
1 ➢ NCSA Telnet for the Macintosh®

Interactive Color Raster Graphics

This chapter introduces the Interactive Color Raster protocol and describes how to use this protocol in
your programs to display color graphics with NCSA Telnet for the Macintosh®, how to control raster
graphics windows, and how to display and manipulate color images. The chapter concludes with a
sample program you can use as a template for designing programs that use the ICR protocol.

Interactive Color Raster Graphics

Interactive Color Raster (ICR) is a protocol for displaying raster graphics on your workstation screen.
The ICR protocol controls its own windows through NCSA Telnet for the Mac and shares
characteristics of the Tektronix graphics terminal emulation protocol. For example, escape sequences
control the display.

You can use ICR to write mainframe programs that display color images in their own windows on your
Macintosh screen, and you can apply the full range of 256 colors out of a palette of 16 million colors to
your graphics displays. The ICR protocol is intended for use on a 256-color Macintosh.

Starting and Quitting ICR Graphics Emulation

To use ICR, you need a program that runs on the remote host computer. This program must give all
appropriate commands to conduct ICR graphics emulation. To create an ICR program, work from the
protocol description contained later in this chapter in the "Using the ICR Protocol" section and from
the example in the "Sample Program for ICR in C" section.

When the protocol command for creating a window arrives from the host, NCSA Telnet creates a
Macintosh window for it. All human-readable text continues to go to the session window, while
graphics commands are sent to the proper graphics window.

To quit ICR emulation, the ICR program on the remote computer can remove the window. If it does
not, you can delete a graphics window by clicking in the close box in the upper left corner of the
window's title bar. If you exit NCSA Telnet while some windows remain open, the windows close
automatically.

Using the ICR Protocol

You must write a program that issues graphics commands to NCSA Telnet. NCSA Telnet follows your
programs’ directions to receive graphics commands, interpret them, create or destroy windows, set the
color environment, or display raster graphics.

Begin all ICR graphics sequence commands with the escape sequence ESC^ (escape, caret) to insure
that NCSA Telnet can determine the difference between regular text and ICR graphics.

Description of the Protocol
Each ICR command appears in the following form:

ESC^X; parameters ^ data

where:

X is one of the command characters (W, D, M, R, P, or I) described in the table below.
^ is the caret character (ASCII 94).
Parameters is one or more of the parameters of X described in the table below. Parameters are always

printable ASCII characters and are delimited by commas (,). If your program omits parameters,
NCSA Telnet supplies default values.

Running H/F 2 ➢ 1

2 ➢ NCSA Telnet for the Macintosh®
The command is terminated with a caret (^).
Each command can be followed by a data stream (data). If a command requires a data stream, the

stream follows the command.
Command characters and their parameters are described in the table below:

Command Parameters Description
W left; top; width; Creates a window at the specified location on
 height; display; the screen, where 0, 0 is the upperleft corner
 windowname of the screen.
 • The left, top, width, and height integers
 specify location and size on the screen:

top the pixel value of the vertical, or y, location of the upper-left corner of the graphics window
left the pixel value of the horizontal, or x, location of the upper-left corner of the graphics window

height the number of pixels that comprise the vertical height of the graphics window
width the number of pixels that comprise the horizontal width of the graphics window

Integer Meaning width

left

top

height

•

 • The display integer identifies the hardware screen
 number (for machines with multiple screens). This
 parameter is not applicable to Macintosh systems.
 • Windowname is a string that distinguishes multiple
 windows. The windowname assigned to a window is
 used by all other commands to specify that window.

D windowname Destroys a window by physically removing it from
 the screen and memory.
 • Windowname is the unique name assigned to a
 window when it is created by the W command.

