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Abstract

rdp is a system for implementing language processors. It takes as input an
EBNF-like specification of a language together with a specification, written in C,
of behaviour which should result when fragments of the language are recognised.
rdp produces as output a program written in C, which parses fragments of the
specified language and carries out the specified corresponding actions. Thus
rdp can produce, for example, compilers (the actions specify the corresponding
target code), interpreters (the actions evaluate the input fragments) and pretty
printers (the actions reformat the input fragments).

This document is c©Adrian Johnstone and Elizabeth Scott 1997.

Permission is given to freely distribute this document electronically and
on paper. You may not change this document or incorporate parts of it
in other documents: it must be distributed intact.

The rdp system itself is c©Adrian Johnstone but may be freely copied
and modified on condition that details of the modifications are sent to
the copyright holder with permission to include such modifications in
future versions and to discuss them (with acknowledgement) in future
publications.

The version of rdp described here is version 1.50 dated 16 August 1997.

Please send bug reports and copies of modifications to the authors at the
address on the title page or electronically to A.Johnstone@rhbnc.ac.uk.



Contents

1 An overview of translation 1

2 Basic parsing issues 5

2.1 Specifying a language 5

2.2 Formal grammars and rdp 6

2.3 Building and running a parser 7

2.4 Makefiles 10

2.5 rdp parsers and recursive descent parsing 11

2.5.1 Left-most derivations 11

2.5.2 Selecting an alternate 12

2.6 The rdp scanner 13

2.6.1 rdp scanner tokens 13

2.6.2 Defining a language which permits comments 15

3 Extended BNF 17

3.1 Standard EBNF 18

3.2 rdp’s IBNF 20

3.3 Derivations in IBNF 21

4 Restrictions on rdp grammars 25

4.1 Deterministic choice on alternates 25

4.2 first sets 26

4.3 Parsing with first sets 27

4.4 The problem with ǫ rules 27

4.5 follow sets 28

4.6 LL(1) grammars 29

4.7 Overriding the LL(1) restrictions 29

4.8 Inspecting the first and follow sets 31

5 The mini grammar 35

6 Semantic actions 37

6.1 The function based implementation of rdp-generated
parsers 37

6.2 Semantic actions – an example 39

6.3 Semantic actions in empty grammar rules 42

6.4 Semantic actions and the iterator construct 44



ii CONTENTS

6.5 Left associative operators 45
6.6 Expression semantics in mini 47
6.7 Inherited attribute definition 47

6.7.1 Semantic actions for IF statements 48

7 Symbol tables in rdp 51
7.1 Hash coded symbol tables 51
7.2 Assignment 52
7.3 Identifier declaration 53
7.4 Using undeclared variables 54

8 A mini interpreter 55

A Acquiring and installing rdp 59
A.1 Installation 59
A.2 Build log 61



Chapter 1

An overview of translation

Computer programs are often written in a so-called ‘high level’ language such
as C or FORTRAN. Most human programmers find high level languages easier
to use than the ‘low level’ machine oriented languages. However, in order for a
machine to execute a program it must be translated from the high level language
in which it is written to the native language of that machine. A compiler is a
program which takes as input a program written in one language and produces
as output an equivalent program written in another language.

Computer languages are very simple compared to the languages employed in
everyday human communication. This makes the task of writing a compiler less
intimidating—at present computer programs that translate from one human

language to another are rather unsatisfactory because the subtle rules that un-
derpin human languages are not completely understood, and so mis-translations
are common.

Although computer languages are designed to be simple to understand and
translate, real computer languages still present significant problems. Some-
times, especially with very old languages such as FORTRAN and COBOL, the
difficulties in translation arise from the imperfect understanding that the early
language designers had of the translation process. More modern languages,
such as Pascal and Ada are to a large extent designed to be easy to translate.
The discovery that it was possible to design a language which could be trans-
lated in linear time (that is the translation time is proportional to the length
of the text to be translated) and yet still appear readable to humans was an
important result of early work on the theory of programming language syntax.

Other problems are not so easily circumvented. It turns out, for instance,
that the ability to directly modify machine addresses provided by the C lan-
guage’s pointer arithmetic operations makes it very difficult for a ‘smart’ trans-
lator to produce efficient translations for conventional computers, and the same
facilities create even more serious problems when attempting to produce code
that will run on a parallel computer. This kind of difficulty arises from a fun-
damental design decision taken at the time the language is first specified, and
cannot easily be undone.



2 AN OVERVIEW OF TRANSLATION

Subdividing the translation problem

Computer language translation is traditionally viewed as a process with two
main parts: the front end conversion of a high level language text written in
a language such as C, Pascal or Ada into an intermediate form, and the back

end conversion of the intermediate form into the native language of a computer.
This approach is useful because it turns out that the challenges encountered in
the design of a front end differ fundamentally from the problems posed by back
end code generation and separating out the problems makes it easier to think
about the overall task.

The language to be translated forms the input to the front end and is called
the source language. The output of the back end is called the target language.
In the special (but very common) case of a translator that outputs machine
code for a particular computer, the target language is usually called the object

code.

Interpreters, compilers and in-between

Sometimes the subdivision of the translation problem into front and back ends
is explicit in the translator program, but not always. An interpreter is a spe-
cial kind of language translator that executes actions as it translates. Most
operating system command shells are of this form: each command is executed
as it is encountered. In such a system there is no readily discernible back end
or intermediate form although it can still be useful to think of the program as
performing front and back end tasks. The macro languages found in most word
processors, along with simple programming languages such as BASIC are most
often implemented as interpreters.

The intermediate form must provide enough generality to cope with the
various source and target languages. Fortunately, front end processors for dif-
ferent languages sometimes display striking similarities. For instance, at a very
crude level the variable declaration constructs in C and Pascal are quite similar.
Their use of if-then-else selection is almost identical. It is perfectly possi-
ble to design an intermediate form that can cope with both C- and Pascal-like
structures.

Using this organisation, a compiler for a given language can be moved to a
new computer architecture by writing a new back end to take account of the
differing instruction sets. More rarely, a new programming language syntax
can be quickly implemented on a given architecture by building a new front
end and using an existing back end. This saving in engineering effort can be
very important in commercial compiler systems, even though it may require
an intermediate form that is more complex than that required for a single
source/target language pair.

Automated front end production

Many of the theoretical issues surrounding front end translation were solved
during the 1960’s and 1970’s, and it is possible to reduce most of the imple-
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mentation effort for a new front end to a clerical exercise that may itself be
turned into a computer program. Compiler-compilers are programs that take
the description of a programming language, and output the source code of a
program that will recognise, and possibly act upon, phrases written in that lan-
guage. The availability of such tools has fed back into programming language
design. It is very hard to use such tools to generate translators for languages
such as FORTRAN, but more recent languages are usually designed in such
a way as to facilitate the use of compiler-compilers. The description of the
programming language to be input to a compiler-compiler is usually given in
a variant of the generative grammar formalism which was introduced in the
1950’s by Chomsky. The formalism was first applied to the specification of pro-
gramming languages by John Backus and Peter Naur and in recognition of this
the notation used is often called Backus-Naur Form (or BNF). In this guide we
shall give an introduction to BNF and the particular version, IBNF, accepted
by our compiler-compiler. A full discussion of BNF can be found in standard
texts such as [ASU86] or [AU72], and further discussion of our particular IBNF
can be found in the associated user manual [JS97b].

Back end design

Code generation, the primary task of the back end, is much less well understood
than front end translation. The basic task is the selection of machine code
sequences that correctly represent the meaning of the source language phrases.
In general we will want to generate code which executes either as quickly as
possible, or requires as little space as possible, or both (these two aims may or
may not conflict). So far no single unifying theoretical model has appeared, and
many compilers use a ‘bag of tricks’ in the back end that is hard to systematise.
As a result, books on compiler design often focus mainly on the front end where
the problems are more tractable and the tools more useful.

rdp is a program which takes an IBNF specification of a language and, provided
the specification has certain properties, generates a compiler which translates
from the specified language in to C. rdp can be used to generate both compilers,
interpreters and simple parsers for languages. In this tutorial document we give
a low level introduction to parser generation using rdp. The associated case
study manual [JS97a] discusses larger examples in which rdp is used to generate
a compiler for a small language. Full details of the facilities available in rdp

can be found in the associated users’ manual [JS97b].





Chapter 2

Basic parsing issues

rdp-generated parsers use a recursive descent parsing technique with one symbol

of lookahead. In order for such parsers to work correctly the specification (gram-
mar) which is input to rdp must have certain properties. A full description of
these properties will be given in Chapter 4. In this chapter we review enough of
the theory of grammars, language specification, and parsing to understand the
use of rdp at a basic level. We also describe, in a step-by-step fashion, the way
in which rdp can be used to generate a parser for a specified language, using
a language whose elements are arithmetic expressions as an example. At the
end of the chapter we describe the built in rdp scanner, which is copied into all
rdp-generated parsers.

We assume that you have already got and unpacked the rdp software pack,
and that you have built the standard modules (for example by typing make).
Your main rdp directory should contain subdirectories rdp_doc and rdp_supp.
For instructions on how to get and install the rdp software pack see Appendix A
at the end of this manual.

Throughout this guide we shall illustrate our discussion with example gram-
mars. The grammars which are given titles in the text are included in the rdp
distribution pack in the subdirectory tut_exs so you can use rdp to generate
the corresponding parsers.

2.1 Specifying a language

It is standard practice to use formal grammars to specify languages. For exam-
ple,

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

is a set of grammar rules which generates a language of sums and products, for
example, a+b*a+a or a.

