
Network Working Group Paul J. Leach, Microsoft
INTERNET-DRAFT Dilip C. Naik, Microsoft
draft-leach-cifs-v1-spec-02.txt
Category: Informational
Expires June 19, 1998 December 19, 1997

A Common Internet File System (CIFS/1.0) Protocol
Preliminary Draft

Status of this Memo
This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its
areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or made obsolete by
other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work
in progress".

To learn the current status of any Internet-Draft, please check the "1id-abstracts.txt" listing contained in the Internet-
Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific Rim),
ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Distribution of this document is unlimited. Please send comments to the authors at <cifs@microsoft.com>. Discussion
of CIFS is on the mailing list <CIFS@DISCUSS.MICROSOFT.COM>; subscribe by sending a message to
<ListServ@CIFS@DISCUSS.MICROSOFT.COM> with a body of "subscribe CIFS you@your.domain". The mailing list
archives are at <http://discuss.microsoft.com/archives/cifs.html. There is a CIFS home page at
<http://www.microsoft.com/intdev/cifs>.

 Abstract
This document describes the CIFS file sharing protocol, version 1.0. Client systems use this protocol to request file and print
services from server systems over a network. It is based on the Server Message Block protocol widely in use by personal
computers and workstations running a wide variety of operating systems.

Table Of Contents

1 Introduction...4

1.1 SUMMARY OF FEATURES... 4
1.1.1 File access..5
1.1.2 File and record locking..5
1.1.3 Safe caching, read-ahead, and write-behind...5
1.1.4 File change notification...5
1.1.5 Protocol version negotiation..5
1.1.6 Extended attributes...5

Leach, Naik expires June, 1998 [Page 1]

INTERNET-DRAFT CIFS/1.0 04/18/21

1.1.7 Distributed replicated virtual volumes..5
1.1.8 Server name resolution independence...6
1.1.9 Batched requests...6

2 Protocol Operation Overview...6

2.1 SERVER NAME DETERMINATION.. 6
2.2 SERVER NAME RESOLUTION... 7
2.3 SAMPLE MESSAGE FLOW.. 7
2.4 CIFS PROTOCOL DIALECT NEGOTIATION.. 7
2.5 MESSAGE TRANSPORT.. 8

2.5.1 Connection Management..8
2.6 OPPORTUNISTIC LOCKS... 8

2.6.1 Exclusive Oplocks...9
2.6.2 Batch Oplocks...10
2.6.3 Level II Oplocks..10

2.7 SECURITY MODEL... 11
2.8 AUTHENTICATION... 11
2.9 DISTRIBUTED FILESYSTEM (DFS) SUPPORT..11

3 SMB Message Formats and Data Types..12

3.1 NOTATION.. 12
3.2 SMB HEADER... 12

3.2.1 Flags field...13
3.2.2 Flags2 Field..14
3.2.3 Tid Field..14
3.2.4 Pid Field...15
3.2.5 Uid Field...15
3.2.6 Mid Field..15
3.2.7 Status Field...15
3.2.8 Timeouts..15
3.2.9 Data Buffer (BUFFER) and String Formats...16

3.3 FILE NAMES... 16
3.4 WILDCARDS... 17
3.5 DFS PATHNAMES.. 17
3.6 TIME AND DATE ENCODING... 18
3.7 ACCESS MODE ENCODING... 18
3.8 ACCESS MASK ENCODING... 19
3.9 OPEN FUNCTION ENCODING.. 20
3.10 OPEN ACTION ENCODING.. 20
3.11 FILE ATTRIBUTE ENCODING.. 21
3.12 EXTENDED FILE ATTRIBUTE ENCODING... 21
3.13 BATCHING REQUESTS ("ANDX" MESSAGES).. 22
3.14 "TRANSACTION" STYLE SUBPROTOCOLS.. 23

3.14.1 SMB_COM_TRANSACTION2 Format..24
3.14.2 3.13.2 SMB_COM_NT_TRANSACTION Formats...26
3.14.3 Functional Description...27

3.15 VALID SMB REQUESTS BY NEGOTIATED DIALECT..29

4 SMB Requests..30

4.1 SESSION REQUESTS... 31
4.1.1 NEGOTIATE: Negotiate Protocol...31
4.1.2 SESSION_SETUP_ANDX: Session Setup..34

Leach, Naik expires May, 1998 [Page 2]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.1.3 LOGOFF_ANDX: User Logoff..38
4.1.4 TREE_CONNECT_ANDX: Tree Connect...39
4.1.5 TREE_DISCONNECT: Tree Disconnect..41
4.1.6 TRANS2_QUERY_FS_INFORMATION: Get File System Information..42
4.1.7 ECHO: Ping the Server..45
4.1.8 NT_CANCEL: Cancel request..46

4.2 FILE REQUESTS... 47
4.2.1 NT_CREATE_ANDX: Create or Open File...47
4.2.2 NT_TRANSACT_CREATE: Create or Open File with EAs or SD..50
4.2.3 CREATE_TEMPORARY: Create Temporary File...51
4.2.4 READ_ANDX: Read Bytes..51
4.2.5 WRITE_ANDX: Write Bytes to file or resource...53
4.2.6 LOCKING_ANDX: Lock or Unlock Byte Ranges...54
4.2.7 SEEK: Seek in File...56
4.2.8 FLUSH: Flush File...57
4.2.9 CLOSE: Close File...58
4.2.10 DELETE: Delete File...59
4.2.11 RENAME: Rename File...60
4.2.12 MOVE: Rename File...60
4.2.13 COPY: Copy File..62
4.2.14 TRANS2_QUERY_PATH_INFORMATION: Get File Attributes given Path...63
4.2.15 TRANS2_QUERY_FILE_INFORMATION: Get File Attributes Given FID...69
4.2.16 TRANS2_SET_PATH_INFORMATION: Set File Attributes given Path..69
4.2.17 TRANS2_SET_FILE_INFORMATION: Set File Attributes Given FID..71

4.3 DIRECTORY REQUESTS.. 72
4.3.1 TRANS2_CREATE_DIRECTORY: Create Directory (with optional EAs)...72
4.3.2 DELETE_DIRECTORY: Delete Directory..73
4.3.3 CHECK_DIRECTORY: Check Directory..73
4.3.4 TRANS2_FIND_FIRST2: Search Directory using Wildcards...74
4.3.5 TRANS2_FIND_NEXT2: Resume Directory Search Using Wildcards...79
4.3.6 FIND_CLOSE2: Close Directory Search..79
4.3.7 NT_TRANSACT_NOTIFY_CHANGE: Request Change Notification...80

4.4 DFS OPERATIONS... 81
4.4.1 TRANS2_GET_DFS_REFERRAL: Retrieve Distributed Filesystem Referral...81
4.4.2 TRANS2_REPORT_DFS_INCONSISTENCY: Inform a server about DFS Error..83

4.5 MISCELLANEOUS OPERATIONS... 84
4.5.1 NT_TRANSACT_IOCTL...84
4.5.2 NT_TRANSACT_QUERY_SECURITY_DESC...85
4.5.3 NT_TRANSACT_SET_SECURITY_DESC...85

5 SMB Symbolic Constants...85

5.1 SMB COMMAND CODES... 85
5.2 SMB_COM_TRANSACTION2 SUBCOMMAND CODES...87
5.3 SMB_COM_NT_TRANSACTION SUBCOMMAND CODES...87
5.4 SMB PROTOCOL DIALECT CONSTANTS... 88

6 Error Codes and Classes...88

7 Legal Notice...91

8 References...91

Leach, Naik expires May, 1998 [Page 3]

INTERNET-DRAFT CIFS/1.0 04/18/21

9 Authors’ Addresses...92

10 Appendix A -- NETBIOS transport over TCP...92

10.1 CONNECTION ESTABLISHMENT.. 92
10.1.1 Backwards compatability...92

10.2 SERVER-SIDE CONNECTION PROCEDURES.. 92

11 Appendix B -- TCP transport...93

12 Appendix C -- Share Level Server Security..93

Introduction

This document describes the file sharing protocol for a proposed Common Internet File System (CIFS). CIFS is intended to
provide an open cross-platform mechanism for client systems to request file services from server systems over a network. It is
based on the standard Server Message Block (SMB) protocol widely in use by personal computers and workstations running a
wide variety of operating systems. An earlier version of this protocol was documented as part of the X/OPEN (now Open
Group) CAE series of standards [7]; this document updates the specification to include the latest shipping versions, and is
published to allow the creation of implementations that inter-operate with those implementations.

The scope of this specification is limited to describing requests and responses for file services. Separate specifications exist for
clients requesting services other than file services, e.g. print services.

Use of the Internet and the World Wide Web has been characterized by read-only access. Existing protocols such as FTP are
good solutions for one-way file transfer. However, new read/write interfaces will become increasingly necessary as the
Internet becomes more interactive and collaborative. Adoption of a common file sharing protocol having modern semantics
such as shared files, byte-range locking, coherent caching, change notification, replicated storage, etc. would provide
important benefits to the Internet community.

1.1 Summary of features
The protocol supports the following features:

o File access

o File and record locking

o Safe caching, read-ahead, and write-behind

o File change notification

o Protocol version negotiation

o Extended attributes

o Distributed replicated virtual volumes

Leach, Naik expires May, 1998 [Page 4]

INTERNET-DRAFT CIFS/1.0 04/18/21

o Server name resolution independence

o Batched requests

o Unicode file names

1.1.1 File access
The protocol supports the usual set of file operations: open, close, read, write, and seek.

1.1.2 File and record locking
The protocol supports file and record locking, as well as unlocked access to files. Applications that lock files can not be
improperly interfered with by applications that do not; once a file or record is locked, non-locking applications are denied
access to the file.

1.1.3 Safe caching, read-ahead, and write-behind
The protocol supports caching, read-ahead, and write-behind, even for unlocked files, as long as they are safe. All these
optimizations are safe as long as only one client is accessing a file; read-caching and read-ahead are safe with many clients
accessing a file as long as all are just reading. If many clients are writing a file simultaneously, then none are safe, and all file
operations have to go to the server. The protocol notifies all clients accessing a file of changes in the number and access mode
of clients accessing the file, so that they can use the most optimized safe access method.

1.1.4 File change notification
Applications can register with a server to be notified if and when file or directory contents are modified. They can use this to
(for example) know when a display needs to be refreshed, without having to constantly poll the server.

1.1.5 Protocol version negotiation
There are several different versions and sub-versions of this protocol; a particular version is referred to as a dialect. When two
machines first come into network contact they negotiate the dialect to be used. Different dialects can include both new
messages as well as changes to the fields and semantics of existing messages in other dialects.

1.1.6 Extended attributes
In addition to many built-in file attributes, such as creation and modification times, non-file system attributes can be added by
applications, such as the author's name, content description, etc.

1.1.7 Distributed replicated virtual volumes
The protocol supports file system subtrees which look like to clients as if they are on a single volume and server, but which
actually span multiple volumes and servers. The files and directories of such a subtree can be physically moved to different
servers, and their names do not have to change, isolating clients from changes in the server configuration. These subtrees can

Leach, Naik expires May, 1998 [Page 5]

INTERNET-DRAFT CIFS/1.0 04/18/21

also be transparently replicated for load sharing and fault tolerance. When a client requests a file, the protocol uses referrals to
transparently direct a client to the server that stores it.

1.1.8 Server name resolution independence
The protocol allows clients to resolve server names using any name resolution mechanism. In particular, it allows using the
DNS, permitting access to the file systems of other organizations over the Internet, or hierarchical organization of servers'
names within an organization. Earlier versions of the protocol only supported a flat server name space.

1.1.9 Batched requests
The protocol supports the batching of multiple requests into a single message, in order to minimize round trip latencies, even
when a later request depends on the results of an earlier one.

2 Protocol Operation Overview
In order to access a file on a server, a client has to:

o Parse the full file name to determine the server name, and the relative name within that server.

o Resolve the server name to a transport address (this may be cached)

o Make a connection to the server (if no connection is already available)

o Exchange CIFS messages (see below for an example)

This process may be repeated as many times as desired. Once the connection has been idle for a while, it may be torn down.

2.1 Server Name Determination
How the client determines the name of the server and the relative name within the server is outside of the scope of this
specification. However, just for expository purposes, here are three examples.

In the URL "file://fs.megacorp.com/users/fred/stuff.txt", the client could take the part between the leading double slashes and
the next slash as the server name and the remainder as the relative name -- in this example "fs.megacorp.com" and
"/users/fred/stuff.txt", respectively.

In the path name "\\corpserver\public\policy.doc" the client could take the part between the leading double backslashes and the
next slash as the server name, and the remainder as the relative name -- in this example, "corpserver" and "\public\policy.doc"
respectively.

In the path name "x:\policy.doc" the client could use "x" as an index into a table that contains a server name and a file name
prefix. If the contents of such a table for "x" were "corpserver" and "\public", then the server name and relative name would be
the same as in the previous example.

Leach, Naik expires May, 1998 [Page 6]

INTERNET-DRAFT CIFS/1.0 04/18/21

2.2 Server Name Resolution
Like server name determination, how the client resolves the name to the transport address of the server is outside the scope of
this specification. All that is required by CIFS is that a CIFS client MUST have some means to resolve the name of a CIFS
server to a transport address, and that a CIFS server MUST register its name with a name resolution service known its clients.

Some examples of name resolution mechanisms include: using the Domain Name System (DNS) [1,2], and using NETBIOS
name resolution (see RFC 1001 and RFC 1002 [3,4]). The server name might also be specified as the string form of an IPv4
address in the usual dotted decimal notation, e.g., "157.33.135.101"; in this case, "resolution" consists of converting to the 32
bit IPv4 address.

Which method is used is configuration dependent; the default SHOULD be DNS to encourage interoperability over the
Internet.

Note: The name resolution mechanism used may place constraints on the form of the server name; for example, in the case of
NETBIOS, the server name must be 15 characters or less, and be upper case.

2.3 Sample Message Flow
The following illustrates a typical message exchange sequence for a client connecting to a user level server, opening a file,
reading its data, closing the file, and disconnecting from the server. Note: using the CIFS request batching mechanism (called
the "AndX" mechanism), the second to sixth messages in this sequence can be combined into one, so there are really only
three round trips in the sequence, and the last one can be done asynchronously by the client.

Client Command
==========================

Server Response
===

SMB_COM_NEGOTIATE Must be the first message sent by client to the server. Includes a list of
SMB dialects supported by the client. Server response indicates which
SMB dialect should be used.

SMB_COM_SESSION_SETUP_ANDX Transmits the user's name and credentials to the server for verification.
Successful server response has Uid field set in SMB header used for
subsequent SMBs on behalf of this user.

SMB_COM_TREE_CONNECT_ANDX Transmits the name of the disk share the client wants to access.
Successful server response has Tid field set in SMB header used for
subsequent SMBs referring to this resource.

SMB_COM_OPEN_ANDX Transmits the name of the file, relative to Tid, the client wants to open.
Successful server response includes a file id (Fid) the client should
supply for subsequent operations on this file.

SMB_COM_READ Client supplies Tid, Fid, file offset, and number of bytes to read.
Successful server response includes the requested file data.

SMB_COM_CLOSE Client closes the file represented by Tid and Fid. Server responds with
success code.

SMB_COM_TREE_DISCONNECT Client disconnects from resource represented by Tid.

2.4CIFS Protocol Dialect Negotiation
The first message sent from an CIFS client to an CIFS server must be one whose Command field is
SMB_COM_NEGOTIATE. The format of this client request includes an array of NULL terminated strings indicating the
dialects of the CIFS protocol which the client supports. The server compares this list against the list of dialects the server
supports and returns the index of the chosen dialect in the response message.

Leach, Naik expires May, 1998 [Page 7]

INTERNET-DRAFT CIFS/1.0 04/18/21

2.5 Message Transport
CIFS is transport independent. The CIFS protocol assumes:

o a reliable connection oriented message-stream transport, and makes no higher level attempts to ensure sequenced delivery
of messages between the client and server.

o a well known endpoint for the CIFS service

o some mechanism to detect failures of either the client or server node, and to deliver such an indication to the client or
server software so they can clean up state. When a reliable transport connection from a client terminates, all work in
progress by that client is terminated by the server and all resources open by that client on the server are closed.

It can run over any transport that meets these requirements. Some transports do not natively meet all the requirements, and a
standard encapsulation of CIFS for that transport may need to be defined. Appendix A defines how to run CIFS over
NETBIOS over TCP; Appendix B defines how to run CIFS over TCP.

2.5.1 Connection Management
Once a connection is established, the rules for reliable transport connection dissolution are:

o If a server receives a transport establishment request from a client with which it is already conversing, the server may
terminate all other transport connections to that client. This is to recover from the situation where the client was suddenly
rebooted and was unable to cleanly terminate its resource sharing activities with the server.

o A server may drop the transport connection to a client at any time if the client is generating malformed or illogical
requests. However, wherever possible the server should first return an error code to the client indicating the cause of the
abort.

o If a server gets a hard error on the transport (such as a send failure) the transport connection to that client may be aborted.

o A server may terminate the transport connection when the client has no open resources on the server, however, we
recommend that the termination be performed only after some time has passed or if resources are scarce on the server.
This will help performance in that the transport connection will not need to be reestablished if activity soon begins anew.
Client software is expected to be able to automatically reconnect to the server if this happens.

2.6Opportunistic Locks
Network performance can be increased if a client does not need to inform the server immediately about every change it makes
to a file, or have to worry that other clients can make its information about the file out of date. For example, a client does not
have to immediately write information into a file on the server if the client knows that no other process is accessing the data.
Likewise, the client can buffer read-ahead data from the file if the client knows that no other process is writing the data.

The mechanism which allows clients to dynamically alter their buffering strategy in a consistent manner is knows as
"opportunistic locks", or oplocks for short. Versions of the CIFS file sharing protocol including and newer than the
"LANMAN1.0" dialect support oplocks. (Note, however, that an implementation, even of these later dialects, can implement
oplocks trivially by always refusing to grant them.)

There are three different types of oplocks:

Leach, Naik expires May, 1998 [Page 8]

INTERNET-DRAFT CIFS/1.0 04/18/21

o A Level II oplock, when held, informs a client that there are multiple concurrent clients of a file, and none has yet
modified it. It allows the client to perform reads and file attribute fetches using cached or read-ahead local information,
but all other requests have to be sent to the server.

o An exclusive oplock, when held, informs a client that it is the only one to have a file open. It allows the client to perform
all file operations using cached or read-ahead local information until it closes the file, at which time the server has to be
updated with any changes made to the state of the file (contents and attributes).

o A batch oplock, when held, informs a client that it is the only one to have a file open. It allows the client to perform all
file operations on cached or read-ahead local information (including opens and closes).

If a client holds no oplocks, all requests other than reads must be sent to the server. Reads may be performed using cached or
read-ahead data as long as the byte range has been locked by the client; otherwise they too must be sent to the server.

When a client opens a file, it may request that the server grant it an exclusive or batch oplock on the file. The response from
the server indicates the type of oplock granted to the client. If cached or read-ahead information was retained after the file was
last closed, the client must verify that the last modified time is unchanged when the file is reopened before using the retained
information.

The SMB_COM_LOCKING_ANDX SMB is used to convey oplock break requests and acknowledgements (as well as lock and
unlock requests).

2.6.1 Exclusive Oplocks
The exclusive oplock protocol is:

Client <-> Server
A
==============

B
=========== === ================================

Open ("foo") ->
<- Open OK. Exclusive oplock granted.

<locks, writes>
read (large) ->

<- read data
<reads from read-ahead >

Open("foo") ->
<- oplock break to A

lock(s) ->
<- lock(s) response(s)

write(s) ->
<- write(s) response(s)

close or oplock ack ->
<- open response to B

When client A opens the file, it can request an exclusive oplock. Provided no one else has the file open on the server, then the
server MAY grant the oplock to client A.

If, at some point in the future, another client, such as client B, requests an open of the same file, or requests a path name based
operation on the file, then the server MUST tell client A to relinquish its exclusive oplock. If client B's request will not modify
the state of the file, the server MAY tell client A that its exclusive oplock has been replaced by a level II oplock.

Leach, Naik expires May, 1998 [Page 9]

INTERNET-DRAFT CIFS/1.0 04/18/21

When a client's exclusive oplock is broken, it must synchronize the server to the local state of the file (contents and attributes)
and any locks it holds on the file, and then acknowledge the oplock break request. After the server receives the
acknowledgement, if can process B's request.

2.6.2 Batch Oplocks
The batch oplock protocol is:

Client <-> Server
A
===========

B
============ ==== ===============================

Open("foo") ->
<- Open OK. Batch oplock granted.

Read ->
<- read data

<close>
<open>
<seek>
read ->

<- data
<close>

Open("foo") ->
<- Oplock break to A

Close ->
<- Close OK to A
<- Open OK to B

When client A opens the file, it can request a batch oplock. Provided no one else has the file open on the server, then the
server MAY grant the oplock to client A.

If, at some point in the future, another client, such as client B, requests any operation on the same file, then the server MUST
tell client A to relinquish its batch oplock. If client B's request will not modify the state of the file (or rename it), the server
MAY tell client A that its batch oplock has been replaced by a level II oplock.

If A has the file open at the time the oplock break request is received, its actions will be the same as if it had an exclusive
oplock. If A does not have the file open at the time the oplock break request is received, it sends a close to the server. Once
the file is actually closed at the server, client B's open request can be processed.

2.6.3 Level II Oplocks
The Level II oplock protocol is:

Leach, Naik expires May, 1998 [Page 10]

INTERNET-DRAFT CIFS/1.0 04/18/21

Client <-> Server
A
===========

B
=========== ==== ====================================

Open("foo") ->
<- Open OK. Exclusive oplock granted.

Read ->
<- data

Open("foo") ->
<- Break to Level II oplock to A

lock(s) ->
<- lock(s) response(s)

oplock ack ->
<- Open OK. Oplock II oplock granted to B

When a client opens a file, it may request an exclusive or batch oplock. If the requested oplock cannot be granted, then the
server MAY grant a Level II oplock if the file currently has an oplock on it. If there is currently an exclusive or batch oplock
on the file, it must be broken and the break acknowledged before the open is processed. If there is currently a Level II oplock
on the file, it does not need to be broken, and the open may be processed immediately.

If any client sends a request to modify the state of a file that has a Level II oplock, the server must ask all clients holding an
oplock on the file to break it, but need not wait for an acknowledgement.

2.7Security Model
Each server makes a set of resources available to clients on the network. A resource being shared may be a directory tree,
printer, etc. So far as clients are concerned, the server has no storage or service dependencies on any other servers; a client
considers the server to be the sole provider of the file (or other resource) being accessed.

The CIFS protocol requires server authentication of users before file accesses are allowed, and each server authenticates its
own users. A client system must send authentication information to the server before the server will allow access to its
resources.

A server requires the client to provide a user name and some proof of identity (often something cryptographically derived from
a password) to gain access. The granularity of authorization is up to the server. For example, it may use the account name to
check access control lists on individual files, or may have one access control list that applies to all files in the directory tree.

When a server validates the account name and password presented by the client, an identifier representing that authenticated
instance of the user is returned to the client in the Uid field of the response SMB. This Uid must be included in all further
requests made on behalf of the user from that client.

2.8 Authentication
The information on authentication that was in previous revisions of this document has been moved to a different specification.

2.9 Distributed Filesystem (DFS) Support
Protocol dialects of NT LM 0.12 and later support distributed filesystem operations. The distributed filesystem gives a way
for this protocol to use a single consistent file naming scheme which may span a collection of different servers and shares. The

Leach, Naik expires May, 1998 [Page 11]

INTERNET-DRAFT CIFS/1.0 04/18/21

distributed filesystem model employed is a referral - based model. This protocol specifies the manner in which clients receive
referrals.

The client can set a flag in the request SMB header indicating that the client wants the server to resolve this SMB's paths
within the DFS known to the server. The server attempts to resolve the requested name to a file contained within the local
directory tree indicated by the TID of the request and proceeds normally. If the request pathname resolves to a file on a
different system, the server returns the following error:

STATUS_DFS_PATH_NOT_COVERED - the server does not support the part of the DFS namespace needed to resolved
the pathname in the request. The client should request a referral from this server for further information.

