
8/5/00 1

Description of Objects in Visual
Visual is a 3D graphics facility developed by David Scherer to be used with the Python
programming language. This reference document describes each of the Visual objects.
Be sure to study the discussion of the cylinder object in detail, because much of what
is said there applies to other objects as well.

The cylinder Object

Here is an example of how to make a cylinder, naming it “rod” for future reference:

rod = cylinder(pos=(0,2,1), axis=(5,0,0), radius=1)

The center of one end of this cylinder is at x=0, y=2, and z=1. Its axis lies along the x
axis, with length 5, so that the other end of the cylinder is at (5,2,1), as shown in the
accompanying diagram.

You can modify the position of the cylinder after it has been created, which has the
effect of moving it immediately to the new position:

rod.pos = (15,11,9) # change position (x,y,z)
rod.x = 15 # only change pos.x

Since we didn't specify a color, the cylinder will be the current "foreground" color (see
"Controlling One or More Visual Display Windows" later in this reference). The
default foreground color is white. After creating the cylinder, you can change its color:

rod.color = (0,0,1) # make rod be blue

This will make the cylinder suddenly turn blue, using the so-called RGB system for
specifying colors in terms of fractions of red, green, and blue. (For details on choosing
colors, see "Specifying Colors" later in this reference.) You can set individual amounts
of red, green, and blue like this:

rod.red = 0.4
rod.green = 0.7
rod.blue = 0.8

If you create an object such as a cylinder and don't give it a name such as rod, you
won't be able to refer to it later. This doesn't matter if you never intend to modify the
object.

The cylinder object can be created with other, optional attributes, which can be listed
in any order. Here is a full list of attributes, most of which also apply to other objects:

pos Position: the center of one end of the cylinder
A triple, in parentheses, such as (3,2,5)

axis The axis points from pos to the other end of the cylinder

x, y, z Essentially the same as pos.x, pos.y, pos.z

radius The radius of the cylinder

length Length of axis; if not specified, axis determines the length
If length is specified, it overrides the length given by axis

color Color of object, as a red-green-blue (RGB) triple: (1,0,0) is pure red

red, green, blue (can set these color attributes individually)

up Which side of the cylinder is “up”; this has only a subtle effect on the
3D appearance of the cylinder

x

z

pos=(x0, y0, z0)

y

axis=(L, 0, 0)

2 8/5/00

When you start a Visual program, for convenience Visual creates a display window
and names it scene. By default, objects that you create go into that display window.
See "Controlling One or More Visual Display Windows" later in this reference for how
you can create additional display windows and place objects in them.

The arrow Object

The arrow object has a straight box-shaped shaft with an arrowhead at one end. The
following statement will display an arrow pointing parallel to the x axis:

pointer = arrow(pos=(0,2,1), axis=(5,0,0), shaftwidth=1)

The arrow object has attributes pos, x, y, z, axis, length, color, red, green, blue,
and up like those for cylinders. The up attribute is significant for arrow because the
shaft and head have square cross sections, and setting the up attribute rotates the
arrow about its axis. Additional arrow attributes:

shaftwidth By default, shaftwidth = 0.1*(length of arrow)

headwidth By default, headwidth = 2*shaftwidth

headlength By default, headlength = 3*shaftwidth

Assigning any of these attributes to 0 makes it use defaults based on the size of the
arrow. If headlength becomes larger than half the length of the arrow, or the shaft
becomes thinner than 1/50 the length, the entire arrow is scaled accordingly.

The cone Object

The cone object has a circular cross section and tapers to a point. The following state-
ment will display a cone pointing parallel to the x axis; the wide end of the cone has
the specified radius:

cone(pos=(5,2,0), axis=(12,0,0), radius=1)

The cone object has attributes pos, x, y, z, axis, length, color, red, green, blue,
and up like those for cylinders. As with cylinders, up has a subtle effect on the 3D
appearance of a cone. Additional cone attribute:

radius Radius of the wide end of the cone

The sphere Object

Here is an example of how to make a sphere:

ball = sphere(pos=(1,2,1), radius=0.5)

This produces a sphere centered at location (1,2,1) with radius = 0.5, with the current
foreground color.

