment. Indeed, there might be occasions
when you want your CFM application run in the Classic environment rather than
in the Carbon environment; for example, your application depends on plug-ins that
have not been fully ported to Carbon. For these occasions, the Finder’s Info window
presents an option that enables users to launch a selected CFM application in
Classic. If you want to override this option and have the application always launch
in Carbon (or always launch in Classic), you can specify the appropriate Launch
Services key in your information property list; see “Launch Services Keys”
(page 197) in the chapter “Software Configuration” for details.

If you choose to deploy your application as a CFM executable, you must decide
whether to package it in an application bundle. When packaging is considered (and
Java is excluded), there are three different types of applications that can run on
Mac OS X. Figure 13-1 shows the possible types.

Figure 13-1 Types of applications supported in Mac OS X

dyld/Mach-O

CFM/PEF

Single file In bundle

yes

no

yes

yes

C H A P T E R 1 3

Installation and Integration

Preparing Software for Mac OS X 227
  Apple Computer, Inc. February 2001

Ideally, you should package a CFM executable in an application bundle. By doing
so, your application gains all the benefits that accrue to such packaging, which are
itemized in “An Application Is a Bundle” (page 117). A bundled CFM application is
easily launched on both Mac OS X and Mac OS 9, but in different ways. On
Mac OS X, the user double-clicks the opaque file package and the Finder launches
the application. On Mac OS 9, the user opens the .app folder and double-clicks the
next thing he sees: an alias to the CFM executable. Also keep in mind the
recommendation given in “Should You Use CFM or dyld?” (page 264). Ideally—
from a performance perspective—your application bundle should have both kinds
of executables: a CFM-managed executable optimized to run on Mac OS 9 and a
dyld-managed executable optimized to run on Mac OS X.

Currently, there is no developmental technology for creating bundled CFM
applications; you must create the bundle by hand, following the information given
in the chapters “Bundles” (page 101) and “Application Packaging” (page 117).
Fortunately, a short cut is available. If you have access to Project Builder, you can
use it to create an empty application and reuse the generated bundle for your CFM
application. Even with this shortcut, there are certain things to keep in mind when
creating your CFM application bundle:

� The bundle directory itself should have a type of 'APPL' and may have the
bundle bit set. It should also have an extension of .app.

� The CFM executable should go in a directory named MacOSClassic directly
under the Contents directory.

� At the top level of the bundle directory, create an alias (of the same name) to the
CFM executable. The following listing illustrates this:

MyApp.app/
MyApp /* alias to Contents/MacOSClassic/MyApp */
Contents/

MacOSClassic/
MyApp

...

228 Preparing Software for Mac OS X
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

� Create an XML property list in a file named Info.plist; in this information
property list specify all necessary key-value pairs as described in “Information
Property Lists” (page 186). Then put the file immediately under the Contents
directory.

� In the same location, put a file named PkgInfo that contains the application’s
type and creator codes in its data fork.

� Put the application’s resources in the bundle, following the instructions in “How
should I store application resources?” (page 221).

If you wish, you may deploy a CFM executable as a single-file application that
stores its Resource Manager–style resources in its resource fork. If you do this, and
you want the Finder to handle the application and its documents properly, you
must specify the key-value pairs found in an information property list as a resource
of type 'plst', ID 0. If a single-file executable does not have a 'plst' resource, it is
considered to be an application to be run only in the Classic environment. Through
a Finder Info-window option, you can force-launch a CFM application into the
Classic environment.

User Interface Issues
You might have to consider several user interface issues before your application is
ready for deployment. First and foremost, you should ensure your application
conforms to what is said in Inside Mac OS X: Aqua Human Interface Guidelines. You
can obtain a PDF version of this book from the section of the Apple Developer
Connection website listing Mac OS X technical documentation at:

 http://developer.apple.com/techpubs/macosx/

Second, make sure that your application is properly internationalized and localized
for all languages and regions where it will be marketed; as part of
internationalization, ensure that your application can support the presentation of
multiple scripts in one document. For information on these topics, see the chapter
“Internationalization” (page 203).

Note: You can use the Property List Editor application
(/Developer/Applications/PropertyListEditor) to help you create the property
list. If you create the property list with some other editor, and the text contains
non-ASCII characters, make sure the editor can save the file in UTF-8 encoding.
You might also want to use an existing application’s Info.plist file as a template.

C H A P T E R 1 3

Installation and Integration

Preparing Software for Mac OS X 229
  Apple Computer, Inc. February 2001

The following sections discuss other aspects of your application’s user interface
related to development.

Icons

An application or document icon must be an 'icns' resource contained in the data
fork of a file having an extension of .icns. Apple provides two applications (in
/Developer/Applications) to help you create and manage icons:

� Icon Composer—Imports an image in most standard bitmap formats (including
TIFF, PICT, JPEG, and GIF) and converts it to a set of icons of pixel dimensions
16 x 16, 32 x 32, 64 x 64, and 128 x 128. It also creates a bit mask for the first three
sizes. For best results, you should make versions of an icon in each of the four
sizes; also, the imported image should be of equal height and width. The
application saves the icon data as a file with an extension of .icns.

� Pixie—Displays portions of the screen at various magnifications and allows you
to copy those magnified images to the Clipboard or save them as TIFF files.

The Grab application in /Applications/Utilities can also be useful for icon
composition since it can capture (as a TIFF file) the entire screen or a part of the
screen.

Users can assign custom icons to documents just as they can in Mac OS 9. To do so,
they must paste a copy of the custom icon into the well holding the current icon
displayed in the Finder’s Info window (File > Show Info). To enable users to do this,
you must override the default document icon in the Finder metadata (Finder Info).

Custom Controls and System Appearance

If you create a custom control that draws itself, you must ensure that it visually
conforms to the Aqua appearance the user has chosen in the General pane of the
System Preferences application. Currently the appearance—a color that is applied
to buttons, menus, and windows—is either Blue or Graphite.

To make a Carbon custom control comply with the system appearance, your custom
control definition must take advantage of the Appearance Manager APIs (declared
in Appearance.h). For a custom Cocoa control to be compatible with the selected
Aqua appearance, the custom subclass of an Application Kit class should use the
NSColor colorWithControlTint: method to get the NSColor object corresponding to
the current Aqua tint selection, and then use that object to colorize its own drawing.

230 Ownership and Permissions
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

Generally you should avoid creating custom controls that draw themselves because
there is always the possibility of some incompatibility with Aqua. If you do create
a custom control, the new behavior should ideally involve something other than
drawing.

Carbon Nib Files

Carbon projects can now use Interface Builder to create user interfaces from palettes
of “objects” just as Cocoa projects can. The objects on the palettes include buttons,
text fields, sliders, menu items, windows, and progress bars. You can set attributes,
dimensions, and control information for these objects. Interface Builder saves
interfaces as XML archives known as nib files since they have an extension of .nib.

A Carbon nib file can contain definitions for most of the user-interface objects
typically found in Carbon applications. It also incorporates functionality for
features such as the Carbon event model. Special Carbon APIs give your application
access to the objects defined in the nib file. Nib files are not only a convenient way
to store the specification of an interface, but can be used to localize versions of a user
interface. And, because a nib file is XML-based, it is inherently more exportable to
other environments.

For these reasons, Apple recommends that Carbon developers start converting
many of the user-interface elements previously stored as Resource Manager–style
resources to Interface Builder objects. See the project example in
/Developer/Examples/InterfaceBuilder/IBCarbonExample to get an idea of what is
possible. Note that Carbon nib files lack many of the capabilities defined in Cocoa
nib files (target-action connection, for example) largely because of the differences
between the procedural and object-oriented programming models.

Ownership and Permissions

At a fundamental level, Mac OS X is a BSD system. A part of this underpinning is
the way BSD implements ownership of, and permissions for, files and folders in the
file system. This model, in turn, controls who can read, write to, rename, and
execute files, and who can copy and move files to and from folders. Although the

C H A P T E R 1 3

Installation and Integration

Ownership and Permissions 231
  Apple Computer, Inc. February 2001

model is conventionally associated with UFS or similar file systems, Mac OS X
extends it to all supported file systems, including Mac OS Standard (HFS) and Mac
OS Extended (HFS+).

Although a thorough description of ownership and permissions on traditional BSD
systems is beyond the scope of this book, some understanding of it is necessary,
both to see how it differs from the permissions model on Mac OS 9 and how the
implementation on Mac OS X differs from the traditional BSD model. So this section
starts with a quick summary of the BSD permissions model before discussing these
differences. (For a more complete description, consult one of the numerous books
or websites devoted to BSD.)

Overview of BSD Permissions
For each folder and file in the file system, BSD has three categories of users: owner,
group, and other. For each of these types of user, three specific permissions affect
access to the file or folder: read, write, and execute. For example, if a user does not
have execute permissions in any of the categories for an application, he or she
cannot run that application.

� An owner of a folder or file is generally the user who created it. Owners typically
have full privileges (read, write, and execute) for that file or folder; they can set
the permissions for other classes of users and, if they are the “root” (explained
below), can even transfer ownership.

� Every user is also in one or more groups. A group is a named collection of users
that have something in common and to which group permissions apply. For
example, you might have a group—let’s call it group “projectx”—consisting of
all users involved in an engineering project. The members of this hypothetical
group are given write permissions for source files in a code repository. The
group owner of a folder is the default group owner of any files created in that
folder. The administrator of a system is responsible for setting up the
appropriate groups.

� Users in the other category are just that—everyone other than the owner and
group users—and their permissions for a file or folder are generally the most
restrictive.

On BSD systems there is a special “root” user, also known as the superuser. Root
users have unlimited access to the folders and files on the devices attached to the
computer they are using; they can

232 Ownership and Permissions
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

� read, write, and execute any file

� copy, move, and rename any file or folder

� transfer ownership and reset permissions for any user

There is a special group called the wheel group. Membership in the wheel group
confers on users the ability to become the superuser after entering su at the
command line and providing a password.

If in a BSD shell you enter the command ls -l for some location in the file system
(say, ~steve/Documents), you get output similar to the following:

total 3704
drwxrwxrwx 5 steve staff 264 Oct 24 20:56 General
drwxrwxr-x 5 steve admin 264 Oct 21 21:47 ProjectDocs
drwxr-xr-x 6 steve staff 160 Oct 25 12:00 Planning
drwx--x--x 6 steve staff 160 Oct 21 15:22 Private
-rwxrwxrwx 1 steve staff 0 Oct 23 09:55 picture clipping
[spongebob:~/Documents] steve%

This output shows, among other things, the owner and primary group for a file or
folder and what the permissions are for each category of user. Users are shown in
the third column and the primary group in the fourth; thus, for the General folder,
the user is steve and the group is staff. The first column is a set of ten coded “bits”
that represents the type of file-system entity and the permissions for that entity. An
initial d indicates that the item is a folder (directory); if the initial position is a dash,
the item is an ordinary file. The remaining nine bits fall into three implicit groups
representing first owner, then group, then other. The r, w, and x characters, if
present, indicate that read, write, and execute permissions are turned on for the
type of user the set of bits applies to.

Let’s take the permissions for the Planning folder in ~steve/Documents as an
example:

drwxr-xr-x 6 steve staff 160 Oct 25 12:00 Planning

The owner permissions for this folder are rwx, meaning that the owner of the folder
(the holder of the steve account) can copy files and folders to this directory and can
make it his or her current working directory (through the cd command) and execute
any program in it. The permissions for anyone in the staff group and anyone else

C H A P T E R 1 3

Installation and Integration

Ownership and Permissions 233
  Apple Computer, Inc. February 2001

are both r-x, meaning that those users can read files in steve and can make it their
current working directory, but they cannot write files to that folder or modify or
delete files in that folder.

The ProjectDocs folder tells us something else:

drwxrwxr-x 5 steve admin 264 Oct 21 21:47 ProjectDocs

Here read, execute, and write access are turned on for the group (rwx), but you have
to be a member of group admin in order to be granted this access.

If you have the appropriate permissions, you can change owner, group, and
individual permissions from a Terminal shell using, respectively, the chown, chgrp,
and chmod commands. See the associated man pages for details. You can also see the
same ownership and permissions information for a selected file or folder in the
Sharing pane of the Finder’s Info window. If you are the owner of the file or folder,
you can also change permissions in this window.

File Permissions on Mac OS X
Perhaps the biggest difference between traditional BSD permissions semantics and
the Mac OS X implementation is that the root user is disabled on Mac OS X after
system installation. Even if users belong to the wheel group—the traditional way of
granting superuser privileges—they cannot become the superuser via the su
command. The reason for doing this is apparent: security. Because the root user has
unlimited power over a file system, he or she can potentially wreak havoc,
intentionally or not. Security is even more of a concern if logging in remotely or
other forms of remote access are enabled.

However, Mac OS X provides the “administrator” user in place of the root user. The
administrator can perform almost all functions the root user can, and can do them
using the Finder (that is, without resorting to the command line). The only thing the
administrator is prevented from doing is directly adding, modifying, or deleting
files in the system domain; however, they can use special applications such as
Installer or Software Update for this purpose. The administrator is not a real user
(in the sense of a user with an account of “admin”); an administrator is any user
who belongs to the admin group.

The user who installs Mac OS X on a system and who provides information to the
Setup Assistant application automatically becomes the first administrator for the
system. Thereafter, this user (or any other administrator) can use the Multiple Users

234 Ownership and Permissions
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

system preference to create accounts on the local system for new users. These users
can have administrator privileges (by belonging to the admin group) or can be users
without such privileges; the latter belong, by default, to the “staff” group.

Although the root user is disabled by default, you can, if you’re an administrator,
reenable it and acquire superuser status. But, for security reasons, you should do
this only if circumstances absolutely require it. To reenable root, run the NetInfo
Manager application in /Applications/Utilities and authenticate yourself as the
local administrator. Then choose the Enable Root User command from the Domain
> Security menu; this menu item is enabled only if you are a member of the local
admin group and you have been previously authenticated in the local domain.
Once you’re enabled as root user, your password is blank, so it is recommended that
you give root a password (via the Domain > Security > Change Root Password
command). After you’ve completed the task requiring root access, you should
relinquish superuser privileges by choosing Disable Root User from the same
menu.