A grammar consists of a set N of non-terminals, a set T of terminals, and
a set P of grammar rules of the form

A ::= α1 | α2 | . . . | αn
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where A is an element of N and each αi is a string of elements from N and T.
One of the non-terminals, S say, is singled out and called the start symbol.

In the above grammar, the non-terminals are S, E, the terminals are +,*,a,b,
and the start symbol is S.

How does a grammar specify a language?
We derive one string from another by replacing a non-terminal with a string

from the right hand side of its grammar rule. So if we have a rule

A ::= ... | γ | ... .

we can replace A by γ. We use the symbol ⇒ for a derivation, and we write
αAβ⇒αγβ.

If µ and τ are strings, we say that τ can be derived from µ, and we write
µ

∗

⇒τ , if there is a sequence

µ⇒α1⇒ . . .⇒αn⇒τ.

For the example above we have

S ⇒ S + S

⇒ E + S

⇒ a + S

⇒ a + S + S

⇒ a + S * S + S

⇒ a + b * S + S

⇒ a + b * E + S

⇒ a + b * a + S

⇒ a + b * a + E

⇒ a + b * a + b

and so S
∗

⇒ a+ b ∗ a+ b.
The language specified by a grammar is the set of strings of terminals which

can be derived from its start symbol. We say that u ∈T∗ is a sentence if S
∗

⇒u.
(Here T

∗ denotes the set of strings of elements of T and includes the empty
string ǫ, so if T={a, b,+} then
T

∗ = {ǫ, a, b,+, aa, ab, a+, ba, bb, b+,+a,+b,++, aaa, aab, . . .}.)
The language generated by the grammar above is the set of all sums and

products of a’s and b’s.

2.2 Formal grammars and rdp

Only the grammar rules are actually input to rdp. The following conventions
are used by rdp to deduce the remaining aspects of the grammar: the left hand
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side of the first grammar rule is the start symbol, the terminal symbols are
enclosed in single quotes, and each grammar rule is terminated by a full stop.
The above example is an example input for rdp (although it should be noted
that rdp will not automatically generate a parser for this example because it is
left recursive — see below).

Given a ‘suitable’ input grammar (we shall explain what suitable means in
this context in Chapter 4), rdp generates a parser which takes as input a string
u of terminals and either reports success, if u is a sentence in the language of
the grammar, or issues an error message. (If the input grammar is not suitable
rdp issues a diagnostic identifying the aspect(s) of the grammar with which it
cannot cope.)

In the rest of this chapter we shall describe how to get rdp to generate a
parser from a simple grammar. It is not possible to use rdp to generate a correct
parser for the expression grammar given above, because this grammar is not
‘suitable’ in the sense that we have just discussed. So we shall use the following
grammar (which specifies the same language as the original) as an example.

(** expr1.bnf **)

S ::= E Y.

Y ::= [’+’ S].

E ::= T X.

X ::= [’*’ E].

T ::= ’a’ | ’b’.

We need to note here that rdp does not directly accept ‘epsilon’ rules (i.e. rules
of the form A ::= ǫ, where ǫ denotes the empty string). The notation [α] is
used to represent α|ǫ. So, for example,

Y ::= [’+’ S]. corresponds to Y ::= ’+’ S | ǫ.

2.3 Building and running a parser

In this section we shall use the grammar expr1.bnf to describe the basic pro-
cedure for getting rdp to generate a parser.

To build and run parsers using rdp we must first compile the support library
modules. The exact command to do this depends on the C compiler that you are
using. If, for instance your compiler was called CC then the following commands
would compile the modules:

CC -c -Irdp_supp rdp_supp/arg.c

CC -c -Irdp_supp rdp_supp/graph.c

CC -c -Irdp_supp rdp_supp/memalloc.c

CC -c -Irdp_supp rdp_supp/scan.c

CC -c -Irdp_supp rdp_supp/scanner.c

CC -c -Irdp_supp rdp_supp/set.c

CC -c -Irdp_supp rdp_supp/symbol.c

CC -c -Irdp_supp rdp_supp/textio.c
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The -c flag here tells the C compiler to just run as far as producing an object
file and to not attempt to link the module into an executable program. The
-Irdp_supp flag tells the compiler to look for include files in the rdp_supp

subdirectory.

In general you will have to replace the CC with the name of your compiler,
possibly along with some special flags. The following table gives some examples:
please refer to your compiler documentation if the combination of operating
system and compiler you use is not listed here.

If you are using. . . then replace CC with . . .

GNU C on Unix gcc

GNU C++ on Unix g++

Borland C V5.0 on MS-DOS bcc

Borland C++ V5.0 on MS-DOS bcc -P

Borland C V5.0 on Windows-95 bcc32

Borland C++ V5.0 on Windows-95 bcc32 -P

Once the support library has been built, we can edit a .bnf file, process it
using rdp and then compile the resulting parser before linking with the support
library modules and testing the parser against a string file.

To build and run a parser for a language with gcc running under Unix and
using the Emacs editor we might use the following commands,

emacs expr1.bnf

rdp -oexpr1 expr1

gcc -Irdp_supp -c expr1.c

gcc expr1.o arg.o graph.o memalloc.o scan.o scanner.o set.o

symbol.o textio.o

emacs expr1.str

expr -v expr1.str

To build and run a parser for a language with Borland C++ 5.0 running
under Windows-95 and using the standard DOS editor we use the following
commands,

edit expr1.bnf

rdp -oexpr1 expr1

bcc32 -P -Irdp_supp -c expr1.c

bcc32 expr1.obj arg.obj graph.obj memalloc.obj scan.obj

scanner.obj set.obj symbol.obj textio.obj

edit expr1.str

expr -v expr1.str

We now look at these commands line-by-line. We can type the above gram-
mar into a file using our editor (either emacs or edit here). If we call the file
expr1.bnf say, then we can input it to rdp as follows.

rdp -oexpr1 expr1
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This causes rdp to produce a parser, called expr1.c and written in C, for the
language specified by the grammar. The flag -o directs rdp to call the file it pro-
duces expr1.c; the default name for the output, which will be used if you leave
out the -o flag, is rdparser.c. Note, all the examples discussed in this manual
are included in the rdp distribution in the subdirectory examples\rdp_tut. If
you wish to use these directly you will need to give the path

rdp -oexpr1 examples\rdp_tut\expr1

We then compile this file using a C compiler to produce an object file
expr1.obj. The following command assumes that the compiler is Borland
C++:

bcc32 -P -Irdp_supp -c expr1.c

The flag -I instructs the compiler to look in the subdirectory rdp_supp for the
additional header files that it needs and the -c flag tells the compiler to only
produce an object file and not to invoke the linker at this stage.

The final parser needs to use the various support routines which are provided
with the rdp package. Some of these support modules are discussed later in this
manual, and all the support modules are fully documented in the accompanying
support manual [JS97c]. Here we shall just generate an executable parser by
linking in the appropriate support modules, without explaining their functions.

bcc32 expr1.obj arg.obj graph.obj memalloc.obj scan.obj

scanner.obj set.obj symbol.obj textio.obj

This produces an executable version of the parser, called expr1.exe on DOS
and Windows systems or just plain expr1 on Unix systems.

We can then create a test file, expr1.str say, that contains a string for the
generated parser to check, and run it through the parser using the command

expr1 -v expr1.str

The -v flag runs the generated parser in verbose mode so that it gives informa-
tion about the execution. For example, if expr1.str is

a + b * a + b

the following should be produced as a result of the above command:

rdparser

Generated on Apr 14 1997 9:56:55 and compiled on Apr 14 1997 at 9:32:21

******: 0.008 CPU seconds used

If we give the generated parser a string which is not in the language it issues
a suitable error message. For example, on input a b we get

rdparser

Generated on Apr 14 1997 9:56:55 and compiled on Apr 14 1997 at 9:32:21

1: Error 1 (expr.str) Scanned ’b’ whilst expecting one of EOF, ’*’, ’+’

1: a b

1: --1

******: Fatal - error detected in source file
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and on input a + + b we get

rdparser

Generated on Apr 14 1997 9:56:55 and compiled on Apr 14 1997 at 9:32:21

1: Error 1 (expr.str) Scanned ’+’ whilst expecting one of ’a’, ’b’

1: a + + b

1: ----1

******: Fatal - error detected in source file

In both cases the generated parser issues an error message which prints out
the section of the input string which has caused the trouble, indicates where
in the string the parse has failed, and issues a list of symbols that would have
been legitimate at the point of the error.

2.4 Makefiles

The rdp distribution pack contains a makefile which you can use to build and
run the parsers. It is called makefile and is in the main rdp directory.

