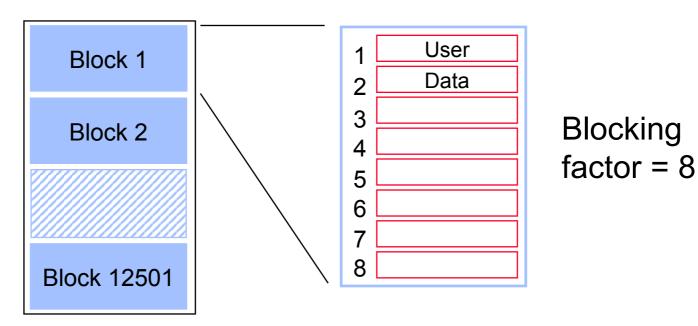
HowMessy

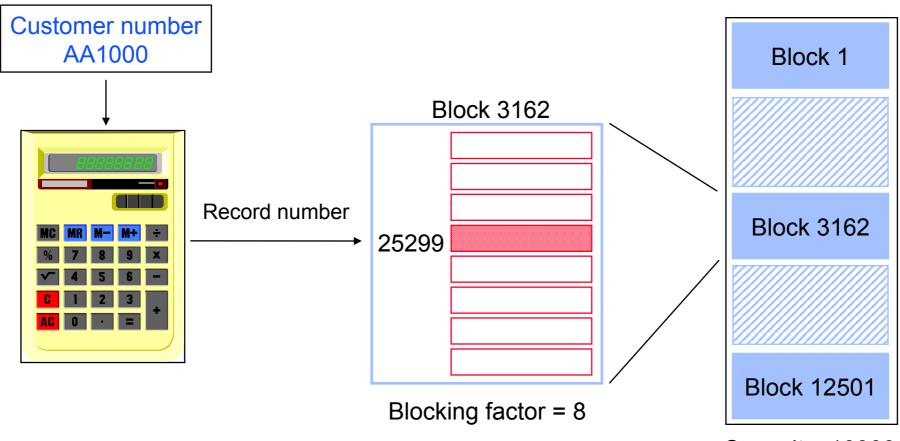
How Messy is Your Database							
How messy is your database?	2						
Hashing algorithm	5						
Interpreting master dataset lines	12						
Master dataset solutions	15						
HowMessy sample report (detail dataset)	17						
Repacking a detail dataset	22						
Detail dataset solutions	26						
Estimating response time	29						
Automating HowMessy analysis	30						
Summary	33						


How messy is your database?

- A database is messy if it takes more I/O than it should
- Unnecessary I/O is still a major limiting factor even on MPE/iX machines
- Databases are messy by nature
- Run HowMessy or DBLOADNG against your database
 - HowMessy is a bonus program for Robelle customers
 - DBLOADNG is a contributed library program

Blocks

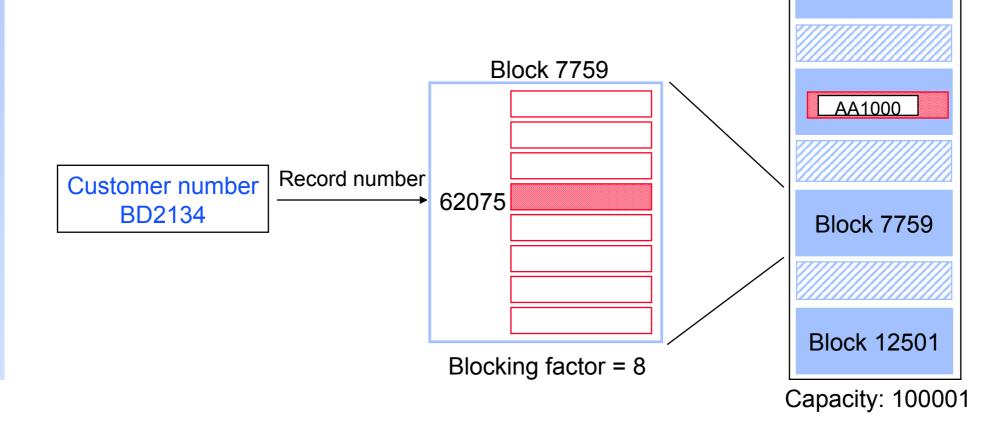
- TurboIMAGE does all I/O operations in blocks
- A block may contain many user records
- More entries per block means fewer I/Os
- Fewer I/Os means better performance


