

           

Welcome to SmartDate
Welcome to version 2.2 of SmartDate, Robelle's date library, which is fully compatible with
year 2000 dates.    SmartDate's powerful capabilities can be called from your program to
process dates and convert them into many formats.

SmartDate solves some of the most common data processing problems: checking, editing,
and converting dates.    SmartDate also provides you with an easy way to change your
applications to support dates into the year 2000.    Use SmartDate in all your applications to
ensure reliable and fast date handling, in this century or the next.

MPE
Conditions
4GLs
Documentation
News
Installation
Essentials
Intrinsics
Date Program
Example Programs
Support

MPE V versus MPE/iX
SmartDate works on both MPE V and MPE/iX computers.    On MPE V, you install SmartDate in
the system SL (see the chapter on Installing SmartDate for instructions).    On MPE/iX, you
run your native mode programs with an XL file: DateXL.Pub.Robelle.

Conditions of Use

SmartDate is a separate product; it is not a component of any other Robelle product.    You
are licensed to use SmartDate only on a specific set of CPUs. SmartDate cannot be included
in software that is being distributed to sites which are not licensed to use SmartDate.   
Application software developers who are interested in integrating SmartDate into their
products should contact Robelle Consulting Ltd.

Fourth-Generation Languages (4GLs)
SmartDate is more difficult to use from 4GLs than from a regular programming language
(e.g., COBOL or Pascal).    Some 4GLs do a LOADPROC for every call to the SmartDate
intrinsics (e.g., Reactor from Speedware).    Because the LOADPROC calls to SmartDate are
slow, they affect SmartDate's overall performance. Fortunately, most 4GLs have their own
date-handling routines that replace the functionality of SmartDate.

Documentation
The user documentation for SmartDate assumes that you have some previous experience
with MPE and programming.    To print copies of the user manual, run the Printdoc program:

 :run printdoc.pub.robelle;info="sdate.doc.robelle"

Printdoc is menu driven, and it is very easy to use.    Printdoc asks you for information; if you
are not sure of your answer, you can ask for help by typing a question mark (?).    Printdoc
supports all types of LaserJet printers and regular line printers.

The user manual is also available as a Microsoft WinHelp file.    You can also obtain on-line
help by using the Help command of the SmartDate program:

 :run sdate.pub.robelle
 >>h

New Features of SmartDate
Here are the highlights of the new features in SmartDate.

New Features in Version 2.2:
¤ Combining edit function 7, add days to the from date, with a to-date format of 16

showed the wrong day of the week.

New Features in Version 2.1:
¤ SmartDate will now work with Time Machine and the HP utility Setdate.

Installing SmartDate

There are two versions of SmartDate: SmartDate/V for MPE V systems and for compatibility
mode programs on MPE/iX, and SmartDate/iX for native mode programs on MPE/iX.

Depending on your operating system (MPE V or MPE/iX) and the kind of programs that call
SmartDate (compatibility mode, native mode, or both), you may end up installing either,
both, or neither version.    Read all the instructions carefully.

Before using either version of SmartDate, you must build or upgrade the Robelle account
and restore all files from the distribution tape.

Robelle Account
System SL Installation
XL Installation
Pub SL Installation

Installation Procedures
You can install SmartDate on your system in three easy steps.    First, build (or upgrade) the
Robelle account using a job stream that we provide.    Second, restore all Robelle files from
tape to disc.    Third, stream the installation job stream.    All of these steps are easily
accomplished if you log on as Manager.Sys.

Even if you already have the Robelle account, the first thing you must do is stream the
Robelle job:

 :hello manager.sys
 :file robtape;dev=tape
 :restore *robtape;robelle.pub.sys {=reply on console}
 :stream robelle.pub.sys {supply password}

This job stream launches a second job, which sends you a message when it has completed.   
Stay logged on as Manager.Sys and put a password on the Robelle account.    If you already
had a Robelle account, use the same password.

 :altacct robelle;pass=pswd {something tricky}

Please note that during installation, we add OP capability to the Robelle account.    When the
SmartDate installation is complete, you have the option to remove OP capability.

Stay logged on as Manager.Sys and restore the Robelle files:

 :file robtape;dev=tape
 :restore *robtape;@.@.robelle {=reply on console}

After the SmartDate files have been restored, complete the installation by streaming the
installation job stream:

 :hello mgr.robelle
 :stream install.datejob

System SL Installation
This procedure is required for MPE V systems and for compatibility mode programs on
MPE/iX.

The SmartDate/V routines are distributed in the file DateUSL.Pub.Robelle.    The job stream
SysSL.DateJob.Robelle installs the SmartDate/V intrinsics in the system SL; this is the only
method for installing SmartDate/V.    You also use this job stream to update SmartDate/V
when you receive a new version, or to re-install the interface after an update from HP.    You
will need a small tape to make a new cold load tape that includes the SmartDate/V
segments.

Warning:    You must have created the Robelle account and restored all files as
described in the Installation Procedures section above.

Steps

To install SmartDate/V into the system SL, follow these steps:

1. Ensure that no one uses SmartDate/V during the installation.    Also make sure programs
that use SmartDate/V are not running.    Stop all such jobs and send an operator
warning.

 :showjob
 :warn @;please stop for 20 minutes
 :abortjob #snnn

2. Stream the installation job.    If MPE prompts for passwords, supply them.

 :stream syssl.datejob.robelle

3. SmartDate/V uses the Segmenter to add the segments into SL.Pub.Sys.    It then
requests a tape called "coldload" to create a new cold load tape containing MPE plus the
SmartDate/V intrinsics.    Mount a tape with a write ring and :Reply.    Save this tape and
use it for future cold loads.

If you're installing to an MPE/iX machine, the job does not create a cold load tape.    You
must create a system load tape manually.

4. If everything goes well, SmartDate/V prints a final message on the console.
5. Please save the job listing for future reference.

Now that SmartDate/V is installed, you should be able to use it in your application programs.

User XL Installation
This is an optional procedure for native mode programs on MPE/iX.

You normally access SmartDate/iX by specifying XL=DateXL.Pub.Robelle when running your
program.    As a result, there may be no need to perform any installation steps for
SmartDate/iX.

The advantage of leaving SmartDate/iX in the Robelle account and always pointing your
programs to the XL when you run them, is that when you receive an upgrade of the Robelle
account files, SmartDate/iX is automatically upgraded, with no effort on your part.    The
disadvantage is that you must remember to always put the XL= statement in all your Run
commands of programs that use SmartDate/iX.    If you don't want to change your Run
commands, you can copy SmartDate/iX into your own XL, which is already being searched.

The XL can reside anywhere on your system; it does not have to be in the same account or
the same group as your XL file.    Here are the commands to install SmartDate/iX in your own
XL:

 :hello user.acct
 :linkedit
 >xl xl {we assume the XL already exists}
 >copyxl from=sdatexl.pub.robelle; replace
 >exit

The Replace option is not in all versions of Linkedit.    If Replace is not available in your
version and you already have SmartDate in your XL file, you need to manually purge the
existing modules before copying the new one.

Datexl can successfully be installed into the system XL file, but this is not recommended by
HP.    Datexl can be combined into an XL file with other Robelle XL files, except Qcompxl (a
part of Qedit).

Group or Pub SL Installation
This procedure is for MPE/V systems and for compatibility mode programs on MPE/iX.    It is
not the recommended or supported procedure.    See the SmartDate/V instructions in the
previous section.

Pub SL
Group SL

Pub SL

To install SmartDate/V in a Pub SL, both the account and the Pub group have to have
privileged mode capability.    The calling program must be installed in the same account (it
does not have to be in the Pub group), and it must be run with Lib=P.
Example

Here are the commands to modify an existing account called Dev:

 :hello mgr.dev,pub
 :segmenter
 -buildusl $newpass,400,8
 -auxusl sdateusl.pub.robelle
 -copy segment,smartdate
 -buildsl sl,400,8
 -addsl smartdate
 -exit

Group SL

The steps for installing SmartDate/V in a group SL are the same as for the Pub SL, except
that you have to use the actual group name instead of the Pub group.    Your user programs
must be installed in the same group as the SL, and they must be run with Lib=G.

