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1 About This Book
This book is a detailed guide to the fundamentals of low-level performance on Mac 
OS X. It offers techniques, guidelines, as well as tool documentation, to allow you 
to enable your code for maximum performance on Mac OS X.

Why Read This Book

Inside Mac OS X: Performance is intended for all developers who want to make code 
run faster on Mac OS X. Performance covers two essential topics: enhancing your 
program to achieve maximum performance under the Mac OS X system 
architecture, and using the Mac OS X development tools to analyze your code. 
Whether you have a performance problem or you just want to make your code as 
efficient as possible, this book is your guide.

Prior to reading this book, you should read Inside Mac OS X: System Overview. See 
“Other Apple Publications” (page 11). You should also be familiar with at least one 
high-level language. Knowledge of BSD or another UNIX operating system is 
helpful, particularly where the development tools are concerned, but it is not 
assumed.

One performance topic not covered in this book is the selection of a suitable 
algorithm for a particular task. See “Further Investigations” (page 10) for more 
information.
Why Read This Book 9
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Making Your Code Faster on Mac OS X

Here is a quick road map describing each chapter:

� “Managing Memory” (page 13) describes memory allocation on Mac OS X and 
the benefits that can be gained through judicious management of virtual 
memory and by taking full advantage of the Mac OS X memory allocation and 
copying facilities.

� “Accessing the File System” (page 27) describes characteristics of some of the 
many different file systems supported by Mac OS X and generic optimizations 
you can make for all of them.

� “Optimizing Carbon Programs for Mac OS X” (page 35) describes opportunities 
for improving code ported from previous versions of Mac OS. Carbon on Mac 
OS X introduces changes to event handling, the file system, and the runtime 
execution model. This chapter tells you how to use these changes to your best 
advantage.

� “Building Efficient C, C++, and Java Programs” (page 53) describes 
language-specific optimizations and guidelines for C, C++ and Java 
development.

� “Analyzing Performance” (page 61) describes the Mac OS X performance tools. 
These tools can help you gain a better understanding of the way your code 
executes and manipulates data. They can also be used to diagnose known 
performance problems.

� “Organizing Your Executable File” (page 117) describes the methods used by 
the development tools to organize the contents of executable files, and how you 
can change the layout of your code and data in memory to your benefit.

Further Investigations

There are many relevant performance resources available to Mac OS X developers. 
This section lists just a few.
10 Making Your Code Faster on Mac OS X
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Important Topics Covered Elsewhere
One of the most critical performance-related choices an application developer must 
make is the selection or design of an algorithm suited to the task at hand. There are 
several exhaustive reference books on this subject. The standard reference work is 
the multivolume set The Art of Computer Programming, by Donald E. Knuth 
(Addison-Wesley, 1998, ISBN 0-201-14854-19). A more concise guide is Robert 
Sedgewick’s Algorithms (Addison-Wesley, 1988, ISBN 0-201-06672-6).

The standard textbook for overall system architecture design (including 
performance issues) is Computer Architecture: A Quantitative Approach, by John L. 
Hennessey and David A. Patterson (Morgan Kaufmann, 1990, ISBN 1-55860-329-8).

Proper use of the PowerPC G4 AltiVec instruction set can massively decrease 
execution time required by computationally expensive code. For more information, 
see these websites:

� http://developer.apple.com/hardware/

� http://www.altivec.org

� http://www.motorola.com/SPS/PowerPC/AltiVec/facts.html

Other Apple Publications
Performance is one of the books in the Inside Mac OS X series. You can obtain other 
books in this series using Apple’s print-on-demand arrangement with fatbrain.com, 
or on the web as PDF files.

� PDF documents are available at Apple’s developer documentation website 
http//developer.apple.com/techpubs/macosx/

� Printed copies may be ordered from fatbrain.com at 
http://www.fatbrain.com/documentation/apple/

Other Information
The Design and Evolution of C++, by Bjarne Stroustrup (Addison-Wesley,1994,ISBN 
0-201-54330-3) is a design rationale for the C++ language. It contains valuable 
nuggets on the intended, performance-conscious use of newer C++ language 
constructs such as exceptions and templates.
Further Investigations 11
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The Graphics Programming Black Book, by Michael Abrash (Coriolis Group, 1997, 
ISBN 1-57610-174-6), is a down-to-earth guide to the methodology of code 
optimization, disguised as a graphics programming book.
12 Further Investigations
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2 Managing Memory
This chapter contains an overview of virtual memory as implemented by the Mac 
OS X kernel. Beyond that, it offers techniques for allocating and copying memory 
efficiently.

On a well-tuned operating system equipped with virtual memory, the main system 
performance bottleneck is the I/O bandwidth used to read a section of virtual 
memory into physical memory (or write a section of physical memory out to disk). 
Therefore, reducing memory I/O activity is key to getting the maximum possible 
performance out of Mac OS X.

Virtual Memory Theory

Virtual memory allows an operating system to escape the limitations of physical 
RAM. A virtual memory manager creates a logical address space (or “virtual” 
address space) that is larger than the installed physical memory (RAM) and divides 
it up into uniformly-sized chunks of memory called pages. Each page in the logical 
address space has a corresponding page on the disk, in a special file known as the 
backing store. The system then populates the computer’s physical memory with 
the pages currently in use to give the illusion that the entire logical address space is 
made up of real memory.

There are two key features of the processor and its memory management unit 
(MMU) that you must grasp in order to understand how virtual memory works. 
The first is the page table, a table that maps all logical pages into their 
Virtual Memory Theory 13
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corresponding physical pages. When the processor accesses a logical address, the 
MMU uses the page table to translate the access into a physical address, which is the 
address that’s actually passed to the computer’s memory subsystem.

Virtual memory also utilizes the processor’s ability to invoke a handler when a page 
translation fails. When the processor accesses a logical address that is not in 
physical memory, the processor stops executing normal code and starts executing 
the special code to handle this page fault. The page fault handler is responsible for 
finding a free page of physical memory, reading the contents of the page from the 
backing store into the physical page, and then changing the page table so the page 
appears to be at the correct logical address. If no free page is available, a page 
currently in memory is released. If that page contains modified data, it is first 
written to the backing store. This process is known as paging.

Moving data from physical memory to disk is called paging out (or “swapping 
out”); moving data from disk to physical memory is called paging in (or “swapping 
in”). In both Mac OS 9 and Mac OS X, the size of a page is 4 kilobytes. Every time a 
page fault occurs, 4 kilobytes is read from disk. Extended periods of paging activity 
tend to reduce performance; such activity is sometimes called disk thrashing.

Reading from disk is much slower than reading directly from RAM, just as reading 
from RAM is always slower than reading directly from CPU cache. As noted 
previously, a page fault causes a read from disk. Thus, the primary goal of every 
performance-conscious developer on a system with virtual memory must be the 
minimization of page faults.

One way to think of virtual memory is that it uses the real memory in the computer 
as a cache for the entire logical address space. Real memory can be accessed quickly, 
while memory that’s paged out takes a long time to access. Thus, a page fault is 
analogous to a cache miss. Like all caches, virtual memory relies on locality of 
reference for speed.

Virtual Memory on Mac OS 9

On Mac OS 9, all processes share a global, fixed-size 32-bit address space. When 
virtual memory is enabled, a backing store file is created on a user-specified 
volume. The size of this file, and thus the amount of available virtual memory, is 
14 Virtual Memory on Mac OS 9
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fixed at a user-specified setting. The file serves as a fixed-size container for all 
physical RAM plus all additional virtual RAM. On a system with 64 MB of physical 
RAM, a 65 MB virtual memory setting offers only one megabyte of virtual RAM.

Additionally, because of limitations of the Mac OS 9 multitasking architecture, 
real-time processes (such as audio/video playback) may be starved for execution 
time during even short periods of paging activity. Because of these and other 
software compatibility issues, users of Mac OS 9 are allowed to disable virtual 
memory. This is not necessary in Mac OS X.

Virtual Memory on Mac OS X

On Mac OS X, each process has its own sparse 32-bit virtual address space, 
dynamically growable up to a limit of four gigabytes. Additional swap file space is 
allocated on demand from dynamically created files stored in the root file system.

When your program reads, writes, or executes at a particular address, the 
corresponding page is mapped by the kernel. This mapped area is referred to as a 
region. The virtual address space of a process consists of mapped regions of 
memory. Each region of memory in Mac OS X represents a specific set of virtual 
memory pages. A region has specific attributes controlling such things as 
inheritance (portions of the region may be mapped from “parent” regions), 
write-protection, and whether it is “wired” (that is, it cannot be paged out). Regions, 
being containers of pages, are page-aligned, meaning the starting address of the 
region is also the starting address of a page and the ending address also defines the 
end of a page.

The kernel associates a VM object with each region of the virtual address space. The 
kernel uses the VM object for tracking and managing the resident and nonresident 
pages of the memory region. Each VM object maps either a portion of virtual 
memory in the backing store through the default pager or a portion of a file-mapped 
file through the vnode pager.

The default pager is a system manager that maps the nonresident virtual memory 
pages to backing store and fetches those pages when requested.
Virtual Memory on Mac OS X 15
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The vnode pager implements file mapping. The vnode pager uses the paging 
mechanism to provide a window on a specified range of a file, allowing you to read 
and write the contents of that range by reading and writing the mapped range of 
memory.

VM objects may point to a pager or to another VM object. The kernel uses this self 
referencing to implement a form of page-level sharing known as copy-on-write. 
Copy-on-write allows multiple blocks of code (including different processes) to 
share a page as long as none write to the page. If one process writes to the page, a 
new, writable copy of the page is created in the address space of that process. This 
allows efficient copying of large quantities of data. See also “Copying Memory 
Efficiently” (page 22).

Each VM object contains several fields, as shown in Table 2-1.

If the VM object is involved in a copy-on-write (vm_copy) operation, the shadow and 
copy fields may point to other VM objects. Otherwise both fields are usually NULL.

Page Lists in the Kernel
The kernel maintains and queries three system-wide lists of physical pages of 
memory:

Table 2-1 Fields of the VM object

Field Description

Resident pages A list of the pages of this region that are currently resident in 
physical memory.

Size The size of the region, in bytes.

Pager The pager responsible for tracking and handling the pages of this 
region in backing store.

Shadow Used for copy-on-write optimizations.

Copy Used for copy-on-write optimizations.

Attributes Flags indicating the state of various implementation details.
16 Virtual Memory on Mac OS X
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� Active list—Pages currently resident in, and mapped to, physical memory and 
recently accessed.

� Inactive list—Pages currently resident in physical memory but not recently 
accessed. These pages contain valid data but may be unmapped at present.

� Free list—Unmapped pages (no longer containing valid data) of physical 
memory available to the system at no cost; also known as the “free pool.” These 
pages are not associated with any address space or VM object, and they are thus 
free for immediate use.

When the number of pages on the free list falls below a threshold (determined by 
the size of physical memory), the pager attempts to balance the queues. It does this 
by pulling pages from the inactive list. If the page has been accessed recently, it is 
placed on the end of the active list (reactivated). If the page has not been recently 
accessed, but the page has been written to, the contents of this physical page are 
paged out to the associated backing store. If the page was neither access recently nor 
written to and is not permanently resident (wired), it is stolen (any current virtual 
mappings to it are destroyed) and added to the free list. Once the free list size 
exceeds the target threshold, the pager rests.

The kernel moves pages from the active list to the inactive list if they are not 
accessed; it moves pages from the inactive list to the active list on a soft fault (see 
“Paging Virtual Memory In” (page 19)). When virtual pages are swapped out, the 
associated physical pages are placed in the free list. Also, when processes explicitly 
free memory, the kernel moves the affected pages to the free list.

Allocating and Accessing Virtual Memory
Applications usually allocate memory using the malloc routine. When a program 
allocates memory via malloc, the system routine vm_allocate may be invoked. 
Through this routine the kernel performs a series of initializations:

1. It maps a range of memory in the virtual address space of this process by 
creating a map entry; the map entry is a simple structure that defines the starting 
and ending addresses of the region.

2. The range of memory is backed by the default pager. On the first access to a 
page, the default pager fills the page with zeros.

3. The kernel creates and initializes a VM object, associating it with the map entry.
Virtual Memory on Mac OS X 17
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At this point there are no pages resident in physical memory and no pages in 
backing store. Everything is virtual.

When a program accesses the region, by reading or writing to a specific address in 
it, a fault occurs because that address has not been mapped to physical memory. 
The kernel also recognizes that the VM object has no backing store for the page on 
which this address occurs. The kernel performs the following steps for each page 
fault:

1. It acquires a page from the free list and fills it with zeros.

2. It inserts a reference to this page in the VM object’s list of resident pages.

3. It maps the virtual page to the physical page by filling in a data structure called 
the pmap. The pmap contains the page table used by the processor (or by a 
separate memory management unit) to map a given virtual address to the actual 
hardware address.

Paging Virtual Memory Out
The kernel continuously compares the number of physical pages in the free list 
against a threshold value. When the number of pages in the free list dips below this 
threshold, the kernel swaps out pages of memory that have not been accessed 
recently, thereby reclaiming physical pages for the free list. The kernel then iterates 
all resident pages in the active and inactive lists, performing the following steps:

1. If a page in the active list is not recently touched, it is moved to the inactive list.

2. If a page in the inactive list is not recently touched, the kernel finds the page’s 
VM object.

3. If the VM object has never been paged before, the kernel calls an initialization 
routine that creates and assigns a default pager object.

4. The VM object’s default pager attempts to write the page out to backing store.

5. If the pager succeeds, the kernel frees the physical memory occupied by the page 
and moves the page from the inactive to the free list.
18 Virtual Memory on Mac OS X
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Paging Virtual Memory In
The final phase of virtual memory management moves pages in backing store back 
into physical memory (paging in). Memory access faults initiate page-in activity. 
Memory access faults occur when code tries to access data at a virtual address that 
is not mapped to physical memory. There are two kinds of faults:

� Soft fault: The page of the referenced address is resident in physical memory 
but is currently not mapped into the address space of this process.

� Hard fault: The page of the referenced address is not in physical memory but 
has been swapped out to backing store (or is available from a mapped file). This 
is also known as a page fault.

When any fault occurs, the kernel finds the map entry for the accessed region; from 
the map entry it locates the VM object. The kernel then goes through the VM object’s 
list of resident pages.

� If the page is in the list of resident pages, a soft fault is generated. The kernel 
maps the region in the virtual address space to physical memory. The page will 
be marked as having been accessed recently. If the fault was a write (not a read), 
the page will also be marked as having been written to.

� If the page is not in the list of resident pages, a hard fault is generated. The VM 
object’s pager finds the page in the backing store (if the pager is the default 
pager) or from a file-mapped file (if the pager is the vnode pager). After making 
the necessary virtual-to-physical mapping, moves the page into physical 
memory. It also puts the page in the active page list.

Shared Memory
Shared memory can be written to or read from two or more processes. Shared 
memory can be inherited from a parent process, created by a shared memory server, 
or explicitly created by an application for export to other applications. Uses for 
shared memory include

� sharing large resources such as icons or sounds

� fast communication between one or more processes

Shared memory is fragile. If one program corrupts a section of shared memory, all 
programs that reference that shared memory are corrupted.
Virtual Memory on Mac OS X 19
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Wired Memory
Wired memory (also called resident memory) is always in physical RAM and 
cannot be paged to disk. Applications, frameworks, and other user-level software 
cannot allocate wired memory. However, they can affect how much wired memory 
exists at any time. There is memory overhead associated with each kernel resource 
expended on behalf of a program. Table 2-2 lists some of these wired-memory costs.

As you can see, each thread created, each subprocess forked, and each library linked 
contributes to the resident footprint of the system.

In addition to the memory generated through user-level requests, such kernel 
entities as VM objects, the virtual memory buffer cache, and I/O buffers also add to 
wired memory. Wired data structures are also associated with each physical page 
as well as a virtual-to-physical-memory hash table both of which scale with the 
amount of physical memory. Consequently, when you add memory to a system the 
wired memory increases even if nothing else changes. When the computer is first 
booted into the Finder, with no other applications running, wired memory 
consumes approximately 14 megabytes of a 64 megabyte system and 17 megabytes 
of a 128 megabyte system.

Table 2-2 Wired memory generated by user-level software

Resource Wired Memory Used by Kernel

Process 16 kilobytes

Thread blocked in a continuation—5 kilobytes; blocked—21 kilobytes

Mach port 116 bytes

Mapping 32 bytes

Library 2 kilobytes plus 200 bytes for each task that uses it

Memory region 160 bytes

Note: These measurements will change with each new Mac OS X release. They 
are provided here to give you a rough estimate of the relative cost of system 
resource usage.
20 Virtual Memory on Mac OS X
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Wired memory is not immediately released back to the free list when it is no longer 
valid. Instead it is “garbage collected” when the free-page count falls below the 
threshold that triggers paging out.

Allocating, Copying, and Freeing Memory

Mac OS X implements a very fast allocation library that provides standard malloc, 
calloc, realloc, and free routines (among others). If you are currently using your 
own implementation of malloc, or one provided by your development 
environment, or perhaps Carbon’s NewPtr and NewHandle family of routines, 
consider moving to the standard system malloc if possible.

The minimum gain for replacing a custom malloc implementation with the system 
malloc is shrinking your application’s code by a few virtual memory pages with a 
resultant decrease in paging time; the maximum is much speedier memory 
management.

The source code for the system malloc library is available in the gen subproject of the 
Darwin libc project. For more information, see 
http://www.opensource.apple.com/projects/darwin/

Allocating Zero-Initialized Memory
Cross-platform code often allocates memory with malloc and then fills it with bytes 
containing a value of zero using memset. The problem with this approach is that the 
kernel allocates memory lazily, creating pages in memory only when you access 
them for the first time. When you call memset (after malloc) to zero the pages, you 
write to each page, thereby forcing all pages to be mapped into memory. This can 
be very expensive, especially if it requires other pages to be paged out first.

To allocate memory initially filled with zeroes, use the standard C function calloc. 
This approach allows the kernel to reserve the required virtual address space and 
let the virtual memory system allocate and zero pages only when they are accessed.
Allocating, Copying, and Freeing Memory 21
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Understanding Malloc
malloc and related routines calloc and realloc use the kernel primitive routine 
vm_allocate to allocate memory. What malloc then does with the allocated memory 
differs according to the size of the allocation:

� Small allocations. For allocations less than a few virtual memory pages, malloc 
suballocates requested amounts from a list (or “pool”) of free blocks of 
increasing size. If the pool is not yet allocated, malloc calls vm_allocate to 
allocate it. The granularity of the blocks malloc returns is 16 bytes. So if you ask 
for 4 bytes, malloc consumes 16 bytes, and if you ask for 24 bytes, malloc will 
consume 32 bytes. Any small blocks you deallocate (with free) are added back 
to the pool and are reused on a “best fit” basis. Small allocations, by nature 
smaller than a single page, cannot be page-aligned.

� Large allocations. For allocations greater than a few pages, malloc uses 
vm_allocate to obtain a block of the requested size. vm_allocate does not cause 
memory to be actually mapped in when allocated. Instead, vm_allocate creates 
an address range for the requested block and the virtual-memory system lazily 
maps in pages as addresses in that block are accessed. Memory allocated this 
way is guaranteed to be page-aligned, but not zero-filled.

Copying Memory Efficiently
There are two basic memory copying approaches in Mac OS X: physically copying 
the memory (BlockMoveData and memcpy) or marking the memory “copy-on-write” 
(vm_copy). Each is suited to certain situations.

BlockMoveData and memcpy copy memory by reading the bytes from a source block 
and writing the bytes to a destination block. These functions touch both the source 
and destination memory, and as a result the kernel must page in both of these 
address ranges. These functions are a good way to copy data when

� the size of the block copied is small (under 16 kilobytes)

� the source or destination block is not page aligned

� the source and destination blocks overlap

The other alternative for copying blocks of memory is the kernel routine vm_copy. In 
contrast to memcpy, vm_copy does not touch any real memory. The function performs 
the “copy” by changing the virtual-memory mapping data structure to indicate that 
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the destination address range should really be a copy-on-write of the source 
address range. No data is actually moved until the destination buffer is actually 
modified.

The vm_copy alternative is best in these situations:

� The size of the memory to be copied is greater than 16 kilobytes.

� The source and destination are both page-aligned buffers. This is guaranteed if 
the blocks are allocated with malloc, but you must be sure to pass in the start 
address of the block, not an address within the block. NewPtr, NewHandle, and all 
other Mac OS 9 memory allocation calls do not necessarily return page-aligned 
blocks.

Finally, keep in mind the importance of releasing (via the free system routine) all 
memory that you have allocated with malloc, calloc, or realloc. Neglecting to 
release memory causes memory leaks, which have a direct impact on performance. 
To help track down memory leaks, use the MallocDebug application (“Debugging 
Allocations With MallocDebug” (page 72)) or the leaks command-line tool (“leaks 
Memory Leak Finder” (page 109)).

Using Multiple Malloc Zones
All memory blocks are contained within a malloc heap (commonly referred to as a 
zone). All allocations made using the malloc function occur within the standard 
malloc zone, which is created when malloc is first called. Although the practice does 
not have any practical benefit for most programs, you can create additional malloc 
zones and allocate memory in a specific zone.

Zones have the advantage of allowing blocks with similar access patterns or 
lifetimes to be placed together, theoretically minimizing wasted space or paging 
activity. Zones are created and destroyed dynamically, so you can allocate many 
objects in a zone and then destroy the zone to free them all.

For most developers, however, zones fail to deliver a performance advantage, and 
you should avoid them unless you need to either track a set of memory blocks 
separately from other allocations or free many memory blocks quickly.
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Debugging Allocations With Malloc
malloc provides debugging features to help you track down memory smashers, 
heap corruption, references to freed memory, and buffer overruns. These options 
(listed in Table 2-3) are enabled by creating an environment variable with the name 
of the option before executing your program on the command-line. Except for 
MallocCheckHeapStart and MallocCheckHeapEach, the value to which you set the 
environment variable is ignored. See “Quick Command-Line Primer” (page 63) for 
more information on using environment variables).