The makefile contains options for running rdp under Unix, DOS, SunOS
and Windows-95, using gcc, acc 2.0, Borland C 3.1, Borland C++ 5.0, and
Microsoft ’C’ 7.0. All that is necessary to use a particular configuration is to
remove the commenting ‘#’ from the appropriate section. For example, to run
gcc under Unix uncomment the commands

# Configuration for gcc on Unix. Also works for g++ if you set CC = g++

CC = gcc

OBJ = .o

EXE =

DIFF = diff -s

RM = rm

CP = cp

SUPP_DIR = ./rdp_supp/

CFLAGS = -I$(SUPP_DIR) -Wmissing-prototypes -Wstrict-prototypes

-fno-common -Wall -ansi -pedantic -g

LINK = $(CC) -o ./

MATHS = -lm

HERE = ./

OBJ_ONLY = -c

# End of gcc on Unix configuration

There is a section in the makefile which allows it to be used to build a
parser for any suitable input grammar. The grammar should be typed into a
file with a .bnf extension, myfile.bnf say. This file is then used by setting
GRAMMAR=myfile as part of the command line instructions to make (see below).
The makefile runs rdp on the input file, compiles the corresponding C file, links
it with the appropriate support files, and finally runs the executable parser on
a file myfile.str containing a test string. Typing

make GRAMMAR=examples\rdp_tut\expr1 parser

under DOS generates the following:
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MAKE Version 4.0 Copyright (c) 1987, 1996 Borland International

rdp examples\rdp_tut\expr1

bcc32 -Irdp_supp\ -A -c -P -w -c rdparser.c

Borland C++ 5.0 for Win32 Copyright (c) 1993,1996 Borland International

rdparser.c:

bcc32 -erdparser.exe rdparser.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

Borland C++ 5.0 for Win32 Copyright (c) 1993,1996 Borland International

Turbo Link Version 1.6.72.0 Copyright (c) 1993,1996 Borland International

rdparser -v -Vparser.vcg -l examples\rdp_tut\expr1.str

rdparser

Generated on Dec 28 1997 9:08:55 and compiled on Dec 27 1997 at 8:41:23

******:

1: a + b * a + b

******: 0 errors and 0 warnings

******: 0.038 CPU seconds used

rdp has built a parser for expr1.bnf and run it on the file expr1.str, which
in this case happened to contain the string a + b * a + b.

2.5 rdp parsers and recursive descent parsing

rdp generates parsers which use a recursive descent technique. The goal of
a parser is to construct a derivation of a given input string. In order to use
rdp it is necessary to have an understanding of the recursive descent technique
which its parsers use. In this section we outline the basic ideas of top-down
one-symbol-lookahead parsing in order to motivate our choice of examples. Re-
cursive descent is considered in more detail in Chapter 4.

2.5.1 Left-most derivations

rdp-generated parsers use a top down approach; that is, they start with the
start symbol and attempt to construct a derivation step-by-step from the left.
The parsers also use a left-most depth-first approach; that is, at each step in the
constructed derivation the left-most non-terminal in the string is expanded.

Consider the grammar expr1.bnf

S ::= E Y.

Y ::= [’+’ S] .

E ::= T X.

X ::= [’*’ E] .

T ::= ’a’ | ’b’.

As it uses a top down depth first approach, an rdp-generated parser for the
above grammar would construct the following derivation of a + b * a:

S ⇒ E Y ⇒ T X Y ⇒ a X Y ⇒ a Y ⇒ a + S ⇒ a + E Y
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⇒ a + T X Y ⇒ a + b X Y ⇒ a + b * E Y ⇒ a + b * T X Y

⇒ a + b * a X Y ⇒ a + b * a Y ⇒ a + b * a

but would not construct the following (legitimate) derivation of a:

S ⇒ EY ⇒ E ⇒ TX ⇒ T ⇒ a

2.5.2 Selecting an alternate

When there is more than one alternate in a grammar rule recursive descent
parsers need an algorithm for deciding which of the alternates to choose. For
example, in the first derivation above at the point

S ⇒ E Y ⇒ T X Y

it was necessary to decide whether to replace T by a or b at the next step.
This decision was made by looking at the current input symbol. This will be
discussed formally below but it may help the reader at this point to consider the
following informal discussion. As the parse begins the first symbol of the string
to be parsed is read from the input buffer. This is the current input symbol.
If the parse is to succeed, eventually this symbol must appear at the beginning
(left hand end) of a string generated during the derivation. When this happens
the current input symbol has been matched, and the next symbol is read from
the input buffer, becoming the current input symbol. Eventually this must
be matched to the second symbol in a string generated during the derivation,
and so on. This reading and matching process carries on until the last symbol
from the input buffer is matched to the last symbol of a string generated by
the derivation. At this point the parse has succeeded. If this point cannot be
reached then the parse has failed.

The value of the current input symbol is the only information the parser has
for use in selecting the alternate to be inserted at the next derivation step. So if
parser success is to be guaranteed, this information must be sufficient to decide
between the alternates. For this reason, rdp will not generate a parser from a
grammar in which two or more alternates from the same grammar rule have
the same first symbol. For example, we could not use an rdp parser generated
from the grammar

S ::= E Y.

Y ::= [’+’ S] .

E ::= T X.

X ::= [’*’ E] .

T ::= ’a’ ’a’ | ’a’ ’b’.

To see why this grammar is unsatisfactory consider the string ab + aa. At the
point

S ⇒ E Y ⇒ T X Y
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in an attempted parse of this string it is not possible to decide, just by looking
at the current input symbol a, which of the alternates aa and ab to use to
replace T.

In the original grammar,

S ::= S ’+’ S | S ’*’ S | E .

E ::= ’a’ | ’b’ .

two of the alternates in the rule for S have S as their first symbol. This is
one reason why this grammar cannot be used with rdp and a modified version
expr1.bnf was used as an example in the previous sections.

A complete description of grammars which admit rdp-generated parsers is
given in Chapter 4.

2.6 The rdp scanner

So far we have not discussed how rdp-generated parsers match characters in an
input file to terminals in the grammar. To use rdp effectively it is necessary
to know a little about the initial phase of compilation usually called lexical

analysis or scanning.

2.6.1 rdp scanner tokens

A parser usually considers sentences in a language at token, or ‘word’, level. It
is presented with streams of tokens which have to be structured into sentences.
In reality, a sentence is presented as a stream of characters, or ‘letters’, and
these characters must first be grouped together into words. This is usually the
job of the scanner in a compiler.

Tokens are not quite the same thing as words. A token often corresponds
to a set of words. For example, we describe the set of integers using the token
INTEGER and the set of C style identifiers using the token ID. Sometimes tokens
do correspond exactly to words. For example, the token ’if’ corresponds just
to the string which forms the keyword if.

So a token is the name of a set of strings of characters; this set is called the
pattern of the token. We say that a string of characters matches a token if it
belongs to the pattern of that token. A string which matches a token is called
a lexeme of the token. For example, a token op may correspond to the less-
than, greater-than, less-or-equals, and greater-or-equals strings. In this case,
the pattern of op is the set

{ <, >, <=, >= }

the string <= matches op, the string << doesn’t match op, and <= is a lexeme
of op.

rdp has a scanner which it uses to process its input files. This scanner is
automatically built into any parser that rdp generates, so rdp-generated parsers
come with a hard wired scanner giving the user access to certain standard
patterns.
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Simple tokens

Any string of characters between single quotes is treated by the scanner as a
token which matches exactly that string. So ’a’ matches the sequence a and
’while’ matches the sequence while, and the singleton set {a} is the pattern
of ’a’ and {while} is the pattern of ’while’.

The tokens INTEGER and REAL

The token INTEGER matches C style integers such as 145 and 0xFE, and REAL

matches any C style real number, such as 1.45 and 1.45e3. We can use the token
INTEGER to modify the expression grammar given in Section 2.3 to generate all
strings of integer expressions, sums and products of integers.

(** expr2.bnf **)

S ::= E Y.

Y ::= [’+’ S].

E ::= T X.

X ::= [’*’ E].

T ::= INTEGER.

The STRING() tokens

Most languages allow string literals —alphanumeric strings enclosed between,
for example, single or double quotes. For example, the C command

printf("string") ;

causes the characters string to be printed.

rdp allows you to use a paramaterisable token STRING(’delimiter charac-

ter’) which matches all sequences of letters and underscores enclosed by the
delimiter character. The symbol which is to delimit the strings must itself be
quoted. For example,

rule ::= STRING(’"’) .

matches strings between double quotes. So

"this is a string" "string1" "another_string"

are all lexemes of the token STRING(’"’).

To distinguish a single quote from the token quotes we use the \ character.
So

rule ::= STRING(’\’’) .

matches strings between single quotes, e.g.

’this is a string’ ’string1’ ’another_string’
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What if we want to include the delimiting character in the actual string?
Two consecutive delimiters represent the delimiter symbol itself. So, for exam-
ple,

’this string’’s delimiter is ’’’

matches the token STRING(’\’’) and the Pascal statement

writeln(’this string’’s delimiter is ’’’) ;

would cause

this string’s delimiter is ’

to be printed on the screen.
It is possible that a language designer would like to use an escape symbol

to access non-printing characters. This is fully documented in the user manual
[JS97b], here we just show its use for printing a delimiter symbol. Strings of
the form

"this string is delimited by \" and has a special escape symbol"

match the rdp token STRING_ESC(’"’ ’\\’).
We can now add strings and a print facility to the expression grammar which

allow the user to print messages and the results of calculations.

(** expr3.bnf **)

S ::= S1 | ’print’ ’(’ [String][S1] ’)’ .

S1 ::= E Y .

Y ::= [’+’ S1].

E ::= T X.

X ::= [’*’ E].

T ::= INTEGER.

String ::= STRING_ESC(’"’ ’\\’) .

A parser for this grammar accepts the input

print("the result is " 10*8+5)

2.6.2 Defining a language which permits comments

Most programming languages allow the programmer to include comments in
the code. These comments are designed to help a human reader of the code
to understand it but are not part of the instructions to the computer. Such
comments should be ignored by the translator, and hence need to be filtered
out at some point.

In the traditional model of compilation the scanner removes any comments
from the input before it is passed to the parser. The rdp scanner can recognise
and remove comments and this facility is also available in rdp-generated parsers.
The user must specify the form that comments in their language will take. This
is done by including the appropriate COMMENT primitive in the input grammar.

For example, we can add C style comments to the language of integer ex-
pressions described in Section 2.6.1. The parser generated for the grammar
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(** expr4.bnf **)

S ::= E Y .

Y ::= [’+’ S].

E ::= T X.

X ::= [’*’ E].