SmartDate Essentials

SmartDate is a set of routines or intrinsics that you call from your program. The SmartDate/V
intrinsics are installed in the system SL.    The SmartDate/iX intrinsics are installed in an XL.   
You access SmartDate by calling these intrinsics, just as you would the IMAGE intrinsics.   
There are two primary intrinsics:

RDTCONVERT:    The main routine that does all of the processing.

RDTERROR:    A routine to obtain an English-language description for a specific error
number.

Control Record
Errors
MPE/iX

SmartDate Control Record
SmartDate requires a special control record.    For COBOL, we suggest you place this control
record in the Copylib and then copy it into programs that use SmartDate.    Typing the control
record incorrectly is a common error.    Instead of typing the record, we recommend using the
file Cobol5.Qlibsrc.Robelle.    You can copy the control record directly into your COBOL
program with the following Qedit commands (use /Join with EDIT/3000):

 /add 50.1=cobol5.qlibsrc.robelle 1/20

Definition

This is the definition of the control record with the proper initializing values:

 01 rdt-control.
 05 rdt-from-type pic s9(4) comp.
 05 rdt-to-type pic s9(4) comp.
 05 rdt-aux-result pic s9(4) comp value zeros.
 05 rdt-status pic s9(4) comp.

Error Handling
SmartDate is very careful to edit all dates and to make sure they are valid. We suggest that
you check the status result in the control record after all calls to RDTCONVERT.

You can use the RDTERROR routine to obtain an English description of the last error.    Note:
The error routine expects the entire control record as a parameter, not just the status result. 
An example call to RDTERROR in COBOL looks like this:

 if rdt-status <> 0 then
 move spaces to out-buf
 call "RDTERROR" using rdt-control
 out-buf
 out-buflen
 display "Date error " out-buf.

MPE/iX
To access SmartDate/iX from a native mode program, you must modify the :Run command
for your program so that it includes an XL file.    The following example shows how you would
compile, link, and run a native mode COBOL program that calls SmartDate/iX:

 :cob74xl main.src
 :link
 :run $oldpass;xl='sdatexl.pub.robelle'

SmartDate Intrinsics

Processing dates is a large part of many data processing applications.    In order to
successfully use SmartDate, you must understand the basic ideas of how it works.    You call
RDTCONVERT to convert one date, the from-date, to another format, the to-date; additional
editing during conversion is optional. Before calling RDTCONVERT, you must first set up the
rdt-control area with a description of the from- and to-date formats.

Much of the hard work is done by RDTCONVERT.    But you, the applications programmer,
must correctly initialize the control record with the proper information.    The control record is
designed to be very compact so that you can specify a lot of information with just a few
simple initialization statements.    Understanding the set up procedure for the control record
is the key to making SmartDate work for you.

A key benefit of SmartDate is the automatic verification of input date formats.    By checking
all its input date formats and making sure they are valid, SmartDate completely eliminates
the possibility of using invalid formats.

In this chapter we describe the SmartDate intrinsics in alphabetical order. All intrinsics
require a control parameter.    The condition code is not returned by any SmartDate intrinsic.

Rdtconvert
Rdterror
Examples

RDTCONVERT Intrinsic
Check a from-date with an option to convert it to a to-date, and an option to edit it during
the checking and converting process.

RDTCONVERT from-date, to-date, rdt-control

From-Date
To-Date
Rdt-Control
Validating Dates
Cutoff Year
Date Format
Edit Options

From-Date

A date in the format specified by the from-type parameter of rdt-control.    If the from-date is
the current date, a dummy parameter must be passed as the from-date to act as a
placeholder.

To-Date

A date in the format specified by the to-type parameter of rdt-control.    If no to-date is
specified, a dummy parameter must be passed as the to-date to act as a placeholder.

Rdt-Control

Special control record that must be declared as follows:

 01 rdt-control.
 05 rdt-from-type pic s9(4) comp.
 05 rdt-to-type pic s9(4) comp.
 05 rdt-aux-result pic s9(4) comp value zeros.
 05 rdt-status pic s9(4) comp.

You must initialize this control buffer before each call to RDTCONVERT.    See the chapter on
Accessing SmartDate for complete details of possible values in the control record.

Validating Dates

Whenever you call RDTCONVERT, the from-date is checked to ensure that it is valid.    For
character dates, the century, year, month, and day are checked to ensure that they are
numeric (date formats that permit non-numeric characters are checked appropriately).    All
dates are also checked to make sure the month is valid (not less than 1 or greater than 12)
and the day is valid for the month.    SmartDate correctly calculates leap years and ensures
that February 29 is considered valid only in leap years.

You can apply additional date checking by using some of the specific edit options described
below.    For example, you can ask SmartDate to check whether the from-date is not equal to
or greater than the current date.    Date verification is an important function of SmartDate.

Cutoff Year
If the from-date has only a 2-digit year, SmartDate must determine the century component
of the date.    By default, SmartDate assumes the current century. The century component of
a from-date with a 2-digit year for a date before December 31, 1999 is assumed to be 19xx. 
For dates in the 2000s, SmartDate assumes the century to be 20xx.    You can change this
behavior in two ways.

1. Use the cutoff year edit option.

2. Specify a cutoff year by assigning a value to the RobelleCutoffYear JCW. For example,

 :setjcw RobelleCutoffYear 50

If the 2-digit year in the from-date is on or after the cutoff value, 19xx is the assumed
century in the to-date; otherwise, 20xx is the assumed century.

Date Formats
There is a single set of constants describing the date formats.    Some formats are only valid
for the from-date and some are only valid for the to-date. Most are valid for both.

Each format details both a storage container (e.g., a 32-bit integer) and a date type.    You
must describe the correct format to RDTCONVERT in order to have your date processed
correctly.    A date in CCYYMMDD format in an 8-byte character field is not the same as a date
in CCYYMMDD format in a 32-bit integer.

There are many date formats.    Before we present each format individually, here is a
summary of all the date formats:

Num Dec 31, 2000 Format Data Type From/To

0 0 Today/None 16-bit From/To
1 311200 DDMMYY 6-byte From/To
2 31/12/00 DD/MM/YY 8-byte From/To
3 001231 YYMMDD 32-bit From/To
4 51566 Calendar 16-bit From/To
5 DEC 31, 2000 MMM DD, CCYY 12-byte To-only
6 31 DEC00 DD MMMYY 8-byte From/To
7 123100 MMDDYY 6-byte From/To
8 12/31/00 MM/DD/YY 8-byte From/To
9 001231 YYMMDD 6-byte From/To
10 0012 YYMM 16-bit From/To
11 1200 MMYY 4-byte From/To
12 DEC 00 MMM YY 6-byte To-only
13 00/12/31 YY/MM/DD 8-byte From/To
14 20001231 CCYYMMDD 8-byte From/To
15 20001231 CCYYMMDD 32-bit From/To
16 WED, DEC 31, 2000 DDD, MMM DD, CCYY 18-byte To-only
17 A01231 AAMMDD 6-byte From/To
18 31122000 DDMM[CC]YY n-byte From/To
19 12312000 MMDD[CC]YY n-byte From/To
20 20001231 [CC]YYMMDD n-byte From/To
21 Dec31 00 MMMDD YY 8-byte From/To
22 2001231 YYYMMDD 32-bit To-only
23 200012 CCYYMM 6-byte From/To
24 200012 CCYYMM 32-bit From/To
25 2000 CCYY 4-byte From/To
26 2000 CCYY 32-bit From/To
27 51615 Powerhouse 16-bit From/To

Notes:
Format 4: 51566 = 1100100 101101110 = (100) (366)
Format 27: 51615 = 1100100 1100 11111 = (100) (12) (31)

0
1
2
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Format 0: Today/None From/To

If this is the from-type, RDTCONVERT assumes today's date.    If this is the to-type, no to-date
is produced, but all date editing functions are applied to the from-date.