Record location in masters

- Search item values must be unique
- Location of entries is determined by a hashing algorithm or a primary address calculation
- Calculation is done on search item value to transform it into a record number between one and the capacity
- Different calculation depending on the search item type
 - X, U, Z, and P give random results
 - I, J, K, R, and E give predictable results

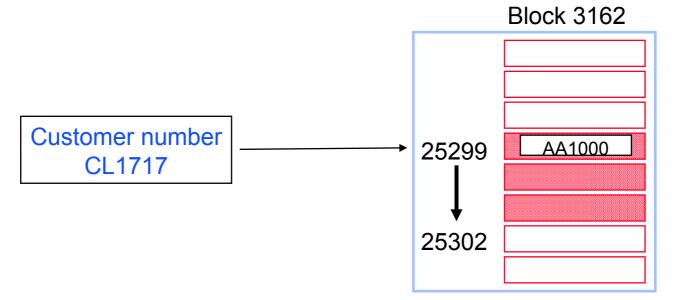
Hashing algorithm

Customer number AA1000 is transformed into a record number

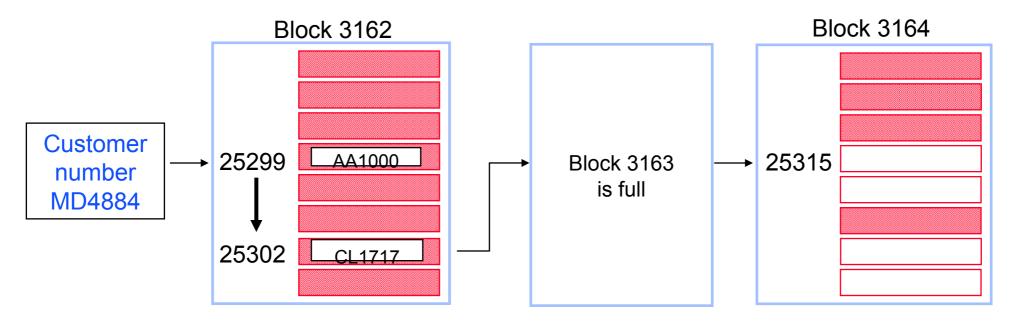

Capacity: 100001

Block 1

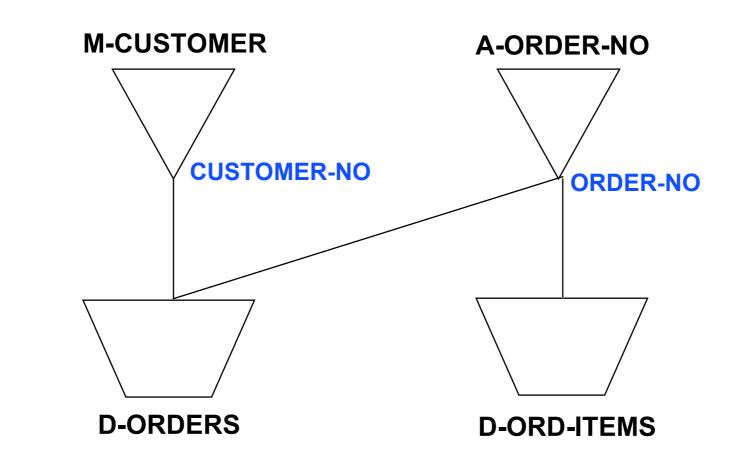
Hashing algorithm (no collision)


Customer number BD2134 gives a different record number in a different block

Hashing algorithm (collision - same block)


- Customer number CL1717 hashes to the same record number as AA1000 location
- TurboIMAGE tries to find an empty location in the same block. If it finds one, no additional I/O is required.
- CL1717 becomes a secondary entry. Primary and secondary entries are linked using pointers that form a chain.

Hashing algorithm (collision - different block)



- Customer number MD4884 collides with AA1000
- No more room in this block. TurboIMAGE reads the following blocks until it finds a free record location.
- In this case, MD4884 is placed two blocks away, which requires two additional I/Os.

