
rdp { a recursive descent

compiler compiler

User manual for version 1.5

Adrian Johnstone Elizabeth Scott

Technical Report

CSD {TR { 97 { 25

December 20, 1997

!()+,

-./01

23456

Department of Computer Science

Egham, Surrey TW20 0EX, England

Abstract

rdp is a system for implementing language processors. Compilers, assem-

blers and interpreters may all be speci�ed in the rdp source language (an ex-

tended Backus-Naur Formwith support for inherited and synthesized attributes

which may be accessed from within C-language semantic actions). These spec-

i�cations may then be processed by the rdp command to produce a program

written in ANSI C which can be compiled by any ANSI standard C compiler.

It is possible to use rdp write, for example, compilers (by using the semantic

actions to specify the corresponding target code), interpreters (by using the

semantic actions to evaluate input fragments) and pretty printers (by using the

actions to reformat the input fragments).

This report describes the rdp source language, command switches and er-

ror messages. Serious usage of rdp-generated parsers requires an understand-

ing of the support library rdp supp which is documented in a companion re-

port [JS97b]. A third, tutorial, report assumes no knowledge of parsing, gram-

mars or language design and shows how to use rdp to develop a small calculator-

like language [JS97c]. The emphasis in the tutorial guide is on learning to use

the basic rdp features and command line options. A large case study is docu-

mented in [JS97a] which extends the language described in the tutorial guide

with details of a syntax checker, an interpreter and a compiler along with an as-

sembler and simulator for a synthetic architecture which is used as the compiler

target machine.

The rdp source code is public domain and has been successfully built using

Borland C++ version 3.1 and Microsoft C++ version 7 on MS-DOS, Borland

C++ version 5.1 on Windows-95, GNU gcc and g++ running on OSF/1, Ultrix,

MS-DOS, Linux and SunOS, and Sun's own acc running on Solaris. Users have

also reported straightforward ports to the Amiga, Macintosh and Archimedes

systems.

This document is
c
Adrian Johnstone and Elizabeth Scott 1997.

Permission is given to freely distribute this document electronically and

on paper. You may not change this document or incorporate parts of it

in other documents: it must be distributed intact.

The rdp system itself is
c
Adrian Johnstone but may be freely copied

and modi�ed on condition that details of the modi�cations are sent to

the copyright holder with permission to include such modi�cations in

future versions and to discuss them (with acknowledgement) in future

publications.

The version of rdp described here is version 1.50 dated 16 August 1997.

Please send bug reports and copies of modi�cations to the authors at the

address on the title page or electronically to A.Johnstone@rhbnc.ac.uk.

Contents

1 Introduction 1

1.1 Specifying languages to rdp 1

1.2 Acceptable languages 2

1.3 Support modules 3

1.4 System ow 3

2 IBNF { the rdp source language 7

2.1 Grammars and BNF 7

2.2 Layout and comments 9

2.3 Identi�ers 9

2.4 Grammar rule format 10

3 IBNF extended forms 11

3.1 Sequences 11

3.2 Alternate productions 11

3.3 Recursion 12

3.4 Do-�rst 12

3.5 Zero-or-one occurrences (optional sub-productions) 12

3.6 Zero-or-many occurrences (Kleene closure) 13

3.7 One-or-many occurrences (positive closure) 13

3.8 The iterator operator @ 13

3.9 Using iterators to implement lists 14

4 Scanner elements 15

4.1 Introduction 15

Keyword tokens 16

ID token 16

INTEGER token 16

REAL token 17

STRING(open) token 17

STRING ESC (open escape) token 17

CHAR(open) token 17

CHAR ESC (open escape) token 18

EOLN token 18

4.2 Describing comments to the scanner 18

ii CONTENTS

5 Attributes and semantic actions 21

5.1 An introductory example 21

5.2 Synthesized attribute de�nition 22

5.3 Synthesized attribute types for scanner primitives 23

5.4 Using synthesized attributes 23

5.5 Inherited attribute de�nition 24

5.6 Semantic actions 24

5.7 Error checking of semantic actions 25

5.8 Default actions for iterators that match the empty string 25

5.9 Semantic rules 25

5.10 Semantic actions in multi-pass parsers 26

6 Directives 29

6.1 Flow control directives 29

INCLUDE("�lename") 29

6.2 Parser setup directives 29

USES("�lename") 29

TITLE("string") 30

SUFFIX("string") 30

PARSER(start) 30

PRE PARSE([* action *]) 30

POST PARSE([* action *]) 30

OUTPUT FILE("�le") 30

PASSES(count) 30

SYMBOL TABLE(name size prime compare hash print [* data *]) 31

6.3 Command line argument de�nition directives 32

ARG BOOLEAN(key identi�er key string) 32

ARG NUMERIC(key identi�er key string) 32

ARG STRING(key identi�er key string) 33

ARG BLANK(key string) 33

6.4 Command line default directives 33

TAB WIDTH(count) 33

TEXT SIZE(count) 33

MAX ERRORS(count) 33

MAX WARNINGS(count) 34

6.5 Scanner directives 34

CASE INSENSITIVE 34

SHOW SKIPS 34

6.6 Tree generation directives 34

TREE([* data *]) 34

EPSILON TREE([* data *]) 34

ANNOTATED EPSILON TREE([* data *]) 35

7 Running rdp 37

7.1 rdp �lename parameters 37

7.2 rdp option parameters 37

-e write out expanded IBNF 37

CONTENTS iii

-E add rule name to error messages 38

-f �lter mode 38

-F force creation of output �les 38

-l make a listing 38

-ofilename write output to �lename 39

-p make parser only 39

-R add rule entry and exit messages 39

-s echo each scanner symbol as it is read 39

-S print summary symbol table statistics 39

-tn tab expansion width 39

-Tn text bu�er size in bytes for scanner 40

-v set verbose mode 40

-V dump derivation tree in VCG format 40

7.3 Options understood by rdp-generated parsers 41

8 rdp global variables 43

8.1 Monitoring parser status at runtime 43

rdp error return 43

rdp outputfilename 43

rdp pass 43

rdp sourcefilename 43

rdp tree 43

rdp verbose 44

8.2 De�ning the message stream 44

8.3 Adding reserved words to the dangerous identi�er list 44

9 Derivation tree construction and visualisation 45

9.1 Derivation trees 46

9.1.1 A larger example 47

9.2 Tree generation directives 51

TREE([* data *]) 51

EPSILON TREE([* data *]) 51

ANNOTATED EPSILON TREE([* data *]) 51

9.3 Using VCG to visualise derivation trees 51

10 Tree manipulation 55

10.1 Normal tree construction 55

10.2 Modifying tree construction with promotion operators 56

10.2.1 Promote underneath parent 56

10.2.2 Promote on top of parent 56

10.2.3 Promote above parent 56

10.2.4 Insert here (no promotion) 57

10.3 Valid contexts for promotion operators 57

10.4 A complete example 58

10.4.1 Removing syntactic sugar 58

10.4.2 Making operators parent nodes to their operands 58

10.4.3 Handling left associative operators 61

iv CONTENTS

11 Error and informational messages 63

11.1 Fatal errors 64

11.2 Errors 65

11.3 Warnings 69

11.4 Informational messages 69

12 Understanding and debugging rdp-generated parsers 73

12.1 The header �le 73

12.2 The rdp scanner 73

12.2.1 The token enumeration 74

12.2.2 Interaction between the scanner and the parser 75

12.3 The main �le 76

12.3.1 Implementing parser functions 76

12.4 Selecting alternate productions 79

12.5 Parsing iterators 80

12.6 Debugging rdp-generated parsers 81

12.7 Errors reported by rdp when parsing a speci�cation 81

12.8 LL(1) errors reported by rdp during the analysis phase 82

12.9 Re�ning a grammar 83

12.10Debugging semantic actions 84

A Acquiring and installing rdp 87

A.1 Installation 87

A.2 Build log 89

List of Figures

1.1 rdp design ow 4

2.1 rdp syntax 8

9.1 A simple derivation tree 47

9.2 Derivation tree for expression grammar 49

9.3 A modi�ed derivation tree 50

9.4 E�ect of the TREE directive 51

9.5 E�ect of the EPSILON TREE directive 52

9.6 E�ect of the ANNOTATED EPSILON TREE directive 52

10.1 Simple expression: full tree 59

10.2 Simple expression: result of adding promotion operators 60

10.3 Right associative operator tree 61

10.4 Left associative operator tree 62

12.1 Extracts from an rdp-generated header �le 74

12.2 Extracts from an rdp-generated parser main �le 77

List of Tables

2.1 Reserved identi�er pre�xes 10

3.1 Iterator:bracket correspondences 14

4.1 rdp character and string escape sequences 18

5.1 Scanner primitive attribute types 23

7.1 Standard command line options 40

A.1 Distribution �le list 88

Chapter 1

Introduction

rdp is a system for implementing language processors. Compilers, assemblers

and interpreters may all be speci�ed in the rdp source language (an extended

Backus-Naur Form featuring iterators along with support for inherited and

synthesized attributes which may be accessed from within C-language semantic

actions). These speci�cations may then be processed by the rdp command to

produce a program written in ANSI C which can be compiled by any ANSI

standard C compiler. It is possible to use rdp write, for example, compilers

(by using the semantic actions to specify the corresponding target code), inter-

preters (by using the semantic actions to evaluate input fragments) and pretty

printers (by using the actions to reformat the input fragments).

This report describes the rdp source language, command switches and er-

ror messages. Serious usage of rdp-generated parsers requires an understand-

ing of the support library rdp supp which is documented in a companion re-

port [JS97b]. A third, tutorial, report assumes no knowledge of parsing, gram-

mars or language design and shows how to use rdp to develop a small calculator-

like language [JS97c]. The emphasis in the tutorial guide is on learning to use

the basic rdp features and command line options. A large case study is docu-

mented in [JS97a] which extends the language described in the tutorial guide

with details of a syntax checker, an interpreter and a compiler along with an as-

sembler and simulator for a synthetic architecture which is used as the compiler

target machine.

The rdp source code is public domain and has been successfully built using

Borland C++ version 3.1 and Microsoft C++ version 7 on MS-DOS, Borland

C++ version 5.1 on Windows-95, GNU gcc and g++ running on OSF/1, Ultrix,

MS-DOS, Linux and SunOS, and Sun's own acc running on Solaris. Users have

also reported straightforward ports to the Amiga, Macintosh and Archimedes

systems.

1.1 Specifying languages to rdp

Parser generator tools like rdp usually work from speci�cations written using

variant of the generative grammar formalismwhich was introduced in the 1950's

by Chomsky. The formalism was �rst applied to the development of program-

2 INTRODUCTION

ming languages by John Backus and Peter Naur in the design of Algol-60 and

the notation used is called Backus-Naur Form (or BNF) [Bac60] in commemo-

ration of that pioneering work. For technical reasons, programming languages

and other synthetic computer languages rarely use the full power of generative

grammars but instead are based on a restricted kind of generative grammar

called a context free grammar.

BNF is su�cient to describe context free grammars, but most real tools

add extensions to the basic notion which might be thought of as shorthands

for commonly occurring BNF idioms. These extended BNF's come in several

varieties, but the basic idea is to combine the notion of regular expressions with

the core BNF notation in such a way as to provide compact ways of specifying

repetition within the strings of a language. This allows language speci�cations

to be smaller, and may allow the parser generator to easily exploit structure

within the rules so as to improve e�ciency.

The particular extended BNF used by rdp is called Iterator Backus-Naur

Form or IBNF. An iterator is a generalisation of the kinds of regular expres-

sions found in other forms of extended BNF. In addition to supporting the

traditional BNF extensions, iterators allow list-like structures within languages

to be conveniently speci�ed.

You can �nd an introduction to the basic notions of generative grammars,

BNF and IBNF in the �rst chapters of the rdp tutorial manual [JS97c]. A full

description of the capabilities of IBNF is given below.

1.2 Acceptable languages

rdp generates parsers that work using recursive descent. It requires grammars

to be LL(1) (or something very close to LL(1)), that is they must be unam-

biguously parsable using a single token of lookahead and there must be no left

recursive rules. This is not a signi�cant constraint for modern languages like

Ada, Pascal and C which were to some extent designed with a view to easy

parsing. On the other hand, some languages are just too di�cult|you should

probably forget all about using rdp to write a FORTRAN parser, for instance.

The main advantages of recursive descent parsing are

� fast (linear time) parsing,

� the availability of standardised error recovery mechanisms and

� the straightforward one-to-one relationship between the code in the parser

and the rules in the grammar speci�cation. This makes it straightforward

to debug the grammar, because a C language debugger may be used to

step through the parser functions and, equivalently, to step through the

grammar rules.

If the language you present to rdp is not LL(1), rdp issues detailed diagnos-

tics explaining which tokens and rules are giving the trouble. It is possible to

write algorithms that translate certain non-LL(1) grammars automatically to

Support modules 3

LL(1) form, but rdp does not attempt to perform any such transformations be-

cause that might produce an obscure parser that was no longer directly related

to the input grammar.

rdp is itself a language processor, and the rdp source language has a gram-

mar that is almost LL(1). In fact rdp is `written in itself'| an early version

of the system was hand written and later versions developed from a grammar

description written in rdp's own source language. This process (developing new

versions of a tool by writing each new version in the language acceptable to the

old version of the tool) is called bootstrapping and is a common technique in

compiler development.

1.3 Support modules

rdp-generated parsers use a set of general purpose support modules collectively

known as rdp_supp. There are seven parts to rdp supp:

� a hash coded symbol table handler which allows multiple tables to be

managed with arbitrary user data �elds (symbol.c),

� a set handler which supports dynamically resizable sets (set.c),

� a graph manager which allows arbitrary directed graphs to be constructed

and manipulated, with a facility to output any graph in a form that may

be read and visualised by the VCG [San95] tool on Windows and Unix/X-

windows systems (graph.c),

� a memory manager which wraps fatal error handling around the standard

ANSI C heap allocation routines (memalloc.c),

� a text handler which provides line bu�ering and string management with-

out imposing arbitrary limits on input line length (textio.c),

� a command line argument parsing package that allows Unix style options

to be implemented in a standardised way (arg.c),

� scanner support routines for handling tokens in recursive descent parsers

(scan.c and scanner.c).

Writing e�ective language processors in rdp requires a detailed understand-

ing of these modules. The rdp_supp routines are documented in [JS97b].

1.4 System ow

The steps involved in producing a new language processor for a mythical new

language myth using the rdp parser generator are

1. Create a �le myth.bnf containing an Iterator Backus-Naur Form (IBNF)

speci�cation of the myth language. Decorate the grammar with attributes

and C-language fragments describing semantic actions. By convention,

large semantic routines are kept in a �le called the auxiliary �le with a

name like myth_aux.c.

4 INTRODUCTION

�

�

�

�

�

�

�

�

�

�

�

�

link

�

�

�

�

compile myth

�

�

�

�

�

�

�

�

rdp -omyth myth

�

�

�

�

�

�

�

�

compile myth aux

?

?

?

?

?

?

@

@

@R

�

�

�	

@

@

@R

�

�

�	

myth.bnf myth aux.c

myth.h myth.c

rdp supp modules myth object myth aux object

myth executable

�

�

�

�

myth test

�

�

�

�

?

?

test.mth

test.out

�

�

�

�

�

�

�

�

�)

P

P

P

P

P

P

P

P

Pq

Figure 1.1 rdp design ow

System ow 5

2. Process myth.bnf with rdp to produce myth.c, the rdp-generated parser

for our language myth.

3. Compile myth.c and myth_aux.c with an ANSI C compiler.

4. Link the myth object �le with the rdp_supp modules and any other re-

quired semantic routines.

5. Run the resulting executable on test.mth, a test program for the myth

language.

This process is illustrated in Figure 1.1.

A complete sequence of commands to generate and build an rdp based parser

using Unix commands might be

edit myth.bnf Create BNF �le

edit myth_aux.c Create auxiliary �le (optional)

rdp -omyth myth Use rdp to generate the parser

cc -c myth.c Compile the generated C parser

cc -c myth_aux.c Compile the auxiliary �le

cc -omyth myth.o myth_aux.o arg.o graph.o memalloc.o scan.o

scanner.o set.o symbol.o textio.o Link object �les

edit test.mth Create a test �le contaning a myth program

myth test.mth Run the executable parser on the test �le

The following chapters include reference documentation on rdp command

line parameters, a full description of the rdp iterator BNF source language, a

discussion of the use of derivation trees with the VCG tool, and a summary of

all rdp error messages. Any serious use of rdp will require familiarity with the

support library which is described in a companion report [JS97b]. Extensive

tutorial documentation, suitable for both novice and expert users, will be found

in the tutorial guide [JS97c] and in the case study documented in [JS97a].

Chapter 2

IBNF { the rdp source language

This chapter introduces the basic syntax of Iterator Backus-Naur Form (IBNF)

which is the language in which rdp speci�cations are written. Figure 2.1 shows

the syntax of the rdp source language written in IBNF. An rdp source �le is

a collection of rules and directives. Directives are used to parameterise the

grammar, often by setting default values for command line switches. Rules are

IBNF grammar rules describing the syntax of the target language. Below we

describe basic BNF. In the next chapter we describe the extended forms which

are accepted by rdp.

2.1 Grammars and BNF

It is standard practice to use formal grammars to specify computer languages.

We give a very brief summary of the notation here. You can �nd more detail

in the tutorial manual [JS97c] and in standard texts on compiler design.