Format 1: DDMMYY 6-byte From/To

Character date in day, month, year format.

Format 2: DD/MM/YY 8-byte From/To

Character date in day, month, year format with a delimiter.    For the from-date, the delimiter
can be any special character.    If this is the to-date format, the delimiter is always a slash.

Format 3: YYMMDD 32-bit From/To

Binary date in year, month, day format.

Format 4: Calendar 16-bit From/To

MPE calendar format.    In this format, bits 0 to 6 contain the year and 7 to 15 contain the
day.    If the from-date evaluates to a year beyond 2027, an error is returned if you select this
as the to-date type (the maximum value that can be held in 7 bits is 127).

Format 5: MMM DD, CCYY 12-byte To-only

Character format that you cannot use as a from-type. The month is formatted with a three-
letter English abbreviation for the month.

Format 6: DD MMMYY 8-byte From/To

Short form of a date that includes a three-letter English abbreviation for the month.

Format 7: MMDDYY 6-byte From/To

Character date in month, day, year format.

Format 8: MM/DD/YY 8-byte From/To

Character date in month, day, year format with a delimiter.    For the from-date, the delimiter
can be any special character.    If this is the to-date format, the delimiter is always a slash.

Format 9: YYMMDD 6-byte From/To

Character date in year, month, day format.

Format 10: YYMM 16-bit From/To

Binary date with only the year and the month.    By default, if you are converting from this
from-type to a to-type that includes the day of the month, the first day of the month is used. 
You can specify the last day of the month by using the RdtLastDay edit option (#9).

Format 11: MMYY 4-byte From/To

Character date with only the year and the month.    See format 10 for restrictions on this
date type.

Format 12: MMM YY 6-byte To-only

Character date with the month in a three-letter English abbreviation and the year.    This
format cannot be used as a from-type.

Format 13: YY/MM/DD 8-byte From/To

Character date in year, month, day format with a delimiter.    For the from-date, the delimiter
can be any special character.    If this is the to-date format, the delimiter is always a slash.

Format 14: CCYYMMDD 8-byte From/To

Character date in century, year, month, day format.

Format 15: CCYYMMDD 32-bit From/To

Binary date in century, year, month, day format.

Format 16: DDD, MMM DD, CCYY 18-byte To-only

Character date in day, month, year format.    The day, month, and year must be valid and
the day number must be valid for the month.

Format 17: AAMMDD 6-byte From/To

A special 6-character date format in which the year is either two numeric digits, or a letter
and a number.    This format makes it easy to preserve dates in a 6-character container while
handling year 2000 dates.    Dates beyond December 31, 1999 still collate correctly if they
are stored in this format.

By substituting a letter of the alphabet in the first position of the year, we can extend a 6-
digit date and make sure the dates collate correctly.    For example,

 YY of AAMMDD CCYY

A0 - A9 2000 - 2009
B0 - B9 2010 - 2019
C0 - C9 2020 - 2029

Because letters come before numbers in the collating sequence, you can be sure AAMMDD
dates beyond 1999 are ordered correctly.

Format 18: DDMM[CC]YY n-byte From/To

Free-format date in day, month, year format.

If this is the from-type, the from-date must end in a space, a carriage return, or a binary
zero.    The date is read left to right.    There can be white space or special characters
between the day, the month, and the year.    The month can be a numeric or a three-letter
abbreviation in English (e.g., MAR for March).    The century is optional.    If the century is not
specified, one of the following methods will be applied to determine the century:

1. If the century cutoff edit code is used, the cutoff value is used to determine the century.

2 If the RobelleCutoffYear JCW has been set, its value is used to determine the century.

3. If no century cutoff edit code is specified and there is no RobelleCutoffYear JCW, the
century is assumed to be the current century.

If this is the to-type, the from-date is formatted as DDMMCCYY with no spaces or special
characters.

Format 19: MMDD[CC]YY n-byte From/To

Free-format date in month, day, year format.    See format 18 for details on processing free-
format dates as the from-type.    If this is the to-type, the from-date is formatted as
MMDDCCYY with no spaces or special characters.

Format 20: [CC]YYMMDD 8-byte From/To

Free-format date in month, day, year format.    See format 18 for details on processing free-
format dates as the from-type.    If this is the to-type, the from-date is formatted as
CCYYMMDD with no spaces or special characters.

Format 21: MMMDD YY 8-byte From/To

Character date in month, day, year format.    The month is formatted in a three-letter English
abbreviation.

Format 22: YYYMMDD 32-bit To-only

The YYYMMDD date type is similar to YYMMDD, except that the first digit denotes the
century.    If the first digit is a one (1), then the century is 19xx; if the first digit is a two (2),
then the century is 20xx.    This date format is used by some third-party software packages
such as MACS and APS.

Format 23: CCYYMM 6-byte From/To

Character date in century, year, month format.

Format 24: CCYYMM 32-bit From/To

Binary date in century, year, month format.

Format 25: CCYY 4-byte From/To

Character date in century, year format.

Format 26: CCYY 32-bit From/To

Binary date in century, year format.

Format 27: Powerhouse 16-bit From/To

The PHdate format is compatible with the Cognos PowerHouse date format.    The date is
stored in individual bit groupings with seven bits for the year of the century (bits 0-6), four
bits for the month (bits 7-10), and five bits for the day (bits 11-15).

Edit Options
You can specify an edit option as part of the from-type.    The edit specifications are optional;
most people use the aux-result field of the control record to specify extra information.

The from-type consists of numbers in this form:

 xxyy

where xx is the edit operation and yy is the from-type of the from-date.    For example, the
from-type

 1015

would specify edit option 10 and from-type 15 (binary CCYYMMDD).

This is a complete list of the edit options for SmartDate.

1
2
3
4
5
6
7
8
9
10

Option 1: Days between dates (RdtDaysBetween)

The number of days between the from-date and the to-date is returned in the aux-result field
of the control record (to-date minus from-date).    Both the from-date and the to-date must
contain valid dates.    No output conversion occurs.    An error is returned if the number of
days between the dates exceeds 9999.

Option 2: Day of the week (RdtDayOfTheWeek)

Return the day of the week as a number in the aux-result field of the control record.    The
numeric value corresponds to these days:

1. Sunday

2. Monday

3. Tuesday

4. Wednesday

5. Thursday

6. Friday

7. Saturday

You can combine this edit option with a conversion between the from-date and the to-date.

Option 3: Date within range of the current date (RdtX6DDMMYY)

Check whether the from-date is within a specified number of days before or after today's
date.    For this edit option, the aux-result field of the control record must contain a special
number in the form of

 bbaa

where bb checks the number of days before and aa checks the number of days after the
current date.    For example, the value 1020 would check whether the from-date is no less
than 10 days before today's date and no more than 20 days after.    The value 0015 would
check whether the from-date is not before today's date and not more than 15 days in the
future.

Option 4: Date within 20 days before today and 60 days after (Rdt2060)

Check whether the from-date is no more than 20 days before today and no more than 60
days after.    The aux-result field of the control record is ignored by this edit option.

Option 5: Date on or before today's date (RdtBeforeToday)

Check whether the from-date is less than or equal to today's date.

Option 6: Is the from-date greater than the to-date? (RdtFromAfterTo)

Check whether the from-date is greater than or equal to the to-date.

Option 7: Add days (RdtAddDays)

Use this edit code to add days to a from-date and use the result to form a new to-date.    You
can add a positive number of days (to move the date forward) or a negative number of days
(to move the date backward).    Specify the added number of days in the aux-result field of
the control record.    The maximum number of days RDTCONVERT can add or subtract is
9,999.

Option 8: Allow zero from-date (RdtAllowZero)

Some applications use a date value of zero to indicate some special date.    Use this edit
option to force RDTCONVERT to treat a zero date as a valid date. When converting a zero
from-date, RDTCONVERT chooses a suitable format for the to-date based on its type.

Option 9: Last day of the month (RdtLastDay)

Use this edit option to force the day of the to-date to the last day of the month for the year
and month specified in the from-date.    This option only works with to-date formats that
include the day of the month.