Permissions for Applications and Documents
When you build an application with Project Builder, the build subsystem
automatically sets the permissions of the executable file to -rwxr-xr-x; this setting
enables the owner—that is, the person who installs the application—to execute and
write to the application whereas all others can only execute it. Other IDEs set similar
permissions on built executables.

The -rwxr-xr-x setting should suffice except in the rare situations where an
application requires privileged (root) access. An example would be an application
such as disk repairer that requires low-level hardware access through the kernel. In
cases such as this, you should install the application setuid to acquire root access
for the application; then use the features of the NetInfo Kit and System frameworks
that allow you to authenticate administrators. For more information on setuid,
consult the setuid (2) and chmod (1) man pages.

Although the permission set of the application (particularly the “x” bits) determines
who can launch an application, once the application is launched, the process is
owned by the user who launches it. This means the application has the same access
rights as the logged-in user, given that person’s owner and group identities.
Consequently, if that user has permission to write a document to a certain location,
the application is able to save a document there.

C H A P T E R 1 3

Installation and Integration

The Classic Environment and Your Application 235
  Apple Computer, Inc. February 2001

When a Carbon, Cocoa, or Java application saves a document, the respective
application environment automatically sets the permissions of the document as
determined by the user’s umask value which, by default, prohibits write access for
group and other. This common setting for documents (-rw-r--r--) allows the
owner to read and write to the file whereas all others may only read the file. If you
want different permissions for your application’s documents, you must use a
file-management API that lets you set permissions; for Carbon these are provided
by the File Manager and for Cocoa by the NSFileManager class.

The Classic Environment and Your Application

The Classic compatibility environment (or simply, Classic) makes it possible for the
latest version of Mac OS 9, and all the applications capable of running on that
version, to run on a Mac OS X system. As you would expect, there are strong
similarities between Mac OS 9 in Classic and a “native” Mac OS 9 system. However,
there are also differences, and some of these differences are significant, especially to
application developers.

This section describes the Classic environment, especially its compatibility with
native Mac OS 9 systems and its integration with the rest of Mac OS X. It informs
developers of Mac OS 9 applications about things they should take into
consideration if those applications are run in Classic. It also tells developers of
software for the application environments of Mac OS X—Carbon, Cocoa, and
Java—about aspects of design that might cause problems for applications running
in the Classic environment.

A brief note on terminology: Sometimes the following discussion explicitly
compares the Classic environment to Mac OS X; what is implied, of course, is “the
rest of Mac OS X.”

236 The Classic Environment and Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

Overview of the Classic Environment
The Classic environment is called a “software compatibility” environment because
it enables applications built for earlier versions of the Mac OS to run on a Mac OS X
system. Thus a user can still use his or her legacy applications until a complete
transition to Mac OS X occurs. This process will take place over time, so the Classic
environment is a necessary component of the operating system for the near future.

To the Mac OS 9 operating system that it hosts, Classic appears as a new hardware
platform. It implements hardware services using the Mac OS X kernel environment
(particularly the I/O Kit). The Classic environment is not an emulator; Mac OS 9
runs native in it. It is visually and functionally compatible with the rest of Mac OS X
so that to users—with the exceptions noted in “Integration With Mac OS X”
(page 238))—it is largely indistinguishable from the other environments of
Mac OS X.

Because of architectural differences, Mac OS 9 and the applications running in the
Classic environment do not share the full advantages of the kernel environment,
including memory protection and preemptive multitasking. Thus, if an application
running in the Classic environment crashes or hangs, the environment itself
sometimes has to be restarted. But it is only the Classic environment that has to be
restarted, not the Mac OS X system that acts as its host.

Compatibility With Native Mac OS 9
Programs that run on a native Mac OS 9 system will probably not run in the Classic
environment if they attempt to do anything directly at the lower layers of the
system. Specifically, this means a number of different things:

� Applications that draw to the Window Manager port generally have their
drawing clipped to the part that is over Classic windows. Going full screen,
however, is supported.

� Applications that draw directly to the frame buffer, bypassing QuickDraw, will
probably draw over Aqua windows unless they follow the shield cursor/show
cursor conventions.

� Software that touches memory-mapped I/O registers will crash.

� Software that patches traps and expects global effect will get that effect on
Classic but not on Mac OS X, where it might cause unexpected behaviors. For
example, software that patches all file system traps to intercept file I/O will only
see I/O within Classic.

C H A P T E R 1 3

Installation and Integration

The Classic Environment and Your Application 237
  Apple Computer, Inc. February 2001

� Software that attempts to access the file system directly at the level of a disk
driver or through Device Manager APIs will not work. Consequently, disk
utilities that work on native Mac OS 9 do not work in the Classic environment.

Generally, programs that modify or rely on Mac OS internals below the hardware
abstraction provided by the kernel environment (and especially the I/O Kit) will
not work in the Classic environment. These programs should instead use a
higher-level API, if one is available, for such access. For example, all file-system
access should be through the File Manager API.

Device Support
Most devices that Mac OS X generally supports are also supported for the Classic
environment (or are planned to be supported soon). These classes of devices include

� USB

� sound (in and out)

� disk images and SMIs (Self Mounting Image files)

� Ethernet

� SCSI (forthcoming)

� FireWire (forthcoming)

� video (forthcoming)

Mac OS X mounts all block storage (“disk”) devices, and the Classic environment
sees them as volumes through the File Manager API. The Classic environment can
grab access to a device if Mac OS X hasn’t. Disk images (including SMIs) and
AppleShare volumes mounted in Mac OS X appear through the File Manager API
within Classic. Note that Mac OS X always grabs access to the USB keyboard and
mouse; Classic communicates with these devices at a higher level of event.

Device types that Classic won’t support include

� ADB (except for the primary keyboard and pointing device, but these only at the
event level)

� LocalTalk

� internal floppy

� serial

238 The Classic Environment and Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

� specialized PCI/PC cards (that is, any cards other than those that Mac OS X
supports for display, networking, or SCSI)

For PPP (modem) and AirPort communication, a PPP connection in Mac OS X is
available as a network connection in Classic.

Integration With Mac OS X
Wherever possible, Apple has tried to make elements of the Classic environment
indistinguishable from their counterparts on Mac OS X. However, not everything
looks or behaves the same. Some of these differences will go away over time; others
reflect semantic differences that are permanent.

This section discusses areas of integration where there are known differences. It is
possible that other differences might be introduced in a later version of the
operating system. As as rule of thumb, if you don’t know if a specific Classic
element is integrated with the rest of Mac OS X, assume that it isn’t.

User Interface

The differences between windows and other user-interface elements in the Classic
environment and the rest of Mac OS X are probably the most conspicuous. Instead
of Aqua, windows have the platinum look and feel. For example, instead of the
translucent red, yellow, and green window controls, Classic windows sport the
close box, the collapse box, and the zoom box. When you click the collapse (or
windowshade) box, there is no special “genie” effect that hides the window as in
Aqua; the window’s content simply disappears. A platinum window casts no
“shadow.”

You can also see several differences in the menu conventions adopted by Classic
applications and other Mac OS X applications. In Mac OS X applications, for
instance, the placement of the menu command for terminating an application is
different; a Classic application has the Quit menu item in the File menu whereas a
Mac OS X application has the “Quit application” menu item in the application menu.

The differences extend to actions such as resizing and dragging windows. In Aqua,
the window is redrawn at each point. However, when you drag or resize a Classic
window, you see an outline of the window (a marquee) and the window is not
redrawn until the operation ends.

C H A P T E R 1 3

Installation and Integration

The Classic Environment and Your Application 239
  Apple Computer, Inc. February 2001

Classic doesn’t take part in transparency effects, and when a Classic object is below
a semi-transparent Aqua window, the object might appear completely white. This
is not the case when a Classic window is over an Aqua object.

Another obvious difference is the file-system browser. Mac OS X makes use only
of Navigation Services for this feature whereas Classic applications can use
Navigation Services or the Standard File Package.

On the integration side, both Classic and Mac OS X support OpenGL and 8-bit
graphics.

The Classic Environment and File Systems

The Classic environment supports most of the file systems supported by Mac OS X,
including Mac OS Standard (HFS), Mac OS Extended (HFS+), AFP, ISO 9660, and
UDF. However, it does not support UFS or NFS file systems. Consequently, a
Classic application cannot read from, write to, or even see an NFS or UFS volume.

The Classic environment also differs from Mac OS X in the manner in which it
handles file-system access permissions. Although Mac OS 9 itself is not aware of
permissions on local disk volumes, AFP recognizes permissions on a per-folder
basis; access to files is determined by the permissions assigned to the containing
folder. Classic maps BSD permissions failures to the closest corresponding AFP
permissions error, which results in the most compatible behavior for applications
running in the Classic environment.

Applications (and especially installers) in the Classic environment can encounter
problems because of this permissions-integration model. Those that do not properly
handle AFP permissions errors might present misleading error messages or even
malfunction. Another potential problem related to permissions is when the same
disk or partition is used for both Classic and Mac OS X. Because only the root owner
can write to the root of this boot volume, any attempt to install software at the root
of the file system will fail. The installers for such applications must prompt the user
to select a folder.

Classic respects BSD file permissions except in a few special places, such as the
System Folder, Trash, the Desktop Folder, and certain hidden folders specific to
Mac OS 9. If a user has read-write permissions at the root of the Classic

Note: Often the only recourse for installers with such problems on Mac OS X is
for the user to boot back into native Mac OS 9 and install there.

240 The Classic Environment and Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

environment’s file system, a Classic application can write to the System Folder and
can move items to the Trash folder. When a program running in the Classic
environment attempts to write to a folder where it doesn’t have permission, an AFP
error code is returned.

For AFP file sharing, Classic goes through Mac OS X.

Extensions and Preferences

In a typical setup of a Macintosh computer system, a native Mac OS 9 system is first
installed on a partition of a hard disk or on a separate hard disk. Then Mac OS X is
installed on the system and the Mac OS 9 volume is chosen as the Classic
environment’s start-up disk. With this setup, the user can use the same set of
applications, extensions, preferences, and other software when he uses the Classic
environment or when he boots into the native Mac OS 9 system.

There can be conflicts between the set of extensions used in a native Mac OS 9
system and the corresponding extensions in the Classic environment. These
conflicts can lead to crashes. Generally, when there are conflicting extensions,
Classic disables the corresponding “native” extension when it starts up. A case in
point is the Multiple Users extension. Mac OS X is inherently a multiple-user
system. Therefore, the Classic environment disables the Multiple Users extension
when it starts up; when the user boots into the native Mac OS 9 system, the Multiple
Users extension is reenabled.

The Classic environment handles conflicting preferences (generally related to
networking) in a similar manner. Any preference the user sets using the System
Preferences application in Mac OS X overrides any corresponding preference set for
the native Mac OS 9 system. However, when the user boots into the native Mac OS
9 system, all “native” preferences are restored. Classic does not make any
permanent changes that will adversely affect the configuration of the native Mac OS
9 system.

The Finder and the Desktop

The Classic environment shares the Mac OS X desktop with all other application
environments. With the Mac OS X Finder, users can manipulate files and
applications in all environments, including Classic. With the Finder, they can

Note: The release notes for the Classic environment list the currently known set
of conflicting extensions.

C H A P T E R 1 3

Installation and Integration

The Classic Environment and Your Application 241
  Apple Computer, Inc. February 2001

� navigate through the file system

� move, copy, delete, and rename files and folders

� launch applications by double-clicking them

� open documents by double-clicking them

The Classic environment presents a composite desktop in a manner similar to native
Mac OS 9. This composite desktop includes the Mac OS X Desktop folder for the
boot volume and the desktop folders from all other mounted volumes that Classic
can see (thus excluding UFS or NFS volumes). Classic treats AFP volumes as native
Mac OS 9 treats them; if such a volume has a Desktop Folder, it is excluded from the
composite desktop but accessible at the root of the AFP volume through Classic’s
Standard File Package and Navigation Services APIs.

The Mac OS X Finder and Navigation Services hide the Mac OS 9 Desktop Folder if
it is on the boot volume. In the scenario where Mac OS X is installed “over” Mac OS
9, if users want to get to the Mac OS 9 Desktop Folder from the Finder or Navigation
Services, they can navigate there through an alias in /MacOS9. When users boot back
to native Mac OS 9, they will see the Mac OS 9 desktop—the union of all non-AFP
desktop folders on all mounted volumes—as they left it.

The Mac OS X Finder performs System Folder autorouting and Mac OS 9 System
Folder blessing in the Classic environment.

Networking and Printing

Networking in the Classic environment is largely integrated with the networking
facilities of Mac OS X. Classic shares with Mac OS X the networking devices
(Ethernet, AirPort, and PPP), the computer’s IP address, and the IP port address
space. However, Classic runs the full Open Transport protocol stack (with full
streams support) whereas the partial implementation of Open Transport in Carbon
is built on top of BSD sockets.

In addition, the version of Internet Config used in the Classic environment is
different from the Internet Config software used in Mac OS X. Calls to Internet
Config made in Mac OS X look in the Mac OS X Internet Config database and calls
made in Classic look in the Mac OS 9 Internet Config database. This can cause some
confusion, since a request to launch your default browser can have different results
depending on whether the request is resolved with Classic or native Mac OS X
Internet Config and whether the configurations are different in the two databases.

242 Installing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

Printer setup in the Classic environment is just as it is in a native Mac OS 9 system:
Chooser or Desktop Printer Utility. The difference in Classic, however, is that the
actual desktop printers are not shown on the desktop by the Mac OS X Finder.
When printing from an application in the Classic environment, you can choose
among configured printers in the Print dialog using the same pop-up menu as you
would see in native Mac OS 9. When Classic prints, it falls back to using the Print
Monitor rather than the Desktop Print Monitor.

Other Classic Integration Issues

There are a few other areas of Classic integration that are of interest to developers:

� Fonts. The Apple Type Solution (ATS) system integrates and manages fonts put
into the Fonts folder of the Classic System Folder. Thus fonts in that folder are
shared throughout Mac OS X. However, fonts placed in other Font folders of
Mac OS X are not shared with the Classic environment.

� AppleScript. AppleScript in the Classic environment is aware of application
packages.