An example TurbolMAGE database

HowMessy sample report

HowMessy/XL (Version 2.2.1) TurbolMAGE/3000 databases Data Base: STORE.DATA.INVENT By Robelle Consulting Ltd. Run on: MON, JAN 9, 1995, 11:48 AM Page: 1

Secon- Max		
Туре	Load daries Blks Blk	
Data Set	Capacity EntriesFactor (Highwater)	Fact
M-Customer	Man 248113 17801871.7%30.5% 1496	11
A-Order-No	Ato 1266783 76855660.7%25.7% 1	70
D-Orders	Det 1000000 76855876.9%(851445)	32
D-Ord-Items	Det 4000000 345851186.5%(3470097)	23

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Customer-No	32	1.92	0.32	1.00	1.90	90.5%	1.90
Order-No	10	1.35	0.62	1.00	1.00	0.0%	1.00
!Order-No	1	1.00	0	1.00	1.00	0.0%	1.00
S Customer-No	80	14.34	17.76	1.75	9.20	57.2%	5.25
S !Order-No	1604	8.06	35.75	1.36	11.32	72.5%	8.34

HowMessy sample report (master dataset)

HowMessy/XL (Version 2.2.1) TurboIMAGE/3000 databases Data Base: STORE.DATA.INVENT By Robelle Consulting Ltd Run on: MON, JAN 9, 1995, 11:48 AM Page: 1

Sacon May

					Secon- wax	
	Туре			Load	daries Blks	Blk
Data Set		Capacity	Entries	Factor	(Highwater)	Fact
M-Customer	Man	248113	178018	71.7%	30.5% 1496	11
A-Order-No	Ato	1266783	768556	60.7%	25.7% 1	70
D-Orders	Det	1000000	768558	76.9%	(851445)	32
D-Ord-Items	Det	4000000	3458511	86.5%	(3470097)	23

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Customer-No	32	1.92	0.32	1.00	1.90	90.5%	1.90
Order-No	10	1.35	0.62	1.00	1.00	0.0%	1.00
!Order-No	1	1.00	0	1.00	1.00	0.0%	1.00
S Customer-No	80	14.34	17.76	1.75	9.20	57.2%	5.25
S !Order-No	1604	8.06	35.75	1.36	11.32	72.5%	8.34

Interpreting master datasets lines

- Pay attention to the following statistics:
 - High percentage of Secondaries (inefficient hashing)
 - High Maximum Blocks (clustering)
 - High Maximum and Average Chains (inefficient hashing)
 - High Inefficient Pointers (when secondaries exist)
 - High Elongation (when secondaries exist)

Report on m-customer

- The number of Secondaries is not unusually high
- However, there may be problems
 - Records are clustering (high Max Blks)
 - Long synonym chain
 - High percentage of Inefficient Pointers

Data Set	Туре	Сара	city	Entries	Load Facto	d darie	on- Max s Blks nwater)	Blk Fact	
M-CUSTOME	R Man	248	113	178018	71.7%	% <u>30.5</u> %	<u>/。1496</u>	11	
			Max	Ave	Std	Expd	Avg	Ineff	Elong-
	Search Fi	eld	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
(CUSTOM	ER-NO	<u>22</u>	1.92	0.32	1.00	1.90	<u>90.5%</u>	1.90

Report on a-order-no

Very tidy dataset

- Number of Secondaries is acceptable
- Max Blks, Ineff Ptrs and Elongation are at the minimum values, even if the maximum chain length is a bit high

			Secon- Max				
	Туре			Load	daries Blks	Blk	
Data Set		Capacity	Entries	Factor	(Highwater)	Fact	
A-ORDER-NO	Ato	1266783	768556	60.7%	<u>25.7% 1</u>	70	

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
ORDER-NO	<u>10</u>	1.35	0.62	1.00	1.00	<u>0.0%</u>	<u>1.00</u>

Master dataset solutions

- Increase capacity to a higher odd number
- Increase the Blocking Factor
 - Increase block size
 - Reduce record size
- Change binary keys to type X, U, Z, or P
- Check your database early in the design
- Use HowMessy on test databases