The sphere object has attributes pos, x, y, z, axis, color, red, green, blue, and up
like those for cylinders. As with cylinders, up has a subtle effect on the 3D appearance
of a sphere. The axis attribute only affects the orientation of the sphere and has a sub-
tle effect on appearance; the magnitude of the axis attribute is irrelevant. Additional
sphere attributes:

radius Radius of the sphere

label Experimental: ball.label = “Sun” attaches this label to the sphere

Note that the pos attribute for cylinder, arrow, and cone corresponds to one end of the
object, whereas for a sphere it corresponds to the center of the object.

x

z

pos

y

axis

x

z

y

pos axis

x

z

y

pos

8/5/00 3

The ring Object

The ring object is circular, with a specified outer radius and thickness, and with its
center given by the pos attribute:

ring(pos=(1,1,1), axis=(0,1,0), radius=0.5, thickness=0.1)

The ring object has attributes pos, axis, x, y, z, color, red, green, blue, and up
like those for cylinders. As with cylinders, up has a subtle effect on the 3D appearance
of a ring. The axis attribute only affects the orientation of the ring; the magnitude of
the axis attribute is irrelevant. Additional ring attributes:

radius Outer radius of the ring

thickness Thickness of ring (1/10th of radius if not specified)

Note that the pos attribute for cylinder, arrow, and cone corresponds to one end of the
object, whereas for a ring and a sphere it corresponds to the center of the object.

The box Object

In the first diagram we show a simple example of a box object:

mybox = box(pos=(x0,y0,z0), length=L, height=H, width=W)

The given position is in the center of the box, at (x0, y0, z0). This is different from cyl-
inder, whose pos attribute is at one end of the cylinder. Just as with a cylinder, we
can refer to the individual vector components of the box as mybox.x, mybox.y, and
mybox.z. The length (along the x axis) is L, the height (along the y axis) is H, and the
width is W (along the z axis). For this box, we have mybox.axis = (L, 0, 0). Note
that the axis of a box is just like the axis of a cylinder.

For a box that isn’t aligned with the coordinate axes, additional issues come into play.
The orientation of the length of the box is given by the axis (see second diagram):

mybox = box(pos=(x0,y0,z0), axis=(a,b,c), length=L,
height=H, width=W)

The axis attribute gives a direction for the length of the box, and the length, height,
and width of the box are given as before (if a length attribute is not given, the length
is set to the magnitude of the axis vector).

There remains the issue of how to orient the box rotationally around the specified
axis. The rule Visual uses is to orient the width to lie in a plane perpendicular to the
display “up” direction, which by default is the y axis. Therefore in the diagram you see
that the width lies parallel to the x-z plane. The height of the box is oriented perpen-
dicular to the width, and to the specified axis of the box. It helps to think of length ini-
tially as going along the x axis, height along the y axis, and width along the z axis, and
when the axis is tipped the width stays in the x-z plane.

You can rotate the box around its own axis by changing which way is “up” for the box,
by specifying an up attribute for the box that is different from the up vector of the
coordinate system:

mybox = box(pos=(x0,y0,z0), axis=(a,b,c), length=L,
height=H, width=W, up=(q,r,s))

With this statement, the width of the box will lie in a plane perpendicular to the (q,r,s)
vector, and the height of the box will be perpendicular to the width and to the (a,b,c)
vector.

x

z

y

pos axis

thickness

radius

x

z

pos=(x0, y0, z0)

LW

H

y

Simple box
aligned with axes

axis=(L, 0, 0)

x

z

pos=(x0, y0, z0)

L
W

H

y

W lies in the x-z plane

axis=(a, b, c)

4 8/5/00

The box object has attributes pos, x, y, z, axis, length, color, red, green, blue,
and up like those for cylinders. Additional box attributes:

height In the y direction in the simple case

width In the z direction in the simple case

size (length, height, width)
mybox.size=(20,10,12) sets length=20, height=10, width=12

Note that the pos attribute for cylinder, arrow, and cone corresponds to one end of the
object, whereas for a box, sphere, or ring it corresponds to the center of the object.