A grammar consists of a set N of non-terminals, a set T of tokens, and a

set P of grammar rules. Non-terminals are written as strings which must start

with an alphabetic character or an underscore, and may then continue with

alphabetic, numeric or underscore characters. Tokens are written as singly

quoted strings.

Each grammar rule is of the form

rule_name ::= rule expression.

where rule_name is a non-terminal and the rule expression is a collection of se-

quences of grammar symbols. These sequences are called alternate productions

of the grammar rule.

For example,

S ::= S '+' S | S '*' S | E .

E ::= 'a' | 'b' .

is a set of grammar rules which generates a language of sums and products,

for example, a+b*a+a or a. In this grammar, the non-terminals are S, E, the

terminals are +,*,a,b, and the start symbol is S.

In basic BNF the rule expression is described by writing out the sequences

and separating them using a vertical bar (|). IBNF also allows certain sets of

8 IBNF{THE RDP SOURCE LANGUAGE

unit ::= { rule | dir}.

dir ::= 'ARG_BOOLEAN' '(' ID (ID | code) String ')' |

'ARG_NUMERIC' '(' ID (ID | code) String ')' |

'ARG_STRING' '(' ID (ID | code) String ')' |

'ARG_BLANK' '(' String ')' |

'CASE_INSENSITIVE' |

'INCLUDE' '(' code ')' |

'OUTPUT_FILE' '(' String ')' |

'MAX_ERRORS' '(' INTEGER ')' |

'MAX_WARNINGS' '(' INTEGER ')' |

'PARSER' '(' ID ')' |

'PASSES' '(' INTEGER ')' |

'POST_PARSE' '(' code ')' |

'PRE_PARSE' '(' code ')' |

'SUFFIX' '(' String ')' |

'SHOW_SKIPS' |

'SYMBOL_TABLE' '(' ID INTEGER INTEGER ID ID ID code ')' |

'TITLE' '(' String ')' |

'TAB_WIDTH' '(' INTEGER ')' |

'TEXT_SIZE' '(' INTEGER ')' |

'USES' '(' String ')'.

rule ::= ID ['(' { ID [':' ID {'*'}] } ')'] [':' ID {'*'}] ['!'] '::=' prod '.' .

prod ::= (seq)@'|' .

seq ::= < (item_ret [':' ID] | item_inl) ['!'] > .

item_ret ::= ID '(' { (INTEGER | REAL | String | ID) } ')' |

token |

'CHAR' '(' token ')' |

'CHAR_ESC' '(' token token ')' |

'STRING' '(' token ')' |

'STRING_ESC' '(' token token ')' |

'COMMENT' '(' token token ')' |

'COMMENT_VISIBLE' '(' token token ')' |

'COMMENT_NEST' '(' token token ')' |

'COMMENT_NEST_VISIBLE' '(' token token ')' |

'COMMENT_LINE' '(' token ')' |

'COMMENT_LINE_VISIBLE' '(' token ')'.

item_inl ::= code ['@' INTEGER] |

'('prod')' ['@' [INTEGER ['..' INTEGER]] (token | '#')] |

'{'prod'}' (* Kleene closure *) |

'['prod']' (* Optional *) |

'<'prod'>' (* Positive closure *).

token ::= STRING_ESC('\'' '\\').

String ::= STRING_ESC('"' '\\').

code ::= COMMENT_VISIBLE('[*' '*]').

comment ::= COMMENT('(*' '*)').

Figure 2.1 rdp syntax

Layout and comments 9

alternates to be represented using regular expression like structures. We shall

discuss the details of these IBNF expressions in Chapter 3.

We derive one sequence of grammar symbols from another by replacing

a non-terminal (rule name) with a sequence from the right hand side of its

grammar rule. For example, given the grammar

start ::= 'a' start | 'b'.

we can derive 'a''b' from 'a'start by replacing start with 'b'. We write

'a' start) 'a' 'b'

We can perform a series of derivations one after the other:

start) 'a' start) 'a' 'a' start) 'a' 'a' 'b'

In this case we write

start

�

) 'a' 'a' 'b'.

The language generated by the grammar is the set of sequences of tokens

which can be derived from the start symbol.

In the rest of this chapter and in Chapter 3 we shall describe the detailed

capabilities of IBNF.

2.2 Layout and comments

The rdp IBNF source language is free-format, that is whitespace and newlines

can be used anywhere between lexemes to provide a neat layout.

It is possible to insert comments into an rdp IBNF source �le. IBNF com-

ments are delimited by (* *) brackets and may appear in any position that

white space is legal. Comments may be nested: the maximum nesting level is

limited only by available memory. For example,

S ::= S '+' S | (* Sum *)

S '*' S | (* Product *)

E . (* Constant terms *)

E ::= 'a' | 'b' .

2.3 Identi�ers

Tokens are singly quoted strings and rule names are identi�ers in the rdp source

language. User de�ned rdp identi�ers must start with an alphabetic character

or an underscore (_) and can contain only alphanumeric characters or under-

scores. In general, rdp identi�ers must obey the rules for ANSI C identi�ers.

Internally, rdp uses many identi�ers and it would be catastrophic if a user

de�ned, say, a rule name that clashed with an internal library routine's name.

To stop this happening rdp reserves several pre�xes which may not be used

10 IBNF {THE RDP SOURCE LANGUAGE

arg

graph

mem

rdp

scan

set

symbol

text

Table 2.1 Reserved identi�er pre�xes

to start an identi�er. The list of reserved pre�xes is shown in Table 2.1: they

correspond to the function name pre�xes used in the support library.

As well as checking for reserved pre�xes, rdp also checks user de�ned iden-

ti�ers against a list of C keywords and library names to ensure that clashes

do not occur at compile time: de�ning a production called printf for instance

would cause the library printf() routine to become invisible with very con-

fusing results. You can add names to this list by modifying the de�nition of

RDP_RESERVED_WORDS in �le rdp_supp/rdp_aux.h.

rdp itself sets no limit on the length of identi�ers subject to there still being

room left in the text bu�er, but note that many C compilers only recognise the

�rst 32 characters of an identi�er as signi�cant and some linkers only recognise

the �rst eight characters. In some contexts rdp can generate identi�ers that

are extensions of a user-de�ned identi�er, so it might be wise to keep your

identi�ers to less than 20 characters in length. rdp is case sensitive, so Adrian

is a di�erent identi�er to adrian.

2.4 Grammar rule format

Each grammar rule must only be de�ned once, in other words there can only

be one rule for each rule name.

Any non-terminal in a sequence on the right hand side of a rule must also

appear on the left hand side of some rule, i.e. must be a rule name. However,

forward references are allowed (that is, rule names may appear on the right

hand side of a rule before they appear on the left hand side). Such forward

references are resolved using a two pass parser.

Every rule must terminate with a full stop (period). Neither empty rules

nor empty alternate productions are allowed: there are special constructions

for describing rules that expand to the empty string and these are described in

Chapter 3.

Chapter 3

IBNF extended forms

In this chapter we shall describe the full generality of grammar rules which can

be written in rdp-IBNF (the rdp source language).

3.1 Sequences

A grammar rule might have a single sequence on its left hand side. A sequence

is simply the concatenation of the tokens and rule names which make up that

sequence:

seq1 ::= seq2 seq2 'z'.

seq2 ::= 'a' 'b' 'c'.

These two productions de�ne a small language that will be recognised by

the corresponding rdp-generated parser. The complete language comprises the

following set which contains just one string:

f abcabcz g

3.2 Alternate productions

Alternative sequences on the right hand side of a rule are written out separated

by vertical bars (|) which we call the alternation operator. Alternation has

lower priority than sequencing, so the rule

rule ::= 'a' 'b' | 'c' 'd' .

describes the sequences fab, cdg, not the sequences fabd, acdg.

The alternation operator can be used to separate any type of rule expression.

For example, we can write

rule ::= 'a' {rule 'b'} | ['c'].

(The constructs fg and [] are described below.)

For a grammar to be acceptable to rdp, no two alternates in the same rule

can generate sequences that begin with the same token. For example, if

12 IBNF EXTENDED FORMS

rule_name ::= ... | alternate1 | ... | alternate2 |

then we cannot have

alternate1

�

) 'a' string1, alternate2

�

) 'a' string2

for any token 'a'. This is because rdp-generated parsers may only look one

token ahead, and must be able to make a deterministic choice of alternates on

this basis. rdp will issue an LL(1) error if it cannot disambiguate alternate

productions.

Hence,

seq1 ::= 'a' 'b' | 'a' 'c'.

is not legal, but

seq2 ::= 'a' seq3.

seq3 ::= 'b' | 'c'.

speci�es the same language and is acceptable to rdp.

3.3 Recursion

rdp allows most directly recursive and indirectly recursive rules, but left recur-

sive rules of either type generate LL(1) errors. This is because a left recursive

rule will generate a similarly left recursive set of function calls, which will never

terminate, so

rec1 ::= 'a' rec1 | 'b'.

is legal, but

rec1 ::= rec1 'a' | 'b'.

is not.

3.4 Do-�rst

Parentheses (...) may be used to override the relative priority of alternation

and sequencing, so the language fabd, acdg may be described with

a ::= 'a' ('b' | 'c') 'd' .

In fact any the contents of any (. . .), [. . .], {. . .} or <. . .> bracket pair is

evaluated immediately, that is all bracket pairs have maximum priority.

3.5 Zero-or-one occurrences (optional sub-productions)

Optional parts of a grammar are enclosed in square brackets [...]. The set

of tokens that may appear �rst in an optional phrase must not include any

tokens that can appear immediately after an optional phrase. This is because

rdp-generated parsers may only look one token ahead. If there is a token that

could be both the �rst in the optional phrase and be the �rst token of the

phrase after the optional phrase then the parser will not know which rule to

follow. rdp will issue an error in this case.

Zero-or-many occurrences (Kleene closure) 13

3.6 Zero-or-many occurrences (Kleene closure)

Iteration may be directly represented (without using recursion) by curly braces

{...} which is a shorthand for `zero or many' occurrences of the iterator body.

The set of tokens that may appear �rst in a string derived from the repeat

construct must not include any tokens that can appear immediately after that

repeat construct. This is because rdp-generated parsers may only look one

token ahead. If there is a token that could be both the �rst token in a string

derived from the repeat construct and be the �rst token of a string derived from

the sequence following that repeat construct then the parser will not know which

rule to follow. rdp will issue an error in this case.

3.7 One-or-many occurrences (positive closure)

Angle brackets <...> form a shorthand for `one or many' occurrences of the

iterator body. The set of tokens that may appear �rst in a string derived from

the repeat construct must not include any tokens that can appear immediately

after that repeat construct. This is because rdp-generated parsers may only

look one token ahead. If there is a token that could be both the �rst token

in a string derived from the repeat construct and be the �rst token of a string

derived from the sequence following that repeat construct then the parser will

not know which rule to follow. rdp will issue an error in this case.

3.8 The iterator operator @

rdp provides a generalised iterator operator which subsumes the standard ex-

tended BNF brackets described above. The construction

('body') 2 @ 4 'separator'

matches the following strings

body separator body

body separator body separator body

body separator body separator body separator body

that is, between two and four instances of body separated by the token separator.

The general form of the iterator is

(valid subproduction) lo @ hi token

This speci�es that the rdp-generated parser should match the body represented

by valid subproduction between lo and high times interspersing each instance

with one instance of the separating token. A hi value of zero means `without

limit', that is the iteration will continue arbitrarily.

Either, or both, of hi and lo may be absent in which case they default to

zero. The separating token may be set to the special token # which means

`nothing' or the empty string (sometimes represented by �). In this case no

separating token is looked for.

14 IBNF EXTENDED FORMS

(...) ! (...) 1@1 #

< ... > ! (...) 1@0 #

[...] ! (...) 0@1 #

{ ... } ! (...) 0@0 #

Table 3.1 Iterator:bracket correspondences

The IBNF brackets described in the previous sections are in fact just short-

hands for special cases of the iterator construct. The correspondences are shown

in Table 3.1. None of them carries a separating token, and all of them have

lower bounds of zero or one and upper bounds of one or zero (without limit).

3.9 Using iterators to implement lists

Delimited lists are common in high level languages. Consider, for instance, a

function call in C:

func(param1, param2, param3)

In general, parameter lists are comma-delimited lists of identi�ers. If we have

an rdp rule ID which matches a C-style identi�er, one way of writing an rdp

speci�cation of a function call is:

func_call ::= ID '(' param_list ')'.

param_list ::= [ID param_tail].

param_tail ::= [',' ID param_tail].

This uses recursion to match an arbitrary number of parameters. We can

use the { ... } iterator brackets and give a more compact description:

func_call ::= ID '(' param_list ')'.

param_list ::= [ID {',' ID }].

Here the recursion has been replaced by iteration.

Using the iterator operator with the optional delimiter token we can further

compact this to

func_call ::= ID '(' param_list ')'.

param_list ::= [ID @ ','].

or just

func_call ::= ID '(' [ID @ ','] ')'.

Chapter 4

Scanner elements

4.1 Introduction

Under the traditional model of compilation parsers operate on the grammar of

a language, and a separate scanner or lexical analyser reads the input charac-

ters and groups them into tokens which are then passed on to the parser for

processing.

It is possible to build the scanning phase into the parser by specifying the

language down to character level in the grammar. In practice this is both

tedious and di�cult because the grammar speci�cation required may not satisfy

the LL(1) requirements. Another traditional role of the scanner is to remove

comments from the input �le. It is also possible to remove comments at parser

level by adding appropriate rules to the grammar, but this is both tedious and

ine�cient.

rdp does not use a scanner generator, relying instead on a hard wired scanner

when it reads an IBNF input �le. This same hard wired scanner is automatically

attached to the front end of rdp-generated parsers and the user can access this

scanner by putting certain built in token names and parser directives into their

IBNF grammars. In addition, the inclusion of the scanner allows the generated

parsers to e�ciently perform bu�ering and error reporting on their source �les.

Although the scanner is essentially pre-de�ned, aspects of it are paramater-

isable, and it can be made to handle the constructs in most high level languages.

For example, it is possible to de�ne a language in which strings are enclosed

in single quotes (Pascal style) and to de�ne a language in which strings are

enclosed in double quotes (C style). This is because, as we shall see below, the

hard wired token which matches strings takes a parameter which is the string

delimiter.

The scanner also has primitives which allow commenting styles to be speci-

�ed in a language. These primitives are paramaterisable to allow, for example,

Pascal like comments, which are enclosed in braces, and C++ like comments,

which begin // and terminate at the end of the line.

We now give a summary of the types of hard wired tokens available in the

scanner, and the tokens and strings (lexemes) that they match, along with the

family of comment de�nition primitives.

16 SCANNER ELEMENTS

� simple character sequences such as 'fred' are tokens and they match the

corresponding lexeme or string (fred in this case),

� the token ID matches C-style identi�ers such as adr123 and _temp,

� the token INTEGER matches C-style integer literals such as 145 and 0xFE

(a hexadecimal integer),

� the token REAL matches C-style real literals such as 1.45, 1., 1.45e3 and

1.45E-02,

� the token STRING('\'') matches Pascal style strings where two adjacent

quotes are read as a quote mark in the string, as in 'Adrian''s book',

� the token STRING_ESC('"' '\\')matches C-style strings where as escape

character is used to introduce quote marks and other special characters

into the string, as in "\"Good\" she said",

� the token EOLN matches the end of line marker,

� a variety of comment styles are supported including both nestable and

non-nestable comment brackets along with comments that start with a

token and terminate at the end of line.

Keyword tokens

A keyword token is any character string delimited by single quotes, such as

'>=' 'while' and '++'. This token matches just the string itself, so 'while'

matches the string of letters while. Just as in a C string, the backslash char-

acter can be used as an escape character so that the token ' is represented as

'\''. Empty tokens ('') and tokens containing non-printing characters such

as 'long int' and 'bad_code\8' are illegal.

In the following sections we describe hard wired tokens which can be used

in an input grammar for rdp.

ID token

The token ID matches any string comprising an alphabetic character (a..z and

A..Z) or an underscore (_) followed by any number of alphabetic, numeric or

underscore characters, such as temp, temp123 or _temp_123.

INTEGER token

The token INTEGER matches any valid C-style integer such as 145 and 0xFE

(a hexadecimal integer). In an extension to standard C-style integers, you

may insert underscore characters within a numeric literal so as to improve

readability: hence 999_999_999 is valid. The scanner builds a long unsigned

value from the digits.

Introduction 17

REAL token

The token REAL matches any valid C-style real literal, such as 1.45, 1., 1.45e3

and 1.45E-02. In an extension to standard C-style integers, you may insert

underscore characters within a numeric literal so as to improve readability:

hence 999_999.999 is valid. The scanner builds a double value from the digits.

STRING(open) token

Simple strings are speci�ed with a single token which marks both the opening

and closing quote. Two consecutive quotes are used to represent an embedded

quote character.

If there exists a rule like

string1 ::= STRING('\'').

then the scanner will look for Pascal-style strings delimited by single quotes,

such as 'adrian' which returns adrian and 'adrian''s book' which returns

adrian's book. Similarly

string2 ::= STRING('|').

accepts strings such as |adrian| and |the symbol || is used for alternation|

which returns the symbol j is used for alternation.

STRING ESC (open escape) token

There is no way to directly represent control characters with a simple STRING

primitive. rdp escaped strings support the full range of ANSI standard C escape

sequences although trigraph sequences are not available. The speci�cation of

the string includes an opening token and the escape token, so that strings in C

can be recognised with

stringc ::= STRING_ESC('"' '\\').