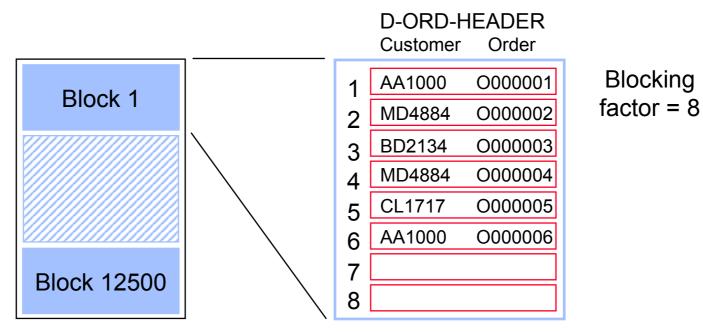
HowMessy Exercise 1

Data Set	Туре	Capacit	y Ent	ries	Load Factor	Secon- daries (Highwa	Blks	Blk Fact
A-MASTE	R Ato	1450567	9 9709	758	66.9%	36.8%	2395	29
		Мах	Ave	Std	Expd	Avg	Ineff	Elong-
Se	arch Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
MA	STER-KEY	37	1.58	1.26	1.00	1.88	48.5%	1.88

HowMessy sample report (detail dataset)

HowMessy/XL (Version 2.2.1) for TurbolMAGE/3000 databases Data Base: STORE.DATA.INVENT By Robelle Consulting Ltd.

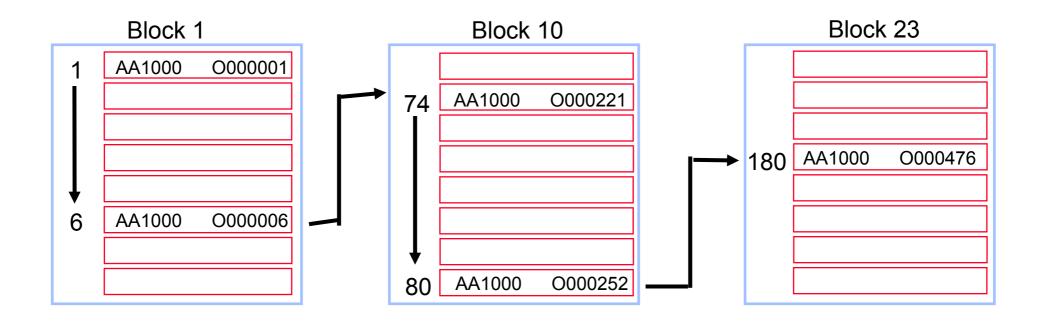
Run on:	MON,	JAN	9,	1995,	11:48	AM
					Pag	e: 1


					Secon- Max	
	Туре			Load	daries Blks	Blk
Data Set		Capacity	Entries	Factor	(Highwater)	Fact
M-CUSTOMER	Man	248113	178018	71.7%	30.5% 1496	1
A-ORDER-NO	Ato	126673	768556	60.7%	25.7% 1	70
D-ORDERS	Det	1000000	768556	76.9%	(851445)	12
D-ORD-ITEMS	Det	4000000	3458511	86.5%	(3470097)	23

	Max	Ave	Std	Expd	Avg	Ineff	Elong-
Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
Customer-No	22	1.92	0.32	1.00	1.90	90.5%	1.90
Order-No	10	1.35	0.62	1.00	1.00	0.0%	1.00
!Order-No	1	1.00	0	1.00	1.00	0.0%	1.00
S Customer-No	80	14.34	17.76	1.75	9.20	57.2%	5.25
S !Order-No	1604	8.06	35.75	1.36	11.32	72.5%	8.34

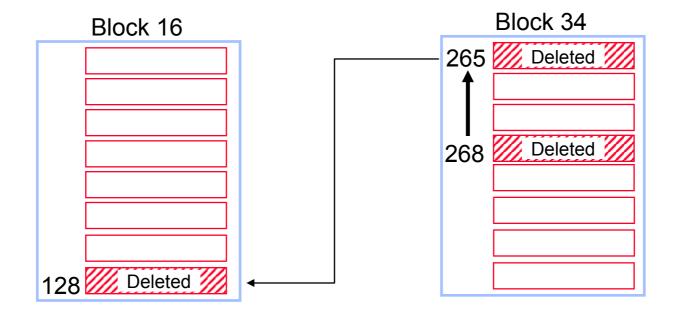
Empty detail dataset

- Records are stored in the order they are created starting from record 1
- Records for the same customer are linked together using pointers to form a chain
- Chains are linked to the corresponding master entry