� Copy/paste. The Classic environment and the Cocoa application environment
have some dissimilar data types used in Clipboard operations. Consequently
some copy/paste or drag operations between these environments might fail.

Installing Your Application

With Mac OS X there are several options for installing your application. You can
simply instruct users to drag the application to their hard disks, or you can prepare
the application for an installer. This section describes these possibilities and
summarizes the work required on your part to make an application installable.

Where to Install
As described in “How the File System Is Organized” (page 151), the standard
directory layout of the file system has several places where applications can be
installed:

� the combined system and local domains (/Applications)

C H A P T E R 1 3

Installation and Integration

Installing Your Application 243
  Apple Computer, Inc. February 2001

� the user domain (~/Applications, either local or on the network)

� the network domain (for example, /Network/Applications)

Typically, most applications in a Mac OS X system are installed in /Applications to
make them available to all users of a particular computer system. However, if the
use of an application is to be limited—for example, it is purchased under the terms
of a single-user license—it should be installed in the Applications folder in the
user’s home directory (this folder might first have to be created). If an application is
to be executable by all users on a local area network, the administrator of that
network should install the application on a file server accessible to those users.

Important
Do not install any software or resources, such as frameworks
or fonts, anywhere in /System/Library. Such items should go
in the appropriate locations in the local domain (/Library).

Users are not required to install applications in one of the domain locations. Because
applications when packaged in bundles are designed to be largely self-contained,
users can install them anywhere and they should execute without problems.
However, by being outside the recommended locations, an application might not be
able to take advantage of some system features, such as application services for
Cocoa applications. Another missing feature would be Finder awareness of the
application. The Finder, when it’s building its application database, looks for
applications in the known domains. If an application is outside all domains, that
could affect the efficiency of the system. For more information on the Finder and
applications, see the chapter “The Finder” (page 175).

Manual Installation
Because most applications for Mac OS X are packaged as self-contained bundles, all
users need to do to install an application in most situations is to drag the bundle to
a folder for which they have write permission. When you have a simple application
where this type of installation is all that is required, you can provide instructions
along with the application (in the form of a brief online or printed document) that
tells users what to do.

The drag-and-drop type of installation is the preferred method on Mac OS X.
Because an application keeps everything it needs within its bundle, simple manual
installation reduces file-system clutter and eliminates dependencies on items
residing elsewhere in the file system. It also gives users the option of not copying

244 Installing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

items to their hard disks that they are not particularly interested in (such as Read
Me files). To uninstall an application, all users have to do is remove the application
bundle from the volume.

The Finder supports a number of “application packaging” keys as a mechanism for
simple installations of application components. When you build an application, you
can specify these keys and their corresponding values in the application’s
information property list (Info.plist). When users then select the application and
open the Finder’s Info window, the Application Files pane of that window list the
components. Users can select which components to install (or which to uninstall).

See “Application Package Keys” (page 195) in the chapter “Software
Configuration” for more information about these keys.

Installers
For some applications, simple drag-and-drop installation will not suffice. Either the
requirements for preparing the application for execution are too complex, or the
advantages of using an installer are too compelling. Among these advantages are

� compression

� displaying a Read Me file as part of the installation process

� requiring the user to agree to a license before installing

� requiring the user to authenticate as an administrator prior to installing

� a more professional-looking presentation

Important
Although an installer might have some advantages, Apple
recommends the simple drag-and-drop manual installation
whenever possible. You should use an installer only for
applications that, for whatever reasons, need to install items
outside their bundles.

If you decide to install your application with an installer, you have several options.
If your application is a Cocoa or Java application—or a Carbon application that will
only be installed in Mac OS X—you can use Mac OS X’s native installer technology.
If your application is a Carbon application, and you want to install this application
on both Mac OS 9 and Mac OS X, you can take one of two approaches:

� For both platforms, use a third-party installer that has been ported to Mac OS X.

C H A P T E R 1 3

Installation and Integration

Installing Your Application 245
  Apple Computer, Inc. February 2001

� Use the native installer technology for installing the application on Mac OS X
and a third-party installer for Mac OS 9.

The native installer application for Mac OS X is called Installer, and it is located in
/Applications/Utilities. When users double-click an installation package, the
Installer application launches. The application steps you through an installation by
presenting a series of panes for such things an authentication (shown in Figure 13-2
(page 245)), specifying an installation location, and customizing the installation.
The Installer application can also display the bill of materials and an installation log.
The section “Installation Packages” (page 246) describes the structure and contents
of an installation package.

Figure 13-2 Installer application

You create an installable package for Mac OS X using another application named
Package Maker (/Developer/Applications/PackageMaker). The general approach to
preparing software for packaging and using Package Maker is described in
“Creating an Installation Package” (page 246).

246 Installing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

Installation Packages

The native form of installer-ready software on Mac OS X is called a package. An
installation package is a file package—that is, a folder presented to the user as a
file—that has an extension of .pkg. An installation package contains several
components, most significantly the file archive, the Read Me and licensing
documents (optional), and any installer scripts (optional). The format of installation
packages enables Installer to provide useful features such as descriptive
information, a default installation location, the ability to uninstall the software, and
so forth.

Although the Finder presents a package as a single file-system entity, you can enter
a package directory using the BSD cd command (via the Terminal application) and
view the components of the package. The files that make up a package are named
with suffixes that indicate the type of information stored in the file. A basic package
contains these files:

� A bill of materials (.bom), a file in binary format that describes the contents of the
package.

� An information file (.info), a text file that contains the information entered into
the Package Maker application when the package was created.

� An archive file (.pax), an archive of the complete set of files to be installed. If the
archive is compressed, the archive has an additional suffix of .gz.

� A size calculation file (.sizes), a text file that contains the compressed (and
uncompressed) size of the unarchived software, which enables the installer to
calculate space needed for installation.

� Additional (and optional) resources, such as icons, Read Me files, licensing
information, pre- or post-install scripts, and so forth. These are package
resources, used (or run) during installation but not installed along with the
software.

Because installation packages are essentially folders (that is, file packages), their
contents are susceptible to alteration and even corruption during handling. To
prepare a package for distribution, you should archive and perhaps compress the
package into a form that can be distributed safely.

Creating an Installation Package

The general procedure for creating an installation package involves two to three
steps:

C H A P T E R 1 3

Installation and Integration

Installing Your Application 247
  Apple Computer, Inc. February 2001

1. Create a distribution directory and copy the software to be installed to it.

2. Optionally, create an installation resources directory and put in it things such as
Read Me files, licensing agreements, and install scripts.

3. Launch Package Maker and complete the “form” it presents to you.

See the following sections—“Create a Distribution Directory” (page 247), “Create a
Resources Directory for Installation” (page 247), and “Complete the Package Maker
Form” (page 248)—for information on each of these steps.

Create a Distribution Directory

Create a folder with a structure of subfolders that comprises a local “mirror” of the
default directory hierarchy into which your software is to be installed. Then copy
your software to the appropriate location (or locations). The directory hierarchy is
“rooted” at a folder often given the name dstroot because it points at the
distribution root (/). The contents of the distribution directory are made into the
package’s file archive.

For example, if you have built a framework and you want it installed in
/Library/Frameworks, you might create the directory hierarchy
~/dstroot/Library/Frameworks and copy the framework into this location. When
Package Maker builds your package, it records this directory hierarchy. When your
package is installed, Installer will place the software at the correct point in the file
system. (However, if your package is relocatable, the user may choose to install it
elsewhere.)

Create a Resources Directory for Installation

As described in “Installation Packages” (page 246), packages may contain
supplementary resources used by the package during installation but which are not
installed along with the software. Two common such resources are a Read Me file
and a license document. The Read Me file contains information that users should (or
might want to) read before they install the software. The license specifies the terms
that the user must accept in order to use the software.

These Read Me and license files can be in one of three forms (with the appropriate
extension): text (.txt), HTML (.html) or Rich Text Format (.rtf). When you create
the files, use a text editor that can save the files in Unicode encoding. Special base

248 Installing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

names are reserved for the Read Me and license files. If the Read Me file is named
ReadMe.ext and the license file is named License.ext, Installer recognizes each file (if
it is present in a package) and handles it automatically:

� Installer adds a “Read Me” item to the bulleted list presented in the left column
of the application. When the user reaches the Important Information pane,
Installer displays the contents of the file. The user dismisses the Read Me by
clicking the Continue button.

� Installer adds a “License” item to the bulleted list presented in the left column
of the application. When the user reaches the Software License Agreement pane,
Installer displays the contents of the file. When the user clicks the Continue
button, Installer displays a dialog requesting that the user agree to the terms of
license (by clicking Agree).

Because the supplementary installation resources are not installed along with your
software, you should not place them in the distribution directory. Instead, create a
“resources” directory at the same level as dstroot and put the files in there. The
contents of the resources directory are copied into the package when it is created.

Complete the Package Maker Form

You use the Package Maker application to configure and create an installation
package. It is easy to use; you just need to fill out the simple form of fields and
checkboxes shown in Figure 13-3.

C H A P T E R 1 3

Installation and Integration

Installing Your Application 249
  Apple Computer, Inc. February 2001

Figure 13-3 The Package Maker user interface

Notice the first two fields: Package Root Directory and Package Resources
Directory. These fields should contain paths that point to the roots of the
distribution directory and the resources directory that you created earlier. See the
application’s online help for the purposes and expected values for these fields and
for other fields and controls.

250 Installing Your Application
  Apple Computer, Inc. February 2001

C H A P T E R 1 3

Installation and Integration

System-Wide Resources
If a bundled executable has resources that, for one reason or another, must be
installed outside the bundle, the installer should take care of that. Often such
resources need to be in certain locations to take advantage of system services. An
example is fonts. The Apple Type Solution (ATS) system manages fonts by looking
for them in Library/Fonts in the system, local, network, and user file-system
domains.

Another issue related to file-system domains is the restriction of resources. For
example, if you want a license-restricted font available to a single user rather than
all users of a Mac OS X system, the installer should put it in the user’s
~/Library/Fonts folder instead of the /Library/Fonts folder.

You should be aware of the recommended domain locations for system-wide
resources and have the installer put these resources in the proper location or in a
user-selectable location. (See “How the File System Is Organized” (page 151) for
information on these locations.) If the location requires system-administrator
privileges, the installer should authenticate the user. The Mac OS X installer
technology permits the installation of optional subpackages or subpackages that are
to be installed in a location outside the application bundle. It uses the notion of
metapackages to manage these collections of subpackages. Metapackages are file
packages with a file extension of .mpkg. The installer presents a Customize button
for each installable package that is based on a metapackage.

Tasks and Processes 251
  Apple Computer, Inc. February 2001

C H A P T E R 1 4

14 Issues and Options With Multiple
Environments

Because Mac OS X is a highly layered system, there are often equivalent
mechanisms at different layers. For example, threading APIs are available in Mach,
in BSD, and in each of the application environments (because the latter are layered
on top of the former). This section discusses some programming issues that might
arise when there are different technologies and APIs (and even different
terminologies) at each layer of the system.

Tasks and Processes

Different components make up Mac OS X, each with its own background, and this
sometimes leads to clashes in terminology. This different terminology is often
reflected in APIs as well as in documentation. The notions of “task” and “process”
provide an important case in point. You have Mach tasks and BSD processes and
Carbon Process Manager (CPM) processes and Multiprocessing Services tasks and
so on.

A valuable aid for disambiguating this tangle is the following “equation”:

Mach task = BSD process = Carbon Process Manager process

A Mach task, as defined by the Open Software Foundation, is a “container that
holds a set of threads. More importantly, it contains those elements that the . . .
threads need to execute, namely a port name space and a virtual address space.”
(Mach 3 Kernel Principles). In other words, the job of a Mach task (or BSD or Carbon
Process Manager process) on Mac OS X is to manage memory, address spaces, and
other resources related to the execution of its threads. Each Mach task (or process)
has its own 4 gigabytes of virtual address space and this space is protected.

252 Threading Packages
  Apple Computer, Inc. February 2001

C H A P T E R 1 4

Issues and Options With Multiple Environments

One Carbon Process Manager (CPM) process is layered on top of one BSD process.
This layering enables the CPM APIs. Every Carbon, Cocoa, and Java application
process is thus, at the same time, a Mach task, a BSD process (with its own process
ID), and a CPM process (with its own PSN, or process serial number). Classic
processes are an exception to the one-to-one process model. The applications
running in Classic each have their own CPM process, but these multiple processes
are layered on one BSD process.

Both Carbon and Cocoa include the name “task” elsewhere in their APIs. Cocoa
uses “task” and “process” in the Mach and BSD senses. An object created with the
Foundation framework’s NSTask class is actually associated with a subprocess
spun off from a parent process; it is a separate executable entity with its own set of
threads and address space. Multiprocessing Services calls its user-level preemptive
threads “tasks,” largely to avoid conflict with the Thread Manager’s (cooperative)
threads. See the following section, “Threading Packages,” for more on
Multiprocessing Services tasks.

Threading Packages

A thread is an execution context within a process (see “Tasks and Processes”
(page 251)). It is associated with a call stack and a processor’s state. A thread shares
virtual address space and other task-wide resources with other threads of the
process. Threads are scheduled to run preemptively or, with symmetric
multiprocessing, concurrently. Threading models built on top of the kernel’s can,
however, use various synchronization mechanisms to present cooperative
threading behavior.

The capability for a process, such as an application, to have multiple executing
threads is extremely valuable because it can enable greater program efficiency and
simplifies the programming of some tasks. But multithreaded programming can
also make some things more complicated.

Mac OS X gives developers a variety of models and programming interfaces for
multithreading their programs. These packages have dependencies among
themselves, since some packages are layered on top of others. Figure 14-1 depicts
these packages and the dependencies.

C H A P T E R 1 4

Issues and Options With Multiple Environments

Threading Packages 253
  Apple Computer, Inc. February 2001

Figure 14-1 Threading packages in Mac OS X

The kernel environment of Mac OS X, specifically Mach, provides the fundamental
thread support. Mach maintains the register state of its threads and schedules them
preemptively in relation to one another. In the case of symmetric multiprocessing,
the kernel can preemptively schedule threads concurrently, one on each processor.
The client API for Mach threads is implemented in the System framework.