Table 4.1 shows the special escape sequences. In addition, any combination

\y, where y is a character not shown in Table 4.1, is replaced by the character

y

1

. For octal numbers there must be exactly 1, 2 or 3 digits. For hex numbers

any sequence of valid hexadecimal digits will be accepted regardless of length.

Both upper and lower case hex digits will be accepted.

CHAR(open) token

Single characters are speci�ed with one token which marks both the opening

and closing quote. Two consecutive quotes are used to represent an embedded

quote character.

If there exists a rule like

string1 ::= CHAR('\'').

then the scanner will look for Pascal-style character literals delimited by single

quotes, such as 'a' which returns the single character a.

1

Note that in ANSI standard C the result of such an escape sequence is unde�ned.

18 SCANNER ELEMENTS

Escape Replacement Name

sequence character

\a BEL alert

\b BS backspace

\f FF form feed

\n NL newline

\r CR carriage return

\t HT horizontal tab

\v VT vertical tab

\\ \ backslash

\" " double quote

\ooo character with octal code ooo

\xhh character with hex code hh

Table 4.1 rdp character and string escape sequences

CHAR ESC(open escape) token

There is no way to directly represent control characters within a simple CHAR

primitive. rdp escaped character literals support the full range of ANSI stan-

dard C escape sequences although trigraph sequences are not available. The

speci�cation of the literal includes an opening token and the escape token so

that, for instance, C-language character literals can be recognised with

stringc ::= CHAR_ESC('\'' '\\').

Table 4.1 shows the special escape sequences. Any combination \y, where y

is a character not shown in Table 4.1, is replaced by the character y

2

. For octal

numbers there must be exactly 1, 2 or 3 digits. For hex numbers any sequence

of valid hexadecimal digits will be accepted regardless of length. Both upper

and lower case hex digits will be accepted.

EOLN token

EOLN matches a newline marker. If you do not use the EOLN primitive anywhere

in your grammar, then newlines are suppressed and treated as whitespace by

the scanner.

4.2 Describing comments to the scanner

Most programming languages include a commenting facility. If rdp is to gener-

ate a parser for a language which has a commenting facility then the comment-

ing style required must be speci�ed in the language grammar. In this section

2

Note that in ANSI standard C the result of such an escape sequence is unde�ned.

Describing comments to the scanner 19

we shall describe the primitives which allow the built in scanner which is in-

cluded in an rdp-generated parser to detect and remove comments. However,

to motivate the de�nitions of these primitives, we �rst give a brief discussion

on various commenting conventions.

Specifying comments in grammars is a rather tricky area. The usual practice

is to allow comments wherever whitespace is legal in the language, and to

suppress comments in the scanner so that they are not visible in the phrase level

grammar. If comments are to be visible in the phrase level grammar then there

either there must be a call to a comment rule after every token in the phrase

level grammar or else comments must be restricted to certain contexts. This

latter option was tried early on in the development of free-format languages

(for instance in Algol-60) but was soon found to introduce inconvenient and

unnecessary restrictions on program layout.

There are several varieties of commenting conventions in use. The most

common in block structured languages is to use opening and closing comment

brackets such as {...} or the alternate form (*...*) in Pascal, or /*...*/ in

C. In both these languages, comments are not nestable, that is

/* This is a C comment

/* with a nested comment inside it */

which is illegal */

is illegal in C. The �rst */ will be taken as closing o� the �rst /*, and the

second */ will generate an error. However, there are languages which do allow

nested comments, and some C compilers (such as Borland C++ 3.1) allow

nested comments to be switched on in C.

A third style of comment speci�cation is to use a token to introduce the

comment which terminates at the line end. This form is the standard in non-

free format languages such as assemblers and FORTRAN, and has made a

belated comeback in free format languages such as Ada and C++.

There is some dispute as to which style is best, and some languages o�er

more than one. The argument for nested comments is that they allow sections

of code to be easily `commented out', that is removed from a compilation. The

argument against is that it is easy to overlook a comment bracket and not

realise that a block has actually been commented out. Commenting out by

prepending, say, -- to each line as in Ada certainly makes disabled code stand

out and any good editor will allow simple macros to be written which add and

delete comment pre�xes to a block of code.

A �nal complication with comments is that under some circumstances they

need to be visible to the phrase level grammar. This is particularly so for

languages that support pragmas which are special comments usually used to

switch compiler features on and o�, replicating the functionality of command

line arguments.

rdp provides a family of six comment primitives, which may be intermixed.

If you use more than one comment primitive then of course they must all have

di�erent opening tokens so that the parser can tell them apart purely on the

basis of their opening tokens. The full set is

20 SCANNER ELEMENTS

COMMENT(OPEN CLOSE) Everything between OPEN and �rst CLOSE.

COMMENT VISIBLE(OPEN CLOSE) Everything between OPEN and �rst CLOSE.

COMMENT NEST(OPEN CLOSE) Everything between OPEN and matching CLOSE.

COMMENT NEST VISIBLE(OPEN CLOSE) Everything between OPEN and matching CLOSE.

COMMENT LINE(OPEN) Everything between OPEN and the line end.

COMMENT LINE VISIBLE(OPEN) Everything between OPEN and the line end.

The ..._VISIBLE primitives return the body of the comment to the phrase

level grammar and so may be used for pragmas. The normal primitives discard

the comments in the scanner, treating them identically to white space.

Comment close tokens can only be a maximum of two characters long, and

conform to the usual token rules, that is empty tokens and tokens containing

white space are not allowed.

Chapter 5

Attributes and semantic actions

A basic rdp-generated parser acts as a syntax checker for the speci�ed language,

which is a useful but rather limited function. By including embedded semantic

actions within a parser speci�cation we can force the running parser to execute

particular functions as it recognises portions of the input text string. In general

these semantic actions will need to be able to interact with the parsing process

proper. A calculator, for instance, will need to be able to parse numbers and

operators and then execute the appropriate semantic actions. In detail, the

action to add two numbers together will need to know not just that a number

has been parsed, but what its value was. This information is transmitted into

semantic actions by using synthesized attributes which act a little like the return

values of a function in a conventional programming language.

Occasionally, the semantic actions may need to inuence the future be-

haviour of the parser, and so rdp also supports the use of inherited attributes

which act a little like parameters to the rules that make up a language speci�-

cation.

This chapter provides a very brief overview of the action and attribute

de�nition features of rdp. A much more extensive discussion of the design

of language processors using these features will be found in the rdp tutorial

manual [JS97c] and example case study [JS97a].

5.1 An introductory example

Here is a very simple example grammar that can be input to rdp. We shall

examine the runtime behaviour of the parser generated by rdp from this gram-

mar.

start:integer ::= INTEGER:val1 '+'

expr:val2 [* result = val1 + val2; *].

expr:integer ::= INTEGER:val1 '*'

INTEGER:val2 [* result = val1 * val2; *].

Imagine that the generated parser is asked to parse the string 2 + 4 * 5.

As the parse proceeds, the parser calls the functions associated with each gram-

mar symbol it encounters. The return type declarations of the form :integer

22 ATTRIBUTES AND SEMANTIC ACTIONS

which appear on the left hand sides of the rules cause the functions for start

and expr to return a value of type integer. The identi�er which holds the

value to be returned is always called result.

The parser begins by calling the function for the start symbol, start. This

then calls the scanner routine for INTEGER, which will return the value of the

integer recognised, in this case the value 2. The synthesized attribute declaration

:val1 which appears after the INTEGER scanner directive instructs the parser

to write the value returned by the call to the INTEGER scanner primitive into a

local variable called val1.

The parser then recognises + and then calls the function corresponding to

grammar rule expr. This function parses the phrase 4*5, writing the values 4

and 5 to the local variables val1 and val2 respectively. The last section of the

expr routine then executes the semantic action which is enclosed between [*

and *] brackets. The e�ect of this is to write the value 20 to the prede�ned

identi�er result, and this value is then returned as the expr routine is exited.

The synthesized attribute declaration :val2 which is appended to the sym-

bol expr in the rule for start instructs the parser to write the returned value

from expr to the identi�er val2, so in this case 20 is assigned to val2. The

semantic action at the end of the start rule is then executed so that the �nal

return value, held in result, is 22.

We now give a fuller description of attribute and semantic action use in

rdp-generated parsers.

5.2 Synthesized attribute de�nition

Each rdp rule and token can optionally return a single attribute. A rule that

does not return an attribute is implemented in the C code for the generated

parser as a void function with the same name as the rule, so

simple_rule ::= 'a' 'b'.

maps to

void simple_rule(void)

{

...

}

If the rule name is followed by a colon and a data type, then a function

returning that type is declared along with a local variable called result, also

of the same type as the function, which is used to hold the return value.

attributed_rule: integer ::= 'a' 'b'.

maps to

integer attributed_rule(void)

{

integer result;

Synthesized attribute types for scanner primitives 23

Primitive Return type Return value

ID string characters making up the identi�er

INTEGER unsigned integer unsigned integer value of literal constant

REAL real oating point value of literal constant

STRING string characters making up the string

STRING ESC string characters making up the string

COMMENT VISIBLE string characters making up the comment

COMMENT NEST VISIBLE string characters making up the comment nest

COMMENT LINE VISIBLE string characters making up the comment

Table 5.1 Scanner primitive attribute types

...

return result;

}

The return value in result can be loaded using semantic actions, or directly

from the return value of a rule call: the following are both valid ways of getting

a value into result.

rule1: integer ::= INTEGER:value [* result = value; *].

rule2: integer ::= INTEGER:result.

Note that the data type integer is de�ned to be a synonym for long int

in the parameter �le scan.h held in the rdp supp subdirectory.

The data type can consist of a single identi�er followed by one or more stars

(to indicate indirection). If you need a rule to return a complex datatype, such

as a struct, then use a typedef to de�ne a synonym for it.

Multiple attributes can be returned from a rule by packing them into a

struct or array. You will need to implement the code to do this yourself.

5.3 Synthesized attribute types for scanner primitives

The scanner primitives have built in attribute types which may be used to

retrieve, for instance, the string associated with an identi�er or the numeric

value of a REAL or INTEGER. The full set of primitives, their return types and

return values is summarised in Table 5.1.

5.4 Using synthesized attributes

Synthesized attribute values are created by appending a colon and a name

to a symbol on the right hand side of a grammar rule. rdp declares a local

variable with the same name, and of the type speci�ed by the return type of the

generated parser function for that symbol. After the generated parser has called

the function for a symbol, the return value is loaded into the local variable,

making it available to subsequent semantic actions. Synthesized attributes cease

to exist when a parser function is exited.

24 ATTRIBUTES AND SEMANTIC ACTIONS

rule ::= ID:name attributed_rule:value.

where attributed_rule has been de�ned as returning an integer attribute,

maps to

void rule(void)

{

string name;

integer value;

...

}

Values will be loaded into the variables name and value after the corresponding

phrases have been parsed.

If a rule that returns a result is called without an attribute name being

declared then the result is simply thrown away.

5.5 Inherited attribute de�nition

rdp rules can have parameters passed into them. Each rdp rule name may be

followed by a parenthesised list of identifier:type pairs which are instanti-

ated into the parser rule as value parameters, so that

inherited_rule(x:integer y:real):integer ::= 'a' 'b'.

maps to

integer inherited_rule(integer x, real y)

{

...

}

The most common use of inherited attributes is to pass information into a

rule that will be used to enable semantic actions. In the rdp case study [JS97a],

an interpreter for an enhanced version of the mini language is used to illustrate

the application of inherited attributes to the implementation of an if . . .then

. . . else statement.

In general, parser rules can have both inherited attributes and return a

single synthesized attribute.

5.6 Semantic actions

C-code fragments may be added to rdp-generated parsers by enclosing them in

[*. . .*] brackets in the IBNF speci�cation. These brackets do not nest, and no

escape sequence is needed. The contents of each bracket pair is simply copied

directly to the parser without any intervening spaces. If for some reason you

want to get the string something*]else into the output you can write it as

[*something**] [*]else*]

The usual purpose of semantic actions is to manipulate the values of at-

tributes passed into the rule by other rules or scanner tokens.

Error checking of semantic actions 25

5.7 Error checking of semantic actions

No syntax checking of code fragments occurs when rdp generates a parser since

rdp is not itself a C compiler. As a result, any syntactic or logical errors that

you introduce into the generated parser will not be detected until it is compiled

or run. If you have a problem and are not clear whether it is the semantics or

the grammar that is causing it then try running rdp with the -p option, which

suppresses semantic action insertion, to check whether your grammar correctly

parses a test �le.

5.8 Default actions for iterators that match the empty string

An iterator with a lower bound of zero (which of course includes the { } and

[] shorthands) may match against nothing, or to put it another way the

body of the iterator may not be entered. In such cases, it is useful to be able

to specify a semantic action that acts as a default, that is, an action that is

executed only when the body is not entered. rdp-IBNF allows such a default

action to be appended to an iterator or bracket with a lower bound of zero by

inserting a colon.

Consider the grammar

start ::= 'a' { 'b' } 'c'.

which generates the language comprising zero or more instances of b bracketed

by a and c. The following grammar prints out a message when presented with

the input string ac.

start ::= 'a' { 'b' }:[* printf("No b's in string"); *] 'c'.

The construct { }:[* default action *] de�nes a default action that is

only executed when the body of the iterator is not entered, i.e. the { }

brackets are matched against the empty string �.

Defaults can also be attached to full iterators as in:

start ::= ID 0@8 ',':[* printf("No identifiers seen"); *] .

5.9 Semantic rules

Semantic actions are often quite large pieces of code, and they can obscure the

ow of the grammar by overwhelming the IBNF. In addition, it is confusing to

read a single speci�cation that contains code operating on di�erent levels| in

this case the high level IBNF and the low level C syntax.

rdp allows you to parcel up large semantic actions into rules of their own,

whose right hand sides contain only semantic actions, which are inserted inline

into the appropriate function in the generated parser. This allows semantic

actions to be described away from the actual instantiation point with no loss

of e�ciency.

A semantic rule is a special form of grammar rule that contains only se-

mantic actions.

26 ATTRIBUTES AND SEMANTIC ACTIONS

Consider this grammar fragment:

statement ::= ID:name '=' e1:value

[* symbol_lookup_id(name)->data.i = value; *] |

'print' '(' (e1:value [* printf("%i",value); *] |

string:str [* printf("%s", str+1); *]

)@','

')'.

Using semantic rules this may be reworked as

statement ::= ID:name '=' e1:value _1 |

'print' '(' (e1:value _2 | string:str _3)@',' ')'.

_1 ::= [* symbol_lookup_id(name)->data.i = value; *].

_2 ::= [* printf("%i",value); *].

_3 ::= [* printf("%s", str+1); *].

The version incorporating the semantic rules splits the semantics out from the

syntax de�nition making the grammar rather more readable.

5.10 Semantic actions in multi-pass parsers

By default, rdp-generated parsers make a single pass over the input text, exe-

cuting semantic actions on the y. Many programming languages are designed

to be parsed in this way: in C and Pascal for instance identi�ers must be

declared before use to allow single pass translation.

Some translation tasks are hard to accomplish in a single pass. rdp itself,

for instance, is a translator for a language that does not require identi�ers to be

declared before use. In fact rdp makes two passes over a .bnf �le: on the �rst

pass all of the rule names are collected together and any rules that have been

declared more than once are reported. On the second pass any references to

undeclared rules can be detected. Other examples of translators that typically

use more than one pass are assemblers and other low level languages that allow

identi�ers to be de�ned and used in arbitrary order.

rdp allows multiple pass parsers to be created easily. If a PASSES(n) decla-

ration is inserted into a .bnf �le then rdp will make n passes over the text (see

section 6.1). Usually, semantic actions in multi-pass translators are designed

to be executed on particular passes. Within a multi-pass parser, the global

variable rdp_pass holds the current pass number (see section 8.1) which may

be used to �lter actions. A semantic action such as

[* if (rdp_pass == 2) printf("Executing actions on second pass"); *]

will only generate output on pass two. It would be tiresome to have to insert

these kinds of if statements into every semantic action of a multi-pass parser,

so rdp allows speci�cation of the pass on which an action is to be executed.

This semantic action is equivalent to the previous one:

Semantic actions in multi-pass parsers 27

[* printf("Executing actions on second pass"); *]@2

By appending an expression of the form @n to an action then it is restricted to

execution on pass n. rdp implements selective execution by simply wrapping

the appropriate if statement around the action. An action without a trailing

@ expression will be executed on all passes.

Chapter 6

Directives

rdp directives are used to parameterise the parser: for instance most of the

standard command line switches have default values which can be set up using

directives. Other features controlled by directives include the instantiation of

symbol tables in the generated parser with the SYMBOL_TABLE directive and the

de�nition of new command line switches which can be added using the ARG_...

family of directives. In addition, some global values such as the case sensitivity

of the target language can be initialised using directives.

6.1 Flow control directives

INCLUDE("�lename")

IBNF descriptions can span several �les. The INCLUDE directive pulls in another

.bnf �le in exactly the same way as the #include preprocessor command in C.

Included �les can be nested to arbitrary depth: the only limit is the amount of

available memory available to hold the list of nested �le descriptor blocks.

6.2 Parser setup directives

USES("�lename")

All rdp-generated parsers automatically include the header �les for the scanner,

text handler, memory manager, argument handler, graph handler, symbol table

and set handling modules. Any user header �les (such as the myth_aux.h �le

from the example in Figure 1.1) can be speci�ed using this directive. Multiple

USES directives may be issued, one for each included �le, to generate a sequence

of #include preprocessor directives in the C parser source �le. The #include

directives will appear in the same order as they are declared in the IBNF source

�le and will be followed with #include"�lename.h"where �lename is the name

of the C parser header �le. Token names for the grammar and symbol table

data structures are de�ned in this header �le.