The curve Object

The curve object displays straight lines between points, and if the points are suffi-
ciently close together you get the appearance of a smooth curve. In addition to its
basic use for displaying curves, the curve object has powerful capabilities for other
uses, such as efficient plotting of functions.

Some attributes, such as pos and color, can be different for each point in the curve.
These attributes are stored as Numeric arrays. The Numeric extension to Python pro-
vides powerful array processing capabilities; for example, two entire arrays can be
added together. Numeric arrays can be accessed using standard Python rules for
referring to the nth item in a sequence (that is, seq[0] is the first item in seq,
seq[1] is the second, seq[2] is the third, etc). For example, anycurve.pos[0] is
the position of the first point in anycurve.

You can give curve an explicit list of coordinates enclosed in brackets, like all Python
sequences. Here is an example of a 2D square:

square = curve(pos=[(0,0),(0,1),(1,1),(1,0),(0,0)])

Essentially, (1,1) is shorthand for (1,1,0). However, you cannot mix 2D and 3D points
in one list.

Curves can have thickness, specified by the radius of a cross section of the curve (the
curve has a thickness or diameter that is twice this radius):

curve(pos=[(0,0,0), (1,0,0), (2,1,0)], radius=0.05)

The default radius is 0, which draws a thin curve. A nonzero radius makes a “thick”
curve, but a very small radius may make a curve that is too thin to see.

In the following example, the arange() function (provided by the Python Numeric
module, which is imported by Visual) gives a sequence of values from 0 to 20 in steps
of 0.1 (not including the last value, 20).

c = curve(x = arange(0,20,0.1)) # Draw a helix
c.y = sin(2.0*c.x)
c.z = cos(2.0*c.x)

The x, y, and z attributes allow curves to be used to graph functions easily:

curve(x=arange(100), y=arange(100)**0.5, color=color.red)

A function grapher looks like this (a complete program!):

eqn = raw_input(‘Equation in x: ‘)
x = arange(0, 10, 0.1)
curve(x=x, y=eval(eqn))

8/5/00 5

Parametric graphing is also easy:

t = arange(0, 10, 0.1)
curve(x = sin(t), y = 1.0/(1+t), z = t**0.5,

red = cos(t), green = 0, blue = 0.5*(1-cos(t)))

Here are the curve attributes:

pos[] Array of position of points in the curve: pos[0], pos[1], pos[2]....
The current number of points is given by len(curve.pos)

x[], y[], z[] Components of pos; each defaults to [0,0,0,0,…]

color[] Color of points in the curve

red[], green[], blue[]Color components of points in the curve

radius Radius of cross-section of curve
The default radius=0 makes a thin curve

Adding more points to a curve

Curves can be created incrementally with the append() function. A new point by
default shares the characteristics of the last point.

helix = curve(color = color.cyan)
for t in arange(0, 2*pi, 0.1):

helix.append(pos=(t,sin(t),cos(t)))

One of the many uses of curves is to leave a trail behind a moving object. For example,
if ball is a moving sphere, this will add a point to its trail

trail = curve()
ball = sphere()
...# Every time you update the position of the ball:
trail.append(pos=ball.pos)

Interpolation

The curve machinery interpolates from one point to the next. For example, suppose
the first three points are red but the fourth point is blue, as in the following example.
The lines connecting the first three points are all red, but the line going from the third
point (red) to the fourth point (blue) is displayed with a blend going from red to blue.

c = curve(pos=[(0,0,0), (1,0,0)], color=color.red)
c.append(pos=(1,1,0)) # add a red point
c.append(pos=(0,1,0), color=color.blue) # add blue point

If you want an abrupt change in color or thickness, simply add another point at the
same location. In the following example, adding a blue point at the same location as
the third (red) point makes the final line be purely blue.

c = curve(pos=[(0,0,0), (1,0,0)], color=color.red)
c.append(pos=(1,1,0)) # add a red point
c.append(pos=(1,1,0), color=color.blue) # same point, blue
c.append(pos=(0,1,0)) # add blue point

The convex Object

The convex object takes a list of points for pos, like the curve object. An object is gen-
erated that is everywhere convex (that is, bulges outward). Any points that would
make a portion of the object concave (bulge inward) are discarded. If all the points lie
in a plane, the object is a flat surface.