The other threading models or packages are implemented on top of Mach threads.

Threading package Description

POSIX threads The thread package included with the kernel environment
for implementing preemptively scheduled threads. It is one
of the standard threading models in the industry. It is
included in the System framework.

Multiprocessing
Services

Package for preemptively scheduled threads on Carbon.
It is layered on top of POSIX threads and is part of the Core
Services layer.

Thread Manager Package for cooperatively scheduled threads on Carbon.
It is layered on top of POSIX threads and is part of the Core
Services layer.

NSThread Class whose objects wrap preemptively scheduled threads
for use in Cocoa applications. It is layered on top of POSIX
threads and is provided by the Foundation framework.

java.lang.Thread Class whose objects wrap preemptively scheduled threads
for use in Java applications. It is layered on top of POSIX
threads.

Mach threads

Multiprocessing
Services (Carbon)

Thread Manager
(Carbon)

NSThread
(Cocoa) java.lang.Thread

POSIX threads

254 Threading Packages
  Apple Computer, Inc. February 2001

C H A P T E R 1 4

Issues and Options With Multiple Environments

You should always use one of the client APIs instead of the Mach APIs if possible.

Layering Details
As Figure 14-1 (page 253) illustrates, the BSD POSIX threads package (also known
as Pthreads) layers its own multithreading environment on top of the kernel
environment’s Mach threads. The package schedules its threads preemptively and
maintains a one-to-one mapping between a Mach thread and a POSIX thread.

The thread packages of the application environments are layered on top of POSIX
threads. As with POSIX threads, they build their own multithreading environments
on the threading substrata. The threads provided by Multiprocessing Services in
Carbon and the NSThread class in Cocoa are preemptively scheduled and have a
one-to-one mapping with the underlying POSIX thread. (In fact, the
Multiprocessing Services threads, called “tasks” in the API, are thin covers for
POSIX threads.) The Thread Manager’s threads, on the other hand, are
“multiplexed” onto a single POSIX thread and can be scheduled only cooperatively.

Usage Guidelines
When an application process is launched it automatically acquires one thread,
regardless of the application environment. If you want your application to be
multithreaded, you should use, in most cases, the thread package appropriate to
your application environment and, for Carbon, to the type of required thread
(preemptive or cooperative).

You should use POSIX threads when you want maximum source code
compatibility with other operating systems. For example, a good deal of BSD code
uses POSIX threads, which should be compatible with the implementation in
Mac OS X.

With rare exceptions (such as debuggers), your projects should avoid creating and
managing Mach threads. These threads lack much of the infrastructure provided by
POSIX threads. Moreover, use of Mach threads is likely to lead to compatibility
problems later.

C H A P T E R 1 4

Issues and Options With Multiple Environments

Interprocess Communication 255
  Apple Computer, Inc. February 2001

Interprocess Communication

Usually at some point in its life, a process needs to communicate in some way with
another process. Perhaps it needs to transfer some data, or it needs to let other
processes know that something happened to it. However, communication between
processes on a modern operating system can be a tricky affair; if such
communication is poorly conceived and carried out, the overall stability and
performance of the system could suffer.

In Mac OS X, a program has a number of ways to communicate with other
programs. These mechanisms for interprocess communication often exists in
different layers of the system. Each often has its own specific purposes, limitations,
and intended scenarios. Some are more suitable than others for code written at a
certain level of the system; for example, a kernel extension would not make use of
Apple events.

The following mechanisms for interprocess communication exist in Mac OS X:

� Applications should prefer Apple events over all other methods for most
interprocess communication on Mac OS X. See “Communicating With Apple
Events” (page 256).

� Distributed notifications can be used to broadcast simple notifications to all
applications on the same machine. See “Broadcasting Simple Notifications”
(page 257).

� Consider using Core Foundation’s CFMessagePort mechanism instead of Apple
events in situations where performance is critical. See “Transferring Raw Data
With CFMessagePort” (page 257).

� Use BSD sockets for communication over the network. See “Communicating
With BSD Sockets” (page 257).

� BSD pipes can be used for atomic one-way communication on the same
computer. See “Communicating With BSD Pipes” (page 258).

� BSD signals are invoked by the kernel to communicate exceptions to a process.
See “Handling Exceptions With BSD Signals” (page 259).

256 Interprocess Communication
  Apple Computer, Inc. February 2001

C H A P T E R 1 4

Issues and Options With Multiple Environments

� Combine shared memory with POSIX semaphores to share large resources such
as pictures, sounds, or movies with other processes. See “Sharing Large
Resources With Shared Memory” (page 259).

� NSPasteboard is a Cocoa class that allows simple runtime-persistent storage of
publicly sharable data. Low-level interapplication Clipboard operations (cut,
copy, paste) are implemented using NSPasteboard.

� Cocoa applications can use a services facility that allows them to advertise the
services (through the Services menu) they can perform on behalf of other
applications. See “Making Services Available to Other Applications” (page 260).

� Cocoa applications can also use distributed objects to send messages to objects
residing in other threads or processes on the same computer. See “Calling Other
Processes With Distributed Objects” (page 260).

� The Mach port object is the underlying primitive used for all interprocess
communication on Mac OS X. See “Messaging With the Mach Port Object”
(page 260).

Communicating With Apple Events
An Apple event is a high-level semantic event that an application can send to itself,
other applications on the same computer, or applications on a remote computer.
Apple events are the primary method for interapplication communication on
Mac OS X.

Apple event objects have a well-defined data structure with support for extensible,
hierarchical data types. Applications typically use Apple events to request services
and information from other applications, or to provide services and information in
response to such requests. You can define your own custom events to suit your
needs, but, to increase interoperability with other applications, it’s a good idea to
make the effort to adopt the standard set of Apple events documented by Apple.

In addition to low-level document management tasks such as “save document“ and
“open document“, standard Apple event suites and related data structures are
defined for many functional areas, including text handling and database
management. A well-defined Apple event suite can also support a rich scripting
interface through AppleScript.

C H A P T E R 1 4

Issues and Options With Multiple Environments

Interprocess Communication 257
  Apple Computer, Inc. February 2001

Apple event objects can take a significant amount of time to create, so you will not
usually want to use Apple events in performance-critical situations. To improve
AppleEvent creation performance, try using the Carbon AEBuild and AEStream
utilities, which are often significantly faster than AEPutDesc and AEPutParam.

Broadcasting Simple Notifications
A distributed notification is a message posted by any process to a per-machine
notification center, which in turn broadcasts the message to any processes
interested in receiving it. Included with the notification is an identifier of the sender,
and, optionally, a dictionary containing additional information. The distributed
notification mechanism is implemented by the Core Foundation
CFNotificationCenter object and by the Cocoa NSDistributedNotificationCenter
class.

Distributed notifications are ideal for simple notification-type events. For example,
a notification might communicate the status of a certain piece of critical hardware,
such as the network interface, or a typesetting machine.

There is no way to restrict the set of processes that are allowed to receive a
distributed notification. Any process which registers for a given notification may
receive it. Because distributed notifications use a string for the unique registration
key, there exists potential for namespace conflicts.

Distributed notifications are true notifications because there is no opportunity for
the receiver to reply to a notification.

Transferring Raw Data With CFMessagePort
The CoreFoundation CFMessagePort object implements a fast, efficient mechanism
for transferring raw data from one process to another process on the same machine.
If Apple events are too slow for your purpose, consider using CFMessagePort.

Communicating With BSD Sockets
Sockets support two-way communication between any number of processes. A
socket is an object which associates an address with a file descriptor. Sockets should
be used for all network communication on Mac OS X.

258 Interprocess Communication
  Apple Computer, Inc. February 2001

C H A P T E R 1 4

Issues and Options With Multiple Environments

There are two primary variants of sockets, file and network. File sockets are
addressed as filenames and for various reasons do not support communication
between processes on different machines. Network sockets are addressed using the
network host name combined with the port number (for example, www.apple.com
and 80). Both types of sockets are read and written using the POSIX calls read and
write,

The Core Foundation framework includes an abstraction for sockets (CFSocket/
CFRunLoop). Using CFSocket instead of raw sockets API calls allows Core
Foundation to abstract any potential differences between operating systems, as well
as providing a more object-oriented interface which you may find easier to
program.

Using CFSocket with CFRunLoop allows you to multiplex data received from a
socket with data received from other sources. This allows you to keep the number
of threads in your application to an absolute minimum, which is good for
performance. CFMessagePort can also work with CFRunLoop.

Communicating With BSD Pipes
A pipe is a communication portal with one sending and one receiving end. Data
written to a pipe is read in first-in, first-out (FIFO) order. In order to read or write
data from a pipe, both the reading and the writing end of the pipe must be open.

Unnamed pipes must be created by a common ancestor process which then hands
the pipe descriptor number to both child processes. This facility is typically used by
the command line shell to connect processes which have been piped together (for
example, “cat magic.txt | grep -e Gwendoyln“ sends the contents of magic.text to
the grep command via the C library console input stream).

A named pipe is represented by a file in the filesystem called a FIFO special file. A
named pipe must be created with a unique name known to the both the sending and
receiving processes.

Reading and writing small amounts of data to a pipe can occur atomically if the size
of the data written is below a certain, kernel-specified size. This allows the receiving
end of the named pipe to avoid reading a partial buffer.

C H A P T E R 1 4

Issues and Options With Multiple Environments

Interprocess Communication 259
  Apple Computer, Inc. February 2001

Handling Exceptions With BSD Signals
Signals are software interrupts that can be invoked on a specified process. The
default signal handling behavior (provided by the system) usually terminates the
process immediately on receipt of a signal. A process can override this behavior by
installing a signal handler routine.

The most typical use of signals is by the kernel, which uses signals to notify a
process of exceptional conditions such as invalid address errors and divide-by-zero
errors. Another typical use is the command-line kill tool, which is capable of
sending any user-specified signal to a process, though the most common use is to
terminate a process with SIGHUP.

Signals are complex to use effectively, and they tend to behave differently
(sometimes unreliably) on different operating systems. The signal namespace,
being composed of a single integer, is limited, and collisions with either third-party
signal numbers or numbers provided by future versions of the operating system are
possible. As such, signals should generally be avoided for normal interprocess
communication needs.

Sharing Large Resources With Shared Memory
Shared memory is a region of memory that has been allocated by a process
specifically for the purpose of being readable and possibly writable among several
processes. The region is mapped into the address space of each process with access
to it. Access to this region of memory is controlled through POSIX semaphores,
which implement a kind of locking mechanism.

Shared memory has two distinct advantages over other forms of interprocess
communication:

� Any process with appropriate permissions may read or write a shared memory
region.

� The data is never copied, because any process can directly read it.

The disadvantage of shared memory is that it is very fragile. When a data structure
in a shared memory region is corrupted, all processes which reference that data
structure are also corrupted. For this reason, shared memory is best used simply as
a repository for raw storage of data (such as raw pixels or audio), with the
controlling data structures accessed through more conventional interprocess
communication.

260 Interprocess Communication
  Apple Computer, Inc. February 2001

C H A P T E R 1 4

Issues and Options With Multiple Environments

Making Services Available to Other Applications
The “standard services” facility lets a Cocoa application offer its functionality to
other applications, without requiring the other applications to know in advance
what’s offered. A service-providing application advertises an operation that it can
perform on a particular type of data—for example, encrypting the selected file or
opening a selected URL. Any application that uses the services facility then
automatically has access to that functionality through its Services menu. It doesn’t
need to know what the operations are in advance; it merely indicates what types of
data it has, and the Services menu makes available the operations that apply to
those types. The services facility thus gives Cocoa applications an open-ended
means of extending each others’ functionality. Transfer of data takes place through
the Clipboard and can be either one-way or two-way.

Calling Other Processes With Distributed Objects
The Objective-C language runtime supports an interprocess messaging solution
called “distributed objects”. This mechanism enables a Cocoa application to call an
object in a different Cocoa application. Calls may be synchronous, meaning the
sending process is blocked while waiting for a reply from the receiver, or
asynchronous, meaning no reply is expected and the sender is not blocked.

For more information on distributed objects, see The Objective-C Language Reference
and the Foundation Framework Reference.

Messaging With the Mach Port Object
Mach port objects implement a standard, safe, and efficient construct for
transferring messages between processes. All other interprocess communications
primitives on Mac OS X use the Mach port object at some level.

Because the sending and receiving process are scheduled independently of each
other, there is no guarantee that a given process will be free to receive a message
sent to it at any given time. Therefore, arriving messages are placed in a queue and
retrieved at the convenience of the receiving process.

Processes may not access a given port without appropriate access permissions (or
“port rights“ in Mach terminology). The inherent stability of the Mach kernel is
partly attributable to this mechanism.

C H A P T E R 1 4

Issues and Options With Multiple Environments

Library Managers and Executable Formats 261
  Apple Computer, Inc. February 2001

You should not use Mach messaging directly if other alternatives are available,
because the interfaces may change in future versions of the kernel.

The Mach port object is not related to and should not be confused with the internet
address port number as used in BSD sockets (see “Communicating With BSD
Sockets” (page 257)). The Mach port object is also not related to the Carbon graphics
port primitive (GrafPort).

Library Managers and Executable Formats

A runtime environment (or, simply, runtime) is a set of conventions that determines
how code and data are loaded into memory and managed. Mac OS X supports two
primary runtime environments—dyld (dynamic link editor) and CFM (Code
Fragment Manager). One of the thorny issues raised by multiple runtimes on one
system is how to allow, for example, code prepared for one runtime to access code
prepared for another. This section discusses the issue and describes the technology
Apple has developed for bridging between them. It also explains Apple’s position
on the runtime approaches it recommends to developers.

This section provides a comparative overview of the dyld and CFM runtimes as
well as the executable formats of the code and data they operate upon. For a more
detailed discussion of the CFM-based runtime environment, see the Carbon
documentation on the Code Fragment Manager, especially the chapter “CFM-Based
Runtime Architecture.” In this book, see “Dynamic Shared Libraries” (page 132) in
the chapter “Frameworks” for a description of the dynamic link editor. Also, see
“CFM Executables” (page 225) for a description of how to prepare a CFM
executable for Mac OS X.