30 DIRECTIVES

TITLE("string")

The title of the generated parser, as reported in verbose mode and at the top

of the help message is set using this directive. If no TITLE directive appears in

an IBNF description then the default title of rdparser will be used.

SUFFIX("string")

The default �letype for the generated parser is set using the SUFFIX directive.

rdp automatically appends a period (.) and the su�x to any source �le name

that is speci�ed without a �letype. The string argument speci�ed to the SUFFIX

directive should not contain the leading period.

If no SUFFIX directive appears in an IBNF description then �letype process-

ing is disabled and the user �lename will be used literally.

PARSER(start)

The parser start rule is declared using this directive. If no PARSER directive

appears in the grammar then the �rst rule encountered is taken to be the start

rule.

PRE PARSE([* action *])

The rdp-generated parser main() function checks command line arguments,

initialises various subsystems and then makes a call to the parser function cor-

responding to the �rst IBNF rule found. If a PRE PARSE directive is found in

the IBNF description then the C language action is copied into the main()

function immediately before the call to the parser.

POST PARSE([* action *])

The rdp-generated parser main() function checks command line arguments,

initialises various subsystems and then makes a call to the parser function cor-

responding to the �rst IBNF rule found. If a POST PARSE directive is found

in the IBNF description then the C language action is copied into the main()

function immediately after the call to the parser.

OUTPUT FILE("�le")

The default value of the output �lename for the generated parser is set using

OUTPUT FILE. It can be overridden on the command line with a -o directive. If

no OUTPUT FILE directive appears in the grammar then a default output name

of rdparser is used.

PASSES(count)

Normally the rdp-generated parser contains a main() function that simply calls

the function corresponding to the �rst IBNF rule, and then returns control to

the user. For some applications, such as assemblers, it is convenient to have

Parser setup directives 31

the parser called multiple times. If a PASSES directive is encountered then the

parser call is wrapped in a for loop causing the parser to be called count times.

The internal variable rdp_pass may be referenced in semantic actions to check

which pass is currently executing.

Note that the POST_PARSE routine is not called until all passes are complete,

and that any listing requested by a -l command line option is not generated

until the last pass.

SYMBOL TABLE(name size prime compare hash print [* data *])

rdp-generated parsers make use of the hash coded symbol table package symbol

which is described in [JS97b]. Each symbol table takes

� a name which must be a valid C identi�er,

� an integer size which is the number of hash buckets to allocate,

� an integer prime which would ideally be a large prime number less than

size,

� the name of a compare function,

� the name of a hash function,

� the name of a print function,

� a list of data �elds.

name can be any identi�er not used elsewhere in the grammar. The size of

the table should be set to about 30{50% of the expected number of symbols to

be placed in the table. The table will work correctly even if size is very small

compared to the number of symbols but performance will su�er. prime must

be coprime (i.e. not sharing any common factors greater than 1) with size for

the standard hashing functions to work well.

compare, hash and print are pointers to functions that understand the layout

of the user data. If your user data consists of a pointer to a string and a set

of other �elds, and if that string is the symbol table key (a common situation)

then the standard routines supplied as part of the symbol package may be used.

The data �elds are a list of semicolon delimited data declarations which are

copied into the body of a struct by rdp.

For simple tables that are keyed on a string the following directive works

well:

SYMBOL_TABLE(mytable 101 31

symbol_compare_string

symbol_hash_string

symbol_print_string

[* char* id; integer i; *]

)

32 DIRECTIVES

For each SYMBOL_TABLE directive, rdp creates global variable name which

points to the table and then initialises it by calling symbol_new_table() before

beginning the parse. In the header �le, rdp also creates a data structure from

the data �elds and uses a typedef to create a name of the form name_data by

which it may be called. Finally, a cast macro called name_cast is de�ned.

6.3 Command line argument de�nition directives

rdp builds ready-to-run parsers that include an automatically generated help

facility: if a user mistypes a command line when trying to run an rdp-generated

parser then a fatal error message will be issued which includes a condensed

guide to the command line switches supported by the parser. By default, rdp-

generated parsers support the command line arguments shown in Table 7.1.

Extra command line arguments may be added using a family of four directives.

They map onto the library functions declared in rdp_supp\arg.c which are

described in the support library manual [JS97b]. The rdp source �le rdp.bnf

provides a large example of the use of command line argument de�nitions.

ARG BOOLEAN(key identi�er key string)

Add a boolean command line argument. key should be a single alphabetic

character. identi�er is the name of a variable that will be automatically declared

in the generated parser and initialised to zero. key string is a descriptive string

that will be reproduced if the help message is displayed.

For example, this declaration

ARG_BOOLEAN(X x_flag "Set X flag")

will add a -X command line argument and insert a variable called x_flag into

the parser. The x_flag variable will be initialised to false (zero), and then

each instance of -X will invert the ag: hence a parse invocation of the form

rdparser -X myfile will cause x_flag to be set to true (1).

ARG NUMERIC(key identi�er key string)

Add a numeric command line argument. key should be a single alphabetic

character. identi�er is the name of a variable that will be automatically declared

in the generated parser and initialised to zero. key string is a descriptive string

that will be reproduced if the help message is displayed.

For example, this declaration

ARG_NUMERIC(N n_value "Set value of n")

will add a -N command line argument and insert a variable called n_value into

the parser. The n_value variable will be initialised to zero and then a parser

invocation of the form rdparser -N25 myfile will cause n_value to be set to

the value of the numeric parameter (25 in this case).

Command line default directives 33

ARG STRING(key identi�er key string)

Add a string command line argument. key should be a single alphabetic char-

acter. identi�er is the name of a variable that will be automatically declared

in the generated parser and initialised to the empty string (""). key string is a

descriptive string that will be reproduced if the help message is displayed.

For example, this declaration

ARG_STRING(S s_value "Set value of s")

will add a -S command line argument and insert a variable called s_value into

the parser. The s_value variable will be initialised to zero and then a parser

invocation of the form as rdparser -Sstring myfile will cause s_value to

be set to the value of the string parameter (string in this case).

ARG BLANK(key string)

Add a blank argument. No actual command line switch is instantiated: this

declaration is used to add a line to the help message. key string is a descriptive

string that will be reproduced if the help message is displayed.

6.4 Command line default directives

TAB WIDTH(count)

This directive sets the default number of spaces to expand tabs to when pro-

ducing listings. If no TAB_WIDTH directive appears in the IBNF source then 8

is assumed. It may be over-ridden with the -t command line directive.

TEXT SIZE(count)

This directive sets the default size of the scanner's text bu�er in bytes. If no

TEXT_SIZE directive appears in the IBNF source then 20,000 is assumed. It

may be overridden with the -T command line directive.

Note that your operating system and compiler may impose their own limits

on the size of the bu�er: for instance MS-DOS 16-bit compilers often limit the

size of a single heap object to 64K bytes, which acts as an e�ective limit to

the size of the text bu�er. rdp will exit with a fatal memory allocation error if

you exceed the operating system limit. You can usually get a good idea of the

limitations of your system by looking at the de�nition of the ANSI C datatype

size_t which is used to represent the size of memory objects. If, as in Borland

C++ version 3.1, size_t is a 16 bit number then the 64K limit applies.

MAX ERRORS(count)

This directive sets the maximum number of errors that will be reported before

parsing is aborted. If no MAX_ERRORS directive appears in the IBNF source then

25 is assumed.

34 DIRECTIVES

MAX WARNINGS(count)

This directive sets the maximum number of warnings that will be reported

before parsing is aborted. If no MAX_WARNINGS directive appears in the IBNF

source then 100 is assumed.

6.5 Scanner directives

CASE INSENSITIVE

By default, rdp-generated parsers are case sensitive. For languages such as Pas-

cal which are case insensitive, the scanner may be set by a CASE_INSENSITIVE

directive so as to force all characters outside of strings and comments, includ-

ing tokens and identi�ers, to be lower case. Since conversion is from upper to

lower case, tokens in the IBNF description of a case insensitive language should

be written in lower case. The �le pascal.bnf supplied in the standard rdp

distribution provides an example of the use of this directive.

SHOW SKIPS

After detecting an error, rdp-generated parsers consume input until a token that

might reasonably be used to restart the parse is found. This process is known

as skipping, and if a SHOW_SKIPS directive appears in the IBNF description then

an extra warning message is enabled that marks the end of the skipped passage.

This is useful when debugging error handling.

6.6 Tree generation directives

For completeness, this section summarises the directives that enable automatic

tree generation. For fuller documentation, please refer to Chapter 9.

TREE([* data *])

Switch on tree generation and (optionally) de�ne extra data �elds to be added to

each tree node. The trees will have epsilon nodes deleted: leaf nodes containing

epsilon are simply removed and internal epsilon nodes are removed with their

children being promoted to be at the same level as the internal epsilon node

was at before pruning. Fuller documentation on tree generation will be found

in Chapter 9.

EPSILON TREE([* data *])

Switch on tree generation and (optionally) de�ne extra data �elds to be added

to each tree node. Epsilon nodes will be left in the tree. Fuller documentation

on tree generation will be found in Chapter 9.

Tree generation directives 35

ANNOTATED EPSILON TREE([* data *])

Switch on tree generation and (optionally) de�ne extra data �elds to be added to

each tree node. Epsilon nodes will be left in the tree as with the EPSILON TREE

directive but each such node will be annotated with the string #:name where

name is the name of the subrule that generated the epsilon. Fuller documenta-

tion on tree generation will be found in Chapter 9.

Chapter 7

Running rdp

This chapter describes the rdp command line options. rdp reads a single IBNF

source �le (of default �letype .bnf) and writes out a header �le and a parser

�le. If no output �lename is supplied then the �les are written to rdparser.h

and rdparser.c respectively.

The rdp command accepts parameters which can either be option switches

which are denoted by a leading minus sign (-) followed by a letter, or �lename

arguments which are anything else. Options and �lenames can be intermixed:

it is not necessary to place the �lename after the options. rdp expects a single

�lename| if you issue multiple �lenames then only the leftmost one will be

used.

All rdp options are processed in strict left to right order. This is signi�cant

because some options can override the actions of other options: in such cases

the rightmost instance of an option will override any earlier ones.

7.1 rdp �lename parameters

Any rdp parameter that does not consist of minus sign (-) followed by a non-

whitespace character will be taken as a �lename.

The rdp scanner attempts to add a default �letype to the �lename you

specify. It starts at the rightmost character, and looks backwards for a period

(.). If it encounters one before it �nds the start of the �lename or an instance

of either the Unix or MS-DOS directory separators (/ and \) then it assumes

that you have supplied your own �letype and leaves the �lename untouched. If

it does not �nd a period then it appends .bnf to your �lename.

7.2 rdp option parameters

-e write out expanded IBNF

This option enables an extended listing mode that causes rdp to render all of

its internal and external rules as human readable BNF, as well as enumerating

the �rst and follow sets for each rule, and giving a count of the number of times

the rule is called in the grammar, that is the number of times a particular rule

names appears on the right hand side of rules.

38 RUNNING RDP

An internal rule (or subrule) is the expansion of one of the rdp extended rule

types that are described in Chapter 3: the (. . .), [. . .], {. . .} or <. . .> bracket

pairs or the expansion of an iterator operator @. Each internal rule inherits its

parent rule's name with the string rdp prepended and the string _n appended,

where n is a unique integer.

This option usually generates a lot of output, but can be very educational

when analysing �rst and follow sets for simple languages.

-E add rule name to error messages

When debugging a grammar it is sometimes helpful to know which rule was

being processed when an error occurred. If you regenerate the parser using

rdp and add the -E ag to the rdp command line, then the message In rule

'name' is prepended to all syntax errors displayed by the generated parser

where name is the name of the active rule at the time the error was found.

-f �lter mode

In �lter mode, input is read from the standard input and written to the standard

output. The -f option sets the input to stdin (either the keyboard, or the

output of a previous operation within a pipe) and the output to stdout, but

subsequent -o options or �lenames can be used to override this. Similarly, this

option overrides any previous -o option.

-F force creation of output �les

Any ambiguities or left recursion in the supplied grammar will cause rdp to

report LL(1) error messages, and inhibit production of the output �les. Most

real languages have at least one ambiguity (the if . . . then . . . else problem)

and several others (such as C) have ambiguities based on the use of identi�ers in

di�erent contexts. Careful design of the source grammar can result in correctly

working parsers even in the face of these ambiguities because rdp will accept

the �rst matching production alternate in a rule, in which case the -F option

can be used to force rdp to produce its output �les.

-l make a listing

Usually, only lines containing syntax errors are echoed to the screen whilst

an rdp-generated parser is running. When a -l option is issued each line

of the source �le is echoed to the message stream as it is read. Usually the

message stream is the standard error stream, but you can change this by altering

the macro TEXT_MESSAGES which is de�ned in textio.h and recompiling the

whole system. It is also possible to change the message stream at run time

using the text_redirect() routine: see the support manual [JS97b] for more

information.

rdp option parameters 39

-ofilename write output to �lename

By default rdp creates output �les rdparser.h and rdparser.c. When a -o

option is issued, the characters immediately following the o up to the next

whitespace character are taken as the �lename. Any �letype is stripped o�,

and the remaining characters are used as a �lename body.

-p make parser only

It is often useful to be able to disable semantic actions and produce a pure parser

so as to debug the grammar without interference from embedded C semantic

actions. The -p option causes rdp to suppress the writing of semantic actions

into the parser source code which may then be compiled into a pure syntax

checker.

-R add rule entry and exit messages

When debugging a grammar it is useful to be able to get a trace of the parser's

execution path. One way to do this is to add semantic actions to each rule which

print out a message on entry to the rule and on exit. It would be tedious to do

this by hand: the -R option instructs rdp to automatically add these messages

for all rules. This option can cause generated parsers to produce voluminous

output.

-s echo each scanner symbol as it is read

When debugging scanners it can be very helpful to get a diagnostic dump of

each lexeme as it is passed to the parser. This option produces one line of

output per lexeme and is only recommended for detailed debugging since it

generates a lot of output.

-S print summary symbol table statistics

rdp-generated parsers use hash coded symbol tables that are declared in the

IBNF source �le. The number of hash buckets in each table is speci�ed by the

user in the grammar and should be kept large enough to keep the number of

entries per bucket below about four or �ve for e�cient parsing. The -S option

prints out a histogram of bucket utilisation frequencies and the mean bucket

utilisation �gure for each declared table. Note that the scanner uses one table

internally to hold the keywords from the IBNF speci�cation, and statistics for

that table are printed too. If the tables are becoming congested then increase

the size in the corresponding SYMBOL_TABLE() directive (see section 6.2) and

regenerate.

-tn tab expansion width

When echoing lines read in by the scanner it is important that tabs are correctly

expanded or the user's formatting may be lost. rdp supports �xed tab stops

40 RUNNING RDP

-f Filter mode

-l Make a listing

-ofilename Write output to filename

-s Echo scanner symbols

-S Print symbol statistics

-tn Tab expansion width

-Tn Text bu�er size

-v Set verbose mode

-Vfilename Write derivation tree to filename in VCG format

Table 7.1 Standard command line options

every n characters where n defaults to 8, but may be set to some other value

with a -t option.

-Tn text bu�er size in bytes for scanner

The rdp scanner allocates a �xed text area at initialisation time. The text

bu�er is used e�ciently, but will eventually �ll up when parsing long �les. The

-T option may be used to override the default text bu�er size for the running

parser.

Note that your operating system and compiler may impose their own limits

on the size of the bu�er: for instance MS-DOS 16-bit compilers often limit the

size of a single heap object to 64K bytes, which acts as an e�ective limit to

the size of the text bu�er. rdp will exit with a fatal memory allocation error if

you exceed the operating system limit. You can usually get a good idea of the

limitations of your system by looking at the de�nition of the ANSI C datatype

size_t which is used to represent the size of memory objects. If, as in Borland

C++ version 3.1, size_t is a 16 bit number then the 64K limit applies.

-v set verbose mode

In verbose mode rdp issues a running commentary on its progress, reporting all

stages of the grammar checking process. All rdp-generated parsers also report

CPU time usage in verbose mode. The value of the verbose ag (o if it is absent

on the command line and 1 if it is present) is held in global variable rdp_verbose

which may be examined from within semantic actions. This feature can be used

to provide extra output from generated parsers in verbose mode.

-V dump derivation tree in VCG format

rdp-generated parsers built from speci�cations that include one of the three

TREE directives automatically build derivation trees using the graph manipula-

tion support library. These trees can be output in a textual form that is suitable

for reading into the VCG compiler graph visualisation tool [San95]. Activation

of this option causes the tree to be dumped out at the end of the �nal parser

Options understood by rdp-generated parsers 41

pass. Further details on tree construction and manipulation will be found in

Chapter 9.

7.3 Options understood by rdp-generated parsers

All rdp-generated parsers automatically include all of the option ags listed in

tablestandard. In addition, extra options can be speci�ed in the grammar using

the ARG directives described in the next chapter.

Chapter 8

rdp global variables

8.1 Monitoring parser status at runtime

Each rdp-generated parser has a set of global variable de�nitions written into

it that are initialised before the parser start rule is called. Semantic actions in

the parser �le can access these variables.

rdp error return

The contents of this variable supply an error return status to the operating

system on normal completion. By default it is set to zero but semantic actions

may set it to any value. A fatal error always returns a fatal status to the

operating system regardless of the contents of this variable.

rdp outputfilename

The value of the -o output �le command line switch, or "-" if a -f argument

was last seen.

rdp pass

The current pass number. Passes are numbered 1 to n where n is the number

de�ned in the PASSES() directive. Pass expressions of the form @n may be

appended to semantic actions to control which pass they are executed on.

rdp sourcefilename

The value of the source �lename supplied on the command line.

rdp tree

A pointer to the root of the derivation tree for parsers generated from speci�-

cations that include one of the TREE directives.