A client asks for a referral with the TRANS2_DFS_GET_REFERRAL request containing the DFS pathname of interest. The
response from the server indicates how the client should proceed.

The method by which the topological knowledge of the DFS is stored and maintained by the servers is not specified by this
protocol.

3 SMB Message Formats and Data Types
Clients exchange messages with a server to access resources on that server. These messages are called Server Message Blocks
(SMBs), and every SMB message has a common format.

This section describes the entire set of SMB commands and responses exchanged between CIFS clients and servers. It also
details which SMBs are introduced into the protocol as higher dialect levels are negotiated.

3.1 Notation
This specification makes use of "C"-like notation to describe the formats of messages. Unlike the "C" language, which allows
for implementation flexibility in laying out structures, this specification adopts the following rules. Multi-byte values are
always transmitted least significant byte first. All fields, except "bit-fields", are aligned on the nearest byte boundary (even if
longer than a byte), and there is no implicit padding. Fields using the "bit field" notation are defined to be laid out within the
structure with the first-named field occupying the lowest order bits, the next named field the next lowest order bits, and so on.

3.2 SMB header
While each SMB command has specific encodings, there are some fields in the SMB header which have meaning to all SMBs.
These fields and considerations are described in the following sections.

typedef unsigned char UCHAR; // 8 unsigned bits
typedef unsigned short USHORT; // 16 unsigned bits
typedef unsigned long ULONG; // 32 unsigned bits

typedef struct {
 ULONG LowPart;
 LONG HighPart;
} LARGE_INTEGER; // 64 bits of data

typedef struct {
 UCHAR Protocol[4]; // Contains 0xFF,'SMB'
 UCHAR Command; // Command code

Leach, Naik expires May, 1998 [Page 12]

INTERNET-DRAFT CIFS/1.0 04/18/21

 union {
 struct {
 UCHAR ErrorClass; // Error class
 UCHAR Reserved; // Reserved for future use
 USHORT Error; // Error code
 } DosError;
 ULONG Status; // 32-bit error code
 } Status;
 UCHAR Flags; // Flags
 USHORT Flags2; // More flags
 union {
 USHORT Pad[6]; // Ensure section is 12 bytes long
 struct {
 USHORT PidHigh; // High part of PID
 UCHAR SecuritySignature[8]; // reserved for security
 } Extra;
 };
 USHORT Tid; // Tree identifier
 USHORT Pid; // Caller's process id
 USHORT Uid; // Unauthenticated user id
 USHORT Mid; // multiplex id
 UCHAR WordCount; // Count of parameter words
 USHORT ParameterWords[WordCount]; // The parameter words
 USHORT ByteCount; // Count of bytes
 UCHAR Buffer[ByteCount]; // The bytes
} SMB_HEADER;

All SMBs in this specification have identical format up to the ParameterWords fields. (Some obsolescent ones do not.)
Different SMBs have a different number and interpretation of ParameterWords and Buffer. All reserved fields in the SMB
header must be zero.

o Command is the operation code that this SMB is requesting or responding to.

3.2.1 Flags field
This field contains 8 individual flags, numbered from least significant to most significant, which have the following meanings:

Leach, Naik expires May, 1998 [Page 13]

INTERNET-DRAFT CIFS/1.0 04/18/21

Bit
===

Meaning
==

Earliest Dialect
============

0 Reserved for obsolescent requests. (LOCK_AND_READ, WRITE_AND_CLOSE) LANMAN1.0
1 Reserved (must be zero).
2 Reserved (must be zero).
3 When on, all pathnames in this SMB must be treated as case-less. When off, the

pathnames are case sensitive.
LANMAN1.0

4 Reserved (clients must send as zero; servers must ignore).
5 Reserved for obsolescent requests. (SMB_COM_OPEN, SMB_COM_CREATE and

SMB_COM_CREATE_NEW)
LANMAN1.0

6 Reserved for obsolescent requests. (SMB_COM_OPEN, SMB_COM_CREATE and
SMB_COM_CREATE_NEW)

LANMAN1.0

7 SMB_FLAGS_SERVER_TO_REDIR. When on, this SMB is being sent from the
server in response to a client request. The Command field usually contains the same
value in a protocol request from the client to the server as in the matching response
from the server to the client. This bit unambiguously distinguishes the command
request from the command response

PC NETWORK
PROGRAM 1.0

3.2.2 Flags2 Field
This field contains six individual flags, numbered from least significant bit to most significant bit, which are defined below.
Flags which not defined must be set to zero.

Bit
===

Meaning
===

Earliest Dialect
============

0 If set in a request, the server may return long components in path names in the
response.

1 If set, the client is aware of extended attributes.
11 If set, the client is aware of Extended Security NT LM 0.12
12 If set, any request pathnames in this SMB should be resolved in the Distributed File

System.
NT LM 0.12

13 If set, indicates that a read will be permitted if the client does not have read
permission but does have execute permission. This flag is only useful on a read
request.

14 If set, specifies that the returned error code is a 32 bit error code in Status.Status.
Otherwise the Status.DosError.ErrorClass and Status.DosError.Error fields contain
the DOS-style error information. When passing NT status codes is negotiated, this
flag should be set for every SMB.

NT LM 0.12

15 If set, any fields of datatype STRING in this SMB message are encoded as
UNICODE. Otherwise, they are in ASCII.

NT LM 0.12

3.2.3 Tid Field
Tid represents an instance of an authenticated connection to a server resource. The server returns Tid to the client when the
client successfully connects to a resource, and the client uses Tid in subsequent requests referring to the resource.

In most SMB requests, Tid must contain a valid value. Exceptions include prior to getting a Tid established including
SMB_COM_NEGOTIATE, SMB_COM_TREE_CONNECT, SMB_COM_ECHO, and SMB_COM_SESSION_SETUP_ANDX. 0xFFFF should
be used for Tid for these situations. The server is always responsible for enforcing use of a valid Tid where appropriate.

Leach, Naik expires May, 1998 [Page 14]

INTERNET-DRAFT CIFS/1.0 04/18/21

3.2.4 Pid Field
Pid is the caller's process id, and is generated by the client to uniquely identify a process within the client computer.
Concurrency control is associated with Pid (and PidHigh) -- sharing modes and locks are arbitrated using the Pid. For
example, if a file is successfully opened for exclusive access, subsequent opens from other clients or from the same client with
a different Pid will be refused.

Clients inform servers of the creation of a new process by simply introducing a new Pid value into the dialogue for new
processes. The client operating system must ensure that the appropriate close and cleanup SMBs will be sent when the last
process referencing a file closes it. From the server's point of view, there is no concept of Fids "belonging to" processes. A
Fid returned by the server to one process may be used by any other process using the same transport connection and Tid.

It is up to the client operating system to ensure only authorized client processes gain access to Fids (and Tids). On
SMB_COM_TREE_DISCONNECT (or when the client and server session is terminated) with a given Tid, the server will
invalidate any files opened by any process on that client.

3.2.5 Uid Field
Uid is a user ID assigned by the server after a user authenticates to it, and that it will associate with that user until the client
requests the association be broken. After authentication to the server, the client SHOULD make sure that the Uid is not used
for a different user that the one that authenticated. (It is permitted that a single user have more than one Uid.) Requests that do
authorization, such as open requests, will perform access checks using the identity associated with the Uid.

3.2.6 Mid Field
The multiplex ID (Mid) is used along with Pid to allow multiplexing the single client and server connection among the client's
multiple processes, threads, and requests per thread. Clients may have many outstanding requests (up to the negotiated
number) at one time. Servers MAY respond to requests in any order, but a response message MUST always contain the same
Mid and Pid values as the corresponding request message. The client MUST NOT have multiple outstanding requests to a
server with the same Mid and Pid.

3.2.7 Status Field
An SMB returns error information to the client in the Status field. Protocol dialects prior to NT LM 0.12 return status to the
client using the combination of Status.DosError.ErrorClass and Status.DosError.Error. Beginning with NT LM 0.12 CIFS
servers can return 32 bit error information to clients using Status.Status if the incoming client SMB has bit 14 set in the Flags2
field of the SMB header. The contents of response parameters are not guaranteed in the case of an error return, and must be
ignored. For write-behind activity, a subsequent write or close of the file may return the fact that a previous write failed.
Normally write-behind failures are limited to hard disk errors and device out of space.

3.2.8 Timeouts
In general, SMBs are not expected to block at the server; they should return "immediately". But some SMB requests do
indicate timeout periods for the completion of the request on the server. If a server implementation can not support timeouts,
then an error can be returned just as if a timeout had occurred if the resource is not available immediately upon request.

Leach, Naik expires May, 1998 [Page 15]

INTERNET-DRAFT CIFS/1.0 04/18/21

3.2.9 Data Buffer (BUFFER) and String Formats
The data portion of SMBs typically contains the data to be read or written, file paths, or directory paths. The format of the
data portion depends on the message. All fields in the data portion have the same format. In every case it consists of an
identifier byte followed by the data.

Identifier
===============

Description
=========================

Value
=====

Data Block
Dialect
Pathname
ASCII
Variable block

See Below
Null terminated String
Null terminated String
Null terminated String
See Below

1
2
3
4
5

When the identifier indicates a data block or variable block then the format is a word indicating the length followed by the
data.

In all dialects prior to NT LM 0.12, all strings are encoded in ASCII. If the agreed dialect is NT LM 0.12 or later, Unicode
strings may be exchanged. Unicode strings include file names, resource names, and user names. This applies to null-
terminated strings, length specified strings and the type-prefixed strings. In all cases where a string is passed in Unicode
format, the Unicode string must be word-aligned with respect to the beginning of the SMB. Should the string not naturally fall
on a two-byte boundary, a null byte of padding will be inserted, and the Unicode string will begin at the next address. In the
description of the SMBs, items that may be encoded in Unicode or ASCII are labeled as STRING. If the encoding is ASCII,
even if the negotiated string is Unicode, the quantity is labeled as UCHAR.

For type-prefixed Unicode strings, the padding byte is found after the type byte. The type byte is 4 (indicating
SMB_FORMAT_ASCII) independent of whether the string is ASCII or Unicode. For strings whose start addresses are found
using offsets within the fixed part of the SMB (as opposed to simply being found at the byte following the preceding field,) it
is guaranteed that the offset will be properly aligned.

Strings that are never passed in Unicode are:

o The protocol strings in the Negotiate SMB request.

o The service name string in the Tree_Connect_AndX SMB.

When Unicode is negotiated, bit 15 should be set in the Flags2 field of every SMB header.

Despite the flexible encoding scheme, no field of a data portion may be omitted or included out of order. In addition, neither
an WordCount nor ByteCount of value 0 at the end of a message may be omitted.

3.3 File Names
File names in the CIFS protocol consist of components separated by a backslash ('\'). Early clients of the CIFS protocol
required that the name components adhere to an 8.3 format name. These names consist of two parts: a basename of no more
than 8 characters, and an extension of no more than 3 characters. The basename and extension are separated by a '.'. All
characters are legal in the basename and extension except the space character (0x20) and:

" . / \[]:+|<>=;,*?

Leach, Naik expires May, 1998 [Page 16]

INTERNET-DRAFT CIFS/1.0 04/18/21

If the client has indicated long name support by setting bit2 in the Flags2 field of the SMB header, this indicates that the client
is not bound by the 8.3 convention. Specifically this indicates that any SMB which returns file names to the client may return
names which do not adhere to the 8.3 convention, and have a total length of up to 255 characters. This capability was
introduced with the LM1.2X002 protocol dialect.

3.4 Wildcards
Some SMB requests allow wildcards to be given for the filename. The wildcard allows a number of files to be operated on as
a unit without having to separately enumerate the files and individually operate on each one from the client.

If the client is using 8.3 names, each part of the name (base (8) or extension (3)) is treated separately. For long filenames the
. in the name is significant even though there is no longer a restriction on the size of each of the components.

The ? character is a wild card for a single character. If a filename part commences with one or more "?"s then exactly that
number of characters will be matched by the wildcards, e.g., "??x" equals "abx" but not "abcx" or "ax". When a filename part
has trailing "?"s then it matches the specified number of characters or less, e.g., "x??" matches "xab", "xa" and "x", but not
"xabc". If only "?"s are present in the filename part, then it is handled as for trailing "?"s

The * character matches an entire part of the name, as does an empty specification for that part. A part consisting of * means
that the rest of the component should be filled with ? and the search should be performed with this wildcard character. For
example, "*.abc" or ".abc" match any file with an extension of "abc". "*.*", "*" or "null" match all files in a directory.

If the negotiated dialect is "NT LM 0.12" or later, and the client requires MS-DOS wildcard matching semantics,
UNICODE wildcards should be translated according to the following rules:

 Translate the ? literal to >

 Translate the . literal to " if it is followed by a ? or a *

 Translate the * literal to < if it is followed by a .

The translation can be performed in-place.

3.5 DFS Pathnames
A DFS pathname adheres to the standard described in the FileNames section. A DFS enabled client accessing a DFS share
should set the Flags2 bit 12 in all name based SMB requests indicating to the server that the enclosed pathname should be
resolved in the Distributed File System namespace. The pathname should always have the full file name, including the server
name and share name. If the server can resolve the DFS name to a piece of local storage, the local storage will be accessed. If
the server determines that the DFS name actually maps to a different server share, the access to the name will fail with the 32
bit status STATUS_PATH_NOT_COVERED (0xC0000257), or DOS error ERRsrv/ERRbadpath.

On receiving this error, the DFS enabled client should ask the server for a referral (see TRANS2_GET_DFS_REFERRAL).
The referral request should contain the full file name.

The response to the request will contain a list of server and share names to try, and the part of the request file name that
junctions to the list of server shares. If the ServerType field of the referral is set to 1 (SMB server), then the client should
resubmit the request with the original file name to one of the server shares in the list, once again setting the Flags2 bit 12 bit in
the SMB. If the ServerType field is not 1, then the client should strip off the part of the file name that junctions to the server
share before resubmitting the request to one of servers in the list.

Leach, Naik expires May, 1998 [Page 17]

INTERNET-DRAFT CIFS/1.0 04/18/21

A response to a referral request may elicit a response that does not have the StorageServers bit set. In that case, the client
should resubmit the referral request to one of the servers in the list, until it finally obtains a referral response that has the
StorageServers bit set, at which point the client can resubmit the request SMB to one of the listed server shares.

If, after getting a referral with the StorageServers bit set and resubmitting the request to one of the server shares in the list, the
server fails the request with STATUS_PATH_NOT_COVERED, it must be the case that there is an inconsistency between the
view of the DFS namespace held by the server granting the referral and the server listed in that referral. In this case, the client
may inform the server granting the referral of this inconsistency via the TRANS2_REPORT_DFS_INCONSISTENCY SMB.

3.6 Time And Date Encoding
When SMB requests or responses encode time values, the following describes the various encodings used.

struct {
 USHORT Day : 5;
 USHORT Month : 4;
 USHORT Year : 7;
} SMB_DATE;

The Year field has a range of 0-119, which represents years 1980 - 2099. The Month is encoded as 1-12, and the day ranges
from 1-31

struct {
 USHORT TwoSeconds : 5;
 USHORT Minutes : 6;
 USHORT Hours : 5;
} SMB_TIME;

Hours ranges from 0-23, Minutes range from 0-59, and TwoSeconds ranges from 0-29 representing two second increments
within the minute.

typedef struct {
 ULONG LowTime;
 LONG HighTime;
} TIME;

TIME indicates a signed 64-bit integer representing either an absolute time or a time interval. Times are specified in units of
100ns. A positive value expresses an absolute time, where the base time (the 64-bit integer with value 0) is the beginning of
the year 1601 AD in the Gregorian calendar. A negative value expresses a time interval relative to some base time, usually the
current time.

typedef unsigned long UTIME;

UTIME is the number of seconds since Jan 1, 1970, 00:00:00.0.

3.7 Access Mode Encoding
Various client requests and server responses, such as SMB_COM_OPEN, pass file access modes encoded into a USHORT.
The encoding of these is as follows:

Leach, Naik expires May, 1998 [Page 18]

INTERNET-DRAFT CIFS/1.0 04/18/21

 1111 11
 5432 1098 7654 3210
 rWrC rLLL rSSS rAAA

 where:

 W - Write through mode. No read ahead or write behind allowed on
 this file or device. When the response is returned, data is
 expected to be on the disk or device.

 S - Sharing mode:
 0 - Compatibility mode
 1 - Deny read/write/execute (exclusive)
 2 - Deny write
 3 - Deny read/execute
 4 - Deny none

 A - Access mode
 0 - Open for reading
 1 - Open for writing
 2 - Open for reading and writing
 3 - Open for execute

 rSSSrAAA = 11111111 (hex FF) indicates FCB open (???)

 C - Cache mode
 0 - Normal file
 1 - Do not cache this file

 L - Locality of reference
 0 - Locality of reference is unknown
 1 - Mainly sequential access
 2 - Mainly random access
 3 - Random access with some locality
 4 to 7 - Currently undefined

3.8 Access Mask Encoding
The ACCESS_MASK structure is one 32 bit value containing standard, specific, and generic rights. These rights are used in
access-control entries (ACEs) and are the primary means of specifying the requested or granted access to an object.

The bits in this value are allocated as follows:

Bits Meaning
0 - 15 Specific rights. Contains the access mask specific to the object type associated with the mask.
16 - 23 Standard rights. Contains the object's standard access rights and can be a combination of the following

predefined flags:

Bit Flag Meaning

Leach, Naik expires May, 1998 [Page 19]

INTERNET-DRAFT CIFS/1.0 04/18/21

16 DELETE Delete access
17 READ_CONTROL Read access to the owner, group, and discretionary access-control list (ACL) of the

security descriptor
18 WRITE_DAC Write access to the discretionary access-control list (ACL)
19 WRITE_OWNER Write access to owner
20 SYNCHRONIZE Windows NT: Synchronize access

Bits Meaning

24 Access system security (ACCESS_SYSTEM_SECURITY). This flag is not a typical access type. It is used to
indicate access to a system ACL. This type of access requires the calling process to have a specific privilege.

25 Maximum allowed (MAXIMUM_ALLOWED)
26, 27 Reserved
28 Generic all (GENERIC_ALL)
29 Generic execute (GENERIC_EXECUTE)
30 Generic write (GENERIC_WRITE)
31 Generic read (GENERIC_READ)

3.9 Open Function Encoding
OpenFunction specifies the action to be taken depending on whether or not the file exists. This word has the following
format:

bits:

 1111 11
 5432 1098 7654 3210
 rrrr rrrr rrrC rrOO

where:

 C - Create (action to be taken if file does not exist).
0 -- Fail.
1 -- Create file.

 r - reserved (must be zero).

 O - Open (action to be taken if file exists).
0 - Fail.
1 - Open file.
2 - Truncate file.

3.10 Open Action Encoding
Action in the response to an open or create request describes the action taken as a result of the request. It has the following
format:

bits:

 1111 11
 5432 1098 7654 3210
 Lrrr rrrr rrrr rrOO

Leach, Naik expires May, 1998 [Page 20]

INTERNET-DRAFT CIFS/1.0 04/18/21

where:

 L - Lock (single user total file lock status).
0 -- file opened by another user (or mode not supported by server).
1 -- file is opened only by this user at the present time.

 r - reserved (must be zero).

 O - Open (action taken on Open).
1 - The file existed and was opened.
2 - The file did not exist but was created.
3 - The file existed and was truncated.

3.11 File Attribute Encoding
When SMB messages exchange file attribute information, it is encoded in 16 bits as:

Value
=======

Description
=====================

0x01 Read only file
0x02 Hidden file
0x04 System file
0x08 Volume
0x10 Directory
0x20 Archive file
others Reserved - must be 0

3.12 Extended File Attribute Encoding
The extended file attributes is a 32 bit value composed of attributes and flags.

Any combination of the following attributes is acceptable, except all other file attributes override FILE_ATTR_NORMAL:

Name
====

Value
=====

Meaning
=======

ATTR_ARCHIVE 0x020 The file has not been archived since it was last modified. Applications use this
attribute to mark files for backup or removal.

ATTR_COMPRESSED 0x800 The file or directory is compressed. For a file, this means that all of the data in
the file is compressed. For a directory, this means that compression is the
default for newly created files and subdirectories.

ATTR_NORMAL 0x080 The file has no other attributes set. This attribute is valid only if used alone.
ATTR_HIDDEN 0x002 The file is hidden. It is not to be included in an ordinary directory listing.
ATTR_READONLY 0x001 The file is read only. Applications can read the file but cannot write to it or

delete it.
ATTR_TEMPORARY 0x100 The file is temporary
ATTR_DIRECTORY 0x010 The file is a directory
ATTR_SYSTEM 0x004 The file is part of or is used exclusively by the operating system.

Leach, Naik expires May, 1998 [Page 21]

INTERNET-DRAFT CIFS/1.0 04/18/21

Any combination of the following flags is acceptable:

Name
====

Value
=====

Meaning
=======

WRITE_THROUGH 0x80000000 Instructs the operating system to write through any intermediate
cache and go directly to the file. The operating system can still cache
write operations, but cannot lazily flush them.

NO_BUFFERING 0x20000000 Requests the server to open the file with no intermediate buffering or
caching; the server is not obliged to honor the request. An application
must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING. File access must begin at offsets
within the file that are integer multiples of the volume's sector size;
and must be for numbers of bytes that are integer multiples of the
volume's sector size. For example, if the sector size is 512 bytes, an
application can request reads and writes of 512, 1024, or 2048 bytes,
but not of 335, 981, or 7171 bytes.

RANDOM_ACCESS 0x10000000 Indicates that the application intends to access the file randomly. The
server MAY use this flag to optimize file caching.

SEQUENTIAL_SCAN 0x08000000 Indicates that the file is to be accessed sequentially from beginning to
end. Windows uses this flag to optimize file caching. If an application
moves the file pointer for random access, optimum caching may not
occur; however, correct operation is still guaranteed. Specifying this
flag can increase performance for applications that read large files
using sequential access. Performance gains can be even more
noticeable for applications that read large files mostly sequentially,
but occasionally skip over small ranges of bytes.

DELETE_ON_CLOSE 0x04000000 Requests that the server is delete the file immediately after all of its
handles have been closed.

BACKUP_SEMANTICS 0x02000000 Indicates that the file is being opened or created for a backup or
restore operation. The server SHOULD allow the client to override
normal file security checks, provided it has the necessary permission
to do so.

POSIX_SEMANTICS 0x01000000 Indicates that the file is to be accessed according to POSIX rules.
This includes allowing multiple files with names differing only in
case, for file systems that support such naming. (Use care when using
this option because files created with this flag may not be accessible
by applications written for MS-DOS, Windows 3.x, or Windows NT.)

3.13 Batching Requests ("AndX" Messages)
LANMAN1.0 and later dialects of the CIFS protocol allow multiple SMB requests to be sent in one message to the server.
Messages of this type are called AndX SMBs, and they obey the following rules:

o The embedded command does not repeat the SMB header information. Rather the next SMB starts at the WordCount
field.

o All multiple (chained) requests must fit within the negotiated transmit size. For example, if
SMB_COM_TREE_CONNECT_ANDX included OPENandX SMB_COM_OPEN_ANDX which included
SMB_COM_WRITE were sent, they would all have to fit within the negotiated buffer size. This would limit the size of
the write.