T ::= INTEGER.

comment ::= COMMENT(’/*’ ’*/’) .

accepts the following input:

/* Test input for expression grammar */

/*this string should be accepted*/

3 + 5 * 8/* multiplication will be done first */ + 10

/* this string should fail */

10 7

The above input will generate a parser error in the expression parser, and to
see if the first part is correct it would be useful to be able to comment out the
second part.

In C comments may not nest, but it is possible to define languages with
nesting comments using grammars which will be accepted by rdp. For example,
an rdp-generated parser for the grammar

(** expr5.bnf **)

S ::= E Y .

Y ::= [’+’ S].

E ::= T X.

X ::= [’*’ E].

T ::= INTEGER.

comment ::= COMMENT_NEST(’(*’ ’*)’) .

accepts the following input:

(* Test input for expression grammar *)

(*this string should be accepted*)

3 + 5 * 8(* multiplication will be done first *) + 10

(* (* this string should fail *)

10 7 *)



Chapter 3

Extended BNF

rdp grammars can have a more flexible type of grammar rule than standard
BNF allows. One of the major limitations of standard BNF is that it is only
possible to write out finitely many alternates. It is common practice in many
areas of computer science to use regular expressions as a concise notation for
sets of strings. This allows certain infinite sets to be specified, and saves tedious
writing out of large finite sets.

For example, the grammar

S ::= ’a’ { ’+’ ’a’ } .

defines the language of sums of a’s,

a, a+ a, a+ a+ a, a+ a+ a+ a, . . .

and

S ::= (’a’ | ’b’ | ’g’)( ’c’ | ’d’ | ’h’) .

defines the language

ac, ad, ah, bc, bd, bh, gc, gd, gh

In the first case we have specified that a string in the language can contain 0
or arbitrarily many + symbols. To give an equivalent specification in standard
BNF we would need to add extra grammar rules, for example

S ::= ’a’ X .

X ::= [’+’ ’a’ X] .

In the second case, to give an equivalent specification in BNF we would either
need to add additional rules or extra alternates

S ::= ’a’’c’ | ’a’’d’ | ’a’’h’ | ’b’’c’ | ’b’’d’ | ’b’’h’

| ’g’’c’ | ’g’’d’ | ’g’’h’ .

(Note: the first grammar can actually be written more concisely using rdp’s
iterator expression, see below.)
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It is usual to allow the set of alternates on the right hand side of a grammar
rule to specified using a regular expression and in this case we describe the
notation as being extended BNF (EBNF). The rdp grammar rules can contain
the common forms of regular expression, we have already seen the use of [] to
denote one-or-zero copies of the enclosed string, and zero-or-many copies can be
denoted using {}. rdp also supports a more general form of regular expression
which allows upper and lower limits on the number of repeats of strings. In this
chapter we shall describe the full extended BNF that rdp grammars can use.
We begin with the standard constructs, and then describe rdp’s generalised
expressions.

3.1 Standard EBNF

Strings and symbols

Any singly quoted string is a regular expression, it represents the set which just
contains itself. Thus we can write grammar rules of the form

rule ::= ’fred’ .

The singly quoted strings are the tokens of the grammar.

Any string of alphanumeric characters is a regular expression. Thus we can
write grammar rules of the form

rule ::= name1 .

These are the non-terminals of the grammar.

Concatenation

If r and s are regular expressions then so is rs, and the elements of the set rs
are strings obtained by concatenating a string from r and a string from s. So,
for example, we can write grammar rules of the form

rule ::= ’a’ name1 ’b1’

Alternation

If r and s are regular expressions then so is r|s, and the elements of the set r|s
are strings in r together with the strings in s. So, for example, we can write
grammar rules of the form

rule ::= ’a’ name1 | B | ’b1’ .

The concatenation operation has higher priority than the alternate operation.
So

’a’ ’b’ | B ’c’ is the set {’a’’b’, B’c’}
not the set {’a’’b’’c’, ’a’B’c’}.
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Parentheses

If r is a regular expression then so is (r), and the elements of the set (r) are
exactly the elements of r. Parentheses have higher priority than all the other
operations and their role is to allow other priorities to be overridden. So, for
example,

rule ::= ’a’ ( ’b’ | B ) ’c’ .

is equivalent to

rule ::= ’a’ ’b’ ’c’ | ’a’ B ’c’ .

and to

rule ::= ’a’ rule_1 ’c’ .

rule_1 ::= ’b’ | B .

Zero or one

We use square brackets to indicate ‘one or none’. If r is a regular expression
then so is [r], and the elements of the set [r] are the elements of r together with
the empty string. So, we can write grammar rules of the form

rule ::= [expr] .

which is equivalent to the rule

rule ::= expr | ǫ .

Zero or many

We use braces to indicate ‘zero or many’. If r is a regular expression then so
is {r}, and the elements of the set {r} are the strings formed by concatenating
zero or more strings from r together. So, for example, we can write rules of the
form

rule ::= {’a’}’b’ .

which is equivalent to the (infinite) rule

rule ::= ’b’ | ’a’’b’ | ’a’’a’’b’ | ’a’’a’’a’’b’ | ...

We can write more complicated grammar rules, for example

rule ::= (’a’ | ’c’){’a’ | ’c’} .

which is equivalent to the (infinite) rule

rule ::= ’a’ | ’c’ | ’a’’a’ | ’a’’c’ | ’c’’a’ | ’c’’c’

| ’a’’a’’a’ | ’a’’a’’c’ | ’a’’c’’a’ | ’a’’c’’c’

| ’c’’a’’a’ ...
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One or many

We use angle brackets to indicate ‘one or many’. If r is a regular expression
then so is < r >, and the elements of the set < r > are the strings formed by
concatenating one or more strings from r together. So, for example, we can
write rules of the form

rule ::= <’a’> .

which is equivalent to the rule

rule ::= ’a’ | ’a’’a’ | ’a’’a’’a’ | ’a’’a’’a’’a’ ...

3.2 rdp’s IBNF

We call the particular extended form of BNF which rdp uses an iterator BNF or
IBNF. In this section we describe the additional construct @ which distinguishes
IBNF from standard EBNF.

Sometimes we need to specify strings of certain lengths. For example, we
may want to specify the strings of up to eight a’s and b’s. We could do this
by writing out all the strings in the standard BNF style, but there are 511 of
them! This language can be specified in rdp input grammars using the rule

rule ::= (’a’ | ’b’)0@8# .

Here, the symbol # is being used to denote the absence of a token. It is nec-
essary because the iterator operator can also be used to specify a separator
between symbols. Integer arithmetic expressions are sequences of integers with
+’s between them, for example 17 + 80 + 9 + 27. This can’t be expressed
simply using braces {} because the first integer in the list doesn’t have a pre-
ceeding +, i.e. we can’t just write {’+’ INTEGER}. (Of course, we can write
INTEGER{’+’ INTEGER} but if the are semantic actions associated with the calls
to INTEGER then these will need to be repeated.) The rdp grammar rule

rule ::= (INTEGER)2@8’+’ .

describes the integer sums which have between two and eight operands.

Formal definition of the @ operator

Each of the last four regular expressions in the EBNF description in section 3.1
is a special case of a regular expression which is based on the parameterised
operator @. We define iterator expressions as follows:

1. Any regular expression is an iterator expression

2. If r is an iterator expressions then so is (r) l@h
′x′, where l and h are

integers and ′x′ is a token or the special symbol #.

The elements of the set (r) l@h
′x′ are strings which are the concatenation

of between l and h strings from r, alternated with x if it is not #. (In the case
where h = 0 there must be at least l strings from r but there is no upper limit
on this number.)
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Examples and correspondences

The following rule allows us to declare function prototypes which contain arbi-
traily long comma delimited lists of parameters

rule ::= ID ’(’ (ID)0@0’,’ ’)’ .

This rule matches things like
My_Function(var1, var2, var3) or print()

Note: For rdp the upper and lower limits are written next to the @ operator,
rather than subscripted.

The following is a list of the correspondences between IBNF and standard
EBNF constructs.

rule ::= (r)0@0#. corresponds to rule ::= { r }.
rule ::= (r)1@0#. corresponds to rule ::= < r >.

rule ::= (r)0@1#. corresponds to rule ::= [ r ].

rule ::= (r)1@1#. corresponds to rule ::= ( r ).

We are now in a position to give an rdp grammar for the language of integer
expressions, including - and /. This forms part of the mini grammar which
will be discussed in later chapters.

(** expr6.bnf **)

e1 ::= e2 {’+’ e2 | ’-’ e2 } .

e2 ::= e3 {’*’ e3 | ’/’ e3 } .

e3 ::= ’+’ e4 | ’-’ e4 | e4 .

e4 ::= ID | INTEGER | ’(’ e1 ’)’ .

An rdp-generated parser for this grammar accepts grammar strings of the form,
for example,

10 * ( -4 + 6 * (-5)) / (sum - 27).

3.3 Derivations in IBNF

In the previous section we have described the strings generated by rdp’s iter-
ator constructs. However, to understand what rdp is actually doing, to make
full sense of the error messages it produces, and to use semantic actions (see
Chapter 6) it is necessary to understand the IBNF constructs in terms of the
derivations they produce.

Basically, recursive descent parsers call a routine, or function, at each step
in the derivation being constructed. Each step corresponds to the replacement
of a non-terminal by one of the alternates from its grammar rule. Thus there
is effectively a routine for each alternate of each rule. rdp makes an internal
subrule for each alternate. For example, rdp represents the grammar

rule ::= ’a’ ’+’ rule | ’b’ .
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internally as

rule ::= rdp_rule_0 | rdp_rule_1 .

rdp_rule_0 ::= ’a’ ’+’ rule .

rdp_rule_1 ::= ’b’ .

