HowMessy is Your Database?

A Robelle and Adager Tutorial HP World '96 Anaheim, California August 5 - 8, 1996

Copyright 1996, Robelle Solutions Technology Inc.

What's Inside

	<u>Page</u>
How messy is your database?	3
Hashing algorithm	6
Interpreting master dataset lines	13
Master dataset solutions	16
HowMessy sample report (detail dataset)	20
Repacking a detail dataset	25
Detail dataset solutions	29
Estimating response time	31
Automating HowMessy anal,	32
Summary	35

How messy is your database?

A database is messy if it takes more I/O than it should

Unnecessary I/O is still a major limiting factor even on MPE/iX machines

Databases are messy by nature

Run HowMessy or DBLOADNG against your database
 HowMessy is a bonus program for Robelle customers
 DBLOADNG is a contributed library program

Blocks

TurboIMAGE does all I/O operations in blocks
A block may contain many user records
More entries per block means fewer I/Os
Fewer I/Os means better performance

Capacity: 100001

Record location in masters

Search item values must be unique

Location of entries is determined by a hashing algorithm or a primary address calculation

Calculation is done on search item value to transform it into a record number between one and the capacity

Different calculation depending on the search item type
 X, U, Z, and P give random results
 I, J, K, R, and E give predictable results

Hashing algorithm

Customer number AA1000 is transformed into a record number

Hashing algorithm (no collision)

Hashing algorithm (collision - same block)

Customer number CL1717 hashes to the same record number as AA1000 location

- TurboIMAGE tries to find an empty location in the same block. If it finds one, no additional I/O is required.
- CL1717 becomes a secondary entry. Primary and secondary entries are linked using pointers that form a chain.

Block 3162

Hashing algorithm (collision - different block)

Customer number MD4884 collides with AA1000

- No more room in this block. TurboIMAGE reads the following blocks until it finds a free record location.
- In this case, MD4884 is placed two blocks away, which requires two additional I/Os.

An example TurbolMAGE database

HowMessy sample report

HowMessy/XL (Version 2.2.1) TurbolMAGE/3000 databases Data Base: STORE.DATA.INVENT By Robelle Solutions Technology Inc. Run on: MON, JAN 9, 1996, 11:48 AM Page: 1

					•		
		Туре			Load da	aries Blks	Blk
Da	ita Set		Capacity	Entries	Factor (F	lighwater)	Fact
M-Customer	Man	248113	178018	71.7%	30.5% 1496	11	
A-Order-No	Ato	1266783	768556	60.7%	25.7% 1	70	
D-Orders	Det	1000000	768558	76.9%	(851445)	32	
D-Ord-Items	Det	4000000	3458511	86.5%	(3470097)	23	

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Customer-No	32	1.92	0.32	1.00	1.90	90.5%	1.90
Order-No	10	1.35	0.62	1.00	1.00	0.0%	1.00
!Order-No	1	1.00	0	1.00	1.00	0.0%	1.00
S Customer-No	80	14.34	17.76	1.75	9.20	57.2%	5.25
S !Order-No	1604	8.06	35.75	1.36	11.32	72.5%	8.34

HowMessy sample report (master dataset)

HowMessy/XL (Version 2.2.1) TurbolMAGE/3000 databases Data Base: STORE.DATA.INVENT By Robelle Solutions Technology Inc. Run on: MON, JAN 9, 1996, 11:48 AM Page: 1

					••	••••	
		Load da	Blk				
Da	ta Set		Capacity	Entries	Factor (Hi	ghwater)	Fact
M-Customer	Man	248113	178018	71.7%	30.5% 1496	11	
A-Order-No	Ato	1266783	768556	60.7%	25.7% 1	70	
D-Orders	Det	1000000	768558	76.9%	(851445)	32	
D-Ord-Items	Det	4000000	3458511	86.5%	(3470097)	23	

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Customer-No	32	1.92	0.32	1.00	1.90	90.5%	1.90
Order-No	10	1.35	0.62	1.00	1.00	0.0%	1.00
!Order-No	1	1.00	0	1.00	1.00	0.0%	1.00
S Customer-No	80	14.34	17.76	1.75	9.20	57.2%	5.25
S !Order-No	1604	8.06	35.75	1.36	11.32	72.5%	8.34

Interpreting master datasets lines

Pay attention to the following statistics:

High percentage of Secondaries (inefficient hashing)
High Maximum Blocks (clustering)

High Maximum and Average Chains (inefficient hashing)

High Inefficient Pointers (when secondaries exist)

High Elongation (when secondaries exist)

Report on m-customer

The number of Secondaries is not unusually high
 However, there may be problems
 Records are clustering (high Max Blks)
 Long synonym chain
 High percentage of Inefficient Pointers