Leach, Naik expires May, 1998 [Page 22]

INTERNET-DRAFT CIFS/1.0 04/18/21

o There is one message sent containing the chained requests and there is one response message to the chained requests. The
server may NOT elect to send separate responses to each of the chained requests.

o All chained responses must fit within the negotiated transmit size. This limits the maximum value on an embedded
SMB_COM_READ for example. It is the client's responsibility to not request more bytes than will fit within the multiple
response.

o The server will implicitly use the result of the first command in the "X" command. For example the Tid obtained via
SMB_COM_TREE_CONNECT_ANDX would be used in the embedded SMB_COM_OPEN_ANDX and the Fid
obtained in the SMB_COM_OPEN_ANDX would be used in the embedded SMB_COM_READ.

o Each chained request can only reference the same Fid and Tid as the other commands in the combined request. The
chained requests can be thought of as performing a single (multi-part) operation on the same resource.

o The first Command to encounter an error will stop all further processing of embedded commands. The server will not
back out commands that succeeded. Thus if a chained request contained SMB_COM_OPEN_ANDX and
SMB_COM_READ and the server was able to open the file successfully but the read encountered an error, the file would
remain open. This is exactly the same as if the requests had been sent separately.

o If an error occurs while processing chained requests, the last response (of the chained responses in the buffer) will be the
one which encountered the error. Other unprocessed chained requests will have been ignored when the server encountered
the error and will not be represented in the chained response. Actually the last valid AndXCommand (if any) will
represent the SMB on which the error occurred. If no valid AndXCommand is present, then the error occurred on the first
request/response and Command contains the command which failed. In all cases the error information are returned in the
SMB header at the start of the response buffer.

o Each chained request and response contains the offset (from the start of the SMB header) to the next chained
request/response (in the AndXOffset field in the various "and X" protocols defined later e.g. SMB_COM_OPEN_ANDX).
This allows building the requests unpacked. There may be space between the end of the previous request (as defined by
WordCount and ByteCount) and the start of the next chained request. This simplifies the building of chained protocol
requests. Note that because the client must know the size of the data being returned in order to post the correct number of
receives (e.g. SMB_COM_TRANSACTION, SMB_COM_READ_MPX), the data in each response SMB is expected to be
truncated to the maximum number of 512 byte blocks (sectors) which will fit (starting at a 32 bit boundary) in the
negotiated buffer size with the odd bytes remaining (if any) in the final buffer.

3.14 "Transaction" Style Subprotocols
The "transaction" style subprotocols are used for commands that potentially need to transfer a large amount of data (greater
than 64K bytes).

Leach, Naik expires May, 1998 [Page 23]

INTERNET-DRAFT CIFS/1.0 04/18/21

3.14.1 SMB_COM_TRANSACTION2 Format
Primary Client Request
===============================

Description
====================================

Command SMB_COM_TRANSACTION2
UCHAR WordCount; Count of parameter words; value = (14 + SetupCount)
USHORT TotalParameterCount; Total parameter bytes being sent
USHORT TotalDataCount; Total data bytes being sent
USHORT MaxParameterCount; Max parameter bytes to return
USHORT MaxDataCount; Max data bytes to return
UCHAR MaxSetupCount; Max setup words to return
UCHAR Reserved;
USHORT Flags; Additional information:

bit 0 - also disconnect TID in TID
ULONG Timeout;
USHORT Reserved2;
USHORT ParameterCount; Parameter bytes sent this buffer
USHORT ParameterOffset; Offset (from header start) to Parameters
USHORT DataCount; Data bytes sent this buffer
USHORT DataOffset; Offset (from header start) to data
UCHAR SetupCount; Count of setup words
UCHAR Reserved3; Reserved (pad above to word)
USHORT Setup[SetupCount]; Setup words (# = SetupWordCount)
USHORT ByteCount; Count of data bytes
STRING Name[]; Must be NULL
UCHAR Pad[]; Pad to SHORT or LONG
UCHAR Parameters[ParameterCount]; Parameter bytes (# = ParameterCount)
UCHAR Pad1[]; Pad to SHORT or LONG
UCHAR Data[DataCount]; Data bytes (# = DataCount)

Interim Server Response
===============================

Description
====================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

Leach, Naik expires May, 1998 [Page 24]

INTERNET-DRAFT CIFS/1.0 04/18/21

Secondary Client Request
===============================

Description
====================================

Command SMB_COM_TRANSACTION_SECONDARY

UCHAR WordCount; Count of parameter words = 8
USHORT TotalParameterCount; Total parameter bytes being sent
USHORT TotalDataCount; Total data bytes being sent
USHORT ParameterCount; Parameter bytes sent this buffer
USHORT ParameterOffset; Offset (from header start) to Parameters
USHORT ParameterDisplacement; Displacement of these Parameter bytes
USHORT DataCount; Data bytes sent this buffer
USHORT DataOffset; Offset (from header start) to data
USHORT DataDisplacement; Displacement of these data bytes
USHORT Fid; FID for handle based requests, else 0xFFFF. This field is

present only if this is an SMB_COM_TRANSACTION2 request.
USHORT ByteCount; Count of data bytes
UCHAR Pad[]; Pad to SHORT or LONG
UCHAR Parameters[ParameterCount]; Parameter bytes (# = ParameterCount)
UCHAR Pad1[]; Pad to SHORT or LONG
UCHAR Data[DataCount]; Data bytes (# = DataCount)

Leach, Naik expires May, 1998 [Page 25]

INTERNET-DRAFT CIFS/1.0 04/18/21

Server Response
===============================

Description
====================================

UCHAR WordCount; Count of data bytes; value = 10 + SetupCount
USHORT TotalParameterCount; Total parameter bytes being sent
USHORT TotalDataCount; Total data bytes being sent
USHORT Reserved;
USHORT ParameterCount; Parameter bytes sent this buffer
USHORT ParameterOffset; Offset (from header start) to Parameters
USHORT ParameterDisplacement; Displacement of these Parameter bytes
USHORT DataCount; Data bytes sent this buffer
USHORT DataOffset; Offset (from header start) to data
USHORT DataDisplacement; Displacement of these data bytes
UCHAR SetupCount; Count of setup words
UCHAR Reserved2; Reserved (pad above to word)
USHORT Setup[SetupWordCount]; Setup words (# = SetupWordCount)
USHORT ByteCount; Count of data bytes
UCHAR Pad[]; Pad to SHORT or LONG
UCHAR Parameters[ParameterCount]; Parameter bytes (# = ParameterCount)
UCHAR Pad1[]; Pad to SHORT or LONG
UCHAR Data[DataCount]; Data bytes (# = DataCount)

3.14.2 3.13.2 SMB_COM_NT_TRANSACTION Formats
Primary Client Request
===============================

Description
====================================

UCHAR WordCount; Count of parameter words; value = (19 + SetupCount)
UCHAR MaxSetupCount; Max setup words to return
USHORT Reserved;
ULONG TotalParameterCount; Total parameter bytes being sent
ULONG TotalDataCount; Total data bytes being sent
ULONG MaxParameterCount; Max parameter bytes to return
ULONG MaxDataCount; Max data bytes to return
ULONG ParameterCount; Parameter bytes sent this buffer
ULONG ParameterOffset; Offset (from header start) to Parameters
ULONG DataCount; Data bytes sent this buffer
ULONG DataOffset; Offset (from header start) to data
UCHAR SetupCount; Count of setup words
USHORT Function; The transaction function code
UCHAR Buffer[1];
USHORT Setup[SetupWordCount]; Setup words
USHORT ByteCount; Count of data bytes
UCHAR Pad1[]; Pad to LONG
UCHAR Parameters[ParameterCount]; Parameter bytes
UCHAR Pad2[]; Pad to LONG
UCHAR Data[DataCount]; Data bytes

Interim Server Response
===============================

Description
====================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

Leach, Naik expires May, 1998 [Page 26]

INTERNET-DRAFT CIFS/1.0 04/18/21

Secondary Client Request
===============================

Description
====================================

UCHAR WordCount; Count of parameter words = 18
UCHAR Reserved[3]; MBZ
ULONG TotalParameterCount; Total parameter bytes being sent
ULONG TotalDataCount; Total data bytes being sent
ULONG ParameterCount; Parameter bytes sent this buffer
ULONG ParameterOffset; Offset (from header start) to Parameters
ULONG ParameterDisplacement; Specifies the offset from the start of the overall parameter

block to the parameter bytes that are contained in this message
ULONG DataCount; Data bytes sent this buffer
ULONG DataOffset; Offset (from header start) to data
ULONG DataDisplacement; Specifies the offset from the start of the overall data block to

the data bytes that are contained in this message.
UCHAR Reserved1;
USHORT ByteCount; Count of data bytes
UCHAR Pad1[]; Pad to LONG
UCHAR Parameters[ParameterCount]; Parameter bytes
UCHAR Pad2[]; Pad to LONG
UCHAR Data[DataCount]; Data bytes

Server Response
===============================

Description
====================================

UCHAR WordCount; Count of data bytes; value = 18 + SetupCount
UCHAR Reserved[3];
ULONG TotalParameterCount; Total parameter bytes being sent
ULONG TotalDataCount; Total data bytes being sent
ULONG ParameterCount; Parameter bytes sent this buffer
ULONG ParameterOffset; Offset (from header start) to Parameters
ULONG ParameterDisplacement; Specifies the offset from the start of the overall parameter

block to the parameter bytes that are contained in this message
ULONG DataCount; Data bytes sent this buffer
ULONG DataOffset; Offset (from header start) to data
ULONG DataDisplacement; Specifies the offset from the start of the overall data block to

the data bytes that are contained in this message.
UCHAR SetupCount; Count of setup words
USHORT Setup[SetupWordCount]; Setup words
USHORT ByteCount; Count of data bytes
UCHAR Pad1[]; Pad to LONG
UCHAR Parameters[ParameterCount]; Parameter bytes
UCHAR Pad2[]; Pad to SHORT or LONG
UCHAR Data[DataCount]; Data bytes

3.14.3 Functional Description
The transaction Setup information and/or Parameters define functions specific to a particular resource on a particular server.
Therefore the functions supported are not defined by the transaction sub-protocol. The transaction protocol simply provides a
means of delivering them and retrieving the results.

The number of bytes needed in order to perform the transaction request may be more than will fit in a single buffer.

Leach, Naik expires May, 1998 [Page 27]

INTERNET-DRAFT CIFS/1.0 04/18/21

At the time of the request, the client knows the number of parameter and data bytes expected to be sent and passes this
information to the server via the primary request (TotalParameterCount and TotalDataCount). This may be reduced by
lowering the total number of bytes expected (TotalParameterCount and TotalDataCount) in each (if any) secondary request.

When the amount of parameter bytes received (total of each ParameterCount) equals the total amount of parameter bytes
expected (smallest TotalParameterCount) received, then the server has received all the parameter bytes.

Likewise, when the amount of data bytes received (total of each DataCount) equals the total amount of data bytes expected
(smallest TotalDataCount) received, then the server has received all the data bytes.

The parameter bytes should normally be sent first followed by the data bytes. However, the server knows where each begins
and ends in each buffer by the offset fields (ParameterOffset and DataOffset) and the length fields (ParameterCount and
DataCount). The displacement of the bytes (relative to start of each) is also known (ParameterDisplacement and
DataDisplacement). Thus the server is able to reassemble the parameter and data bytes should the individual requests be
received out of sequence.

If all parameter bytes and data bytes fit into a single buffer, then no interim response is expected and no secondary request is
sent.

The client knows the maximum amount of data bytes and parameter bytes which the server may return (from
MaxParameterCount and MaxDataCount of the request). Thus the client initializes its bytes expected variables to these
values. The server then informs the client of the actual amounts being returned via each message of the server response
(TotalParameterCount and TotalDataCount). The server may reduce the expected bytes by lowering the total number of bytes
expected (TotalParameterCount and/or TotalDataCount) in each (any) response.

When the amount of parameter bytes received (total of each ParameterCount) equals the total amount of parameter bytes
expected (smallest TotalParameterCount) received, then the client has received all the parameter bytes.

Likewise, when the amount of data bytes received (total of each DataCount) equals the total amount of data bytes expected
(smallest TotalDataCount) received, then the client has received all the data bytes.

The parameter bytes should normally be returned first followed by the data bytes. However, the client knows where each
begins and ends in each buffer by the offset fields (ParameterOffset and DataOffset) and the length fields (ParameterCount
and DataCount). The displacement of the bytes (relative to start of each) is also known (ParameterDisplacement and
DataDisplacement). The client is able to reassemble the parameter and data bytes should the server responses be received out
of sequence.

The flow for these transactions over a connection oriented transport is:

1. The client sends the primary client request identifying the total bytes (both parameters and data) which are expected to be
sent and contains the set up words and as many of the parameter and data bytes as will fit in a negotiated size buffer. This
request also identifies the maximum number of bytes (setup, parameters and data) the server is to return on the transaction
completion. If all the bytes fit in the single buffer, skip to step 4.

2. The server responds with a single interim response meaning "OK, send the remainder of the bytes" or (if error response)
terminate the transaction.

3. The client then sends another buffer full of bytes to the server. This step is repeated until all of the bytes are sent and
received.

4. The Server sets up and performs the transaction with the information provided.

5. Upon completion of the transaction, the server sends back (up to) the number of parameter and data bytes requested (or as
many as will fit in the negotiated buffer size). This step is repeated until all result bytes have been returned.

Leach, Naik expires May, 1998 [Page 28]

INTERNET-DRAFT CIFS/1.0 04/18/21

The flow for the transaction protocol when the request parameters and data do not all fit in a single buffer is:

Client
===============================

<->
====

Server
==============================

Primary TRANSACTION request ->
<- Interim Server Response

Secondary TRANSACTION request 1 ->
Secondary TRANSACTION request 2 ->
Secondary TRANSACTION request N ->

<- TRANSACTION response 1
<- TRANSACTION response 2
<- TRANSACTION response m

The flow for the transaction protocol when the request parameters and data does all fit in a single buffer is:

Client
===============================

<->
====

Server
==============================

Primary TRANSACTION request ->
<- TRANSACTION response 1
<- TRANSACTION response 2
<- TRANSACTION response m

The primary transaction request through the final response make up the complete transaction exchange, thus the Tid, Pid, Uid and
Mid must remain constant and can be used as appropriate by both the server and the client. Of course, other SMB requests may
intervene as well.

There are (at least) three ways that actual server responses have been observed to differ from what might be expected. First,
some servers will send Pad bytes to move the DataOffset to a 2- or 4-byte boundary even if there are no data bytes; the point here
is that the ByteCount must be used instead of ParameterOffset plus ParameterCount to infer the actual message length. Second,
some servers always return MaxParameterCount bytes even if the particular Transact2 has no parameter response. Finally, in
case of an error, some servers send the "traditional WordCount==0/ByteCount==0" response while others generate a Transact
response format.

3.15 Valid SMB Requests by Negotiated Dialect
CIFS clients and servers may exchange the following SMB messages if the "PC NETWORK PROGRAM 1.0" dialect is
negotiated:

Leach, Naik expires May, 1998 [Page 29]

INTERNET-DRAFT CIFS/1.0 04/18/21

SMB_COM_CREATE_DIRECTORY SMB_COM_DELETE_DIRECTORY
SMB_COM_OPEN SMB_COM_CREATE
SMB_COM_CLOSE SMB_COM_FLUSH
SMB_COM_DELETE SMB_COM_RENAME
SMB_COM_QUERY_INFORMATION SMB_COM_SET_INFORMATION
SMB_COM_READ SMB_COM_WRITE
SMB_COM_LOCK_BYTE_RANGE SMB_COM_UNLOCK_BYTE_RANGE
SMB_COM_CREATE_TEMPORARY SMB_COM_CREATE_NEW
SMB_COM_CHECK_DIRECTORY SMB_COM_PROCESS_EXIT
SMB_COM_SEEK SMB_COM_TREE_CONNECT
SMB_COM_TREE_DISCONNECT SMB_COM_NEGOTIATE
SMB_COM_QUERY_INFORMATION_DISK SMB_COM_SEARCH
SMB_COM_OPEN_PRINT_FILE SMB_COM_WRITE_PRINT_FILE
SMB_COM_CLOSE_PRINT_FILE SMB_COM_GET_PRINT_QUEUE

If the "LANMAN 1.0" dialect is negotiated, all of the messages in the previous list must be supported. Clients negotiating
LANMAN 1.0 and higher dialects will probably no longer send SMB_COM_PROCESS_EXIT, and the response format for
SMB_COM_NEGOTIATE is modified as well. New messages introduced with the LANMAN 1.0 dialect are:

SMB_COM_LOCK_AND_READ SMB_COM_WRITE_AND_UNLOCK
SMB_COM_READ_RAW SMB_COM_READ_MPX
SMB_COM_WRITE_MPX SMB_COM_WRITE_RAW
SMB_COM_WRITE_COMPLETE SMB_COM_WRITE_MPX_SECONDARY
SMB_COM_SET_INFORMATION2 SMB_COM_QUERY_INFORMATION2
SMB_COM_LOCKING_ANDX SMB_COM_TRANSACTION
SMB_COM_TRANSACTION_SECONDARY SMB_COM_IOCTL
SMB_COM_IOCTL_SECONDARY SMB_COM_COPY
SMB_COM_MOVE SMB_COM_ECHO
SMB_COM_WRITE_AND_CLOSE SMB_COM_OPEN_ANDX
SMB_COM_READ_ANDX SMB_COM_WRITE_ANDX
SMB_COM_SESSION_SETUP_ANDX SMB_COM_TREE_CONNECT_ANDX
SMB_COM_FIND SMB_COM_FIND_UNIQUE
SMB_COM_FIND_CLOSE

The "LM1.2X002" dialect introduces these new SMBs:

SMB_COM_TRANSACTION2 SMB_COM_TRANSACTION2_SECONDARY
SMB_COM_FIND_CLOSE2 SMB_COM_LOGOFF_ANDX

"NT LM 0.12" dialect introduces:

SMB_COM_NT_TRANSACT SMB_COM_NT_TRANSACT_SECONDARY
SMB_COM_NT_CREATE_ANDX SMB_COM_NT_CANCEL
SMB_COM_NT_RENAME

4 SMB Requests
This section lists the "best practice" SMB requests -- ones that would permit a client to exercise full CIFS functionality and
optimum performance when interoperating with a server speaking the latest dialect as of this writing ("NT LM 0.12").

Leach, Naik expires May, 1998 [Page 30]

INTERNET-DRAFT CIFS/1.0 04/18/21

Note that, as of this writing, no existing client restricts itself to only these requests, so no useful server can be written that
supports just them. The classification is provided so that future clients will be written to permit future servers to be simpler.

4.1 Session Requests

4.1.1 NEGOTIATE: Negotiate Protocol
Client Request
============================

Description
=======================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes; min = 2
struct {

UCHAR BufferFormat; 0x02 -- Dialect
UCHAR DialectName[]; ASCII null-terminated string

} Dialects[];

The Client sends a list of dialects that it can communicate with. The response is a selection of one of those dialects (numbered
0 through n) or -1 (hex FFFF) indicating that none of the dialects were acceptable. The negotiate message is binding on the
virtual circuit and must be sent. One and only one negotiate message may be sent, subsequent negotiate requests will be
rejected with an error response and no action will be taken.

The protocol does not impose any particular structure to the dialect strings. Implementers of particular protocols may choose
to include, for example, version numbers in the string.

If the server does not understand any of the dialect strings, or if PC NETWORK PROGRAM 1.0 is the chosen dialect, the
response format is

Server Response
============================

Description
=======================================

UCHAR WordCount; Count of parameter words = 1
USHORT DialectIndex; Index of selected dialect
USHORT ByteCount; Count of data bytes = 0

Leach, Naik expires May, 1998 [Page 31]

INTERNET-DRAFT CIFS/1.0 04/18/21

If the chosen dialect is greater than core up to and including LANMAN2.1, the protocol response format is

Server Response
============================

Description
=======================================

UCHAR WordCount; Count of parameter words = 13
USHORT DialectIndex; Index of selected dialect
USHORT SecurityMode; Security mode:

bit 0: 0 = share, 1 = user
bit 1: 1 = use challenge/response authentication

USHORT MaxBufferSize; Max transmit buffer size (>= 1024)
USHORT MaxMpxCount; Max pending multiplexed requests
USHORT MaxNumberVcs; Max VCs between client and server
USHORT RawMode; Raw modes supported:

 bit 0: 1 = Read Raw supported
 bit 1: 1 = Write Raw supported

ULONG SessionKey; Unique token identifying this session
SMB_TIME ServerTime; Current time at server
SMB_DATE ServerDate; Current date at server
USHORT ServerTimeZone; Current time zone at server
USHORT EncryptionKeyLength; MBZ if this is not LM2.1
USHORT Reserved; MBZ
USHORT ByteCount Count of data bytes
UCHAR EncryptionKey[]; The challenge encryption key
STRING PrimaryDomain[]; The server's primary domain

MaxBufferSize is the size of the largest message which the client can legitimately send to the server

If bit0 of the Flags field is set in the negotiate response, this indicates the server supports the
SMB_COM_LOCK_AND_READ and SMB_COM_WRITE_AND_UNLOCK client requests.

If the SecurityMode field indicates the server is running in user mode, the client must send appropriate
SMB_COM_SESSION_SETUP_ANDX requests before the server will allow the client to access resources. If the
SecurityMode fields indicates the client should use challenge/response authentication, the client should use the authentication
mechanism specified in section 2.10.

Clients using the "MICROSOFT NETWORKS 1.03" dialect use a different form of raw reads than documented here, and
servers are better off setting RawMode in this response to 0 for such sessions.

If the negotiated dialect is "DOS LANMAN2.1" or "LANMAN2.1", then PrimaryDomain string should be included in this
response.

If the negotiated dialect is NT LM 0.12, the response format is

Leach, Naik expires May, 1998 [Page 32]

INTERNET-DRAFT CIFS/1.0 04/18/21

Server Response
==========================

Description
===

UCHAR WordCount; Count of parameter words = 17
USHORT DialectIndex; Index of selected dialect
UCHAR SecurityMode; Security mode:

bit 0: 0 = share, 1 = user
bit 1: 1 = encrypt passwords
bit 2: 1 = Security Signatures (SMB sequence numbers) enabled
bit 3: 1 = Security Signatures (SMB sequence numbers) required

USHORT MaxMpxCount; Max pending multiplexed requests
USHORT MaxNumberVcs; Max VCs between client and server
ULONG MaxBufferSize; Max transmit buffer size
ULONG MaxRawSize; Maximum raw buffer size
ULONG SessionKey; Unique token identifying this session
ULONG Capabilities; Server capabilities
ULONG SystemTimeLow; System (UTC) time of the server (low).
ULONG SystemTimeHigh; System (UTC) time of the server (high).
USHORT ServerTimeZone; Time zone of server (min from UTC)
UCHAR EncryptionKeyLength; Length of encryption key.
USHORT ByteCount; Count of data bytes
UCHAR EncryptionKey[]; The challenge encryption key; Present only for Non Extended Security

i.e. CAP_EXTENDED_SECURITY is off in the Capabilities field
UCHAR OemDomainName[]; The name of the domain (in OEM chars); Present only for Non Extended

Security i.e. CAP_EXTENDED_SECURITY is off in the Capabilities
field

UCHAR GUID[16] A globally unique identifier assigned to the server; present only when
CAP_EXTENDED_SECURITY is on in the Capabilities field

UCHAR SecurityBlob[] Opaque Security Blob associated with the security package; present only
when CAP_EXTENDED_SECURITY is on in the Capabilities field

In addition to the definitions above, MaxBufferSize is the size of the largest message which the client can legitimately send to
the server. If the client is using a connectionless protocol, MaxBufferSize must be set to the smaller of the server's internal
buffer size and the amount of data which can be placed in a response packet.

MaxRawSize specifies the maximum message size the server can send or receive for SMB_COM_WRITE_RAW or
SMB_COM_READ_RAW.

Connectionless clients must set Sid to 0 in the SMB request header.