44 RDP GLOBAL VARIABLES

rdp verbose

The value of the verbose mode ag. By default it is set to 0, but if a -v

command line switch in encountered it is set to 1.

8.2 De�ning the message stream

The initial destination for messages created by the text_message() and text_printf()

functions is controlled by the value of the TEXT_MESSAGES macro. By default

this is de�ned to be stderr, the standard error stream. On MS-DOS in partic-

ular it is sometimes useful to rede�ne this to be stdout because of the di�culty

of capturing the standard error stream to a �le. The message stream can also

be redirected in mid-parse using the text_redirect() routine. See the support

library manual [JS97b] for further details.

8.3 Adding reserved words to the dangerous identi�er list

rdp checks that all your identi�ers are valid C identi�ers that will not clash with

C or C++ reserved words. The macro RDP_RESERVED_WORDS which is de�ned

in rdp_aux.h speci�es the list of reserved words. The standard distribution

contains the ANSI reserved words and a few standard library functions. You

can add strings to this list in any order: you might have your own standard

library functions, for instance. Checking for reserved words is e�cient|at the

end of parsing a complete IBNF speci�cation all of the identi�ers will be in

the rdp symbol table. During the grammar checking phase rdp looks to see if

any of the words speci�ed in RDP_RESERVED_WORDS is in the symbol table, and

issues error messages accordingly. Hence checking time is linear in the number

of reserved words and is independent of the length of the source text.

Chapter 9

Derivation tree construction and

visualisation

Some translation tasks are di�cult to perform during a parse, even if a multi-

pass parser is employed. In such cases, it is normal to construct an internal

representation of the source text during parsing which may be traversed e�-

ciently, and to use an intermediate form for tasks such as optimisation.

High quality compilers can perform many di�erent code improvement trans-

formations as part of an optimisation phase. Typically, optimisations work by

relating together separate parts of the source text and so are very di�cult to

implement in a single pass compiler which only `sees' a very small part of the

input at any one time.

Take for example, common sub-expression elimination which is one of the

most commonly applied optimisations. Consider two 2-dimensional arrays de-

clared as

int a[10][20], b[10][20];

We can copy one element of b to the corresponding position in a as follows:

a[i][j] = b[i][j];

This simple assignment actually hides two indexing calculations which we

can render explicitly in C using address arithmetic. In detail the computer has

to perform this calculation:

*(a + (i*10) + j) = *(b + (i*10) + j);

Here, the index i is multiplied by the width of the array (10 in this case) and

then added to the value of j and the base address of a to get the machine location

of element a[i][j], and then essentially the same calculation is performed to

�nd the location of b[i][j].

A single pass compiler is pretty much limited to producing this kind of repet-

itive code, but a compiler which is capable of gathering together information

from potentially widely separated parts of the source program can implement

the common sub-expression separately, producing this more e�cient code:

int temp = (i*10) + j;

*(a + temp) = *(b + temp);

46 DERIVATION TREE CONSTRUCTION AND VISUALISATION

If a multiple pass translator is to be used then it is usual to construct a data

structure in memory that represents the input program in a manner which may

be e�ciently processed. Simply storing the original program text is ine�cient

because discovering a derivation for an input text is time consuming | that is

after all the primary function of the parsers that rdp constructs and it would

clearly be wasteful to run the process several times

1

.

Leaving aside issues of e�ciency, making multiple independent passes over

the source text does not of itself allow us to make connections between widely

separated parts of the text because the parsers generated by rdp only look at

a single symbol at a time: they do not of themselves keep track of complete

sentences or program statements. However, rdp can be set to build a deriva-

tion tree whilst it performs a parse. This tree reects explicitly relationships

between symbols in the source program, and since it is held as a pointer-based

data structure rather than as a single long text string, it can be traversed and

rearranged e�ciently.

9.1 Derivation trees

Informally, a derivation tree is a trace of the parser's behaviour during a partic-

ular parse. The derivation tree is constructed top down, left to right by creating

a new tree node every time a nonterminal or terminal is matched. Every non-

terminal when matched creates a new internal tree node and every terminal

when matched causes a new tree leaf node to be added. In addition, when an

iterator with a lower bound of zero (or the shorthands [...] and { ... })

match the empty string � (or # in rdp syntax) an empty tree leaf node is added.

The idea is that the nodes created whilst matching the body of a nonterminal

will be attached as children of the node corresponding to that nonterminal.

This rather complicated recipe is best illustrated with an example. Let us

revisit the example used in section 5.1 which describes a minimilist grammar

which can generate arithmetic expressions made up of an addition followed by

a multiplication:

start ::= INTEGER '+' expr.

expr ::= INTEGER '*' INTEGER.

When presented with the source string 3 + 6 * 7 the parser generated by

rdp from the above grammar will construct the tree shown in Figure 9.1.

In this example, tree construction starts by making a root node labeled

start. The scanner then matches an INTEGER with lexeme 3 and so a suitable

INTEGER leaf node is added to the tree. The token + is then matched and

another leaf node is added. At this point in the parse, the parser function for

1

Of course, just because making multiple passes over the source code is a wasteful process it

need not stop us using it where applicable and rdp provides the PASSES directive for precisely

this purpose. Simple multi-pass applications, such as the implementation of a translator

from a machine's assembly language to its machine code, may usefully exploit this strategy.

You can read about the design and implementation of such as assembler in the case study

manual [JS97a].

Derivation trees 47

Figure 9.1 A simple derivation tree

rule start calls the function corresponding to rule expr so a matching child

node is added that then becomes the parent node for subsequent leaf nodes.

This picture was made with the VCG (Visualisation of Compiler Graphs)

tool [San95] which you can obtain from the rdp archive as described in ap-

pendix A. Any rdp-generated parser that uses the automatic tree generation

capability described in this chapter may be displayed on screen and printed

using VCG if you are running under Windows or X-windows on Unix. You will

�nd further information on using VCG in section 9.3.

Derivation trees grow rather rapidly. In the standard rdp distribution there

is grammar for the Pascal language (pascal.bnf) and a corresponding test �le

(test.pas) containing 283 lines of Pascal. The tree produced contains 7167

nodes, one of which has 67 children. It is quite di�cult to visualise these large

structures although VCG provides useful navigation facilities.

9.1.1 A larger example

Let us examine a grammar which describes a language of assignment expres-

sions. We allow the usual four arithmetic operators along with exponentiation

(denoted by the operator **), monadic + and - operators and parenthesised

expressions. The exponentiation operator is right associative and the other

operators are left associative.

program ::= { statement ';' }.

statement ::= ID '=' e1.

e1 ::= e2 { ('+' | '-') e2 }. (* Add or subtract *)

e2 ::= e3 { ('*' | '/') e3 }. (* Multiply or divide *)

e3 ::= e4 | ('+' | '-') e3. (* Monadic positive or negative *)

e4 ::= e5 ['**' e4]. (* Exponentiate *)

e5::= ID (* Variable or ... *)

['(' (e1)@',' ')'] | (* ... function call *)

INTEGER | (* Numeric literal *)

'(' e1 ')'. (* Bracketed subexpression *)

Figure 9.2 shows the result of using this grammar to parse the string

a = 2;

48 DERIVATION TREE CONSTRUCTION AND VISUALISATION

b = a - 1 - 2 * (4 - 3) ** 4 ** 5 ** 6 / --+- 7;

This large tree displays several interesting features. The �rst thing to note

is that the trees are designed to be read in a depth-�rst, left-to-right fashion.

One useful side e�ect of this is that if the rectangular terminal nodes are written

out in left-to-right order we recover the original string. This list of leaf nodes

is sometimes called the yield of a tree.

It can also be useful to examine a horizontal section of the tree. When

printed, the trees display all nodes having the same depth in the tree on the

same horizontal line. Since the depth in the tree is dictated by the number

of nested grammar rules active at any given point in the parse, a horizontal

strip can tell you what was matched within a single body. The very top of the

tree shown in Figure 9.2 for instance shows that the �rst rule expanded by the

parser was program and the expansion was statement ; statement ;

Rules e1, e2 and e4 in our grammar each have the form of a call to a

nonterminal followed by an optional phrase as in:

e2 ::= e3 { ('*' | '/') e3 }.

When an optional phrase matches the empty string � (or # in rdp terminology)

an empty node is added to the tree, and the tree shown in Figure 9.2 shows

many examples of this.

Finally, note that di�erent forms of operator speci�cation generate di�erent

tree forms. In this case, the operators speci�ed using { } iterator brack-

ets such as (+, -, * and /) generate horizontal runs of operators as in the

sub-expression b=a-1-2. On the other hand, operators speci�ed using right

recursion such as ** generate a descending sequence of nodes.

Since the full derivation tree is so large, it is conventional to discard some

parts of the tree, retaining only those nodes that convey information needed

by later stages of processing. rdp provides a set of promotion operators that

allow nodes to be moved back up the tree, potentially overlaying earlier nodes.

The operators are described later in this chapter, and you will �nd large scale

examples of their use in the rdp case study document [JS97a]. To give you

a avour of what is possible, Figure 9.3 shows the result of applying these

promotion operators to the tree shown in Figure 9.2.

The modi�ed derivation tree has been obtained by

1. moving certain arithmetic operator terminals up so that they overlay their

parents,

2. deleting some tokens which are redundant in the tree representation such

as ;, (and),

3. deleting all empty (�) nodes left after the previous steps have been per-

formed.

In addition, we ensure that chains of left associative arithmetic operators are

converted to left descending sub-trees in a way that is symmetric with the right

descending sub-trees used in the original tree to represent the right associative

exponentiation operator,

Derivation trees 49

Figure 9.2 Derivation tree for expression grammar

50 DERIVATION TREE CONSTRUCTION AND VISUALISATION

Figure 9.3 A modi�ed derivation tree

Tree generation directives 51

Figure 9.4 E�ect of the TREE directive

9.2 Tree generation directives

By default, rdp-generated parsers do not generate trees because the tree con-

struction process does impose some overhead on the parsing process, and for

simple single pass parsers this would be extravagant. Tree generation is switched

on by adding one of the three tree directives to a grammar and then regenerating

the parser by running the grammar through rdp.

TREE([* data *])

Switch on tree generation and (optionally) de�ne extra data �elds to be added to

each tree node. The trees will have epsilon nodes deleted: leaf nodes containing

epsilon are simply removed and internal epsilon nodes are removed with their

children being promoted to be at the same level as the internal epsilon node

was at before pruning.

EPSILON TREE([* data *])

Switch on tree generation and (optionally) de�ne extra data �elds to be added

to each tree node. Epsilon nodes will be left in the tree.

ANNOTATED EPSILON TREE([* data *])

Switch on tree generation and (optionally) de�ne extra data �elds to be added to

each tree node. Epsilon nodes will be left in the tree as with the EPSILON TREE

directive but each such node will be annotated with the string #:name where

name is the name of the subrule that generated the epsilon.

Figures 9.4{9.6 show the di�erent e�ects of these directives when added to

the expression grammar given above and used to parse the string a=2;

9.3 Using VCG to visualise derivation trees

All rdp-generated parsers accept the -V�lename command line switch. For

parsers that have been generated from grammars that do not include one of

52 DERIVATION TREE CONSTRUCTION AND VISUALISATION

Figure 9.5 E�ect of the EPSILON TREE directive

Figure 9.6 E�ect of the ANNOTATED EPSILON TREE directive

Using VCG to visualise derivation trees 53

the three TREE directives this switch simply generates a warning message, but

for parsers that do have tree generation enabled a text �le will be created

containing a speci�cation of the derivation tree in the language understood by

VCG. If the optional �lename is speci�ed then this will be the name of the

VCG �le, otherwise the default name of rdparser.vcg will be used.

On MS-Windows and Unix systems running X-windows the VCG tool may

be started by typing

vcg rdparser.vcg

or the equivalent for your own �le name. VCG will read the tree in (which may

take a little while for a large tree) and then draw it on the screen. You can use

VCG's navigational facilities to move around within the tree, zoom in and out,

and print out the whole tree or a portion of it. VCG is a powerful tool and you

should read the VCG manual supplied with the VCG distribution to get a full

understanding of the tool. We are grateful to the author of VCG for permission

to distribute it with rdp.

Chapter 10

Tree manipulation

Full derivation trees consume a lot of space, and often contain nodes that are

of little use in subsequent language processing. Most books on compiler the-

ory describe concrete and abstract syntax trees (often called AST's). There is

rather little agreement on the formal de�nition of an AST, and in practice most

language tool designers design an ad hoc representation which is built on the

y during the parsing phase. By embedding semantic actions in the speci�ca-

tion of an rdp-generated parser it is, of course, possible to adopt this approach

using rdp, but rdp provides a set of promotion operators which allow common

AST forms to be automatically generated from the derivation tree. The advan-

tage of this approach is that the grammar itself directly dictates the shape of

the modi�ed derivation tree whereas traditional AST's are only loosely related

to the actual derivation tree. As a result, maintaining a language processor

based on the traditional twin-track grammar and AST structure requires two

independent tree-like forms to be described whereas in rdp the grammar itself

ful�lls both functions. The disadvantage is that the rdp promotion operators

are not very easy to use, and we view them as somewhat experimental at this

stage. The authors would be interested to hear of user experiences, both good

and bad.

10.1 Normal tree construction

The promotion operators are applied on the y during tree construction, and

it is possible for a sequence of nodes to be promoted above each other. A full

understanding of the e�ects of the promotion operators therefore requires an

understanding of the order in which the tree is constructed.

At any given time during a parse there will be a current parent, that is

a particular tree node which is the one to which children are being added.

Immediately before a parse begins a root node representing the �rst call to the

parser function for the start production is created and this is made the current

parent. In the absence of promotion operators, subsequent tree growth occurs

as a result of one of three processes:

1. Whenever a terminal is encountered within a rule a new node is added

as a child of the current parent labeled with the terminal's lexeme. The

56 TREE MANIPULATION

current parent does not change, therefore matches against terminals cause

tree nodes to be added from from left to the right without changing the

level.

2. Whenever an optional subphrase arising from [...] or {...} brackets or

from an iterator with a low count of zero matches against the null string

�, an epsilon node is added as a child of the current parent. The current

parent does not change.

3. Whenever a nonterminal is encountered within a rule, a new child node is

added to the current parent and labeled with the name of that nontermi-

nal and that node is made the current parent for any nodes that are created

as a result of matches against that nonterminal's productions. When the

parser �nishes matching against that nonterminal's productions, the orig-

inal current parent is restored.

The e�ect of these rules is to go down one level in the tree each time a non-

terminal is encountered and to go back up a level as the parser completes the

matching of each production.

10.2 Modifying tree construction with promotion operators

The rdp promotion operators act so as to modify the rules above. There are

four possible operators:

10.2.1 Promote underneath parent

The ^ (promote underneath) operator forces the node to be promoted to the

parent node but the parent node's �elds overwrite those of the node being

promoted. The resulting node becomes the current parent for subsequent op-

erations.

10.2.2 Promote on top of parent

The ^^ (promote on top of) operator forces the node to be promoted to the

parent node and the parent node's �elds are overwritten by those of the node

being promoted. The resulting node becomes the current parent for subsequent

operations.

10.2.3 Promote above parent

The ^^^ (promote above) operator forces the node to be promoted so as to

become the parent of the current parent, that is it is inserted above the current

parent rather than as a child of the current parent. The resulting inserted node

becomes the current parent for subsequent operations.

Valid contexts for promotion operators 57

10.2.4 Insert here (no promotion)

The ^_ (no promotion) operator forces the node to be inserted under the current

parent in the usual way, that is the ^_ operator forces the rules described in the

previous section to be observed for the grammar element to which the operator

is applied. The current parent is unchanged. This operator is usually only used

to apply the normal behaviour to a nonterminal whose default behaviour has

been overridden, as described in the next section.

10.3 Valid contexts for promotion operators

Promotion operators may be applied in four contexts:

1. immediately after a terminal:

a::=b '+'^^ c.

in which case it indicates that the corresponding terminal node should be

promoted,

2. immediately after a nonterminal on the right hand side of a rule:

a::=b^^ '+' c.

in which case it indicates that the corresponding nonterminal node should

be promoted,

3. immediately after a nonterminal on the left hand side of a rule

a^^::=b '+' c.

in which case it speci�es that the default promotion for instances of that

nonterminal on the right hand side of rules should be changed from ^_

(the normal default) ,

4. in the default action clause of an optional phrase arising from [] or

{ } brackets or from an iterator with a low count of zero:

a::=[b '+' c]:^^.

in which case it indicates that any epsilon node created as a result of

matching the optional phrase against the null string � should be promoted.

Each grammar element (terminal or nonterminal) in an rdp grammar has

an attached promotion operator which speci�es the way that the corresponding

tree nodes will be built into the tree during a parse. The default operation is

^_, so in e�ect any grammar element without an explicit promotion operator

attached has an implicit ^_ operator following it, and such a node will be

processed according to the rules given in the previous section

1

.

1

For nonterminals only, new defaults may be established by applying a promotion operator

to the left hand side of the rule de�nition.

58 TREE MANIPULATION

10.4 A complete example

In this section we show how to apply the promotion operators to the grammar

for a simple expression-based language. The original grammar (without pro-

motions) was given above and generates trees of the form shown in Figure 9.2.