6 8/5/00

Composite Objects with frame

You can group objects together to make a composite object that can be moved and
rotated as though it were a single object. Create a frame object, and associate objects
with that frame:

f = frame()
cylinder(frame=f, pos=(0,0,0), radius=0.1, length=1,

color=color.cyan)
sphere(frame=f, pos=(1,0,0), radius=0.2, color=color.red)
f.axis = (0,1,0)
f.pos = (-1,0,0)

By default, frame() has a position of (0,0,0) and axis in the x direction (1,0,0). The cyl-
inder and sphere are created within the frame. When any of the frame attributes are
changed (pos, x, y, z, axis, or up), the composite object is reoriented and repositioned.

Convenient Defaults

Objects can be specified with convenient defaults:

cylinder() is equivalent to cylinder(pos=(0,0,0), axis=(1,0,0), radius=1)

arrow() is equivalent to arrow(pos=(0,0,0), axis=(1,0,0), radius=1)

cone() is equivalent to cone(pos=(0,0,0), axis=(1,0,0), radius=1)

sphere() is equivalent to sphere(pos=(0,0,0), radius=1)

ring() is equivalent to ring(pos=(0,0,0), axis=(1,0,0), radius=1)

box() is equivalent to box(pos=(0,0,0), length=1, height=1, width=1)

curve() establishes an “empty” curve to which points can be appended

convex() establishes an “empty” object to which points can be appended

frame() establishes a frame with pos=(0,0,0) and axis=(1,0,0)

Floating Division

Standard Python performs integer division with truncation, so that 3/4 is 0, not 0.75.
This is inconvenient when doing scientific computations, and can lead to hard-to-find
bugs in programs. You can write 3./4., which is 0.75 by the rules of “floating-point”
division. Alternatively, insert the following line, which makes 3/4 evaluate to 0.75 for
statements in a Visual program:

import floatdivision

Also, Visual converts integers to floating-point numbers for you:

object.pos = (1,2,3) is equivalent to object.pos = (1.,2.,3.)

Rotations

The cylinder, arrow, cone, sphere, ring, and box objects (but not curve or convex) can
be rotated about a specified origin:

object.rotate(angle=None, axis=axis, origin=pos)

The rotate function applies a transformation to the specified object (sphere, box, etc.).
The transformation is a rotation of angle radians, counterclockwise around the line
defined by origin and origin+axis. By default, rotations are around the object’s
own pos and axis.

8/5/00 7

Additional Options for Objects

The following attributes apply to all Visual objects:

visible If false (0), object is not displayed; e.g. ball.visible = 0
Use ball.visible = 1 to make the ball visible again.

display When you start a Visual program, for convenience Visual creates a
display window and names it scene. By default, objects you create go
into that display window. You can choose to put an object in a differ-
ent display like this:

scene2 = display(title = "Act IV, Scene 2")
rod = cylinder(display = scene2)

See "Controlling One or More Visual Display Windows" later in this
reference for more information on creating and manipulating display
objects.

Specifying Colors

In the RGB color system, you specify a color in terms of fractions of red, green, and
blue, corresponding to how strongly glowing are the tiny red, green, and blue dots of
the computer screen. In the RGB scheme, white is the color with a maximum of red,
blue, and green (1, 1, 1). Black has minimum amounts (0, 0, 0). The brightest red is
represented by (1, 0, 0); that is, it has the full amount of red, no green, and no blue.

Here are some examples of RGB colors, with names you can use in Visual:

(1,0,0) color.red (1,1,0) color.yellow

(0,1,0) color.green (0,1,1) color.cyan

(0,0,1) color.blue (1,0,1) color.magenta

(1,1,1) color.white (0,0,0) color.black

You can also create your own colors, such as these:

(0.5, 0.5, 0.5) a rather dark grey (1,0.7,0.2) a coppery color

Colors may appear differently on different computers, and under different 3D lighting
conditions. The named colors above are most likely to display appropriately, because
RGB values of 0 or 1 are unaffected by differing color corrections (“gamma” correc-
tions).