Table 2-3 Malloc environment variables

Variable Description

MallocStackLogging If set, malloc remembers the function call stack at 
the time of each allocation. This information is 
purged when the block is released with free.

MallocStackLoggingNoCompact Like MallocStackLogging, but retains the function 
call stack when the block is released.

MallocScribble If set, free sets each byte of every released block to 
the value 0x55.

MallocGuardEdges If set, malloc adds guard pages before and after 
large allocations.

MallocDoNotProtectPrelude Fine-grain control over the behavior of 
MallocGuardEdges: If set, malloc does not place a 
guard page at the head of each large block 
allocation.

MallocDoNotProtectPostlude Fine-grain control over the behavior of 
MallocGuardEdges: If set, malloc does not place a 
guard page at the tail of each large block 
allocation.

MallocCheckHeapStart Set this to the number of allocations before malloc 
will begin validating the heap. If not set, malloc 
does not validate the heap.

MallocCheckHeapEach The number of allocations before malloc should 
validate the heap. If not set, malloc does not 
validate the heap.
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Deferring Memory Allocation
Every memory allocation has a cost. Applications often allocate memory during 
initialization and then use it later—or sometimes not at all during a given session. 
You can easily improve on this costly approach by deferring the allocation to the 
first time the memory is needed. To accomplish this with a minimum of code 
modification, do these two things:

� Turn your global variable into a static variable so it no longer can be accessed 
directly by code in other modules.

� Create an accessor to access the static variable and allocate and initialize the 
buffer for it upon the first invocation.

Listing 2-1 gives an example of this technique.

Listing 2-1 Lazy allocation of memory through an accessor

MyGlobalInfo * GetGlobalBuffer() 
{

static MyGlobalInfo * sGlobalBuffer = NULL; 
if ( sGlobalBuffer == NULL ) 

{ 
sGlobalBuffer = malloc( sizeof( MyGlobalInfo ) ); 

} 
return sGlobalBuffer; 

} 

Then call this accessor whenever you need to access this “global” data.

Not allocating memory until it is actually needed, as in the example in Listing 2-1, 
is a general performance technique. For example, if you have a collection sized for 
a maximum number of entries, you can change it into a dynamically grown list or 
array so only the memory that is actually needed is allocated.

Note: This code is not safe in the presence of multiple threads. More than one 
thread could call this function simultaneously, causing the memory to be 
allocated more than once. To make it threadsafe, add a semaphore lock before the 
if-statement and unlock after the if-statement, and be sure that the code used to 
initialize the memory (if needed) is located inside the if-statement.
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You can also defer allocation of memory using file mapping. See “Reading Large 
Files With File Mapping” (page 29) for more information.
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3 Accessing the File System
This chapter is intended to provide an understanding of the impact of common I/O 
operations on your application’s performance. The user-perceived speed of any 
operating system is crucially constrained by the speed of the hard disk. 
Unfortunately, the hard disk is probably the slowest fixed-memory device attached 
to most computers. Also, because networking can be completely transparent to the 
user in Mac OS X, the likelihood that your application will be manipulating files on 
a network, or even running from a distant network server, is extremely high.

Speed of Hard Disk Drives

Hard disks, when used with real-world multitasking operating systems, can be 
much slower than is commonly supposed. Apple has determined that “modern” 
disks running under Mac OS X are able to sustain random, real-world read 
operations and write operations that are page-sized (4096 bytes) at approximately 
the following rates:

� 5400 rpm—60 pages per second (240 KB/sec)

� 7200 rpm—80 pages per second (320 KB/sec)

� 10000 rpm—100 pages per second (400 KB/sec)

These same drives may be able to sustain sequential reads and writes approaching 
30 megabytes per second (30 MB/s).

Disks accessed over the network add unpredictable networking latency and 
transfer protocol overhead to these statistics.
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General I/O Guidelines

Although there are no absolutes in a complex world, there are some basic guidelines 
that can be applied to reduce the I/O throughput of your program, and thus 
enhance its performance. As with all such improvements, it is important to measure 
the performance of the code being optimized before and after optimization to 
ensure that it actually gets faster.

� Reading is typically cheaper than writing data.

� Defer any I/O operation until the point that your application actually needs the 
data.

� Use the preferences system to capture only user preferences (such as window 
positions and view settings) and not data that can be inexpensively recomputed.

� Group several small I/O transfers into one large transfer. A single write of eight 
pages is faster than eight separate single-page writes, primarily because it allows 
the hard disk to write the data in one pass over the disk surface.

Caching Data in RAM

Reading data from disk and storing it in allocated memory can be more expensive 
than releasing that memory, later reclaiming the memory, and recreating the data 
from disk. A cache in RAM is subject to the normal overhead of the virtual memory 
system and therefore may eventually be swapped out and then later paged in again. 
Thus, a cache of n bytes may cost 2n bytes worth of I/O activity. Measuring the 
effects of such a RAM cache on a computer with a small amount of physical RAM 
(such as 64 megabytes) is important, to see the difference in an environment where 
paging is more likely to occur.
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Reading Large Files With File Mapping

Mapping a large file into memory (rather than performing a number of sequential 
read operations on that file) can significantly enhance I/O performance. Why is 
this? Reading a file into a buffer can directly incur up to three I/O operations:

� paging out enough modified pages to allow for the allocation of the read buffer

� reading bytes from the file into the buffer

� later, paging out the buffer memory

Additionally, any pages paged out will likely need to be paged in again.

Mapping a file, on the other hand, causes the file to be treated as an extension of 
virtual memory: Conceptually, the mapped file is simply another swap file mapped 
to a range of memory. Thus, reading from the file can incur only two I/O operations 
directly: paging in the desired section of the file and paging out any modified pages 
needed to make room for the page in memory. (See “Virtual Memory on Mac OS X” 
(page 15) for more information on the operation of the virtual memory manager.)

The pages of a file are maintained in a shareable state in memory. If the system runs 
low on memory, the pages are purged, but no I/O operation is incurred; if the data 
is referenced again, it is paged in again from the file.

Additionally, your code is often smaller with file mapping, because the file is 
accessed through a pointer, like all random-access memory, and no file system calls 
need be used.

The BSD routines mmap and munmap map and unmap files, respectively. Listing 3-1 
demonstrates the use of mmap. The mapped file occupies virtual address space until 
munmap is used to unmap the file (or until the application is terminated).

Listing 3-1 File mapping

void ProcessFile( char * inPathName )
{

size_t dataLength;
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void * dataPtr;

if( MapFile( inPathName, &dataPtr, &dataLength ) == 0 )
{

//
// process the data and unmap the file
//

// ...

munmap( dataPtr, dataLength );
}

}

//
// MapFile
// Return the contents of the specified file as a read-only pointer.
//
// Enter: inPathName is a “/“-delimited pathname
//
// Exit: outDataPtra pointer to the mapped memory region
// outDataLength size of the mapped memory region
// return value either an errno error condition
// or zero for success
//
int MapFile( char * inPathName, void ** outDataPtr, size_t * outDataLength )
{

int outError;
int fileDescriptor;
struct stat statInfo;

// Return safe values on error.
outError = 0;
*outDataPtr = NULL;
*outDataLength = 0;

//
// Open the file.
//
fileDescriptor = open( inPathName, O_RDONLY, 0 );
if( fileDescriptor < 0 )
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{
   outError = errno;
}
else
{

//
// We now know the file exists. Retrieve the file size.
//
if( fstat( fileDescriptor, &statInfo ) != 0 )
{

outError = errno;
}
else
{

//
// Map the file into a read-only memory region.
//
*outDataPtr = mmap( NULL,

statInfo.st_size,
PROT_READ,
0,
fileDescriptor,
0);

if( *outDataPtr == MAP_FAILED )
{

outError = errno;
}
else
{

//
// On success, return the size of the mapped file.
//
*outDataLength = statInfo.st_size;

}
}

//
// Now close the file.The kernel doesn’t use our file descriptor.
//
close( fileDescriptor );

}
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return outError;
}

Tracking File System Changes

Many applications have cause to poll the file system for changes.

� Applications with Finder-style file list views (as seen in Sherlock 2’s lower pane) 
need to synchronize with changes made by the user in the Finder.

� Document synchronization, in which the application watches for filename 
modifications and changes the document’s window title accordingly, or closes a 
document window when the associated file is moved to the Trash.

� “Folder watching, in which an application processes files as they are dropped 
into a specified folder.

Polling the file system is bad for performance. Among other issues, polling uses I/O 
bandwidth excessively, and polling also tends to fill low-level file system caches 
with entries that will likely cause many cache misses until they are purged.

Synchronizing Files on Window Activation
Applications should synchronize file state only when the associated document 
window becomes active. Synchronizing the file state involves, for example, 
updating the window title and proxy icon if the document’s filename or file type is 
changed by another application. Information synchronized from the file should not 
be updated at regular timed intervals. In Cocoa applications, implement this 
behavior in the windowDidBecomeMain method of the window delegate. In Carbon 
applications, implement this behavior in a Carbon Event Manager 
kWindowActivateEvent event handler.
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Reducing the Folder-Watching Interval
Applications watching folders for the creation of new files should keep their polling 
intervals high—from five to fifteen seconds, higher being better for system 
performance.

Using Pathnames

Mac OS X’s native file system manager implements the POSIX file system API, 
which requires applications to specify the location of files using BSD-style 
forward-slash-delimited pathnames. For best possible performance on all file 
systems, BSD path names are the recommended way to access files.

Although Apple recommends moving resources into data files in the application 
package Resources directory, it is possible to access the resource fork of a file on an 
HFS Plus volume by adding the suffix:/..namedfork/rsrc to the end of the file 
pathname. Because this doesn’t work on other file systems, notably UFS, and 
because it requires you to parse the resource fork structure directly, this technique 
is not recommended.

See Inside Mac OS X: System Overview for more about application packages.
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4 Optimizing Carbon Programs for 
Mac OS X
Although your Carbon application can largely benefit from running on Mac OS X 
without significant changes, following the guidelines detailed in this chapter will 
help you avoid potential performance trouble spots. These guidelines are all 
compatible with Mac OS 9, except where noted.

Carbon and the Mach-O Executable Format

If you have a Carbon application that is based on the Code Fragment Manager 
Preferred Executable Format (PEF), you should consider switching to the Mach-O 
executable format, for several reasons:

� On Mac OS X, the libraries that implement the Carbon environment use the 
Mach-O executable format. Mach-O executables use a calling convention 
different from that used by PEF executables. Calls made to or from PEF code 
fragments must be translated at runtime. While the translation overhead is 
small, it is altogether unnecessary if you are using Mach-O.

� Apple’s Mac OS X development environment supports only Mach-O. Whether 
or not you use Apple’s development environment for Mac OS X, the Mac OS X 
performance tools are significantly easier to use with Mach-O executables than 
with PEF.

� Mach-O was designed and optimized for use with the Mac OS X virtual memory 
system.

� Mach-O executables can directly call other Mach-O shared libraries and BSD 
API routines in the kernel.
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� Mach-O supports just-in-time binding, where a link to a function is resolved 
when that function is first called. All links in a PEF-based application (and all 
PEF libraries it links to) must be resolved when the application is launched.

� Mach-O is not supported on Mac OS 9, but using Mach-O does not require you 
to abandon Mac OS 9 as a delivery platform. You can build an application 
package that runs a PEF binary on Mac OS 9 and a Mach-O binary on Mac OS X. 
This allows you to optimize your executable for each operating system that you 
wish to support. For more information, see the section on application packages 
in Inside Mac OS X: System Overview.

See “Overview of the Mach-O Executable Format” (page 117) for more detailed 
information about Mach-O.

Carbon and Mac OS X Events

For maximum performance potential, you should consider using the Carbon Event 
Manager routines to handle user interface events.

Adopting the Carbon Event Manager
The advantages of full adoption of the Carbon Event Manager include these:

� Applications that use the classic Event Manager must contain code to perform 
basic event routing and focus management tasks. The Carbon Event Manager 
does all of this work for you, freeing you to write code for the tasks unique to 
your application.

� The Carbon Event Manager is designed to allow easy extensibility. No longer do 
you have to define complex extension mechanisms to allow plug-ins to handle 
basic user interface events.

� Because less code is required to implement basic event-handling tasks, your 
executables are smaller and faster.
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� Because you install event handling routines only for events you wish to receive, 
on the targets that will receive them, the Carbon Event Manager can optimize 
event posting. Events are posted to the system event queue only if the 
application requires them. With the classic Event Manager routines, the system 
must post events that applications often ignore.

� The Carbon Event Manager is designed to encourage better overall system 
performance by replacing polling with blocking. This concept is detailed further 
in the next section.

Avoiding Polling Behavior
Polling is the process of repeatedly checking a resource to learn whether it has 
changed state. For example, an application might poll a network connection to see 
if new data is available for reading. Another example is the classic Event Manager 
routine GetNextEvent, used by many older applications to poll for user interaction 
events.

Polling is inherently inefficient because your program must continuously spend 
CPU time to repeatedly discover whether the value of some element of system state 
has changed. Typically, the state does not change more often than the program can 
poll. For example, a program might wait for the mouse button to be pressed. With 
polling, the program checks the state of the mouse several hundred times a second. 
This uses up a large amount of the computer’s total available CPU time.

With blocking, when the system changes a piece of state that programs might be 
interested in, the system sends a notification about the change. Interested programs 
can block until the notification is received. For example, a program waiting for the 
mouse button to be pressed might call a function that blocks until the mouse button 
is pressed. The program still knows when the mouse button is pressed, but CPU 
time that would otherwise be wasted checking for the mouse button is free for other 
programs to use.

A blocked thread is a thread that is currently suspended. It does not execute and 
occupies no system resources other than a small amount of memory. Typically, a 
thread is unblocked (resumed) when a low-level event, message, or notification is 
received. At that point, the thread is permitted to execute and consume system 
resources (such as CPU time) again. 
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To eliminate the most common polling scenarios (such as the mouse button 
example provided above), Mac OS X provides modern programming interfaces that 
support blocking, such as the Carbon Event Manager.

The following sections detail changes you may need to make to your code to 
eliminate polling for user interface events. See also “Tracking File System Changes” 
(page 32) for information on avoiding file system polling.

Tracking the Mouse With WaitNextEvent

Some third-party application frameworks keep track of the current mouse location 
by specifying a region consisting of a single pixel in the mouseRgn parameter of 
WaitNextEvent. This causes a mouse-moved event to be generated every time the 
user moves the mouse, though in most cases the application does not need to know 
that the mouse has moved. This is extremely wasteful of CPU time.

You should instead specify a region defining the boundaries beyond which you 
must know whether the mouse has moved. Another alternative is to use a Carbon 
event timer to periodically find the object located under the mouse.

Tracking the Mouse on Mouse Down

In Mac OS 9, tracking the mouse when the mouse button is pressed usually involves 
polling the mouse in a tight loop, as demonstrated in Listing 4-1 (page 39).

Mac OS 9 Event Manager functions such as StillDown and WaitMouseUp were 
designed to be used in a polling loop, rather than a blocking loop. Both of these 
routines return immediately, which forces your application to call them repeatedly 
even while the mouse location does not change. This is extremely wasteful of CPU 
time, but, using the Mac OS 9 Event Manager, there is no other simple way to track 
the mouse in a modal fashion.

To eliminate this performance drain, the Carbon Event Manager function 
TrackMouseLocation was created. When called, TrackMouseLocation blocks the 
current thread until the state of the mouse changes. The CPU is free to perform other 
tasks while TrackMouseLocation is waiting for the mouse. Listing 4-2 (page 40) 
demonstrates the use of TrackMouseLocation.
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To see the performance benefit of switching to TrackMouseLocation, run these two 
code samples with either a Terminal window running top or the CPU Monitor 
application visible in the background. You should notice a large difference in the 
CPU time % column.

Listing 4-1 Modal mouse tracking prior to Carbon

void TrackMarquee( Point inStartPoint, Rect * outRect )
{

Pattern pattern = { 0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55 };
Point mouse;
Rect rect;
Rect previousRect = {0,0,0,0};
GrafPtr port;

GetPort(&port);

PenPat( &pattern );
PenMode(srcXor);
PenSize( 2, 2 );

SetRect( &rect, inStartPoint.h, inStartPoint.v, inStartPoint.h, inStartPoint.v );

while( StillDown() )
{

GetMouse(&mouse);
SetMobiusRect(&rect, inStartPoint.h, inStartPoint.v, mouse.h, mouse.v);

if( ! EqualRect( &rect, &previousRect ) )
{

// erase previous
FrameRect( &previousRect );

// draw next
FrameRect( &rect );

previousRect = rect;

// flush window buffer to screen
QDFlushPortBuffer(port, NULL);
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}

}

// erase final rect
FrameRect( &rect );

// clean up the grafport
NormalizeThemeDrawingState();

*outRect = rect;

}

Listing 4-2 Modal mouse tracking in Carbon

void TrackMarquee( Point inStartPoint, Rect * outRect )
{

Pattern pattern = { 0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55 };
Point mouse;
Rect rect;
Rect previousRect = {0,0,0,0};
GrafPtr port;
OSStatus status;
MouseTrackingResult trackingResult;

GetPort(&port);

PenPat( &pattern );
PenMode(srcXor);
PenSize( 2, 2 );

SetRect( &rect, inStartPoint.h, inStartPoint.v, inStartPoint.h, inStartPoint.v );

mouse = inStartPoint;

do
{

SetMobiusRect(&rect, inStartPoint.h, inStartPoint.v, mouse.h, mouse.v);
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if( ! EqualRect( &rect, &previousRect ) )
{

// erase previous
FrameRect( &previousRect );

// draw next
FrameRect( &rect );

previousRect = rect;

// flush window buffer to screen
QDFlushPortBuffer(port, NULL);

}

// get next mouse location
status = TrackMouseLocation( port, &mouse, &trackingResult );
if( status != noErr )
{

break;
}

} while( trackingResult != kMouseTrackingMouseReleased );

// erase final rect
FrameRect( &rect );

// clean up the grafport
NormalizeThemeDrawingState();

*outRect = rect;

}

Watching for Modifier Keys

Applications commonly poll the keyboard (using a function such as GetKeys) to 
learn the current state of the modifier keys (Shift, Option, Control, and Command.) 
To help applications remove this behavior, the Carbon Event Manager sends 
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modifier-key state change events to registered event handlers of class 
kEventClassKeyboard and type kEventRawKeyModifiersChanged. Listing 4-3 
demonstrates the use of this event type.

Listing 4-3 Receiving modifier-key events

int main(void)
{
    OSStatus status;
    EventHandlerUPP eventHandlerUPP;
    EventHandlerRef eventHandlerRef;

EventTypeSpec eventTypes[] = { {kEventClassKeyboard,
kEventRawKeyModifiersChanged} };

    
    //
    // Install Apple event handler for Quit events
    //
    status = AEInstallEventHandler( kCoreEventClass,
    kAEQuitApplication,
    NewAEEventHandlerUPP(QuitAppleEventHandler),
    0,
    false);
    require_noerr( status, NoAppleEvents );

//
// Install the modifier-key-changed handler
//
eventHandlerUPP = NewEventHandlerUPP(ModifierKeysChangedEventHandler);
require( eventHandlerUPP != NULL, NoEventHandler );

    status = InstallApplicationEventHandler( eventHandlerUPP,
1,
&eventTypes[0],
0,
&eventHandlerRef);

require_noerr( status, InstallEventHandlerFailed );

    //
    // Set the cursor to the arrow (on Mac OS 9 and earlier)
    // and start running the Carbon Event Manager event loop
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    //
InitCursor();

    RunApplicationEventLoop();

InstallEventHandlerFailed:
NoEventHandler:
NoAppleEvents:
NoMenuBar:

return 0;
}

//
// ModifierKeysChangedEventHandler
//
// Watch for modifier key-down events
//
static pascal OSStatus
ModifierKeysChangedEventHandler(EventHandlerCallRef, EventRef event, void *)
{

UInt32 modifiers;
OSStatus result = eventNotHandledErr;

static Boolean optionWasDown = false;

//
// Use the Speech Manager to speak the string “down” when the Option key is pressed
// When the Option key is released, speak the string “up”
//

    result = GetEventParameter( event,
    kEventParamKeyModifiers,
    typeUInt32,
    NULL,
    sizeof(UInt32),
    NULL,
    &modifiers);

if( result == noErr )
{

if( ((modifiers & optionKey) == optionKey)
&& (! optionWasDown) )
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{
SpeakString( "\pdown" );
optionWasDown = true;

}
else if( optionWasDown )
{

SpeakString( "\pup" );
optionWasDown = false;

}
}

    return result;
}

static pascal OSErr QuitAppleEventHandler(const AppleEvent *, AppleEvent*, long)
{

//
// Quit the Carbon Event Manager event loop.
//
QuitApplicationEventLoop();
return noErr;

}

Carbon and the Mac OS X File System

Mac OS X can be used to access files on a variety of file systems and volume formats, 
including those listed in Table 4-1 (page 45). Although the primary volume format 
is HFS Plus, Mac OS X can also boot from a disk formatted with the UFS file system. 
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Future versions of Mac OS X may be bootable with other volume formats as well. 
This section provides guidelines for good performance when accessing files on any 
file system.

Adopting the HFS Plus API
Every file system stores a different set of metadata, data associated with a file but 
not part of the file itself. The definition of metadata includes attributes such as 
Macintosh file type information, BSD-style file access permissions, and creation and 
modification dates. Metadata not accounted for in the design of the file system must 
be either stored inefficiently or calculated expensively at runtime.