If an alternate contains an iterator construct and something else then rdp

takes the iterator construct out and makes a new rule for it. For example, rdp
represents the grammar

rule ::= ’a’ (’b’)0@4’,’ .

internally as

rule ::= ’a’ rdp_rule_0 .

rdp_rule_0 ::= (’b’)0@4’,’ .

Recall that parantheses are special case of the iterator operator. Effectively, if
if you write

rule ::= ( r ) .

rdp automatically inserts an iterator construct and translates the rule to

rule ::= ( r )1@1# .

So including parantheses in a rule will cause rdp to generate an new corre-
sponding internal subrule. For example, rdp represents the grammar

rule ::= ’a’ (’b’ | ’c’) ’d’ .

internally as

rule ::= ’a’ rdp_rule_2 ’d’ .

rdp_rule_2 ::= rdp_rule_1 | rdp_rule_0 .

rdp_rule_1 ::= ’b’ .

rdp_rule_0 ::= ’c’ .

rdp treates single iterator constructs as though they were rules with an
aternate for each possible string. In other words

rule ::= (’a’)1@6’+’ .

behaves in the same way as

rule ::= ’a’ | ’a’’+’’a’ | ...

| ’a’’+’’a’’+’’a’’+’’a’’+’’a’’+’’a’ .
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Recursion issues

The language {a, aa, aaa, aaaa, . . .} can be described in three obvious ways in
rdp’s IBNF, using right recursion, using left recursion and using the iterator
construct:

rule ::= ’a’ [ rule ] .

rule ::= [ rule ] ’a’ .

rule ::= (’a’)1@0#

(In fact rdp will not generate a parser from the second grammar because it is not
left factored, see Chapter 4, but we shall use it here to illustrate the constrast in
approaches.) It would be possible to implement the iterator operator recusively
so it behaved like the first rule. In this case a derivation of aaa would have the
form

rule ⇒ a rule ⇒ a a rule ⇒ a a a rule ⇒ a a a

In the case of the left recursive representation, a derivation of aaa would have
the form

rule ⇒ rule a ⇒ rule a a ⇒ rule a a a ⇒ a a a

However, iterator constructs, as their name implies, are actually implemented
in rdp using iteration so

rule ::= (’a’)1@0#

behaves as though it were the (infinite) rule

rule ::= ’a’ | ’a’’a’ | ’a’’a’’a’ | ...

As a result, a derivation of aaa in the iterator grammar has the form

rule ⇒ a a a

These issues are important when using semantic actions in the grammar, see
Chapter 6, because they determine when in the parse the actions are executed.





Chapter 4

Restrictions on rdp grammars

As we discussed in Chapter 2, rdp generates parsers which use a recursive de-

scent technique. This means that there are restrictions on the grammars which
admit rdp-generated parsers. If rdp is presented with a grammar which breaks
these restrictions then it will issue a diagnostic message explaining the nature
of the problem and indicating the place in the grammar where it occurs. In
order to understand these messages and to use rdp effectively, it is necessary to
understand the conditions which input grammars must satisfy. In this chapter
we consider these conditions in detail. We shall use the grammar expr1.bnf

S ::= E Y.

Y ::= [’+’ S].

E ::= T X.

X ::= [’*’ E].

T ::= ’a’ | ’b’.

introduced in Chapter 2, to illustrate the discussion.

4.1 Deterministic choice on alternates

At each step in the parsing process, the parser replaces a non-terminal with
a string from the right hand side of that non-terminal’s grammar rule. When
there is more than one alternate in a grammar rule the parser needs an algorithm
for deciding which of the alternates to choose. This decision is made by looking
at the current input symbol. In order to see how this is done we need to consider
the parsing process in more detail.

Strings which can appear in derivations that begin with the start symbol
are called sentential forms. So in the following S, α1, . . ., αn are all sentential
forms:

S ⇒ α1 ⇒ . . . ⇒ αn.

By the current sentential form at a stage in a parser execution we shall mean
the sentential form which was constructed at the previous step. So αn is the
current sentential form at the stage at which a parser has constructed the above
derivation steps.
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Suppose that the input string xyxyz is being parsed. The parser is gener-
ating a left-most derivation of the string, thus in the first steps of the process
the parser is replacing the first symbol of the current sentential form and is
attempting to construct a sentential form which looks like xδ. Suppose that
the parser has constructed the steps

S ⇒ α ⇒ β ⇒ γ

that γ, the current sentential form, begins with the non-terminal X and that
X has associated grammar rule

X ::= β1 | β2 | β3 | β4 .

At the next step the parser should only replace X with β1 if there is some deriva-
tion β1

∗

⇒xβ′

1
or if β1

∗

⇒ǫ. In any other case it will be impossible to complete
the derivation if β1 is chosen to replace X.

For example, suppose that we are using the expression grammar expr1.bnf
to parser the string a+b and that the construction has reached the stage

S ⇒ EY ⇒ TXY

If at the next step T were to be replaced by b, giving

S ⇒ EY ⇒ TXY ⇒ bXY

it would be impossible to complete the derivation and generate a+b.

4.2 first sets

The above discussion highlights the need to know which terminals can appear
at the beginning of something derivable from a given string γ. Such terminals
belong to the so-called first set of γ. Formally we define first(γ) to be the
set of terminals which can begin a string derivable from γ, together with ǫ if
γ

∗

⇒ǫ.
For the example expr1.bnf at the beginning of the chapter we have

first(a) = {a}
first(T ) = {a, b} = first(E) = first(S)
first(X) = {∗, ǫ}
first(EY ) = {a, b} = first(TX).

The general description of first sets is:

firstT(γ) = { t ∈ T | γ
∗

⇒tγ′}

first(γ) =

{

firstT(γ) ∪ {ǫ}, if γ
∗

⇒ǫ,
firstT(γ), otherwise.

Notice that if t is a terminal then

first(t) = {t} = first(tγ)

for any string γ.
rdp-generated parsers maintain a list of the first sets, and their contents,

for each alternate in each grammar rule of the grammar. The parsers use these
sets to decide with which alternate to replace a given non-terminal.
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4.3 Parsing with first sets

As the parse proceeds, the first few symbols of the current sentential form will
correspond exactly to an initial portion of the input string. The parser reads in
the input string symbol-by-symbol, starting from the left of the string. When
the first symbol in the input string appears at the front of the current sentential
form the parser reads in the next symbol from the input. At each stage in the
parsing process the parser tries to replace the left-most non-terminal in the
current sentential form with an alternate that has the current input symbol in
its first set. For example, suppose that the input string is xyxyz, that the
parser has so far constructed the derivation

S ⇒ α1 ⇒ . . . ⇒ αm ⇒ xyxXγ,

and that X has associated grammar rule

X ::= β1 | β2 | β3 | β4 .

The current input symbol is y and so the parser needs to replace X by which
ever alternate has y in its first set.

If no alternate has this property, and if X does not derive ǫ, then the
derivation cannot be completed and the parse has failed. If more than one
alternate has this property then the parser cannot decide how to proceed.

Thus it is necessary for grammars which are to have rdp-generated parsers
to have the disjoint first set property. In fact, grammars that are input to
rdp need to have a slightly stronger property than this, which we will describe
in the next three sections.

4.4 The problem with ǫ rules

We have seen in the previous section that rdp requires each grammar rule in
the input grammar to have alternates with disjoint first sets. That is, if

X ::= α | β .

then the intersection of the first sets must be empty, i.e. first(α)∩first(β) =
∅ (here ∅ denotes the emptyset, the set {} which has no elements). However,
if the grammar contains ǫ rules (grammar rules of the form A ::= ...| ǫ |...)
then this property may not be enough to allow the parser to determine which
alternate to use.

Consider the grammar

S ::= ’b’ A ’a’ .

A ::= [’a’] .

If an rdp-generated parser for this grammar is given input ba and has con-
structed the steps

S ⇒ bAa
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then the current input symbol is a and since A⇒a the parser may take this as
the next step, giving

S ⇒ bAa ⇒ baa

which cannot be extended to generate ba. However, if the parser performed the
step A⇒ǫ then we would get a successful parse

S ⇒ bAa ⇒ ba

Why not make choosing the ǫ step the default? If the parser is given input
baa then choosing the ǫ alternate would result in failure. The problem is that
the parser cannot decide whether to use ǫ just by looking at the current input
symbol a.

We can see the general problem by considering again the example, from
the previous section, in which the input string is xyxyz, the parser has so far
constructed the derivation

S⇒α1⇒ . . .⇒αm⇒xyxXγ,

and X has associated grammar rule

X ::= β1 | β2 | β3 | β4 .

Suppose also that β4
∗

⇒ǫ. We could replace X with β4 at the next step in the
derivation and hope to complete the derivation from the string γ. If it is also
the case that one of the other alternates, β1 say, has y in its first set then we
can’t decide whether to use β1 or β4 to replace X.

If β4 were used in the next step of the derivation and the parse were to be
successful then we would have to have y ∈ first(γ) and hence γ

∗

⇒yγ′ for some
string γ′. This would mean that

S
∗

⇒xyxXγ
∗

⇒xyxXyγ′

and hence that y can follow X in some sentential form. Thus we are led to
consider the so-called follow sets.

4.5 follow sets

The convention for recursive descent parsers is that the ǫ generating rule, β4
in the above example, will only be chosen if there is no alternate that has an
appropriate first set. This will be a correct strategy if none of the elements in
these first sets can also follow X in a sentential form. This is what is required
for the above example because the existence of a successful derivation using β4
would mean that y could follow X, and hence the non-overlap between first

sets and elements that can follow X would mean that no alternate had been
chosen on application of the first set criterion.