The Visual demo program colorsliders.py lets you adjust RGB sliders to visualize col-
ors and print color triples that you copy into your program. It also provides HSV slid-
ers to adjust hue, saturation (how much white is added to dilute the hue), and value
(brightness), which is an alternative way to describe colors.

Currently Visual only accepts RGB color descriptions, but there are functions for con-
verting color triples between RGB and HSV:

c = (1,1,0)
c2 = color.rgb_to_hsv(c) # convert RGB to HSV
print hsv # (0.16667, 1, 1)
c3 = color.hsv_to_rgb(c2) # convert back to RGB
print c3 # (1, 1, 0)

Another example: sphere(radius=2, color=hsv_to_rgb((0.5,1,0.8))

8 8/5/00

The vector Object

The vector object is not a displayable object but is a powerful aid to 3D computations.
Its properties are similar to vectors used in science and engineering. It can be used
together with Numeric arrays. (Numeric is a module added to Python to provide high-
speed computational capability through optimized array processing. Numeric is
imported by Visual.)

vector(x,y,z)

Returns a vector object with the given components, which are made to be
floating-point (that is, 3 is converted to 3.0).

Vectors can be added or subtracted from each other, or multiplied by an ordi-
nary number. For example,

v1 = vector(1,2,3)
v2 = vector(10,20,30)
print v1+v2 # displays (11 22 33)
print 2*v1 # displays (2 4 6)

You can refer to individual components of a vector:

v2.x is 10, v2.y is 20, v2.z is 30

It is okay to make a vector from a vector: vector(v2) is still vector(10,20,30).

The form vector(10,12) is shorthand for vector(10,12,0).

A vector is a Python sequence, so v2.x is the same as v2[0], v2.y is the
same as v2[1], and v2.z is the same as v2[2].

mag(vector)

Calculates the length of the given vector.

mag(vector(1,1,1)) is equal to the square root of 3

You can also obtain the magnitude in the form v2.mag.

norm(vector)

Produces a normalized form of the given vector; that is, its magnitude is 1.

norm(vector(1,1,1)) equals vector(1,1,1)/sqrt(3)

Since norm(v1) = v1/mag(v1), it is not possible to normalize a zero-length vec-
tor: norm(vector(0,0,0)) gives an error, since division by zero is involved.

cross(vector1, vector2)

Creates the cross product of two vectors, which is a vector perpendicular to the
plane defined by vector1 and vector2, in a direction defined by the right-hand
rule: if the fingers of the right hand bend from vector1 toward vector 2, the
thumb points in the direction of the cross product. The magnitude of this vec-
tor is equal to the product of the magnitudes of vector1 and vector2, times the
sine of the angle between the two vectors.

dot(vector1, vector2)

Creates the dot product of two vectors, which is an ordinary number equal to
the product of the magnitudes of vector1 and vector2, times the cosine of the
angle between the two vectors. If the two vectors are normalized, the dot prod-
uct gives the cosine of the angle between the vectors, which is often useful.

8/5/00 9

Rotating a vector

v2 = rotate(v1, angle=theta, axis=(1,1,1))

The default axis is (0,0,1), for a rotation in the xy plane around the z axis. There is no
origin for rotating a vector. Notice too that rotating a vector involves a function,
v = rotate(), as is the case with other vector manipulations such as dot() or cross(),
whereas rotation of graphics objects involves attributes, in the form object.rotate().

Convenient conversion

For convenience Visual automatically converts (a,b,c) into vector(a,b,c), with floating-
point values, when creating Visual objects: sphere.pos=(1,2,3) is equivalent to
sphere.pos=vector(1.,2.,3.). However, using the form (a,b,c) directly in computations
will give errors.