This modi�ed grammar was used to produce the much more space-e�cient tree

shown in Figure 9.3.

TREE

program ::= { statement ';'^ }.

statement ::= ID '='^^ e1.

e1 ::= e2^^ { ('+'^^^ | '-'^^^) e2 }. (* Add or subtract (LA) *)

e2 ::= e3^^ { ('*'^^^ | '/'^^^) e3 }. (* Multiply or divide (LA) *)

e3 ::= e4^^ | ('+'^^ | '-'^^) e3. (* Monadic positive or negative (RA) *)

e4 ::= e5 ['**'^^ e4]:^^. (* Exponentiate (RA) *)

e5::= ID^^ (* Variable or ... *)

['('^ (e1)@','^ ')'^] | (* ... function call *)

INTEGER^^ | (* Numeric literal *)

'('^ e1^^ ')'^. (* Bracketed subexpression *)

10.4.1 Removing syntactic sugar

The simplest application of the promotion operators is to simply remove unnec-

essary tokens from the tree. The ^ operator has this e�ect because it promotes

the node up under the current parent. Since the resulting node contains the

label from the original parent, the contents of the new node is e�ectively dis-

carded. Using this operator, then, allows syntactic sugar to be deleted from the

language. In this grammar, the parenthesis tokens in rule e5 have been treated

this way. In essence, parentheses in a programming language are usually used

to represent nesting of some sort, and of course a tree allows nesting to be struc-

turally shown simply by making the contents of a parenthesised expression into

a child node. There is no reason, therefore, for the parentheses to be retained in

the tree. Another example of redundant syntactic sugar is the semicolon used

to terminate statements and this is similarly deleted.

Here is a small example that shows the e�ect of promoting the parentheses

up under their parents:

s ::= e ['+' s].

e ::= t ['*' e].

t ::= INTEGER | '('^ s ')'^.

Figure 10.1 shows the full tree that will be produced without the promotion

operators when parsing the string (2+3)*4, and Figure 10.2 shows the result

of adding the promotions.

10.4.2 Making operators parent nodes to their operands

Classically, parse trees represent arithmetic expressions for diadic operators as

binary trees with each operator node having two children corresponding to its

A complete example 59

Figure 10.1 Simple expression: full tree

60 TREE MANIPULATION

Figure 10.2 Simple expression: result of adding promotion operators

A complete example 61

Figure 10.3 Right associative operator tree

operands. We get this e�ect in rdp by promoting the operator node onto the

parent nonterminal node using the ^^ operator. This is illustrated in rule e4

which shows the implementation of the right associative (RA) exponentiation

operator **. In detail, it turns out that the � node created at the end of a run

of RA operators must be promoted too: hence the default promotion in rule

e4.

Here is a simpli�ed grammar illustrating the construction of a right as-

sociative operator tree. The result of parsing the string 2**3**4 is shown if

Figure 10.3.

s ::= e ['**'^^ s]:^^.

e ::= INTEGER^^ | '('^ s^^ ')'^.

10.4.3 Handling left associative operators

Arithmetic expressions containing left associative (LA) operators present a little

more di�culty which is perhaps unfortunate since LA operators are the norm.

From the parsing point of view the recursive rules used to recognise a LA

operator create their tree nodes in the `wrong' order and simply promoting the

operator token node onto its parent yields a tree whose semantics do not match

that of normal algebraic usage. The correct solution is to promote the operator

token to the node above its parent, thus building that part of the tree in what

amounts to a bottom-up fashion. This approach is illustrated in rules e1 and

e2 above.

Here is a simpli�ed grammar illustrating the construction of a left associative

operator tree. The result of parsing the string 2-3-4 is shown if Figure 10.4.

s ::= e^^ {'-'^^^ e}.

e ::= INTEGER^^ | '('^ s^^ ')'^.

62 TREE MANIPULATION

Figure 10.4 Left associative operator tree

Chapter 11

Error and informational messages

All rdp error messages are issued via the text_message() routine which is part

of the textio package described in [JS97b]. The routine supports four classes

of message:

� fatal errors which cause immediate termination of the run,

� errors which cause termination of the run after grammar analysis unless

the -F ag is set,

� warnings which may indicate a problem that should be checked and

� informational messages which provide feedback only and do not indicate

a problem.

In each case, a message may or may not cause an echo of the current scanner

input line, followed by an arrow indicating the current position of the scanner.

A typical message looks like this:

33: Error 1 (zzz.bnf): unexpected character 0x2C ',' in source file

33: bad , syntax ,

33: ----1

In this case an illegal character has been found in the source �le. Up to nine

error messages per line of source code may be reported, with the error messages

themselves followed by an echo of the line in error and a marker line showing

the location of the errors.

In detail, whenever rdp detects a syntax error in the source IBNF it prints

out a line of the �le with a digit marking the last character of the �rst token

after the token that caused the error. This can be confusing if the error token is

the last on a line, because the next line will be printed with an arrow pointing

to the start of the line.

Fatal, error and warning messages are preceded by the relevant message

severity. Informational messages are only preceded by a space character. This

makes it easier to spot the errors by scanning the leftmost column of the output

listing.

The rest of this chapter lists all rdp error messages in alphabetical order by

class. Some of these messages can also be reported by rdp-generated parsers.

64 ERROR AND INFORMATIONAL MESSAGES

11.1 Fatal errors

errors detected in source file

This message is issued at the end of syntax analysis if syntax errors have been

reported. It causes termination of the run before the POST_PARSE routine is

called.

internal error - expecting alternate

The internal data structures representing the grammar have become corrupted.

This error can only occur as a result of a programming error within rdp: please

submit a bug report to A.Johnstone@rhbnc.ac.uk which includes an example

IBNF �le that generates the error along with a note of your computer model,

operating system name and version and compiler vendor and version.

internal error - unexpected alternate in sequence

The internal data structures representing the grammar have become corrupted.

This error can only occur as a result of a programming error within rdp: please

submit a bug report to A.Johnstone@rhbnc.ac.uk which includes an example

IBNF �le that generates the error along with a note of your computer model,

operating system name and version and compiler vendor and version.

internal error - unexpected kind found

The internal data structures representing the grammar have become corrupted.

This error can only occur as a result of a programming error within rdp: please

submit a bug report to A.Johnstone@rhbnc.ac.uk which includes an example

IBNF �le that generates the error along with a note of your computer model,

operating system name and version and compiler vendor and version.

no rule definitions found

The source �les processed by rdp did not contain any rule de�nitions, so there

is nothing to do.

no source file specified

No �lename was found on the command line, and a -f (�lter mode) ag had

not been issued. rdp prints a summary help message after issuing this error.

run aborted without creating output files - rerun with -F to override

Errors were detected during grammar analysis and so no output �les were cre-

ated. Many languages (including C and Pascal) contain at least one ambiguous

rule (the if...then...else problem) and so when you are sure that all other

problems in your grammar have been eradicated, rerun rdp with a -F ag which

will override this message and generate the output �les.

Errors 65

source file not found

The source �le does not exist, or is read locked against the user. rdp and

rdp-generated parsers print a summary help message after issuing this error.

unable to open header output file '�lename' for writing

rdp was unable to open the named header �le for writing. This may be because

there is no disk space left, or there may already exist a �le of that name that

is write protected.

unable to open parser file '�lename' for writing

rdp was unable to open the named parser �le for writing. This may be because

there is no disk space left, or there may already exist a �le of that name that

is write protected.

unable to open VCG file '�lename' for writing

rdp was unable to open the named VCG output �le speci�ed with a -V switch

for writing. This may be because there is no disk space left, or there may

already exist a �le of that name that is write protected.

unrecognised option -c

rdp or a generated parser found a command line switch it did not understand.

After issuing this message rdp prints out a summary help page.

11.2 Errors

comment delimiter tokens must be less than three characters long

Due to the rather crude state machine used during comment parsing, comment

close delimiter tokens must be one or two characters long, so the Algol-68

comment. . . tnemmoc brackets can not be handled (and quite right too in many

people's opinion).

doubly declared symbol 'name'

name appears more than once on the left hand side of a rule de�nition. Merge

the rules using alternates.

empty tokens are not allowed: use [...] instead

rdp does not allow use of the explicit null token ''. Only the iteration operator

@, the zero-or-more bracket { } and optional bracket [] can introduce null

rules into the grammar.

66 ERROR AND INFORMATIONAL MESSAGES

identifier 'name' begins with a reserved name

All rdp internal identi�ers begin with one of a set of ten reserved pre�xes listed

in Table 2.1. To avoid clashes between user identi�ers and these internal names,

rdp rejects any user de�ned identi�ers that begin with one of those pre�xes.

Error 1 (�lename): expecting one of 'token1', ...

line containing an error

-------1

This is the generic rdp syntax error report. After printing the error messages

the line containing the errors is echoed to the error stream along with a pointer

line. The pointer line contains up to nine digits that each mark the token after

the token that has generated an error.

identifier 'name' is a C++ reserved word or library identifier

Surprising compile time errors would result from declaring a rule called, for

instance register because register is, of course, a C reserved word and may

therefore not be used as a function name. All identi�ers in the IBNF �le are

checked against a list of dangerous names which includes all C keywords and

a few of the more common library functions. You can add extra names to the

list by adding extending the de�nition of parameter RDP_RESERVED_WORDS in

�le rdp_aux.h

illegal grammar element: a colon may not appear here

A syntax error in the rdp source �le has been detected.

illegal grammar element: a real may not appear here

A syntax error in the rdp source �le has been detected.

illegal grammar element: an integer may not appear here

A syntax error in the rdp source �le has been detected.

illegal grammar element: expressions may not return values

A syntax error in the rdp source �le has been detected

illegal grammar element: perhaps you intended to write 'string'

A syntax error in the rdp source �le has been detected. A double quote delim-

ited string has been found where only a single quote delimited string is allowed.

include file '�lename' not found

The named include �le does not exist, or is read locked against the user.

Errors 67

iteration count too low

The rdp rule example ::= ('a' 'b')4@6# 'z' matches the following strings:

ababababz

abababababz

ababababababz

rdp performs this match by iterating in the ('a' 'b') sub-rule at least

four and at most six times. In detail, rdp iterates round the body and then

checks the number of times it matched ('a' 'b') when it eventually �nds a

non-match in the input. If rdp �nds that it went round less than four times, it

issues this message. So, in general, the message indicates that there were too

few instances of the sub-rule in the input to meet the iterator speci�cation.

iterator high count must be greater than low count

An iterator of the form (body)5@3 is illegal because it requires body to be

matched at least �ve, but no more than three, times which is meaningless.

LL(1) violation - rule 'name' alternates

``alternate''

and ``alternate''

share these start tokens:

tokens

This is the most common LL(1) problem: a pair of alternates share at least

one start terminal and so cannot be disambiguated by the parser. A simple

example is

bad_first ::= 'a' 'b' 'c' | 'a' 'd'.

The error can often be eliminated by factorising the grammar, for example

good_first ::= 'a' ('b' 'c' | 'd').

LL(1) violation - rule 'name1' and 'name2' are both nullable

A construction like ['a'] ['b'] is ambiguous because rdp could match either

bracket against a null input string.

LL(1) violation - rule 'name'

contains null but first and follow sets both include:

tokens

When deciding whether to enter an iteration or optional bracket the parser

must be able to distinguish between tokens that belong to the rules inside the

bracket and those that belong to the rules following the brackets. If there are

any tokens in both the �rst and follow sets for the subrule then the parser

cannot disambiguate the brackets.

A simple example is

68 ERROR AND INFORMATIONAL MESSAGES

bad_null ::= 'x' {'a' 'b' 'c'} 'a'.

The error can sometimes be eliminated by refactorising the grammar, for ex-

ample

good_null ::= 'x' 'a' {'b' 'c' 'a'}.

LL(1) violation - rule 'name' is left recursive

In top-down parsers, immediate or indirect left recursion creates an in�nite loop

and must be eliminated.

LL(1) violation - rule 'rule' is nullable but contains the nullable

subrule rule

It is illegal to nest nullable sub-rules (constructs such as { ['a' 'b'] })

because rdp generated parsers could match either the inner square brackets or

the outer braces to a null string. Rewrite as { 'a' 'b' }.

LL(1) violation - subrule 'name' is empty

The IBNF syntax analyser will accept a rule of the form

bad ::= 'a' 'b' | [* semantic action *] | 'z'.

but this is not meaningful IBNF, because the middle alternate will never be

entered. In fact, this is e�ectively an empty alternate as far as the parser is

concerned which is also illegal.

The only context in which alternates containing only semantic actions are

allowed is the special case of a semantic rule. See section 5.9 for details.

obsolete directive:

obsolete directive: HASH PRIME replaced by SYMBOL TABLE at version 1.4

obsolete directive: HASH SIZE replaced by SYMBOL TABLE at version 1.4

obsolete directive: INTERPRETER mode deleted at version 1.4

obsolete directive: POST PROCESS renamed POST PARSE at version 1.3

obsolete directive: PRE PROCESS renamed PRE PARSE at version 1.3

obsolete directive: SET SIZE deleted at version 1.4

obsolete scanner primitive: ALT ID deleted at version 1.4

obsolete scanner primitive: NEW ID deleted at version 1.4

obsolete scanner primitive: NUMBER renamed INTEGER at version 1.3

A grammar for a previous version of rdp has been parsed. Replace obsolete

directives and primitives.

rule name is empty

A rule with no body has been declared.

Warnings 69

string delimiter tokens must be exactly one character long

Due to the rather crude state machine used when parsing strings, the close

token must be exactly one character long. We would be interested to hear if

you have an application that requires multi-character string delimiters.

tokens must not contain spaces or control characters

White space is stripped by the scanner, so a token de�nition in the IBNF �le

that contained white space or non-printing characters could never be matched

by the scanner.

undeclared symbol 'name'

A rule name has been referenced that is not de�ned elsewhere in the current

set of input �les.

11.3 Warnings

grammar is not LL(1) but -F switch set: writing files

This message appears instead of the fatal abort message when the -F switch is

used.

rule 'name' will not appear in the output file

It is sometimes useful to de�ne rules that are not explicitly referenced in the

grammar, typically to specify comment and string de�nitions. rdp searches

the entire grammar recursively from the start rule looking for unused rules and

marks them so that no equivalent code is produced in the parser output �les.

This avoids warning messages from the C compiler about the unused function

de�nitions.

11.4 Informational messages

count CPU seconds used

In verbose mode all rdp-generated parsers report CPU time consumption with

this message at the end of the run. Note that the �gure is a measure of mill time,

not elapsed time. The accuracy of the �gure depends on your implementation

of the ANSI C clock() routine. Some PC libraries are known to be a little

unreliable on this score.

count rules, count tokens, count actions and count subrules

In verbose mode, rdp reports summary grammar statistics with this message.

A subrule is the expansion of a grammar bracket.

70 ERROR AND INFORMATIONAL MESSAGES

adding continuation token 'token'

The rdp scanner matches punctuation tokens (i.e. tokens made up of non-

alphanumeric characters) by repeatedly looking in the scanner symbol table

and matching the longest token it can �nd. This strategy requires that all

substrings of a token be in the symbol table, so that the token ::= requires

that :: and : are also loaded. A continuation token is any token required for

matching that has not already been declared by the user.

checking for clashes with reserved words

rdp checks all rule and attribute names to ensure that they are valid C identi�ers

that do not clash with C reserved words or library names. The list of names

checked by rdp is maintained in macro RDP_RESERVED_WORDSwhich is de�ned in

�le \rdp_supp\rdp_aux.h. You can add names to this list by appending them

to the macro de�nition. Note that the order of de�nition is not signi�cant.

checking for continuation tokens

The rdp scanner matches punctuation tokens (i.e. tokens made up of non-

alphanumeric characters) by repeatedly looking in the symbol table and match-

ing the longest token it can �nd. This strategy requires that all substrings of a

token be in the symbol table, so that the token ::= requires that :: and : are

also loaded. A continuation token is any token required for matching that has

not already been declared by the user. This message is issued in verbose mode

at the start of continuation checking.

checking for disjoint first sets

rdp checks that rules are LL(1) by ensuring that the start sets of all alternates

are disjoint for each rule in the grammar. This message is issued in verbose

mode at the start of disjoint set checking.

checking for empty alternates

Syntactically it is possible for an rdp grammar to contain only semantic actions

even when it is not part of a semantic rule. rdp checks all alternates and reports

this error whenever it �nds a rule that has no tokens in it. This message is issued

in verbose mode at the start of empty checking.

checking for nested nullable rules

rdp checks that rules are not ambiguous as a result of nesting nullable subrules

such as {body} or [body] within each other. This message is issued in verbose

mode at the start of null rule checking.

Informational messages 71

checking nullable rules

rdp checks that rules are LL(1) by ensuring that the �rst and follow sets of

each rule that can match the null token are disjoint. This message is issued in

verbose mode at the start of null rule checking.

dumping derivation tree to VCG file to '�lename'

This message is issued immediately before writing the VCG derivation tree �le.

dumping header file to '�lename'

This message is issued immediately before writing the header �le.

dumping parser file to '�lename'

This message is issued immediately before writing the main parser �le.

entered 'rule-name'

When an rdp-generated parser is generated using the -R option, the parser is

enhanced to output trace information when run. Each time a grammar rule is

activated, the parser prints out an entry and an exit message which can be used

to track the nesting of parser function calls during a run.

exited 'rule-name'

When an rdp-generated parser is generated using the -R option, the parser is

enhanced to output trace information when run. Each time a grammar rule is

activated, the parser prints out an entry and an exit message which can be used

to track the nesting of parser function calls during a run.

follow sets stabilised after count passes

Follow set calculation usually requires a number of passes over the whole gram-

mar. The number of passes depends on both the complexity of the grammar

and the order in which the rules are listed. We would be interested in receiving

a copy of any real grammar that requires more than twenty passes.

generating first sets

This message is issued immediately before the start of �rst set generation.

generating follow sets

This message is issued immediately before the start of follow set generation.