M start; length; Loads into the graphics window a color map palette
 count; windowname (of up to 256 colors) or portion of one. NCSA Telnet
 assumes that palette entries are 8-bit R, G, and B,
 3 bytes per entry, in that order. The default
 palette is a straight gray-scale ramp, where 0=black
 and 255=white.(See "Color Maps" section later in
 this chapter.)
 • The start integer identifies the first entry
 to change.
 • The length integer indicates the number of
 entries to change.
 • The count integer indicates the total number
 of bytes in the data portion. The count parameter

Running H/F 2 ➢ 2

3 ➢ NCSA Telnet for the Macintosh®
 should be followed with the command’s data stream.
 • Windowname is the unique name assigned to a
 window when it is created by the W command.

R x; y; expand Indicates that the data to follow are run-length
 length; encoded. (See the "Run-Length Encoding Format"
 windowname section later in this chapter.)
 • The x and y integers identify the point where
 the raster line starts and the data follow for
 length bytes of encoded data.
 • The expand integer indicates the number of times
 each dimension is to be expanded on your local
 screen. For example, an expand value of 2 makes
 the picture 4 times larger.
 • The length integer indicates the encoded length
 (in bytes) of the data.
 • Windowname is the unique name assigned to a
 window when it is created by the W command.

P x; y; expand; Indicates that the data to follow are pixel data.
 length; • The x and y integers identify the point where
 windowname the raster line starts and the data follow for
 length bytes of pixel data.
 • The expand integer indicates the number of times
 each dimension is to be expanded on your local
 screen. For example, an expand value of 2 makes
 the picture 4 times larger.
 • The length integer indicates the length (in bytes)
 of the data. Length should be the same as the
 number of pixels to be displayed.
 • Windowname is the unique name assigned to a
 window when it is created by the W command.

I x; y; expand; Indicates that the data to follow are encoded with
 length; the IMCOMP compression scheme (4:1 compression).
 windowname You must use the M command before the picture
 displayed with the I command appears correctly.
 • The length integer indicates the number of pixels
 per line. One I call represents 4 lines of data.
 Since IMCOMP is a 4 x 4 square compression scheme,
 each line of data appears as 4 lines of pixels on
 the screen.
 • The y integer is required to increment by fours:
 0, 4, 8, 12, 16, etc.
 • The length integer indicates the length (in bytes)
 of the data. Length should be the same as the
 number of pixels to be displayed.
 • Windowname is the unique name assigned to a
 window when it is created by the W command.

ASCII Encoding
NCSA Telnet assumes that all parameter values (except ESC) are printable ASCII. This means that the
parameters require no special encoding, but data values need help. ESC is an allowable exception on
most login data streams.

Your ICR program must encode 8-bit data values into printable ASCII for transmission. When
possible, the values that fall in the printable ASCII range are passed untouched and all values outside
that range are encoded as two bytes.

Running H/F 2 ➢ 3

4 ➢ NCSA Telnet for the Macintosh®
Use the following encoding for all characters 0–255:

Input: realchar

Transmission: specialchar followed by transchar

Encoding: specialchar=realchar div 64 + 123

transchar=realchar mod 64 + 32

Decoding: realchar=(specialchar – 123)*64 + (transchar – 32)

The codes above work to encode data values in printable ASCII character for all characters 0–255, as
shown below:

Special Range

123 0–63

124 64–127

125 128–191

126 192–255

Because all encoded characters are preceded by a character in the 123–126 range, you can send all
regular characters that are 32–122 (inclusive) without encoding.

Warning: On CTSS, trailing spaces are trimmed, so you should avoid the values 0, 32, 128, and 192
because they code to special space.

NOTE: In the specifications, all data lengths and counts refer to the protocol data, not to the ASCII-
encoded data. The length fields for the R, P, and M commands all reflect the data’s length on the
originating machine before encoding.

Run-Length Encoding Format
Data for the run-length encoded line are first run-length compressed and then ASCII encoded.
Therefore the deciphering process first decodes ASCII to binary and then decodes the run-length
binary data.