For example, a single call to PBGetCatInfoSync returns Finder file type information 
from a file or folder. On HFS and HFS Plus volumes, there is no extra cost for this 
metadata because it is stored in the file’s catalog node, and thus is read into memory 
along with the name of the file. Other file systems, however, must compute some of 
the seldom-used fields using expensive I/O operations. For example:

Table 4-1 File systems supported by Mac OS X

File 
System Description

HFS Mac OS Standard file system. Standard Macintosh file system for older 
versions of Mac OS.

HFS Plus Mac OS Extended file system. Standard Macintosh file system for Mac 
OS X.

UFS Unix File System. A variant of the BSD “Fast File System.”

WebDAV Used for directly accessing files on the web.

UDF Universal Disk Format. The standard file system for all forms of DVD 
media (video, ROM, RAM and RW) and some writable CD formats.

FAT The MS-DOS file system, with 16- and 32-bit variants.

Samba Used for sharing files with Microsoft Windows SMB file servers.

AFP AppleTalk Filing Protocol. The Mac OS 9 file sharing standard.

NFS Network File System. A commonly-used BSD file sharing standard.
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� The object count (“valence”) for directories and volumes requires a recursive 
subdirectory iteration on most file systems.

� Finder information, such as type and creator codes, might require opening and 
reading a separate file.

During the initial design of the HFS Plus API, it was observed that, although all of 
this metadata can be valuable to access, applications tend not to use all of it at the 
same time. To improve efficiency with alternative file systems, the HFS Plus API 
was designed to allow only the information actually required by the client 
application to be retrieved, thereby eliminating the potential overhead of unneeded 
calculation or read operations.

The HFS Plus API additionally provides efficient routines to iterate through the 
contents of directories (see “Iterating Over the Contents of a Directory” (page 46)).

Iterating Over the Contents of a Directory
The example in Listing 4-4 demonstrates how to use an HFS Plus bulk iterator to 
efficiently scan the contents of a directory. It does not descend into subdirectories, 
but you can open as many bulk iterators as necessary to handle recursive iteration. 
If you need to scan a directory repeatedly in order to watch for changes (for 
example, new files added or removed to a directory), see also“Tracking File System 
Changes” (page 32).

Listing 4-4 Fast directory iteration

int main(void)
{

OSStatus outStatus;
FSSpec spec;
FSRef folderRef;

printf("begin file iteration!\n");
fflush( stdout );

//
// Get the currently running application’s parent folder,
// make it into an FSRef, and iterate it
//
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outStatus = FSMakeFSSpec( 0, 0, "\p", &spec );
if( outStatus == noErr )
{

outStatus = FSpMakeFSRef( &spec, &folderRef );
if( outStatus == noErr )
{

outStatus = IterateFolder( &folderRef );
}

}

printf( "final error status is (#%d)\n", outStatus );
return 0;

}

OSStatus IterateFolder( FSRef * inFolder )
{

OSStatus outStatus;

//
// Get permissions and node flags and Finder info
//
// For maximum performance, specify in the catalog
// bitmap only the information you need to know
//
FSCatalogInfoBitmap kCatalogInfoBitmap = ( kFSCatInfoNodeFlags

| kFSCatInfoFinderInfo
 );
 

//
// On each iteration of the do-while loop, retrieve this
// number of catalog infos
//
// We use the number of FSCatalogInfos that will fit in
// exactly four VM pages (#113). This is a good balance
// between the iteration I/O overhead and the risk of
// incurring additional I/O from additional memory
// allocation
//
const size_t kRequestCountPerIteration = 

((4096 * 4) / sizeof(FSCatalogInfo));
FSIterator iterator;
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FSCatalogInfo * catalogInfoArray;

//
// Create an iterator
//
outStatus = FSOpenIterator( inFolder, kFSIterateFlat, &iterator );

if( outStatus == noErr )
{

//
// Allocate storage for the returned information
//
catalogInfoArray = (FSCatalogInfo *) malloc( sizeof(FSCatalogInfo)

* kRequestCountPerIteration );

if( catalogInfoArray == NULL )
{

outStatus = memFullErr;
}
else
{

//
// Request information about files in the given directory,
// until we get a status code back from the File Manager
//
do
{

ItemCount actualCount;

outStatus = FSGetCatalogInfoBulk( iterator,
kRequestCountPerIteration,
&actualCount,
NULL,
kCatalogInfoBitmap,
catalogInfoArray,
NULL,
NULL,
NULL );

//
// Process all items received
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//
if( outStatus == noErr || outStatus == errFSNoMoreItems )
{

UInt32 index;

for( index = 0; index < actualCount; index += 1 )
{

//
// Do something interesting with the object found
//
DoSomethingWithThisObject( &catalogInfoArray[ index ] );

}
}

}
while( outStatus == noErr );

//
// errFSNoMoreItems tells us we have successfully processed all
// items in the directory -- not really an error
//
if( outStatus == errFSNoMoreItems )
{

outStatus = noErr;
}

//
// Free the array memory
//
free( (void *) catalogInfoArray );

}
}

return outStatus;
}

void DoSomethingWithThisObject( const FSCatalogInfo * inCatInfo )
{

if( (inCatInfo->nodeFlags & kFSNodeIsDirectoryMask) == kFSNodeIsDirectoryMask )
{
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printf( "Found a folder\n" );
}
else
{

FInfo * theFinderInfo;
OSType type;

theFinderInfo = (FInfo *)&inCatInfo->finderInfo[0];
type = theFinderInfo->fdType;

printf( "Found a file (type %c%c%c%c)\n",
 (char) ((type & 0xFF000000) >> 24),
 (char) ((type & 0x00FF0000) >> 16),
 (char) ((type & 0x0000FF00) >> 8),
 (char) (type & 0x000000FF)

 );
}

}

Converting Pathnames to File System References
The routines that convert a pathname to an FSSpec structure or an FSRef structure 
(FSPathMakeFSSpec and FSPathMakeFSRef, respectively) must perform conversions 
that take a long time to complete. Consider caching the returned file system 
reference in memory to avoid calling these routines often.

Carbon and Mac OS X Graphics

All drawing into windows on Mac OS X is double-buffered unless you explicitly 
request otherwise. When you draw content into the graphics port (GrafPort) of a 
window, you are actually drawing into the offscreen drawing buffer associated 
with the window. The content being drawn does not appear onscreen until 
QDFlushPortBuffer is called.

QDFlushPortBuffer is called by the Carbon Event Manager whenever
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� an event is retrieved (either WaitNextEvent is called or an event handler returns 
control to the Carbon Event Manager)

� a Human Interface Toolbox routine that must draw implicitly (such as TEIdle or 
TEClick) is called

The buffer is not flushed when QuickDraw drawing routines (such as LineTo, 
FrameRect, and CopyBits) are called or when controls are drawn. Generally, 
applications don’t need to flush the port, because the port is flushed at event 
retrieval time.

Flushing the Port
Many small port buffer flushes generally take significantly more time to complete 
than one large port buffer flush. The best thing to do is to wait for the system to 
draw at event loop time.

If you cannot wait for the system to flush the port, the best tactic is to wait until 
many small flushes have accumulated and then flush the port buffer. Avoid 
flushing after every call to FrameRect or LineTo or CopyBits. Instead, flush when all 
content is drawn.

Buffering Windows With Offscreen Drawing
As noted above, the window is buffered in Mac OS X, unless you have chosen 
otherwise. If your application is maintaining an offscreen graphics world (GWorld) 
for each window or otherwise buffering the window contents during drawing, be 
sure to disable or conditionalize that code, because it serves no purpose on Mac OS 
X other than to occupy memory and slow down window drawing.

Rendering Controls
When changing the attributes of a large number of controls, consider using 
SetControlVisibility on the root control to prevent redundant drawing. All 
Control Manager functions that alter the appearance of a control immediately cause 
the control to be redrawn. Although the port is not flushed until QDFlushPortBuffer 
is called, rendering controls still takes time, especially given the computationally 
expensive nature of the Aqua user interface.
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5 Building Efficient C, C++, and 
Java Programs
Mac OS X supports a wide variety of languages and development tools. This 
chapter details possible performance issues pertinent to C, C++, and Java.

Automated Code Optimization

Most development environments implement several levels of automated code 
optimization. Typical among these are the optimization of generated binary code 
and dead code stripping, which is the process of removing unused and 
unreferenced variables, functions, and methods from the output executable file.

Enabling Compiler Optimization
One standard, easy way to optimize your code is to enable compiler optimization. 
The standard Mac OS X compiler is gcc, and it has several command-line options to 
control the general level of optimization, summarized in Table 5-1.

The primary benefit of compiler optimization is that it makes your code smaller, 
which reduces the amount of code that must be loaded into memory at any one 
time. Although reduction in size is generally preferable to an increase in execution 
speed (because of the impact on virtual memory), you should try different options 
and see what works best for you.
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Note that, for each of the -O options, the first character after the dash is the letter O, 
not the digit zero.

In Project Builder, the -O parameters are specified in the Optimization Level pop-up 
menu in the Build Settings pane, as Level 1, Level 2, and Level 3 for -O1, -O2, and 
-O3, respectively. To specify other parameters in Project Builder, place them in the 
$OTHER_CFLAGS variable in the Build Settings pane.

If you specify multiple -O options, the last such option takes precedence.

Dead Code Stripping
Dead code stripping is typically performed by a development environment’s static 
linker. The standard Mac OS X tools do not currently perform dead code stripping. 
If you include in your project a large file containing a collection of utilities, all of 

Table 5-1 Primary compiler optimization parameters

Parameter Optimization performed

-O or -O1 Optimize to reduce code size and execution time. 

-O2 Perform most optimizations not requiring a space-time 
trade off. Thus the compiler does not perform loop 
unrolling or function inlining.

-O3 Optimize for speed as opposed to size. May add 
aggressive function inlining.

-Os Optimize for size as opposed to speed. This option is 
very similar to -O2.

-O0 or no -O option given Do not optimize. (The first character after the dash is 
the letter O and the second is the digit zero.)

-fcoalesce-rtti C++ only. Enable coalescing of runtime type 
information. See “Coalescing Runtime Type 
Information” (page 59) for more information.
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them are compiled and linked into your code, regardless of whether or not you 
actually use them all. Consequently, your code occupies more memory than is 
necessary.

The most effective solution is simply to scatter load your executable, as described in 
“Improving Locality of Reference” (page 126). The scatter loading process moves 
unused code and data to the same set of virtual memory pages, removing them 
from the effective memory footprint of your executable.

An alternative is to carefully examine your code and remove (or conditionalize) 
unused functions, globals, macros, and other code that your program doesn’t 
actually use.

Inline Functions
Inlining is an optimization that allows the compiler to integrate the code of simple 
functions into their callers, thereby eliminating the overhead of function call setup 
and return. Inlining can be performed automatically by the compiler, or selectively 
by you, the developer, through use of the inline and static keywords.

These are the rules of thumb for inlining:

� An inline function should be (at most) two or three statements long.

� Good candidates for inlining are functions that increment, set, or return a single 
variable, or call a single function.

The gcc compiler only tries to inline functions that are declared inline, and only if 
optimization is enabled. For C programs, inline functions are not inlined unless they 
are declared static as well as inline.

With the -finline-functions option, the compiler aggressively tries to inline all 
functions even if they are not declared inline. This mechanism is known to have 
problems that could result in incorrect code generation. You should be especially 
careful to test the generated code if you use this option. Note that aggressive 
inlining can also result in a considerable increase in code size. Normally, the -O3 
option turns on the -finline-functions option; however, this has been disabled due 
to the problems mentioned here.

If you want to keep the compiler from expanding any functions inline, specify the 
-fno-inline option. 
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For C++ code, the compiler is not always able to inline functions that are declared 
inline in the class declaration, so local instances of these functions may be 
generated, even if the functions are not used.

C++ Performance Notes

C++ was designed with the performance goal of adding object-oriented features to 
C without incurring a cost for code that does not use those features. As such, using 
the C++ compiler options to compile ANSI C code should not generate an 
executable requiring significantly more execution time than without C++. 
However, both the exception-handling and runtime type information (RTTI) core 
language features do each increase the size of the executable by small amounts, 
even if the feature is not used.

In a nutshell, these are the Mac OS X C++ performance guidelines:

� Exceptions do not greatly increase the size of your executable, nor do exceptions 
incur a performance penalty at runtime.

� Still, you can achieve a small decrease in executable size by turning exceptions 
off by specifying the -fno-exceptions parameter to gcc. 

� throw is expensive. Only use exceptions for exceptional cases, never as an 
alternative return mechanism.

� Use the -fcoalesce-rtti parameter to gcc to create only one global copy of each 
RTTI symbol.

� If you build a C++ library or framework and export RTTI information to clients, 
you cannot use -fcoalesce-rtti. Instead, create a trigger function to create one 
global copy of the RTTI symbols.

� If you do not use RTTI and you do not use exceptions, specify the -fno-rtti 
parameter to gcc.

� Avoid exception specifications (void foo() throw(OSErr) { throw resNotFound; 
}). They incur a significant performance penalty.
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� Ensure that each of your concrete (non-abstract) classes contains at least one 
virtual function that is not marked inline. This avoids proliferation of duplicate 
v-tables and of RTTI symbols when -fcoalesce-rtti is not specified. See “Using 
Trigger Functions” (page 58) for more information.

Note that you cannot successfully link together object files compiled with different 
exception handling and RTTI settings.

The remainder of this section contains in-depth discussion of the above issues.

Understanding C++ Exceptions
When your code throws an exception, the compiler must unwind the program’s 
stack, calling destructors for stack-allocated objects contained in each of the 
unwound stack frames, and jump to an exception handler—a catch clause—or 
abort the program if no exception handler is found.

In order to unwind the stack and invoke destructors for the unwound stack frames, 
the code used to support exception handling must have detailed information about 
the contents of each stack frame. Many compilers insert code into the program’s 
functions to build this information at runtime, but this code has major costs in both 
execution time and executable size.

Mac OS X gcc uses an alternative method called zero-runtime-overhead exception 
handling. With this method, the compiler generates the exception-handling tables 
at compile time. Zero-runtime-overhead exception handling is cheap and fast. Your 
code doesn’t incur runtime overhead until an exception is thrown.

The caveat is that the compiler generates exception-handling information for every 
function in a C++ program. Because an exception can be thrown through a routine 
that does not itself either catch or throw exceptions, the compiler must generate 
tracking information for all functions that call other functions. Because the compiler 
enables exceptions by default (as required by the ANSI C++ standard), your 
executable may be slightly larger than it needs to be. You can use the 
-fno-exceptions compiler option to disable exception support and make your 
executable slightly smaller. 
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Also, be aware that a throw statement is much more expensive than a return 
statement. Exceptions should be used only in exceptional cases, when a genuine 
error condition has been discovered. If your code is designed to throw exceptions 
during normal operation, your program is slower than it could be. You should 
avoid using exception handling as an alternate return value mechanism.

Using Trigger Functions
There are two constructs associated with classes in C++: the v-table and the RTTI 
symbol.

“V-table” is short for virtual function table. A v-table is an array of pointers to 
virtual methods and support code. Every C++ object containing one or more virtual 
methods contains a v-table.

The RTTI symbol is a data structure that uniquely identifies the class with which it 
is associated. The dynamic_cast keyword and the typeid function both use the RTTI 
symbol. Every class contains an RTTI symbol.

The compiler must decide where in the generated code to place both the RTTI 
symbol and the v-table. If the compiler cannot decide, it makes a separate copy of 
the v-table and RTTI symbol in each object file that the class is referenced in. This 
can lead to a large amount of space wasted on duplicate information. To help the 
compiler decide (and thus avoid this waste of space), C++ uses the concept of a 
trigger function.

A trigger function is a function that identifies a location for the compiler to place the 
data associated with a class definition, including the RTTI symbol and the v-table. 
The compiler generates the v-table and RTTI symbol associated with the class when 
it finds the trigger function definition in your source file. When the compiler sees 
other references to this class, it knows that the class data is placed at the location of 
the trigger function, and doesn’t need to generate an additional v-table or RTTI 
symbol.

The gcc compiler considers the first virtual function (not pure virtual, not marked 
inline) listed in the class declaration to be the trigger function. Functions in base 
classes do not count. If you declare the trigger function in the header, but never 
implement the trigger function in a source file, the v-table and RTTI symbols are 
never defined.
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Most concrete (non-abstract) classes with v-tables do contain at least one virtual 
function that is not marked inline, but watch out for subclasses that define no 
virtual functions of their own and also for classes with only inline virtual functions.

Coalescing Runtime Type Information
The easiest method for removing duplicate RTTI symbols is to allow the tools to do 
it for you. The -fcoalesce-rtti parameter to gcc eliminates redundant RTTI 
symbols, regardless of trigger functions.

If you build a C++ library or framework with -fcoalesce-rtti enabled, your clients 
cannot use RTTI-based features, because the RTTI coalescing mechanism causes the 
RTTI symbols to be made private, no longer exported to clients that link to your 
library.

Java Performance Notes

The performance of a Java application is often largely determined by the core 
libraries it is based on. Additionally, there are some unavoidable issues with 
standard implementations of Java. Standard libraries commonly manifest all of 
these problems:

� Overuse of synchronization. Thread synchronization overhead is very 
expensive. Make sure the synchronized keyword is applied at as fine a 
granularity as possible. Be aware that static synchronized methods require 
locking the entire class. In Java 1.2 and later, synchronization overhead can 
sometimes be eliminated by using thread-local variables rather than singleton 
static globals. See the Java SDK documentation on java.lang.ThreadLocal for 
more information.

� Allocation of many small objects. Library interfaces are often designed to return 
small objects in Java because it’s convenient, and, with garbage collection, there 
is no need for the client to explicitly deallocate the memory. However, heap 
allocation for many tiny objects is expensive. In C and C++, objects can be 
explicitly allocated on the stack to remove the overhead of allocation; in Java, 
they can’t.
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� Overuse of exceptions. Exception handling in Java is very slow. Exception 
guidelines for C++ also apply to Java: Use exceptions only for exceptional cases.

� Storing each class in an individual .class file. Classes should be grouped 
together in .jar files. Opening and closing many small .class files is more 
expensive than opening and closing one large .jar file. Grouping classes in .jar 
files allows the class loader to efficiently use file mapping. See also “Reading 
Large Files With File Mapping” (page 29).
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6 Analyzing Performance
Apple provides a comprehensive suite of performance analysis tools for Mac OS X. 
These tools can measure and diagnose many aspects of system and program 
performance, from memory usage and memory leaks to file-system access patterns 
and paging activity.

Using the Performance Tools

Some of the performance tools are applications (with graphical user interfaces) and 
others are command-line utilities that must be invoked from the Terminal 
application or, less invasively, through ssh or telnet from a remote machine.

Most of the graphical applications have online help available through the Help 
menu. All of the command-line tools have man pages, accessed on the 
command-line by typing “man tool name”.

It’s worthwhile to note key statistics and compare them over time as you fine-tune 
your application, framework, or other executable. You can thereby spot regressions 
or improvements in your executable’s performance.

Finding Problems
The performance tools can help you debug problems and provide a mental model 
of the inner workings of your code, giving you the information you need to make 
your program run faster.
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For example, your program appears to be using system resources at an inordinate 
rate. Perhaps excessive disk thrashing is occurring; maybe the response time of the 
user interface is very slow. You may be leaking memory, or your code may be 
spending time spinning when it could be blocking instead.

� Use the top tool to discover possible excess usage of resources.

� To trace perceivable freeze behavior to a source cause, the gdb debugger can be 
used to examine your application at runtime.

� To find memory leaks, use MallocDebug or the leaks tool.

Exploring Your Code
Understanding the runtime flow of your code, its purpose and meaning, is crucial 
to both improving performance and shortening debugging time.

� The top tool is useful for determining possible excessive use of resources. vmmap 
provides you with a high-level display of the layout of your application’s virtual 
address space.

� Sampler allows you to quickly figure out which functions use more overall 
execution time than others. The gprof tool can be used for complete recording 
and timing of your program’s function call tree.

� QuartzDebug can display the amount of memory allocated to windows and 
provides options for discovering excessive drawing to the screen.

MallocDebug and ObjectAlloc provide fine-grained allocation tracking, allowing 
you to gain a complete understanding of the allocation behavior of your 
application.

� ObjectAlloc tracks the historical, repetitive allocations, recording data at 
runtime.

� MallocDebug allows you to collect a snapshot of the memory allocated by your 
program at a given moment in time. MallocDebug also provides powerful 
debugging features.

Although the performance applications are not currently AppleScript-scriptable, 
most allow you to export performance data for analysis and manipulation by 
scripting and command-line tools
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Quick Command-Line Primer
Many of the performance tools run only on the BSD command line. This section 
provides some brief usage information about the command line, just enough for 
basic debugging. To learn more about facilities available at the command line, see 
“Further Investigations” (page 10).

The Terminal application is Mac OS X’s gateway to the BSD command-line shell. 
Each window in Terminal contains a complete shell execution context, separate 
from all other shell execution contexts. The shell itself is an interactive 
programming language interpreter. Like the C language, the shell programming 
language offers control structures and variables of different scope. Different shells 
feature slightly different syntax and abilities. While you can use any shell of your 
choice, the examples in this book assume that you are using the standard Mac OS X 
shell, tcsh, or else a shell supporting syntax similar to tcsh.

To run a program in the shell, you must type the complete pathname of the 
program’s executable file (and then press the Return key). You do not need to type 
the full name of programs that can be found in the directories listed in the shell’s 
PATH variable, including most of the command-line tools you will read about in this 
chapter.

To launch application packages, you can either use the open tool (open MyApp.app) or 
launch the application by directly typing the pathname of the executable file, 
usually something like MyApp.app/Contents/MacOS/MyApp.