Comparing the Runtime Environments
A CFM-based application cannot directly call a function in a dyld-based framework,
and the reverse is also true. In order to understand this restriction—and Apple’s
solution—you must first understand the major differences between the two
environments.

262 Library Managers and Executable Formats
  Apple Computer, Inc. February 2001

C H A P T E R 1 4

Issues and Options With Multiple Environments

CFM and dyld

The Code Fragment Manager (CFM) and the dynamic link editor (dyld) are library
managers. (Other terms might also be applicable but, for the sake of this discussion,
“library manager” suffices). A library manager is responsible for mapping one or
more containers (or modules) of code and data into memory and preparing them for
execution. It prepares them for execution primarily by attempting to resolve
references to symbols defined externally. These symbols are typically defined in
shared libraries that the container links with at build time.

The major difference in the behavior of the dyld and CFM library managers is when
they resolve these references and bind them to addresses in the appropriate
libraries. CFM takes a static approach; it prepares each container of code and data
(called a fragment) as a unit (called a closure). At build time, CFM finalizes the
executable by determining where the various referenced symbols will exist at
runtime. The dyld library manager, on the other hand, attempts to resolve all
undefined symbols at runtime. More specifically, symbols are resolved only as they
are referenced during program execution. The dyld manager links code modules in
a dynamic shared library only as they are needed.

PEF and Mach-O

Both the dyld and CFM library managers expect the container of code and data that
they prepare for execution to be in a certain executable file format. The executable
format is a packaging convention for machine-ready (executable) code. For CFM,
this format is called PEF (Preferred Executable Format) and for dyld, the format is
called Mach-O (Mach object-file format).

PEF and Mach-O are similar in many respects. They both define sections (or
segments) for code, global data, nonconstant data, and so on. Where they primarily
differ is their allowance for multiple containers. PEF is a format for a container (a
fragment) that maps one-to-one to an executable. In the dyld world, however, an
executable can be composed from multiple Mach-O containers (object files).

Code-Generation Models

Although they are significant, the major differences discussed so far between
library managers and their executable formats do not explain why a CFM-based
program cannot directly call a function in a dyld-based library. The real source of

C H A P T E R 1 4

Issues and Options With Multiple Environments

Library Managers and Executable Formats 263
  Apple Computer, Inc. February 2001

incompatibility between the CFM runtime and the dyld runtime is the different
external calling conventions used by their code-generation models. The differences
affect the representation of C function pointers and the way global data is accessed.

� The CFM code-generation model uses a pointer to a TVector as the basis for
function pointers. It accesses global data indirectly via the R2 register, using it as
a base pointer to the global data. This method of access is known as TOC.

� The dyld code-generation model uses a simple pointer to code as the basis for
function pointers. It accesses global data relative to code, using an offset from a
base address. This method of access is known as GOT.

Vector Libraries
All system frameworks on Mac OS X are based on dyld and Mach-O. Some of these
frameworks contain Carbon APIs. Therefore, if you have a CFM-based Carbon
application or library, your code needs to call functions in these system
frameworks. Apple has made it possible for CFM-based code to call functions in a
dyld-based framework through a technology called a vector library. A vector
library functions as a bridge for a system framework that contains Carbon APIs.
Part of this bridge is a vector or jump table that provides the “glue” code to handle
the differences in code-generation models. A CFM-based client (application or
library) can use these vector libraries and thereby access the Carbon APIs in the
associated dyld-based framework.

Carbon developers don’t have to do anything special to access code in system
frameworks, as long as that code is defined as part of Carbon. To take advantage of
the bridging technology of the vector libraries, they need only link against the stub
libraries found in the CarbonLib SDK.

Note that vector libraries do not bridge in the other direction—from a dyld
application or framework into a CFM library. It is possible to call from dyld to CFM
using a CFPlugIn, but this solution is not appropriate for all situations. In general,
if you want a library to be available to all of the Mac OS X execution environments,
you should build it as a dyld-based library.

264 Library Managers and Executable Formats
  Apple Computer, Inc. February 2001

C H A P T E R 1 4

Issues and Options With Multiple Environments

CFM Executable and Non-Carbon APIs
There may be occasions when a CFM-based application or library wants to call into
a system framework that does not contain any Carbon APIs. A good example of
such a framework is System.framework, which implements many of the POSIX
kernel-environment APIs. Mac OS X supplies no vector libraries for this purpose.

The system does provide another mechanism for accessing non-Carbon APIs in
system frameworks: the plug-in. You can create a dyld-based plug-in that links with
a non-Carbon framework and is therefore able to directly call the framework’s
functions. A CFM application can then use the Carbon plug-in APIs (specifically
Core Foundation Plug-in Services) to load the plug-in and use it to call into the
non-Carbon framework. Figure 14-2 illustrates how this is done.

Figure 14-2 A Carbon application calling BSD system routines

Should You Use CFM or dyld?
Experienced developers understand that if you want to maximize an application’s
performance for a particular platform, you must optimize your code for that
platform. Mac OS X is natively a dyld platform. After all, the system frameworks—
even the ones with Carbon APIs—are based on dyld and Mach-O. In fact, the Code
Fragment Manager itself is built on top of dyld technology. For this reason, Apple
strongly encourages developers to use dyld and Mach-O for their programs.

Carbon.framework System.framework

1. Calls Core
Foundation APIs

2. Loads

3. Calls BSD APIs

MyCarbonApp.app MyPlugin.plugin

CFM dyld

C H A P T E R 1 4

Issues and Options With Multiple Environments

Library Managers and Executable Formats 265
  Apple Computer, Inc. February 2001

For compatibility reasons, CFM-based programs are supported on Mac OS X.
However, Apple encourages the use of the application packaging scheme described
in the chapter “Application Packaging” (page 117)) to build application bundles
containing multiple executable formats. If you are developing a Carbon application,
and want to maximize performance on both Mac OS X and Mac OS 9, then you
should compile the same set of source code for both runtime environments—one for
dyld, the other for CFM—then optimize each executable for its intended platform.
In this way, your application can take advantage of the native runtime environment
on both platforms.

266 Library Managers and Executable Formats
  Apple Computer, Inc. February 2001

C H A P T E R 1 4

Issues and Options With Multiple Environments

267
  Apple Computer, Inc. February 2001

15 Glossary

abstract type Defines, in information
property lists, general characteristics of a
family of documents. Each abstract type has
corresponding concrete types. See also
concrete type.

active window The front-most modal or
document window. Only the contents of the
active window are affected by user actions.
The active window has distinctive details
that aren’t visible for inactive windows.

address space Describes the range of
memory (both physical and virtual) that a
process uses while running. In Mac OS X,
processes do not share address space.

alias A lightweight reference to files and
folders in Mac OS Standard (HFS) and Mac
OS Extended (HFS+) file systems. An alias
allows multiple references to files and folders
without requiring multiple copies of these
items. Aliases are not as fragile as symbolic
links because they identify the volume and
location on disk of a referenced file or folder;
the referenced file or folder can be moved
around without breaking the alias. See also
symbolic link.

anti-aliasing A technique that smooths the
roughness in images or sound caused by
aliasing. During frequency sampling,
aliasing generates a false (alias) frequency
along with the correct one. With images this
produces a stair-step effect. Anti-aliasing

corrects this by adjusting pixel positions or
setting pixel intensities so that there is a more
gradual transition between pixels.

Apple event A high-level
operating-system event that conforms to the
Apple Event Interprocess Messaging
Protocol (AEIMP). An Apple event typically
consists of a message from an application to
itself or to another application.

AppleTalk A suite of network protocols
that is standard on Macintosh computers and
can be integrated with other network
systems, such as the Internet.

Application Kit A Cocoa framework that
implements an application’s user interface.
The Application Kit provides a basic
program structure for applications that draw
on the screen and respond to events.

application packaging Putting code and
resources in the prescribed directory
locations inside application bundles.
“Application package” is sometimes used
synonymously with “application bundle.”

ASCII American Standard Code for
Information Interchange. A 7-bit character
set (commonly represented using 8-bits) that
defines 128 unique character codes. See also
Unicode.

G L O S S A R Y

268
  Apple Computer, Inc. February 2001

bit depth The number of bits used to
describe something, such as the color of a
pixel. Each additional bit in a binary number
doubles the number of possibilities.

bitmap A data structure that represents the
positions and states of a corresponding set of
pixels.

BSD Berkeley Software Distribution.
Formerly known as the Berkeley version of
UNIX, BSD is now simply called the BSD
operating system. The BSD portion of Mac
OS X is based on 4.4BSD Lite 2 and FreeBSD,
a “flavor” of 4.4BSD.

buffered window A window with a
memory buffer into which all drawing is
rendered. All graphics are first drawn in the
buffer, then the buffer is flushed to the
screen.

bundle A directory in the file system that
stores executable code and the software
resources related to that code. Applications,
plug-ins, and frameworks are types of
bundles. Except for frameworks, bundles are
file packages, presented by the Finder as a
single file.

bytecode Computer object code that is
processed by a virtual machine. The virtual
machine converts generalized machine
instructions into specific machine
instructions (instructions that a computer's
processor can understand). Bytecode is the
result of compiling source language
statements written in any language that
supports this approach. The best-known
language today that uses the bytecode and
virtual machine approach is Java. In Java,
bytecode is contained in a binary file with a

.class suffix. (Strictly speaking, “bytecode”
means that the individual instructions are
one byte long, as opposed to PowerPC code,
for example, which is four bytes long.) See
also virtual machine.

Carbon An application environment on
Mac OS X that features a set of programming
interfaces derived from earlier versions of the
Mac OS. The Carbon APIs have been
modified to work properly with Mac OS X,
especially with the foundation of the
operating system, the kernel environment.
Carbon applications can run on Mac OS X,
Mac OS 9, and all versions of Mac OS 8 later
than Mac OS 8.1.

CFM Code Fragment Manager, the library
manager and code loader for processes based
on PEF (Preferred Executable Format) object
files (Carbon).

class In object-oriented languages such as
Java and Objective-C, a prototype for a
particular kind of object. A class definition
declares instance variables and defines
methods for all members of the class. Objects
that belong to the same class have the same
types of instance variables and have access to
the same methods (included the instance
variables and methods inherited from
superclasses).

Classic An application environment on
Mac OS X that lets you run non-Carbon
legacy Mac OS software. It supports
programs built for both Power PC and 68K
chip architectures and is fully integrated with
the Finder and the other application
environments.

G L O S S A R Y

269
  Apple Computer, Inc. February 2001

Clipboard A per-user server (also known
as the pasteboard) that enables the transfer of
data between applications, including the
Finder. The server is shared by all running
applications and contains data that the user
has cut or copied, as well as other data that
one application wants to transfer to another,
such as in dragging operations. Data in the
Clipboard is associated with a name that
indicates how it's to be used. You implement
data-transfer operations with the Clipboard
using Core Foundation Pasteboard Services
or the Cocoa NSPasteboard class. See also
pasteboard.

Cocoa An advanced object-oriented
development platform on Mac OS X. Cocoa is
a set of frameworks with programming
interfaces in both Java and Objective-C. It is
based on the integration of OPENSTEP,
Apple technologies, and Java.

code fragment In the CFM-based
architecture, a code fragment is the basic unit
for executable code and its static data. All
fragments share fundamental properties
such as the basic structure and the method of
addressing code and data. A fragment can
easily access code or data contained in
another fragment. In addition, fragments that
export items can be shared among multiple
clients. A code fragment is structured
according to the Preferred Executable Format
(PEF).

ColorSync An industry-standard
architecture for reliably reproducing color
images on various devices (such as a scanner,
a video display, and a printer) and operating
systems.

compositing A method of overlaying
separately rendered images into a final
image. It encompasses simple copying as
well as more sophisticated operations that
take advantage of transparency.

concrete type Defines, in information
property lists, specific characteristics of a
type of document such as extensions and
HFS+ type and creator codes. Each concrete
type has corresponding abstract types. See
also abstract type.

cooperative multitasking A multitasking
environment in which a running program
can receive processing time only if other
programs allow it; each application must
give up control of the processor
“cooperatively” in order to allow others to
run. Mac OS 8 and 9 are cooperative
multitasking environments. See also
preemptive multitasking.

Darwin Another name for the Mac OS X
core operating system. The Darwin kernel is
equivalent to the Mac OS X kernel plus the
BSD libraries and commands essential to the
BSD Commands environment. Darwin is
Open Source technology.

demand paging An operating system
facility that causes pages of data to be
brought from disk into physical memory
only as they are needed.

device driver A component of an operating
system that deals with getting data to and
from a device, as well as the control of that
device.

G L O S S A R Y

270
  Apple Computer, Inc. February 2001

domain An area of the file system reserved
for software, documents, and resources and
limiting the applicability of those items. A
domain is segregated from other domains.
There are four domains: user, local, network,
and system.

DVD An optical storage medium that
provides greater capacity and bandwidth
than CD-ROM; DVDs are frequently used for
multimedia as well as data storage.

dyld See dynamic link editor.

dynamic link editor The library manager
for code in the Mach-O executable format.
The dynamic link editor is a dynamic library
that “lives” in all Mach-O programs on the
system. See also CFM; Mach-O.

dynamic linking The binding of modules,
as a program executes, by the dynamic link
editor. Usually the dynamic link editor binds
modules into a program lazily (that is, as they
are used). Thus modules not actually used
during execution are never bound into the
program.

dynamic shared library A library whose
code can be shared by multiple, concurrently
running programs. Programs share exactly
one physical copy of the library code and do
not require their own copies of that code.
With dynamic shared libraries, a program
not only attempts to resolve all undefined
symbols at runtime, but attempts to do so
only when those symbols are referenced
during program execution.

encryption The conversion of data into a
form, called ciphertext, that cannot be easily
understood by unauthorized people. The

complementary process, decryption,
converts encrypted data back into its original
form.