72 ERROR AND INFORMATIONAL MESSAGES

no continuation tokens needed

The rdp scanner matches punctuation tokens (i.e. tokens made up of non-

alphanumeric characters) by repeatedly looking in the symbol table and match-

ing the longest token it can �nd. This strategy requires that all substrings of a

token be in the symbol table, so that the token ::= requires that :: and : are

also loaded. A continuation token is any token required for matching that has

not already been declared by the user. This message is issued in verbose mode

at the end of continuation checking if no such tokens were needed.

updating follow sets

After the main grammar analysis takes place, rdp adds the �rst sets to the

follow sets for iteration brackets {...} which aids error recovery. The follow

sets then need to be recalculated.

Chapter 12

Understanding and debugging

rdp-generated parsers

In this chapter we give a simpli�ed overview of the structure of an rdp-generated

parser along with some advice on using rdp's facilities to monitor the execution

of a running parser.

rdp writes out two �les whenever it successfully generates a parser|a

header �le with a su�x of .h and a main �le with a su�x of .c. These �les are

designed to be human-readable so that inserted semantic actions may be traced

by stepping through the parser with a conventional debugger. The purpose of

this section is to explain the basic techniques that are used within a parser by

looking at real rdp-generated code.

We shall begin by looking at the parser generated by rdp for this small

grammar.

start ::= INTEGER '+' expr.

expr ::= INTEGER '*' INTEGER.

12.1 The header �le

The header �le contains declarations for datatypes that might be needed for

use in semantic actions, such as any symbol table or tree data �elds declared in

the user's .bnf �le. It also contains an enum declaration corresponding to the

tokens declared in the grammar (described in more detail in the next section)

and a macro which expands to the number of passes used in this parser. The

header �le for our example grammar is shown in Figure 12.1.

12.2 The rdp scanner

Traditional parser generators work only at the level of language tokens, and

it is the user's responsibility to supply a suitable lexical analyser that digests

the source text into a stream of tokens for consumption by the parser proper.

One way of providing this lexical analysis function is to use a lexical analyser

generator, which is rather like a scaled down parser generator with features

targeted speci�cally at the construction of lexical analysis functions. rdp does

74 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERS

#include "scan.h"

/* Maximum number of passes */

#define RDP_PASSES 1

/* Token enumeration */

enum

{

RDP_T_17 /* * */ = SCAN_P_TOP, RDP_T_18 /* + */,

RDP_TT_TOP

};

/* Parser start production */

void start(void);

Figure 12.1 Extracts from an rdp-generated header �le

not need a separate lexical analyser generator: the parser generator and the

lexical analyser are integrated together under the control of a single IBNF

speci�cation.

When analysing a grammar, rdp extracts information about tokens and

uses it to parameterise the built-in scanner. This is convenient, but you should

be aware that the rdp scanner is not completely general| in many versions

of the BASIC language, for instance, string identi�ers begin with a dollar sign

and it is not possible to write an rdp grammar that enforces this rule exactly

1

.

The scanner itself is a function called scan_() the source for which resides

in rdp_supp/scanner.c. In principle new kinds of lexical structure can be

de�ned by adding in new sections of code, but this turns out to require a good

understanding of rdp's internals so you might like to contact the authors for

advice before embarking on this course.

12.2.1 The token enumeration

rdp makes a list of all the tokens used and then writes out a C enumera-

tion which has the e�ect of allocating a unique integer value to represent

each token. All grammars automatically include the scanner elements listed

in Chapter 4 and so the �rst sixteen or so elements of the token enumera-

tion are allocated to the scanner primitives. The scanner element enumera-

tion enum scan_primitive_type is de�ned in rdp_supp\scan.h: each element

name comprises the string SCAN_P_ concatenated with the name of the scanner

element as used within the rdp-IBNF language.

enum scan_primitive_type

{

1

It is easy to de�ne an identi�er such as id ::= '$' ID. but this will accept `identi�ers'

with a space between the $ sign and the rest of the identi�er.

The rdp scanner 75

SCAN_P_IGNORE, SCAN_P_ID, SCAN_P_INTEGER, SCAN_P_REAL,

SCAN_P_CHAR, SCAN_P_CHAR_ESC,

SCAN_P_STRING, SCAN_P_STRING_ESC,

SCAN_P_COMMENT, SCAN_P_COMMENT_VISIBLE,

SCAN_P_COMMENT_NEST, SCAN_P_COMMENT_NEST_VISIBLE,

SCAN_P_COMMENT_LINE, SCAN_P_COMMENT_LINE_VISIBLE,

SCAN_P_EOF, SCAN_P_EOLN, SCAN_P_TOP

};

There are two elements in this enumeration which do not correspond with

real scanner elements. The �rst SCAN_P_IGNORE is used by the scanner when it

�nds an illegal character or a comment in the source �le. It is a signal to the

scanner to `go round again' and attempt to �nd a new, valid, token. The parser

proper will never see an instance of this pseudo-token because the scanner will

keep restarting until it �nds something other than an IGNORE element.

The second pseudo-element is SCAN_P_TOP which simply takes a value one

more than the highest real scanner element. Its value is then used to initialise

the �rst element of the user-de�ned token enumeration written to the header

�le:

enum {RDP_T_17 /* * */ = SCAN_P_TOP, RDP_T_18 /* + */, ...

This ensures that the scanner elements and the tokens from the grammar

are mapped to a contiguous sequence of integer values.

12.2.2 Interaction between the scanner and the parser

The parser calls the scanner function scan_() each time it needs to read a new

token from the input �le. The scanner begins by reading and discarding any

whitespace characters (such as tabs, spaces and, for parsers which do not use the

EOLN scanner element newline characters). The scanner then reads characters

until a complete lexeme has been recognised. It loads a global variable called

text_scan_data with a string containing the lexeme itself and an integer value

from the token enumeration indicating which token the scanner has recognised.

In what follows we shall refer to this global variable as the scanner variable.

The scanner variable is a structure containing several �elds, not all of which

are used by every token. The �le scan.h contains the relevant de�nitions. In

the case of scanner elements such as INTEGER which can return a synthesized

attribute value, the scanner is also responsible for calculating the attribute and

loading that into the scanner variable.

The scanner itself makes use of the routines in the text handling library

text.c to read the source input �le, deal seamlessly with nested input �les and

handle the generation of an output listing.

After the scanner variable has been loaded, the scanner returns control to

the parser which must decide which rule expansion to use next on the basis

of the contents of the scanner variable and the present state of the derivation.

The scanner variable e�ectively provides a single token of lookahead, and as

76 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERS

such must be loaded before a parser function is started. In rdp, as in most

top-down parsers, the parser functions assume that the scanner variable has

been correctly initialised before entry to the parser function and the function

takes responsibility for leaving the scanner variable correctly set up for the

next parser function. This leads to a somewhat counter-intuitive organisation

in which the scanner is called at the end of each parser function rather than at

the beginning. In the next section we shall look at the details of a complete

parser which will make this point clearer.

12.3 The main �le

The rdp-generated main �le contains the parser proper. Figure 12.2 shows

extracts from the main �le for the grammar given at the beginning of this

chapter. The full �le contains declarations and initialisation code for the first

and stop sets for each parser function. You can read more about the calculation

of these sets in the tutorial manual [JS97c] or in most standard compiler texts.

Apart from the initialisation code, an rdp-generated main �le contains ex-

actly one function for each nonterminal declared in the grammar (called the

parser function for that nonterminal) plus a main() function that initialises the

text and scanner subsystems before calling the function corresponding to the

start nonterminal. Each parser function must

� assume that a (possibly empty) section at the beginning of the input

has already been read by the scanner and matched against rules in the

grammar by the parser functions,

� assume that the scanner variable has already been loaded with the �rst

token to be matched against the current parser function's rule in the

grammar,

� by looking at the current contents of the scanner variable decide which of

the alternate productions within the rule is to be matched,

� match the rule against the input, calling the scanner each time a token is

successfully matched so as to advance to the next token,

� ensure that at the end of a successful match the scanner variable is loaded

with the �rst token to be matched by the succeeding parser function,

� in the case of an unsuccessful match generate an error message and at-

tempt to read tokens from the input until the parser function sees a plau-

sible place for parsing to continue.

12.3.1 Implementing parser functions

Parser functions make use of three functions from the scanner module:

� void scan_(void) the scanner function which has been described above,

The main �le 77

static void expr(void)

{

{

scan_test(NULL, SCAN_P_INTEGER, &expr_stop);

scan_();

scan_test(NULL, RDP_T_17 /* * */, &expr_stop);

scan_();

scan_test(NULL, SCAN_P_INTEGER, &expr_stop);

scan_();

scan_test_set(NULL, &expr_stop, &expr_stop);

}

}

void start(void)

{

{

scan_test(NULL, SCAN_P_INTEGER, &start_stop);

scan_();

scan_test(NULL, RDP_T_18 /* + */, &start_stop);

scan_();

expr();

scan_test_set(NULL, &start_stop, &start_stop);

}

}

int main()

{

..... /* Some initialisation code omitted */

for (rdp_pass = 1; rdp_pass <= RDP_PASSES; rdp_pass++)

{

..... /* Pass level initialisation (including source file opening) omitted */

scan_();

start(); /* call parser at top level */

if (text_total_errors() != 0)

text_message(TEXT_FATAL, "error%s detected in source file\n", text_total_errors() == 1 ? "" : "s");

}

text_print_total_errors();

..... /* Clean up code omitted */

return rdp_error_return;

}

Figure 12.2 Extracts from an rdp-generated parser main �le

78 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERS

� int scan_test(const char *production, const int valid, set_ * stop)

and

� int scan_test_set(const char *production, set_ * valid, set_ * stop).

The two ..._test functions check the contents of the scanner variable

against a supplied parameter called valid. The only di�erence between them

is that scan_test checks against a single valid token value and scan_test_set

checks against a set of of valid tokens.

The two parameters production and stop are used to control the generation

of error messages in the case of a mismatch. If only a simple test is required

then both parameters will be set to NULL, but if the stop parameter is non-null

then when the test function �nds a mismatch between the current token and

the valid token or token set it issues an error message before returning false.

Immediately after issuing the error message an attempt is made to resynchronise

the input stream by using the scanner to read and discard tokens until a token

is found that is in the stop set. All stop sets are initialised to contain at least

the end-of-�le token so that the synchroniser will not go into an in�nite loop at

the end of of the source �le. In detail, the stop set for a parser function is the

follow set for the corresponding grammar rule union the end of �le token. You

can use the -e ag to instruct rdp to display the stop sets for each nonterminal

of a grammar. The production parameter is a simple character string that rdp

uses to pass the name of the currently executing parser function to the error

handling routine. It is always NULL unless the -E ag has been used to ask rdp

to add the current rule name to error messages.

The body of the start production shows how these routines are used in

practice. The corresponding grammar rule is

start ::= INTEGER '+' expr.

and rdp writes out the following lines

scan_test(NULL, SCAN_P_INTEGER, &start_stop);

scan_();

scan_test(NULL, RDP_T_18 /* + */, &start_stop);

scan_();

expr();

scan_test_set(NULL, &start_stop, &start_stop);

The function call scan_test(NULL, SCAN_P_INTEGER, &start_stop) asks for

the current scanner variable to be tested against SCAN_P_INTEGER and if a valid

integer such as 23 or 0xFF is not found then orders an appropriate error message

to be issued after which the input should be resynchronised on the set of tokens

start_stop. Assuming the test did succeed then the scanner is called to get the

next token which is tested against RDP_T_18 (the token enumeration symbol for

the + lexeme). If that succeeds then the expr() parser function is called. The

last thing that each parser function does is to test that the scanner variable has

been loaded with a token that can validly follow the corresponding nonterminal

by testing against its _stop set.

Selecting alternate productions 79

12.4 Selecting alternate productions

If a grammar rule has more than one alternate production then the first

sets for the productions are used to control the selection of a production for

matching. Here is a small grammar that illustrates the process:

multi ::= A 'b' 'c' | X 'y'.

A ::= 'a' | 'aa'.

X ::= 'x' | 'y'.

When rdp processes a grammar rule with multiple alternate productions it

gives each of them a name comprising the pre�x rdp_ followed by the name

of the rule followed by an integer which is incremented after each use. The

two alternate productions in rule multi are therefore called rdp_multi_0 and

rdp_multi_1. rdp will calculate first sets which it names rdp_multi_0_first

and rdp_multi_1_first.

The generated parser function for rule multi is as follows.

void multi(void)

{

{

if (scan_test_set(NULL, &rdp_multi_0_first, NULL))

{

A();

scan_test(NULL, RDP_T_b, &multi_stop);

scan_();

scan_test(NULL, RDP_T_c, &multi_stop);

scan_();

}

else

if (scan_test_set(NULL, &rdp_multi_1_first, NULL))

{

X();

scan_test(NULL, RDP_T_y, &multi_stop);

scan_();

}

else

scan_test_set(NULL, &multi_first, &multi_stop) ;

scan_test_set(NULL, &multi_stop, &multi_stop);

}

}

The if statements here act as gateways to the di�erent branches of the

the rule. If the current value of the scanner variable is a token that is in

rdp_multi_0_first then the �rst branch will be taken and parser function A()

will be called. If not, then the scanner variable is tested against rdp_multi_1_first

and if successful then the second branch is taken. If neither branch is taken then

an error has occurred and the production of an error message is forced by testing

the scanner variable against the first set for the whole rule multi_first.

80 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERS

12.5 Parsing iterators

An iterator is created either explicitly by using the iterator operator @ or by

using one of the four bracket forms (), [], { } and \verb< >+. As for

alternate productions, rdp gives each a unique name and calculates a first set

for it. The high and low iteration counts, the delimiter token and the first set

for the iterator are then used to control the parsing with the help of a while

loop. Here is an iterator rule that uses most of the features of the iterator

operator:

iter ::= ('a')3@4 'b'.

The generated parser function for rule iter is as follows.

void iter(void)

{

{

{ /* Start of rdp_iter_1 */

unsigned long rdp_count = 0;

while (1)

{

{

scan_test(NULL, RDP_T_a, &iter_stop);

scan_();

}

rdp_count++;

if (rdp_count == 4) break;

if (SCAN_CAST->token != RDP_T_b) break;

scan_();

}

if (rdp_count < 3) text_message(TEXT_ERROR_ECHO,

"iteration count too low\n");

} /* end of rdp_iter_1 */

scan_test_set(NULL, &iter_stop, &iter_stop);

}

}

A local variable rdp_count is declared to keep a count of the number of

times the body of the iterator has been successfully matched. The iterator loop

is implemented as an `in�nite' while (1) loop which contains break statements

that can cause control to be transferred out of the loop This rather inelegant

arrangement is used because there are several di�erent conditions that can cause

loop termination and it is more e�cient to simply break out of the loop than

to, say, set a ag to be tested at the bottom of the loop.

On entry to the iterator loop, the code performs a match against the body

of the iterator rule: in this case a simple match against the token a. Upon suc-

cessful matching, the counter rdp_count is incremented and if its value exceeds

the high limit for the iterator (4 in this case) then the loop terminates. Oth-

erwise a test is performed to see if the current scanner symbol is the delimiter

Debugging rdp-generated parsers 81

token for the iterator (b in this case). If not, the loop terminates otherwise the

iterator body is matched again. Once the iterator loop does �nally exit, a test

is made to ensure that the loop counter exceeds the low value for the iterator,

otherwise an error message is issued.

rdp applies a series of optimisations to the generation of iterator parser

functions which are not documented in detail here. As a simple example: if the

iterator high and low values are integers in the range of 0. . . 1 then it is never

necessary to keep a track of the number of iterator loops so the code associated

with the variable rdp_count is omitted. Although these optimised forms of the

iterator template all di�er from the version documented, each iterator function

follows the same general form and is agged up in the code with a comment

of the form /* Start of rdp_... */. You might �nd it interesting to try

di�erent kinds of iterator and examine the generated code.

12.6 Debugging rdp-generated parsers

Debugging a machine generated parser is always more challenging than debug-

ging a normal human-written program because of the multiple levels at which

errors can be introduced and the di�culty of distinguishing between an error

in the grammar proper and an error in the semantic actions inserted into the

grammar. In this section we shall distinguish between the di�erent kinds of

error that can arise in terms of the point within the process at which the error

will be detected and give advice on the use of rdp's facilities to make the task

of diagnosing the cause the error easier. Errors can be detected at the following

times.

� During the initial parse of the IBNF speci�cation as a result of syntax

errors or because of illegal use of rdp's features, such as requesting an

iterator of the form 4@3 in which the low bound is higher than the high

bound.

� During the grammar analysis phase, in which LL(1) violations of various

forms may be reported.

� During string testing of the parser. The generated parser may turn out to

accept inputs that are not legal in the intended language or reject inputs

that are. In either case, this indicates a mismatch between the language

the designer had in mind and the language speci�ed by the grammar

processed by rdp.

� During testing of the semantic actions of a parser.

12.7 Errors reported by rdp when parsing a speci�cation

Syntax errors in the IBNF speci�cation are detected by rdp and reported using

the standard error reporting mechanism. New users are most often caught out

by one of the following common errors.