Example of Vector Computations

Here is an example of user attributes (“mass” and momentum “p”) added to display
objects, with vector processing:

from visual import *

G = 6.7e-11 # gravitational constant
au = 1.5e11 # astronomical unit (sun-earth distance)
year = 365*24*60*60 # seconds in a year

Use large radii in order to be able to see objects:
sun = sphere(pos=(0,0,0), radius=10*7e8, mass=2e30,
 color=(1,1,0))
earth = sphere(pos=(au,0,0), radius=400*6.4e6,
 mass=6e24, color=(0,1,1))

Give the earth some momentum p:
earth.p = vector(0, earth.mass * pi * au / year, 0)

dt = 1e4 # time interval per step
scene.autoscale = 0 # turn off autoscaling of display

while 1:
r = mag(sun.pos - earth.pos)
F = G*sun.mass*earth.mass*(sun.pos-earth.pos)/r**3
earth.p = earth.p + F*dt
earth.pos = earth.pos + (earth.p/earth.mass)*dt
rate(100) # compute 100 steps every second

Limiting the Animation Rate

rate(frequency)

Halts computations until 1.0/frequency seconds after the previous call to rate().

For example, rate(50) will halt computations for 1.0/50.0 second. If you place
rate(50) inside a computational loop, the loop will execute only 50 times per
second, even if the computer can run faster than this. This makes animations
look about the same on computers of different speeds, as long as the comput-
ers are capable of carrying out 50 computations per second.

10 8/5/00

Controlling One or More Visual Display Windows

Initially, there is one Visual display window named “scene.” Display objects do not
create windows on the screen unless they are used, so if you immediately create your
own display object early in your program you will not need to worry about scene. If
you simply begin creating objects such as sphere they will go into scene.

display() Creates a display with the specified attributes, makes it the selected
display, and returns it. For example, the following creates another
Visual display window 600 by 200, with ‘Graph of position’ in the
title bar, centered on (5,0,0) and with a background color of cyan fill-
ing the window.

scene2 = display(title=’Graph of position’,
width=600, height=200,
center=(5,0,0), background=(0,1,1))

General-purpose options

select() Makes the specified display the “selected display”, so that objects will
be drawn into this display by default; e.g. scene.select()

foreground Set color to be used by default in creating new objects such as sphere;
default is white. Example: scene.foreground = (1,0,0)

background Set color to be used to fill the display window; default is black.

Controlling the window

x, y Position of the window on the screen (pixels from upper left)

width, height Width and height of the display area in pixels: scene.height = 200

title Text in the window’s title bar: scene.title = ‘Planetary Orbit’

visible Make sure the display is visible; scene2.visible = 1 makes the
display named scene2 visible. This is automatically called when new
primitives are added to the display, or the mouse is referenced. Set-
ting visible to 0 hides the display.

exit If sceneb.exit = 0, the program does not quit when the close box of
the sceneb display is clicked. The default is sceneb.exit = 1, in
which case clicking the close box does make the program quit.

Controlling the view

center Location at which the camera continually looks, even as the user
rotates the position of the camera. If you change center, the camera
moves to continue to look in the same “compass” direction toward the
new center, unless you also change forward (see next attribute).
Default (0,0,0).

forward Vector pointing in the same direction as the camera looks (that is,
from the current camera location, given by scene.mouse.camera,
toward scene.center). The user rotation controls, when active, will
change this vector continuously. When forward is changed, the camera
position changes to continue looking at center. Default (0,0,–1).

fov Field of view of the camera in radians. This is defined as the maxi-
mum of the horizontal and vertical fields of view. You can think of it
as the angular size of an object of size range, or as the angular size of

8/5/00 11

the longer axis of the window as seen by the user. Default pi/3.0 (60
degrees).

range The extent of the region of interest away from center along each axis.
This is always 1.0/scale, so use either range or scale depending on
which makes the most sense in your program. Default (10,10,10) or set
by autoscale.

scale A scaling factor which scales the region of interest into the sphere
with unit radius. This is always 1.0/range, so use either range or scale
depending on which makes the most sense in your program. Default
(0.1,0.1,0.1) or set by autoscale.

uniform 0 = each axis has different units and scales

autoscale will scale axes independently

the x and y axes will be scaled by the aspect ratio of the window

1 = each axis has the same scale

autoscale scales axes together

the aspect ratio of the window does not affect scaling

up A vector representing world-space up. This vector will always project
to a vertical line on the screen (think of the camera as having a “plumb
bob” that keeps the top of the screen oriented toward up). The camera
also rotates around this axis when the user rotates “horizontally”. By
default the y axis is the up vector.

autoscale 0 = no automatic scaling (set range or scale explicitly)

1 = automatic scaling (default)

It is often useful to let Visual make an initial display with autoscaling,
then turn autoscaling off to prevent further automated changes.