Option 10: Apply a century cutoff rule (RdtCutoffYear)

If the 2-digit year in the from-date is on or after the cutoff value in the aux-result field of the
control record, 19xx is the assumed century in the to-date; otherwise, 20xx is the assumed
century.    This edit function only works with from-date types that have 2-digit years. You can
also specify a cutoff year by using the RobelleCutoffYear JCW.

RDTERROR Intrinsic
Format an English error message into a buffer and return the length of the message in the
buffer based on the value in the control buffer.

RDTERROR rdt-control, buffer, len

Rdt-Control
Buffer
Len
Error Messages

Rdt-Control

The control buffer used in a previous call to RDTCONVERT.    The control buffer must not be
changed between the RDTCONVERT call and the call to RDTERROR.

Buffer

A character array into which RDTERROR puts the error message.    Note: The buffer must be
big enough to hold the largest possible error message.

Len

The length of the message returned in the buffer.    This is a 16-bit integer that must be
passed by reference.

SmartDate Error Messages

RDTCONVERT always returns a result in the rdt-status field of the rdt-control record.    When
the call to RDTCONVERT is successful, a zero is returned. Otherwise, an error number is
returned.    You can use RDTERROR to obtain an English description of the error.

This is a complete list of the RDTCONVERT error numbers and their associated RDTERROR
error messages.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

1:    Invalid Day

The day in the from-date is invalid.    The day is invalid when it is greater than 31, not
numeric, or it exceeds the number of days in the month.

2:    Invalid Month

The month in the from-date is invalid.    The month is invalid when it is greater than 12 or not
numeric, or the ASCII version of the month does not match one of the three-letter English
abbreviations for the month.

3:    Invalid Year

SmartDate supports years from 1583 to 2583.    This error occurs if the year in the from-date
is either not numeric or outside the range of valid years, including results from date
arithmetic.    For specific date formats (e.g., calendar), this error can also be returned when
the year of the from-date exceeds the possible values for the year of the to-date.

4:    Bad Calendar Date

The MPE calendar date format has special restrictions.    The year cannot exceed 2027, and
the day of the year cannot exceed 365 (366 in leap years).

5:    Day Not in Month

The day of the month is either less than one or greater than the number of days in the
month of the specified year (e.g., 29 as the day for a date in February of a non-leap year).

6:    Features Not Implemented

Some features of SmartDate have not been implemented.    This error should not occur.    If it
does, please contact Robelle Consulting Ltd.

7:    Invalid Date From-Type

The from-type in the control record is not one of the valid SmartDate date types.

8:    Invalid Date To-Type

The to-type in the control record is not one of the valid SmartDate date types.

9:    Edit Check Failed

One of the checking operations specified by the edit option failed.    This is usually caused by
the from-date not falling within the edit option constraints.    It is also returned by edit option
#6 (RdtFromAfterTo) when the from-date is not greater than the to-date.

10:    Invalid Edit Option

The edit option in the control record is not one of the valid SmartDate edit options.

11:    Invalid Special Character

If the from-type specifies a date format with special characters as delimiters between the
day, month, and year, this error is returned when SmartDate doesn't find any of these
special delimiters in the from-date.

12:    Not Used

This error number should not be returned.    If it is, please report the example to Robelle
Consulting Ltd.

13:    Not Used

This error number should not be returned.    If it is, please report the example to Robelle
Consulting Ltd.

14:    Not Used

This error number should not be returned.    If it is, please report the example to Robelle
Consulting Ltd.

15:    Not Used

This error number should not be returned.    If it is, please report the example to Robelle
Consulting Ltd.

16:    Too Many Days

The maximum number of days between any two dates supported by SmartDate is 9,999.    If
you attempt to add or subtract more than this number of days (edit option #7), or if the
difference between dates is more than 9,999 (edit option #1), this error is returned.

17:    Missing Termination Character for Free-Form Date

If you specify a free-form date format as the from-type and the from-date does not end in a
space, a carriage return, or a binary zero, this error is returned.

18:    Invalid Cutoff Year

This error is returned for two reasons:

1. The cutoff year specified in the aux-result field of the control record is less than one or
greater than 99.

2. The format of the from-date does not allow a cutoff year to be applied (e.g., the format
already includes the century).

19:    SmartDate has expired

SmartDate has expired because it was only available for a given number of days.    Contact
Robelle Consulting Ltd. about purchasing SmartDate or extending its expiry date if you are
already licensed for SmartDate.

20:    SmartDate not authorized for this HPSUSAN

The HPSUSAN number of your HP 3000 computer has not been authorized for SmartDate.   
This often happens when you upgrade your HP 3000.    Contact Robelle Consulting Ltd. about
changing your authorization or purchasing SmartDate for your specific CPU.

21:    Call to FINDJCW failed

A call to the MPE FINDJCW intrinsic failed.    Please report this error to Robelle Consulting Ltd.

22:    Call to PUTJCW failed

A call to the MPE PUTJCW intrinsic failed.    Please report this error to Robelle Consulting Ltd.

Examples
The rich functionality of SmartDate is packed into a single routine called RDTCONVERT.    By
combining different values in the control record, many different date operations can be
performed.    Rather than showing examples in a specific programming language, we have
shown them in pseudocode, which we assume you are able to translate into your specific
programming language.    We also include complete COBOL and Pascal examples later in this
documentation.

Constants
Current
Plus Ten
Validate
Additional Checking
Conversion
Cutoff

Constants

To make your programs and our examples more readable, you should always declare a set of
constants for SmartDate date formats and edit options.    We use only symbolic constants in
all the examples.

Date Format
Edit Options

Date Format Constants

The following constants are for the various date formats.    For character dates, we use Xn,
where n is the number of characters in the date.    For binary dates, we use I16 for 16-bit
integers and I32 for 32-bit integers.

 set RdtToday to 0
 set RdtNone to 0
 set RdtX6DDMMYY to 1
 set RdtX8DD-MM-YY to 2
 set RdtI32YYMMDD to 3
 set RdtI16Calendar to 4
 set RdtX12MMMDDCCYY to 5
 set RdtX8DDMMMYY to 6
 set RdtX6MMDDYY to 7
 set RdtX8MM-DD-YY to 8
 set RdtX6YYMMDD to 9
 set RdtI16YYMM to 10
 set RdtX4YYMM to 11
 set RdtX6MMMYY to 12
 set RdtX8YY-MM-DD to 13
 set RdtX8CCYYMMDD to 14
 set RdtI32CCYYMMDD to 15
 set RdtX18DDDMMDDCCYY to 16
 set RdtX6AAMMDD to 17
 set RdtXnDDMMCCYY to 18
 set RdtXnMMDDCCYY to 19
 set RdtXnCCYYMMDD to 20
 set RdtX8MMMDDYY to 21
 set RdtI32YYYMMDD to 22
 set RdtX6CCYYMM to 23
 set RdtI32CCYYMM to 24
 set RdtX4CCYY to 25
 set RdtI32CCYY to 26
 set RdtI16Powerhouse to 27

Edit Options

These are the constant values for the SmartDate edit options:

 set RdtDaysBetween to 100
 set RdtDayOfTheWeek to 200
 set RdtDateRange to 300
 set Rdt2060 to 400
 set RdtBeforeToday to 500
 set RdtFromAfterTo to 600
 set RdtAddDays to 700
 set RdtAllowZero to 800
 set RdtLastDay to 900
 set RdtCutoffYear to 1000

Using the Current Date

This example initializes a date with today's date.    The to-date is a 32-bit integer in
CCYYMMDD format (i.e., date type format 15).    The DummyDate parameter is a placeholder;
it will never be examined by RDTCONVERT because the from-date is today's date.

 set RdtFromType to RdtToday
 set RdtToType to RdtI32CCYYMMDD

 RdtConvert(DummyDate,
 CurrentDate,
 RdtControl)

 if RdtStatus <> 0
 ReportDateError

Using the Current Date Plus Ten Days

This example initializes a date that is ten days in the future.    As in the previous example,
the to-date is a 32-bit integer in CCYYMMDD format.