Leach, Naik expires May, 1998 [Page 33]

INTERNET-DRAFT CIFS/1.0 04/18/21

Capabilities allows the server to tell the client what it supports. The bit definitions are:

Capability Name
====================

Encoding
========

Meaning
=====================================

CAP_RAW_MODE 0x0001 The server supports SMB_COM_READ_RAW and
SMB_COM_WRITE_RAW

CAP_MPX_MODE 0x0002 The server supports SMB_COM_READ_MPX and
SMB_COM_WRITE_MPX

CAP_UNICODE 0x0004 The server supports Unicode strings
CAP_LARGE_FILES 0x0008 The server supports large files with 64 bit offsets
CAP_NT_SMBS 0x0010 The server supports the SMBs particular to the NT LM 0.12

dialect
CAP_RPC_REMOTE_APIS 0x0020 The sever supports remote API requests via RPC
CAP_STATUS32 0x0040 The server can respond with 32 bit status codes in Status.Status
CAP_LEVEL_II_OPLOCKS 0x0080 The server supports level 2 oplocks
CAP_LOCK_AND_READ 0x0100 The server supports the SMB_COM_LOCK_AND_READ SMB
CAP_NT_FIND 0x0200
CAP_DFS 0x1000 This server is DFS aware
CAP_BULK_TRANSFER 0x20000000 This server supports SMB_BULK_READ, SMB_BULK_WRITE
CAP_COMPRESSED_DATA 0x40000000 This server supports compressed data transfer

(BULK_TRANSFER capability is required in order to support
compressed data transfer)

CAP_EXTENDED_SECURITY 0x80000000 This server supports extended security validation

4.1.1.1 Errors

SUCCESS/SUCCESS
ERRSRV/ERRerror

4.1.2 SESSION_SETUP_ANDX: Session Setup
This SMB is used to further "Set up" the session normally just established via the negotiate protocol.

One primary function is to perform a "user logon" in the case where the server is in user level security mode. The Uid in the
SMB header is set by the client to be the userid desired for the AccountName and validated by the AccountPassword.

Leach, Naik expires May, 1998 [Page 34]

INTERNET-DRAFT CIFS/1.0 04/18/21

If the negotiated protocol is prior to NT LM 0.12, the format of SMB_COM_SESSION_SETUP_ANDX is:

Client Request
==============================

Description
=====================================

 UCHAR WordCount; Count of parameter words = 10
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT MaxBufferSize; Client maximum buffer size
USHORT MaxMpxCount; Actual maximum multiplexed pending requests
USHORT VcNumber; 0 = first (only), nonzero=additional VC number
ULONG SessionKey; Session key (valid iff VcNumber != 0)
USHORT PasswordLength; Account password size
ULONG Reserved; Must be 0
USHORT ByteCount; Count of data bytes; min = 0
UCHAR AccountPassword[]; Account Password
STRING AccountName[]; Account Name
STRING PrimaryDomain[]; Client's primary domain
STRING NativeOS[]; Client's native operating system
STRING NativeLanMan[]; Client's native LAN Manager type

and the response is:

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 3
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT Action; Request mode:

bit0 = logged in as GUEST
USHORT ByteCount; Count of data bytes
STRING NativeOS[]; Server's native operating system
STRING NativeLanMan[]; Server's native LAN Manager type
STRING PrimaryDomain[]; Server's primary domain

If the server is in "share level security mode", the account name and passwd should be ignored by the server.

If challenge/response authentication is not being used, AccountPassword should be a null terminated ASCII string with
PasswordLength set to the string size including the null; the password will case insensitive. If challenge/response
authentication is being used (see section 2.8), then AccountPassword will be the response to the server's challenge, and
PasswordLength should be set to its length.

The server validates the name and password supplied and if valid, it registers the user identifier on this session as representing
the specified AccountName. The Uid field in the SMB header will then be used to validate access on subsequent SMB
requests. The SMB requests where permission checks are required are those which refer to a symbolically named resource
such as SMB_COM_OPEN, SMB_COM_RENAME, SMB_COM_DELETE, etc.. The value of the Uid is relative to a
specific client/server session so it is possible to have the same Uid value represent two different users on two different sessions
at the server.

Leach, Naik expires May, 1998 [Page 35]

INTERNET-DRAFT CIFS/1.0 04/18/21

Multiple session setup commands may be sent to register additional users on this session. If the server receives an additional
SMB_COM_SESSION_SETUP_ANDX, only the Uid, AccountName and AccountPassword fields need contain valid values
(the server MUST ignore the other fields).

The client writes the name of its domain in PrimaryDomain if it knows what the domain name is. If the domain name is
unknown, the client either encodes it as a NULL string, or as a question mark.

If bit0 of Action is set, this informs the client that although the server did not recognize the AccountName, it logged the user in
as a guest. This is optional behavior by the server, and in any case one would ordinarily expect guest privileges to limited.

Another function of the Session Set Up protocol is to inform the server of the maximum values which will be utilized by this
client. Here MaxBufferSize is the maximum message size which the client can receive. Thus although the server may support
16k buffers (as returned in the SMB_COM_NEGOTIATE response), if the client only has 4k buffers, the value of
MaxBufferSize here would be 4096. The minimum allowable value for MaxBufferSize is 1024. The
SMB_COM_NEGOTIATE response includes the server buffer size supported. Thus this is the maximum SMB message size
which the client can send to the server. This size may be larger than the size returned to the server from the client via the
SMB_COM_SESSION_SETUP_AND X protocol which is the maximum SMB message size which the server may send to the
client. Thus if the server's buffer size were 4k and the client's buffer size were only 2K, the client could send up to 4k
(standard) write requests but must only request up to 2k for (standard) read requests.

The VcNumber field specifies whether the client wants this to be the first VC or an additional VC.

The values for MaxBufferSize, MaxMpxCount, and VcNumber must be less than or equal to the maximum values supported by
the server as returned in the SMB_COM_NEGOTIATE response.

If the server gets a SMB_COM_SESSION_SETUP_ANDX request with VcNumber of 0 and other VCs are still connected to
that client, they will be aborted thus freeing any resources held by the server. This condition could occur if the client was
rebooted and reconnected to the server before the transport level had informed the server of the previous VC termination.

If the negotiated SMB dialect is "NT LM 0.12" and the server supports ExtendedSecurity i.e. the
CAP_EXTENDED_SECURITY flag is set in the Capabilities field of the Negotiate Response SMB, the Extended Security
SessionSetup SMB format is:

Client Request
==============================

Description
=====================================

 UCHAR WordCount; Count of parameter words = 12
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT MaxBufferSize; Client's maximum buffer size
USHORT MaxMpxCount; Actual maximum multiplexed pending requests
USHORT VcNumber; 0 = first (only), nonzero=additional VC number
ULONG SessionKey; Session key (valid iff VcNumber != 0)
USHORT SecurityBlobLength; Length of opaque security blob
ULONG Reserved; must be 0
ULONG Capabilities; Client capabilities
USHORT ByteCount; Count of data bytes; min = 0
UCHAR SecurityBlob[] The opaque security blob
STRING NativeOS[]; Client's native operating system, Unicode
STRING NativeLanMan[]; Client's native LAN Manager type, Unicode

The response is:

Leach, Naik expires May, 1998 [Page 36]

INTERNET-DRAFT CIFS/1.0 04/18/21

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 3
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT Action; Request mode:

bit0 = logged in as GUEST
USHORT SecurityBlobLength length of Security Blob that follows in a later field
USHORT ByteCount; Count of data bytes
UCHAR SecurityBlob[] SecurityBlob of length specified in field

SecurityBlobLength
STRING NativeOS[]; Server's native operating system
STRING NativeLanMan[]; Server's native LAN Manager type
STRING PrimaryDomain[]; Server's primary domain

There may be multiple parts involved in the security blob exchange. In that case, the server may return an error
STATUS_MORE_PROCESSING_REQUEIRED (a value of 0xC0000016) in the SMB status. The client can then repeat the
SessionSetupAndX SMB with the rest of the security blob.

If the negotiated SMB dialect is "NT LM 0.12" or later and the server does not support Extended Security (i.e. the
CAP_EXTENDED_SECURITY flag in the Capabilities field of the Negotiate Response SMB is not set), the format of the
response SMB is unchanged, but the request is:

Client Request
==============================

Description
=====================================

 UCHAR WordCount; Count of parameter words = 13
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT MaxBufferSize; Client's maximum buffer size
USHORT MaxMpxCount; Actual maximum multiplexed pending requests
USHORT VcNumber; 0 = first (only), nonzero=additional VC number
ULONG SessionKey; Session key (valid iff VcNumber != 0)
USHORT CaseInsensitivePasswordLength; Account password size, ANSI
USHORT CaseSensitivePasswordLength; Account password size, Unicode
ULONG Reserved; must be 0
ULONG Capabilities; Client capabilities
USHORT ByteCount; Count of data bytes; min = 0
UCHAR CaseInsensitivePassword[]; Account Password, ANSI
UCHAR CaseSensitivePassword[]; Account Password, Unicode
STRING AccountName[]; Account Name, Unicode
STRING PrimaryDomain[]; Client's primary domain, Unicode
STRING NativeOS[]; Client's native operating system, Unicode
STRING NativeLanMan[]; Client's native LAN Manager type, Unicode

Leach, Naik expires May, 1998 [Page 37]

INTERNET-DRAFT CIFS/1.0 04/18/21

The client expresses its capabilities to the server encoded in the Capabilities field:

Capability Name
========================

Encoding
=========

Description
================================

CAP_UNICODE 0x0004 The client can use UNICODE strings
CAP_LARGE_FILES 0x0008 The client can deal with files having 64 bit offsets
CAP_NT_SMBS 0x0010 The client understands the SMBs introduced with the NT

LM 0.12 dialect. Implies CAP_NT_FIND.
CAP_NT_FIND 0x0200
CAP_ STATUS32 0x0040 The client can receive 32 bit errors encoded in

Status.Status
CAP_LEVEL_II_OPLOCKS 0x0080 The client understands Level II oplocks

The entire message sent and received including the optional ANDX SMB must fit in the negotiated maximum transfer size.
The following are the only valid SMB commands for AndXCommand for SMB_COM_SESSION_SETUP_ANDX

SMB_COM_TREE_CONNECT_ANDX SMB_COM_OPEN
SMB_COM_OPEN_ANDX SMB_COM_CREATE
SMB_COM_CREATE_NEW SMB_COM_CREATE_DIRECTORY
SMB_COM_DELETE SMB_COM_DELETE_DIRECTORY
SMB_COM_FIND SMB_COM_FIND_UNIQUE
SMB_COM_COPY SMB_COM_RENAME
SMB_COM_NT_RENAME SMB_COM_CHECK_DIRECTORY
SMB_COM_QUERY_INFORMATION SMB_COM_SET_INFORMATION
SMB_COM_NO_ANDX_COMMAND SMB_COM_OPEN_PRINT_FILE
SMB_COM_GET_PRINT_QUEUE SMB_COM_TRANSACTION

4.1.2.1 Errors

ERRSRV/ERRerror - no NEG_PROT issued
ERRSRV/ERRbadpw - password not correct for given username
ERRSRV/ERRtoomanyuids - maximum number of users per session exceeded
ERRSRV/ERRnosupport - chaining of this request to the previous one is not supported

4.1.3 LOGOFF_ANDX: User Logoff
This SMB is the inverse of SMB_COM_SESSION_SETUP_ANDX.

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 2
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT ByteCount; Count of data bytes = 0

Leach, Naik expires May, 1998 [Page 38]

INTERNET-DRAFT CIFS/1.0 04/18/21

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 2
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT ByteCount; Count of data bytes = 0

The user represented by Uid in the SMB header is logged off. The server closes all files currently open by this user, and
invalidates any outstanding requests with this Uid.

SMB_COM_SESSION_SETUP_ANDX is the only valid AndXCommand. for this SMB.

4.1.3.1 Errors

ERRSRV/invnid - TID was invalid
ERRSRV/baduid - UID was invalid

4.1.4 TREE_CONNECT_ANDX: Tree Connect
Client Request
=================================

Description
=================================

UCHAR WordCount; Count of parameter words = 4
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT Flags; Additional information

bit 0 set = disconnect Tid
USHORT PasswordLength; Length of Password[]
USHORT ByteCount; Count of data bytes; min = 3
UCHAR Password[]; Password
STRING Path[]; Server name and share name
STRING Service[]; Service name

The serving machine verifies the combination and returns an error code or an identifier. The full name is included in this
request message and the identifier identifying the connection is returned in the Tid field of the SMB header. The Tid field in
the client request is ignored. The meaning of this identifier (Tid) is server specific; the client must not associate any specific
meaning to it.

If the negotiated dialect is LANMAN1.0 or later, then it is a protocol violation for the client to send this message prior to a
successful SMB_COM_SESSION_SETUP_ANDX, and the server ignores Password.

If the negotiated dialect is prior to LANMAN1.0 and the client has not sent a successful
SMB_COM_SESSION_SETUP_ANDX request when the tree connect arrives, a user level security mode server must
nevertheless validate the client's credentials as discussed earlier in this document.

Path follows UNC style syntax, that is to say it is encoded as \\server\share and it indicates the name of the resource to which
the client wishes to connect.

Leach, Naik expires May, 1998 [Page 39]

INTERNET-DRAFT CIFS/1.0 04/18/21

Because Password may be an authentication response, it is a variable length field with the length specified by
PasswordLength. If authentication is not being used, Password should be a null terminated ASCII string with
PasswordLength set to the string size including the terminating null.

The server can enforce whatever policy it desires to govern share access. Typically, if the server is paused, administrative
privilege is required to connect to any share; if the server is not paused, administrative privilege is required only for
administrative shares (C$, etc.). Other such policies may include valid times of day, software usage license limits, number of
simultaneous server users or share users, etc.

The Service component indicates the type of resource the client intends to access. Valid values are:

Service
========

Description
========================

Earliest Dialect Allowed
================================

A: disk share PC NETWORK PROGRAM 1.0
LPT1: printer PC NETWORK PROGRAM 1.0
IPC named pipe MICROSOFT NETWORKS 3.0
COMM communications device MICROSOFT NETWORKS 3.0
????? any type of device MICROSOFT NETWORKS 3.0

If bit0 of Flags is set, the tree connection to Tid in the SMB header should be disconnected. If this tree disconnect fails, the
error should be ignored.

If the negotiated dialect is earlier than DOS LANMAN2.1, the response to this SMB is:

Server Response
================================

Description
===================================

UCHAR WordCount; Count of parameter words = 2
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT ByteCount; Count of data bytes; min = 3

If the negotiated is DOS LANMAN2.1 or later, the response to this SMB is:

Server Response
================================

Description
===================================

UCHAR WordCount; Count of parameter words = 3
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT OptionalSupport; Optional support bits
USHORT ByteCount; Count of data bytes; min = 3
UCHAR Service[]; Service type connected to. Always ANSII.
STRING NativeFileSystem[]; Native file system for this tree

NativeFileSystem is the name of the filesystem; values to be expected include FAT, NTFS, etc.

OptionalSupport bits has the encoding:

Leach, Naik expires May, 1998 [Page 40]

INTERNET-DRAFT CIFS/1.0 04/18/21

Name
=============================

Encoding
=========

Description
==========================

SMB_SUPPORT_SEARCH_BITS 0x0001
SMB_SHARE_IS_IN_DFS 0x0002

Some servers negotiate "DOS LANMAN2.1" dialect or later and still send the "downlevel" (i.e. wordcount==2) response.
Valid AndX following commands are

SMB_COM_OPEN SMB_COM_OPEN_ANDX SMB_COM_CREATE
SMB_COM_CREATE_NEW SMB_COM_CREATE_DIRECTORY SMB_COM_DELETE
SMB_COM_DELETE_DIRECTORY SMB_COM_FIND SMB_COM_COPY
SMB_COM_FIND_UNIQUE SMB_COM_RENAME
SMB_COM_CHECK_DIRECTORY SMB_COM_QUERY_INFORMATION
SMB_COM_GET_PRINT_QUEUE SMB_COM_OPEN_PRINT_FILE
SMB_COM_TRANSACTION SMB_COM_NO_ANDX_CMD
SMB_COM_SET_INFORMATION SMB_COM_NT_RENAME

4.1.4.1 Errors

ERRDOS/ERRnomem
ERRDOS/ERRbadpath
ERRDOS/ERRinvdevice
ERRSRV/ERRaccess
ERRSRV/ERRbadpw
ERRSRV/ERRinvnetname

4.1.5 TREE_DISCONNECT: Tree Disconnect
This message informs the server that the client no longer wishes to access the resource connected to with a prior
SMB_COM_TREE_CONNECT or SMB_COM_TREE_CONNECT_ANDX.

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

The resource sharing connection identified by Tid in the SMB header is logically disconnected from the server. Tid is
invalidated; it will not be recognized if used by the client for subsequent requests. All locks, open files, etc. created on behalf
of Tid are released.

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

Leach, Naik expires May, 1998 [Page 41]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.1.5.1 Errors

ERRSRV/ERRinvnid
ERRSRV/ERRbaduid

4.1.6 TRANS2_QUERY_FS_INFORMATION: Get File
System Information
This transaction requests information about a filesystem on the server.

Client Request
==================================

Value
=================================

WordCount; 15
TotalParameterCount; 2 or 4
MaxSetupCount; 0
SetupCount; 1 or 2
Setup[0]; TRANS2_QUERY_FS_INFORMATION

Parameter Block Encoding
==================================

Description
=================================

USHORT Information Level; Level of information requested

The filesystem is identified by Tid in the SMB header.

MaxDataCount in the transaction request must be large enough to accommodate the response.

The encoding of the response parameter block depends on the InformationLevel requested. Information levels whose values
are greater than 0x102 are mapped to corresponding calls to NtQueryVolumeInformationFile calls by the server. The two
levels below 0x102 are described below. The requested information is placed in the Data portion of the transaction response.

InformationLevel

=============================

Value

======
SMB_INFO_ALLOCATION 1
SMB_INFO_VOLUME 2
SMB_QUERY_FS_VOLUME_INFO 0x102
SMB_QUERY_FS_SIZE_INFO 0x103
SMB_QUERY_FS_DEVICE_INFO 0x104
SMB_QUERY_FS_ATTRIBUTE_INFO 0x105

The following sections describe the InformationLevel dependent encoding of the data part of the transaction response.

Leach, Naik expires May, 1998 [Page 42]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.1.6.1 SMB_INFO_ALLOCATION

Data Block Encoding
===================

Description
==

ULONG idFileSystem; File system identifier. NT server always returns 0
ULONG cSectorUnit; Number of sectors per allocation unit
ULONG cUnit; Total number of allocation units
ULONG cUnitAvail; Total number of available allocation units
USHORT cbSector; Number of bytes per sector

4.1.6.2 SMB_INFO_VOLUME

Data Block Encoding
===================

Description
==

ULONG ulVsn; Volume serial number
UCHAR cch; Number of characters in Label
STRING Label; The volume label

4.1.6.3 SMB_QUERY_FS_VOLUME_INFO

Data Block Encoding
===================

Description
==

LARGE_INTEGER Volume Creation Time
ULONG Volume Serial Number
ULONG Length of Volume Label in bytes
BYTE Reserved
BYTE Reserved
STRING Label; The volume label

4.1.6.4 SMB_QUERY_FS_SIZE_INFO

Data Block Encoding
===================

Description
==

LARGE_INTEGER Total Number of Allocation units on the Volume
LARGE_INTEGER Number of free Allocation units on the Volume
ULONG Number of sectors in each Allocation unit
ULONG Number of bytes in each sector

4.1.6.5 SMB_QUERY_FS_DEVICE_INFO

Data Block Encoding
====================

Value
===

ULONG DeviceType; Values as specified below
ULONG Characteristics of the device; Values as specified below

For DeviceType, note that the values 0-32767 are reserved for the exclusive use of
Microsoft Corporation. The following device types are currently defined:

Leach, Naik expires May, 1998 [Page 43]

INTERNET-DRAFT CIFS/1.0 04/18/21

FILE_DEVICE_BEEP 0x00000001
FILE_DEVICE_CD_ROM 0x00000002
FILE_DEVICE_CD_ROM_FILE_SYSTEM 0x00000003
FILE_DEVICE_CONTROLLER 0x00000004
FILE_DEVICE_DATALINK 0x00000005
FILE_DEVICE_DFS 0x00000006
FILE_DEVICE_DISK 0x00000007
FILE_DEVICE_DISK_FILE_SYSTEM 0x00000008
FILE_DEVICE_FILE_SYSTEM 0x00000009
FILE_DEVICE_INPORT_PORT 0x0000000a
FILE_DEVICE_KEYBOARD 0x0000000b
FILE_DEVICE_MAILSLOT 0x0000000c
FILE_DEVICE_MIDI_IN 0x0000000d
FILE_DEVICE_MIDI_OUT 0x0000000e
FILE_DEVICE_MOUSE 0x0000000f
FILE_DEVICE_MULTI_UNC_PROVIDER 0x00000010
FILE_DEVICE_NAMED_PIPE 0x00000011
FILE_DEVICE_NETWORK 0x00000012
FILE_DEVICE_NETWORK_BROWSER 0x00000013
FILE_DEVICE_NETWORK_FILE_SYSTEM 0x00000014
FILE_DEVICE_NULL 0x00000015
FILE_DEVICE_PARALLEL_PORT 0x00000016
FILE_DEVICE_PHYSICAL_NETCARD 0x00000017
FILE_DEVICE_PRINTER 0x00000018
FILE_DEVICE_SCANNER 0x00000019
FILE_DEVICE_SERIAL_MOUSE_PORT 0x0000001a
FILE_DEVICE_SERIAL_PORT 0x0000001b
FILE_DEVICE_SCREEN 0x0000001c
FILE_DEVICE_SOUND 0x0000001d
FILE_DEVICE_STREAMS 0x0000001e
FILE_DEVICE_TAPE 0x0000001f
FILE_DEVICE_TAPE_FILE_SYSTEM 0x00000020
FILE_DEVICE_TRANSPORT 0x00000021
FILE_DEVICE_UNKNOWN 0x00000022
FILE_DEVICE_VIDEO 0x00000023
FILE_DEVICE_VIRTUAL_DISK 0x00000024
FILE_DEVICE_WAVE_IN 0x00000025
FILE_DEVICE_WAVE_OUT 0x00000026
FILE_DEVICE_8042_PORT 0x00000027
FILE_DEVICE_NETWORK_REDIRECTOR 0x00000028
FILE_DEVICE_BATTERY 0x00000029
FILE_DEVICE_BUS_EXTENDER 0x0000002a
FILE_DEVICE_MODEM 0x0000002b
FILE_DEVICE_VDM 0x0000002c

Some of these device types are not currently accessible over the network and may never be accessible over the network. Some
may change to be accessible over the network. The values for device types that may never be accessible over the network may
be redefined to be just reserved at some date in the future.

Characteristics is the sum of any of the following:

Leach, Naik expires May, 1998 [Page 44]

INTERNET-DRAFT CIFS/1.0 04/18/21

FILE_REMOVABLE_MEDIA 0x00000001
FILE_READ_ONLY_DEVICE 0x00000002
FILE_FLOPPY_DISKETTE 0x00000004
FILE_WRITE_ONE_MEDIA 0x00000008
FILE_REMOTE_DEVICE 0x00000010
FILE_DEVICE_IS_MOUNTED 0x00000020
FILE_VIRTUAL_VOLUME 0x00000040

4.1.6.6 SMB_QUERY_FS_ATTRIBUTE_INFO

Data Block Encoding
===================

Description
==

ULONG File System Attributes; possible values described below
LONG Maximum length of each file name component in number of bytes
ULONG Length, in bytes, of the name of the file system
STRING Name of the file system

Where FileSystemAttributes is the sum of any of the following:

FILE_CASE_SENSITIVE_SEARCH 0x00000001
FILE_CASE_PRESERVED_NAMES 0x00000002
FILE_PRSISTENT_ACLS 0x00000004
FILE_FILE_COMPRESSION 0x00000008
FILE_VOLUME_QUOTAS 0x00000010
FILE_DEVICE_IS_MOUNTED 0x00000020
FILE_VOLUME_IS_COMPRESSED 0x00008000

4.1.6.7 Errors

ERRSRV/invnid - TID was invalid
ERRSRV/baduid - UID was invalid
ERRHRD/ERRnotready - the file system has been removed
ERRHRD/ERRdata - disk I/O error
ERRSRV/ERRaccess - user does not have the right to perform this operation
ERRSRV/ERRinvdevice - resource identified by TID is not a file system

4.1.7 ECHO: Ping the Server
This request is used to test the connection to the server, and to see if the server is still responding.