12 8/5/00

Mouse Objects

Introduction

Mouse objects are never created by the program; they are always obtained from the
mouse attribute of a display object such as scene. For example, to obtain mouse
input in the default window created by Visual, refer to scene.mouse.

A mouse object has a group of attributes corresponding to the current state of the
mouse. It also has a function getclick(), which returns an object with similar
attributes corresponding to the state of the mouse when the user last clicked. If the
user has not already clicked the mouse, your program will stop executing until this
happens.

Current state of mouse

pos The current 3D position of the mouse cursor; scene.mouse.pos.

Visual always chooses a point in the plane parallel to the screen and
passing through display.center.

pick The nearest object in the scene which falls under the cursor, or None.
At present only spheres, boxes, and cylinders can be picked. For exam-
ple, scene.mouse.pick.

pickpos The 3D point on the surface of the picked object which falls under the
cursor, or None; scene.mouse.pickpos.

camera The current position of the camera; e.g. scene.mouse.camera.

The camera and ray attributes together define all of the 3D points
under the mouse cursor.

ray A unit vector pointing from camera in the direction of the mouse cur-
sor. The points under the mouse cursor are exactly { camera + t*ray
for t>0 }.

project() See the later section on “Alternative to camera and ray” for projecting
mouse information onto a given plane.

Getting clicks

clicked The number of clicks which have been queued; e.g.
scene.mouse.clicked.

scene.mouse.clicked = 0 may be used to discard input. No value
other than zero can be assigned.

getclick() Removes a click from the input queue; scene.mouse.getclick().

If no clicks are waiting in the queue (that is, if scene.mouse.clicked is
zero), getclick() waits until the user clicks.

getclick() returns an object with attributes similar to the mouse: pos,
pick, pickpos, camera, and ray. These attributes correspond to the
state of the mouse when the click took place. For example,

scene.mouse.getclick().pos

It is a useful debugging technique to insert scene.mouse.getclick() into your pro-
gram at a point where you would like to stop temporarily to examine the scene. Then
just click to proceed.

8/5/00 13

Alternative to camera and ray

While scene.mouse.camera and scene.mouse.ray are powerful, they can be hard to
use. Here is an alternative way to use mouse information:

temp = scene.mouse.project(normal=(0,1,0), d=0)
if temp <> None:

ball.pos = temp

This projects the mouse cursor onto a plane that is a distance d from the origin of the
scene (0,0,0); the plane is perpendicular to the specified normal. If d is not specified,
its default value is zero and the plane passes through the origin. It returns a 3D posi-
tion, or None if the projection of the mouse misses the plane.

For example, if you want the user of your program to be able to use the mouse to place
balls in the xy plane, no matter how the user has rotated the point of view, you would
use temp = scene.mouse.project(normal=(0,0,1)).

Mouse example

This program displays a sphere (which automatically creates a window referred to as
scene), then repeatedly waits for a mouse click, prints the mouse position, and dis-
plays a small red sphere:

sphere() # display a white sphere for context
while 1:

if scene.mouse.clicked:
m = scene.mouse.getclick()
loc = m.pos
print loc
sphere(pos=loc, radius=0.1, color=(1,0,0))

Try running this program. A mouse click is defined as pressing and releasing the
mouse button at the same location.

You will find that if you click inside the large white sphere, nothing seems to happen.
This is because the mouse click is in the x,y plane, so the little red sphere is buried
inside the large white sphere. If you rotate the scene and then click, you’ll see that the
little red spheres go into the new plane parallel to the screen and passing through
display.center. If you want all the red spheres to go into the xy plane, do this:

loc = m.project(normal=(0,0,1))
if loc <> None:

print loc
sphere(pos=loc, radius=0.1, color=(1,0,0))

This description of the Visual 3D graphics facility was produced by Ruth Chabay,
David Scherer, and Bruce Sherwood, of Carnegie Mellon University.