 set RdtFromType to RdtAddDays + RdtToday
 set RdtToType to RdtI32CCYYMMDD
 set RdtAuxResult to 10

 RdtConvert(DummyDate,
 CurrentPlusTen,
 RdtControl)

 if RdtStatus <> 0
 ReportDateError

Validate a Date

If you wanted, for example, to check a user-specified date to see whether it was valid, use
the zero format for the to-type.    In this example, the DummyDate variable is again used as
a placeholder, but this time it holds the place of the to-date.    Because the from-date is not
being converted to any to-type, the to-date will never be used by RDTCONVERT.

 set RdtFromType to RdtX8CCYYMMDD
 set RdtToType to RdtNone

 RdtConvert(InputDate,
 DummyDate,
 RdtControl)

 if RdtStatus <> 0
 ReportDateError

Additional Checking

In the previous example, RDTCONVERT checked whether the from-date was valid. In this
example, we also check whether the from-date is within a range of days from the current
date.    To do this, we use the RdtDateRange edit option, in which we must specify the
number of days before and after today's date.    The format for this option is

 bbaa

where bb is the number of days before and aa is the number of days after the current date.   
For this example, we assume that we want the from-date to be no less than today's date and
no more than 60 days in the future.    The RdtDateRange for this check is 0060 (zero days
back and 60 days ahead).

 set RdtFromType to RdtDateRange + RdtX8CCYYMMDD
 set RdtToType to RdtNone
 set RdtAuxResult to 0060

 RdtConvert(InputDate,
 DummyDate,
 RdtControl)

 if RdtStatus <> 0
 ReportDateError

Convert a Date

SmartDate includes a powerful feature that lets you convert from one date format to
another.    While doing conversions, SmartDate ensures that the from-date is valid.    In this
example, we assume the user has entered a date in YYMMDD format.    Internally, we store
dates in CCYYMMDD 32-bit format (this takes little storage space and ensures that internal
dates collate correctly). This example then converts the user-specified date to our internal
format, validating it at the same time:

 set RdtFromType to RdtX6YYMMDD
 set RdtToType to RdtI32CCYYMMDD

 RdtConvert(InputDate,
 DBDate,
 RdtControl)

 if RdtStatus <> 0
 ReportDateError

Using a Cutoff Year in Date Conversions

To ensure that all dates are correct, you should always use 4-digit years (e.g., 2001).   
Unfortunately, many users prefer to enter only 2-digit years. In order to ensure that dates
entered after December 31, 2000 are correct, you need to use a cutoff rule for processing 2-
digit dates.

This example is the same as the previous one, except that a century cutoff rule is applied
using the year 1950.    In this example, RDTCONVERT assumes 19xx for the century if the
year is equal to or greater than 50 (i.e., 500101 is treated as January 1, 1950), and it
assumes 20xx for the century when the year is less than 50 (i.e., 010101 is treated as
January 1, 2001).

 set RdtFromType to RdtX6YYMMDD + RdtCutoffYear
 set RdtToType to RdtI32CCYYMMDD
 set RdtAuxResult to 50

 RdtConvert(InputDate,
 DBDate,
 RdtControl)

 if RdtStatus <> 0
 ReportDateError

Date Program

SmartDate includes a program for demonstration and verification.    This program is called
SDate.Pub.Robelle.

The date program allows you to enter dates in a variety of SmartDate formats, to store dates
in different internal formats, and to do date arithmetic and date comparisons.    After each
command, the A and B registers (described below) are formatted into the selected print
format and displayed on $stdlist.

The date program is command-driven.    The command set is very simple, but like SmartDate
itself, these commands can be combined in numerous ways.

Help
Registers
Commands
Examples

On-Line Help
The Help command provides on-line help on both the Date program and the SmartDate
intrinsics.    To obtain help, type "h" at the command prompt:

 >>h

If you wish to obtain help only about the SmartDate intrinsics, use the Intrinsic keyword with
the Help command:

 >>h intrinsic

Registers
The date program uses five internal registers; use these registers to store dates or date
formats.    The name of the register is used in many of the commands.

A
B
I
P
Current Date

A Register

The A register holds a date.    By default, the date is stored in date format 15 (32-bit
CCYYMMDD).    You can change the format of the A register with the "=" command.

B Register

The B register is another date register.    Its default format is the same as the A register.    The
A and B registers do not have to have the same date format.

I Register

The I register is the input register.    You set the I register to the date format in which you
want to enter dates.    By default, the I register is set to format 14 (8-byte CCYYMMDD).

P Register

The P register is the print register.    You set the P register to the date format in which you
want to print dates.    By default, the P register is set to format 5 (12-byte MMM DD, CCYY).

Current Date

You can refer to the current date with an asterisk (*).    In the following example, the current
date is assigned to the A register:

 A=*

Commands
When you run the date program, it prompts you with ">>."    You enter a command by typing
its name and parameters.    You can enter commands in uppercase or lowercase letters.

A
B
=
Question

A Command

The A command assigns a value to the A register.

B Command

The B command assigns a value to the B register.

= Command

The "=" command is used to assign date formats to specific registers.    The various forms of
this command are:

=An Assign date format n to the A register.

=Bn Assign date format n to the B register.

=D+ Print the day of the week when displaying dates.

=D- Do not print the day of the week.

=In Select the input date format.

=PnSpecify the print date format.

? Command

The "?" command is used to answer questions about dates.    The various forms of this
command are:

?A<=* Is the A register less than or equal to today?

?A>B Is the A register greater than the B register?

?A-B Number of days between the A and B registers.

?A:5/10 Is the A register between 5 days before and 10 days after today's date?

Examples
These examples demonstrate the powerful capabilities of SmartDate.

Assignment
Questions
Input Format
Internal
Weekday

Assignment

We start by showing you how to assign dates to the A or B register.

 a=*-1 {A is assigned yesterday's date}
 a=19970327 {assign a specific date}
 a=a+1 {add one day to A}
 a=b {assign B to A}
 a=b+10 {add 10 days to B and assign the result to A}
 b=a-10 {subtract 10 days from A and assign the result to B}
 a=b@ {set A to last day of the month in B}

Questions

The following examples show you how to answer questions about the dates in the A and B
registers.

 ?a<b {Is A less than B?}
 ?b-a {number of days between dates}
 ?b<=* {Is B less than or equal to today?}
 ?a:30/60 {Is A 30 days before or 60 days after today's date?}

Input Format

This example changes the input date format used by the date program.    We specify the
DDMMCCYY format, instead of the default CCYYMMDD format, and then we assign a date to
the B register.

 =i18
 a=27031997 {notice the DDMMCCYY form}

Internal Format

You can change the internal storage format of the A and B registers.    However, be careful
when you do this because some internal formats cannot represent all possible dates.    For
example,

 =a3
 a=20010327

puts the date 010327 in A register, which SmartDate displays as March 7, 1901. Notice that
the century has changed from the one you specified.    That is why it's good practice to
always give your internal dates enough room for the century and the year.

Weekday

When you run the date program, it always displays the day of the week for the A and B
register dates.    You can disable this feature with

 =d-

Examples of Calling SmartDate

This chapter contains working examples of COBOL and Pascal source code that call
SmartDate.    You can copy the examples from the manual by typing them from scratch,
which would be tedious and error-prone.    The best way to copy the examples is to take
them from the on-line SmartDate documentation file, which is stored in Robelle's Qedit
format.    If you have Qedit, just Text a copy of SDate.Doc.Robelle and extract the parts that
you need.

If you don't have Qedit, use the Qcopy program to copy the documentation file into a new
file with a non-Qedit format; then use your favorite text editor to edit the new file.

 :run qcopy.qlib.robelle
 >from=sdate.doc.robelle;to=mydate.source;new
 >exit

Cobol Example
Pascal Example

COBOL Example
The following example shows you how to call a COBOL program from SmartDate. This
program prompts for a database, a dataset, and a field.    It reads the entire dataset, and
checks each record to make sure the field you specified has a valid MM/DD/YY date format.