82 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERS

1. Using the Pascal-style assignment operator := instead of the rdp-IBNF

`expands-to' symbol ::=.

2. Omitting the full stop (period) at the end of each production.

3. Quoting nonterminals instead of terminals.

4. Quoting scanner elements. A grammar containing a rule of the form

item ::= ID | 'INTEGER'. is perfectly acceptable to rdp but will not

match to integers: it will attempt to match against the keyword INTEGER

instead.

5. Putting in superuous commas within parameter lists and directives. rdp-

IBNF does not use the comma in any context.

12.8 LL(1) errors reported by rdp during the analysis phase

rdp will, of course, reject grammars that have empty alternates or that make

use of production rules that have not been declared since it assumes that these

grammars are incomplete. rdp will also reject a grammar that contains two

or more de�nitions for the same rule. You must combine such multiple rules

together with the alternate operator (|).

There is a set of errors that rdp may detect whilst analysing a grammar.

Even a well formed grammar (in the sense of the previous paragraph) may be

unacceptable because rdp-generated parsers can only handle grammars that

may be parsed top-down using a single symbol of lookahead. In practice this

means that at every point in the grammar where a running parser may have to

choose between two or more courses of action it must be able to make a decision

simply by looking at the single lookahead token held in the scanner variable.

The three broad classes of problem and the best approach to their correction

are as follows.

� Left recursive rules, that is ones that may call themselves before consum-

ing any input tokens are not allowed. Many left recursive constructions

can be recast as iterators and thus converted to acceptable grammars.

Left recursion removal is a common requirement if you are adapting gram-

mars that were developed for bottom up parser generators such as YACC,

because these tools do allow left recursive rules.

There do exist standard algorithms for left recursion removal. Unfortu-

nately these algorithms in general remove the left recursion but introduce

other forms of LL(1) error into the resulting grammar so they are not a

panacea, in spite of the claims occasionally made in their favour. In fact

some left recursive grammars have no simple counterpart which is LL(1)

although in practice most grammars can be massaged into the necessary

form.

The most common source of such problems is in the description of operator

expressions with left and right associativity. We suggest that you study

Re�ning a grammar 83

the examples in the tree generation chapter of this manual and in the

tutorial manuals, and copy the techniques used there.

� Alternate productions within a rule must start with di�erent tokens, that

is their first sets must be disjoint. A rule such as

bad ::= 'a' 'b' 'c' | 'a' 'y' 'z'.

has two alternate productions both of which starts with the token a. It

can be recast using left factorisation to be acceptable to rdp as follows:

good ::= 'a' ('b' 'c' | 'y' 'z').

� Iterators with a low bound of zero (and that includes the [] and { }

bracket shorthands) can match the empty string. If the body of the

iterator can start with tokens that can also follow the iterator then the

parser cannot know, in general, whether the existence of such a token on

the input indicates that it should step into or step over the iterator. As

a result, for rules and iterators that can match epsilon, the first and

follow sets must be disjoint.

12.9 Re�ning a grammar

Once you have a compiled parser, you may �nd that it does not behave as you

intended. If your parser rejects strings that it `ought' to accept, or accepts

strings that it should reject then before tracing the code try checking that all

alternates are correctly separated by alternate operators (|). In a long list of

alternates it is easy to leave one of the bars o�:

alpha ::= 'a' |

'b'

'c' |

'd' .

This rule does not accept the language f a, b, c, d g which is perhaps what

was intended but rather the language f a, bc, d g.

Assuming that no typographic errors are found at this stage then it will be

necessary to trace the behaviour of the parser. rdp provides a range of levels

at which tracing may be performed.

Examining scanner lexemes with the -s ag

If you run the generated parser with a -s ag, the scanner will report the

value of every lexeme seen by the parser. This is particularly useful if your

commenting convention is causing the problem or if the handling of newlines is

suspect. We recommend that you use the -l option in tandem with -s so as

to generate a line-by-line listing as well, otherwise it can become hard to follow

the output.

84 UNDERSTANDING AND DEBUGGING RDP-GENERATED PARSERS

Adding rule names to error messages with the -E ag

Just seeing the stream of lexemes processed by the parser gives little information

on the state of the parser at the point of error. If you regenerate the parser with

rdp and add a -E ag to the rdp command line then all syntax error messages

produced by the generated parser will include the name of the rule that was

being matched when the error occurred. This can be a great help in tracking

down the part of the grammar that is in error. Note that the use of this ag is

very di�erent to that of the -s ag above: all rdp-generated parsers have the

-s ag built in but the -E ag is a command to rdp that governs the way that

it generates the parser, so you must regenerate the parser from scratch to see

its e�ect.

Enabling a full parser trace with the -R ag

If all else fails, you can instruct rdp to generate extremely verbose parsers that

issue a message very time a parser function is entered or exited. This allows a

complete parse to be traced, but can generate very long listings.

Tracing with VCG

An alternative way of tracing a parse is to enable tree generation using one of

the directives described in Chapter 9 and examine the parse tree with VCG,

although you will of course need to be using a computer that supports VCG

(such as a PC running Windows or an X-windows Unix system).

12.10 Debugging semantic actions

rdp blindly copies semantic actions in the IBNF speci�cation into the generated

parser and does not attempt to check them for syntactic or logical correctness. If

you write a syntactically incorrect action, by for instance omitting the semicolon

at the end of a C-language statement then it is only when you attempt to

compile the generated parser that you will receive an error message, and the

details of the message you receive depends on the particular compiler that you

are using.

Inhibiting semantic actions with the -p ag

You are strongly advised to check that your parser is functioning correctly as

a standalone parser before attempting to check the semantics. To make this

easier, rdp has an option to suppress the copying of semantic actions into the

generated parser main �le: if you generate the parser by running rdp with the

-p ag then all semantic actions in the IBNF �le will be ignored.

Tracing parsers with a debugger

Once the semantic actions have been introduced into the parser then it is best to

use the debugging facilities of your compiler to trace the behaviour of the parser.

Debugging semantic actions 85

We have successfully used the Microsoft and Borland integrated development

environments and, on Unix, the gdb debugger with the GNU compilers. We

suggest that you set a breakpoint on the parser function corresponding to the

start rule and then single step through the parser whilst looking at a short

input string.

Examining the contents of symbol tables with the -S ag

If your parser makes use of the built-in symbol table handler then you can order

the parser to print out the contents of its hash-coded symbol tables at the end

of a run by adding a -S ag to the command line. This is useful for checking

that identi�ers are being added correctly and also to ensure that the tables are

not becoming congested. We recommend that the length of each hash bucket

is kept to around three{four on average. Longer chains indicate that the size of

the table should be increased, although the tables will operate correctly even if

they are overfull: there will simply be a performance penalty.

Appendix A

Acquiring and installing rdp

rdp may be fetched using anonymous ftp to ftp.dcs.rhbnc.ac.uk. If you

are a Unix user download pub/rdp/rdpx_y.tar or if you are an MS-DOS user

download pub/rdp/rdpx_y.zip. In each case x_y should be the highest number

in the directory. You can also access the rdp distribution via the rdp Web

page at http://www.dcs.rhbnc.ac.uk/research/languages/rdp.shmtl. If

all else fails, try mailing directly to A.Johnstone@rhbnc.ac.uk and a tape or

disk will be sent to you.

A.1 Installation

1. Unpack the distribution kit. You should have the �les listed in Table A.1.

2. The make�le can be used with many di�erent operating systems and

compilers.

Edit it to make sure that it is con�gured for your needs by uncommenting

one of the blocks of macro de�nitions at the top of the �le.

3. To build everything, go to the directory containing the make�le and type

make. The default target in the make�le builds rdp, the mini_syn syn-

tax analyser, the minicalc interpreter, the minicond interpreter, the

miniloop compiler, the minitree compiler an assembler called mvmasm

and its accompanying simulator mvmsim, a parser for the Pascal language

and a pretty printer for ANSI-C. The tools are run on various test �les.

None of these should generate any errors, except for LL(1) errors caused

by the mini and Pascal if statements and warnings from rdp about un-

used comment() rules, which are normal.

make then builds rdp1, a machine generated version of rdp. rdp1 is then

used to reproduce itself, creating a �le called rdp2. The two machine

generated versions are compared with each other to make sure that the

bootstrap has been successful. Finally the machine generated versions are

deleted.

4. If you type make clean all the object �les and the machine generated

rdp versions will be deleted, leaving the distribution �les plus the new

88 ACQUIRING AND INSTALLING RDP

00readme.1_5 An overview of rdp

makefile Main rdp make�le

minicalc.bnf rdp speci�cation for the minicalc interpreter

minicond.bnf rdp speci�cation for the minicond interpreter

miniloop.bnf rdp speci�cation for the miniloop compiler

minitree.bnf rdp speci�cation for the minitree compiler

mini_syn.bnf rdp speci�cation for the mini syntax checker

ml_aux.c miniloop auxiliary �le

ml_aux.h miniloop auxiliary header �le

mt_aux.c minitree auxiliary �le

mt_aux.h minitree auxiliary header �le

mvmasm.bnf rdp speci�cation of the mvmasm assembler

mvmsim.c source code for the mvmsim simulator

mvm_aux.c auxiliary �le for mvmasm

mvm_aux.h auxiliary header �le for mvmasm

mvm_def.h op-code de�nitions for MVM

pascal.bnf rdp speci�cation for Pascal

pretty_c.bnf rdp speci�cation for the ANSI-C pretty printer

pr_c_aux.c auxiliary �le for pretty_c

pr_c_aux.h auxiliary header �le for pretty_c

rdp.bnf rdp speci�cation for rdp itself

rdp.c rdp main source �le generated from rdp.bnf

rdp.exe 32-bit rdp executable for Win-32 (.zip �le only)

rdp.h rdp main header �le generated from rdp.bnf

rdp_aux.c rdp auxiliary �le

rdp_aux.h rdp auxiliary header �le

rdp_gram.c grammar checking routines for rdp

rdp_gram.h grammar checking routines header for rdp

rdp_prnt.c parser printing routines for rdp

rdp_prnt.h parser printing routines header for rdp

test.c ANSI-C pretty printer test source �le

test.pas Pascal test source �le

testcalc.m minicalc test source �le

testcond.m minicond test source �le

testloop.m miniloop test source �le

testtree.m minitree test source �le

rdp_doc\rdp_case.dvi case study T

E

X dvi �le

rdp_doc\rdp_case.ps case study Postscript source

rdp_doc\rdp_supp.dvi support manual T

E

X dvi �le

rdp_doc\rdp_supp.ps support manual Postscript source

rdp_doc\rdp_tut.dvi tutorial manual T

E

X dvi �le

rdp_doc\rdp_tut.ps tutorial manual Postscript source

rdp_doc\rdp_user.dvi user manual T

E

X dvi �le

rdp_doc\rdp_user.ps user manual Postscript source

rdp_supp\arg.c argument handling routines

rdp_supp\arg.h argument handling header

rdp_supp\graph.c graph handling routines

rdp_supp\graph.h graph handling header

rdp_supp\memalloc.c memory management routines

rdp_supp\memalloc.h memory management header

rdp_supp\scan.c scanner support routines

rdp_supp\scan.h scanner support header

rdp_supp\scanner.c the rdp scanner

rdp_supp\set.c set handling routines

rdp_supp\set.h set handling header

rdp_supp\symbol.c symbol handling routines

rdp_supp\symbol.h symbol handling header

rdp_supp\textio.c text bu�er handling routines

rdp_supp\textio.h text bu�er handling header

examples\... examples from manuals

Table A.1 Distribution �le list

Build log 89

executables. If you type make veryclean then the directory is cleaned

and the executables are also deleted.

A.2 Build log

The output of a successful make�le build on MS-DOS is shown below. Note

the warning messages from rdp on some commands: these are quite normal.

cc -Irdp_supp\ -c rdp.c

rdp.c:

cc -Irdp_supp\ -c rdp_aux.c

rdp_aux.c:

cc -Irdp_supp\ -c rdp_gram.c

rdp_gram.c:

cc -Irdp_supp\ -c rdp_prnt.c

rdp_prnt.c:

cc -Irdp_supp\ -c rdp_supp\arg.c

rdp_supp\arg.c:

cc -Irdp_supp\ -c rdp_supp\graph.c

rdp_supp\graph.c:

cc -Irdp_supp\ -c rdp_supp\memalloc.c

rdp_supp\memalloc.c:

cc -Irdp_supp\ -c rdp_supp\scan.c

rdp_supp\scan.c:

cc -Irdp_supp\ -c rdp_supp\scanner.c

rdp_supp\scanner.c:

cc -Irdp_supp\ -c rdp_supp\set.c

rdp_supp\set.c:

cc -Irdp_supp\ -c rdp_supp\symbol.c

rdp_supp\symbol.c:

cc -Irdp_supp\ -c rdp_supp\textio.c

rdp_supp\textio.c:

cc -erdp.exe rdp.obj rdp_*.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

rdp -F -omini_syn mini_syn

cc -Irdp_supp\ -c mini_syn.c

mini_syn.c:

cc -emini_syn.exe mini_syn.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

mini_syn testcalc

rdp -F -ominicalc minicalc

cc -Irdp_supp\ -c minicalc.c

minicalc.c:

cc -eminicalc.exe minicalc.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minicalc testcalc

a is 7

b is 14, -b is -14

7 cubed is 343

rdp -F -ominicond minicond

******: Error - LL(1) violation - rule

rdp_statement_2 ::= ['else' _and_not statement] .

90 ACQUIRING AND INSTALLING RDP

contains null but first and follow sets both include: 'else'

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c minicond.c

minicond.c:

cc -eminicond.exe minicond.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minicond testcond

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

rdp -F -ominiloop miniloop

******: Error - LL(1) violation - rule

rdp_statement_2 ::= ['else' statement] .

contains null but first and follow sets both include: 'else'

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c miniloop.c

miniloop.c:

cc -Irdp_supp\ -c ml_aux.c

ml_aux.c:

cc -eminiloop.exe miniloop.obj ml_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

rdp -F -omvmasm mvmasm

cc -Irdp_supp\ -c mvmasm.c

mvmasm.c:

cc -Irdp_supp\ -c mvm_aux.c

mvm_aux.c:

cc -emvmasm.exe mvmasm.obj mvm_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

cc -Irdp_supp\ -c mvmsim.c

mvmsim.c:

cc -emvmsim.exe mvmsim.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

miniloop -otestloop.mvm testloop

mvmasm -otestloop.sim testloop

******: Transfer address 00001000

mvmsim testloop.sim

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

a is 3

a is 2

a is 1

-- Halted --

rdp -F -ominitree minitree

******: Error - LL(1) violation - rule

rdp_statement_2 ::= ['else' statement] .

contains null but first and follow sets both include: 'else'

Build log 91

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c minitree.c

minitree.c:

cc -Irdp_supp\ -c mt_aux.c

mt_aux.c:

cc -eminitree.exe minitree.obj m*_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minitree -otesttree.mvm testtree

mvmasm -otesttree.sim testtree

******: Transfer address 00001000

mvmsim testtree.sim

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

a is 3

a is 2

a is 1

-- Halted --

rdp -opascal -F pascal

******: Error - LL(1) violation - rule

rdp_statement_9 ::= ['else' statement] .

contains null but first and follow sets both include: 'else'

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c pascal.c

pascal.c:

cc -epascal.exe pascal.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

pascal test

rdp -opretty_c pretty_c

cc -Irdp_supp\ -c pretty_c.c

pretty_c.c:

cc -Irdp_supp\ -c pr_c_aux.c

pr_c_aux.c:

cc -epretty_c.exe pretty_c.obj pr_c_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

pretty_c test

test.c,2133,12267,5.75

fc test.c test.bak

Comparing files test.c and test.bak

FC: no differences encountered

del test.bak

rdp -F -ordp1 rdp

cc -Irdp_supp\ -c rdp1.c

rdp1.c:

cc -erdp1.exe rdp1.obj rdp_*.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

copy rdp1.c rdp2.c

rdp1 -F -ordp1 rdp

92 ACQUIRING AND INSTALLING RDP

fc rdp1.c rdp2.c

Comparing files rdp1.c and rdp2.c

****** rdp1.c

*

* Parser generated by RDP on Dec 20 1997 21:05:05 from rdp.bnf

*

****** rdp2.c

*

* Parser generated by RDP on Dec 20 1997 21:05:02 from rdp.bnf

*

Bibliography

[Bac60] J. W. Backus. The syntax and semantics of the proposed Interna-

tional Algebraic Language of the Zurich ACM-GAMM conference. In

R. Oldenburg, editor, Proc. Internat'l Conf. Information Processing,

UNESCO, Paris, 1959, pages 125{132, London, 1960. Butterworths.

[JS97a] Adrian Johnstone and Elizabeth Scott. Designing and implementing

language translators with rdp { a case study. Technical Report TR-97-

27, Royal Holloway, University of London, Computer Science Depart-

ment, December 1997.

[JS97b] Adrian Johnstone and Elizabeth Scott. rdp supp { support routines

for the rdp compiler compiler version 1.5. Technical Report TR-97-26,

Royal Holloway, University of London, Computer Science Department,

December 1997.

[JS97c] Adrian Johnstone and Elizabeth Scott. A tutorial guide to rdp for

new users. Technical Report TR-97-24, Royal Holloway, University of

London, Computer Science Department, December 1997.

[San95] Georg Sander. VCG Visualisation of Compiler Graphs. Universit�at

des Saarlandes, 66041 Saarbr�ucken, Germany, February 1995.