Leach, Naik expires May, 1998 [Page 45]

INTERNET-DRAFT CIFS/1.0 04/18/21

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 1
USHORT EchoCount; Number of times to echo data back
USHORT ByteCount; Count of data bytes; min = 1
UCHAR Buffer[1]; Data to echo

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 1
USHORT SequenceNumber; Sequence number of this echo
USHORT ByteCount; Count of data bytes; min = 4
UCHAR Buffer[1]; Echoed data

Each response echoes the data sent, though ByteCount may indicate no data If EchoCount is zero, no response is sent.

Tid in the SMB header is ignored, so this request may be sent to the server even if there are no valid tree connections to the
server.

The flow for the ECHO protocol is:

Client Request
=================================

<->
====

Server Response
============================

Echo Request (EchoCount == n) ->
<- Echo Response 1
<- Echo Response 2
<- Echo Response n

4.1.7.1 Errors

ERRSRV/ERRbaduid - UID was invalid
ERRSRV/ERRnoaccess - session has not been established
ERRSRV/ERRnosupport - ECHO function is not supported

4.1.8 NT_CANCEL: Cancel request
This SMB allows a client to cancel a request currently pending at the server.

Client Request
==================================

Description
=================================

UCHAR WordCount; No words are sent (== 0)
USHORT ByteCount; No bytes (==0)

The Sid, Uid, Pid, Tid, and Mid fields of the SMB are used to locate an pending server request from this session. If a pending
request is found, it is "hurried along" which may result in success or failure of the original request. No other response is
generated for this SMB.

Leach, Naik expires May, 1998 [Page 46]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.2 File Requests

4.2.1 NT_CREATE_ANDX: Create or Open File
This command is used to create or open a file or a directory.

Client Request
=================================

Description
==================================

UCHAR WordCount; Count of parameter words = 24
UCHAR AndXCommand; Secondary command; 0xFF = None
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
UCHAR Reserved; Reserved (must be 0)
USHORT NameLength; Length of Name[] in bytes
ULONG Flags; Create bit set:

0x02 - Request an oplock
0x04 - Request a batch oplock
0x08 - Target of open must be directory

ULONG RootDirectoryFid; If non-zero, open is relative to this directory
ACCESS_MASK DesiredAccess; access desired
LARGE_INTEGER AllocationSize; Initial allocation size
ULONG ExtFileAttributes; File attributes
ULONG ShareAccess; Type of share access
ULONG CreateDisposition; Action to take if file exists or not
ULONG CreateOptions; Options to use if creating a file
ULONG ImpersonationLevel; Security QOS information
UCHAR SecurityFlags; Security tracking mode flags:

0x1 - SECURITY_CONTEXT_TRACKING
0x2 - SECURITY_EFFECTIVE_ONLY

USHORT ByteCount; Length of byte parameters
STRING Name[]; File to open or create

The DesiredAccess parameter is specified in section 3.8 on Access Mask Encoding.

If no value is specified, it still allows an application to query attributes without actually accessing the file.

The ExtFIleAttributes parameter specifies the file attributes and flags for the file. The parameter's value is the sum of allowed
attributes and flags defined in section 3.12 on Extended File Attribute Encoding

The ShareAccess field Specifies how this file can be shared. This parameter must be some combination of
the following values:

Name Value Meaning
0 Prevents the file from being shared.

FILE_SHARE_READ 0x00000001 Other open operations can be performed on the file for read access.
FILE_SHARE_WRITE 0x00000002 Other open operations can be performed on the file for write access.
FILE_SHARE_DELETE 0x00000004 Other open operations can be performed on the file for delete access.

The CreateDisposition parameter can contain one of the following values:

Leach, Naik expires May, 1998 [Page 47]

INTERNET-DRAFT CIFS/1.0 04/18/21

CREATE_NEW Creates a new file. The function fails if the specified file already exists.
CREATE_ALWAYS Creates a new file. The function overwrites the file if it exists.
OPEN_EXISTING Opens the file. The function fails if the file does not exist.
OPEN_ALWAYS Opens the file, if it exists. If the file does not exist, act like CREATE_NEW.
TRUNCATE_EXISTING Opens the file. Once opened, the file is truncated so that its size is zero bytes. The calling

process must open the file with at least GENERIC_WRITE access. The function fails if the
file does not exist.

The ImpersonationLevel parameter can contain one or more of the following values:

SECURITY_ANONYMOUS Specifies to impersonate the client at the Anonymous impersonation level.
SECURITY_IDENTIFICATION Specifies to impersonate the client at the Identification impersonation level.
SECURITY_IMPERSONATION Specifies to impersonate the client at the Impersonation impersonation level.
SECURITY_DELEGATION Specifies to impersonate the client at the Delegation impersonation level.

The SecurityFlags parameter can have either of the following two flags set:

SECURITY_CONTEXT_TRACKING Specifies that the security tracking mode is dynamic. If this flag is not
specified, Security Tracking Mode is static.

SECURITY_EFFECTIVE_ONLY Specifies that only the enabled aspects of the client's security context are
available to the server. If you do not specify this flag, all aspects of the client's
security context are available. This flag allows the client to limit the groups
and privileges that a server can use while impersonating the client.

The response is as follows:

Leach, Naik expires May, 1998 [Page 48]

INTERNET-DRAFT CIFS/1.0 04/18/21

Server Response
=================================

Description
==================================

UCHAR WordCount; Count of parameter words = 26
UCHAR AndXCommand; Secondary command; 0xFF = None
UCHAR AndXReserved; MBZ
USHORT AndXOffset; Offset to next command WordCount
UCHAR OplockLevel; The oplock level granted

0 - No oplock granted
1 - Exclusive oplock granted
2 - Batch oplock granted
3 - Level II oplock granted

USHORT Fid; The file ID
ULONG CreateAction; The action taken
TIME CreationTime; The time the file was created
TIME LastAccessTime; The time the file was accessed
TIME LastWriteTime; The time the file was last written
TIME ChangeTime; The time the file was last changed
ULONG ExtFileAttributes; The file attributes
LARGE_INTEGER AllocationSize; The number of byes allocated
LARGE_INTEGER EndOfFile; The end of file offset
USHORT FileType;
USHORT DeviceState; state of IPC device (e.g. pipe)
BOOLEAN Directory; TRUE if this is a directory
USHORT ByteCount; = 0

The following SMBs may follow SMB_COM_NT_CREATE_ANDX:

SMB_COM_READ SMB_COM_READ_ANDX
SMB_COM_IOCTL

Leach, Naik expires May, 1998 [Page 49]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.2.2 NT_TRANSACT_CREATE: Create or Open File with
EAs or SD
This command is used to create or open a file or a directory, when EAs or an SD must be applied to the file.

Request Parameter Block Encoding
===================================

Description
================================

ULONG Flags; Creation flags (see below)
ULONG RootDirectoryFid; Optional directory for relative open
ACCESS_MASK DesiredAccess; Desired access
LARGE_INTEGER AllocationSize; The initial allocation size in bytes, if file created
ULONG ExtFileAttributes; The extended file attributes
ULONG ShareAccess; The share access
ULONG CreateDisposition; Action to take if file exists or not
ULONG CreateOptions; Options for creating a new file
ULONG SecurityDescriptorLength; Length of SD in bytes
ULONG EaLength; Length of EA in bytes
ULONG NameLength; Length of name in characters
ULONG ImpersonationLevel; Security QOS information
UCHAR SecurityFlags; Security QOS information
STRING Name[NameLength]; The name of the file (not NULL terminated)

Data Block Encoding
===================================

Description
================================

UCHAR SecurityDescriptor[SecurityDescriptorLength];
UCHAR ExtendedAttributes[EaLength];

Creation Flag Name
==========================

Value
======

Description
==================================

NT_CREATE_REQUEST_OPLOCK 0x02 Level I oplock requested
NT_CREATE_REQUEST_OPBATCH 0x04 Batch oplock requested
NT_CREATE_OPEN_TARGET_DIR 0x08 Target for open is a directory

Leach, Naik expires May, 1998 [Page 50]

INTERNET-DRAFT CIFS/1.0 04/18/21

Output Parameter Block Encoding
==================================

Description
==================================

UCHAR OplockLevel; The oplock level granted
UCHAR Reserved;
USHORT Fid; The file ID
ULONG CreateAction; The action taken
ULONG EaErrorOffset; Offset of the EA error
TIME CreationTime; The time the file was created
TIME LastAccessTime; The time the file was accessed
TIME LastWriteTime; The time the file was last written
TIME ChangeTime; The time the file was last changed
ULONG ExtFileAttributes; The file attributes
LARGE_INTEGER AllocationSize; The number of byes allocated
LARGE_INTEGER EndOfFile; The end of file offset
USHORT FileType;
USHORT DeviceState; state of IPC device (e.g. pipe)
BOOLEAN Directory; TRUE if this is a directory

See the description of NT_CREATE_ANDX for the definition of the parameters.

4.2.3 CREATE_TEMPORARY: Create Temporary File
The server creates a data file in Directory relative to Tid in the SMB header and assigns a unique name to it.

Client Request
==================================

Server Response
=================================

UCHAR WordCount; Count of parameter words = 3
USHORT reserved; Ignored by the server
UTIME CreationTime; New file's creation time stamp
USHORT ByteCount; Count of data bytes; min = 2
UCHAR BufferFormat; 0x04
STRING DirectoryName[]; Directory name

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 1
USHORT Fid; File handle
USHORT ByteCount; Count of data bytes; min = 2
UCHAR BufferFormat; 0x04
STRING Filename[]; File name

Fid is the returned handle for future file access. Filename is the name of the file which was created within the requested
Directory. It is opened in compatibility mode with read/write access for the client.

Support of CreationTime by the server is optional.

Leach, Naik expires May, 1998 [Page 51]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.2.4 READ_ANDX: Read Bytes
Large File Client Request
================================

Description
===================================

UCHAR WordCount; Count of parameter words = 10 or 12
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT Fid; File handle
ULONG Offset; Offset in file to begin read
USHORT MaxCount; Max number of bytes to return
USHORT MinCount; Reserved
ULONG Reserved; Must be 0
USHORT Remaining; Reserved
ULONG OffsetHigh; Upper 32 bits of offset (only if WordCount is 12)
USHORT ByteCount; Count of data bytes = 0

Server Response
================================

Description
===================================

UCHAR WordCount; Count of parameter words = 12
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT Remaining; Reserved -- must be -1
USHORT DataCompactionMode;
USHORT Reserved; Reserved (must be 0)
USHORT DataLength; Number of data bytes (min = 0)
USHORT DataOffset; Offset (from header start) to data
USHORT Reserved[5]; Reserved (must be 0)
USHORT ByteCount; Count of data bytes
UCHAR Pad[];
UCHAR Data[DataLength]; Data from resource

If the negotiated dialect is NT LM 0.12 or later, the client may use the 12 parameter word version of the request. This
version allows specification of 64 bit file offsets.

If CAP_LARGE_READX was indicated by the server in the negotiate protocol response, the request's MaxCount field may
exceed the negotiated buffer size if Fid refers to a disk file. The server may arbitrarily elect to return fewer than MaxCount
bytes in response.

The following SMBs may follow SMB_COM_READ_ANDX:
SMB_COM_CLOSE

4.2.4.1 Errors

ERRDOS/ERRnoaccess
ERRDOS/ERRbadfid
ERRDOS/ERRlock
ERRDOS/ERRbadaccess

Leach, Naik expires May, 1998 [Page 52]

INTERNET-DRAFT CIFS/1.0 04/18/21

ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.5 WRITE_ANDX: Write Bytes to file or resource
Client Request
===============================

Description
====================================

UCHAR WordCount; Count of parameter words = 12 or 14
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT Fid; File handle
ULONG Offset; Offset in file to begin write
ULONG Reserved; Must be 0
USHORT WriteMode; Write mode bits:

0 - write through
USHORT Remaining; Bytes remaining to satisfy request
USHORT Reserved;
USHORT DataLength; Number of data bytes in buffer (>=0)
USHORT DataOffset; Offset to data bytes
ULONG OffsetHigh; Upper 32 bits of offset (only present if WordCount = 14)
USHORT ByteCount; Count of data bytes
UCHAR Pad[]; Pad to SHORT or LONG
UCHAR Data[DataLength]; Data to write

Server Response
===============================

Description
====================================

UCHAR WordCount; Count of parameter words = 6
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT Count; Number of bytes written
USHORT Remaining; Reserved
ULONG Reserved;
USHORT ByteCount; Count of data bytes = 0

A ByteCount of 0 does not truncate the file. Rather a zero length write merely transfers zero bytes of information to the file.
A request such as SMB_COM_WRITE must be used to truncate the file.

If WriteMode has bit0 set in the request and Fid refers to a disk file, the response is not sent from the server until the data is on
stable storage.

If the negotiated dialect is NT LM 0.12 or later, the 14 word format of this SMB may be used to access portions of files
requiring offsets expressed as 64 bits. Otherwise, the OffsetHigh field must be omitted from the request.

The following are the valid AndXCommand values for this SMB:

Leach, Naik expires May, 1998 [Page 53]

INTERNET-DRAFT CIFS/1.0 04/18/21

SMB_COM_READ SMB_COM_READ_ANDX
SMB_COM_LOCK_AND_READ SMB_COM_WRITE_ANDX
SMB_COM_CLOSE

4.2.5.1 Errors

ERRDOS/ERRnoaccess
ERRDOS/ERRbadfid
ERRDOS/ERRlock
ERRDOS/ERRbadaccess
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.6 LOCKING_ANDX: Lock or Unlock Byte Ranges
SMB_COM_LOCKING_ANDX allows both locking and/or unlocking of file range(s).

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 8
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT Fid; File handle
UCHAR LockType; See LockType table below
UCHAR OplockLevel; The new oplock level
ULONG Timeout; Milliseconds to wait for unlock
USHORT NumberOfUnlocks; Num. unlock range structs following
USHORT NumberOfLocks; Num. lock range structs following
USHORT ByteCount; Count of data bytes
LOCKING_ANDX_RANGE Unlocks[]; Unlock ranges
LOCKING_ANDX_RANGE Locks[]; Lock ranges

LockType Flag Name
============================

Value
=====

Description
================================

LOCKING_ANDX_SHARED_LOCK 0x01 Read-only lock
LOCKING_ANDX_OPLOCK_RELEASE 0x02 Oplock break notification
LOCKING_ANDX_CHANGE_LOCKTYPE 0x04 Change lock type
LOCKING_ANDX_CANCEL_LOCK 0x08 Cancel outstanding request
LOCKING_ANDX_LARGE_FILES 0x10 Large file locking format

LOCKING_ANDX_RANGE Format
===
USHORT Pid; PID of process "owning" lock
ULONG Offset; Offset to bytes to [un]lock
ULONG Length; Number of bytes to [un]lock

Leach, Naik expires May, 1998 [Page 54]

INTERNET-DRAFT CIFS/1.0 04/18/21

Large File LOCKING_ANDX_RANGE Format
===
USHORT Pid; PID of process "owning" lock
USHORT Pad; Pad to DWORD align (mbz)
ULONG OffsetHigh; Offset to bytes to [un]lock (high)
ULONG OffsetLow; Offset to bytes to [un]lock (low)
ULONG LengthHigh; Number of bytes to [un]lock (high)
ULONG LengthLow; Number of bytes to [un]lock (low)

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 2
UCHAR AndXCommand; Secondary (X) command; 0xFF = none
UCHAR AndXReserved; Reserved (must be 0)
USHORT AndXOffset; Offset to next command WordCount
USHORT ByteCount; Count of data bytes = 0

Locking is a simple mechanism for excluding other processes read/write access to regions of a file. The locked regions can be
anywhere in the logical file. Locking beyond end-of-file is permitted. Any process using the Fid specified in this request's
Fid has access to the locked bytes, other processes will be denied the locking of the same bytes.

The proper method for using locks is not to rely on being denied read or write access on any of the read/write protocols but
rather to attempt the locking protocol and proceed with the read/write only if the locks succeeded.

Locking a range of bytes will fail if any subranges or overlapping ranges are locked. In other words, if any of the specified
bytes are already locked, the lock will fail.

If NumberOfUnlocks is non-zero, the Unlocks vector contains NumberOfUnlocks elements. Each element requests that a lock
at Offset of Length be released. If NumberOfLocks is nonzero, the Locks vector contains NumberOfLocks elements. Each
element requests the acquisition of a lock at Offset of Length.

Timeout is the maximum amount of time to wait for the byte range(s) specified to become unlocked. A timeout value of 0
indicates that the server should fail immediately if any lock range specified is locked. A timeout value of -1 indicates that the
server should wait as long as it takes for each byte range specified to become unlocked so that it may be again locked by this
protocol. Any other value of smb_timeout specifies the maximum number of milliseconds to wait for all lock range(s)
specified to become available.

If any of the lock ranges timeout because of the area to be locked is already locked (or the lock fails), the other ranges in the
protocol request which were successfully locked as a result of this protocol will be unlocked (either all requested ranges will
be locked when this protocol returns to the client or none).

If LockType has the LOCKING_ANDX_SHARED_LOCK flag set, the lock is specified as a shared lock. Locks for both read and
write (where LOCKING_ANDX_SHARED_LOCK is clear) should be prohibited, but other shared locks should be permitted. If
shared locks can not be supported by a server, the server should map the lock to a lock for both read and write. Closing a file
with locks still in force causes the locks to be released in no defined order.

If LockType has the LOCKING_ANDX_LARGE_FILES flag set and if the negotiated protocol is NT LM 0.12 or later, then the
Locks and Unlocks vectors are in the Large File LOCKING_ANDX_RANGE format. This allows specification of 64 bit offsets
for very large files.

If the one and only member of the Locks vector has the LOCKING_ANDX_CANCEL_LOCK flag set in the LockType field, the
client is requesting the server to cancel a previously requested, but not yet responded to, lock.

Leach, Naik expires May, 1998 [Page 55]

INTERNET-DRAFT CIFS/1.0 04/18/21

If LockType has the LOCKING_ANDX_CHANGE_LOCKTYPE flag set, the client is requesting that the server atomically change
the lock type from a shared lock to an exclusive lock or vice versa. If the server can not do this in an atomic fashion, the
server must reject this request. NT and W95 servers do not support this capability.

Oplocks are described in the "Opportunistic Locks" section elsewhere in this document. A client requests an oplock by setting
the appropriate bit in the SMB_COM_OPEN_ANDX request when the file is being opened in a mode which is not exclusive.
The server responds by setting the appropriate bit in the response SMB indicating whether or not the oplock was granted. By
granting the oplock, the server tells the client the file is currently only being used by this one client process at the current time.
The client can therefore safely do read ahead and write behind as well as local caching of file locks knowing that the file will
not be accessed/changed in any way by another process while the oplock is in effect. The client will be notified when any
other process attempts to open or modify the oplocked file.

When another user attempts to open or otherwise modify the file which a client has oplocked, the server delays the second
attempt and notifies the client via an SMB_LOCKING_ANDX SMB asynchronously sent from the server to the client. This
message has the LOCKING_ANDX_OPLOCK_RELEASE flag set indicating to the client that the oplock is being broken.
OplockLevel indicates the type of oplock the client now owns. If OplockLevel is 0, the client possesses no oplocks on the file
at all, if OplockLevel is 1 the client possesses a Level II oplock. The client is expected to flush any dirty buffers to the server,
submit any file locks and respond to the server with either an SMB_LOCKING_ANDX SMB having the
LOCKING_ANDX_OPLOCK_RELEASE flag set, or with a file close if the file is no longer in use by the client. If the client sends
an SMB_LOCKING_ANDX SMB with the LOCKING_ANDX_OPLOCK_RELEASE flag set and NumberOfLocks is zero, the server
does not send a response. Since a close being sent to the server and break oplock notification from the server could cross on
the wire, if the client gets an oplock notification on a file which it does not have open, that notification should be ignored.

Due to timing, the client could get an "oplock broken" notification in a user's data buffer as a result of this notification
crossing on the wire with a SMB_COM_READ_RAW request. The client must detect this (use length of msg, "FFSMB", MID of -
1 and Command of SMB_COM_LOCKING_ANDX) and honor the "oplock broken" notification as usual. The server must also
note on receipt of an SMB_COM_READ_RAW request that there is an outstanding (unanswered) "oplock broken" notification to
the client and return a zero length response denoting failure of the read raw request. The client should (after responding to the
"oplock broken" notification), use a standard read protocol to redo the read request. This allows a file to actually contain data
matching an "oplock broken" notification and still be read correctly.

The entire message sent and received including the optional second protocol must fit in the negotiated maximum transfer size.
The following are the only valid SMB commands for AndXCommand for SMB_COM_LOCKING_ANDX:

SMB_COM_READ SMB_COM_READ_ANDX
SMB_COM_WRITE SMB_COM_WRITE_ANDX
SMB_COM_FLUSH

4.2.6.1 Errors

ERRDOS/ERRbadfile
ERRDOS/ERRbadfid
ERRDOS/ERRlock
ERRDOS/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.7 SEEK: Seek in File
The seek message is sent to set the current file pointer for Fid.

Leach, Naik expires May, 1998 [Page 56]

INTERNET-DRAFT CIFS/1.0 04/18/21

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 4
USHORT Fid; File handle
USHORT Mode; Seek mode:

0 = from start of file
1 = from current position
2 = from end of file

LONG Offset; Relative offset
USHORT ByteCount; Count of data bytes = 0

 The starting point of the seek is set by Mode:

0 seek from start of file
1 seek from current file pointer
2 seek from end of file

The "current position" reflects the offset plus data length specified in the previous read, write or seek request, and the pointer
set by this command will be replaced by the offset specified in the next read, write or seek command.

Server Response
==================================

Description
=================================

 UCHAR WordCount; Count of parameter words = 2
 ULONG Offset; Offset from start of file
 USHORT ByteCount; Count of data bytes = 0

The response returns the new file pointer in Offset which is expressed as the offset from the start of the file, and may be
beyond the current end of file. An attempt to seek to before the start of file sets the current file pointer to start of the file.

This request should generally only be issued by clients wishing to find the size of a file, since all read and write requests
include the read or write file position as part of the SMB. This request is inappropriate for very large files, as the offsets
specified are only 32 bits. A seek which results in an Offset which can not be expressed in 32 bits returns the least significant.

4.2.7.1 Errors

ERRDOS/ERRbadfid
ERRDOS/ERRnoaccess
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.8 FLUSH: Flush File
The flush SMB is sent to ensure all data and allocation information for the corresponding file has been written to stable
storage. When the Fid has a value -1 (hex FFFF) the server performs a flush for all file handles associated with the client and
Pid. The response is not sent until the writes are complete.

Leach, Naik expires May, 1998 [Page 57]

INTERNET-DRAFT CIFS/1.0 04/18/21

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 1
USHORT Fid; File handle
USHORT ByteCount; Count of data bytes = 0

This client request is probably expensive to perform at the server, since the server's operating system is generally scheduling
disk writes is a way which is optimal for the system's read and write activity integrated over the entire population of clients.
This message from a client "interferes" with the server's ability to optimally schedule the disk activity; clients are discouraged
from overuse of this SMB request.

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

4.2.8.1 Errors

ERRDOS/ERRbadfid
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.9 CLOSE: Close File
The close message is sent to invalidate a file handle for the requesting process. All locks or other resources held by the
requesting process on the file should be released by the server. The requesting process can no longer use Fid for further file
access requests.

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 3
USHORT Fid; File handle
UTIME LastWriteTime Time of last write
USHORT ByteCount; Count of data bytes = 0

If LastWriteTime is 0, the server should allow its local operating system to set the file's times. Otherwise, the server should set
the time to the values requested. Failure to set the times, even if requested by the client in the request message, should not
result in an error response from the server.

If Fid refers to a print spool file, the file should be spooled to the printer at this time.