Some of the tools and techniques referenced in this chapter require the use of 
environment variables. Environment variables are variables inherited by all 
executables executed in the shell’s context. For example, to execute a debugger 
called FooDebugger that requires the environment variable DebugFunction set to the 
name of your function, type these lines:

setenv DebugFunction yourFunctionName 
/LocationOfFooDebugger/FooDebugger

Because each shell is a separate execution context, variables you set in one copy of 
a shell are not set in another copy of a shell. Thus, if you open two Terminal 
windows and set an environment variable in one window, programs executed from 
the other Terminal window do not get the new environment variable.

You can use the standard BSD shell output redirection notation command > file to 
log the output of command-line tools to a file.
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Code Profiling With Sampler

Sampler is an application that analyzes a program’s running behavior and its 
allocation of memory. Sampler stops the program periodically to examine its 
function call stack. Sampler then displays the functions that were most frequently 
seen while sampling was taking place. This information can help you locate 
functions consuming large chunks of CPU time and functions in which excessive 
memory allocations are occurring. You can thereby find spots in your code where 
execution time or allocation size is more than you expect, and then improve your 
code to reduce running time or memory usage. 

Sampler works on any executable. It does not require code changes, recompilation, 
or the linking of special “profiling” libraries.

What Sampler Does
To analyze those parts of a program that are frequently called when that program 
is running, Sampler performs a statistical sampling of the target program over a 
period of time. At n-millisecond intervals within that period, Sampler takes a 
snapshot of the stack of each thread, where n is a user-specified value greater than 
or equal to 10 milliseconds.

At the end of the sampling period, Sampler takes the collected data and shows the 
call graph of the program in the Call Graph browser; for each function listed in this 
browser it displays the number of samples where the program was executing that 
function in the call graph. By sampling the running behavior of your program, 
Sampler helps you identify which routines your application is spending most of its 
time in, and hints at functions that may be good candidates for tuning.

Each time it samples, Sampler records the function call stack—the hierarchy of 
functions called to reach that point in the execution. (Call stacks are also called 
“stack traces” or “stack crawls,” and are usually displayed in debuggers to show 
how you reached the current function.) Next to the name of each function, Sampler 
displays the count of samples where the functions at the top of the stack match a 
specific chain of functions. The Call Graph browser combines call stacks with the 
same functions at the top of the call stack. This resulting tree roughly provides a call 
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graph of the program, displaying which functions are called by main, and which 
functions are called by the callees of main. The call graph represents the observed 
running behavior of your program, not just an analysis of what might happen.

Sampler’s form of performance analysis complements other methods such as 
CPU-usage analysis or profiling (see “gprof Code Profiler” (page 106)). Although 
measuring CPU time can show you how much time your application spends 
running, sampling can be more effective because it includes time spent when the 
application was blocked and waiting for system resources. Unlike the gprof tool, 
Sampler does not require you to recompile your program. 

However, also unlike gprof, Sampler only shows where it found the program 
executing when it did one of its periodic examinations. Profiling shows perfect call 
graph information, as gathered by the profiling instrumentation code. Profiling 
records exactly which functions were called from a given function, which, 
combined with the timing data, may help you to determine which bits of code are 
expensive. With Sampler, functions that take little time to execute and do not call 
other functions may not end up in the call stacks unless they are executing at the 
moment a sampling is taken. On average, however, Sampler should see these 
functions in proportion to the time the function takes to run. You can improve 
Sampler’s accuracy with shorter sampling intervals and longer sampling sessions.

Other Sampler Modes
Sampler can display information other than frequently executed functions:

� memory allocations

�  file-system usage information

� calls to specific functions

Watching for Allocations

When it analyzes the allocations made by a program, Sampler records the amount 
of memory allocated and the call stack each time your program calls an allocation 
routine (malloc, for example). With this information, you see not only where you 
allocate memory and how much memory is being allocated, but also identify the 
context when malloc was being called.
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Sampler’s version of memory allocation analysis differs from MallocDebug’s in that 
it doesn’t require a special debugging library to be inserted in the context of the 
application being debugged, and thus doesn’t have problems with setuid 
applications. Unlike MallocDebug, it detects leaked cycles and structures. 
However, because Sampler doesn’t understand Carbon handles, it misses memory 
leaks in blocks allocated with NewHandle.

See also “leaks Memory Leak Finder” (page 109), and “Debugging Allocations With 
MallocDebug” (page 72).

Watching File System Usage

In file system usage mode, Sampler watches for calls to the POSIX file system 
functions access, creat, close, fcntl, flock, link, lstat, open, read, stat, truncate, 
and write. As in allocation mode, Sampler records the function call stack, then 
combines the call information into a call tree to show all the code paths your 
program takes as it accesses the disk.

This functionality is extremely useful for understanding how your application 
accesses the disk. Disk accesses tend to be slow operations, so minimizing 
unneeded reads, caching data, or minimizing the number of files examined can 
improve your application’s performance. From the call tree data, you can see the 
functions that perform reads, and you can avoid cases where you reread the same 
data in multiple points in the code. For example, you can discover how many times 
your program opens files. If the number of calls to open is higher than you expect, 
you can then examine the function call stacks to understand why your program 
calls open excessively.

This feature is similar to the fs_usage tool, which displays all the disk accesses being 
performed by a specific process; it lists the action, the time taken to complete, and 
some of the parameters passed to the function. Sampler improves on this 
functionality by presenting the data in a graphical browser, and recording the call 
tree to see where the function is being called. However, Sampler does not identify 
the parameters passed to the open call, as fs_usage does. Sampler also does not 
display the time taken by each operation to execute, as fs_usage does.See “fs_usage 
File System Access Analysis Tool” (page 97) for more details.
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Watching for Calls to Specific Functions

This mode can tell you the number of times a specific function is called and the 
functions it is called from. Sampler allows you to specify a set of functions you care 
about, and see how many times and from where they are called. As with watching 
for allocations or watching for file operations, Sampler watches for calls to your 
specified functions and notes the call stack showing from where the function is 
called. When sampling is done, it merges all the call stacks into a call tree viewable 
with the Call Graph browser.

Using Sampler
After launching Sampler, choose either the New or Attach command from the File 
menu. New allows you to launch a new program. Attach allows you to start 
examining a program that is already running. Either command asks you to select an 
application to examine and a mode, as seen in Figure 6-1.

Figure 6-1 Creating a new Sampler document

Sampler’s execution frequency window is used to discover the routines your 
program is spending most of its time in. Figure 6-2 shows this window.

To profile a program, follow this procedure:

1. Enter the full path to the program in the Executable field, or click the Browse 
button to select the program in an Open dialog.
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2. If you want to run the executable with command-line arguments, enter them in 
the Arguments field.

3. In the Working Directory field, enter the path where the program will read and 
write files and where Sampler places temporary files. By default, this is the /tmp 
directory. You can also click the Browse button and navigate to the working 
directory if it is not /tmp.

4. Click OK. The execution frequency window will now appear.

5. Enter the sampling frequency rate (in milliseconds) in the Sampling Rate field if 
you want a different sampling rate than is currently displayed (20 milliseconds 
is the default; generally you should keep this value between 10 and 50 
milliseconds for optimum sampling).

6. If you want to sample the program as it launches, click the Launch & Sample 
button. The button title changes to Stop Sampling.

If you want to samples the program during a certain activity, click the Launch 
button at the top-right corner of the window. The Launch & Sample button title 
changes to Start Sampling. Press the Start Sampling button to begin sampling.

7. Perform the activities you wish to sample. When you’re done, click Stop 
Sampling.
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Figure 6-2 Sampler’s execution frequency window

When you press the Stop Sampling button, Sampler shows the call-frequency 
information in the Call Graph browser and Call Stack list. For information related 
to using these views, see “Interpreting the Call Graph Browser and the Call Stack” 
(page 71).

Windows for the other modes are extremely similar to each other and quite similar 
to the execution frequency window, except that they are missing the Start/Stop 
Sampling button and the Sampling Rate field. Figure 6-3 shows the allocation 
window.
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Figure 6-3 Sampler’s allocation window

Instead of Start/Stop Sampling, there is a Launch button. When you press this 
button to launch the program, sampler collects function call stacks as specified by 
the selected mode. However, it does not immediately display anything. To display 
information in the Call Graph browser, click the All Nodes button. (In allocation 
mode, click the All Leaks button to see memory leaks). If you want to display 
function calls made over a period of program activity, exercise the program, then 
click New Nodes. (In allocation mode, to see if any new memory leaks occurred 
over that same period, click New Leaks.)

Note that you can attach a window to a program that is already running by 
choosing the Attach command from the File menu.

All Sampler windows have several fields and controls in common. These allow you 
to
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� invert the call graph to start at the leaf nodes of the tree (the Invert Call Tree 
checkbox)

� generate a printable report (a textual representation of the call graph)

� exclude stacks from display to remove irrelevant entries or entries you’ve 
already examined (the Prune button)

� change the root of the call graph to a different function to allow you to focus on 
only the call tree you care about (the Follow Largest Path button)

� select the largest stack in terms of execution frequency or allocations

Interpreting the Call Graph Browser and the Call Stack

All of Sampler’s windows use call stacks as the primary unit of analysis. The 
coalesced call stacks are presented as call graphs (or call trees) in the Call Graph 
browser. If you navigate through the data with the Call Graph browser, you can 
find out how many times a routine is called or how much memory is allocated 
during samples with similar call stacks. 

The number next to a function represents the number of call stacks where that 
particular chain of functions was seen. For example:

� If main has a count of 100, then there were a hundred stack traces with main at the 
top. This number doesn’t indicate how many times a function was called. Many 
scenarios are possible; for example, main called foo once, and foo called malloc 
one hundred times, or main called foo ten times, and foo called malloc ten times 
each time it was called.

� If you need to know how many times foo was called (and know it’s being called 
only a small number of times), you can use a debugger to set a breakpoint on 
function foo and see how many times the breakpoint is hit. Alternately, you can 
use Sampler’s user-defined function-watching mode (see “Watching for Calls to 
Specific Functions” (page 67)).

� If in the Call Graph browser you select main, then createList, then addElement, 
and it shows that 75 out of 100 samples were found in such a call stack, you 
know that 75% of your application’s time is spent in calling addElement when it 
was called by createList. Thus you know not only where significant 
computation or allocations were done, but perhaps why the functions were 
called.
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Limitations of Sampler
Sampler’s results aren’t comprehensive. Because Sampler is based on a statistical 
sampling when threads are preempted, it doesn’t identify all calls or how many 
times a function was called, just those instances it has observed. Thus it might not 
report small, quickly executing functions, and longer running routines can appear 
more often. Leaf functions might appear in the output because the application had 
been preempted during those functions, not necessarily because the functions were 
executing for a long time. To improve the data Sampler generates, use longer 
sample sessions and shorter sample intervals. To see a complete picture of the 
function call graph, use the gprof code profiling tool (“gprof Code Profiler” 
(page 106)) instead.

Sampler may adversely affect the behavior of the computer during time-critical 
operations, or may be impossible to use if the target program runs on the entire 
screen. In these cases, you can use the related sample command-line tool, which 
requires fewer system resources and can be used from a telnet session. See the 
section “sample CPU and Memory Analysis Tool” (page 111) for information on 
using the sample tool.

The sample tool is also useful for diagnosing the reason your program has hung 
during normal execution.

Debugging Allocations With MallocDebug

The MallocDebug application is useful for inspecting how a program uses memory 
and for finding memory leaks in programs. MallocDebug shows the currently 
allocated blocks of memory, organized by the call stack at the time of allocation. No 
prior instrumentation of the program is necessary. MallocDebug can help you 
immediately identify how much allocated memory your application consumes, 
where that memory was allocated from, and which functions allocated large 
amounts of memory. It gathers data on Carbon, Core Foundation, and Cocoa 
allocations as well as malloc allocations. MallocDebug also analyzes the program to 
find allocated memory that is not referenced elsewhere in the program, thus 
helping you find leaks and track down exactly where the memory was allocated.
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MallocDebug is intended for answering questions about your application’s 
memory usage, such as these:

� How much memory is my program using at this point in its execution?

� How much memory gets created by this operation?

� Am I leaking memory? How much?

� What’s the memory overhead of a specific call?

� Am I overrunning any buffers?

MallocDebug includes a number of refinements and supporting tools:

� It provides a hex-dump view for examining raw memory.

� It enables you to mark off any period of execution for analysis.

� It allows you to export performance data for detailed examination or for further 
analysis and refinement by command-line tools. The export feature gives you 
the freedom to look at or summarize the data in the form most relevant to your 
executable.

Using MallocDebug
After launching MallocDebug, the main window appears. There are three basic 
sections in the MallocDebug window. The executable launcher (Figure 6-4) 
occupies the top of the window, the call stack browser (Figure 6-5 (page 74)) is the 
main focus of the window, and the memory buffer browser (Figure 6-9 (page 79)) 
is at the bottom of the window.\

To use MallocDebug, you need to select and launch the application (or other 
executable) you wish to analyze.

Figure 6-4 Launching an executable in MallocDebug
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1. Enter the full path to the program in the Executable field, or click the Browse 
button and select the program using the file-system browser.

2. If you want to run the executable with command-line arguments, enter them in 
the Arguments field.

3. Click the Launch button.

MallocDebug launches the program and performs an initial query about memory 
usage. Further updates occur whenever you press the Update button.

The Call Stack Browser

The main focus of memory analysis in MallocDebug is the call stack browser, shown 
in Figure 6-5.

Figure 6-5 MallocDebug call stack browser

MallocDebug gathers data using its own malloc library. Over a period, as depicted 
in Figure 6-6, it identifies and gathers each function call stack leading to an 
allocation.
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Figure 6-6 Function call stacks gathered at runtime

It coalesces these call stacks into a call tree by overlapping equivalent sequences of 
functions and presents this information in the call stack browser. Figure 6-7 
illustrates the structure of a standard call tree.

The call stack browser has three viewing modes, which you choose in the left-most 
pop-up menu:

Standard mode presents each call stack hierarchically from the function at the top 
of the stack (for instance, main) to the function that performs the allocation: malloc, 
calloc, and so on. Each element of the browser shows the amount of memory that 
has been allocated in the call stack involving that method or function.

Figure 6-7 View of function call tree in standard mode

Inverted mode reverses the hierarchy of standard mode and shows the call tree 
from the allocation functions to the bottom of each stack. This mode is useful for 
highlighting the ways in which specific allocation functions are called. By seeing all 
the calls to malloc or NewHandle or the Core Foundation allocators, you can more 
easily detect wasteful patterns in lower-level libraries. Use inverted mode if you’re 
working on a low-level framework or if you want to focus on how you’re calling 
malloc in your own code. Figure 6-8 depicts the call stack in inverted mode.

InitializeData malloc

mallocNewHandleNewMenu CreateMenu

NewHandleNewMenu malloc

InitializeData malloc

mallocNewHandle
NewMenu

CreateMenu

NewHandle malloc
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Figure 6-8 View of function call tree in inverted mode

Flat mode shows memory usage for every method and function of an application in 
a single list, sorted by allocated amount. All of the instances of a function call are 
collapsed into one browser item corresponding to that function. A function’s 
memory use includes the sum of all the allocations performed in that function and 
all allocations performed in functions that it calls. This allows you to see the total 
amount of memory allocated by every function, not just those at the top or bottom 
of the call stack.

The display mode pop-up menu (located to the right of the viewing-mode pop-up 
menu) affects the type of allocations that are displayed in the call stack browser. 
You have several options:

� All. Gives you the call trees for all currently allocated buffers in your 
application.

� New. Displays functions and methods in your application in which allocation 
has occurred since a specified point in time. The contents of the call stack 
browser thus provide an indication of the memory usage during a period of 
program execution. See “Taking a Snapshot of Memory Usage” (page 77) for the 
related procedure.

� All Leaks, Definite Leaks, Possible Leaks. These items display a call tree 
showing leaked memory blocks in your program. For further discussion of these 
display modes, see “Looking for Memory Leaks” (page 77).

� Trashed. Displays a call tree that shows allocated buffers in your application 
that have been written to incorrectly, either overrunning or underrunning the 
allocated buffer. The list of allocations, which gives you a more detailed picture 
of memory usage, indicates when memory is trashed. If the program has written 
past the end of a buffer, a right arrow (>) appears by the buffer. Similarly, if the 
application has written before the start of a buffer, a left arrow (<) appears by the 
buffer. For more on MallocDebug’s memory-detail features, see “Analyzing 
Raw Memory” (page 79). 

InitializeData

NewMenuCreateMenumalloc NewHandle

NewHandle NewMenu
76 Debugging Allocations With MallocDebug
  Apple Computer, Inc. March 2001 



C H A P T E R  6

Analyzing Performance
Taking a Snapshot of Memory Usage

When you launch a program with MallocDebug, you first see the allocation activity 
that goes on during launch time. Each time the Update button is pressed, 
MallocDebug shows memory usage at the current point in time. Often you want to 
measure the memory usage of your program during some other segment of 
program execution—for example, opening a document. And you want to exclude 
all other allocations from the measurement. To take this memory snapshot, 
complete the following steps:

1. Press the Mark button.

2. Exercise a portion of your program.

3. Select the New item from the second pop-up list.

MallocDebug shows the buffers allocated since the mark was set. Note that 
MallocDebug displays only the buffers that are still currently allocated, so you will 
see only those buffers allocated since the mark that haven’t been freed.

Looking for Memory Leaks

Memory leaks are blocks of memory that have not been freed by the program, but 
that the program no longer references. Memory leaks waste both space and time. 
They waste space by filling up pages of memory, and they waste time by causing 
unnecessary paging activity. If a page contains both valid and leaked memory 
blocks, the leaked memory blocks occupy space that could be used to hold valid 
memory blocks. Another page must be allocated to hold the valid memory which 
could have used the space occupied by the leaked memory.

There are two ways an application can leak memory allocated by malloc. First, the 
application can allocate memory, embed it into data structures, then forget to free 
the memory when it is no longer needed. Because the memory is still referenced, 
MallocDebug cannot automatically detect this sort of leak. One way to find such 
problems is to watch for functions where the total memory allocated grows 
constantly. You can also use the Display New mode to see what memory is 
allocated, but not freed, during an operation. Choose New from the display mode 
pop-up menu and click the Mark button to set a starting point. Perform an operaion 
that should have no impact on memor, such as opening and closing a window. After 
the action, click the Update button. This shows you any memory allocated but not 
freed during the operation. Some of these allocations may be long-lived objects that 
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happened to be created during the operation. However, if a significant amount of 
memory is left allocated, or if objects that should only exist while the window is 
open remain allocated, then you probably have memory leaks.

The second type of leak occurs when an application allocates memory, embeds it in 
a data structure, then gets rid of all pointers to the structure without deleting the 
memory. For example, a program could allocate a new object and assign its address 
to a pointer, then assign 0 or NULL to that pointer, trashing the pointer to the 
allocation. The block of memory is then left unreferenced. Because no pointers 
reference the allocated block, the memory is guaranteed not to be used and is 
obviously taking up space for no purpose. This sort of leak can be detected 
automatically by MallocDebug.

MallocDebug uses a conservative garbage detector for detecting unreferenced 
blocks of memory. When you choose the Leaks, Definite Leaks, or Possible Leaks 
pop-up menu items, MallocDebug searches through your program’s memory for 
pointers to each block allocated by malloc. Any block that is not referenced is 
marked as a memory leak. By noting this wasted memory and changing your code 
to free the memory when it is no longer needed, you can reduce the memory 
footprint of your application.

The three modes of leak detection (all, definite, and possible) use slightly different 
criteria for identifying leaks. 

� If you choose Definite Leaks, MallocDebug finds all blocks allocated by malloc 
where no pointers exist to any part of the buffer. Because this memory is not 
referenced within the application, it is certainly wasted.

� If you choose Possible Leaks, MallocDebug finds all blocks where no pointers 
exist to the beginning of the block, but pointers exist into the middle of the block. 
Pointers into the middle of the block could be random values or stale pointers, 
implying that the block is wasted. Alternatively, the application might only 
reference the block via pointers into the middle of the buffer. This is a common 
method for implementing objects in a procedural language such as C; the first 
few bytes of the buffer store type information, and clients pass around pointers 
into the middle of the buffer where the actual data starts. In such a case, the 
buffer is not leaked even though no pointers exist to the start of the buffer. 
Because MallocDebug cannot determine if an arbitrary value in memory is a 
pointer into the middle of the buffer or is just a random value, you may need to 
examine the allocations found by Possible Leaks to determine if they may truly 
be leaks, or if they are merely buffers that your code is referencing through 
pointer arithmetic.
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� If you choose All Leaks, MallocDebug shows all blocks allocated by malloc 
where no pointers exist to the beginning of the buffer. Its results are the union of 
the results from Definite Leaks and Possible Leaks.

MallocDebug’s garbage collection algorithm might not detect some leaks. See 
“Limitations of MallocDebug” (page 82) for an explanation. Leak detection, 
however, does work correctly in the presence of Carbon handles. Carbon handles 
point at the allocated buffer, allowing the buffer to be moved in memory without 
the user’s pointer becoming invalid. For a buffer created with NewHandle to be 
leaked, no pointers must exist to the handle; the pointer from the handle to the 
buffer is ignored. 

Analyzing Raw Memory

When you select an allocation buffer (functions or methods) in the call stack 
browser, the memory buffer browser (as shown in Figure 6-9 (page 79)) might show 
one or more lines of data. Each line in this list represents a block of memory 
allocated in the currently selected function or in a function eventually called by that 
function. An inspector allows you to examine hexadecimal values in each buffer, 
including special byte patterns that MallocDebug places there to help identify bad 
memory usage.