Thus we are interested in the set of terminals which can follow X in some
sentential form.
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In the expression grammar expr1.bnf we have

S
∗

⇒ E+ S, S
∗

⇒ T ∗ EY, S
∗

⇒ T+ S,

in fact

followT(E) = {+}
followT(T) = {∗,+}

Formally, for any non-terminal A in any grammar we define

followT(A) = {t ∈ T | S
∗

⇒αAtβ}.

If A can occur at the end of a sentential form then the follow set of A also
contains a special end-of-file symbol EOF. Then we have

follow(A) =

{

followT(A) ∪ {EOF}, if S
∗

⇒γA,
followT(A), otherwise.

So for the expression grammar expr1.bnf we have

follow(X) = {+, EOF}

4.6 LL(1) grammars

Grammars which have the properties that

⋄ no two distinct alternates in one grammar rule have common elements in
their first sets,

⋄ and that if a non-terminal X derives ǫ then the first sets of the alternates
in its grammar rule must be disjoint from the follow set of X

are called LL(1) grammars. Formally, a grammar is LL(1) if

1. if X ::= ...| α |...| β |... t hen first(α) ∩ first(β) = ∅

2. if X ::= ...| α |... and X
∗

⇒ǫ then first(α) ∩ follow(X) = ǫ.

rdp requires its input grammars to be LL(1) (although there is one special
case involving the iterator construct in rdp’s IBNF). If the input grammar is
not LL(1) then rdp issues an error message detailing which rule(s) is causing
the problem.

4.7 Overriding the LL(1) restrictions

There are some constructs in some programming languages which cannot be
expressed in an LL(1) grammar. A classic example is the if..then..else

statement and its variants. For example, using the following grammar
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(** ifelse1.bnf **)

S ::= ’if’ B ’then’ S X | ’STOP’ | ’SKIP’ .

X ::= [’else’ S] .

B ::= ’true’ | ’false’ .

there are two distinct derivations of the string

if true then if false then STOP else SKIP

When the parser has constructed the following portion of a derivation

S ⇒if B then SX ⇒if true then SX ⇒if true then if B then S X X

there is no way to decide whether to replace the first X by ǫ or by ’else’ S.
If the above grammar is input to rdp the following message is generated:

******: Error - LL(1) violation - rule

X ::= X .

contains null but first and follow sets both include: ’else’

******: Error - LL(1) violation - rule

rdp_X_1 ::= [ ’else’ S ] .

contains null but first and follow sets both include: ’else’

******: Error - LL(1) violation - rule

rdp_X_2 ::= [ ’else’ S ] .

contains null but first and follow sets both include: ’else’

******: Fatal - Run aborted without creating output files

- rerun with -F to override

From the point of view of parsing, the choice is irrelevant because either will
result in a successful completion of the derivation. (Of course, the user needs to
know which choice will be made so that appropriate semantics can be inserted.
The rdp default actions are explained in detail in Chapter 7 of [JS97b].)

We can force rdp to create a parser by running it with the flag -F. There is
a target parserf in the makefile which calls rdp with the -F flag. Typing

make GRAMMAR=examples\rdp_tut\ifelse1 parserf

excutes the command rdp -F -oifelse1 examples\rdp_tut\ifelse1
and generates the following message:

******: Error - LL(1) violation - rule

X ::= X .

contains null but first and follow sets both include: ’else’

******: Error - LL(1) violation - rule

rdp_X_1 ::= [ ’else’ S ] .

contains null but first and follow sets both include: ’else’

******: Error - LL(1) violation - rule

rdp_X_2 ::= [ ’else’ S ] .

contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 3 errors and 1 warning

Borland C++ 5.0 for Win32 Copyright (c) 1993,1996 Borland International
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rdparser.c:

bcc32 -erdparser.exe rdparser.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

Borland C++ 5.0 for Win32 Copyright (c) 1993,1996 Borland International

Turbo Link Version 1.6.72.0 Copyright (c)1993,1996 Borland International

rdparser -v -Vrdparser.vcg -l examples\rdp_tut\ifelse1.str

rdparser

Generated on Dec 6 1997 8:55:27 and compiled on Dec 4 1997 at 9:22:37

******:

1: if true then if false then STOP else SKIP

******: 0 errors and 0 warnings

******: 0.000 CPU seconds used

Notice that this time instead of issuing a fatal error message, rdp has issued
a warning and generated the files. (Since the -F flag overrides rdp’s safety
checks it should be used with caution.)

4.8 Inspecting the first and follow sets

rdp allows you to look at the first and follow sets that it has created for
a particular grammar. This is useful if the grammar is not LL(1) because it is
possible to see where the offending sets overlap. It also means that rdp can be
used as a tool for constructing first and follow sets for any given grammar.
This is particularly useful for follow sets whose construction by hand is quite
error prone.

Using the flag -e causes rdp to print out in BNF format the grammar rules
that it is using internally, to detail the first set for each alternate and the
STOP set (the follow set together with EOF) for each non-terminal. Typing

rdp -e examples\rdp_tut\expr1

results in the following output. (Here, the non-terminals are shown as functions
for reasons which are explained in Chapter 6.)

E(void):void ::= rdp_E_0() .

First set is {’a’, ’b’}

Stop set is {EOF, ’+’}

Production is called 2 times

S(void):void ::= rdp_S_0() .

First set is {’a’, ’b’}

Stop set is {EOF}

Production is called 2 times

T(void):void ::= rdp_T_0() | rdp_T_1() .

First set is {’a’, ’b’}

Stop set is {EOF, ’*’, ’+’}

Production is called once

X(void):void ::= rdp_X_2() .

First set is {(NULL) ’*’}
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Stop set is {EOF, ’+’}

Production is called once

Y(void):void ::= rdp_Y_2() .

First set is {(NULL) ’+’}

Stop set is {EOF}

Production is called once

rdp_E_0(void):void ::= T() X() .

First set is {’a’, ’b’}

Stop set is {EOF, ’+’}

Production is called once

rdp_S_0(void):void ::= E() Y() .

First set is {’a’, ’b’}

Stop set is {EOF}

Production is called once

rdp_T_0(void):void ::= RDP_T_a() .

First set is {’a’}

Stop set is {EOF, ’*’, ’+’}

Production is called once

rdp_T_1(void):void ::= RDP_T_b() .

First set is {’b’}

Stop set is {EOF, ’*’, ’+’}

Production is called once

rdp_X_0(void):void ::= RDP_T_17 /* * */() E() .

First set is {’*’}

Stop set is {EOF, ’+’}

Production is called once

rdp_X_1(void):void ::= [ rdp_X_0() ].

First set is {(NULL) ’*’}

Stop set is {EOF, ’+’}

Production is called once

rdp_X_2(void):void ::= rdp_X_1() .

First set is {(NULL) ’*’}

Stop set is {EOF, ’+’}

Production is called once

rdp_Y_0(void):void ::= RDP_T_18 /* + */() S() .

First set is {’+’}

Stop set is {EOF}

Production is called once

rdp_Y_1(void):void ::= [ rdp_Y_0() ].

First set is {(NULL) ’+’}

Stop set is {EOF}

Production is called once
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rdp_Y_2(void):void ::= rdp_Y_1() .

First set is {(NULL) ’+’}

Stop set is {EOF}

Production is called once





Chapter 5

The mini grammar

In this chapter we give an rdp IBNF definition mini1.bnf of a small language.
The language allows variable declarations and assignment of integer arithmetic
expressions to those variables. Addition, subtraction, multiplication and divi-
sion are all left associative, and multiplication and division have higher priority
than addition and subtraction. There are also unary plus, +, and minus, -,
signs, and an exponentiation operator, ^, which is right associative. It allows
branching via an if statement, and variable assignment and declaration. The
C-style = sign is used for assignment. There is a print statement which can
print sequences of strings and values of expressions. Strings are delimited by
double quotes ("), and comments are enclosed in Pascal-style brackets (* *)

and can be nested.

(** mini1.bnf **)

program ::= {([var_dec | statement ]) ’;’ }.

var_dec ::= ’int’ ( ID [ ’=’ e1 ] )@’,’.

statement ::= ID ’=’ e0

| ’if’ e0 ’then’ statement [ ’else’ statement ]

| ’print’ ’(’ ( e0 | String )@’,’ ’)’.

e0 ::= e1 [’>’ e1 | ’<’ e1 | ’>=’ e1 |’<=’ e1 | ’==’ e1 | ’!=’ e1].

e1 ::= e2 {’+’ e2 | ’-’ e2 } .

e2 ::= e3 {’*’ e3 | ’/’ e3 } .

e3 ::= ’+’ e4 | ’-’ e4 | e4 .

e4 ::= e5 [’^’ e1] .

e5 ::= ID | INTEGER | ’(’ e1 ’)’ .

comment ::= COMMENT_NEST(’(*’ ’*)’).

String ::= STRING_ESC(’"’ ’\\’) .

The ’if’... alternate in the grammar rule for statement is inherently
ambiguous. Thus the above grammar is not LL(1). When the grammar is
input to rdp it will issue an error message and terminate. If rdp is run with
the flag -F this will force rdp to produce a parser from the above grammar.
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rdp -F examples\rdp_tut\mini1

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [ ’else’ statement ] .

contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

The generated parser will resolve the ambiguity in ‘if’ statements by using
‘longest match’. The effect of this is that an ‘else’ clause will be assumed to
match the nearest ‘then’ to the left. In other words

if a<b then if c==d then c=1 else d=1 ;

will be parsed as

if a < b then (if c == d then c = 1 else d = 1) ;

not as
if a < b then (if c == d then c = 1) else d = 1 ;



Chapter 6

Semantic actions

So far we have only described how to use rdp to generate a parser for a lan-
guage. Parsers allow us to test whether a given string is in the language,
but what we actually want is to execute some behaviour when a sentence is
recognised. For example, a compiler, on recognising a sentence, constructs an
equivalent sentence (one with the same meaning) in some specified target lan-
guage. An interpreter, on recognising a sentence, executes it. A pretty printer,
on recognising a sentence, reformats it and then prints it out in what is usually
a more readable form.

rdp can be used to generate parsers which do useful work of these types.
The basic approach is that semantic actions are inserted in the grammar rules;
these actions are executed by the generated parser when the rule is used.