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

4.2.9.1 Errors

ERRDOS/ERRbadfid
ERRSRV/ERRinvdevice

Leach, Naik expires May, 1998 [Page 58]

INTERNET-DRAFT CIFS/1.0 04/18/21

ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.10 DELETE: Delete File
The delete file message is sent to delete a data file. The appropriate Tid and additional pathname are passed. Read only files
may not be deleted, the read-only attribute must be reset prior to file deletion.

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 1
USHORT SearchAttributes;
USHORT ByteCount; Count of data bytes; min = 2
UCHAR BufferFormat; 0x04
STRING FileName[]; File name

Multiple files may be deleted in response to a single request as SMB_COM_DELETE supports wildcards

SearchAttributes indicates the attributes that the target file(s) must have. If the attribute is zero then only normal files are
deleted. If the system file or hidden attributes are specified then the delete is inclusive -both the specified type(s) of files and
normal files are deleted. Attributes are described in the "Attribute Encoding" section of this document.

If bit0 of the Flags2 field of the SMB header is set, a pattern is passed in, and the file has a long name, then the passed pattern
much match the long file name for the delete to succeed. If bit0 is clear, a pattern is passed in, and the file has a long name,
then the passed pattern must match the file's short name for the deletion to succeed.

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

4.2.10.1 Errors

ERRDOS/ERRbadpath
ERRDOS/ERRbadfile
ERRDOS/ERRnoaccess
ERRHRD/ERRnowrite
ERRSRV/ERRaccess
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.11 RENAME: Rename File
The rename file message is sent to change the name of a file.

Leach, Naik expires May, 1998 [Page 59]

INTERNET-DRAFT CIFS/1.0 04/18/21

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 1
USHORT SearchAttributes; Target file attributes
USHORT ByteCount; Count of data bytes; min = 4
UCHAR BufferFormat1; 0x04
STRING OldFileName[]; Old file name
UCHAR BufferFormat2; 0x04
STRING NewFileName[]; New file name

Files OldFileName must exist and NewFileName must not. Both pathnames must be relative to the Tid specified in the
request. Open files may be renamed.

Multiple files may be renamed in response to a single request as Rename File supports wildcards in the file name (last
component of the pathname).

SearchAttributes indicates the attributes that the target file(s) must have. If SearchAttributes is zero then only normal files are
renamed. If the system file or hidden attributes are specified then the rename is inclusive -both the specified type(s) of files
and normal files are renamed. The encoding of SearchAttributes is described in section 3.11 - File Attribute Encoding.

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

4.2.11.1 Errors

ERRDOS/ERRbadpath
ERRDOS/ERRbadfile
ERRDOS/ERRnoaccess
ERRDOS/ERRdiffdevice
ERRHRD/ERRnowrite
ERRSRV/ERRaccess
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid

4.2.12 MOVE: Rename File
The source file is copied to the destination and the source is subsequently deleted.

Leach, Naik expires May, 1998 [Page 60]

INTERNET-DRAFT CIFS/1.0 04/18/21

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 3
USHORT Tid2; Second (target) file id
USHORT OpenFunction; what to do if target file exists
USHORT Flags; Flags to control move operations:

0 - target must be a file
1 - target must be a directory
2 - reserved (must be 0)
3 - reserved (must be 0)
4 - verify all writes

USHORT ByteCount; Count of data bytes; min = 2
UCHAR Format1; 0x04
STRING OldFileName[]; Old file name
UCHAR FormatNew; 0x04
STRING NewFileName[]; New file name

OldFileName is copied to NewFileName, then OldFileName is deleted. Both OldFileName and NewFileName must refer to
paths on the same server. NewFileName can refer to either a file or a directory. All file components except the last must
exist; directories will not be created.

NewFileName can be required to be a file or a directory by the Flags field.

The Tid in the header is associated with the source while Tid2 is associated with the
destination. These fields may contain the same or differing valid values. Tid2 can be set to
-1 indicating that this is to be the same Tid as in the SMB header. This allows use of the
move protocol with SMB_TREE_CONNECT_ANDX.

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 1
USHORT Count; Number of files moved
USHORT ByteCount; Count of data bytes; min = 0
UCHAR ErrorFileFormat; 0x04 (only if error)
STRING ErrorFileName[]; Pathname of file where error occurred

The source path must refer to an existing file or files. Wildcards are permitted. Source files specified by wildcards are
processed until an error is encountered. If an error is encountered, the expanded name of the file is returned in ErrorFileName.
Wildcards are not permitted in NewFileName.

OpenFunction controls what should happen if the destination file exists. If (OpenFunction & 0x30) == 0, the operation should
fail if the destination exists. If (OpenFunction & 0x30) == 0x20, the destination file should be overwritten.

4.2.12.1 Errors

ERRDOS/ERRfilexists
ERRDOS/ERRbadfile
ERRDOS/ERRnoaccess
ERRDOS/ERRnofiles
ERRDOS/ERRbadshare
ERRHRD/ERRnowrite

Leach, Naik expires May, 1998 [Page 61]

INTERNET-DRAFT CIFS/1.0 04/18/21

ERRSRV/ERRnoaccess
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid
ERRSRV/ERRnosupport
ERRSRV/ERRaccess

4.2.13 COPY: Copy File
Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 3
USHORT Tid2; Second (target) path TID
USHORT OpenFunction; What to do if target file exists
USHORT Flags; Flags to control copy operation:

bit 0 - target must be a file
bit 1 - target must be a dir.
bit 2 - copy target mode:
0 = binary, 1 = ASCII
bit 3 - copy source mode:
0 = binary, 1 = ASCII
bit 4 - verify all writes
bit 5 - tree copy

USHORT ByteCount; Count of data bytes; min = 2
UCHAR SourceFileNameFormat; 0x04
STRING SourceFileName; Pathname of source file
UCHAR TargetFileNameFormat; 0x04
STRING TargetFileName; Pathname of target file

The file at SourceName is copied to TargetFileName, both of which must refer to paths on the same server.

The Tid in the header is associated with the source while Tid2 is associated with the
destination. These fields may contain the same or differing valid values. Tid2 can be set to
-1 indicating that this is to be the same Tid as in the SMB header. This allows use of the
move protocol with SMB_TREE_CONNECT_ANDX.

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 1
USHORT Count; Number of files copied
USHORT ByteCount; Count of data bytes; min = 0
UCHAR ErrorFileFormat; 0x04 (only if error)
STRING ErrorFileName;

The source path must refer to an existing file or files. Wildcards are permitted. Source files specified by wildcards are
processed until an error is encountered. If an error is encountered, the expanded name of the file is returned in ErrorFileName.
Wildcards are not permitted in TargetFileName. TargetFileName can refer to either a file or a directory.

The destination can be required to be a file or a directory by the bits in Flags. If neither bit0 nor bit1 are set, the destination
may be either a file or a directory. Flags also controls the copy mode. In a binary copy for the source, the copy stops the first

Leach, Naik expires May, 1998 [Page 62]

INTERNET-DRAFT CIFS/1.0 04/18/21

time an EOF (control-Z) is encountered. In a binary copy for the target, the server must make sure that there is exactly one
EOF in the target file and that it is the last character of the file.

If the destination is a file and the source contains wildcards, the destination file will either be truncated or appended to at the
start of the operation depending on bits in OpenFunction (see section 3.7). Subsequent files will then be appended to the file.

If the negotiated dialect is LM1.2X002 or later, bit5 of Flags is used to specify a tree copy on the remote server. When this
option is selected the destination must not be an existing file and the source mode must be binary. A request with bit5 set and
either bit0 or bit3 set is therefore an error. When the tree copy mode is selected, the Count field in the server response is
undefined.

4.2.13.1 Errors

ERRDOS/ERRfilexists
ERRDOS/ERRshare
ERRDOS/ERRnofids
ERRDOS/ERRbadfile
ERRDOS/ERRnoaccess
ERRDOS/ERRnofiles
ERRDOS/ERRbadshare
ERRSRV/ERRnoaccess
ERRSRV/ERRinvdevice
ERRSRV/ERRinvid
ERRSRV/ERRbaduid
ERRSRV/ERRaccess

4.2.14 TRANS2_QUERY_PATH_INFORMATION: Get File
Attributes given Path
This request is used to get information about a specific file or subdirectory.

Client Request
==========================

Value
===

WordCount 15
MaxSetupCount 0
SetupCount 1
Setup[0] TRANS2_QUERY_PATH_INFORMATION

Parameter Block Encoding
==========================

Description
===

USHORT InformationLevel; Level of information requested
ULONG Reserved; Must be zero
STRING FileName; File or directory name

The following InformationLevels may be requested:

Leach, Naik expires May, 1998 [Page 63]

INTERNET-DRAFT CIFS/1.0 04/18/21

Information Level

================================

Value

=====
SMB_INFO_STANDARD 1
SMB_INFO_QUERY_EA_SIZE 2
SMB_INFO_QUERY_EAS_FROM_LIST 3
SMB_INFO_QUERY_ALL_EAS 4
SMB_INFO_IS_NAME_VALID 6
SMB_QUERY_FILE_BASIC_INFO 0x101
SMB_QUERY_FILE_STANDARD_INFO 0x102
SMB_QUERY_FILE_EA_INFO 0x103
SMB_QUERY_FILE_NAME_INFO 0x104
SMB_QUERY_FILE_ALL_INFO 0x107
SMB_QUERY_FILE_ALT_NAME_INFO 0x108
SMB_QUERY_FILE_STREAM_INFO 0x109
SMB_QUERY_FILE_COMPRESSION_INFO 0x10B

The requested information is placed in the Data portion of the transaction response. For the information levels greater than
0x100, the transaction response has 1 parameter word which should be ignored by the client.

The following sections describe the InformationLevel dependent encoding of the data part of the transaction response.

4.2.14.1 SMB_INFO_STANDARD & SMB_INFO_QUERY_EA_SIZE

Data Block Encoding
===============================

Description
====================================

SMB_DATE CreationDate; Date when file was created
SMB_TIME CreationTime; Time when file was created
SMB_DATE LastAccessDate; Date of last file access
SMB_TIME LastAccessTime; Time of last file access
SMB_DATE LastWriteDate; Date of last write to the file
SMB_TIME LastWriteTime; Time of last write to the file
ULONG DataSize; File Size
ULONG AllocationSize; Size of filesystem allocation unit
USHORT Attributes; File Attributes
ULONG EaSize; Size of file's EA information (SMB_INFO_QUERY_EA_SIZE)

4.2.14.2 SMB_INFO_QUERY_EAS_FROM_LIST &
SMB_INFO_QUERY_ALL_EAS

Response Field
====================

Value
===

MaxDataCount Length of EAlist found (minimum value is 4)
Parameter Block Encoding
====================

Description
===

USHORT EaErrorOffset Offset into EAList of EA error
Data Block Encoding
====================

Description
===

ULONG ListLength; Length of the remaining data
UCHAR EaList[] The extended attributes list

Leach, Naik expires May, 1998 [Page 64]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.2.14.3 SMB_INFO_IS_NAME_VALID

This requests checks to see if the name of the file contained in the request's Data field has a valid path syntax. No parameters
or data are returned on this information request. An error is returned if the syntax of the name is incorrect. Success indicates
the server accepts the path syntax, but it does not ensure the file or directory actually exists.

4.2.14.4 SMB_QUERY_FILE_BASIC_INFO

Data Block Encoding
===============================

Description
====================================

LARGE_INTEGER CreationTime; Time when file was created
LARGE_INTEGER LastAccessTime; Time of last file access
LARGE_INTEGER LastWriteTime; Time of last write to the file
LARGE_INTEGER ChangeTime Time when file was last changed
USHORT Attributes; File Attributes

4.2.14.5 SMB_QUERY_FILE_STANDARD_INFO

Data Block Encoding
===============================

Description
====================================

LARGE_INTEGER AllocationSize Allocated size of the file in number of bytes
LARGE_INTEGER EndofFile; Offset to the first free byte in the file
ULONG NumberOfLinks Number of hard links to the file
BOOLEAN DeletePending Indicates whether the file is marked for deletion
BOOLEAN Directory Indicates whether the file is a directory

4.2.14.6 SMB_QUERY_FILE_EA_INFO

Data Block Encoding
===============================

Description
====================================

ULONG EASize Size of the file’s extended attributes in number of bytes

4.2.14.7 SMB_QUERY_FILE_NAME_INFO

Data Block Encoding
===============================

Description
====================================

ULONG FileNameLength Length of the file name in number of bytes
STRING FileName Name of the file

Leach, Naik expires May, 1998 [Page 65]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.2.14.8 SMB_QUERY_FILE_ALL_INFO

Data Block Encoding
===============================

Description
====================================

LARGE_INTEGER CreationTime; Time when file was created
LARGE_INTEGER LastAccessTime; Time of last file access
LARGE_INTEGER LastWriteTime; Time of last write to the file
LARGE_INTEGER ChangeTime Time when file was last changed
USHORT Attributes; File Attributes
LARGE_INTEGER AllocationSize Allocated size of the file in number of bytes
LARGE_INTEGER EndofFile; Offset to the first free byte in the file
ULONG NumberOfLinks Number of hard links to the file
BOOLEAN DeletePending Indicates whether the file is marked for deletion
BOOLEAN Directory Indicates whether the file is a directory
LARGE_INTEGER Index Number A file system unique identifier
ULONG EASize Size of the file’s extended attributes in number of bytes
ULONG AccessFlags Access that a caller has to the file; Possible values and

meanings are specified below
LARGE_INTEGER Index Number A file system unique identifier
LARGE_INTEGER CurrentByteOffset Current byte offset within the file
ULONG Mode Current Open mode of the file handle to the file; possible

values and meanings are detailed below
ULONG AlignmentRequirement Buffer Alignment required by device; possible values detailed

below
ULONG FileNameLength Length of the file name in number of bytes
STRING FileName Name of the file

The AccessFlags specifies the access permissions a caller has to the file and can have any suitable
combination of the following values:

 Value Meaning
FILE_READ_DATA 0x00000001 Data can be read from the file
FILE_WRITE_DATA 0x00000002 Data can be written to the file
FILE_APPEND_DATA 0x00000004 Data can be appended to the file
FILE_READ_EA 0x00000008 Extended attributes associated with the file can be read
FILE_WRITE_EA 0x00000010 Extended attributes associated with the file can be written
FILE_EXECUTE 0x00000020 Data can be read into memory from the file using system

paging I/O
FILE_READ_ATTRIBUTES 0x00000080 Attributes associated with the file can be read
FILE_WRITE_ATTRIBUTES 0x00000100 Attributes associated with the file can be written
DELETE 0x00010000 The file can be deleted
READ_CONTROL 0x00020000 The access control list and ownership associated with the

file can be read
WRITE_DAC 0x00040000 The access control list and ownership associated with the

file can be written.
WRITE_OWNER 0x00080000 Ownership information associated with the file can be

written
SYNCHRONIZE 0x00100000 The file handle can waited on to synchronize with the

completion of an input/output request

Leach, Naik expires May, 1998 [Page 66]

INTERNET-DRAFT CIFS/1.0 04/18/21

The Mode field specifies the mode in which the file is currently opened. The possible values may be a suitable and logical
combination of the following:

Value Meaning
FILE_WRITE_THROUGH 0x00000002 File is opened in mode where data is written

to file before the driver completes a write
request

FILE_SEQUENTIAL_ONLY 0x00000004 All access to the file is sequential
FILE_SYNCHRONOUS_IO_ALERT 0x00000010 All operations on the file are performed

synchronously
FILE_SYNCHRONOUS_IO_NONALERT 0x00000020 All operations on the file are to be

performed synchronously. Waits in the
system to synchronize I/O queuing and
completion are not subject to alerts.

The AlignmentRequirement field specifies buffer alignment required by the device and can have any one
of the following values:

 Value Meaning
FILE_BYTE_ALIGNMENT 0x00000000 The buffer needs to be aligned on a byte boundary
FILE_WORD_ALIGNMENT 0x00000001 The buffer needs to be aligned on a word boundary
FILE_LONG_ALIGNMENT 0x00000003 The buffer needs to be aligned on a 4 byte boundary
FILE_QUAD_ALIGNMENT 0x00000007 The buffer needs to be aligned on an 8 byte

boundary
FILE_OCTA_ALIGNMENT 0x0000000f The buffer needs to be aligned on a 16 byte

boundary
FILE_32_BYTE_ALIGNMENT 0x0000001f The buffer needs to be aligned on a 32 byte

boundary
FILE_64_BYTE_ALIGNMENT 0x0000003f The buffer needs to be aligned on a 64 byte

boundary
FILE_128_BYTE_ALIGNMENT 0x0000007f The buffer needs to be aligned on a 128 byte

boundary
FILE_256_BYTE_ALIGNMENT 0x000000ff The buffer needs to be aligned on a 256 byte

boundary
FILE_512_BYTE_ALIGNMENT 0x000001ff The buffer needs to be aligned on a 512 byte

boundary

4.2.14.9 SMB_QUERY_FILE_ALT_NAME_INFO

Data Block Encoding
========================

Description
====================================

ULONG FileNameLength Length of the file name in number of bytes
STRING FileName Name of the file

Leach, Naik expires May, 1998 [Page 67]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.2.14.10 SMB_QUERY_FILE_STREAM_INFO

Data Block Encoding
===============================

Description
====================================

ULONG NextEntryOffset Offset to the next entry (in bytes)
ULONG StreamNameLength Length of the stream name in number of bytes
LARGE_INTEGER StreamSize Size of the stream in number of bytes
LARGE_INTEGER StreamAllocationSize Allocated size of the stream in number of bytes
STRING FileName Name of the stream

4.2.14.11 SMB_QUERY_FILE_COMPRESSION_INFO

Data Block Encoding
===============================

Description
====================================

LARGE_INTEGER CompressedFileSize Size of the compressed file in number of bytes
USHORT CompressionFormat A constant signifying the compression algorithm used. Possible

values are:
0 - There is no compression
2- Compression Format is LZNT

UCHAR CompressionUnitShift
UCHAR ChunkShift stored in log2 format. 1<<ChunkShift = ChunkSizeInBytes
UCHAR ClusterShift indicates how much space must be saved to successfully

compress a compression unit
UCHAR Reserved[3]

4.2.15 TRANS2_QUERY_FILE_INFORMATION: Get File
Attributes Given FID
This request is used to get information about a specific file or subdirectory given a handle to it.

Client Request
==========================

Value
==

WordCount 15
MaxSetupCount 0
SetupCount 1
Setup[0] TRANS2_QUERY_FILE_INFORMATION
Parameter Block Encoding
==========================

Description
==

USHORT Fid; Handle of file for request
USHORT InformationLevel; Level of information requested

The available information levels, as well as the format of the response are identical to TRANS2_QUERY_PATH_INFORMATION.

Leach, Naik expires May, 1998 [Page 68]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.2.16 TRANS2_SET_PATH_INFORMATION: Set File Attributes
given Path
This request is used to set information about a specific file or subdirectory.

Client Request
==========================

Value
===

WordCount 15
MaxSetupCount 0
SetupCount 1
Setup[0] TRANS2_SET_PATH_INFORMATION
Parameter Block Encoding
==========================

Description
===

USHORT InformationLevel; Level of information to set
ULONG Reserved; Must be zero
STRING FileName; File or directory name

The following Information Levels may be set:

Information Level
==========================

Value
===

SMB_INFO_STANDARD 1
SMB_INFO_QUERY_EA_SIZE 2
SMB_INFO_QUERY_ALL_EAS 4

The response formats are:

4.2.16.1 SMB_INFO_STANDARD & SMB_INFO_QUERY_EA_SIZE

Parameter Block Encoding
==================================

Description
=================================

USHORT Reserved 0
Data Block Encoding
==================================

Description
=================================

SMB_DATE CreationDate; Date when file was created
SMB_TIME CreationTime; Time when file was created
SMB_DATE LastAccessDate; Date of last file access
SMB_TIME LastAccessTime; Time of last file access
SMB_DATE LastWriteDate; Date of last write to the file
SMB_TIME LastWriteTime; Time of last write to the file
ULONG DataSize; File Size
ULONG AllocationSize; Size of filesystem allocation unit
USHORT Attributes; File Attributes
ULONG EaSize; Size of file's EA information

(SMB_INFO_QUERY_EA_SIZE)

Leach, Naik expires May, 1998 [Page 69]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.2.16.2 SMB_INFO_QUERY_ALL_EAS

Response Field
====================

Value
===

MaxDataCount Length of FEAlist found (minimum value is 4)
Parameter Block Encoding
====================

Description
===

USHORT EaErrorOffset Offset into EAList of EA error
Data Block Encoding
====================

Description
===

ULONG ListLength; Length of the remaining data
UCHAR EaList[] The extended attributes list

4.2.17 TRANS2_SET_FILE_INFORMATION: Set File Attributes
Given FID
This request is used to set information about a specific file or subdirectory given a handle to the file or subdirectory.

Client Request
==========================

Value
==

WordCount 15
MaxSetupCount 0
SetupCount 1
Setup[0] TRANS2_SET_FILE_INFORMATION
Parameter Block Encoding
==========================

Description
==

USHORT Fid; Handle of file for request
USHORT InformationLevel; Level of information requested
USHORT Reserved; Ignored by the server

The following InformationLevels may be set:

Information Level
================================

Value
=====

SMB_INFO_STANDARD 1
SMB_INFO_QUERY_EA_SIZE 2
SMB_SET_FILE_BASIC_INFO 0x101
SMB_SET_FILE_DISPOSITION_INFO 0x102
SMB_SET_FILE_ALLOCATION_INFO 0x103
SMB_SET_FILE_END_OF_FILE_INFO 0x104

The two levels below 0x101 are as described in the NT_SET_PATH_INFORMATION transaction. The requested information is
placed in the Data portion of the transaction response. For the information levels greater than 0x100, the transaction response
has 1 parameter word which should be ignored by the client.

Leach, Naik expires May, 1998 [Page 70]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.2.17.1 SMB_FILE_DISPOSITION_INFO

Response Field
====================

Value
===

BOOLEAN FileIsDeleted A boolean which is TRUE if the file is marked for deletion

4.2.17.2 SMB_FILE_ALLOCATION_INFO

Response Field
====================

Value
===

LARGE_INTEGER File Allocation size in number of bytes

4.2.17.3 SMB_FILE_END_OF_FILE_INFO

Response Field
====================

Value
===

LARGE_INTEGER The total number of bytes that need to be traversed from the beginning of the file
in order to locate the end of the file

4.3 Directory Requests

4.3.1 TRANS2_CREATE_DIRECTORY: Create Directory (with
optional EAs)
This requests the server to create a directory relative to Tid in the SMB header, optionally assigning extended attributes to it.

Client Request
==========================

Value
===

WordCount 15
MaxSetupCount 0
SetupCount 1
Setup[0] TRANS2_CREATE_DIRECTORY
Parameter Block Encoding
==========================

Description
===

ULONG Reserved; Reserved--must be zero
STRING Name[]; Directory name to create
UCHAR Data[]; Optional FEAList for the new directory

Response Parameter Block
==========================

Description
===

USHORT EaErrorOffset Offset into FEAList of first error which occurred while setting EAs

Leach, Naik expires May, 1998 [Page 71]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.3.2 DELETE_DIRECTORY: Delete Directory
The delete directory message is sent to delete an empty directory. The appropriate Tid and additional pathname are passed.
The directory must be empty for it to be deleted.

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes; min = 2
UCHAR BufferFormat; 0x04
STRING DirectoryName[]; Directory name

The directory to be deleted cannot be the root of the share specified by Tid.

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

4.3.3 CHECK_DIRECTORY: Check Directory
This SMB is used to verify that a path exists and is a directory. No error is returned if the given path exists and the client has
read access to it. Client machines which maintain a concept of a "working directory" will find this useful to verify the validity
of a "change working directory" command. Note that the servers do NOT have a concept of working directory for a particular
client. The client must always supply full pathnames relative to the Tid in the SMB header.

Client Request
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes; min = 2
UCHAR BufferFormat; 0x04
STRING DirectoryPath[]; Directory path

Server Response
==================================

Description
=================================

UCHAR WordCount; Count of parameter words = 0
USHORT ByteCount; Count of data bytes = 0

DOS clients, in particular, depend on the SMB_ERR_BAD_PATH return code if the directory is not found.