Figure 6-9 MallocDebug memory buffer browser

Each line in the memory buffer browser gives the address of the buffer, its size in 
bytes, and the zone it was allocated from (for more information on zones, see 
“Using Multiple Malloc Zones” (page 23)). If the buffer is trashed, it also shows 
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whether the bytes before the block are trashed (<) or the bytes after the block are 
trashed (>). Lines in the browser are sorted according to the item selected in the 
pop-up list below the browser:

� Caller sorts the memory buffers according to the functions or methods in the call 
graph making the memory allocation calls. 

� Time sorts the memory buffers according by the order in which the allocation 
event occurred.

� Zone sorts the memory buffers by the zones from which they were allocated.

� Size sorts the memory buffers by byte size.

By double-clicking a line in the memory buffer browser, you bring up the Memory 
View window for that buffer of memory. This window allows you to inspect the 
contents of the buffer.

MallocDebug helps to catch problems such as memory leaks and trashed memory 
by writing certain hexadecimal patterns into the hex dump displayed in the 
memory buffer inspector. It overwrites freed memory with 0X55 and it guards 
against memory overruns and memory underruns by writing 0xDEADBEEF and 
0xBEEFDEAD, respectively, at the beginning and end of each allocated buffer. 

The memory buffer inspector can be particularly helpful for determining why an 
object is leaking. For example, if a string is being leaked, the text of the string might 
indicate where it was created. If an event structure is leaked, you might be able to 
identify the type of event from the contents of memory and thus find the 
corresponding event-handling code responsible for the leak.

Filtering Call Trees

You can temporarily hide items in the call tree by using the Prune button in the call 
stack browser or the Prune command in the Graph menu. When you select an item 
in the call tree and press the Prune Path button, the item is removed from the call 
tree. The Restore Path command in the Graph menu will restore all entries. You can 
also open the Filter Panel (via the Filter Panel command in the Graph menu) which 
shows all the items pruned from the graph. By selecting elements in the Filter panel 
and pressing the Restore button in the panel, you can selectively bring pruned 
elements back into the graph.
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Other Techniques Using MallocDebug

MallocDebug has many other capabilities not discussed here:

� Attaching to a running process (the process must have been linked with the 
MallocDebug instrumented malloc library—either the statically linked version 
(libMallocDebug.a ) or the shared library version (libMallocDebug.A.dylib).

� Streamlining the traversal of the call tree by traversing only the largest allocation 
buffers or by traversing the call tree until there are multiple buffers at any one 
point in the call tree.

� Examining zone usage.

� Categorizing allocations by creating mappings based on allocation zone, path 
through call tree, or text string. You can store the data gathered from such 
mappings and generate reports from it.

For information on using these features of MallocDebug, consult the Help menu 
while running MallocDebug.

Evaluating MallocDebug Problem Reports
Some of the reports that MallocDebug presents identify obvious problems—leaks, 
buffer overruns, and references to freed memory—that you should fix immediately. 
To improve your program’s overall allocation behavior, you can use MallocDebug’s 
detailed accounting of memory usage to explore the memory usage of your 
program. This can allow you to identify wasted memory allocations or strange 
allocation patterns, in turn allowing you to optimize your program’s use of 
memory.

� Don’t ignore small buffers, because they could be the root of a huge allocation 
graph.

� Look at allocation patterns during specific intervals of typical program use, 
especially where you suspect memory usage might be a problem.

� The inverted viewing mode for the call stack browser can sometimes yield 
results faster than the standard or flat modes, by displaying more interesting call 
stacks.

� Keep track of important statistics so you can compare a program’s performance 
between tunings.
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Limitations of MallocDebug
Some issues you may run into when running MallocDebug are described in the 
following section.

Allocated Memory Reporting

MallocDebug shows the current amount of allocated memory at a given point in a 
program’s execution; it does not show the total amount of allocated memory. 
Memory that has been freed is not shown.

To see memory that your program has allocated and freed, use the malloc_history 
tool. See “malloc_history Allocation Debugging Tool” (page 115) for more 
information.

Crashing Under MallocDebug

If a program crashes under MallocDebug, a diagnostic message is printed to the 
console that explains why the program crashed. Listing 6-1 gives an example of 
MallocDebug’s crash diagnostic message.

Listing 6-1 Diagnostic output from crashing under MallocDebug

MallocDebug: Target application attempted to read address 0x55555555, which can’t be read. 
MallocDebug: MallocDebug trashes freed memory with the value 0x55, 
MallocDebug: strongly suggesting the application or a library is referencing 
MallocDebug: memory it already freed. 
MallocDebug: MallocDebug can’t do anything about this, so the app’s just going to have 
to be terminated. 
MallocDebug: libMallocDebug cannot help the application recover from this error, 
MallocDebug: so we’ll just have to shut down the application. 
MallocDebug: ************************************************* 
MallocDebug: THIS IS A BUG IN THE PROGRAM BEING RUN UNDER MALLOC DEBUG, 
MallocDebug: NOT A BUG IN MALLOC DEBUG! 
MallocDebug: ************************************************* 
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Usually a crash results from subtle memory problems, such as dereferencing freed 
memory or dereferencing pointers found outside an allocated buffer. Check 
suspected buffers of memory with the memory-buffer inspector (see “Analyzing 
Raw Memory” (page 79)). If your program is referencing memory at 0x55555555, 
then it is referencing freed memory.

Important
Because the types of bugs detected by MallocDebug 
normally result in subtle, random crashes and data structure 
corruption, fixing these crashers should be your top priority.

Missing Leaks

MallocDebug’s leaked memory analysis can sometimes miss leaks. Because the 
MallocDebug garbage detector cannot know which values in memory are pointers, 
it is possible that an integer has the same value as a pointer to a given node. In this 
case that node doesn’t show up as a leak, even though it really is. (This is why the 
garbage detector is called conservative.)

Stale pointers could also exist in freed buffers, or in other leaked data structures. For 
example, two leaked data structures might both point to each other, but are not 
referenced by the rest of the program. MallocDebug currently cannot detect such 
leaks; circularly linked leaked structures are not detected; leaked tree-like 
structures only note the root node as leaked because it is the only node not 
referenced by another pointer. Because a single leaked buffer might be the start of a 
large data structure, a small leak could be the outward sign of a huge set of leaked 
data structures.

It’s important to keep in mind that all leaks reported by MallocDebug are true leaks, 
and the problems noted above are very rare in practice.

Programs Calling setuid or setgid

For security reasons, the operating system does not allow programs running setuid 
(set the user id at execution) or setgid (set the group id at execution) to have new 
libraries—such as the heap debugging library used by MallocDebug—loaded into 
them. As a result, MallocDebug cannot display information about these programs 
if they are not run by that user or a member of that group.

If you want to examine a setuid or setgid program with MallocDebug, you have 
two options:
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� Use MallocDebug on a copy of the program without the setuid or setgid 
permissions set. This approach may not work if the permissions are needed to 
access files normally not accessible by you.

� Run MallocDebug while logged in as the user who owns the file, or use the su 
tool to log in as another user. Note that you must run your program by calling 
the executable file directly in the latter case since the open tool runs the program 
as if it was launched by the user who logged in.

Simple Command-Line Programs

Simple programs run from the command line that do not use the System framework 
must statically link malloc routines into the executable. As a result, MallocDebug 
cannot insert its heap debugging library into the program at runtime. You can run 
MallocDebug on such a command-line program if you explicitly link the program 
with /usr/lib/libMallocDebug.a. The specially linked application should behave 
normally when run from the command line and can be launched or attached to from 
MallocDebug.

Setting Environment Variables

MallocDebug does not contain support for setting environment variables in the 
environment in which it executes your application. The easiest workaround for this 
limitation is to set those variables in MallocDebug’s environment. To do this, set the 
environment variables on the command line (in Terminal), and then run 
MallocDebug by calling the executable directly (not using the open command). 
Applications run by MallocDebug inherit MallocDebug’s environment, and thus 
the variables you set on the command line. See also “Quick Command-Line Primer” 
(page 63).

Observing Allocations With ObjectAlloc

ObjectAlloc allows you to observe memory allocation activity in an application. It 
retains a history of allocations and deallocations, allowing you to identify repetitive 
allocation behavior and overall allocation trends.
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The information displayed by ObjectAlloc is recorded by an allocation statistics 
facility built into the Core Foundation framework. When this facility is active, every 
allocation and deallocation is recorded as it happens. For Objective-C objects, copy, 
retain, release, and autorelease are recorded.

Using ObjectAlloc
At launch, ObjectAlloc asks you for an application to inspect. Select an application 
and ObjectAlloc’s window appears.

When you’re ready to begin gathering data, click the Start button (the button with 
the green arrowhead or play symbol). (The Start button becomes the Stop button, 
which you can then use to stop gathering data.) ObjectAlloc launches the 
application and display memory allocations as they occur, as shown in Figure 6-10.

Figure 6-10 ObjectAlloc window
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To view allocation data from the past, you must press either the Stop or Pause 
buttons to stop or pause collection of memory data. You can then use the Step 
Backward and Step Forward buttons to single-step through the allocation history, 
or you can drag the slider at the top of the window (the furthest-left position of the 
slider is launch time, the furthest-right position of the slider is the most recent data).

The Mark button sets a mark. You can use the “Show since mark” checkbox to 
toggle the display between events that have occurred since the mark was set and 
events that have occurred since the application was launched.

Due to the sheer quantity of information being processed, continuously updating 
ObjectAlloc’s display can noticeably slow the system down. If the “Live update” 
checkbox is not selected, the display is updated only when the ObjectAlloc window 
is activated or deactivated.

ObjectAlloc’s main window contains three tabs, Global Allocations, Instance 
Browser, and Call Stacks, each displaying complementary data.

Browsing Global Allocations

The Global Allocations tab contains a table with a listing of all memory blocks ever 
allocated in the application. The Category column shows the type of the memory 
block—either an Objective-C class name or a Core Foundation object name. If 
ObjectAlloc cannot deduce type information for the block, it uses “GeneralBlock-” 
followed by the size of the block (in bytes).The Current column shows the number 
of blocks of each type allocated but not (yet) released. The Peak column shows the 
largest number of blocks of each type that existed at any given time. The Total 
column shows the total number of blocks of each type that have been allocated, 
including blocks that have since been released.

The histogram bars to the right of the Total column are graphical representations of 
the three columns: the dark portion of the bar indicates the Current value, the 
middle portion of the bar is the additional number under Peak, and the complete 
length of the bar indicates the value under Total. The Scale slider controls the 
number of objects represented by each pixel in a bar (the actual number is shown to 
the right of the bar).

The “Counts are bytes” checkbox changes the numbers in the Current, Peak, and 
Total columns to reflect the number of bytes allocated (per object type) instead of 
the number of objects allocated (per object type).
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Browsing Object Instances

The Instance Browser tab lists each type of block. Clicking a block type displays a 
list of all instances of that block. Clicking the address of a block instance displays a 
list of all allocation events pertaining to that block. If the block has not yet been 
freed, the contents of the block are displayed in the bottom pane of the ObjectAlloc 
window. Clicking an event brings up a textual description of the event, including a 
function call stack.

Browsing Call Stacks

The Call Stacks tab displays a table of each block type along with the number of 
instances (Count) and the number of bytes allocated to those instances (Size). The 
furthest-right column of this table contains the first item of a hierarchical function 
call stack. Clicking the disclosure triangle displays the next level of the function call 
stack. When the function call stack is open, it displays the location of each allocation.

The Descend Unique Path button discloses the selected function call stack to the 
deepest function shared by each instance’s function call stack.

The Descend Max Path button discloses the selected function call stack to the 
deepest function in the stack.

Limitations of ObjectAlloc
The function call stacks collected by ObjectAlloc are not guaranteed to be accurate. 
In practice, this problem is rarely seen.

QuartzDebug for Debugging Graphics

QuartzDebug is a debugging interface for the Quartz graphics system.

Upon launch, the QuartzDebug options window (Figure 6-11) appears. It contains 
three debugging checkboxes (all initially deselected) and a Show Window List 
button.
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The “Autoflush drawing” checkbox flushes the contents of a CoreGraphics graphics 
context after each drawing operation.

When “Flash screen updates” is selected, regions of the screen that are about to be 
updated are painted yellow, followed by a brief pause, followed by the actual 
screen update. This allows you to see screen updates as they occur. The pause 
allows you to see the region in yellow; without it, the screen would be updated 
immediately, possibly faster than you can perceive it. To turn off the pause, select 
the No delay after flash option.

Figure 6-11 QuartzDebug options window

Use the Show Window List button to display a text window containing a static 
snapshot of the system-wide window list. The list identifies the owner of each 
window and the memory the window occupies. This is useful for understanding the 
impact of buffered windows on your application’s memory footprint. 

Listing 6-2 shows a sample window list and Table 6-1 explains the meaning of each 
column in the window list.

This list is a snapshot, not updated automatically. To update the snapshot, either 
press the Show Window List button again, or choose Show Window List from the 
File menu. Note that you will need to scroll the window list window down to see 
the new snapshot.
88 QuartzDebug for Debugging Graphics
  Apple Computer, Inc. March 2001 



C H A P T E R  6

Analyzing Performance
Listing 6-2 QuartzDebug window list

CID  WID kBytes  Type     Visible   Backing Shared   Fade Bps Level Rect                  Name
==== === ======= ======== ========= ======= ======== ==== === ===== ===================== 
=====================
560f  6c   56.3  Buffered OffScreen  Meshed  Private 100% 32     20 { 159,  22, 213,  65} 
QuartzDebug.app
560f  6b    8.3  Buffered OffScreen  Meshed  Private 100% 32      0 {   0, 853,  63,  17} 
QuartzDebug.app
3803  63  160.3  Buffered OffScreen  Meshed  Private 100% 32      0 {   0, 742, 320, 128} 
Clock.app
6223  5e  100.3I Buffered OffScreen  Opaque  Private 100% 32     20 {   0,   0,1152,  22} 
TextEdit.app
3803  59    4.3  Buffered OffScreen  Meshed  Private 100% 32      0 {   0, 851,  19,  19} 
Clock.app
6223  57    4.3  Buffered OffScreen  Meshed  Private 100% 32      0 {   0, 851,  19,  19} 
TextEdit.app
6223  56 2052.3  Buffered  Obscured  Meshed  Private 100% 32      0 {  41, 174, 810, 631} 
TextEdit.app
3403  52    4.3  Buffered  Obscured  Meshed  Private 100% 32     11 {   0,   0,   9,   5} 
Dock.app
3803  4f  100.3I Buffered OffScreen  Opaque  Private 100% 32     20 {   0,   0,1152,  22} 
Clock.app
560f  4e 2068.8  Buffered  Obscured  Meshed  Private 100% 32      0 {  96, 100, 835, 606} 
QuartzDebug.app
3103  2b  943.9  Buffered  Obscured  Meshed  Private 100% 32      0 { 491, 155, 543, 427} 
Finder.app
560f  2a  100.3  Buffered  Obscured  Opaque  Private 100% 32     20 {   0,   0,1152,  22} 
QuartzDebug.app
560f  29    4.3  Buffered OffScreen  Meshed  Private 100% 32      0 {   0, 851,  19,  19} 
QuartzDebug.app
560f  28  298.1  Buffered  Obscured  Meshed  Private 100% 32      0 { 803,  64, 300, 222} 
QuartzDebug.app
3403  27    4.3  Buffered  Obscured  Meshed  Private 100% 32     11 {   0,   0,   9,   5} 
Dock.app
3803  24  128.3  Buffered OffScreen  Meshed  Private 100% 32      0 {   0, 614, 128, 256} 
Clock.app
3803  23   64.3  Buffered OffScreen  Opaque   Shared  58% 32     21 { 591, 290, 128, 128} 
Clock.app
   0  22    4.3  Buffered  Obscured  Meshed  Private 100% 32    -20 {   0,  22,   1,  16} 
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3103  21  100.3I Buffered OffScreen  Opaque  Private 100% 32     20 {   0,   0,1152,  22} 
Finder.app
3103  1f  943.9  Buffered  Obscured  Meshed  Private 100% 32      0 {  50,  86, 543, 427} 
Finder.app
3403  1c  292.3  Buffered  Obscured  Meshed  Private 100% 32     10 {  76, 796,1000,  74} 
Dock.app
3403  1b    4.3  Buffered  Obscured  Meshed  Private 100% 32     11 {   0,   0,   9,   5} 
Dock.app
3403  1a    4.3  Buffered  Obscured  Meshed  Private 100% 32     11 {   0,   0,   9,   5} 
Dock.app
3403  19   80.3  Buffered  Obscured  Meshed  Private 100% 32     11 {   0,   0, 128, 128} 
Dock.app
3403  18   80.3  Buffered  Obscured  Meshed   Shared 100% 32     11 {   0,   0, 128, 128} 
Dock.app
3403  17   80.3  Buffered  Obscured  Meshed  Private 100% 32     11 {   0,   0, 128, 128} 
Dock.app
3403  16   80.3  Buffered  Obscured  Meshed  Private 100% 32     11 {   0,   0, 128, 128} 
Dock.app

Table 6-1 QuartzDebug window list columns 

Column Description

CID The connection ID of the window. Used internally by the window server. 
Typically, the connection ID is the same for all windows owned by a 
process.

WID The ID of the window itself.

kBytes The amount of memory occupied by the window buffer and other large 
data structures. Specified in kilobytes. The letter I is appended to the 
size if the buffer is invalid (in need of an update).

Type Buffered windows are buffered in shared memory. All graphics 
operations are recorded in the backing buffer and drawn to screen by the 
window server as necessary.
Only the portions of a Retained window that are obscured by other 
windows are saved in the buffer. This results in some memory savings, 
but disables translucency.
Graphics operations in NonRetained windows are not recorded at all.
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Visible The visibility of the window. 
Obscured windows are partially or completely covered by other 
windows.
Offscreen windows are hidden from view.
Onscreen windows are visible and not obscured by other windows in 
front of them.

Backing Indicates the window buffer’s image type.
Meshed buffers are arrays of pixel quadlets, each individual quadlet 
containing the red, green, blue, and alpha (transparency) channel values 
for a pixel. 
Planar buffers are arrays of red, green, and blue triplets, with the alpha 
values for each pixel stored in a separate array.
Opaque window buffers contain no alpha channel. Note that the window 
buffer includes the window’s title bar and frame (or, in Carbon terms, 
“structure region“).

Shared Private windows can only be modified by the application specified in 
the Name column. Shared windows can be manipulated by multiple 
applications.

Fade Opacity of the window. Opacity is separate from the window’s alpha 
channel. Ranges from 0% to 100%, where 0% indicates a completely 
transparent window; 100% indicates a completely opaque window.

Bps Depth of the window’s buffer (the number of bits per pixel).

Level The window level. Windows at higher levels can never be placed 
visually below windows at lower levels. Values from LONG_MIN + 1 to 
LONG_MAX - 16 are supported.

Rect Screen-relative coordinates of the window (in pixels).

Name The name of the application that owns the window.

Table 6-1 QuartzDebug window list columns (continued)

Column Description
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top Process Examination Tool

Syntax: top [-u] [-w] [-k] [-l count] [-s interval] [-e | -d]| -a] [num_procs] 

The top tool displays a periodically sampled set of statistics on system usage. It 
operates in various modes, but by default shows CPU utilization and memory 
usage for each process in the system. The default sampling interval is one second.

Listing 6-3 shows a typical statistical output.

Listing 6-3 Typical output of “top”

Processes:  36 total, 2 running, 34 sleeping... 81 threads 
Load Avg:  0.24, 0.27, 0.23     CPU usage:  12.5% user, 87.5% sys, 0.0% idle
SharedLibs: num =   77, resident = 10.6M code, 1.11M data, 4.75M LinkEdit
MemRegions: num = 1207, resident = 16.4M + 4.94M private, 22.2M shared
PhysMem:  16.0M wired, 25.8M active, 48.9M inactive, 90.7M used, 37.2M free
VM:  476M + 39.8M   6494(6494) pageins, 0(0) pageouts

  PID COMMAND      %CPU   TIME #TH #PRTS #MREGS RPRVT  RSHRD  RSIZE  VSIZE
  318 top 0.0%  0:00.36   1    23    13   172K   232K   380K  1.31M
  316 zsh 0.0%  0:00.08   1    18    12   168K   516K   628K  1.67M
  315 Terminal 0.0%  0:02.25   4   112    50  1.32M  3.55M  4.88M  31.7M
  314 CPU Monito 0.0%  0:02.08   1    63    35   896K  1.34M  2.14M  27.9M
  313 Clock 0.0%  0:01.51   1    57    38  1.02M  2.01M  2.69M  29.0M
  312 Dock 0.0%  0:03.72   2    77    78  2.18M  2.28M  3.64M  30.0M
  311 Finder 0.0%  0:07.68   4    86   171  7.96M  9.15M  15.1M  52.1M
  308 pbs 0.0%  0:01.37   4    76    40   928K   684K  1.77M  15.4M
  285 loginwindow 0.0%  0:07.19   2    70    58  1.64M  1.93M  3.45M  29.6M
  282 cron 0.0%  0:00.00   1    11    14    88K   228K   116K  1.50M
  245 sshd 0.0%  0:02.48   1    10    15   176K   312K   356K  1.41M
  222 SecuritySe 0.0%  0:00.14   2    21    24   476K   828K  1.29M  3.95M
  209 automount 0.0%  0:00.03   2    13    20   336K   748K   324K  4.36M
  200 nfsiod 0.0%  0:00.00   1    10    12     4K   224K    52K  1.22M
  199 nfsiod 0.0%  0:00.00   1    10    12     4K   224K    52K  1.2
[...]
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Interpreting the Output of top
The top tool displays periodically updated statistics on CPU usage, memory usage 
(in various categories), resource usage (such as threads and ports), and paging 
events. It has two modes, a CPU and memory utilization mode and a 
event-counting mode (the events being paging and low-level system calls). The 
former mode is the default. By adjusting the size of your window, you can change 
the number of processes and columns displayed.