Data Set	Туре	Capa	city E	Entries	Load Facto	d darie r (Higł	s Blks water)	Blk Fact	
M-CUSTOME	R Man	248	113 [~]	178018	71.7%	<u>30.5%</u>	<u>% 1496</u>	11	
			Max	Ave	Std	Expd	Avg	Ineff	Elong-
	Search Fi	eld	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
	CUSTOM	ER-NO	<u>22</u>	1.92	0.32	1.00	1.90	<u>90.5%</u>	1.90

Report on a-order-no

Very tidy dataset

- Number of Secondaries is acceptable
- Max Blks, Ineff Ptrs and Elongation are at the minimum values, even if the Maximum Chain length is a bit high

Data Set	٦	Гуре	Capacity	Entries	Load Factor	Secon- Max daries Blks (Highwater)	Blk Fact	
A-ORDE	R-NO	Ato	1266783	768556	60.7%	<u>25.7% 1</u>	70	
	Elong-		Max	Ave	Std	Expd	Avg	Ineff
	Search ation	n Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs
	ORDEI <u>1.00</u>	R-NO	<u>10</u>	1.35	0.62	1.00	1.00	<u>0.0%</u> 15

Master dataset solutions

Increase capacity to a higher odd number

Increase the Blocking Factor
Increase block size
Reduce record size

```
Change binary keys to type X, U, Z, or P
```

Check your database early in the design

Use HowMessy on test databases

Implementing a solution: Changing a key data-type

HowMessy/XL (Version 2.2.1) TurbolMAGE/3000 databases Data Base: SOMEDB.DATA.SOMEACCT By Robelle Solutions Technology Inc. Run on: MON, JAN 9, 1996, 11:48 AM Page: 1

	L	Load daries Blks						
Data	Set	• -	Capacity	Entries	Fa	ctor (⊦	lighwater)	Fact
Part-Master	Ato	10000	4305	43.0%	14.2%	16	78	
Part-Loc-Master	Ato	606010	303005	50.0%	<u>86.4%</u>	<u>612</u>	67	
Parts-Detail	Det	303030	303005	100.0%	(303	005)	63	

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Part-No	3	1.17	0.40	1.00	1.67	63.3%	1.67
Part-Loc-No	<u>4305</u>	<u>7.38</u>	73.09	1.07	<u>45.84</u>	66.4%	42.90
Part-No	41065	70.38	666.46	1.86	3.20	3.1%	1.72
Part-Loc-No	1	1.00	0.00	1.00	1.00	0.0%	1.00

Change key type to byte, same data values

HowMessy/XL (Version 2.2.1) TurbolMAGE/3000 databases Data Base: SOMEDB.DATA.SOMEACCT By Robelle Solutions Technology Inc. Run on: MON, JAN 9, 1996, 11:48 AM Page: 1

	Lo	oad da	aries Blks	Blk				
Data	Set	_	Capacity	Entries	Fac	ctor (H	lighwater)	Fact
Part-Master	Ato	10000	4305	43.0%	14.2%	16	78	
Part-Loc-Master	Ato	606010	303005	50.0%	<u>27.7%</u>	<u>95</u>	67	
Parts-Detail	Det	303030	303005	100.0%	(3030	005)	63	

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Part-No	3	1.17	0.40	1.00	1.67	63.3%	1.67
Part-Loc-No	<u>13</u>	<u>1.38</u>	0.77	1.00	<u>1.42</u>	29.3%	1.42
Part-No	41065	70.38	666.46	1.86	3.20	3.1%	1.72
Part-Loc-No	1	1.00	0.00	1.00	1.00	0.0%	1.00

Change key type to byte, convert data values

HowMessy/XL (Version 2.2.1) TurbolMAGE/3000 databases Data Base: SOMEDB.DATA.SOMEACCT By Robelle Solutions Technology Inc. Run on: MON, JAN 9, 1996, 11:48 AM Page: 1

	Lo	bad da	ries Blks	Blk				
Data	Set	_	Capacity	Entries	Fac	tor (H	ighwater)	Fact
Part-Master	Ato	10000	4305	43.0%	14.2%	16	78	
Part-Loc-Master	Ato	606010	303005	50.0%	<u>21.4%</u>	<u>0</u>	56	
Parts-Detail	Det	303054	303005	100.0%	(3030	005)	53	

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Part-No	3	1.17	0.40	1.00	1.67	63.3%	1.67
Part-Loc-No	<u>6</u>	<u>1.27</u>	0.54	1.00	<u>1.00</u>	0.0%	1.00
Part-No	41065	70.38	666.46	2.07	3.43	3.4%	1.66
Part-Loc-No	1	1.00	0.00	1.00	1.00	0.0%	1.00

HowMessy sample report (detail dataset)

HowMessy/XL (Version 2.2.1) for TurbolMAGE/3000 databases Data Base: STORE.DATA.INVENT By Robelle Solutions Technology Inc. Run on: MON, JAN 9, 1996, 11:48 AM Page: 1