Source

$control nolist
$control source,errors=10
 identification division.
 program-id. testdate.
 author. Robyn Rennie, Robelle Consulting Ltd.
 date-written. March 24th, 1997.
 security. Copyright Robelle Consulting Ltd 1991-1998.
 remarks.

* *
* testdate - test valid date values. *
* *
* version: 1.0 *
* purpose: *
* *
* General-purpose program to test for valid dates. *
* - this program edits a date field in the format MMDDYY *
* checking for valid date values, adds 150 days to the *
* date and converts it into a date in the format *
* CCYYMMDD *
* *

 environment division.
 configuration section.
 source-computer. hp-3000 series 927.
 object-computer. hp-3000 series 927.
 special-names.
 top is new-page.

 input-output section.
 file-control.
 select line-printer assign to "LINEPRT".

 data division.
 file section.
 fd line-printer
 data record is line-record.
 01 line-record pic x(132).

$page "CONSTANTS"
 working-storage section.
 01 true-value pic x value "T".
 01 false-value pic x value "F".

$page "VARIABLES"
 01 line-count pic s9(4) comp.
 01 page-no pic s9(4) comp.

 01 input-line pic x(80).
 88 answer-spaces value spaces.

 01 end-of-db-set-flag pic x value "F".
 88 end-of-db-set value "T".

 01 in-record-count pic s9(9) comp.

 01 in-error-count pic s9(9) comp.

 01 display-number pic -zzz,zz9.

$page "image area"

 01 image-area.
 05 db-all-list pic x(2) value "@ ".
 05 db-same-list pic x(2) value "* ".
 05 db-null-list pic s9(4) comp value 0.
 05 db-dummy-arg pic s9(4).
 05 db-password pic x(8).
 05 db-mode0 pic s9(4) comp value 0.
 05 db-mode1 pic s9(4) comp value 1.
 05 db-mode2 pic s9(4) comp value 2.
 05 db-get-serial redefines db-mode2 pic s9(4) comp.
 05 db-mode3 pic s9(4) comp value 3.
 05 db-rewind-set redefines db-mode3 pic s9(4) comp.
 05 db-get-backwards redefines db-mode3 pic s9(4) comp.
 05 db-mode4 pic s9(4) comp value 4.
 05 db-get-direct redefines db-mode4 pic s9(4) comp.
 05 db-mode5 pic s9(4) comp value 5.
 05 db-get-chained redefines db-mode5 pic s9(4) comp.
 05 db-mode6 pic s9(4) comp value 6.
 05 db-get-previous redefines db-mode6 pic s9(4) comp.
 05 db-mode7 pic s9(4) comp value 7.
 05 db-get-keyed redefines db-mode7 pic s9(4) comp.
 05 db-status-area.
 10 db-cond-word pic s9(4) comp.
 88 db-stat-ok value zeros.
 88 db-end-of-chain value 15.
 88 db-begin-of-chain value 14.
 88 db-no-entry value 17.
 88 db-end-file value 11.
 88 db-begin-file value 10.
 10 db-stat2 pic s9(4) comp.
 10 db-stat3-4 pic s9(9) comp.
 10 db-chain-length pic s9(9) comp.
 88 db-empty-chain value zeros.
 10 db-stat7-8 pic s9(9) comp.
 10 db-stat9-10 pic s9(9) comp.
$page "db- variables"

 01 db-base.
 05 filler pic x(2) value spaces.
 05 db-name pic x(26).

 01 db-set pic x(16).

 01 db-list pic x(80).

 01 db-buffer.
 05 date-field pic x(08).

$page "Smartdate variables"
 01 rdt-control.
 05 rdt-from-type pic s9(4) comp.

 05 rdt-to-type pic s9(4) comp.
 05 rdt-aux-result pic s9(4) comp value zeros.
 05 rdt-status pic s9(4) comp.

 01 out-buf pic x(80).
 01 out-buflen pic s9(4) comp value zeros.

 01 new-date pic x(18) value spaces.

 01 rdt-edit-codes.
 05 RdtDaysBetween pic s9(4) comp value 100.
 05 RdtDayOfTheWeek pic s9(4) comp value 200.
 05 RdtDateRange pic s9(4) comp value 300.
 05 Rdt2060 pic s9(4) comp value 400.
 05 RdtBeforeToday pic s9(4) comp value 500.
 05 RdtFromAfterTo pic s9(4) comp value 600.
 05 RdtAddDays pic s9(4) comp value 700.
 05 RdtAllowZero pic s9(4) comp value 800.
 05 RdtLastDay pic s9(4) comp value 900.
 05 RdtCutoffYear pic s9(4) comp value 1000.

 01 rdt-from-to-type.
 05 RdtToday pic s9(4) comp value 0.
 05 RdtNone pic s9(4) comp value 0.
 05 RdtX6DDMMYY pic s9(4) comp value 1.
 05 RdtX8DD-MM-YY pic s9(4) comp value 2.
 05 RdtI32YYMMDD pic s9(4) comp value 3.
 05 RdtI16Calendar pic s9(4) comp value 4.
 05 RdtX12MMMDDCCYY pic s9(4) comp value 5.
 05 RdtX8DDMMMYY pic s9(4) comp value 6.
 05 RdtX6MMDDYY pic s9(4) comp value 7.
 05 RdtX8MM-DD-YY pic s9(4) comp value 8.
 05 RdtX6YYMMDD pic s9(4) comp value 9.
 05 RdtI16YYMM pic s9(4) comp value 10.
 05 RdtX4YYMM pic s9(4) comp value 11.
 05 RdtX6MMMYY pic s9(4) comp value 12.
 05 RdtX8YY-MM-DD pic s9(4) comp value 13.
 05 RdtX8CCYYMMDD pic s9(4) comp value 14.
 05 RdtI32CCYYMMDD pic s9(4) comp value 15.
 05 RdtX18DDDMMDDCCYY pic s9(4) comp value 16.
 05 RdtX6AAMMDD pic s9(4) comp value 17.
 05 RdtXnDDMMCCYY pic s9(4) comp value 18.
 05 RdtXnMMDDCCYY pic s9(4) comp value 19.
 05 RdtXnCCYYMMDD pic s9(4) comp value 20.
 05 RdtX8MMMDDYY pic s9(4) comp value 21.
 05 RdtI32YYYMMDD pic s9(4) comp value 22.
 05 RdtX6CCYYMM pic s9(4) comp value 23.
 05 RdtI32CCYYMM pic s9(4) comp value 24.
 05 RdtX4CCYY pic s9(4) comp value 25.
 05 RdtI32CCYY pic s9(4) comp value 26.

$page "[00] MAINLINE"
 procedure division.
 00-main.

 perform 05-get-parameters

 thru 05-get-parameters-exit.

 if not answer-spaces then
 perform 10-open-database
 thru 10-open-database-exit
 move false-value to end-of-db-set-flag
 move zeros to in-record-count
 move zeros to in-error-count
 perform 20-read-set
 thru 20-read-set-exit
 until end-of-db-set or in-error-count > 500
 move in-record-count to display-number
 display "Total records = ", display-number
 move in-error-count to display-number
 display "Total errors = ", display-number.

 perform 90-close-base
 thru 90-close-base-exit.

 00-main-exit. goback.
$page "[05] get-parameters"
*
* Prompt for the database, password, dataset and field list.
*
 05-get-parameters.

 perform 05-10-get-database.

 if not answer-spaces then
 perform 05-20-get-password
 if not answer-spaces then
 perform 05-30-get-dataset
 if not answer-spaces then
 perform 05-40-get-field-list.

 05-get-parameters-exit. exit.

 05-10-get-database.
 move spaces to input-line.
 display "Enter Database Name".
 accept input-line.
 move input-line to db-name.

 05-20-get-password.
 move spaces to input-line.
 display "Enter Database Password".
 accept input-line.
 move input-line to db-password.

 05-30-get-dataset.
 move spaces to input-line.
 display "Enter Dataset Name (must be upper-case)".
 accept input-line.
 move input-line to db-set.