In its header area, top displays periodically updated statistics on global state. This 
information includes load averages, total process and thread counts, and total 
memory, broken down into various categories such as private, shared, wired, and 
free. It also includes global information concerning the system frameworks.

Table 6-2 describes the columnar data that appears in the CPU and memory 
utilization mode using the -w parameter. See Table 6-4 (page 96) for a listing of all 
the parameters.

Table 6-2 “top -w” output: the wide CPU and memory utilization mode 

Column Description

PID The BSD process ID

COMMAND The name of the executable or application package. (Note that 
Code Fragment Manager applications are named after the native 
process that launches them, LaunchCFMApp.)

%CPU The percentage of CPU cycles consumed during the interval on 
behalf of this process (both kernel and user space).

TIME The amount of CPU time consumed by this process 
(minute:seconds.hundreths) since it was launched.

#TH The number of threads owned by this process.

#PRTS (delta) The number of Mach port objects owned by this process. The 
delta value, which is enabled by the -w parameter, is relative to 
the value first displayed when top was launched.

#MREG The number of memory regions.

VPRVT (delta) The private address space currently allocated (with -w parameter 
only).
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The RPRVT data (for resident private pages) is a measure of how much real memory 
is used for pages that are referenced only by this task. The pages could be in a 
shared library but there are no other links to anything in the shared library. The 
RSHRD column (for resident shared pages) shows the resident pages of all the shared 
mapped files or memory objects that are shared with other tasks.

RPRVT (delta) The resident private memory.

RSHRD The resident shared memory (as represented by the resident page 
count of each memory object).

RSIZE (delta) The total resident memory as real pages that this process 
currently has associated with it. Some may be shared by other 
processes. The delta value, which is enabled by the -w parameter, 
is relative to the previous sample.

VSIZE (delta) The total address space currently allocated, including shared 
memory. The delta value, which is enabled by the -w parameter, 
is relative to the value first displayed when top was launched.

Note: top does not provide a separate count of the number of pages in shared 
libraries that are mapped into the task.
top reports memory usage of windows in the “shared memory” category because 
window buffers are shared with the window server.

Table 6-2 “top -w” output: the wide CPU and memory utilization mode (continued)

Column Description
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Table 6-3 shows the columns displayed in the event-counting mode, which is 
requested with either the -e, -d, or -a parameter.

Table 6-3 “top -d” output: event-counting mode 

Column Description

PID The BSD process ID.

COMMAND The name of the executable or application package. (Note that Code 
Fragment Manager applications are named after the native process that 
launches them, LaunchCFMApp.)

%CPU The percentage of CPU cycles consumed during the interval on behalf 
of this process (both kernel and user space).

TIME The amount of CPU time consumed by this process 
(minute:seconds.hundreths) since it was launched.

PGINS The number of page-ins, requests for pages from a pager (each page-in 
represents a 4 kilobyte I/O operation).

FAULTS The total number of page faults.

COWS The number of faults that caused a page to be copied (generally caused 
by copy-on-write faults).

MSENT The number of Mach messages sent by the process.

MRCVD The number of Mach messages received by the process.

BSD The number of BSD system calls made by the process.

MACH The number of Mach system calls made by the process.

CSW The number of context switches to the process (the number of times the 
process has been given time to run by the kernel’s scheduler).
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top Command-Line Parameters
The top tool has a number of command-line parameters to control the values it 
displays and how it displays those values, as shown in Table 6-4.

Table 6-4 “top” command-line parameters 

Parameter Description

-u Sorts processes by CPU usage, starting with the highest consumer 
first.

-w Generates additional columns in the output producing a much wider 
display of data. The additional columns include VPRVT and RALIAS and 
the delta columns for #PRTS, RSIZE, and VSIZE. This parameter is 
ignored if event-counting mode is enabled (parameters -e, -d).

-k Reports the memory object map for the kernel task (PID 0). This 
feature is optional because it is fairly expensive to traverse the object 
maps and the kernel task may have a huge number of entries. This 
parameter is ignored if event-counting mode is enabled (parameters 
-e, -d).

[-l count] Enables logging mode, suitable for storing the output to a file. 
Normally, top modifies the statistics in place on the screen. With 
logging mode, top prints new statistics at every sampling interval. 
count is the number of times to output statistics. The default is 1, 
meaning only one sample is logged.

-s interval Changes the sampling interval to interval seconds. By default, top 
updates its output at one-second intervals. 

-e Enables event-counting mode, where the counts reported are absolute 
counters for paging and messaging activity, starting from the time the 
process was initially launched. The -w and -k parameters are ignored 
when running in event-counting mode.
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fs_usage File System Access Analysis Tool

Syntax: fs_usage [-e] [-w] [pid | proc_name …]

fs_usage presents an ongoing display of system-call usage statistics related to 
file-system activity, including page-ins and errors. By default this includes all 
current processes running on the system, including fs_usage itself. You can limit the 
statistics, however, to include or exclude a specified list of processes.

-d Enables delta event-counting mode, similar to the -e parameter, but 
with counts reported as deltas relative to the previous sample. The -w 
and -k parameters are ignored when running in event-counting delta 
mode.

-a Shows accumulated events from the time top is run. Additionally, the 
%CPU value is calculated as the average over the time top is running, 
thus indicating where the CPU usage goes over the span of an 
activity.

num_procs Limits the number of processes displayed (output lines) to this value. 
The display is limited to the number of rows that your Terminal 
window is currently displaying. If num_procs is not specified, the 
number of rows that can fit in your Terminal window is used.
Unless the -u parameter is specified, processes are displayed in 
descending PID order, on the assumption that you will want to see 
the most recently-launched processes at the top of the list.
top will adapt at runtime to Terminal window size changes, 
displaying a greater or lesser number of processes according to the 
new size.

Table 6-4 “top” command-line parameters (continued)

Parameter Description
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Identifying the patterns used by your application to access files can suggest 
optimizations. For example, a slow-launching application might be trying to read 
from preferences stored on a network file server. Try watching for operations that 
take a long time to complete, and see which files are being accessed.

Important
File system activity information is subject to access controls. 
The kernel does not allow you to access information through 
fs_usage unless you are logged in as the root user (or logged 
in at a Terminal window using the su command—on some 
systems, sudo su may be required instead).

Figure 6-12 Example of “fs_usage -w” output
98 fs_usage File System Access Analysis Tool
  Apple Computer, Inc. March 2001 



C H A P T E R  6

Analyzing Performance
The fs_usage tool formats its output according to the size of your window. A 
narrow window displays fewer columns of data. Use a wide window for maximum 
data display. The -w parameter forces all columns to be displayed regardless of the 
size of the window.

Interpreting fs_usage’s Output
fs_usage generates a lot of data, continuously and with millisecond granularity. The 
output is not updated in place (as with, say, top); instead, each new line of data is 
appended to existing data. This aspect of the tool makes it especially worthwhile to 
redirect the output to a file and to run the tool during a specific activity.

The columns of fs_usage output have no headings and are separated by spaces. You 
can interpret the type of data in each column by its format. Table 6-5 describes these 
columns.

Table 6-5 Columns of “fs_usage” output 

Column 
Number Example Description

1 14:56:52.386 Timestamp, giving the time of day when the call 
occurred. In wide mode, this field has millisecond 
granularity.

2 fstat or PAGE_IN The name of the called file-system routine or a 
page-in.

3 A=0x45e2a000 Fault address. If the prior column is PAGE_IN, this 
specifies the address being faulted.

3 F=58 File descriptor associated with the call described in 
the second column (for example, fstat or open); in this 
example, 58 is the file descriptor.

4 O=0x5000
or 
B=0x78 
or 
[ 45]

File offset specified to lseek or ftruncate.
or
The number of bytes requested by the call.
or
If the call results in an error, the error number (an 
errno value, see the header file errno.h) is displayed 
between brackets.
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fs_usage Command-Line Parameters
The fs_usage tool parameters are described in Table 6-6.

5 /Network The final 28 bytes of the pathname of the file accessed.

6 0.000459W Elapsed time (in microseconds) spent in the system 
call. A W after the time indicates that the process was 
scheduled out during this file activity (probably 
because it was waiting for a disk or network I/O 
operation to complete). In this case, the elapsed time 
includes the wait time.

7 TextEdit The name of the executable or application package 
that made the system call. (Note that Code Fragment 
Manager applications are named after the native 
process that launches them, LaunchCFMApp.)

Table 6-6 “fs_usage” command-line parameters 

Parameter Description

-e Generates output that excludes sampling of either the running 
fs_usage tool or the processes with the specified process IDs or 
command names. In the latter case, you must explicitly specify 
fs_usage to exclude it.

pid or 
proc_name

One or more process IDs or commands identifying the processes to be 
sampled. If there are multiple processes, separate each ID or 
command with a space. If the -e parameter is specified, the processes 
identified by process ID or command name are excluded from the 
sampling. Without the -e parameter, only the specified processes are 
sampled.

-w Forces all columns to be displayed regardless of the current Terminal 
window size. This is useful when redirecting output to a file.

Table 6-5 Columns of “fs_usage” output (continued)

Column 
Number Example Description
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vmmap Memory Visualization Tool

Syntax: vmmap [-d seconds] pid

vmmap displays the virtual memory regions allocated in a specified process, helping 
a programmer understand how memory is being used, and what the purposes of 
memory at a given address are. For each region, vmmap describes the starting 
address, size of the region in kilobytes, read/write permissions for the page, 
sharing mode for the page, and the purpose of the pages.

The size of the virtual memory region represents the virtual memory pages 
reserved, but not necessarily allocated. For example, using the vm_allocate system 
call reserves the pages, but physical memory won’t be allocated for the page until 
the memory is actually touched. A memory-mapped file may have a virtual 
memory page reserved, but the pages are not instantiated until a read or write 
happens. Thus, this size may not correctly describe the application’s true memory 
usage.

The protection mode describes the access restrictions of the memory region. A 
memory region contains separate flags for reading, writing, and executing. Each 
virtual memory region has a current permission, and a maximum permission. In the 
line for a virtual memory region, the current permission is displayed first, the 
maximum permission second. For example, The first page of an application 
(starting at address 0x00000000) permits neither reads, writes, or execution (---), 
ensuring that any reads or writes to address 0, or dereferences of a NULL pointer 
immediately cause a bus error. Pages representing an executable always have the 
execute and read bits set (r-x). The current permissions usually do not permit 
writing to the region. However, the maximum permissions allow writing so that the 
debugger can request write access to a page to insert breakpoints. Permissions for 
executables appear as r-x/rwx , the first set of bits indicating the current permissions 
and the second set indicating the maximum..

The sharing mode describes whether pages are shared between processes and what 
happens when pages are modified. Private pages (PRV) are pages visible only to this 
process. They are allocated as they are written to and can be paged out to disk. 
Copy-on-write (COW) pages are shared by multiple processes (or shared by a single 
process in multiple locations). When the page is modified, the writing process then 
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receives its own copy of the page. Empty (NUL) sharing implies that the page does 
not really exist in physical memory. Aliased (ALI) and shared (SHM) memory are 
shared between processes.

The sharing mode typically describes the general mode controlling the region. For 
example, as copy-on-write pages are modified, they become private to the 
application. Even with the private pages, the region is still copy-on-write until all 
pages become private. Once all pages are private, then the share mode would 
change to private.

The far left column names the purpose of the memory: __TEXT segment (which 
usually contains read-only code and data), __DATA segment (which usually contains 
data that is both readable and writable), and how the memory was allocated (via 
malloc, on the stack, and so forth). For regions loaded from binaries, the far right 
shows the library loaded into the memory.

Some lines in the output of vmmap describe submaps. A submap is a shared set of 
virtual memory page descriptions that the operating system can reuse between 
multiple processes. The memory between 0x70000000 and 0x80000000, for example, 
is a submap containing the most common dynamic libraries. Submaps minimize the 
operating system’s memory usage by representing the virtual memory regions only 
once. Submaps can either be shared by all processes (machine-wide) or local to the 
process (process-only). If the contents of a machine-wide submap are changed—for 
example, the debugger makes a section of memory for a dynamic library writable 
so it can insert debugging traps—then the submap becomes local, and the kernel 
allocates memory to store the extra copy.

Listing 6-4 gives an example of vmmap output.

Listing 6-4 Typical output of vmmap

==== Non-writable regions for process 313
__PAGEZERO                            0 [   4K] ---/--- SM=NUL ...ts/MacOS/Clock
__TEXT                             1000 [  40K] r-x/rwx SM=COW ...ts/MacOS/Clock
__LINKEDIT                         e000 [   4K] r--/rwx SM=COW ...ts/MacOS/Clock
                                  90000 [   4K] r--/r-- SM=SHM                  
                                 340000 [3228K] r--/rwx SM=COW 00000100 00320...
                                 789000 [3228K] r--/rwx SM=COW 00000100 00320...
Submap                70000000-7fffffff         r--/r-- machine-wide submap
__TEXT                         70000000 [ 916K] r--/r-x SM=COW ...sions/B/System
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__LINKEDIT                     700e5000 [ 264K] r--/r-- SM=COW ...sions/B/System
__TEXT                         70150000 [ 620K] r--/r-x SM=COW ...CoreFoundation
__LINKEDIT                     701eb000 [ 168K] r--/r-- SM=COW ...CoreFoundation
__TEXT                         70220000 [  12K] r--/r-x SM=COW ...ns/A/DesktopDB
__LINKEDIT                     70223000 [   4K] r--/r-- SM=COW ...ns/A/DesktopDB
__TEXT                         70230000 [ 692K] r--/r-x SM=COW ...cdsa_utilities
__LINKEDIT                     702dd000 [ 180K] r--/r-- SM=COW ...cdsa_utilities
__TEXT                         704a0000 [2860K] r--/r-x SM=COW ...s/A/CarbonCore
__LINKEDIT                     7076b000 [ 240K] r--/r-- SM=COW ...s/A/CarbonCore
[...data omitted...]
==== Writable regions for process 313
__DATA                             b000 [   4K] rw-/rwx SM=PRV ...ts/MacOS/Clock
__OBJC                             c000 [   8K] rw-/rwx SM=COW ...ts/MacOS/Clock
                                   f000 [   4K] rw-/rwx SM=COW                  
                                  10000 [ 252K] rw-/rwx SM=ZER                  
MALLOC_USED(DefaultMallocZone_    4f000 [  12K] rw-/rwx SM=PRV                  
MALLOC_USED(DefaultMallocZone_    52000 [  36K] rw-/rwx SM=COW                  
MALLOC_USED(DefaultMallocZone_    5b000 [  12K] rw-/rwx SM=PRV                  
MALLOC_USED(DefaultMallocZone_    5e000 [  28K] rw-/rwx SM=COW                  
MALLOC_USED(DefaultMallocZone_    65000 [   4K] rw-/rwx SM=ZER                  
MALLOC_USED(DefaultMallocZone_    66000 [   8K] rw-/rwx SM=COW                  
MALLOC_USED(DefaultMallocZone_    68000 [   4K] rw-/rwx SM=ZER                  
[...data omitted...]
Submap                85fd1000-85feffff         r--/r-- process-only submap
__DATA                         85ff0000 [  32K] rw-/rw- SM=COW ...A/CoreGraphics
Submap                85ff8000-86a0ffff         r--/r-- process-only submap
__DATA                         86a10000 [   4K] rw-/rw- SM=PRV ...libCGATS.dylib
Submap                86a11000-86e4ffff         r--/r-- process-only submap
__DATA                         86e50000 [   8K] rw-/rw- SM=COW ...ns/A/PrintCore
Submap                86e52000-8fffffff         r--/r-- process-only submap
                               a0002000 [  32K] rw-/rw- SM=SHM                  
                               a000b000 [16384K] rw-/rwx SM=NUL                  
                               a122e000 [  68K] rw-/rw- SM=SHM                  
                               a18c6000 [  68K] rw-/rw- SM=SHM                  
                               a18ea000 [ 204K] rw-/rw- SM=SHM                  
                               a1e73000 [ 168K] rw-/rw- SM=SHM                  
STACK[0](?)                    bff80000 [ 508K] rw-/rwx SM=PRV                  
STACK[0]                       bffff000 [   4K] rw-/rwx SM=PRV                  

==== Legend
SM=sharing mode:  
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COW=copy_on_write PRV=private NUL=empty ALI=aliased 
SHM=shared ZER=zero_filled S/A=shared_alias

==== Summary for process 313
ReadOnly portion of Libraries: Total=27420KB resident=12416KB(45%) 
swapped_out_or_unallocated=15004KB(55%)
Writable regions: Total=21632KB written=536KB(2%) resident=1916KB(9%) 
swapped_out=0KB(0%) unallocated=19716KB(91%)

Interpreting vmmap’s Output
The columns of vmmap output have no headings. Instead you can interpret the type 
of data in each column by its format. Table 6-7 describes these columns.

Table 6-7 Columns of vmmap output 

Column 
Number Example Description

1 __LINKEDIT
or
MALLOC
or
STACK

The name of a Mach-O segment.
or
Allocated memory (via malloc) off the heap.
or
Stack memory.

2 (ObjC_0x46230) The zone used for allocation.

3 4eee000 Address of memory region.

4 [ 124K] Size of the region, in kilobytes
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A few facts about the data in these columns:

� As noted earlier, the displayed size of a virtual memory region includes both 
allocated and unallocated pages. Consequently, the size might be larger than the 
actual memory footprint of a process, because the process could request a block 
of virtual memory but only access portions of it, and the virtual memory 
manager allocates only pages that have been accessed.

� Pages representing parts of a Mach-O executable file are usually not writable.

� The first page (__PAGEZERO, starting at address 0x00000000) has no permissions 
set. This ensures that any reference to a NULL pointer immediately causes an 
error. The page just before the stack is similarly protected so that stack overflows 
will cause the app to crash immediately.

Delta Information

If you specify the -d parameter (plus an interval in seconds), vmmap takes two 
snapshots of virtual-memory usage—one at the beginning of a specified interval 
and the other at the end—and displays the differences. It shows three sets of 
differences:

� individual differences

5 rw-/rwx Access permissions. Specifies protection/maximum 
protection for the region. The first bit is read protection, 
second is write protection, third is execute protection. 
The process does not have permission to read, write, or 
execute in a region for which those permissions are 
displayed as a dash (-).

6 SM=PRV Sharing mode for the region, either COW (copy-on-write), 
PRV (private), NUL (empty), ALI (aliased), or SHM (shared). 

7 ...ts/MacOS/Cl
ock

The end of the pathname identifying the executable 
mapped into this region of virtual memory. If the 
region is stack or heap memory, nothing is displayed in 
this column.

Table 6-7 Columns of vmmap output (continued)

Column 
Number Example Description
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� regions in the first snapshot that are not in the second

� regions in the second snapshot that are not in the first

vmmap Command-Line Parameters
Parameters to the vmmap tool are described in Table 6-8.

gprof Code Profiler

Syntax: gprof [-a] [-b] [-s] [-S] [-z] [-x] [(-e name|-E name|-f name|-F name) 
[ executable file [ gmon.out ... ] ] 

Given profiling data collected at runtime, gprof produces an execution profile of a 
program.  The effect of called routines is incorporated in the profile of each caller. 
The profile data is taken from the call graph profile file (gmon.out by default), which 
is created by a program compiled and linked with the -pg parameter. The symbol 
table in the executable is correlated with the call graph profile file. If more than one 
profile file is specified, the gprof output shows the sum of the profile information in 
the given profile files.

gprof is useful for many purposes, including

Table 6-8 “vmmap” command-line parameters

Parameter Description

-d seconds Specifies that vmmap display delta information (differences) between 
the start and end of the period defined by seconds. See “Delta 
Information” (page 105) for more information.

pid or 
proc_name

A process ID or name identifying the target process.
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� cases where the Sampler application doesn’t work, such as command-line tools 
or applications that quit after a short period of time

� generating a full call graph to understand all the code that might be called in a 
given program

� optimization of code locality (for more information, see “Improving Locality of 
Reference” (page 126))

gprof Command-Line Parameters
Parameters to the gprof tool are described in Table 6-9.

Table 6-9 “gprof” command-line parameters 

Parameter Description

-a Suppresses display of functions declared static. The static function’s 
profiling information is absorbed by the function located immediately 
before it in the executable file.

-b Suppresses display of the description of each field in the profile.

-e name Suppresses the display of the profile entry for the routine name and all 
its descendants (unless they have other ancestors that aren’t 
suppressed). Any number of -e arguments may be passed on a single 
command line, but only one routine name may be listed for each 
argument.

-E name Suppresses the display of the profile entry for routine name (and its 
descendants) as -e, above, and also excludes the time spent in that 
routine (and its descendants) from the total and percentage time 
computations.

-f name Displays the graph profile entry of only the specified routine name and 
its descendants. Any number of -f arguments may be passed on a single 
command line, but only one routine name may be listed for each 
argument.
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Limitations of gprof .order Files
.order files contain only those functions that were called or sampled. For library 
functions to appear correctly in the order file, a whatsloaded file produced by the 
linker should exist in the working directory.

-S does not work with executables that have already been linked with an order file.

Production of the gmon.order file can take a long time—it can be suppressed with 
the -x parameter.

Filenames will be missing for

� files compiled without the -g parameter

� routines generated from assembly-language source

-F name Displays the profile entry of only the routine name and its descendants 
(as -f, above) and also uses only the times of the displayed routines in 
total time and percentage computations. Any number of -F arguments 
may be passed on a single command line, but only one routine name 
may be listed for each argument. The -F parameter overrides the -E 
parameter.

-s Produces a profile file called gmon.sum, which represents the sum of the 
profile information in all specified profile files. This summary profile file 
may be passed to subsequent executions of gprof to accumulate profile 
data across several runs of an executable.