Ethernet A high-speed local area network
technology.

exception An interruption to the normal
flow of program control that occurs when an
error or other special condition is detected
during execution. An exception transfers
control from the code generating the
exception to another piece of code, generally
a routine called an exception handler.

fault In the virtual-memory system, faults
are the mechanism for initiating page-in
activity. They are interrupts that occur when
code tries to access data at a virtual address
that is not mapped to physical memory. Soft
faults happen when the referenced page is
resident in physical memory but is
unmapped. Hard (or page) faults occur when
the page has been swapped out to backing
store. See also page; virtual memory.

file package A folder that the Finder
presents to users as if it were a file. In other
words, the Finder hides the contents of the
folder from users. This opacity discourages
users from inadvertently (or intentionally)
altering the contents of the bundle.

file system A part of the kernel
environment that manages the reading and
writing of data on mounted storage devices
of a certain volume format. A file system can
also refer to the logical organization of files
used for storing and retrieving them. File
systems specify conventions for naming files,
for storing data in files, and for specifying
locations of files. See also volume format.

G L O S S A R Y

271
  Apple Computer, Inc. February 2001

firewall Software (or a computer running
such software) that prevents unauthorized
access to a network by users outside of the
network. (A physical firewall prevents the
spread of fire between two physical
locations; the software analog prevents the
unauthorized spread of data).

fork (1) A stream of data that can be opened
and accessed individually under a common
filename. The Mac OS Standard and
Extended file systems store a separate data
fork and a resource fork as part of every file;
data in each fork can be accessed and
manipulated independently of the other. (2)
In BSD, fork is a system call that creates a
new process.

framebuffer A highly accessible part of
video RAM (random access memory) that
continuously updates and refreshes the data
sent to the devices that display images
onscreen.

framework A type of bundle that packages
a dynamic shared library with the resources
that the library requires, including header
files and reference documentation.

HFS Hierarchical File System. The Mac OS
Standard file-system format, used to
represent a collection of files as a hierarchy of
directories (folders), each of which may
contain either files or folders themselves.
HFS is a two-fork volume format.

HFS+ Hierarchical File System Plus. The
Mac OS Extended file-system format. This
file-system format was introduced as part of
Mac OS 8.1, adding support for filenames
longer than 31 characters, Unicode

representation of file and directory names,
and efficient operation on very large disks.
HFS+ is a multiple-fork volume format.

host The computer that’s running (is host
to) a particular program. The term is usually
used to refer to a computer on a network.

information property list A property list
that contains essential configuration
information for bundles. A file named
Info.plist (or a platform-specific variant of
that filename) contains the information
property list and is packaged inside the
bundle.

inheritance In object-oriented
programming, the ability of a superclass to
pass its characteristics (methods and instance
variables) on to its subclasses.

instance In object-oriented languages such
as Java and Objective-C, an object that
belongs to (is a member of) a particular class.
Instances are created at runtime according to
the specification in the class definition.

internationalization The design or
modification of a software product,
including online help and documentation, to
facilitate localization. Internationalization of
software typically involves writing or
modifying code to make use of locale-aware
operating-system services for appropriate
localized text input, display, formatting, and
manipulation. See also localization.

interprocess communication (IPC) A set of
programming interfaces that enables a
process to communicate data or information
to another process. Mechanisms for IPC exist
in the different layers of the system, from

G L O S S A R Y

272
  Apple Computer, Inc. February 2001

Mach messaging in the kernel to distributed
notifications and Apple events in the
application environments. Each IPC
mechanism has its own advantages and
limitations, so it is not unusual for a program
to use multiple IPC mechanisms. Other IPC
mechanisms include pipes, named pipes,
signals, message queueing, semaphores,
shared memory, sockets, the Clipboard, and
application services.

kernel The complete Mac OS X core
operating-system environment, which
includes Mach, BSD, the I/O Kit, file systems,
and networking components. Also called the
kernel environment.

key An arbitrary value (usually a string)
used to locate a datum in a data structure
such as a dictionary.

localization The adaptation of a software
product, including online help and
documentation, for use in one or more
regions of the world, in addition to the region
for which the original product was created.
Localization of software can include
translation of user-interface text, resizing of
text-related graphical elements, and
replacement or modification of user-interface
images and sound. See also
internationalization.

lock A data structure used to synchronize
access to a shared resource. The most
common use for a lock is in multithreaded
programs where multiple threads need
access to global data. Only one thread can
hold the lock at a time; this thread is the only
one that can modify the data during this
period.

manager In Carbon, a library or set of
related libraries that define a programming
interface.

Mach The lowest level of the Mac OS X
kernel. Mach provides such basic services
and abstractions as threads, tasks, ports,
interprocess communication (IPC),
scheduling, physical and virtual address
space management, virtual memory, and
timers.

Mach-O Executable format of Mach object
files. See also PEF.

main thread By default, a process has one
thread, the main thread. If a process has
multiple threads, the main thread is the first
thread in the process. A user process can use
the POSIX threading API (Pthread) to create
other user threads.

major version A framework version
specifier designating a framework that is
incompatible with programs linked with a
previous version of the framework’s
dynamic shared library.

makefile A specification file used by the
program to build an executable version of an
application. A makefile details the files,
dependencies, and rules by which the
application is built.

memory-mapped file A file whose
contents are mapped into memory. The
virtual-memory system transfers portions of
these contents from the file to physical
memory in response to page faults. Thus, the
disk file serves as backing store for the code
or data not immediately needed in physical
memory.

G L O S S A R Y

273
  Apple Computer, Inc. February 2001

memory protection A system of memory
management in which programs are
prevented from being able to modify or
corrupt the memory partition of another
program. Mac OS 8 and 9 do not have
memory protection; Mac OS X does.

method In object-oriented programming, a
procedure that can be executed by an object.

minor version A framework version
specifier designating a framework that is
compatible with programs linked with later
builds of the framework within the same
major version.

multicast A process in which a single
network packet may be addressed to
multiple recipients. Multicast is used, for
example, in streaming video, in which many
megabytes of data are sent over the network.

multihoming The ability to have multiple
network addresses in one computer. For
example, multihoming might be used to
create a system in which one address is used
to talk to hosts outside a firewall and the
other to talk to hosts inside; the operating
system provides facilities for passing
information between the two.

multitasking The concurrent execution of
multiple programs. Mac OS X uses
preemptive multitasking. Mac OS 8 and 9 use
cooperative multitasking.

network A group of hosts that can directly
communicate with each other.

nonretained window A window without
an off-screen buffer for screen pixel values.

notification Generally, a programmatic
mechanism for alerting interested recipients
(or “observers”) that some event has
occurred during program execution. The
observers can be users, other processes, or
even the same process that originates the
notification. In Mac OS X, the term
“notification” is used to identify specific
mechanisms that are variations of the basic
meaning. In the kernel environment,
“notification” is sometimes used to identify a
message sent via IPC from kernel space to
user space; an example of this is an IPC
notification sent from a device driver to the
window server’s event queue. Distributed
notifications are a way a process can
broadcast an alert (along with additional
data) to any other process that makes itself an
observer of that notification. Finally, the
Notification Manager (a Carbon manager)
lets background programs notify users—
through blinking icons in the menu bar, by
sounds, or by dialogs—that their intercession
is required.

NFS Network File System. An NFS file
server allows users on the network to share
files on other hosts as if they were on their
own local disks.

object A programming unit that groups
together a data structure (instance variables)
and the operations (methods) that can use or
affect that data. Objects are the principal
building blocks of object-oriented programs.

object file A file containing executable
code and data. Object files in the Mach-O
executable format take the suffix .o and are
the product of compilation using the GNU
compiler (gcc). Multiple object files are

G L O S S A R Y

274
  Apple Computer, Inc. February 2001

typically linked together along with required
frameworks to create a program. See also
code fragment; dynamic linking.

Objective-C An object-oriented
programming language based on standard C
and a runtime system that implements the
dynamic functions of the language.
Objective-C’s few extensions to the C
language are mostly based on Smalltalk, one
of the first object-oriented programming
languages. Objective-C is available in the
Cocoa application environment.

opaque type In Core Foundation and
Carbon, an aggregate data type plus a suite of
functions that operate on instances of that
type. The individual fields of an initialized
opaque type are hidden from clients, but the
type’s functions offer access to most values of
these fields. An opaque type is roughly
equivalent to a class in object-oriented
programming.

Open Source A definition of software that
includes freely available access to source
code, redistribution, modification, and
derived works. The full definition is available
at www.opensource.org.

Open Transport Open Transport is a
communications architecture for
implementing network protocols and other
communication features on computers
running the Mac OS. Open Transport
provides a set of programming interfaces
that supports, among other things, both the
AppleTalk and TCP/IP protocols.

package In Java, a way of storing,
organizing, and categorizing related Java
class files; typical package names are
java.util and com.apple.cocoa.foundation.
See also application packaging.

page The smallest unit, measured in bytes,
of information that the virtual memory
system can transfer between physical
memory and backing store. As a verb, page
refers to the transfer of pages between
physical memory and backing store.

pasteboard Another name for the
Clipboard.

PEF Preferred Executable Format. An
executable format understood by the Code
Fragment Manager. See also Mach-O.

permissions In BSD, a set of attributes
governing who can read, write, and execute
resources in the file system. The output of the
ls -l command represents permissions as a
nine-position code segmented into three
binary three-character subcodes; the first
subcode gives the permissions for the owner
of the file, the second for the group that the
file belongs to, and the last for everyone else.
For example, -rwsr-xr-- means that the
owner of the file has read, write, execute
permissions (rwx); the group has read and
excute permissions (r-x); everyone else has
only read permissions. (The leftmost position
is reserved for a special character that says if
this is a regular file (-), a directory (d), a
symbolic link (l), or a special pseudo-file
device.) The execute bit has a different
semantic for directories, meaning they can be
searched.

G L O S S A R Y

275
  Apple Computer, Inc. February 2001

physical address An address to which a
hardware device, such as a memory chip, can
directly respond. Programs, including the
Mach kernel, use virtual addresses that are
translated to physical addresses by mapping
hardware controlled by the Mach kernel.

physical memory Electronic circuitry
contained in random-access memory (RAM)
chips, used to temporarily hold information
at execution time. Addresses in a process’s
virtual memory are mapped to addresses in
physical memory. See also virtual memory.

pixel The basic logical unit of
programmable color on a computer display
or in a computer image. The physical size of
a pixel depends on the resolution of the
display screen.

plug-in An external module of code and
data separate from a host (such as an
application, operating system, or other
plug-in) that, by conforming to an interface
defined by the host, can add features to the
host without needing access to the source
code of the host. Plug-ins are types of
loadable bundles. They are implemented
with Core Foundation Plug-in Services.

port (1) In Mach, a secure unidirectional
channel for communication between tasks
running on a single system. (2) In IP transport
protocols, an integer identifier used to select
a receiver for an incoming packet or to
specify the sender of an outgoing packet.

POSIX The Portable Operating System
Interface. An operating-system interface
standardization effort supported by ISO/
IEC, IEEE, and The Open Group.

PostScript A language that describes the
appearance (text and graphics) of a printed
page. PostScript is an industry standard for
printing and imaging. Many printers contain
or can be loaded with PostScript software.
PostScript handles industry-standard,
scalable typefaces in the Type 1 and
TrueType formats. PostScript is an output
format of Quartz.

preemption The act of interrupting a
currently running task in order to give time
to another task.

preemptive multitasking A type of
multitasking in which the operating system
can interrupt a currently running task in
order to run another task, as needed. See also
cooperative multitasking.

process A BSD abstraction for a running
program. A process’ resources include a
virtual address space, threads, and file
descriptors. In Mac OS X, a process is based
on one Mach task and one or more Mach
threads.

property list A structured, textual
representation of data that uses the
Extensible Markup Language (XML) as the
structuring medium. Elements of a property
list represent data of certain types, such as
arrays, dictionaries, and strings.

Pthreads The POSIX Threads package
(BSD).

RAM Random-access memory. Memory
that a microprocessor can either read or write
to.

G L O S S A R Y

276
  Apple Computer, Inc. February 2001

raster graphics Digital images created or
captured (for example, by scanning in a
photo) as a set of samples of a given space. A
raster is a grid of x-axis (horizontal) and
y-axis (vertical) coordinates on a display
space. (Three-dimensional images also have
a z-coordinate.) A raster image identifies the
monochrome or color value to illuminate
each of these coordinates with. The raster
image is sometimes referred to as a bitmap
because it contains information that is
directly mapped to the display grid. A raster
image is usually difficult to modify without
loss of information. Examples of raster-image
file types are BMP, TIFF, GIF, and JPEG files.
See also vector graphics.

real time In reference to operating systems,
a guarantee of a certain capability within a
specified time constraint, thus permitting
predictable, time-critical behavior. If the user
defines or initiates an event and the event
occurs instantaneously, the computer is said
to be operating in real time. Real-time
support is especially important for
multimedia applications.

reentrant The ability of code to process
multiple interleaved requests for service
nearly simultaneously. For example, a
reentrant function can begin responding to
one call, be interrupted by other calls, and
complete them all with the same results as if
the function had received and executed each
call serially.

resolution The number of pixels
(individual points of color) contained on a
display monitor, expressed in terms of the
number of pixels on the horizontal axis and
the number on the vertical axis. The

sharpness of the image on a display depends
on the resolution and the size of the monitor.
The same resolution will be sharper on a
smaller monitor and gradually lose
sharpness on larger monitors because the
same number of pixels are being spread out
over a larger area.

resource Anything used by executable
code, especially by applications. Resources
include images, sounds, icons, localized
strings, archived user-interface objects, and
various other things. Mac OS X supports both
Resource Manager–style resources and
“per-file” resources. Localized and
nonlocalized resources are put in specific
places within bundles.

retained window A window with an
offscreen buffer for screen pixel values.
Images are rendered into the buffer for any
portions of the window that aren’t visible
onscreen.

role An identifier of an application’s
relation to a document type. There are five
roles: Editor (reads and modifies), Viewer
(can only read), Print (can only print), Shell
(provides runtime services), and None
(declares information about type). You
specify document roles in an application’s
information property list.

ROM Read-only memory, that is, memory
that cannot be written to.

run loop The fundamental mechanism for
event monitoring in Mac OS X. A run loop
registers input sources such as sockets, Mach
ports, and pipes for a thread; it also enables
the delivery of events through these sources.