 05-40-get-field-list.
 move spaces to input-line.
 display "Enter @ or Field List (must be upper-case)".
 accept input-line.
 move input-line to db-list.

$page "[10] init-testread"
*
* Open the database.
*

 10-open-database.

 call "DBOPEN" using db-base
 db-password
 db-mode5
 db-status-area.
 if not db-stat-ok then
 perform 99-fatal-error.

 10-open-database-exit. exit.
$page "[20] read-set"
*
* Read all the records in the dataset.
*

 20-read-set.

 perform 20-10-get-next.

 if not end-of-db-set then
 add 1 to in-record-count
 perform 20-20-check-dates.

 20-read-set-exit. exit.

 20-10-get-next.
 call "DBGET" using db-base
 db-set
 db-mode2
 db-status-area
 db-list
 db-buffer
 db-dummy-arg.
 if db-end-file then
 move true-value to end-of-db-set-flag
 else
 if not db-stat-ok then
 perform 99-fatal-error.

 20-20-check-dates.
* Check field for invalid date values add 150 days to the date
* and convert from MM/DD/YY to CCYYMMDD

 add RdtAddDays to RdtX8MM-DD-YY giving rdt-from-type
 move RdtX8CCYYMMDD to rdt-to-type
 move 150 to rdt-aux-result

 move 0 to rdt-status.

 call "RDTCONVERT" using date-field
 new-date
 rdt-control
 if rdt-status of rdt-control <> 0 then
 add 1 to in-error-count
 move spaces to out-buf
 move zeros to out-buflen
 call "RDTERROR" using rdt-control
 out-buf
 out-buflen
 display date-field " " out-buf.

$page "[90] close-base"
*
* Cleanup by closing the database.
*

 90-close-base.
 call "DBCLOSE" using db-base
 db-dummy-arg
 db-mode1
 db-status-area.
 if not db-stat-ok then
 perform 99-fatal-error.

 90-close-base-exit. exit.

$page "[99] fatal-error"

 99-fatal-error.

 call "DBEXPLAIN" using db-status-area.

 goback.

Pascal Example
Calling SmartDate from Pascal is more difficult than from other languages because Pascal
has tighter type-checking on procedure parameters.    The following example is a complete
Pascal/iX program that prompts for a date in an MMDDYY format.    The program then
converts this date to a variety of formats and displays the results.    Note that the
$check_actual_parm$ setting remains at 2 for the entire program.    This is done to prevent
parameter type mismatches between SmartDate and Pascal.

Source

$list off$
$hp3000_16$
{ Sample program showing how to call Robelle's SmartDate routines
 in Pascal
}
program example(input,output);

const
 RdtSunday = 1;
 RdtMonday = 2;
 RdtTuesday = 3;
 RdtWednesday = 4;
 RdtThursday = 5;
 RdtFriday = 6;
 RdtSaturday = 7;

 RdtToday = 0;
 RdtNone = 0;
 RdtX6ddmmyy = 1;
 RdtX8dd_mm_yy = 2;
 RdtI32yymmdd = 3;
 RdtI16calendar = 4;
 RdtX12mmmddccyy = 5;
 RdtX8ddmmmyy = 6;
 RdtX6mmddyy = 7;
 RdtX8mm_dd_yy = 8;
 RdtX6yymmdd = 9;
 RdtI16yymm = 10;
 RdtX4mmyy = 11;
 RdtX6mmmyy = 12;
 RdtX8yy_mm_dd = 13;
 RdtX8ccyymmdd = 14;
 RdtI32ccyymmdd = 15;
 RdtX18dddmmmddccyy = 16;
 RdtX6aammdd = 17;
 RdtXNddmmccyy = 18;
 RdtXNmmddccyy = 19;
 RdtXNccyymmdd = 20;
 RdtX8mmmddyy = 21;
 RdtI32yyymmdd = 22;
 RdtI32ccyymm = 23;
 RdtX6ccyymm = 24;
 RdtI32ccyy = 25;
 RdtX4ccyy = 26;

 RdtDaysBetween = 100;
 RdtDayOfTheWeek = 200;
 RdtDateRange = 300;
 Rdt2060 = 400;
 RdtBeforeToday = 500;
 RdtFromAfterTo = 600;
 RdtAddDays = 700;
 RdtAllowZero = 800;
 RdtLastDay = 900;
 RdtCutoffYear = 1000;

 RdtErrorBadDay = 1;

 RdtErrorBadMonth = 2;
 RdtErrorBadYear = 3;
 RdtErrorBadJulian = 4;
 RdtErrorDayInMonth = 5;
 { value 6 is unused }
 RdtErrorFromtype = 7;
 RdtErrorTotype = 8;
 RdtErrorFailed = 9;
 RdtErrorBadEditnum = 10;
 RdtErrorMissingDelim = 11;
 RdtErrorSuprdate2_1 = 12;
 RdtErrorSuprdate2_2 = 13;
 RdtErrorSuprdate2_3 = 14;
 RdtErrorSuprdate2_4 = 15;
 RdtErrorTooFar = 16;
 RdtErrorFreeFormat = 17;

type
 TypeRdtConvert = record
 case shortint of
 1: (x6 : packed array[1..6] of char);
 2: (x8 : packed array[1..8] of char);
 3: (x12: packed array[1..12] of char);
 4: (x18: packed array[1..18] of char);
 5: (xn : packed array[1..80] of char);
 6: (i16: shortint);
 7: (i32: integer);
 end;

 TypeRdtControl = record
 fromtype: shortint;
 totype : shortint;
 aux : shortint;
 result : shortint;
 end;

 line_type = packed array[1..80] of char;

{--}
type
 dayname_array = packed array[1..12] of char;
 weekday_array = array[1..7] of dayname_array;

const
 weekday_name = weekday_array[
 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
 'Saturday'];

var
 inbuf, outbuf: line_type;

{--}
$check_formal_parm 2$
$check_actual_parm 2$

procedure rdtconvert(var fromdate,
 todate : TypeRdtConvert;

 var rdtcontrol : TypeRdtControl);
 external spl;

procedure RdtError(var rdtcontrol : TypeRdtControl;
 var buf : line_type;
 var len : integer);
 external spl;

$check_formal_parm 3$

{--}
function get_record(var buf: line_type): boolean;
begin
 writeln;
 prompt('Enter a date in mmddyy form: ');
 get_record := false;
 readln(buf);
 if buf<>'' then
 get_record := true;
end;

function validate_date(var inbuf, outbuf: line_type): boolean;
var
 fromdate,
 todate : TypeRdtConvert;
 rdtcontrol : TypeRdtControl;
 len : integer;
begin
 validate_date := false;
 outbuf := ' ';

 strmove(6, inbuf,1, fromdate.x6,1);
 rdtcontrol.fromtype := RdtX6mmddyy;
 rdtcontrol.totype := RdtNone;
 rdtconvert(fromdate, todate, rdtcontrol);

 if rdtcontrol.result=0 then
 validate_date := true
 else
 RdtError(rdtcontrol, outbuf, len);
end;

function convert_date(var inbuf, outbuf: line_type): boolean;
var
 fromdate,
 todate : TypeRdtConvert;
 rdtcontrol : TypeRdtControl;
 len : integer;
begin
 convert_date := false;
 outbuf := ' ';

 strmove(6, inbuf,1, fromdate.x6,1);
 rdtcontrol.fromtype := RdtX6mmddyy;
 rdtcontrol.totype := RdtX12mmmddccyy;

 rdtconvert(fromdate, todate, rdtcontrol);

 if rdtcontrol.result=0 then
 begin
 strmove(12, todate.x12,1, outbuf,1);
 writeln('You entered ', outbuf:12);
 convert_date := true;
 end
 else
 RdtError(rdtcontrol, outbuf, len);
end;

function get_weekday(var inbuf, outbuf: line_type): boolean;
var
 fromdate,
 todate : TypeRdtConvert;
 rdtcontrol : TypeRdtControl;
 len : integer;
begin
 get_weekday := false;
 outbuf := ' ';