-S Produces four ordering files for use with the linker’s -sectorder 
parameter: gmon.order is an ordering based on a “closest is best” 
algorithm, callf.order is based on call frequency, callo.order is based 
on call order, and time.order is based on time spent in each routine.

-z Displays routines that have zero usage (as indicated by call counts and 
accumulated time).

-x Suppresses the generation of the gmon.order file when using the -S 
parameter.

Table 6-9 “gprof” command-line parameters (continued)

Parameter Description
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� executables that have had their debugging symbols removed (as with the strip 
tool)

leaks Memory Leak Finder

Syntax: leaks [-cycles] [-nocontext] [-nostacks] [-exclude function] pid

leaks examines a specified process for buffers allocated by malloc that are not 
referenced by the program. Such buffers waste memory; removing them can reduce 
swapping and memory usage.

For each leaked buffer allocated by malloc, leaks displays the address of the leaked 
memory and its size. If leaks can determine that the object is an instance of an 
Objective-C or Core Foundation object, it also specifies the name of the object. If the 
-nocontext option is not specified, leaks then displays a hexadecimal dump of the 
contents of the memory. If the MallocStackLogging environment variable is set, 
leaks finally displays a stack trace describing where the buffer was allocated.

For more information on setting environment variables, see “Quick Command-Line 
Primer” (page 63). For more information on malloc’s debugging options, see 
“Debugging Allocations With Malloc” (page 24).
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leaks Command-Line Parameters
Parameters to the leaks tool are described in Table 6-10.

Limitations of leaks
Memory allocated with Carbon’s NewHandle function and then leaked will not be 
noted by leaks. Thus, running leaks on a Carbon application shows only a subset 
of all possible leaks. The leaks reported are always true leaks.

MallocDebug (see “Debugging Allocations With MallocDebug” (page 72)) correctly 
finds leaked blocks allocated using NewHandle, and permits easier browsing of 
leaked blocks. However, MallocDebug does not detect leaks in circularly-linked 
structures or identify groups of leaked, connected nodes; the pointer analysis in 
leaks can correctly identify such leaks.

Table 6-10 “leaks” command-line parameters

Parameter Description

pid The BSD process identifier.

-cycles Causes leaks to use a different leak-finding algorithm which 
may return different results. Results are displayed in a manner 
which helps you identify the source of a leak. It displays 
connected groups of function nodes, with the root node first. 

-nocontext Ccauses leaks to withhold a hex dump of the leaked memory. 
Although this information can be useful for recognizing the 
contents of the buffer and understanding why it might be 
leaked, it can also provide overwhelming detail.

-exclude function Allows you to ignore leaks. Any allocations that were called 
from the function function are excluded from leaks output.

 -nostacks If the call stack information is being displayed, and you wish to 
suppress it, the -nostacks option causes leaks to turn off 
display of the call stack.
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sample CPU and Memory Analysis Tool

Syntax: sample pid duration [interval] [-mayDie]

The sample tool analyzes a program’s running behavior and then prints a report. It 
stops the program periodically, recording the function call stack each time, and then 
computes and displays the functions that were most frequently executing during 
the interval the program was examined. This information can help you locate 
functions consuming large chunks of CPU time. You can thereby find spots in your 
code where execution time or allocation size is more than you expect, and then 
improve your code to reduce running time or memory usage. You can also use 
sample to understand what’s going on when a program appears hung or to optimize 
a program in a manner similar to profiling.

The sample tool is the command-line equivalent of the Sampler application. It is less 
invasive than the application and can be run from a telnet or ssh session. See the 
section “Code Profiling With Sampler” (page 64) for common background 
information, analytical approaches, and caveats.

Here is an example of running sample at the command line:

> sample Desktop 3 20
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sample Command-Line Parameters
The parameters to the sample tool are described in Table 6-11.

To have sample properly analyze a process, you must start the process to be 
analyzed with a full path instead of a relative path.

Note that sample stops sampling as soon as the process terminates, so you can use 
the -mayDie option with a long duration to sample a short-lived process.

sc_usage System Call Statistics Tool

Syntax: sc_usage pid [-c codefile] [-e] [-l] [-s interval]

The sc_usage tool displays an ongoing sample of system call and page fault usage 
statistics for a given process. As new system calls are made, it adds to the list as they 
are generated by the application being watched. The counts displayed are the 
cumulative totals since sc_usage was launched and the delta changes for this sample 
period.

sc_usage shows a number of things other than the number of occurrences for each 
type of system call, among them the following:

Table 6-11 “sample” command-line parameters

Parameter Description

pid The process ID (PID) or the name of the process to be analyzed.

duration The duration (in seconds) of the sampling session.

interval The interval between samplings (in microseconds). The default is 10 
microseconds.

-mayDie Causes sample to read the symbol information in the process 
immediately. Use this parameter if the process is short-lived and likely 
to terminate soon. 
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� the amount of CPU time consumed

� the absolute time a process is waiting

� the pathnames for blocked system calls (per thread)

� the cumulative time a thread has been blocked (identified by number)

� the current scheduling priority for the thread

� the number of page-ins, copy-on-write operations, zero-filled faults, and faults 
that hit in the page cache

� global state, including the number of preemptions, context switches, threads, 
faults, and system calls found during the sampling period

Be aware that the mach_msg_overwrite_trap kernel routine will always be the system 
call with the greatest amount of CPU time used, since most processes accomplish 
interapplication communication by blocking on it.

Listing 6-5 shows some typical sc_usage output.

Listing 6-5 Typical sc_usage output

Finder     5 preemptions    7 context switches    1 thread     11:18:02
    0 faults 12 system calls

TYPENUMBER CPU_TIME   WAIT_TIME
-------------------------------------------------------------------------
System  Idle   0:07.345( 0:01.067)
System  Busy   0:00.825( 0:00.014)
Finder  Usermode  0:00.109

mach_msg_overwrite_trap   73(6) 0:06.299   0:01.866( 0:00.301) W
read  2    0:00.000
open  4    0:00.000
close 4    0:00.000
sigprocmask613(6) 0:00.003
fcntl 1    0:00.000
gettimeofday22    0:00.000
statfs      13    0:00.040
fstatfs      1    0:00.000
fstat 1    0:00.000
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lstat52    0:00.018
getdirentries2    0:00.000
lseek 1    0:00.000
getattrlist 54    0:00.021

ps Process Listing Tool

The ps tool can show a simple snapshot of process resource usage. It is not generally 
recommended for use as a performance measurement tool. “top Process 
Examination Tool” (page 92) should be used instead.

pagestuff Mach-O File Page Analysis Tool

Syntax: pagestuff [-a][-p] file [page number…] 

pagestuff displays information about the specified logical pages of a file 
conforming to the Mach-O executable format. For each specified page of code, 
symbols (function and static data structure names) are displayed. All pages in the 
__TEXT, __text section are displayed if no page numbers are given.

Table 6-12 “pagestuff” command-line parameters

Parameter Description

-a Displays all pages of the file. All other arguments are ignored.
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heap Memory Block Listing Tool

Syntax: heap pid

heap lists memory blocks allocated with the malloc system call that have been 
allocated in the address space of the specified process. Any Objective-C objects 
found are also described, sorted by class.

MallocDebug (see “Debugging Allocations With MallocDebug” (page 72)) also 
provides information about memory blocks allocated with malloc, but heap, being a 
small command-line tool, is much less invasive (needing fewer system resources).

malloc_history Allocation Debugging Tool

Syntax: malloc_history pid [address] [-all_by_size] [-all_by_count]

malloc_history displays function call stacks that indicate the exact location of calls 
to allocation functions such as malloc and free by the specified process.

If an address is specified, malloc_history lists the function call stack for calls to 
malloc and free that allocate and free the buffer located at that address.

-p Prints a list of the sections of the specified Mach-O file, with 
offsets and lengths. All other arguments are ignored.

file Pathname of a Mach-O executable.

page number… Numbers of one or more logical pages to display. Page numbers 
are separated by spaces.

Table 6-12 “pagestuff” command-line parameters

Parameter Description
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The -all_by_size and -all_by_count parameters list function call stacks for all 
allocations. Frequent allocations from the same point in the program (that is, the 
same call stack) are grouped together. and output presented either from largest 
allocations to smallest, or from most allocations to least.

The call stacks are collected by the standard Mac OS X allocation library when the 
environment variable MallocStackLogging is set to 1. To record allocations by 
address, the environment variable MallocStackLoggingNoCompact must also be set to 
1.

For information on using environment variables, see “Quick Command-Line 
Primer” (page 63).

Be sure to also see (“Debugging Allocations With MallocDebug” (page 72)) for 
information on tracking memory leaks with MallocDebug.
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7 Organizing Your Executable File
This chapter describes some of the features of the Mach-O executable format (the 
primary file format for executable code on Mac OS X) and offers strategies for 
reorganizing Mach-O executables for optimal layout in memory. The goal of this 
optimization is reducing paging I/O activity, directly resulting in improved 
runtime performance. 

Overview of the Mach-O Executable Format

Mach-O is the executable format of native binaries compiled from C code (or 
object-oriented variants such as C++ and Objective-C) on Mac OS X. This format 
determines the order in which the code and data of the executable are read into 
memory. The ordering of code and data has implications for memory usage and 
paging activity and thus directly affects the performance of your program.

A Mach-O binary is organized into segments. Each segment contains one or more 
sections. Code or data of different types goes into each section. Segments always 
start on a page boundaries, but sections are not page-aligned. The size of a segment 
is the count of all the bytes of the sections it contains, which is then rounded up to 
the next virtual memory page boundary (4096 bytes, or 4 kilobytes). Thus, the 
minimum size of a segment is 4 kilobytes, and thereafter it is sized at 4 kilobyte 
increments.

The segments and sections of a Mach-O executable are named according to their 
intended use. The convention for segments is all-uppercase letters preceded by 
double underscores; the convention for sections is all-lowercase letters preceded by 
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double underscores. There are several possible segments within a Mach-O 
executable, but only three of them are of interest in relation to performance: the 
__TEXT segment, the __DATA segment, and the __LINKEDIT segment.

The __TEXT Segment: Read Only
The __TEXT segment is a read-only area containing executable code and constant 
data. By convention, the compiler tools create every executable file with a read-only 
__TEXT segment. Because the segment is read-only, the kernel can map the __TEXT 
segment directly from the executable into memory just once. When the segment is 
mapped into memory, it can be shared among all processes interested in its 
contents. (This is primarily the case with frameworks and other shared libraries.) 
The read-only attribute also means that the pages that make up the __TEXT segment 
never have to be saved to backing store. If the kernel needs to free up physical 
memory, it can discard one or more __TEXT pages and re-read them from disk when 
they are needed.

Major sections in the __TEXT segment are summarized in Table 7-1.

The __TEXT segment can contain other sections, and some of the sections listed above 
might not appear in an executable. 

Table 7-1 Major sections in the __TEXT segment

Section Description

__text The compiled machine code for the executable

__const The general constant data for the executable

__cstring Literal string constants (quoted strings in source code)

__picsymbol_stub Position-independent code stub routines used by the dynamic 
linker (dyld).
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The __DATA Segment: Read/Write
The __DATA segment contains the nonconstant data for an executable. This segment 
is both readable and writable. Because it is writable, the __DATA segment of a 
framework or other shared library is logically copied for each process linking with 
the library. When memory pages such as those making up the __DATA segment are 
readable and writable, the kernel marks them copy-on-write; therefore when a 
process writes to one of these pages, that process gets its own private copy of the 
page. 

The __DATA segment has a number of sections, some of which are used only by the 
dynamic linker. Table 7-2 summarizes the sections of the __DATA segment.

Mach-O Performance Implications
The composition of the __TEXT and __DATA segments of a Mach-O executable file has 
a direct bearing on performance. The techniques and goals for optimizing these 
segments are different. However, they have as a common goal: greater efficiency in 
the use of memory.

Table 7-2 Major sections of the __DATA segment

Section Description

__data Initialized global variables (for example int a = 1; or static 
int a = 1;).

__const Constant data needing relocation (for example, 
char * const p = "foo";).

__bss Uninitialized static variables (for example, static int a;).

__common Uninitialized external globals (for example, int a; outside 
function blocks).

__dyld A placeholder section, used by the dynamic linker.

__la_symbol_ptr “Lazy” symbol pointers. Symbol pointers for each undefined 
function called by the executable.

__nl_symbol_ptr “Non lazy” symbol pointers. Symbol pointers for each 
undefined data symbol referenced by the executable.
Overview of the Mach-O Executable Format 119
  Apple Computer, Inc. March 2001



C H A P T E R  7

Organizing Your Executable File
Most of a typical Mach-O file consists of executable code, which occupies the __TEXT, 
__text section. As noted in “The __TEXT Segment: Read Only” (page 118), the 
__TEXT segment is read-only and is mapped directly to the executable file. Thus, if 
the kernel needs to reclaim the physical memory occupied by some __text pages, it 
does not have to save the pages to backing store and page them in later. It only 
needs to free up the memory and, when the code is later referenced, read it back in 
from disk. Although this is cheaper than swapping—because it involves one disk 
access instead of two—it can still be expensive, especially if many pages have to be 
recreated from disk.

One way to improve this situation is through improving your code’s locality of 
reference through procedure reordering, as described in “Improving Locality of 
Reference” (page 126). This technique groups methods and functions together 
based on the order in which they are executed, how often they are called, and the 
frequency with which they call one another. If pages in the __text section group 
functions logically in this way, it is less likely they have to be freed and read back in 
multiple times. For example, if you put on one or two pages all functions of your 
application that perform launch-time initialization tasks, the pages do not have to 
be recreated after those initializations have occurred.

Unlike the __TEXT segment, the __DATA segment can be written to and thus the pages 
in the __DATA segment are not shareable. The nonconstant global variables in 
frameworks can have an impact on performance because each process that links 
with the framework gets its own copy of these variables. The main solution to this 
problem is to move as many of the nonconstant global variables as possible to the 
__TEXT,__const section by declaring them const. “Reducing the Number of Sharable 
Pages” (page 121) describes this and related techniques. This is not usually a 
problem for applications because the __DATA section in an application is not shared 
with other applications.

The compiler stores different types of nonconstant global data in different sections 
of the __DATA segment. These types of data are uninitialized static data and symbols 
consistent with the ANSI C notion of “tentative definition” that aren’t declared 
extern. Uninitialized static data is in the __bss section of the __DATA segment. 
Tentative-definition symbols are in the __common section of the __DATA segment. 

The ANSI C and C++ standards specify that the system must set these types of 
variables to zero. (Other types of uninitialized data are left uninitialized.) Because 
uninitialized static variables and tentative-definition symbols are stored in separate 
sections, the system needs to treat them differently. But when variables are in 
different sections, they are more likely to end up on different memory pages and 
thus can be swapped in and out separately, making your code run slower. The 
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solutions to these problems, as described in “Reducing the Number of Sharable 
Pages” (page 121), is to consolidate the nonconstant global data in one section of the 
__DATA segment.

Reducing the Number of Sharable Pages

Although limiting your nonconstant data is a performance gain for all types of 
software, it is especially beneficial to frameworks. As noted in “Overview of the 
Mach-O Executable Format” (page 117), the data in the __DATA segment of Mach-O 
binaries is writable and thus shareable (via copy-on-write). Being shareable in a 
framework’s dynamic shared library means that nonconstant global data can 
potentially be replicated among all processes linking with the framework. This 
section describes the steps you can take to remedy this situation.

Declaring Data as const
The easiest way to make the __DATA segment smaller is to move as much data as 
possible into the __TEXT segment by declaring it const. Most of the time, it’s easy to 
mark data as constant. For example, if you’re never going to modify the elements in 
an array, you should change its declaration from this:

int fibonacci_table[8]; = {1, 1, 2, 3, 5, 8, 13, 21};

to this:

const int fibonacci_table[8]; = {1, 1, 2, 3, 5, 8, 13, 21};

Remember to mark pointers as constant (when appropriate). In this example, the 
strings "a" and "b" are constant, but the array pointer foo is not:

static const char *foo[] = {"a", "b"}; 
foo[1] = "c";       // NOT OK: foo[1] is constant.
foo = {"c", "d"};   // OK:     foo is not constant.

You need to add the const keyword to the pointer to make the pointer constant. 
Here, both the array and its contents are constant:
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static const char *const foo[] = {"a", "b"}; 
foo[1] = "c";       // NOT OK: foo[1] is constant.
foo = {"c", "d"};   // NOT OK: foo is now constant.

Sometimes you may want to rewrite your code to separate out the constant data. 
This example contains an array of structures in which only one field is declared 
const. Because the entire array isn’t declared const, it is stored in the __DATA 
segment. 

struct {
const char *imageName; 
NSImage *image;

} images[100] = { 
{"FooImage", nil},
// ... 
// and so on

} 

To store as much of this data as possible in the __TEXT segment, create two parallel 
arrays, one marked constant and one not:

const char *const imageNames[100] = { "FooImage", /* . . . */ }; 
NSImage *imageInstances[100] = { nil, /* . . . */ };

If an uninitialized data item contains pointers, the compiler can’t store the item in 
the __TEXT segment. Strings end up in the __TEXT segment’s __cstring section but 
the rest of the data item, including the pointers to the strings, ends up in the __DATA 
segment’s const section. In this example, daytimeTable would end up split between 
the __TEXT and __DATA segments, even though it’s constant:

struct daytime {
const int value;
const char *const name;

};

const struct daytime daytimeTable[]; = {
{1, "dawn"},
{2, "day"},
{3, "dusk"},
{4, "night"}

};
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To place the whole array in the __TEXT segment, you must rewrite this structure so 
it uses a fixed-size char array instead of a string pointer, like this:

struct daytime {
const int value;
const char name[6];

};

const struct daytime daytimeTable[] = {
{1, {‘d', 'a', 'w', 'n', '\0'}},
{2, {'d', 'a', 'y', '\0'}},
{3, {'d', 'u', 's', 'k', '\0'}},
{4, {'n', 'i', 'g', 'h', 't', '\0'}}

};

Unfortunately, there’s no good solution if the strings are of widely varying sizes, 
because this solution would leave a lot of unused space.

The array is split onto two segments because the compiler always stores constant 
strings in the __TEXT segment’s __cstring section. If the compiler stored the rest of 
the array in the __DATA segment’s __data section, it’s possible that the strings and the 
pointers to the strings would end up on different pages. If that happened, the 
system would have to update the pointers to the strings with the new addresses, 
and it can’t do that if the pointers are in the __TEXT segment, because the __TEXT 
segment is marked read-only. So the pointers to the strings, and the rest of the array 
along with it, must be stored in the __DATA segment. It’s placed in the const section, 
which is reserved for data declared const that couldn’t be placed in the __TEXT 
segment.

Initializing Static Data
As pointed out in “Overview of the Mach-O Executable Format” (page 117), the 
compiler stores uninitialized static data in the __bss section of the __DATA segment. 
Spreading an executable’s nonconstant global data across several sections makes it 
more likely that this data will be stored on different memory pages and thus will 
have to be swapped in and out separately.

The problem of uninitialized static data is easy to solve. Just change this:

static int x;
static short conv_table[128]; 
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To this:

static int x = 0;
static short conv_table[128] = {0};

By initializing the static variables, you cause them to move to the __DATA, __data 
section in the Mach-O executable.

Important
You should follow this tactic only if you have a small (less 
than a page) amount of static data. Initialized data must be 
read from disk the first time the data is accessed. If the 
__DATA, __data page on which the data is stored is already in 
memory, there is no additional read required. If, by 
switching from the __bss section to the __data section, you 
add another page to the __data section, you’ve added the 
expense of another read from disk.

Avoiding Tentative-Definition Symbols
The compiler puts duplicate symbols in another place in the __DATA segment: the 
__common section (see “Overview of the Mach-O Executable Format” (page 117)). 
The problem here is the same as with uninitialized static variables. If an executable’s 
nonconstant global data is distributed among several sections, it is more likely that 
this data will be on different memory pages; consequently, the pages may have to 
be swapped in and out separately. The goal for the __common section is the same as 
that for the __bss section: to eliminate it from your executable if you have a small 
amount of it.

A common source of tentative-definition symbols is definitions (that is, 
implementations) of symbols in header files. Typically headers contain 
declarations, some of which require definitions found in an implementation file. But 
definitions appearing in header files can result in that code or data appearing in 
every implementation file that includes the header file. The solution to this problem 
is to ensure that header files as much as possible contain only declarations, not 
definitions.
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Header files can also contain explicit definitions of symbols, such as definitions of 
constants requiring construction. These definitions are compiled into static 
instances of the symbol in every object file. To avoid this, declare these symbols in 
the header file with the extern keyword and initialize them in an implementation 
file.

You can also get tentative-definition symbols when you accidentally import the 
same header file twice or when you use the same name for variables in two or more 
header files. If the variables with the same name are meant to be the same variable, 
declare one of them extern. Otherwise, give them different names.

Analyzing Mach-O Executables
You have several tools at your disposal to find out how much memory your 
nonconstant data is occupying. These tools can report on various aspects of data 
usage.

While your application or framework is running, use pagestuff and size -m to see 
how big your various data sections are. Some things to look for:

� To find executables with lots of nonconstant data, check for files with large 
__data sections in the __DATA segment. To narrow down the largest source of this 
data, you can use the size command on each object file making up the 
executable until you find the offending one.

� Check for variables and symbols in the __bss and __common sections that can be 
removed or moved to the __data section.

� To locate data that, although declared constant, the compiler can’t treat as 
constant, check for executables or object files with a __const section in the __DATA 
segment.

Some of the bigger consumers of memory in the __DATA segment are fixed-size 
global arrays initialized but not declared const. You can sometimes find these tables 
by searching your source code for “[] = {“.