Using all 8 bits of the byte stream representing the pixels in a given RLE line, start with the control
character. (n) represents the lower seven bits of the byte. The high bit represents whether the following
(n) characters are reproduced exactly (high bit = 0) or whether the following single character is
reproduced (n) times (high bit = 1).

Input: 1 1 1 1 23 23 23 234 112 33 44 55 42 42 42 42
Tokenized: (128+4) 1 (128+3) 23 (5) 234 112 33 44 55 (128+4) 42
Alternate count, data, count,data

After coding into this tokenized form, you know the data length for the R command. (The length is 12
in the example above). Even though ASCII encoding occurs after this step, use the length value from
this step.

ASCII result: 125 36 123 33 125 35 123 55 123 37
 126 74 112 33 44 55 125 36 42

Color Maps
You can use the M command to manipulate the color table for your local display. The format for color
map data is a series of color map entries. Each color map entry is three bytes, one R (red), one G
(green), and one B (blue). For example, to set entries 3 through 7 of the color table, you could use the
following M command might be use:

ESC^M;3;4;12;wind^RGBRGBRGBRGB

where the RGBRGBRGBRGB data are the list of byte values for the new entries in RGB order. The
actual data transmitted over the line must still be ASCII encoded, but the data start out in this form.

Running H/F 2 ➢ 4

5 ➢ NCSA Telnet for the Macintosh®
Note that the count field (12 in this example) is always 3 times the length value (4 in this example).

ICR Graphics Windows

Raster graphics windows require a lot of memory—one byte for each pixel in each graphics window
on the screen. If insufficient memory remains to open a new window, NCSA Telnet displays an alert
dialog box and does not create the window.

Allocating Memory
If you are using MultiFinder, you can prevent running out of memory by setting NCSA Telnet's
allocated memory size to a larger value. For example, if you need space for two 256 x 256 image
windows, increase the memory for NCSA Telnet by 128K (256 bytes x 256 bytes, or 64K, for each
window).

Copying a Graphics Window
You can copy the contents of an ICR window to the Macintosh Clipboard, Then paste it into a program
capable of pasting color images.

To copy the contents of a graphics window:

Click in the graphics window to bring it to the front.

Choose Copy from the Edit menu. Now you can paste the graphic into another Macintosh application.

System Color Problems
Image windows use the colors available for display on your Macintosh screen. When you close
graphics windows, the system does not always restore the color environment to its original state, which
causes incorrect colors in other windows. We are working to minimize the effects of NCSA Telnet and
ICR graphics on your system's color table.

NOTE: Pressing CONTROL-C or using other methods to interrupt ICR commands, can make NCSA
Telnet appear to lock up. (See also "Telnet Options" in Chapter 3, "Advanced Features.") When this
occurs, either press RETURN several times or enter commands until the session window resumes
activity. It may help to remember that when you issue a drawing command NCSA Telnet expects an
influx of a certain number (often hundreds) of bytes of image data to finish drawing the current line.

Sample Program for ICR in C

The sample C program shown below is included on the distribution disk. It produces a test pattern on
your screen if you are running an active ICR-equipped NCSA Telnet. If you do not have ICR, this
program produces thousands of encoded characters on your display.

/* icrtest
*
* Produces a test pattern on an ICR compatible display. Demonstrates and provides * example code for writing ICR programs.
*
* National Center for Supercomputing Applications
* University of Illinois, Urbana-Champaign
*
* by Tim Krauskopf
* This program is in the public domain.
*
*/
#include <stdio.h>

int

Running H/F 2 ➢ 5

6 ➢ NCSA Telnet for the Macintosh®
 xdim=0,ydim=0; /* size of image on disk */

char
 *malloc(),
 *testimage,
 rgb[768]; /* storage for a palette */

main(argc,argv)
 int argc;
 char *argv[];
 {
 register int i,j;
 register char *p;

 puts("Creating test pattern");

 xdim = 150;
 ydim = 100;

 if (NULL == (testimage = malloc(xdim*ydim)))
 exit(1);