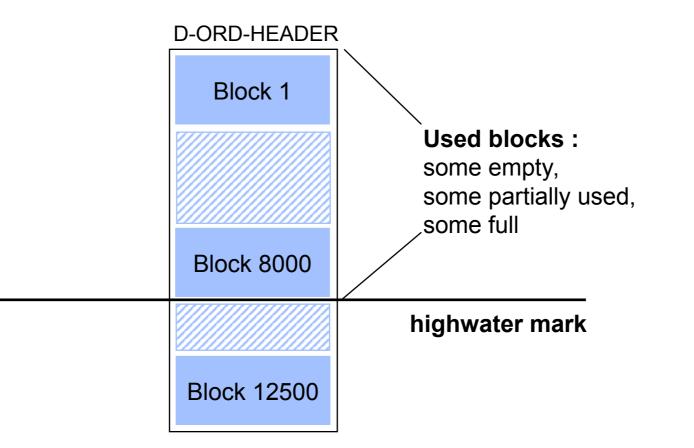


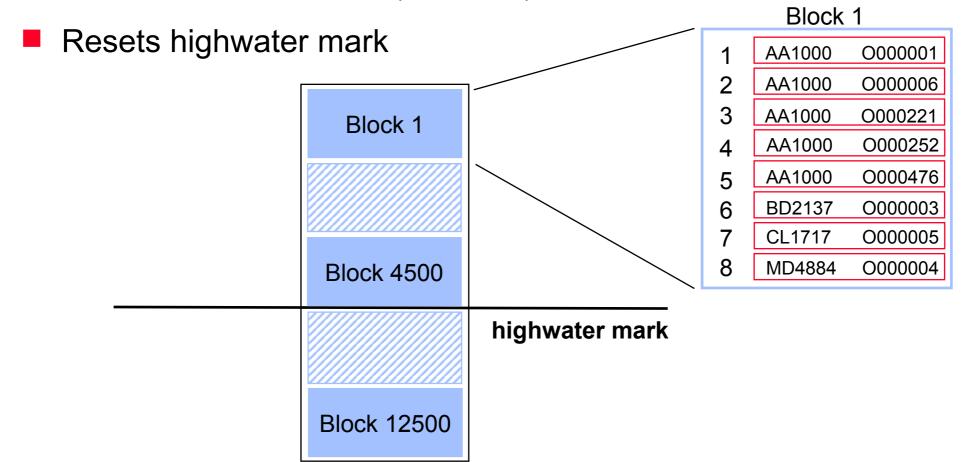
Capacity: 100000

Detail chains get scattered


Over time, records for the same customer are scattered over multiple blocks

Delete chain


- Deleted records are linked together
- TurboIMAGE reuses the records in the Delete chain, if there are any


- Indicates highest record location used so far
- Serial reads scan the dataset up to the highwater mark

Repacking a detail dataset

- Groups records along primary path
- Removes Delete chain (no holes)

Interpreting detail dataset lines

- Pay attention to the following statistics:
 - Load Factor approaching 100% (dataset full)
 - Primary path (large Average Chain and often accessed)
 - High Average Chain and low Standard deviation, especially with a sorted path (Is path really needed?)
 - High Inefficient Pointers (entries in chain not consecutive)
 - High Elongation (entries in chain not consecutive)

Report on d-orders

- Primary path should be on customer-no, not on order-no
- Highwater mark is high
- Repack along new primary path regularly

	Туре				Load	Secon- daries	-	Blk	
Data Set		Capaci	ty En	tries	Factor	(Highwa	ater)	Fact	
D-ORDERS	Det	10000	00 76	8556	76.9%	(<u>851445)</u>		12	
		Max	Ave	Std	Expd	Avg	Ineff	Elong-	
Searc	h Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation	
!ORDI	ER-NO	1	1.00	0	1.00	1.00	0.0%	1.00	
S CUST	OMER-N	NO <u>80</u>	<u>14.34</u>	17.76	1.75	9.20	<u>57.2%</u>	5.25	

Report on d-ord-items

- Inefficient Pointers and Elongation are high
- Highwater mark is fairly high
- Repack the dataset regularly
- Is the sorted path really needed?