Attributes are used to pass information between rules and can be used within
semantic actions. Two kinds of attributes are supported by rdp: inherited

attributes which are passed as parameters into rules and synthesized attributes

that act like return values from rules.

In this chapter we describe how various aspects of these mechanisms work
for rdp-generated parsers. A full description of rdp semantic actions can be
found in [JS97b]. In this guide we just illustrate the basic ideas and point out
some of the things to be wary of.

We begin with a little discussion of the function call based approach which
is used to implement rdp-generated parsers. We then consider a particular
example of semantic action use, consider the iterator construct in more detail
and give an introduction to the use of inherited attributes.

6.1 The function based implementation of rdp-generated
parsers

The input for rdp is a language specification, grammar.bnf say, written in
IBNF. rdp writes a C program, grammar.c say, based on the IBNF it is given.
This program contains a function for each non-terminal in the grammar. The
code for each function depends on the right hand side of the grammar rule for
the non-terminal. In a simple rdp parser the functions take no input and return
nothing.



38 SEMANTIC ACTIONS

Suppose that the input grammar is

(** functn1.bnf **)

S ::= INTEGER E .

E ::= ’+’ E | ’-’ E | INTEGER .

The rdp-generated file functn1.cwill contain two functions void S() and void
E() and a function scan_() which reads the next input symbol and stores it in
a global variable current_input_symbol 1. The function S() can be thought
of as beginning with a call to a scanner function scan_test(INTEGER) which
tests the current input symbol to see if it is an integer. If it is an integer then
this symbol has been correctly parsed in which case scan_() is called to read
in the next input symbol and then the function E() is called to continue the
parse.

void S(void){

scan_test( INTEGER );

scan_();

E();

}

The function E() contains a branch statement with a branch for each of
the three alternates in its grammar rule. The current input symbol is tested
against the first set of each alternate and then the corresponding branch
is executed. In this case scan_test(’+’) is called and if it returns with a
match to the current input symbol, the next input symbol is read and then E()

is called again. If the match is not found then scan_test(’-’) is called. If
this matches then the next input symbol is read and E() is called, otherwise
scan_test(INTEGER) is called. If this matches then the next input symbol is

read, no other action is required. If this does not match then the input string
is not in the language and a suitable error message is issued.

The complete parser simply calls scan_() to read in the first input symbol
and then calls the function for the start symbol, in this case S().

When rdp generates a C file from the above grammar it provides a lot of
other code to, for example, set up a symbol table and issue error messages. The
following is a severely filleted version of the file functn1.c created using the
command

rdp -ofunctn1 examples\rdp_tut\functn1

1This global variable is actually a record text scan data with a field which is a union one
of whose entries holds the lexeme of the input symbol. To simplify this exposition we shall
think of this entry as a global variable which we shall call current input symbol .)
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/*******************************************************************

*

* Parser generated by RDP on Nov 02 1997 09:33:36 from functn1.bnf

*

*******************************************************************/

...

/* Parser forward declarations and macros */

static void E(void);

void S(void);

/* Parser functions */

static void E(void){

if (scan_test(’+’)) {

scan_();

E(); }

else

if (scan_test(’-’)) {

scan_();

E(); }

else

if (scan_test( INTEGER )) { scan_(); }

else { /* report error in input */ }

}

void S(void){

scan_test( INTEGER );

scan_();

E();

}

int main( ... ) {

...

scan_();

S(); /* call parser at top level */

...

}

/* End of functn1.c */

6.2 Semantic actions – an example

The following grammar can be input to rdp:

(** functn2.bnf **)

S:integer ::= INTEGER:val1 [* result = val1 ; *]

(’+’ S:val2 [* result = val1 + val2 ; *] | ’;’ )

The underlying grammar rule is

S ::= INTEGER ( ’+’ S | ’;’ ) .

which generates sums of integers terminated by a semi-colon. The additional
details are attribute names (following colons :) and actions (between brackets
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[* *]). We shall see below that the attributes cause the corresponding parser
functions to return values rather than void results, so we have integer S(),
and the actions are inserted verbatim into the code for S(). We now describe
these effects in detail.

The parser functions associated with each non-terminal in the grammar can
be made to return a value. The type of this value is indicated after a colon
on the left hand side of the corresponding grammar rule. So, the declaration
:integer which appears on the left hand side of the rule causes the function
S() to return an (unsigned) integer which is defined as a C unsigned long.
The identifier which holds the value to be returned is always called result.
Thus the function has the form

integer S(void){

integer result;

scan_test( INTEGER );

scan_();

if (scan_test(’+’)) {

scan_() ;

val2 = S(); }

else

...

return result ;

}

The grammar writer will often want to give the returned value from a rou-
tine a local name, so that it can be used. This is done by putting a colon and
then the chosen local name after the symbol which generated the call to the
routine. For example, the declaration S():val2 in functn2.bnf instructs the
parser to write the value returned by the call to S() to a variable called val2.
The value of a token such as INTEGER may also be given a local name, again by
putting a colon and then the chosen local name after the token. For example,
INTEGER:val1 causes the value of the INTEGER just scanned, which was writ-
ten to current_input_symbol by scan_(), to be copied to val1. Thus the
function S() can be thought of as having the form

integer S(void) {

integer result;

long int val1;

integer val2;

scan_test(INTEGER);

val1 = current_input_symbol;

scan_();

if (scan_test(’+’)) {

scan_();

val2 = S();

}

else
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...

return result;

}

The statements which appear between the brackets [*...*] in functn2.bnf
are fragments of C code. As the parser constructs a derivation it executes the
fragments, as it meets them. This is done by inserting the code fragments
verbatim in the parser function at the place where they are encountered. For
example, the action after INTEGER is inserted before the call to scan_test(+)

and the second action is inserted after the call to S(). Thus we can think of
S() as having the form

integer S(void) {

integer result;

long int val1;

integer val2;

val1 = current_input_symbol;

scan_test(INTEGER);

scan_();

result = val1 ;

if (scan_test(’+’)) {

scan_();

val2 = S();

result = val1 + val2 ; }

else

if (scan_test(’;’)) { scan_(); }

else /* error report */

return result;

}

To gain experience of these ideas the you might like to add an extra grammar
rule and associated semantic action which prints out the value of an expression.

(** functn3.bnf **)

S ::= E:val [* printf("%i\n", val); *] .

E:integer ::= INTEGER:val1 [* result = val1; *]

(’+’ E:val2 [* result = val1 + val2; *] | ’;’ ) .

Running the generated parser on the string 2+3+6; effectively causes the fol-
lowing code to be executed (the indentation indicates the nesting level of the
parser function producing the output)

val1 = 2

result = val1
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/* code from subcall to E() */

val1 = 3

result = val1

/* code from second subcall to E() */

val1 = 6

result = val1

val2 = result /* val2 == 6 */

result = val1 + val2

val2 = result /* val2 == 9 */

result = val1 + val2

return result /* return 11 */

The following output should be produced:

Generated on May 01 1997 17:15:40 and compiled on Apr 30 1997 at 13:02:55

******:

1: 2 + 3 + 6;

11

******: 0 errors and 0 warnings

******: 0.020 CPU seconds used

6.3 Semantic actions in empty grammar rules

The following grammar generates strings which are sums of integers that are
not terminated by a semi-colon.

(** arith1.bnf **)

E:integer ::= INTEGER:val1 [* result = val1 *]

[ ’+’ E:val2 [* result = val1 + val2; *] ] .

This corresponds to a parser function which is essentially of the form

integer E(void) {

integer result;

long int val1;

integer val2;

scan_test(INTEGER);

val1 = current_input_symbol;

scan_();

result = val1;

if (scan_test(’+’)) {

scan_();

val2 = E();

result = val1 + val2;

}

return result;

}
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The semantic actions inserted inside IBNF square brackets [] are only ex-
ecuted if the non-epsilon part of the bracket is executed. In other words, the
above grammar is treated like

E:integer ::= INTEGER:val1 [* result = val1 *]

(’+’ E:val2 [* result = val1 + val2; *] | epsilon).

not like

E:integer ::= INTEGER:val1 [* result = val1 *]

(’+’ E:val2 [* result = val1 + val2; *]

| epsilon [* result = val1 + val2; *] ) .

Often we need to execute a semantic action when an empty rule is used, for
example to initialise a variable. Semantic actions which are to be executed on
application of an empty rule (so called default rules) are appended to the square
brackets using a colon. For example, the grammar

(** arith2.bnf **)

E:integer ::= INTEGER:val1

[’+’ E:val2 [*result=val1+val2;*] ]:[*result=val1;*]

behaves like

E:integer ::= INTEGER:val1

(’+’ E:val2 [* result = val1 + val2; *]

| epsilon [* result = val1; *] ) .

and corresponds to a parser function which is essentially of the form

integer E(void) {

integer result;

long int val1;

integer val2;

scan_test(INTEGER);

val1 = current_input_symbol;

scan_();

if (scan_test(’+’)) {

scan_();

val2 = E();

result = val1 + val2; }

else {

/* default action processing */

result = val1 ; }

return result;

}
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6.4 Semantic actions and the iterator construct

Iterators are implemented as ‘while loops’. At the beginning of each execution
of the loop the left hand side of the iterator operator is executed as though it
were an alternate of a grammar rule. The next input symbol is then compared
to the delimiter (right hand side) of the iterator operator. If there is a match
then the while loop is executed again.