/*

* Make the test image in a strange pattern.
*/
 p = testimage;

 for (i=0; i<ydim; i++)
 for (j=0; j<xdim; j++) {
 *p++ = 50 + (((i & 0xfffffff8) * (j & 7))>>2);
 }

 puts("Displaying test pattern with the Interactive Color Raster protocol");

 rimage(0); /* display remote image with [palette] */

}

/***/

/* rimage
* Remote display of the image using the ICR.
* Just print the codes to stdout using the protocol.
*/

rimage(usepal)
 int usepal;
 {
 int i,j,newxsize;
 char *space,*thisline,*thischar;
 register unsigned char c;

Running H/F 2 ➢ 6

7 ➢ NCSA Telnet for the Macintosh®
/*
* Open the window with the W command.
*/

(void)printf("\033^W;%d;%d;%d;%d;0;test window^",0,0,xdim,ydim);

/*
* If a palette should be used, send it with the M command.
*/
 if (usepal) {
 (void)printf("\033^M;0;256;768;test window^"); /* start map */

 thischar = rgb;
 for (j=0; j<768; j++) {
 c = *thischar++;
 if (c > 31 && c < 123) {
 putchar(c);
 }
 else {
 putchar((c>>6)+123);
 putchar((c & 0x3f) + 32);
 }
 }
 }

/*

* Send the data for the image with RLE encoding for efficiency.
* Encode each line and send it.
*/
 space = malloc(ydim+100);
 thisline = testimage;

 for (i = 0; i < ydim; i++) {
 newxsize = rleit(thisline,space,xdim);
 thisline += xdim; /* increment to next line */

 (void)printf("\033^R;0;%d;%d;%d;test window^",i,1,newxsize);

 thischar = space;
 for (j = 0; j < newxsize; j++) {

/***/

/* Encoding of bytes:
*
* 123 precedes #'s 0-63
* 124 precedes #'s 64-127
* 125 precedes #'s 128-191
* 126 precedes #'s 192-255
* overall: realchar = (specialchar - 123)*64 + (char-32)
* specialchar = r div 64 + 123
* char = r mod 64 + 32
*/

Running H/F 2 ➢ 7

8 ➢ NCSA Telnet for the Macintosh®
/***/

 c = *thischar++; /* get byte to send */

 if (c > 31 && c < 123) {
 putchar(c);
 }
 else {
 putchar((c>>6)+123);
 putchar((c & 0x3f) + 32);
 }
 }
 }

 free(space);
}

/**/

/* rleit
*
* Compress the data to go out with a simple run-length encoded scheme.
*
*/

rleit(buf,bufto,len)
 int len;
 char *buf,*bufto;
 {
 register char *p,*q,*cfoll,*clead;
 char *begp;
 int i;

 p = buf;
 cfoll = bufto; /* place to copy to */
 clead = cfoll + 1;

 begp = p;
 while (len > 0) { /* encode stuff until gone */

 q = p + 1;
 i = len-1;
 while (*p == *q && i+120 > len && i) {
 q++;
 i--;
 }

 if (q > p + 2) { /* three in a row */
 if (p > begp) {
 *cfoll = p - begp;
 cfoll = clead;
 }
 cfoll++ = 128 | (q-p); / len of seq */
 *cfoll++ = *p; /* char of seq */
 len -= q-p; /* subtract len of seq */

Running H/F 2 ➢ 8

9 ➢ NCSA Telnet for the Macintosh®
 p = q;
 clead = cfoll+1;
 begp = p;
 }
 else {
 *clead++ = *p++; /* copy one char */
 len--;
 if (p > begp + 120) {
 *cfoll = p - begp;
 cfoll = clead++;
 begp = p;
 }
 }

 }
/*
* fill in last bytecount
*/
 if (p > begp)
 *cfoll = 128 | (p - begp);
 else
 clead--; /* don't need count position */

 return((int)(clead - bufto)); /* how many stored as encoded */
}

Running H/F 2 ➢ 9