 strmove(6, inbuf,1, fromdate.x6,1);
 rdtcontrol.fromtype := RdtX6mmddyy + RdtDayOfTheWeek;
 rdtcontrol.totype := Rdtnone;
 rdtconvert(fromdate, todate, rdtcontrol);

 if rdtcontrol.result=0 then
 begin
 writeln('That day is a ', weekday_name[rdtcontrol.aux]);
 get_weekday := true;
 end
 else
 RdtError(rdtcontrol, outbuf, len);
end;

function add_days(var inbuf, outbuf: line_type): boolean;
var
 fromdate,
 todate : TypeRdtConvert;
 rdtcontrol : TypeRdtControl;
 len : integer;
begin
 add_days := false;
 outbuf := ' ';

 strmove(6, inbuf,1, fromdate.x6,1);
 rdtcontrol.fromtype := RdtX6mmddyy + RdtAddDays;
 rdtcontrol.totype := RdtX18dddmmmddccyy;
 rdtcontrol.aux := 100;
 rdtconvert(fromdate, todate, rdtcontrol);

 if rdtcontrol.result=0 then
 begin
 strmove(18, todate.x18,1, outbuf,1);

 writeln('100 days from that date, it will be ', outbuf:18);
 add_days := true;
 end
 else
 RdtError(rdtcontrol, outbuf, len);
end;

function compare_days(var inbuf, outbuf: line_type): boolean;
var
 fromdate,
 todate : TypeRdtConvert;
 rdtcontrol : TypeRdtControl;
 len : integer;
begin
 compare_days := false;
 outbuf := ' ';

 strmove(6, inbuf,1, fromdate.x6,1);
 todate.x6 := '010180';
 rdtcontrol.fromtype := RdtX6mmddyy + RdtFromAfterTo;
 rdtcontrol.totype := RdtX6mmddyy;
 rdtconvert(fromdate, todate, rdtcontrol);

 if rdtcontrol.result=0 then
 begin
 writeln('That date is on or after Jan 1, 1980');
 compare_days := true;
 end
 else if rdtcontrol.result=RdtErrorFailed then
 begin
 writeln('That date is before Jan 1, 1980');
 compare_days := true;
 end
 else
 RdtError(rdtcontrol, outbuf, len);
end;

function last_day(var inbuf, outbuf: line_type): boolean;
var
 fromdate,
 todate : TypeRdtConvert;
 rdtcontrol : TypeRdtControl;
 len : integer;
begin
 last_day := false;
 outbuf := ' ';

 rdtcontrol.fromtype := RdtToday + RdtLastDay;
 rdtcontrol.totype := RdtX18dddmmmddccyy;
 rdtconvert(fromdate, todate, rdtcontrol);

 if rdtcontrol.result=0 then
 begin
 strmove(18, todate.x18,1, outbuf,1);
 writeln('Your current month-end is ', outbuf:18);

 last_day := true;
 end
 else
 RdtError(rdtcontrol, outbuf, len);
end;

function assume_century(var inbuf, outbuf: line_type): boolean;
var
 fromdate,
 todate : TypeRdtConvert;
 rdtcontrol : TypeRdtControl;
 len : integer;
begin
 assume_century := false;
 outbuf := ' ';

 strmove(6, inbuf,1, fromdate.x6,1);
 rdtcontrol.fromtype := RdtX6mmddyy + RdtCutoffYear;
 rdtcontrol.totype := RdtX12mmmddccyy;
 rdtcontrol.aux := 10; { 00..09 are year 2000 }
 rdtconvert(fromdate, todate, rdtcontrol);

 if rdtcontrol.result=0 then
 begin
 strmove(12, todate.x12,1, outbuf,1);
 writeln('With a century cutoff of 10, the date entered is ',
 outbuf:12);
 assume_century := true;
 end
 else
 RdtError(rdtcontrol, outbuf, len);
end;

{--}

procedure report_error(var outbuf: line_type);
begin
 writeln('** Error: ', outbuf);
end;

begin
 while get_record(inbuf) do
 begin
 if validate_date(inbuf,outbuf) then
 begin
 if not convert_date(inbuf, outbuf)
 then report_error(outbuf);
 if not get_weekday(inbuf, outbuf)
 then report_error(outbuf);
 if not add_days(inbuf, outbuf)
 then report_error(outbuf);
 if not compare_days(inbuf, outbuf)
 then report_error(outbuf);
 if not last_day(inbuf, outbuf)
 then report_error(outbuf);
 if not assume_century(inbuf, outbuf)

 then report_error(outbuf);
 end
 else
 report_error(outbuf);
 end;
end.

How to Contact Robelle

In the United States, in Canada, and in places not listed below, contact us at the following
address:

Robelle Consulting Ltd.
Unit 201, 15399-102A Ave.
Surrey, B.C. Canada    V3R 7K1

Toll-free:    1-888-ROBELLE
                  :    (1-888-762-3553)
Phone        :    (604) 582-1700
Fax            :    (604) 582-1799

E-mail      :    info@robelle.com
E-mail      :    support@robelle.com
Web            :    www.robelle.com

For our international distributors listing, note that the phone and fax numbers shown are for
out-of-country dialing.

Europe
Africa
Asia and Australia
North America

Europe
Czech Republic, Slovak Republic

ASW Praha s.r.o.
Attention:    Jiri Nemec
Phone: 420 2 723 305
Fax: 420 2 723 305
E-mail: aswltd@mbox.vol.cz

France, Belgium
ARES
Attention:    Renee Belegou
Phone: 33 1 69 86 60 24
Fax: 33 1 69 28 19 18
E-mail: rbelegou@ares.fr
Web: www.ares.fr

Germany
SWS SoftWare Systems GmbH
Attention:    Daniela Wieland
Phone: 49 7621 689 190
Fax: 49 7621 689 191
E-mail: info@sws.ch
Web: www.sws.ch

The Netherlands, Belgium
Samco Automation b.v.
Attention:    Marius Schild
Phone: 31 13 521 5655
Fax: 31 13 528 8815
E-mail:marius@samco.nl
Web: www.samco.nl

Scandinavia
Ole Nord AB
Attention:    Ole Nord
Phone: 46 8 623 00 50
Fax: 46 8 35 42 45
E-mail: info@olenordab.se
Web: www.olenordab.se

Switzerland, Austria
SWS SoftWare Systems AG
Attention:    Daniela Wieland
Phone: 41 31 981 0666
Fax: 41 31 981 3263
E-mail: info@sws.ch
Web: www.sws.ch

United Kingdom, Ireland
Robelle Consulting
Attention:    Clive Oldfield
Phone: 44 171 473 2558
Fax: 44 171 473 2558

E-mail: robelle_oldfield@msn.com

Africa
Saudi Arabia, United Arab Emirates, Kuwait, Oman,

Saudi Information Technology
Attention:    Abdulmohsen Al-Hobayb
Phone: 966 1 477 4555
Fax: 966 1 478 1451

South Africa
Synergy Computing (Pty) Ltd
Attention:    Paul Howard
Phone: 27 21 685 7809
Fax: 27 21 685 7927
E-mail: synergy@synergy.co.za

Asia and Australia
Australia, New Zealand

Facer Solutions
Attention:    Kathy Ewart
Phone: 61 2 9484 3979
Fax: 61 2 9484 5709
E-mail: kathye@facer.com.au
Web: www.facer.com.au

Hong Kong
SCS Computer Systems Ltd.
Attention:    Steven Lai
Phone: 852 2609 1338
Fax: 852 2607 3042

Singapore, Malaysia
ST Computer Systems & Services Limited
Attention:    Toh Tiau Hong
Phone: 65 441 2688
Fax: 65 441 2811
E-mail: tohth@stcs.com.sg
Web: www.stcs.com.sg

North America
Mexico

Infosistemas Financieros SA de CV
Attention:    Anita De Urquijo
Phone: 52 5 813 1325
Fax: 52 5 813 3026
E-mail: ifanita@infosel.net.mx