G L O S S A R Y

277
  Apple Computer, Inc. February 2001

In addition to sources, run loops can also
register timers and observers. There is
exactly one run loop per thread.

runtime The period of time during which a
program is being executed, as opposed to
compile time or load time. Can also refer to
the runtime environment, which designates
the set of conventions that arbitrate how
software is generated into executable code,
how code is mapped into memory, and how
functions call one another.

scheduling The determination of when
each process or task runs, including
assignment of start times.

SCSI Small Computer Systems Interface. A
standard connector and communications
protocol used for connecting devices such as
disk drives to computers.

script A series of statements, written in a
scripting language such as AppleScript or
Perl, that instruct an application or the
operating system to perform various
operations. Interpreter programs translate
scripts.

semaphore A programming technique for
coordinating activities where multiple
processes compete for the same kernel
resources. Semaphores are commonly used
to share a common memory space and to
share access to files. Semaphores are one of
the techniques for interprocess
communication in BSD.

server A process that provides services to
other processes (clients) in the same or other
computers.

SMP Symmetric multiprocessing. A
feature of an operating system in which two
or more processors are managed by one
kernel, sharing the same memory, having
equal access to I/O devices, and in which any
task, including kernel tasks, can run on any
processor.

socket (1) In BSD-derived systems, a socket
refers to different entities in user and kernel
operations. For a user process, a socket is a
file descriptor that has been allocated using
socket(2). For the kernel, a socket is the data
structure that is allocated when the kernel’s
implementation of the socket(2) call is made.
(2) In AppleTalk protocols, a socket serves
the same purpose as a “port” in IP transport
protocols.

spool To send files to a device or program
(called a spooler or daemon) that puts them
in a queue for later processing. The print
spooler controls output of jobs to a printer.
Other devices, such as plotters and input
devices, can have spoolers.

subframework A public framework that
packages a specific Apple technology, such
as Apple events or Open Transport. Through
various mechanisms, Apple prevents or
discourages developers from including or
directly linking with subframeworks. See
also umbrella framework.

symbolic link A lightweight reference to
files and folders in UFS file systems. A
symbolic link allows multiple references to
files and folders without requiring multiple
copies of these items. Symbolic links are
fragile because if what they refer to moves
somewhere else in the file system, the link

G L O S S A R Y

278
  Apple Computer, Inc. February 2001

breaks. However, they are useful in cases
where the location of the referenced file or
folder will not change. See also alias.

system framework A framework
developed by Apple and installed in the
file-system location for system software.

task A Mach abstraction, consisting of a
virtual address space and a port name space.
A task itself performs no computation;
rather, it is the context in which threads run.
See also thread.

TCP/IP Transmission Control Protocol/
Internet Protocol. An industry standard
protocol used to deliver messages between
computers over the network. TCP/IP
support is included in Mac OS X.

thread In Mach, the unit of CPU utilization.
A thread consists of a program counter, a set
of registers, and a stack pointer. See also task.

thread-safe code Code that can be used
safely by several threads simultaneously.

timer A kernel resource that triggers an
event at a specified interval. The event can
occur only once or can be recurring. Timers
are one of the input sources for run loops.
Timers are also implemented at higher levels
of the system, such as CFTimer in Core
Foundation and NSTimer in Cocoa.

transformation An alteration to a
coordinate system that defines a new
coordinate system. Standard transformations
include rotation, scaling, and translation. A
transformation is represented by a matrix.

UDF Universal Disk Format. The
file-system format used in DVD disks.

UFS UNIX file system. An industry
standard file-system format used in
UNIX-like operating systems such as BSD.
UFS in Mac OS X is a derivative of 4.4BSD
UFS. Its disk layout is not compatible with
other BSD UFS implementations.

umbrella framework A system framework
that includes and links with constituent
subframeworks and other public
frameworks. An umbrella framework
“contains” the system software defining an
application environment or a layer of system
software. See also subframework.

Unicode A 16-bit character set that assigns
unique character codes to characters in a
wide range of languages. Unlike ASCII,
which defines 128 distinct characters
typically represented in 8 bits, there are as
many as 65,536 distinct Unicode characters
that represent the unique characters used in
many languages.

vector graphics The creation of digital
images through a sequence of commands or
mathematical statements that place lines and
shapes in a two-dimensional or
three-dimensional space. One advantage of
vector graphics over bitmap graphics (or
raster graphics) is that they makes it possible
to change any element of the picture at any
time since each element is stored as an
independent object. Another advantage of
vector graphics is that the resulting image file
is typically smaller than a bitmap file
containing the same image. Examples of

G L O S S A R Y

279
  Apple Computer, Inc. February 2001

vector-image file types are PDF,
encapsulated PostScript (EPS), and SVG. See
also raster graphics.

versioning With frameworks, schemes to
implement backward and forward
compatibility of frameworks. Versioning
information is written into a framework’s
dynamic shared library and is also reflected
in the internal structure of a framework. See
also major version; minor version.

VFS Virtual File System. A set of standard
internal file-system interfaces and utilities
that facilitate support for additional file
systems. VFS provides an infrastructure for
file systems built in the kernel.

virtual address A memory address that is
usable by software. Each task has its own
range of virtual addresses, which begins at
address zero. The Mach operating system
makes the CPU hardware map these
addresses onto physical memory only when
necessary, using disk memory at other times.
See also physical address.

virtual machine (VM) A simulated
computer in that it runs on a host computer
but behaves as if it were a separate computer.
The Java virtual machine works as a
self-contained operating environment to run
Java applications and applets.

virtual memory The use of a disk partition
or a file on disk to provide the same facilities
usually provided by RAM. The
virtual-memory manger in Mac OS X
provides 32-bit (minimum) protected
address space for each task and facilitates
efficient sharing of that address space.

volume A storage device or a portion of
that device that is formatted to contain
folders and files of a particular file system. A
hard disk, for example, may be divided into
several volumes (also known as partitions).

volume format The structure of file and
folder (directory) information on a hard disk,
a partition of a hard disk, a CD-ROM, or
some other volume mounted on a computer
system. Volume formats can specify such
things as multiple forks (HFS and HFS+),
symbolic and hard links (UFS), case
sensitivity of filenames, and maximum
lengths of filenames. See also file system.

window server A system-wide process that
is responsible for rudimentary screen
displays, window compositing and
management, event routing, and cursor
management. It coordinates low-level
windowing behavior and enforces a
fundamental uniformity in what appears on
the screen.

G L O S S A R Y

280
  Apple Computer, Inc. February 2001

281
© Apple Computer, Inc. February 2001

Index

Symbols

#import directive 145
#include directive 145–149
#pragma command 148
%@ specifier 214
._ (dot-underscore prefix) 182
.plistextension 199
n$ modifier 214
/etc/rc script 83
/etc/rc.boot script 83
/System/Library 243
/System/Library/Frameworks 143
@ sign 147

Numerals

68K code 55

A

Abstract Windowing Toolkit (AWT) 58
access permissions for files and folders 230–235
access permissions for Mach ports 260
administrator 233
AFP (Apple File Protocol) 35, 239
AirPort 45
aliases 168–169, 183

See also symbolic links
anti-aliasing 36
Apache HTTP server 44, 87
.app extension 181
appearance, system 229
AppKit.framework 56
Apple events 71, 256–257

Apple File Protocol (AFP) 35, 239
Apple Help 124
Apple Type Solution (ATS) 40, 250
Apple Type Solution server 91
AppleLanguages key 205
AppleScript 29, 256
AppleTalk 43
application environments 53–60

See also
BSD Commands environment;
Carbon environment;
Classic environment;
Cocoa environment;
Java environment

Finder and 175
as layer in system architecture 47
user experience and 26

Application Kit 56
Application List window 88
Application Services 47, 50, 60–71
applications

background-only 197
as bundles 117, 220
collecting information of 178
executable formats 225
exported services of 29
extensibility of 28
FAQ 220–225
Finder and 180
frameworks and 119–122
help files for 124
installing 242–249
integration issues 219–242
and interapplication communication 256
internationalizing 204–217
loadable bundles and 123
metadata for 220
package keys 196
packaging 117–126

I N D E X

282
© Apple Computer, Inc. February 2001

applications (continued)
permissions for 234
plug-ins and 123
preferences for 125
resources for 124–126, 221
services for 260
shared code and 119–122
user interface issues 228–230

Aqua human interface 23–40, 176
Aqua Human Interface Guidelines 228
at sign (@) 147
ATS (Apple Type Solution) 40, 250
ATSUI 173
authentication of users 88
AWT (Abstract Windowing Toolkit) 58

B

Base Services 75
bill of materials file. See .bom file
.bom file 246
booting sequence 81–87, 95
BootROM 82
bootstrap port server 83, 89, 91
BootX booter 82
BSD Commands environment 50, 53
BSD operating system 32, 52
BSD permissions 231–233
BSD pipes 258
BSD processes 251

See also interprocess communication
BSD signals 259
BSD sockets 257
bundle bit 128, 179, 180
Bundle Services

Core Foundation 75, 116
introduced 75
language preferences and 205
resources and 116
strings files and 210

bundled resources 205
bundles 101–116

application 109, 110, 220

and Finder 108, 117
framework 109, 110
and internationalization 205
loadable 109, 110, 126
structure of 103–107
types of 109

C

canonical text encoding 173
Carbon environment 53–56

CFM-based code and 263–265
documentation website 56
event handling in 79
introduced 50
Launch Services keys 197
nib files 230

Carbon Event Manager 71, 78
Carbon graphics port primitive (GrafPort) 261
Carbon managers in Core Services 72–74
Carbon Process Manager (CPM) 251
CarbonLib SDK 263
central directory 121
CFBundle 206, 213
CFCopyLocalizedString macro 214, 216
CFM (Code Fragment Manager) 261–265
CFM executables 197, 225–228
CFMessagePort 257
CFNotificationCenter 257
CFPlugIn objects 263
CFRunLoop 258
CFSocket 258
CFString objects 216
CFURL class 75, 216
character strings, localized 112, 212
Classic environment 235–242

Clipboard and 242
device support in 237
directories of 156
file systems supported 239
Finder and 176, 240–241
installing in 156
introduced 49

I N D E X

283
© Apple Computer, Inc. February 2001

Classic environment (continued)
Launch Services keys 197
Mac OS X integration and 238
native Mac OS 9 compatibility 236
networking and 241
preferences and 240
printing and 241
Quit All Apple event and 93
system extensions and 240
user experience and 26

Classic pane, System Preferences application 156
Clipboard

See also pasteboard server
Classic environment and 242
and interprocess communication 260
introduced 71

Cocoa environment 56–57
event handling in 79
introduced 50

Cocoa.framework 57
Code Fragment Manager (CFM) 261–265
Collection Services 75
ColorSync 36
converters of printing data 68
copy operations in Finder 182
Core Foundation 74–76
Core Foundation Base Services 75
Core Foundation Bundle Services 75, 116
Core Foundation Collection Services 75
Core Foundation framework 74
Core Foundation Notification Services 76
Core Foundation Plug-in Services 75, 264
Core Foundation Preference Services 76
Core Foundation Property List Services 75
Core Foundation Run Loop Services 76
Core Foundation String Services 75, 216
Core Foundation URL Services 75
Core Foundation Utility Services 76
Core Graphics Rendering 37, 60, 63–74
Core Graphics Services 37, 60, 63
Core Services 47, 51, 72–76
Core Services framework 72, 143
CoreFoundation.framework 74

CoreServices.framework 72, 143
creator codes 179, 180–181
Current directory 148
custom controls 229

D

daemons, system 90–92
DARPA protocol 91
Darwin 30–35
data corruption, and shared memory 259
data forks, storing resources in 170, 221
defaults utility 200
Desktop Folder 179
Desktop Printer Utility 242
Developer directory 164–165
device drivers 32, 52
device-driver loader 91
distributed notifications 257
distributed objects 260
Dock 24, 89
documents

abstract types 187–??
application roles and 187
FAQ 220–225
and Finder 180
permissions for 234
resources for 126
typing 223

domains, file-system 153–167
dot-underscore prefix (._) 182
drag-and-drop installation of applications 243
dyld (dynamic link editor) 132, 225, 261–265
.dylib extension 132
dynamic link editor (dyld) 132, 225, 261–265
dynamic linking 110, 132
dynamic pager 84, 91
dynamic shared libraries 128, 132–134

I N D E X

284
© Apple Computer, Inc. February 2001

E

Ethernet 41
event handling 77–79
executable formats 261–265
extensions, networking 33
extensions, system 240

F

FIFO (first-in, first-out) special file 258
file encodings 172
file packages 108
file permissions 230–234
File Reference Inspector 208
file sockets 258
file systems 33–35, 151–172

and Classic environment 239
domains of 153–167
kernel environment and 52

filename extensions 221
fileSystemRepresentation method 173
Finder 24–25, 175–183

attributes of files and folders 179
bundles and 108, 117
Classic environment and 176, 240–241
file operations 182–183
handling of documents 180, 223–224
information property lists and 193–195
information stored by 178–180
keys 193–195
launching 88

Finder Info 179
FireWire 45
fonts 172
Foundation.framework 56
.framework extension 127, 129
frameworks 127–139

See also umbrella frameworks
as bundles 102
installing 243
as library packages 128
private 120, 142

public 142
shared 121
structure of 129–131
versions of 134–139

Frameworks directory 108, 120, 148
fsck script 84

G

genstrings command-line utility 210, 214
genstrings function ??–215
getty command 83
GOT 263
Grab application 229
graphics and imaging 35–40, 60–65

H

header files 128, 145–146
Help Viewer 124
HFS (Mac OS Standard format) 34, 172, 176, 183
HFS+ (Mac OS Extended format) 34, 172, 176,

183
Hotspot Java virtual machine 58
Human Interface Guidelines 228

I

I/O Kit 32, 52
I/O modules for printing 68
Icon Composer application 229
icons

in Aqua 24
creating 229
and Finder attributes 179
generic for unidentified files 224
and information property lists 177

IDE (integrated development environment) 211
IEEE 1394 standard 45
In -s command 183

I N D E X

285
© Apple Computer, Inc. February 2001

Info.plist file 104, 186–191
InfoPlist.strings file 104, 187
information property lists 116, 177, 186–197
init process 89
installation packages 246–249
Installer application 156, 245
installers 244–248
integrated development environment (IDE) 211
Interface Builder 211
internationalization 28, 203–217
Internationalization Standards Organization