Cases May

					Secon- wax	
	Туре			Load	daries Blks	Blk
Data Set		Capacity	Entries	Factor	(Highwater)	Fact
M-CUSTOMER	Man	248113	178018	71.7%	30.5% 1496	1
A-ORDER-NO	Ato	126673	768556	60.7%	25.7% 1	70
D-ORDERS	Det	1000000	768556	76.9%	(851445)	12
D-ORD-ITEMS	Det	4000000	3458511	86.5%	(3470097)	23

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Customer-No	22	1.92	0.32	1.00	1.90	90.5%	1.90
Order-No	10	1.35	0.62	1.00	1.00	0.0%	1.00
!Order-No	1	1.00	0	1.00	1.00	0.0%	1.00
S Customer-No	80	14.34	17.76	1.75	9.20	57.2%	5.25
S !Order-No	1604	8.06	35.75	1.36	11.32	72.5%	8.34

Empty detail dataset

Records are stored in the order they are created, starting from record 1

Records for the same customer are linked together using pointers to form a chain

Chains are linked to the corresponding master entry

D-ORD-HEADER

Detail chains get scattered

Over time, records for the same customer are scattered over multiple blocks

Deleted records are linked together

TurboIMAGE reuses the locations in the Delete chain, if there are any

Highwater mark

Indicates highest record location used so far

Serial reads scan the dataset up to the highwater mark

Repacking a detail dataset

Interpreting detail dataset lines

Pay attention to the following statistics:

Load Factor approaching 100% (dataset full)

Primary path (large Average Chain and often accessed)

High Average Chain and low Standard Deviation, especially with a sorted path (Is path really needed?)

High Inefficient Pointers (entries in chain not consecutive)

High Elongation (entries in chain not consecutive)

Report on d-orders

Primary path should be on customer-no, not on order-no

Highwater mark is high

Repack along new primary path regularly

Data Set	Туре	Capaci	ty En	tries	Load Factor	Secon-M daries Bl (Highwate	ax ks B er) Fa	lk ct	
D-ORDERS	Det	10000	00 76	8556	76.9%	(<u>85144</u>	<u>45)</u> [,]	12	
		Max	Ave	Std	Expd	Avg	Ineff	Elong-	
Search	n Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation	
!ORDE	R-NO	1	1.00	0	1.00	1.00	0.0%	1.00	
S 5.25	CUSTOM	ER-NO	<u>80</u>	<u>14.34</u>	17.76	1.75	9.20	<u>57.2%</u>	

Report on d-ord-items

Inefficient Pointers and Elongation are high
Highwater mark is fairly high
Repack the dataset regularly
Is the sorted path really needed?

Data Set	Туре	Capacity	Entr	ries F	Load actor	Secon- Max daries Blks (Highwater)	Bl Fac	lk ct
D-ORD-ITEMS Det		4000000	3458	511 8	86.5%	(<u>3470097</u>)	2	23
		Max	Ave	Std	Ехр	d Avg	Ineff	Elong-
Search Field		Chain	Chain	Dev	Block	s Blocks	Ptrs	ation
S !ORDER-NO		1604	8.06	35.75	1.3	6 <u>11.32</u>	<u>72.5</u>	8.34

Detail dataset solutions

Assign the primary path correctly; select a search item with an Average Chain length > 1 that is accessed most often

- Repack datasets along the primary path regularly
- Increase the Blocking Factor
 - Increase block size
 - Reduce record size
- Understand sorted paths
- Check your databases early in the design; use HowMessy on test databases

Minimum number of disc I/Os

<u>Intrinsic</u>

DBGET DBFIND DBBEGIN DBEND DBUPDATE DBUPDATE DBPUT DBDELETE

Serial reads: Master Detail

Disc I/Os

1 1 1 1 1 (non-critical item) 13 (critical item) 3 [+ (4 x #paths, if detail)] 2 [+ (4 x #paths, if detail)]

Capacity / Blocking factor # entries / Blocking factor

Estimating response time

Deleting 100,000 records from a detail dataset with two paths would take: =2 + (4 x 2 paths) = 10 I/Os per record ■100,000 records x 10 I/Os per record = 1,000,000 I/Os Classic: around 25 I/Os per second ■1,000,000 I/Os / 25 = 40,000 seconds -40,000 seconds / 3600 = 11.1 hours K: around 40 I/Os per second ■1,000,000 I/Os / 40 = 25,000 seconds 25,000 seconds / 3600 = 6.9 hours

Automating HowMessy analysis

Recent version of HowMessy creates a self-describing file with these statistics

Process the file with generic tools (Suprtool, AskPlus) or custom programs (COBOL, 4GL), and produce custom reports

Send messages to database administrators

Write "smart" job to fix databases without user intervention

Processing Loadfile with Suprtool

Datasets more than 80% full

>input loadfile
>if loadfactor > 80
>ext database, dataset, datasettype, loadfactor
>list standard

Only one address per customer

```
>input loadfile
>if dataset = "D-ADDRESSES" and &
  maxchain > 1
```


The TurboIMAGE/3000 Handbook (Chapter 23)

Available for \$ 49.95 from:

WORDWARE P.O. Box 14300 Seattle, WA 98114