You can also let the compiler help you find where arrays can be made constant. Put 
const in front of all the initialized arrays you suspect might be read-only and 
recompile. If an array is not truly read-only, it will not compile. Remove the 
offending const and retry.
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Improving Locality of Reference

One of the most important improvements you can make to your application’s 
performance is to reduce the number of virtual memory pages that might have to 
be cleared from memory and later read back in (these pages are usually referred to 
as the working set). The process of reducing the working set is called scatter 
loading or improving locality of reference.

Scatter loading places the blocks of code for individual methods or functions in an 
optimized order, independent of the source file they came from or their position in 
the source file. It allows the kernel to keep an active application’s most frequently 
referenced executable pages in memory. On average, this can speed up an 
application’s execution time by about 30 percent overall.

You should generally wait until very late in the development cycle to scatter load 
your application, since code tends to get moved around during development, 
which tends to invalidate prior profiling results.

Reordering the __text Section
As described in “Overview of the Mach-O Executable Format” (page 117), the 
__TEXT segment holds the actual code and other read-only portions of your 
program. The compiler tools, by convention, place procedures from your Mach-O 
object files (with extension .o) in the __text section of the __TEXT segment.

As your program runs, pages from the __text section are loaded into memory on 
demand, as routines on these pages are used. Code is linked into the __text section 
in the order in which it appears in the source file, and source files are linked in the 
order in which they are listed on the linker command line (or in the order specifiable 
in Project Builder). Thus, code from the first object file is linked from start to finish, 
followed by code from the second and subsequent files.

However, this is rarely the optimal order. For example, say that certain methods or 
functions in your code are invoked repeatedly, while others are seldom used. 
Reordering the procedures to place frequently used code at the beginning of the 
__text section minimizes the average number of pages your application uses and 
thereby reduces paging activity.
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As another example, say that all the objects defined by your code are initialized at 
the same time. Because the initialization routine for each class is defined in a 
separate source file, the initialization code is ordinarily distributed across the __text 
section. By contiguously reordering initialization code for all classes, you reduce the 
number of pages that need to be read in, enhancing initialization performance. The 
application requires just the small number of pages containing initialization code, 
rather than a larger number of pages, each containing a small piece of initialization 
code.

Simple Procedure Reordering

Depending on the size and complexity of your application, you can pursue a 
strategy for ordering code that best improves the performance of your executable. 
Like most performance tuning, the more time you spend measuring and retuning 
your procedure order, the more memory you save. You can easily obtain a good 
first-cut ordering by running your application and sorting the routines by call 
frequency. The steps for this strategy are as follows:

1. Build a profile version of your application. This step generates an executable 
containing symbols used in the profiling and reordering procedures.

2. Run and use the application to create a set of profile data. Perform a series of 
functional tests, or have someone use the program for a test period.

Important
For best results, focus on the most typical usage pattern. 
Avoid using all the features of the application or the 
profile data might become diluted. For example, focus on 
launch time and the time to activate and deactivate your 
main window. Do not bring up ancillary windows.

3. Create order files. Order files list procedures in optimized order. The linker uses 
order files to reorder procedures in the executable.

4. Run the linker using the order files. This creates an executable with procedures 
linked into the __text section as specified in the order file.

These steps for this basic ordering are described in detail in the following sections.
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Step 1: Compile and Link the Source Files

Compile and link your program using the -pg and -g options. The -pg option adds 
hooks for profiling the application and for listing procedure calls in the order file 
(next step). The -g option creates symbol tables with source-file references for use 
by the debugger; this option is used by the gprof -S option to add source file names 
to the order file (step 3).

If you want to reorder static library procedures along with those in object files, use 
the linker’s -whatsloaded option to create a file of all loaded procedures in the 
project directory. The section “Creating a Default Order File” (page 132) describes 
this option. 

To setup a Project Builder project for profiling, add a new “Profiling” build style, as 
detailed in these steps:

1. Click the Targets tab of the project window.

2. From the Project menu, choose New Build Style. The new build style will appear 
in the Build Styles pane.

3. Name the new build style Profiling and click it. An empty Build Settings table 
appears in the lower-right pane of the project window.

4. Click on the white area inside the table, and press Return. A new build setting 
value appears.

5. Name the build setting OTHER_LDFLAGS and set its value (double-click the value 
column) to -pg -g.

6. Create an identical build setting named OTHER_CFLAGS and set its value to -pg -g.

7. Click the furthest-left column of the Profiling build style item in the Build Styles 
pane. The Profiling build style should now have a checkmark in that column.

8. Use the “clean” button at the top of the Project Builder window  to remove 
previous build results.

If your program contains assembly-language code, you might need to take 
additional steps to set up for profiling. See the section “Reordering Assembly 
Language Code” (page 139) for more information.
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Step 2: Run and Use the Program

During program use, the profiling runtime records a profile of each routine called. 
The resultant profiling data is placed in a file named gmon.out when the program 
exits. Note that each time you quit the program, a new gmon.out file is created, 
overwriting the old file. If you want to keep the profile, it’s a good idea to rename it 
before restarting the program for the next profiling run.

The simplest way to profile a program is to exercise it through a test suite, or to have 
someone use the program for a few consecutive days. These techniques generate 
large sets of profile data that you can then use to generate a procedure ordering file. 
In more advanced strategies, you might profile particular operations to accumulate 
many profile data sets, then generate a number of procedure order files from these 
sets, and then combine those order files into a final order file.

Step 3: Run gprof to Create Order Files

An order file contains an ordered sequence of lines, each line consisting of a source 
file name and a symbol name, separated by a colon with no other white space. Each 
line represents a block to be placed in a section of the executable. If you modify the 
file by hand, you must follow this format exactly so the linker can process the file. 
If the object file name:symbol name pair is not exactly the name seen by the linker, it 
tries its best to match up the names with the objects being linked.

The lines in an order file for procedure reordering consist of an object filename and 
procedure name (function, method, or other symbol). The sequence in which 
procedures are listed in the order file represents the sequence in which they are 
linked into the __text section of the executable.

To create an order file from the profiling data generated by using a program, run 
gprof using the -S option (see the man page for gprof (1)). For example,

gprof -S MyApp.profile/MyApp gmon.out
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The -S option produces four mutually exclusive order files:

You should try using each of these files to see which provides the largest 
performance improvement, if any. See “Using pagestuff to Examine Pages on Disk” 
(page 133) for a discussion of how to measure the results of the ordering.

These order files contain only those procedures used during profiling. The linker 
keeps track of missing procedures and links them in their default order after those 
listed in the order file. Static names for library functions are generated in the order 
file only if the project directory contains a file generated by the linker’s -whatsloaded 
option; see “Creating a Default Order File” (page 132) for details. 

The order file omits the names of files not compiled with the -g option, assembly 
files, and stripped executable files. If your order file contains such references, you 
can either edit the file to add the filenames or delete the references so the procedures 
can be linked in default order.

The gprof -S option doesn’t work with executables that have already been linked 
using an order file.

To preserve the order of routines in a particular object file, use the special symbol 
.section_all. For example, if the object file foo.o comes from assembly source and 
you want to link all of the routines without reordering them, delete any existing 
references to foo.o and insert the following line in the order file:

foo.o:.section_all

This option is useful for object files compiled from assembly source, or for which 
you don’t have the source.

For more information about gprof, see the section “gprof Code Profiler” (page 106).

gmon.order Ordering based on a “closest is best” analysis of the profiling call 
graph. Calls that call each other frequently are placed close 
together.

callf.order Routines sorted by the number of calls made to each routine, 
largest numbers first.

callo.order Routines sorted by the order in which they are called.

time.order Routines sorted by the amount of CPU time spent, largest times 
first.
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Step 4: Link the program with the order file

Once you’ve generated an order file, you can link the program using the -sectorder 
and -e start options:

cc -o outputFile inputFile.o … -sectorder __TEXT __text orderFile -e start

To use an order file with a Project Builder project, either add a build setting called 
SECTORDER_FLAGS to the Deployment build style, or set the SECTORDER_FLAGS variable 
in the Expert Build Settings table of the Build Settings tab of the Target Settings 
pane. In either case, the value of the setting should be -sectorder __TEXT __text 
orderFile.

If any inputFile is a library rather than an object file, you may need to edit the order 
file before linking to replace all references to the object file with references to the 
appropriate library file. Again, the linker does its best to match names in the order 
file with the sources it is editing.

With these options, the linker constructs the executable file outputFile so the 
contents of the __TEXT segment’s __text section are constructed from blocks of the 
input files’ __text sections. The linker arranges the routines in the input files in the 
order listed in orderFile.

As the linker processes the order file, it places the procedures whose object-file and 
symbol-name pairs aren’t listed in the order file into the __text section of outputFile. 
It links these symbols in the default order. Object-file and symbol-name pairs listed 
more than once always generate a warning, and the first occurrence of the pair is 
used.

By default, the linker prints a summary of the number of symbol names in the 
linked objects that are not in the order file, the number of symbol names in the order 
file that are not in the linked objects, and the number of symbol names it tried to 
match that were ambiguous. To request a detailed listing of these symbols, use the 
-sectorder_detail option.

The linker’s -e start option preserves the executable’s entry point. The symbol 
start (note the lack of a leading “_”) is defined in the C runtime shared library 
/usr/bin/crt1.o; it represents the first text address in your program when you link 
normally. When you reorder your procedures, you have to use this option to fix the 
entry point. Another way to do this is to make the line /usr/lib/crt1.o:start or 
/usr/lib/crt1.o:section_all the first line of your order file.
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Procedure Reordering for Large Programs

For many programs, the ordering generated by the steps just described brings a 
substantial improvement over unordered procedures. For a simple application with 
few features, such an ordering represents most of the gains to be had by procedure 
reordering. However, larger applications and other large programs often benefit 
greatly from additional analysis. While the order files based on call frequency or the 
call graph are a good start, you can use your knowledge of the structure of your 
application to further reduce the virtual-memory working set.

Creating a Default Order File

If you want to reorder an application’s procedures using techniques other than 
those described above, you may want to skip the profiling steps and just start with 
a default order file that lists all the routines of your application. Once you have a list 
of the routines in suitable form, you can then rearrange the entries by hand or by 
using a sorting technique of your choice. You can then use the resulting order file 
with the linker’s -sectorder option as described in “Step 4: Link the program with 
the order file” (page 131). 

To create a default order file, first run the linker with the -whatsloaded option:

cc -ooutputFile inputFile.o -whatsloaded > loadedFile

This creates a file, loadedFile, that lists the object files loaded in the executable, 
including any in frameworks or other libraries. The -whatsloaded option can also be 
used to make sure that order files generated by gprof -S include names for 
procedures in static libraries.

Using the file loadedFile, you can run nm with the -onjls options and the __TEXT 
__text argument:

nm -onjls __TEXT __text `cat loadedFile` > orderFile

The content of the file orderFile is the symbol table for the text section. Procedures 
are listed in the symbol table in their default link order. You can rearrange entries 
in this file to change the order in which you want procedures to be linked, then run 
the linker as described in “Step 4: Link the program with the order file” (page 131).
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Using pagestuff to Examine Pages on Disk

The pagestuff tool helps you measure the effectiveness of your procedure ordering 
by telling you which pages of the executable file are likely to be loaded in memory 
at a given time. This section briefly describes how to use this tool; for more 
information, see “pagestuff Mach-O File Page Analysis Tool” (page 114).

The pagestuff tool prints out the symbols on a particular page of executable code. 
The following is the syntax for the command:

pagestuff filename [pageNumber | -a] 

The output of pagestuff is a list of procedures contained in filename on page 
pageNumber. To view all the pages of the file, use the -a option in place of the page 
number. This output allows you to determine if each page associated with the file 
in memory is optimized. If it isn’t, you can rearrange entries in the order file and 
link the executable again to maximize performance gains. For example, move two 
related procedures together so they are linked on the same page. Perfecting the 
ordering may require several cycles of linking and tuning.

Grouping Routines According to Usage

Why generate profile data for individual operations of your application? The 
strategy is based on the assumption that a large application has three general 
groups of routines:

� Hot routines run during the most common usage of the application. These are 
often primitive routines that provide a foundation for the application’s features 
(for example, routines for accessing a document’s data structures) or routines 
that implement the core features of an application, such as routines that 
implement typing in a word processor. These routines should be clustered 
together in the same set of pages.

� Warm routines implement specific features of the application. Warm routines 
are usually associated with particular features that user performs only 
occasionally (such as launching, printing, or importing graphics). Because these 
routines are used reasonably often, cluster them in the same small set of pages 
so they will load quickly. However, because there are long periods when users 
aren’t accessing this functionality, these routines should not be located in the hot 
category.
Improving Locality of Reference 133
  Apple Computer, Inc. March 2001



C H A P T E R  7

Organizing Your Executable File
� Cold routines are rarely used in the application. Cold routines implement 
obscure features or cover boundary or error cases. Group these routines together 
to avoid wasting space on a hot or warm page. 

At any given time, you should expect most of the hot pages to be resident, and you 
should expect the warm pages to be resident for the features that the user is 
currently using. Only very rarely should a cold page be resident.

To achieve this ideal ordering, gather a number of profile data sets. First, gather the 
hot routines. As described above, compile the application for profiling, launch it, 
and use the program. Using gprof -S, generate a frequency sorted order file called 
hot.order from the profile data.

After creating a hot order file, create order files for features that users occasionally 
use, such as routines that only run when the application is launched. Printing, 
opening documents, importing images and using various non-document windows 
and tools are other examples of features that users use occasionally but not 
continually, and are good candidates for having their own order files. Naming these 
order files after the feature being profiled (for example, feature.order) is 
recommended.

Finally, to generate a list of all routines, build a “default” order file default.order 
(as described in “Simple Procedure Reordering” (page 127)).

Once you have these order files, you can combine them with a utility named unique, 
(Listing 7-1). This program simply combines files by removing duplicate lines, 
retaining the ordering of the original data. In our example you would generate your 
final order file with this command line:

unique hot.order feature1.order ... featureN.order default.order > 
final.order

Of course, the real test of the ordering is the amount by which paging I/O is 
reduced. Run your application, use different features, and examine how well your 
ordering file is performing under different conditions. You can use the top tool 
(among others) to measure paging performance (see “Analyzing Performance” 
(page 61)).
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Listing 7-1 “unique“

//
// unique
//
// A command for combining files while removing
// duplicate lines of text. The order of other lines of text
// in the input files is preserved.
//
// Build using this command line:
//
// cc -ObjC -O -o unique -framework Foundation Unique.c
//
// Note that “unique” differs from the BSD command “uniq” in that
// “uniq” combines duplicate adjacent lines, while “unique” does not
// require duplicate lines to be adjacent. “unique” is also spelled
// correctly.
//

#import <stdio.h>
#import <string.h>
#import <Foundation/NSSet.h>
#import <Foundation/NSData.h>

#define kBufferSize 8*1024

void ProcessFile(FILE *fp)
{

char buf[ kBufferSize ];

static id theSet = nil;

if( theSet == nil )
{

theSet = [[NSMutableSet alloc] init];
}

while( fgets(buf, kBufferSize, fp) )
{

id dataForString;
Improving Locality of Reference 135
  Apple Computer, Inc. March 2001



C H A P T E R  7

Organizing Your Executable File
dataForString = [[NSData alloc] initWithBytes:buf
length:strlen(buf)];

if( ! [theSet containsObject:dataForString] )
{

[theSet addObject:dataForString];
fputs(buf, stdout);

}
}

}

int main( int argc, char *argv[] )
{

int i;
FILE * theFile;
int status = 0;

if( argc > 1 )
{

for( i = 1; i < argc; i++ )
{

if( theFile = fopen( argv[i], "r" ) )
{

ProcessFile( theFile );
fclose( theFile );

}
else
{

fprintf( stderr, "Could not open ‘%s’\n", argv[i] );
status = 1;
break;

}
}

}
else
{

ProcessFile( stdin );
}

return status;
}
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Finding That One Last Hot Routine

After reordering you will usually have a region of pages with cold routines that you 
expect to be rarely used, often at the end of your text ordering. However, one or two 
hot routines might slip through the cracks and land in this cold section. This is a 
costly mistake, because using one of these hot routines now requires an entire page 
to be resident, a page that is otherwise filled with cold routines that are not likely to 
be used.

Check that the cold pages of your executable are not being paged in unexpectedly. 
Look for pages that are resident with high-page offsets in the cold region of your 
application’s text segment. If there is an unwanted page, you need to find out what 
routine on that page is being called. One way to do this is to profile during the 
particular operation that is touching that page, and use the grep tool to search the 
profiler output for routines that reside on that page. Alternatively, a quick way to 
identify the location where a page is being touched is to run the application under 
the gdb debugger and use the Mach call vm_protect to disallow all access to that 
page:

(gdb) p vm_protect(task_self(), startpage, vm_page_size, FALSE, 0);

After clearing the page protections, any access to that page causes a memory fault, 
which breaks the program in the debugger. At this point you can simply look at the 
function call stack (using the bt command) to learn why the routine was being 
called.

Reordering Other Sections
You can use the -sectorder option of the linker to order blocks in most of the 
sections of the executable. Sections that might occasionally benefit from reordering 
are literal sections, such as the __TEXT segment’s __cstring section, and the __DATA 
segment’s __data section.

Reordering Literal Sections

The lines in the order file for literal sections can most easily be produced with the 
ld and otool tools. For literal sections, otool creates a specific type of order file for 
each type of literal section:
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� For C string literal sections, the order-file format is one literal C string per line 
(with ANSI C escape sequences allowed in the C string). For example, a line 
might look like

Hello world\n

� For 4-byte literal sections, the order-file format is one 32-bit hex number with a 
leading 0x per line with the rest of the line treated as a comment. For example, a 
line might look like

0x3f8ccccd (1.10000002384185790000e+00)

� For 8-byte literal sections, the order file line consists of two 32-bit hexadecimal 
numbers per line separated by white space each with a leading 0x, with the rest 
of the line treated as a comment. For example, a line might look like:

0x3ff00000 0x00000000 (1.00000000000000000000e+00)

� For literal pointer sections, the format of the lines in the order file represents the 
pointers, one per line. A literal pointer is represented by the segment name, the 
section name of the literal pointer, and then the literal itself. These are separated 
by colons with no extra white space. For example, a line might look like:

__OBJC:__selector_strs:new

� For all the literal sections, each line in the order file is simply entered into the 
literal section and appears in the output file in the order of the order file. No 
check is made to see if the literal is in the loaded objects.

To reorder a literal section, first create a “whatsloaded” file using the ld 
-whatsloaded option as described in section “Creating a Default Order File” 
(page 132). Then, run otool with the appropriate options, segment and section 
names, and filenames. The output of otool is a default order file for the specified 
section. For example, the following command line produces an order file listing the 
default load order for the __TEXT segment’s __cstring section in the file 
cstring_order:

otool -X -v -s __TEXT __cstring `cat whatsloaded` > cstring_order

Once you’ve created the file cstring_order, you can edit the file and rearrange its 
entries to optimize locality of reference. For example, you can place literal strings 
used most frequently by your program (such as labels that appear in your user 
interface) at the beginning of the file. To produce the desired load order in the 
executable, use the following command:

cc -o hello hello.o -sectorder __TEXT __cstring  cstring_order
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Reordering Data Sections

There are currently no tools to measure code references to data symbols. However, 
you might know a program’s data-referencing patterns and might be able to get 
some savings by separating data for seldom-used features from other data. One 
way to approach __data section reordering is to sort the data by size so small data 
items end up on as few pages as possible. For example, if a larger data item is placed 
across two pages with two small items sharing each of these pages, the larger item 
must be paged in to access the smaller items. Reordering the data by size can 
minimize this sort of inefficiency. Because this data would normally need to be 
written to the virtual-memory backing store, this could be a major savings in some 
programs.

To reorder the __data section, first create an order file listing source files and 
symbols in the order in which you want them linked (order file entries are described 
at the beginning of “Step 3: Run gprof to Create Order Files” (page 129)). Then, link 
the program using the -sectorder command-line option:

cc -o <outputfile> <inputfile>.o -sectorder __DATA __data <orderfile> -e start

To use an order file with a Project Builder project, either add a build setting called 
SECTORDER_FLAGS to the Deployment build style, or set the SECTORDER_FLAGS variable 
in the Expert Build Settings table of the Build Settings tab of the Target Settings 
pane. In either case, the value of the setting should be -sectorder __DATA __data 
orderFilename.

Reordering Assembly Language Code
Some additional guidelines to keep in mind when reordering routines coded in 
assembly language:

� temporary labels in assembly code

Within hand-coded assembly code, be careful of branches to temporary labels 
that branch over a non temporary label. For example, if you use a label that starts 
with “L” or a d label (where d is a digit), as in this example

foo: b 1f
    ...
bar: ...
1:   ...
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The resulting program won’t link or execute correctly, because only the symbols 
foo and bar make it into the object file’s symbol table. References to the 
temporary label 1 are compiled as offsets; as a result, no relocation entry is 
generated for the instruction b 1f. If the linker does not place the block 
associated with the symbol bar directly after that associated with foo, the branch 
to 1f will not go to the correct place. Because there is no relocation entry, the 
linker doesn’t know to fix up the branch. The source-code change to fix this 
problem is to change the label 1 to a nontemporary label (bar1 for example). You 
can avoid problems with object files containing hand-coded assembly code by 
linking them whole, without reordering. 

� the pseudo-symbol .section_start

If the specified section in any input file has a non-zero size and there is no 
symbol with the value of the beginning of its section, the linker uses the pseudo 
symbol .section_start as the symbol name it associates with the first block in 
the section. The purpose of this symbol is to deal with literal constants whose 
symbols do not persist into the object file. Because literal strings and 
floating-point constants are in literal sections, this not a problem for Apple 
compilers. You might see this symbol used by assembly-language programs or 
non-Apple compilers. However, you should not reorder such code and you 
should instead link the file whole, without reordering (see“Step 4: Link the 
program with the order file” (page 131)).
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