4.3.3.1 Errors

ERRDOS/ERRbadfile
ERRDOS/ERRbadpath
ERRDOS/ERRnoaccess
ERRHRD/ERRdata
ERRSRV/ERRinvid
ERRSRV/ERRbaduid
ERRSRV/ERRaccess

Leach, Naik expires May, 1998 [Page 72]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.3.4 TRANS2_FIND_FIRST2: Search Directory using
Wildcards

Client Request
============================

Value
==================================

WordCount 15
TotalDataCount Total size of extended attribute list
SetupCount 1
Setup[0] TRANS2_FIND_FIRST2

Parameter Block Encoding
==================================

Description
==================================

 USHORT SearchAttributes;
USHORT SearchCount; Maximum number of entries to return
USHORT Flags; Additional information:
 Bit 0 - close search after this request

Bit 1 - close search if end of search reached
Bit 2 - return resume keys for each entry found
Bit 3 - continue search from previous ending place
Bit 4 - find with backup intent

USHORT InformationLevel; See below
ULONG SearchStorageType;
STRING FileName; Pattern for the search
UCHAR Data[TotalDataCount] FEAList if InformationLevel is QUERY_EAS_FROM_LIST

Response Parameter Block
============================

Description
==================================

USHORT Sid; Search handle
USHORT SearchCount; Number of entries returned
USHORT EndOfSearch; Was last entry returned?
USHORT EaErrorOffset; Offset into EA list if EA error
USHORT LastNameOffset; Offset into data to file name of last entry, if server needs it to resume

search; else 0
UCHAR Data[TotalDataCount] Level dependent info about the matches found in the search

This request allows the client to search for the file(s) which match the file specification. The search can be continued if
necessary with TRANS2_FIND_NEXT2. There are numerous levels of information which may be obtained for the returned
files, the desired level is specified in the InformationLevel field of the request.

InformationLevel Name
=================================

Value
================

SMB_INFO_STANDARD 1
SMB_INFO_QUERY_EA_SIZE 2
SMB_INFO_QUERY_EAS_FROM_LIST 3
SMB_FIND_FILE_DIRECTORY_INFO 0x101
SMB_FIND_FILE_FULL_DIRECTORY_INFO 0x102
SMB_FIND_FILE_NAMES_INFO 0x103
SMB_FIND_FILE_BOTH_DIRECTORY_INFO 0x104

Leach, Naik expires May, 1998 [Page 73]

INTERNET-DRAFT CIFS/1.0 04/18/21

The following sections detail the data returned for each InformationLevel. The requested information is placed in the Data
portion of the transaction response. Note: a client which does not support long names can only request
SMB_INFO_STANDARD.

A four-byte resume key precedes each data item (described below) if bit 2 in the Flags field is set, i.e. if the request indicates
the server should return resume keys.

4.3.4.1 SMB_INFO_STANDARD

Response Field
================================

Description
==================================

SMB_DATE CreationDate; Date when file was created
SMB_TIME CreationTime; Time when file was created
SMB_DATE LastAccessDate; Date of last file access
SMB_TIME LastAccessTime; Time of last file access
SMB_DATE LastWriteDate; Date of last write to the file
SMB_TIME LastWriteTime; Time of last write to the file
ULONG DataSize; File Size
ULONG AllocationSize; Size of filesystem allocation unit
USHORT Attributes; File Attributes
UCHAR FileNameLength; Length of filename in bytes
STRING FileName; Name of found file

4.3.4.2 SMB_INFO_QUERY_EA_SIZE

Response Field
=================================

Description
==================================

SMB_DATE CreationDate; Date when file was created
 SMB_TIME CreationTime; Time when file was created
 SMB_DATE LastAccessDate; Date of last file access
 SMB_TIME LastAccessTime; Time of last file access
 SMB_DATE LastWriteDate; Date of last write to the file
 SMB_TIME LastWriteTime; Time of last write to the file
 ULONG DataSize; File Size
 ULONG AllocationSize; Size of filesystem allocation unit
 USHORT Attributes; File Attributes
 ULONG EaSize; Size of file's EA information
 UCHAR FileNameLength; Length of filename in bytes
 STRING FileName; Name of found file

4.3.4.3 SMB_INFO_QUERY_EAS_FROM_LIST

This request returns the same information as SMB_INFO_QUERY_EA_SIZE, but only for files which have an EA list which
match the EA information in the Data part of the request.

Leach, Naik expires May, 1998 [Page 74]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.3.4.4 SMB_FIND_FILE_DIRECTORY_INFO

Response Field
=================================

Description
==================================

ULONG NextEntryOffset; Offset from this structure to beginning of next one
ULONG FileIndex;
LARGE_INTEGER CreationTime; file creation time
LARGE_INTEGER LastAccessTime; last access time
LARGE_INTEGER LastWriteTime; last write time
LARGE_INTEGER ChangeTime; last attribute change time
LARGE_INTEGER EndOfFile; file size
LARGE_INTEGER AllocationSize; size of filesystem allocation information
ULONG ExtFileAttributes; Extended file attributes (see section 3.12)
ULONG FileNameLength; Length of filename in bytes
STRING FileName; Name of the file

4.3.4.5 SMB_FIND_FILE_FULL_DIRECTORY_INFO

Response Field
=================================

Description
==================================

ULONG NextEntryOffset; Offset from this structure to beginning of next one
ULONG FileIndex;
LARGE_INTEGER CreationTime; file creation time
LARGE_INTEGER LastAccessTime; last access time
LARGE_INTEGER LastWriteTime; last write time
LARGE_INTEGER ChangeTime; last attribute change time
LARGE_INTEGER EndOfFile; file size
LARGE_INTEGER AllocationSize; size of filesystem allocation information
ULONG ExtFileAttributes; Extended file attributes (see section 3.12)
ULONG FileNameLength; Length of filename in bytes
ULONG EaSize; Size of file's extended attributes
STRING FileName; Name of the file

Leach, Naik expires May, 1998 [Page 75]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.3.4.6 SMB_FIND_FILE_BOTH_DIRECTORY_INFO

Response Field
=================================

Description
==================================

ULONG NextEntryOffset; Offset from this structure to beginning of next one
ULONG FileIndex;
LARGE_INTEGER CreationTime; file creation time
LARGE_INTEGER LastAccessTime; last access time
LARGE_INTEGER LastWriteTime; last write time
LARGE_INTEGER ChangeTime; last attribute change time
LARGE_INTEGER EndOfFile; file size
LARGE_INTEGER AllocationSize; size of filesystem allocation information
ULONG ExtFileAttributes; Extended file attributes (see section 3.12)
ULONG FileNameLength; Length of FileName in bytes
ULONG EaSize; Size of file's extended attributes
UCHAR ShortNameLength; Length of file's short name in bytes
UCHAR Reserved
WCHAR ShortName[12]; File's 8.3 conformant name in Unicode
STRING FileName; Files full length name

4.3.4.7 SMB_FIND_FILE_NAMES_INFO

Response Field
=================================

Description
==================================

ULONG NextEntryOffset; Offset from this structure to beginning of next one
ULONG FileIndex;
ULONG FileNameLength; Length of FileName in bytes
STRING FileName; Files full length name

Leach, Naik expires May, 1998 [Page 76]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.3.5 TRANS2_FIND_NEXT2: Resume Directory Search Using
Wildcards
This request resumes a search which was begun with a previous TRANS2_FIND_FIRST2 request.

Client Request
==================================

Value
=================================

WordCount 15
SetupCount 1
Setup[0] TRANS2_FIND_NEXT2
Parameter Block Encoding
==================================

Description
=================================

USHORT Sid; Search handle
USHORT SearchCount; Maximum number of entries to return
USHORT InformationLevel; Levels described in TRANS2_FIND_FIRST2 request
ULONG ResumeKey; Value returned by previous find2 call
USHORT Flags; Additional information: bit set-

0 - close search after this request
1 - close search if end of search reached
2 - return resume keys for each entry found
3 - resume/continue from previous ending place
4 - find with backup intent

STRING FileName; Resume file name

Sid is the value returned by a previous successful TRANS2_FIND_FIRST2 call. If Bit3 of Flags is set, then FileName may be
the NULL string, since the search is continued from the previous TRANS2_FIND request. Otherwise, FileName must not be
more than 256 characters long.

Response Field
==================================

Description
=================================

USHORT SearchCount; Number of entries returned
USHORT EndOfSearch; Was last entry returned?
USHORT EaErrorOffset; Offset into EA list if EA error
USHORT LastNameOffset; Offset into data to file name of last entry, if server needs it

to resume search; else 0
UCHAR Data[TotalDataCount] Level dependent info about the matches found in the

search

4.3.6 FIND_CLOSE2: Close Directory Search
This SMB closes a search started by the TRANS2_FIND_FIRST2 transaction request.

Client Request
==================================

Description
==================================

UCHAR WordCount; Count of parameter words = 1
USHORT Sid; Find handle
USHORT ByteCount; Count of data bytes = 0

Leach, Naik expires May, 1998 [Page 77]

INTERNET-DRAFT CIFS/1.0 04/18/21

Server Response
==================================

Description
==================================

UCHAR WordCount; Count of parameter words = 0
 USHORT ByteCount; Count of data bytes = 0

4.3.6.1 Errors

ERRDOS/ERRbadfid
ERRSRV/ERRinvid
ERRSRV/ERRaccess

4.3.7 NT_TRANSACT_NOTIFY_CHANGE: Request Change
Notification

Client Setup Words
==================================

Description
=================================

ULONG CompletionFilter; Specifies operation to monitor
USHORT Fid; Fid of directory to monitor
BOOLEAN WatchTree; TRUE = watch all subdirectories too
UCHAR Reserved; MBZ

This command notifies the client when the directory specified by Fid is modified. It also returns the name(s) of the file(s) that
changed. The command completes once the directory has been modified based on the supplied CompletionFilter. The
command is a "single shot" and therefore needs to be reissued to watch for more directory changes.

A directory file must be opened before this command may be used. Once the directory is open, this command may be used to
begin watching files and subdirectories in the specified directory for changes. The first time the command is issued, the
MaxParameterCount field in the transact header determines the size of the buffer that will be used at the server to buffer
directory change information between issuances of the notify change commands.

When a change that is in the CompletionFilter is made to the directory, the command completes. The names of the files that
have changed since the last time the command was issued are returned to the client. The ParameterCount field of the response
indicates the number of bytes that are being returned. If too many files have changed since the last time the command was
issued, then zero bytes are returned and an alternate status code is returned in the Status field of the response.

The CompletionFilter is a mask created as the sum of any of the following flags:

FILE_NOTIFY_CHANGE_FILE_NAME 0x00000001
FILE_NOTIFY_CHANGE_DIR_NAME 0x00000002
FILE_NOTIFY_CHANGE_NAME 0x00000003
FILE_NOTIFY_CHANGE_ATTRIBUTES 0x00000004
FILE_NOTIFY_CHANGE_SIZE 0x00000008
FILE_NOTIFY_CHANGE_LAST_WRITE 0x00000010
FILE_NOTIFY_CHANGE_LAST_ACCESS 0x00000020
FILE_NOTIFY_CHANGE_CREATION 0x00000040
FILE_NOTIFY_CHANGE_EA 0x00000080
FILE_NOTIFY_CHANGE_SECURITY 0x00000100
FILE_NOTIFY_CHANGE_STREAM_NAME 0x00000200
FILE_NOTIFY_CHANGE_STREAM_SIZE 0x00000400
FILE_NOTIFY_CHANGE_STREAM_WRITE 0x00000800

Leach, Naik expires May, 1998 [Page 78]

INTERNET-DRAFT CIFS/1.0 04/18/21

Server Response
==================================

Description
==================================

ParameterCount # of bytes of change data
Parameters[ParameterCount] FILE_NOTIFY_INFORMATION structures

The response contains FILE_NOTIFY_INFORMATION structures, as defined below. The NextEntryOffset field of the
structure specifies the offset, in bytes, from the start of the current entry to the next entry in the list. If this is the last entry in
the list, this field is zero. Each entry in the list must be longword aligned, so NextEntryOffset must be a multiple of four.

typedef struct {
 ULONG NextEntryOffset;
 ULONG Action;
 ULONG FileNameLength;
 WCHAR FileName[1];
} FILE_NOTIFY_INFORMATION;

Where Action describes what happened to the file named FileName:

FILE_ACTION_ADDED 0x00000001
FILE_ACTION_REMOVED 0x00000002
FILE_ACTION_MODIFIED 0x00000003
FILE_ACTION_RENAMED_OLD_NAME 0x00000004
FILE_ACTION_RENAMED_NEW_NAME 0x00000005
FILE_ACTION_ADDED_STREAM 0x00000006
FILE_ACTION_REMOVED_STREAM 0x00000007
FILE_ACTION_MODIFIED_STREAM 0x00000008

4.4 DFS Operations

4.4.1 TRANS2_GET_DFS_REFERRAL: Retrieve Distributed
Filesystem Referral
The client sends this request to ask the server to convert RequestFilename into an alternate name for this file. This request can
be sent to the server if the server response to the NEGOTIATE SMB included the CAP_DFS capability. The TID of the request
must be IPC$. Bit15 of Flags2 in the SMB header must be set, indicating this is a UNICODE request.

Leach, Naik expires May, 1998 [Page 79]

INTERNET-DRAFT CIFS/1.0 04/18/21

Client Request
==========================

Description
===

WordCount 15
TotalDataCount 0

SetupCount 1
Setup[0] TRANS2_GET_DFS_REFERRAL

Parameter Block Encoding
==========================

Description
===

USHORT MaxReferralLevel Latest referral version number understood
WCHAR RequestFileName; DFS name of file for which referral is sought

Response Data Block
==========================

Description
===

USHORT PathConsumed; Number of RequestFilename bytes client
USHORT NumberOfReferrals; Number of referrals contained in this response
USHORT Flags; bit0 - The servers in Referrals are capable of fielding

TRANS2_GET_DFS_REFERRAL.
bit1 - The servers in Referrals should hold the storage for the requested
file.

REFERRAL_LIST Referrals[] Set of referrals for this file
UNICODESTRINGE Strings Used to hold the strings pointed to by Version 2 Referrals in

REFERRALS.

The server response is a list of Referrals which inform the client where it should resubmit the request to obtain access to the
file. PathConsumed in the response indicates to the client how many characters of RequestFilename have been consumed by
the server. When the client chooses one of the referrals to use for file access, the client may need to strip the leading
PathConsumed characters from the front of RequestFileName before submitting the name to the target server. Whether or not
the pathname should be trimmed is indicated by the individual referral as detailed below.

Flags indicates how this referral should be treated. If bit0 is clear, any entity in the Referrals list holds the storage for
RequestFileName. If bit0 is set, any entity in the Referrals list has further referral information for RequestFilename – a
TRANS2_GET_DFS_REFERRAL request should be sent to an entity in the Referrals list for further resolution.

The format of an individual referral contains version and length information allowing the client to skip referrals it does not
understand. MaxReferralLevel indicates to the server the latest version of referral which the client can digest. Since each
referral has a uniform element, MaxReferralLevel is advisory only. Each element in Referrals has this envelope:

REFERRAL_LIST element
==
USHORT VersionNumber Version of this referral element
USHORT ReferralSize Size of this referral element

The following referral element versions are defined:

Leach, Naik expires May, 1998 [Page 80]

INTERNET-DRAFT CIFS/1.0 04/18/21

Version 1 Referral Element Format
==
USHORT ServerType Type of Node handling referral:

0 - Don't know
1 - SMB Server
2 - Netware Server
3 - Domain

USHORT ReferralFlags Flags which describe this referral:
01 - Strip off PathConsumed characters before submitting
RequestFileName to Node

UNICODESTRING Node Name of entity to visit next

Version 2 Referral Element Format
==
USHORT ServerType Type of Node handling referral:

0 - Don't know
1 - SMB Server
2 - Netware Server
3 - Domain

USHORT ReferralFlags Flags which describe this referral:
01 - Strip off PathConsumed characters before submitting
RequestFileName to Node

ULONG Proximity A hint describing the proximity of this server to the client. 0
indicates the closest, higher numbers indicate increasingly "distant"
servers. The number is only relevant within the context of the
servers listed in this particular SMB.

ULONG TimeToLive Number of seconds for which the client can cache this referral.
USHORT DfsPathOffset Offset, in bytes from the beginning of this referral, of the DFS Path

that matched PathConsumed bytes of the RequestFileName.
USHORT DfsAlternatePathOffset Offset, in bytes from the beginning of this referral, of an alternate

name (8.3 format) of the DFS Path that matched PathConsumed
bytes of the RequestFileName.

USHORT NetworkAddressOffset Offset, in bytes from the beginning of this referral, of the entity to
visit next.

The CIFS protocol imposes no referral selection policy.

4.4.2 TRANS2_REPORT_DFS_INCONSISTENCY: Inform a server
about DFS Error
As part of the Distributed Name Resolution algorithm, a DFS client may discover a knowledge inconsistency between the
referral server (i.e., the server that handed out a referral), and the storage server (i.e., the server to which the client was
redirected to by the referral server). When such an inconsistency is discovered, the DFS client optionally sends this SMB to
the referral server, allowing the referral server to take corrective action.

Leach, Naik expires May, 1998 [Page 81]

INTERNET-DRAFT CIFS/1.0 04/18/21

Client Request
==================================

Description
==================================

WordCount 15
MaxParameterCount 0
SetupCount 1
Setup[0] TRANS2_REPORT_DFS_INCONSISTENCY

Parameter Block Encoding
==================================

Description
==================================

UNICODESTRING RequestFileName; DFS Name of file for which referral was sought

The data part of this request contains the referral element (Version 1 format only) believed to be in error. These are encoded
as described in the TRANS2_GET_DFS_REFERRAL response. If the server returns success, the client can resubmit the
TRANS2_GET_DFS_REFERRAL request to this server to get a new referral. It is not mandatory for the DFS knowledge to be
automatically repaired – the client must be prepared to receive further errant referrals and must not wind up looping between
this request and the TRANS2_GET_DFS_REFERRAL request.

Bit15 of Flags2 in the SMB header must be set, indicating this is a UNICODE request.

4.5 Miscellaneous Operations

4.5.1 NT_TRANSACT_IOCTL
This command allows device and file system control functions to be transferred transparently from client to server.

Setup Words Encoding
===========================

Description
===

ULONG FunctionCode; NT device or file system control code
USHORT Fid; Handle for io or fs control. Unless BIT0 of ISFLAGS is set.
BOOLEAN IsFsctl; Indicates whether the command is a device control (FALSE) or a file

system control (TRUE).
UCHAR IsFlags; BIT0 - command is to be applied to share root handle. Share must be a

DFS share.

Data Block Encoding
===========================

Description
===

Data[TotalDataCount] Passed to the Fsctl or Ioctl

Server Response
==================================

Description
==================================

SetupCount 1
Setup[0] Length of information returned by io or fs control
DataCount Length of information returned by io or fs control
Data[DataCount] The results of the io or fs control

Leach, Naik expires May, 1998 [Page 82]

INTERNET-DRAFT CIFS/1.0 04/18/21

4.5.2 NT_TRANSACT_QUERY_SECURITY_DESC
This command allows the client to retrieve the security descriptor on a file.

Client Parameter Block
==================================

Description
=================================

USHORT Fid; FID of target
USHORT Reserved; MBZ
ULONG SecurityInformation; Fields of descriptor to set

NtQuerySecurityObject() is called, requesting SecurityInformation. The result of the call is returned to the client in the
Data part of the transaction response.

4.5.3 NT_TRANSACT_SET_SECURITY_DESC
This command allows the client to change the security descriptor on a file.

Client Parameter Block Encoding
==================================

Description
==================================

USHORT Fid; FID of target
USHORT Reserved; MBZ
ULONG SecurityInformation; Fields of SD that to set

Data Block Encoding
==================================

Description
==================================

Data[TotalDataCount] Security Descriptor information

Data is passed directly to NtSetSecurityObject(), with SecurityInformation describing which information to set. The
transaction response contains no parameters or data.

5 SMB Symbolic Constants

5.1 SMB Command Codes
The following values have been assigned for the SMB Commands.

Leach, Naik expires May, 1998 [Page 83]

INTERNET-DRAFT CIFS/1.0 04/18/21

SMB_COM_CREATE_DIRECTORY 0x00
SMB_COM_DELETE_DIRECTORY 0x01
SMB_COM_OPEN 0x02
SMB_COM_CREATE 0x03
SMB_COM_CLOSE 0x04
SMB_COM_FLUSH 0x05
SMB_COM_DELETE 0x06
SMB_COM_RENAME 0x07
SMB_COM_QUERY_INFORMATION 0x08
SMB_COM_SET_INFORMATION 0x09
SMB_COM_READ 0x0A
SMB_COM_WRITE 0x0B
SMB_COM_LOCK_BYTE_RANGE 0x0C
SMB_COM_UNLOCK_BYTE_RANGE 0x0D
SMB_COM_CREATE_TEMPORARY 0x0E
SMB_COM_CREATE_NEW 0x0F
SMB_COM_CHECK_DIRECTORY 0x10
SMB_COM_PROCESS_EXIT 0x11
SMB_COM_SEEK 0x12
SMB_COM_LOCK_AND_READ 0x13
SMB_COM_WRITE_AND_UNLOCK 0x14
SMB_COM_READ_RAW 0x1A
SMB_COM_READ_MPX 0x1B
SMB_COM_READ_MPX_SECONDARY 0x1C
SMB_COM_WRITE_RAW 0x1D
SMB_COM_WRITE_MPX 0x1E
SMB_COM_WRITE_COMPLETE 0x20
SMB_COM_SET_INFORMATION2 0x22
SMB_COM_QUERY_INFORMATION2 0x23
SMB_COM_LOCKING_ANDX 0x24
SMB_COM_TRANSACTION 0x25
SMB_COM_TRANSACTION_SECONDARY 0x26
SMB_COM_IOCTL 0x27
SMB_COM_IOCTL_SECONDARY 0x28
SMB_COM_COPY 0x29
SMB_COM_MOVE 0x2A
SMB_COM_ECHO 0x2B
SMB_COM_WRITE_AND_CLOSE 0x2C
SMB_COM_OPEN_ANDX 0x2D
SMB_COM_READ_ANDX 0x2E
SMB_COM_WRITE_ANDX 0x2F
SMB_COM_CLOSE_AND_TREE_DISC 0x31
SMB_COM_TRANSACTION2 0x32
SMB_COM_TRANSACTION2_SECONDARY 0x33
SMB_COM_FIND_CLOSE2 0x34
SMB_COM_FIND_NOTIFY_CLOSE 0x35
SMB_COM_TREE_CONNECT 0x70
SMB_COM_TREE_DISCONNECT 0x71
SMB_COM_NEGOTIATE 0x72
SMB_COM_SESSION_SETUP_ANDX 0x73
SMB_COM_LOGOFF_ANDX 0x74
SMB_COM_TREE_CONNECT_ANDX 0x75
SMB_COM_QUERY_INFORMATION_DISK 0x80
SMB_COM_SEARCH 0x81

Leach, Naik expires May, 1998 [Page 84]

INTERNET-DRAFT CIFS/1.0 04/18/21

SMB_COM_FIND 0x82
SMB_COM_FIND_UNIQUE 0x83
SMB_COM_NT_TRANSACT 0xA0
SMB_COM_NT_TRANSACT_SECONDARY 0xA1
SMB_COM_NT_CREATE_ANDX 0xA2
SMB_COM_NT_CANCEL 0xA4
SMB_COM_OPEN_PRINT_FILE 0xC0
SMB_COM_WRITE_PRINT_FILE 0xC1
SMB_COM_CLOSE_PRINT_FILE 0xC2
SMB_COM_GET_PRINT_QUEUE 0xC3
SMB_COM_READ_BULK 0xD8
SMB_COM_WRITE_BULK 0xD9
SMB_COM_WRITE_BULK_DATA 0xDA

5.2 SMB_COM_TRANSACTION2 Subcommand codes
The subcommand code for SMB_COM_TRANSACTION2 request is placed in Setup[0]. The parameters associated with any
particular request are placed in the Parameters vector of the request. The defined subcommand codes are:

Setup[0] Transaction2 Subcommand Code
===============================

Value

=====

Description

=============================
TRANS2_OPEN2 0x00 Create file with extended attributes
TRANS2_FIND_FIRST2 0x01 Begin search for files
TRANS2_FIND_NEXT2 0x02 Resume search for files
TRANS2_QUERY_FS_INFORMATION 0x03 Get file system information

0x04 Reserved
TRANS2_QUERY_PATH_INFORMATION 0x05 Get information about a named file or directory
TRANS2_SET_PATH_INFORMATION 0x06 Set information about a named file or directory
TRANS2_QUERY_FILE_INFORMATION 0x07 Get information about a handle
TRANS2_SET_FILE_INFORMATION 0x08 Set information by handle
TRANS2_FSCTL 0x09 Not implemented by NT server
TRANS2_IOCTL2 0x0A Not implemented by NT server
TRANS2_FIND_NOTIFY_FIRST 0x0B Not implemented by NT server
TRANS2_FIND_NOTIFY_NEXT 0x0C Not implemented by NT server
TRANS2_CREATE_DIRECTORY 0x0D Create directory with extended attributes
TRANS2_SESSION_SETUP 0x0E Session setup with extended security information
TRANS2_GET_DFS_REFERRAL 0x10 Get a DFS referral
TRANS2_REPORT_DFS_INCONSISTENCY 0x11 Report a DFS knowledge inconsistency

5.3 SMB_COM_NT_TRANSACTION Subcommand Codes
For these transactions, Function in the primary client request indicates the operation to be performed. It may assume one of
the following values:

Leach, Naik expires May, 1998 [Page 85]

INTERNET-DRAFT CIFS/1.0 04/18/21

SubCommand Code
==================================

Value
=====

Description
===========================

NT_TRANSACT_CREATE 1 File open/create
NT_TRANSACT_IOCTL 2 Device IOCTL
NT_TRANSACT_SET_SECURITY_DESC 3 Set security descriptor
NT_TRANSACT_NOTIFY_CHANGE 4 Start directory watch
NT_TRANSACT_RENAME 5 Reserved (Handle-based rename)
NT_TRANSACT_QUERY_SECURITY_DESC 6 Retrieve security descriptor info

5.4 SMB Protocol Dialect Constants
This is the list of CIFS protocol dialects, ordered from least functional (earliest) version to most functional (most recent)
version:

Dialect Name
===========================

Comment
==

PC NETWORK PROGRAM 1.0 The original MSNET SMB protocol (otherwise known as the "core
protocol")

PCLAN1.0 Some versions of the original MSNET defined this as an alternate to
the core protocol name

MICROSOFT NETWORKS 1.03 This is used for the MS-NET 1.03 product. It defines
Lock&Read,Write&Unlock, and a special version of raw read and
raw write.