(ISO) 207
internet address port number 261
Internet support 41
interprocess communication 255–261

Apple events and 256
application services and 260
BSD pipes and 258
BSD signals and 259
BSD sockets and 257
CFMessagePort and 257
distributed notifications and 257
distributed objects and 260
handling exceptions in 259
Mach port object and 260
overview 255
sharing resources 259

IP aliasing 43
ISO (Internationalization Standards

Organization) 207
ISO 3166 111, 207
ISO 639 111, 207
ISO 9660 34

J

Java environment 57–60
event handling in 79
introduced 50

Java virtual machine (JVM) 57, 225
java.lang.Thread class 253
JDirect 58

JIT (just-in-time) bytecode compiler 58
JNI (Java Native Interface) 58
Job Manager 68
job tickets 68

K

kernel environment 48, 51–53
kernel initialization 83
kextd daemon 84, 91
kill command-line tool 259

L

language preferences 205–207
Launch Services keys 197
lazy linking 132
Library directory 162–164
library managers 261–263
license files 247
loadable bundles 109, 110, 123
local domain 153, 154–156
locale preferences 207
Localizable.strings file 215
localization

introduced 203
of strings 112, 212–214
tools for 208–210
of user interfaces 211–215

localized resources 111–112
and internationalization 206
location in bundle 106, 222
storing 222
tools for creating 210

logging out 92–94
.login file 89
login procedure 87–92, 97–99
loginwindow application 97–99
lookupd daemon 88

I N D E X

286
© Apple Computer, Inc. February 2001

.lproj directories 206, 211
location in bundles 106
naming standards 111
nib files in 211
searching for 206

LSBackgroundOnly Launch Services key 197
LSRequireCarbon Launch Services key 197
LSRequireClassic Launch Services key 197

M

Mac OS Extended format (HFS+) 34, 172, 176,
183

Mac OS Standard format (HFS) 34, 172, 176, 183
Mach 31–32, 52
Mach messaging 83, 91, 261
Mach port object 260
Mach tasks 251
Mach threads 253
Mach-O 225, 262
MacRoman encoding 173, 216
main bundle 110
memory

and Carbon 54
protected 31, 251
shared 259
virtual. See virtual memory

Memory Manager 54, 73
messaging. See distributed objects
metapackages 250
MLTE (Multilingual Text Engine) 216
move operations in Finder 182
multihoming 43
Multiple Users application 233
multiprocessing 51, 252, 254
Multiprocessing Services 73, 252
multiscript support 203, 215–217
multitasking 31, 51
multithreading 252, 254
multi-user environment 27

N

NetInfo 27
NetInfo Kit 234
NetInfo Manager application 234
network domain 153, 161–162
network extensions 33
network file protocols, supported 35
Network Kernel Extensions (NKEs) 33, 52
network protocols 42
network sockets 258
networking 41–44, 52
NFS (Network File System) 35
nib files 211, 230
nonlocalized resources 131, 222
Notification Services 76, 257
NSBundle class 206, 213
NSDistributedNotificationCenter 257
NSFileManager class 216
NSLocalizedString macro 214
NSPasteboard 256
NSRegistrationDomain constant 89
NSTask class 252
NSThread class 253

O

Objective-C language 260
Open Firmware 82
Open Source 35
Open Transport 43, 76
OpenGL 38
ownership of files and folders 230–235

P

Package Maker application 245, 248
palettes 109
partitions, installing on 156
pasteboard. See Clipboard
pasteboard server 89, 92

I N D E X

287
© Apple Computer, Inc. February 2001

.pax archive file 246
pbs daemon. See pasteboard server
PDF (Portable Document Format) 36, 40, 64
PEF (Preferred Executable Format) 225, 262
permissions for files and folders 230–235
permissions for Mach port access 260
Personal Web Sharing 43
pipes, BSD 258
Pixie application 229
PkgInfo file 104
Plug-in Services 75
plug-ins

advantages of 28
directory location 123
as loadable bundle 109, 123
metadata for 223

port rights. See access permissions for Mach ports
POSIX calls 258
POSIX semaphores. See semaphores
POSIX threads 253
PostScript printing 40
Power On Self Test (POST) 82
preemptive multitasking 31, 51
preemptive threads 252
preference domains 199–200
Preference Services 76
Preferences application. See System Preferences

application
preferences system 197–201

Classic environment and 240
and key-value pairs 198
languages 205–207
locale 207
used by applications 125

Print Center application 40, 66, 68
Print Job Creator (PJC) 68
print preview 40
print spooling 40
printer browser modules (PBM) 68
printer dialog extensions 68
printer discovery 69
printer modules 68
printing system 39–40, 65–70, 241
private frameworks 120, 142
PrivateHeaders directory 148

Process Manager 70
Process Viewer 90
processes 251
Project Builder 208
Property List Editor application 97, 199, 228
Property List Services 75
property lists 85, 95, 185–186
protected memory 31, 251
Pthreads. See POSIX threads
public frameworks 142

Q

Quartz 36–37, 60–62
Queue Manager 68
QuickDraw 38, 173
QuickTime 38, 51
Quit All Apple event 93

R

raster printers 40
rc script 84
rc.boot script 84
Read Me files 247
resource forks 107, 170–172, 221
Resource Manager 73, 107, 222
resources

bundle structure and 103, 106
external to application 124–126
localized. See localized resources
nonlocalized 131, 222
system-wide 250
used during installation 247–248

Resources directory 206, 248
root user 231, 233
routing, network 43
RPC (Remote Procedure Call) 91
RTP (Real-Time Transport Protocol) 39
RTSP (Real-Time Streaming Protocol) 39
Run Loop Services 76
runtime environments 261–265

I N D E X

288
© Apple Computer, Inc. February 2001

S

semaphores 259
Services menu 29, 260
Setup Assistant 87, 233
shared application code 121

See also frameworks
shared frameworks 121
shared libraries. See dynamic shared libraries
shared memory 259
SharedFrameworks directory 108, 120
SharedSupport directory 122
Sherlock 2 30
Show Info command 195
shutdown of system 92–94
signal handler routines 259
signals, BSD 259
sockets, BSD 257
software configuration 185–201
standard keys for information property lists

191–197
standard-error output 88
startup items 84–87, 95–96
StartupParameters.plist 85, 95
stderr 88
String Services 75, 215
.strings extension 112, 212
strings files 112, 210–215
subframeworks 143, 146–148
superuser 231, 233
Swing package 58
symbolic links 168–169

in frameworks 129, 147
recognized by Finder 183

symmetric multiprocessing 51, 252
sync script 84
system administrator 233
system appearance 229
system daemons 90–92
System Disk control panel 156
system domain 153, 155
system extensions 240
System framework 234, 253
system frameworks 134
system initialization 83

System Preferences application 91, 156
system shutdown 92–94
SystemStarter program 83, 95, 96
system-wide resources 250

T

tasks 251
Terminal application 200
Text Encoding Conversion Manager 73
Text Utilities 73
Thread Manager 74, 253
threading packages 252–254
Time Manager 74
TOC 263
ttys file 98
TVector 263
type codes 179, 180–181

U

UDF (Universal Disk Format) 34
UFS (UNIX File System) 34, 172
umask constant 89
umbrella frameworks 141–149

introduced 53
linking 145–146
purpose of 143
structure of 146–148

Unicode 172, 204, 216
Unicode Utilities 74
URL Services 75, 216
USB (Universal Serial Bus) 44
user domain 153, 157–160
user interfaces

and Classic environment 238–239
integration issues 228
localizing 211

UTF-16 encoding 172
UTF-8 encoding 172, 173
UTF8String method 173
Utility Services 76

I N D E X

289
© Apple Computer, Inc. February 2001

V

vector libraries 263
Velocity Engine 36, 45
versioned bundles 103, 108, 128

See also frameworks
Versions directory 148
video frame buffer 36
Virtual File System (VFS) 33, 51, 52
virtual memory 31, 51, 91

W

window compositing 63
Window Manager port 236
window server 62–63, 91, 197
WindowServer 99
wireless communication 45

X, Y, Z

XML (Extensible Markup Language) 185
XML Parser 76

I N D E X

290
© Apple Computer, Inc. February 2001

	System Overview
	Contents
	Figures, Listings, and Tables
	About This Book
	Why Read This Book
	Further Investigations
	Installed Developer Documentation
	Other Apple Publications
	Information on BSD
	Other Information on the Web

	System Technologies
	The User Experience
	Aqua
	The Finder
	Application Support
	Multiple Users
	Internationalization
	Application Extensibility
	Exported Application Services
	Other Parts of the User Experience

	Darwin
	Mach
	BSD
	Device-Driver Support
	Networking Extensions
	File Systems
	Darwin and Open Source Development

	Graphics and Imaging
	Quartz
	QuickDraw
	OpenGL
	QuickTime
	Printing
	Apple Type Solution

	Networking and the Internet
	Media Types
	Standard Protocols
	Legacy Network Services and Protocols
	Routing and Multihoming
	Personal File and Web Services

	Advanced Hardware Features
	USB
	FireWire
	Velocity Engine
	AirPort

	System Architecture
	A Layered Perspective
	Application Environments
	Carbon
	Cocoa
	Java

	The Graphics and Windowing Environment
	Core Graphics Services
	Core Graphics Rendering

	The Printing System
	The User Interface of the Printing System
	Summary of Printing Architecture
	Printer Discovery
	The Printing Process

	Other Application Services
	Process Manager
	Carbon Event Manager
	Apple Events
	The Clipboard

	Core Services
	Carbon Managers
	Core Foundation
	Open Transport

	Tracking a User Event

	Booting and Logging In
	The Boot Sequence
	BootROM
	BootX
	Kernel Initialization
	System Initialization
	The rc.boot and rc Scripts
	Startup Items

	The Login Procedure
	Authenticating Users
	Setting Up the User Environment
	Launching the Finder and the Dock

	System Daemons
	Logging Out and System Shutdow
	Customization Techniques
	Customizing Booting Behavior
	Customizing the Login Procedure

	Bundles
	Benefits of Using Bundles
	Anatomy of a Bundle
	The Finder and Bundles
	Types of Bundles
	An Application’s Main Bundle
	Framework Bundles
	Loadable Bundles and Dynamic Linking

	Localized Resources
	Localized Character Strings
	Search Algorithm
	Bundles and the Resource Manager

	Application Packaging
	An Application Is a Bundle
	Application Frameworks, Libraries, and Helpers
	Private Frameworks
	Shared Frameworks and the Central Directory
	Other Shared Application Code

	Applications and Loadable Bundles
	User Resources in Applications
	Application Help
	Application Preferences
	Document Resources

	Frameworks
	The Framework as a Library Package
	The Internal Structure of Frameworks
	Standard Locations for Frameworks

	Dynamic Shared Libraries
	Framework Versioning
	Major Versions
	Minor Versions
	Versioning Summary and Guidelines

	Umbrella Frameworks
	Kinds of Frameworks
	The Purpose of Umbrella Frameworks
	Linking and Including Guideline
	The Structure of an Umbrella Framework
	Restrictions on Subframework Linking

	The File System
	How the File System Is Organized
	File-System Domains
	The System and Local Domains
	Directories of the Classic Environment
	The User Domain
	The Network Domain
	The Library Directory
	The Developer Directory
	Searching Within the File-System Domains

	Differences Between HFS+ and UFS
	Aliases and Symbolic Links
	Resource Forks
	File Encodings and Fonts

	The Finder
	The Role of the Finder
	Finder Interfaces to Applications
	Information Property Lists

	Information Stored by the Finder
	Collecting Application Information
	The Desktop Folder
	Finder Attributes

	The Handling of Applications and Documents
	The Finder and File Operations
	Copy and Move Operations
	Management of Aliases and Symbolic Links

	Software Configuration
	Property Lists
	Information Property Lists
	Document Configuration
	An Example of an Information Property List
	Standard Keys
	Finder Keys
	Application Package Keys
	Launch Services Keys

	The Preferences System
	How Preferences Are Stored
	Preference Domains
	The defaults Utility

	Internationalization
	Internationalizing Your Application
	Language Preferences and Bundle Resources
	Designating Languages and Locales

	Tools for Internationalization and Localization
	Localizing User Interfaces
	Localizing Strings
	Composing a Strings File
	Generating Strings Files

	Adding Multiscript Support

	Installation and Integration
	Preparing Software for Mac OS X
	Applications and Documents FAQ
	What metadata must I specify for an application?
	Must I package my CFM executable in a bundle?
	How should I store application resources?
	How do I indicate document types in Mac OS X?
	Can I treat my plug-ins as documents?
	How does the Finder handle documents?
	Why even have extensions?
	How should my application save documents?

	CFM Executables
	User Interface Issues
	Icons
	Custom Controls and System Appearance
	Carbon Nib Files

	Ownership and Permissions
	Overview of BSD Permissions
	File Permissions on Mac OS X
	Permissions for Applications and Documents

	The Classic Environment and Your Application
	Overview of the Classic Environment
	Compatibility With Native Mac OS 9
	Device Support
	Integration With Mac OS X
	User Interface
	The Classic Environment and File Systems
	Extensions and Preferences
	The Finder and the Desktop
	Networking and Printing
	Other Classic Integration Issues

	Installing Your Application
	Where to Install
	Manual Installation
	Installers
	Installation Packages
	Creating an Installation Package

	System-Wide Resources

	Issues and Options With Multiple Environments
	Tasks and Processes
	Threading Packages
	Layering Details
	Usage Guidelines

	Interprocess Communication
	Communicating With Apple Events
	Broadcasting Simple Notifications
	Transferring Raw Data With CFMessagePort
	Communicating With BSD Sockets
	Communicating With BSD Pipes
	Handling Exceptions With BSD Signals
	Sharing Large Resources With Shared Memory
	Making Services Available to Other Applications
	Calling Other Processes With Distributed Objects
	Messaging With the Mach Port Object

	Library Managers and Executable Formats
	Comparing the Runtime Environments
	CFM and dyld
	PEF and Mach-O
	Code-Generation Models

	Vector Libraries
	CFM Executable and Non-Carbon APIs
	Should You Use CFM or dyld?

	Glossary
	Index