	Туре				Load	Secon- daries		Blk
Data Set	-	Capa	city	Entries	Factor	(Highw	ater)	Fact
D-ORD-ITEMS	Det	4000	000	3458511	86.5%	(<u>3470097</u>)		23
		Мах	Av	e Std	Expd	Avg	Ineff	Elong-
Search Field		Chain	Chai	n Dev	Blocks	Blocks	Ptrs	ation
S !ORDE	R-NO	1604	8.0	6 35.75	1.36	<u>11.32</u>	<u>72.5</u>	8.34

Detail dataset solutions

- Assign the primary path correctly; search item with Average Chain length > 1 that is accessed most often
- Repack datasets along the primary path regularly
- Increase the Blocking Factor
 - Increase block size
 - Reduce record size
- Understand sorted paths
- Check your databases early in the design; use HowMessy on test databases

HowMessy Exercise 2

					Secon-Max		
	Туре			Load	daries Blks	Blk	
Data Set		Capacity	Entries	Factor	(Highwater)	Fact	
D-ITEMS	Det	620571	119213	19.2%	(242025 <u>)</u>	7	

		Max	Ave	Std	Expd	Avg	Ineff	Elong-
	Search Field	Chain	Chain	Dev	Blocks	Blocks	Ptrs	ation
S !	ITEM-NO	3	1.00	0.02	1.00	1.00	0.0%	1.00
S	SUPPLIER-NO	23	8.07	3.25	1.77	3.30	28.4%	1.86
	LOCATION	5938	11.62	63.64	2.24	2.53	13.2%	1.13
	BO-STATUS	99999	99999.99	0.00	17031.00	17047.00	14.3%	1.00
	DISCOUNT	99999	120.18	1337.15	3.73	39.37	31.9%	10.55

Minimum number of disc I/Os

Intrinsic Disc I/Os

DBGET DBFIND DBBEGIN DBEND DBUPDATE DBUPDATE DBUPDATE DBPUT DBDELETE

Serial reads:

1 1 1 (non-critical item) 13 (critical item) 3 [+ (4 x #paths, if detail)] 2 [+ (4 x #paths, if detail)]

Master Capacity / Blocking factor Detail# entries / Blocking factor

Estimating response time

- Deleting 100,000 records from a detail dataset with two paths would take:
 - 2 + (4 x 2 paths) = 10 I/Os per record
 - 100,000 records x 10 I/Os per record = 1,000,000 I/Os
- Classic: around 25 I/Os per second
 - 1,000,000 I/Os / 25 = 40,000 seconds
 - 40,000 seconds / 3600 = 11.1 hours
- iX: around 40 I/Os per second
 - 1,000,000 I/Os / 40 = 25,000 seconds
 - 25,000 seconds / 3600 = 6.9 hours

Automating HowMessy analysis

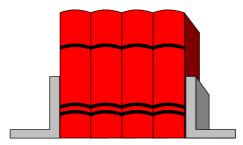
- Recent version of HowMessy creates a self-describing file with these statistics
- Process the file with generic tools (Suprtool, AskPlus) or custom programs (COBOL, 4GL), and produce custom reports
- Send messages to database administrators
- Write "smart" job to fix databases without user intervention

Datasets more than 80% full

>input loadfile
>if loadfactor > 80
>ext database, dataset, datasettype, loadfactor
>list standard

Only one address per customer

>input loadfile
>if dataset = "D-ADDRESSES" and &
 maxchain > 1


References

The TurboIMAGE/3000 Handbook (Chapter 23)

Available for \$ 49.95 from:

WORDWARE P.O. Box 14300 Seattle, WA 98114

- TurboIMAGE databases become messy over time, especially if they are active
- HowMessy and DBLOADNG let you analyze the database's efficiency
- You should have some knowledge of the internal workings of TurboIMAGE
- Monitor your databases regularly