MICROSOFT NETWORKS 3.0 This is the DOS LANMAN 1.0 specific protocol. It is equivalent to
the LANMAN 1.0 protocol, except the server is required to map errors
from the OS/2 error to an appropriate DOS error.

LANMAN1.0 This is the first version of the full LANMAN 1.0 protocol
LM1.2X002 This is the first version of the full LANMAN 2.0 protocol
DOS LM1.2X002 This is the DOS equivalent of the LM1.2X002 protocol. It is

identical to the LM1.2X002 protocol, but the server will perform
error mapping to appropriate DOS errors.

DOS LANMAN2.1 DOS LANMAN2.1
LANMAN2.1 OS/2 LANMAN2.1
Windows for Workgroups 3.1a Windows for Workgroups Version 1.0
NT LM 0.12 The SMB protocol designed for NT networking. This has special

SMBs which duplicate the NT semantics.

CIFS servers select the most recent version of the protocol known to both client and server. Any CIFS server which supports
dialects newer than the original core dialect must support all the messages and semantics of the dialects between the core
dialect and the newer one. This is to say that a server which supports the NT LM 0.12 dialect must also support all of the
messages of the previous 10 dialects. It is the client's responsibility to ensure it only sends SMBs which are appropriate to the
dialect negotiated. Clients must be prepared to receive an SMB response from an earlier protocol dialect -- even if the client
used the most recent form of the request.

6 Error Codes and Classes
This section lists all of the valid values for Status.DosError.ErrorClass, and most of the error codes for Status.DosError.Error.

The following error classes may be returned by the server to the client.

Leach, Naik expires May, 1998 [Page 86]

INTERNET-DRAFT CIFS/1.0 04/18/21

Class
=======

Code
====

Comment
==

SUCCESS 0 The request was successful.
ERRDOS 0x01 Error is from the core DOS operating system set.
ERRSRV 0x02 Error is generated by the server network file manager.
ERRHRD 0x03 Error is an hardware error.
ERRCMD 0xFF Command was not in the "SMB" format.

The following error codes may be generated with the SUCCESS error class.

Class
=======

Code
====

Comment
==

SUCCESS 0 The request was successful.

The following error codes may be generated with the ERRDOS error class.

Error
===============

Code
=====

Description
===

ERRbadfunc 1 Invalid function. The server did not recognize or could not perform a system
call generated by the server, e.g., set the DIRECTORY attribute on a data file,
invalid seek mode.

ERRbadfile 2 File not found. The last component of a file's pathname could not be found.
ERRbadpath 3 Directory invalid. A directory component in a pathname could not be found.
ERRnofids 4 Too many open files. The server has no file handles available.
ERRnoaccess 5 Access denied, the client's context does not permit the requested function. This

includes the following conditions:
invalid rename command
write to Fid open for read only
read on Fid open for write only
attempt to delete a non-empty directory

ERRbadfid 6 Invalid file handle. The file handle specified was not recognized by the server.
ERRbadmcb 7 Memory control blocks destroyed.
ERRnomem 8 Insufficient server memory to perform the requested function.
ERRbadmem 9 Invalid memory block address.
ERRbadenv 10 Invalid environment.
ERRbadformat 11 Invalid format.
ERRbadaccess 12 Invalid open mode.
ERRbaddata 13 Invalid data (generated only by IOCTL calls within the server).
ERRbaddrive 15 Invalid drive specified.
ERRremcd 16 A Delete Directory request attempted to remove the server's current directory.
ERRdiffdevice 17 Not same device (e.g., a cross volume rename was attempted)
ERRnofiles 18 A File Search command can find no more files matching the specified criteria.
ERRbadshare 32 The sharing mode specified for an Open conflicts with existing FIDs on the file.
ERRlock 33 A Lock request conflicted with an existing lock or specified an invalid mode, or

an Unlock requested attempted to remove a lock held by another process.
ERRfilexists 80 The file named in the request already exists.

Leach, Naik expires May, 1998 [Page 87]

INTERNET-DRAFT CIFS/1.0 04/18/21

The following error codes may be generated with the ERRSRV error class.

Error
===============

Code
=====

Description
===

ERRerror 1 Non-specific error code. It is returned under the following conditions:
 resource other than disk space exhausted (e.g. TIDs)
 first SMB command was not negotiate
 multiple negotiates attempted
 internal server error

ERRbadpw 2 Bad password - name/password pair in a Tree Connect or Session Setup are
invalid.

ERRaccess 4 The client does not have the necessary access rights within the specified context
for the requested function.

ERRinvnid 5 The Tid specified in a command was invalid.
ERRinvnetname 6 Invalid network name in tree connect.
ERRinvdevice 7 Invalid device - printer request made to non-printer connection or non-printer

request made to printer connection.
ERRqfull 49 Print queue full (files) -- returned by open print file.
ERRqtoobig 50 Print queue full -- no space.
ERRqeof 51 EOF on print queue dump.
ERRinvpfid 52 Invalid print file FID.
ERRsmbcmd 64 The server did not recognize the command received.
ERRsrverror 65 The server encountered an internal error, e.g., system file unavailable.
ERRfilespecs 67 The Fid and pathname parameters contained an invalid combination of values.
ERRbadpermits 69 The access permissions specified for a file or directory are not a valid

combination. The server cannot set the requested attribute.
ERRsetattrmode 71 The attribute mode in the Set File Attribute request is invalid.
ERRpaused 81 Server is paused. (reserved for messaging)
ERRmsgoff 82 Not receiving messages. (reserved for messaging).
ERRnoroom 83 No room to buffer message. (reserved for messaging).
ERRrmuns 87 Too many remote user names. (reserved for messaging).
ERRtimeout 88 Operation timed out.
ERRnoresource 89 No resources currently available for request.
ERRtoomanyuids 90 Too many Uids active on this session.
ERRbaduid 91 The Uid is not known as a valid user identifier on this session.
ERRusempx 250 Temporarily unable to support Raw, use MPX mode.
ERRusestd 251 Temporarily unable to support Raw, use standard read/write.
ERRcontmpx 252 Continue in MPX mode.
ERRnosupport 65535 Function not supported.

Leach, Naik expires May, 1998 [Page 88]

INTERNET-DRAFT CIFS/1.0 04/18/21

The following error codes may be generated with the ERRHRD error class.

Error
===============

Code
=====

Description
===

ERRnowrite 19 Attempt to write on write-protected media
ERRbadunit 20 Unknown unit.
ERRnotready 21 Drive not ready.
ERRbadcmd 22 Unknown command.
ERRdata 23 Data error (CRC).
ERRbadreq 24 Bad request structure length.
ERRseek 25 Seek error.
ERRbadmedia 26 Unknown media type.
ERRbadsector 27 Sector not found.
ERRnopaper 28 Printer out of paper.
ERRwrite 29 Write fault.
ERRread 30 Read fault.
ERRgeneral 31 General failure.
ERRbadshare 32 A open conflicts with an existing open.
ERRlock 33 A Lock request conflicted with an existing lock or specified an invalid mode, or

an Unlock requested attempted to remove a lock held by another process.
ERRwrongdisk 34 The wrong disk was found in a drive.
ERRFCBUnavail 35 No FCBs are available to process request.
ERRsharebufexc 36 A sharing buffer has been exceeded.

7 Legal Notice
Microsoft does not know of any third-party rights that are violated by this contribution. Microsoft makes no other
representations regarding this contribution.

8 References
 [1] P. Mockapetris, "Domain Names - Concepts And Facilities", RFC 1034,
 November 1987

[2] P. Mockapetris, "Domain Names - Implementation And Specification",
 RFC 1035, November 1987

[3] Karl Auerbach, "Protocol Standard For A Netbios Service On A Tcp/Udp
 Transport: Concepts And Methods", RFC 1001, March 1987

[4] Karl Auerbach, "Protocol Standard For A Netbios Service On A Tcp/Udp
 Transport: Detailed Specifications", RFC 1002, March 1987

[5] US National Bureau of Standards, "Data Encryption Standard",
 Federal Information Processing Standard (FIPS) Publication
 46-1, January 1988

[6] Rivest, R. - MIT and RSA Data Security, Inc., "The MD4 Message
 Digest Algorithm", RFC 1320, April 1992

Leach, Naik expires May, 1998 [Page 89]

INTERNET-DRAFT CIFS/1.0 04/18/21

[7] X/Open Company Ltd., "X/Open CAE Specification - Protocols for
 X/Open PC Interworking: SMB, Version 2", X/Open Document Number:
 CAE 209, September 1992.

9 Authors’ Addresses
Paul Leach
Dilip Naik
Microsoft
1 Microsoft Way
Redmond, WA 98052
paulle@microsoft.com
dilipn@microsoft.com

10 Appendix A -- NETBIOS transport over TCP
When operating CIFS over the NETBIOS transport over TCP, connections are established and messages transferred as
specified in RFC 1001 and RFC 1002.

Message transport is done using NETBIOS session service (see section 5.3 of RFC 1001 and section 4.3 of RFC 1002).

10.1 Connection Establishment
After the server name has been resolved to an IP address, then a connection to the server needs to be established if one has not
already been set up. Connection establishment is done using the NETBIOS session service, which requires the client to
provide a "calling name" and a "called name". The calling name is not significant in CIFS, except that an identical name from
the same transport address is assumed to represent the same client; the called name is always "*SMBSERVER ".
Connection establishment results in a "Session Request" packet to port 139 (see section 4.3.2 of RFC 1002).

10.1.1 Backwards compatability
If a CIFS client wishes to inter-operate with older SMB servers, then if the server rejects the session request, it can retry with a
new called name. The choice of the new called name depends on the name resolution mechanism used. If DNS was used, the
called name should be constructed from the first component of the server's DNS name, truncated to 15 characters if necessary,
and then padded to 16 characters with blank (20 hex) characters. If NETBIOS was used, then the called named is just the
NETBIOS name. If these fail, then a NETBIOS "Adapter Status" request may be made to obtain the server's NETBIOS name,
and the connection establishment retried with that as the called name.

10.2 Server-side Connection Procedures
A CIFS server running over NETBIOS MUST accepts any session request specifying a called name of "*SMBSERVER ".

In addition, if it wishes to support older SMB clients, it MAY have one or more NETBIOS names and accept session request
specifying them as the called name.

11 Appendix B -- TCP transport
When operating CIFS over TCP, connections are established to TCP port TBD, and each message is framed as follows:

Leach, Naik expires May, 1998 [Page 90]

INTERNET-DRAFT CIFS/1.0 04/18/21

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ZERO | LENGTH |
 +-+
 | |
 / SMB (Packet Type Dependent) /
 | |
 +-+

Each CIFS request starts with a 4 byte field encoded as above: a byte of zero, followed by three bytes of length; after that
follows the body of the request.

12 Appendix C -- Share Level Server Security
Each server makes a set of resources available to clients on the network. A resource being shared may be a directory tree,
named pipe, printer, etc. So far as clients are concerned, the server has no storage or service dependencies on any other
servers; a client considers the server to be the sole provider of the file (or other resource) being accessed.

The CIFS protocol requires server authentication of users before file accesses are allowed, and each server authenticates its
own users. A client system must send authentication information to the server before the server will allow access to its
resources.

The CIFS protocol used to define two methods that can be selected by the server for security: share level and user level. User
level security is the only non-obsolescent method, and is what was described in section 2.8.

A share level server makes some directory on a disk device (or other resource) available. An optional password may be
required to gain access. Thus any user on the network who knows the name of the server, the name of the resource and the
password has access to the resource. Share level security servers may use different passwords for the same shared resource
with different passwords allowing different levels of access.

Share level only clients do not send SESSION_SETUP_ANDX requests. Instead, they send TREE_CONNECT_ANDX
requests that include a password, or which use challenge/response authentication to prove that they know a password.

When a user level server validates the account name and password presented by the client, an identifier representing that
authenticated instance of the user is returned to the client in the Uid field of the response SMB. In contrast, a share level
server returns no useful information in the Uid field.

If the server is executing in share level security mode, Tid is the only thing used to allow access to the shared resource. Thus if
the user is able to perform a successful connection to the server specifying the appropriate netname and passwd (if any) the
resource may be accessed according to the access rights associated with the shared resource (same for all who gained access
this way).

The user level security model was added after the original dialect of the CIFS protocol was issued, and subsequently some
clients may not be capable of sending account name and passwords to the server. A server in user level security mode
communicating with one of these clients MAY allow a client to connect to resources even if the client has not sent account
name information:

1. If the client's computer name is identical to an account-name known on the server, and if the password supplied or
authenticated via challenge/response to connect to the shared resource matches that account’s password, an implicit "user
logon" will be performed using those values. If the above fails, the server may fail the request or assign a default account
name of its choice.

Leach, Naik expires May, 1998 [Page 91]

INTERNET-DRAFT CIFS/1.0 04/18/21

2. The value of Uid in subsequent requests by the client will be ignored and all access will be validated assuming the account
name selected above.

Leach, Naik expires May, 1998 [Page 92]

	1.1 Summary of features
	1.1.1 File access
	1.1.2 File and record locking
	1.1.3 Safe caching, read-ahead, and write-behind
	1.1.4 File change notification
	1.1.5 Protocol version negotiation
	1.1.6 Extended attributes
	1.1.7 Distributed replicated virtual volumes
	1.1.8 Server name resolution independence
	1.1.9 Batched requests

	2 Protocol Operation Overview
	2.1 Server Name Determination
	2.2 Server Name Resolution
	2.3 Sample Message Flow
	2.4 CIFS Protocol Dialect Negotiation
	2.5 Message Transport
	2.5.1 Connection Management

	2.6 Opportunistic Locks
	2.6.1 Exclusive Oplocks
	2.6.2 Batch Oplocks
	2.6.3 Level II Oplocks

	2.7 Security Model
	2.8 Authentication
	2.9 Distributed Filesystem (DFS) Support

	3 SMB Message Formats and Data Types
	3.1 Notation
	3.2 SMB header
	3.2.1 Flags field
	3.2.2 Flags2 Field
	3.2.3 Tid Field
	3.2.4 Pid Field
	3.2.5 Uid Field
	3.2.6 Mid Field
	3.2.7 Status Field
	3.2.8 Timeouts
	3.2.9 Data Buffer (Buffer) and String Formats

	3.3 File Names
	3.4 Wildcards
	3.5 DFS Pathnames
	3.6 Time And Date Encoding
	3.7 Access Mode Encoding
	3.8 Access Mask Encoding
	3.9 Open Function Encoding
	3.10 Open Action Encoding
	3.11 File Attribute Encoding
	3.12 Extended File Attribute Encoding
	3.13 Batching Requests ("AndX" Messages)
	3.14 "Transaction" Style Subprotocols
	3.14.1 SMB_COM_TRANSACTION2 Format
	3.14.2 3.13.2 SMB_COM_NT_TRANSACTION Formats
	3.14.3 Functional Description

	3.15 Valid SMB Requests by Negotiated Dialect

	4 SMB Requests
	4.1 Session Requests
	4.1.1 NEGOTIATE: Negotiate Protocol
	4.1.1.1 Errors

	4.1.2 SESSION_SETUP_ANDX: Session Setup
	4.1.2.1 Errors

	4.1.3 LOGOFF_ANDX: User Logoff
	4.1.3.1 Errors

	4.1.4 TREE_CONNECT_ANDX: Tree Connect
	4.1.4.1 Errors

	4.1.5 TREE_DISCONNECT: Tree Disconnect
	4.1.5.1 Errors

	4.1.6 TRANS2_QUERY_FS_INFORMATION: Get File System Information
	4.1.6.1 SMB_INFO_ALLOCATION
	4.1.6.2 SMB_INFO_VOLUME
	4.1.6.3 SMB_QUERY_FS_VOLUME_INFO
	4.1.6.4 SMB_QUERY_FS_SIZE_INFO
	4.1.6.5 SMB_QUERY_FS_DEVICE_INFO
	4.1.6.6 SMB_QUERY_FS_ATTRIBUTE_INFO
	4.1.6.7 Errors

	4.1.7 ECHO: Ping the Server
	4.1.7.1 Errors

	4.1.8 NT_CANCEL: Cancel request

	4.2 File Requests
	4.2.1 NT_CREATE_ANDX: Create or Open File
	4.2.2 NT_TRANSACT_CREATE: Create or Open File with EAs or SD
	4.2.3 CREATE_TEMPORARY: Create Temporary File
	4.2.4 READ_ANDX: Read Bytes
	4.2.4.1 Errors

	4.2.5 WRITE_ANDX: Write Bytes to file or resource
	4.2.5.1 Errors

	4.2.6 LOCKING_ANDX: Lock or Unlock Byte Ranges
	4.2.6.1 Errors

	4.2.7 SEEK: Seek in File
	4.2.7.1 Errors

	4.2.8 FLUSH: Flush File
	4.2.8.1 Errors

	4.2.9 CLOSE: Close File
	4.2.9.1 Errors

	4.2.10 DELETE: Delete File
	4.2.10.1 Errors

	4.2.11 RENAME: Rename File
	4.2.11.1 Errors

	4.2.12 MOVE: Rename File
	4.2.12.1 Errors

	4.2.13 COPY: Copy File
	4.2.13.1 Errors

	4.2.14 TRANS2_QUERY_PATH_INFORMATION: Get File Attributes given Path
	4.2.14.1 SMB_INFO_STANDARD & SMB_INFO_QUERY_EA_SIZE
	4.2.14.2 SMB_INFO_QUERY_EAS_FROM_LIST & SMB_INFO_QUERY_ALL_EAS
	4.2.14.3 SMB_INFO_IS_NAME_VALID
	4.2.14.4 SMB_QUERY_FILE_BASIC_INFO
	4.2.14.5 SMB_QUERY_FILE_STANDARD_INFO
	4.2.14.6 SMB_QUERY_FILE_EA_INFO
	4.2.14.7 SMB_QUERY_FILE_NAME_INFO
	4.2.14.8 SMB_QUERY_FILE_ALL_INFO
	4.2.14.9 SMB_QUERY_FILE_ALT_NAME_INFO
	4.2.14.10 SMB_QUERY_FILE_STREAM_INFO
	4.2.14.11 SMB_QUERY_FILE_COMPRESSION_INFO

	4.2.15 TRANS2_QUERY_FILE_INFORMATION: Get File Attributes Given FID
	4.2.16 TRANS2_SET_PATH_INFORMATION: Set File Attributes given Path
	4.2.16.1 SMB_INFO_STANDARD & SMB_INFO_QUERY_EA_SIZE
	4.2.16.2 SMB_INFO_QUERY_ALL_EAS

	4.2.17 TRANS2_SET_FILE_INFORMATION: Set File Attributes Given FID
	4.2.17.1 SMB_FILE_DISPOSITION_INFO
	4.2.17.2 SMB_FILE_ALLOCATION_INFO
	4.2.17.3 SMB_FILE_END_OF_FILE_INFO

	4.3 Directory Requests
	4.3.1 TRANS2_CREATE_DIRECTORY: Create Directory (with optional EAs)
	4.3.2 DELETE_DIRECTORY: Delete Directory
	4.3.3 CHECK_DIRECTORY: Check Directory
	4.3.3.1 Errors

	4.3.4 TRANS2_FIND_FIRST2: Search Directory using Wildcards
	4.3.4.1 SMB_INFO_STANDARD
	4.3.4.2 SMB_INFO_QUERY_EA_SIZE
	4.3.4.3 SMB_INFO_QUERY_EAS_FROM_LIST
	4.3.4.4 SMB_FIND_FILE_DIRECTORY_INFO
	4.3.4.5 SMB_FIND_FILE_FULL_DIRECTORY_INFO
	4.3.4.6 SMB_FIND_FILE_BOTH_DIRECTORY_INFO
	4.3.4.7 SMB_FIND_FILE_NAMES_INFO

	4.3.5 TRANS2_FIND_NEXT2: Resume Directory Search Using Wildcards
	4.3.6 FIND_CLOSE2: Close Directory Search
	4.3.6.1 Errors

	4.3.7 NT_TRANSACT_NOTIFY_CHANGE: Request Change Notification

	4.4 DFS Operations
	4.4.1 TRANS2_GET_DFS_REFERRAL: Retrieve Distributed Filesystem Referral
	4.4.2 TRANS2_REPORT_DFS_INCONSISTENCY: Inform a server about DFS Error

	4.5 Miscellaneous Operations
	4.5.1 NT_TRANSACT_IOCTL
	4.5.2 NT_TRANSACT_QUERY_SECURITY_DESC
	4.5.3 NT_TRANSACT_SET_SECURITY_DESC

	5 SMB Symbolic Constants
	5.1 SMB Command Codes
	5.2 SMB_COM_TRANSACTION2 Subcommand codes
	5.3 SMB_COM_NT_TRANSACTION Subcommand Codes
	5.4 SMB Protocol Dialect Constants

	6 Error Codes and Classes
	7 Legal Notice
	8 References
	9 Authors’ Addresses
	10 Appendix A -- NETBIOS transport over TCP
	10.1 Connection Establishment
	10.1.1 Backwards compatability

	10.2 Server-side Connection Procedures

	11 Appendix B -- TCP transport
	12 Appendix C -- Share Level Server Security