For example, the rule

(** iter1.bnf **)

E ::= (’a’ | ’b’ ) 0@0 ’,’ .

can be thought of as corresponding to a parser function of the form

void E(void) {

while (1) {

if (scan_test(’a’)) { scan_(); }

else {

if (scan_test(’b’)) { scan_(); }

else /* error */ }

if (current_input_symbol != ’,’ ) break;

scan_();

}

}

which accepts, for example, a,a,b,a and a.

Part of the point of an iterator construct is that it does not involve sub-
function calls, thus semantic actions are executed immediately after the corre-
sponding token is parsed, i.e. ‘on the way down’, rather than when the function
call is complete, i.e. ‘on the way back up’.

Semantic actions can be placed in the left hand argument of the iterator
and after the delimiter using a colon. The latter action is executed only if
the iterator does not consume any input symbols, i.e. if the low count is 0
and it matches the empty string. (This is the same feature as [...]:[*...*]
described in the previous section.)

In the following example semantic actions are being used to count the num-
bers of a’s, b’s and delimiter ,’s in a given input string. For example, on input
a,b,b,b,a,a,a,a,a,b,a we get

******:

1: a, b, b, b, a, a, a, a, a, b, a

7, 4, 10

******:

The number of delimiters should be one less than the sum of the numbers of
a’s and b’s, except in the case of the empty string when all the numbers should
be 0. Thus a separate action is executed in this case.
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(** iter2.bnf **)

E ::= [*int left=0, right=0, delim=-1;*]

(’a’[*left++; delim++;*] | ’b’[*right++; delim++;*])

0@0 ’,’:[* delim=0;*]

[* printf("%i, %i, %i\n", left, right, delim);*] .

This can be thought of as corresponding to a parser function of the form

void E(void) {

int left=0, right=0, delim=-1;

if (scan_test(’a’) | scan_test(’b’)) {

while (1) {

if (scan_test(’a’)) {

scan_();

left++; delim++; }

else

if (scan_test(’b’)) {

scan_();

right++; delim++; }

else /* error */

if (current_input_symbol != , ) break;

scan_();

} }

else { delim=0; }

printf("%i, %i, %i\n", left, right, delim);

}

6.5 Left associative operators

Recall the grammar arith2.bnf

E:integer ::= INTEGER:val1

[’+’ E:val2 [*result=val1+val2;*] ]:[*result=val1;*]

If we run the parser generated from this grammar on the string 2 + 3 + 6

the sum will effectively be calculated in a right associative manner, i.e. 2 + (3

+ 6). This is acceptable since addition is associative and the result is the same
in either case. However, if we used the same approach to specify subtraction
we would get counter-intuitive outcomes. Running rdp with the grammar

(** arith3.bnf **)

S ::= E:val [* printf("%i\n", val) ; *] .

E:integer ::= INTEGER:val1

[’-’ E:val2 [*result=val1-val2;*] ]:[*result=val1;*] .

and then running the resulting parser on the string 2 - 3 - 6 produces
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Generated on May 3 1997 7:01:20 and compiled on Apr 30 1997 at 8:02:55

******:

1: 2 - 3 - 6

5

******: 0 errors and 0 warnings

******: 0.058 CPU seconds used

The result is 2-(3-6) = 5 rather than the expected (2-3)-6 = -7.

We consider three ways of specifying a grammar so that operators such as
’-’ are left associative.

One is to use inherited attributes, and will be discussed in the next section.

Another is to use a left recursive definition. We could begin with the gram-
mar

S ::= E .

E ::= [ E ’-’ ] INTEGER.

then annotate it to give

S ::= E .

E:integer ::= [* int flag = 1; *] [ E:valB ’-’]:[* flag = 0; *]

INTEGER:valA [* if(flag){result = valB - valA;}

else {result=valA;}; *].

A correct parser based on this grammar would give subtraction left associative
semantics but because the grammar is left recursive rdp cannot generate a
correct parser from it.

A third way of enforcing left associativity is to use the iterator construct.
An rdp-generated parser from the grammar

(** arith4.bnf **)

S ::= E:val [* printf("%i\n", val) ; *] .

E:integer ::= INTEGER:result

{’-’ INTEGER:val2 [*result=result-val2;*] } .

(which has underlying form E ::= INTEGER { - INTEGER }. ) effectively ex-
ecutes the following steps on input 2 - 3 - 6, giving the required evaluation.

current_input_symbol = 2 ;

result = current_input_symbol ; /* result == 2 */

current_input_symbol = 3 ;

val2 = current_input_symbol ;

result = result - val2 ; /* result == 2-3 */

current_input_symbol = 6 ;

val2 = current_input_symbol ;

result = result - val2 ; /* result == (2-3)-6 */
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6.6 Expression semantics in mini

We can use the techniques discussed in the previous section to add semantic
actions to the grammar rules which define expressions in mini.

(** miniexp.bnf **)

USES("mexp_aux.h")

S ::= e1:val [* printf("%i\n", val); *] .

e1:integer ::= e2:result {’+’ e2:val [* result = result + val; *]

| ’-’ e2:val [* result = result - val; *] }.

e2:integer ::= e3:result

{’*’ e3:val [* result = result * val; *]

| ’/’ e3:val [* if(val==0)

{text_message(TEXT_FATAL,"divide by zero attempted\n");}

else {result = result / val;}; *] } .

e3:integer ::= ’+’ e4:result | ’-’ e4:val [*result = -val;*] | e4:result .

e4:integer ::= e5:result [’^’ e4:val

[*result = (integer) pow((double) result, (double) val );*] ].

e5:integer ::= ID | INTEGER:result | ’(’ e1:result ’)’ .

The exponent operator ^ is implemented using the C maths library function
pow(). The rdp directive USES(file) tells rdp to include the contents of file in
the generated parser. In our case the file mexp_aux.h contains the command
to include the maths library.

#include <math.h>

The file mexp_aux.h can also be used to declare global variables which can then
be used in the semantic actions.

6.7 Inherited attribute definition

Recall the grammar

(** arith3.bnf **)

S ::= E:val [* printf("%i\n", val) ; *] .

E:integer ::= INTEGER:val1

[’-’ E:val2 [*result=val1-val2;*] ]:[*result=val1;*].

from the previous section. This generates sequences of differences of integers,
but it calculates the result using right associativity.

To get left associativity using the right recursive ‘subtraction’ grammar

S ::= E .

E ::= INTEGER [ - E ].

we need to add semantic actions in such a way that val1, the value of the first
INTEGER, is passed into the function called for the following E.

We can pass parameters into function calls by inserting them in parenthe-
ses after the appropriate non-terminal. For example, consider the following
annotation of the right recursive ‘subtraction’ grammar
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(** arith5.bnf **)

S:integer ::= INTEGER:val E(val):result [*printf("%i\n",result);*].

E(lhs:integer):integer ::= [’-’ INTEGER:val [* val = lhs - val; *]

E(val):result ]:[* result = lhs; *].

An rdp-generated parser for this grammar would effectively execute the follow-
ing steps on input 2 - 3 - 6

val = 2 ;

lhs = val; /* lhs == 2 */

val = 3 ;

val = lhs - val;

lhs = val ; /* lhs == 2-3 */

val = 6;

val = lhs - val;

lhs = val; /* lhs = (2-3)-6 */

result = lhs; /* result = (2-3)-6 */

Running the rdp-generated parser for arith5.bnf on the input 2 - 3 - 6
should produce the following:

Generated on May 18 1997 9:19:07 and compiled on May 12 1997 at 9:15:30

******:

1: 2 - 3 - 6

-7

******: 0 errors and 0 warnings

******: 0.034 CPU seconds used

Thus we see that rdp rules can have parameters passed into them. Each rdp

rule name may be followed by a parenthesised list of identifier:type pairs
which are instantiated into the parser rule as value parameters, so that

inherited_rule( x : integer y: real) ::= ’a’ ’b’.

maps to

integer inherited_rule(integer x, real y) { ... }

6.7.1 Semantic actions for IF statements

A common use of inherited attributes is to pass information into a rule that
will be used to switch semantic actions off and on.

The if statement in the mini grammar has two subclauses, one that should
be executed if a specified conditional is true and another that should be ex-
ecuted if the conditional is false. We achieve this by passing a parameter in
to all statements and ensuring that the semantic actions associated with the
statement are only executed if the parameter is true.
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(** mini2.bnf **)

USES("mexp_aux.h")

program ::= {([var_dec | statement(1) ]) ’;’ }.

XSvar_dec ::= ’int’ ( ID [ ’=’ e1 ] )@’,’.

statement(flag:integer) ::=

ID ’=’ e1 [*if(flag){/* assignment will go here*/;};*]

| ’if’ e0:cnd ’then’ [* cnd = cnd && flag;*] statement(cnd)

[ ’else’ [*cnd =!cnd&&flag;*] statement(cnd) ]

| ’print’’(’ ( e0:val [* if(flag){printf("%i\n", val);};*]

| String:str

[*if(flag){printf("%s\n", str);};*]

)@’,’ ’)’.

e0:integer ::= e1:result

[ ’>’ e1:val [*result = result > val;*]

| ’<’ e1:val [*result = result < val;*]

| ’>=’ e1:val [*result = result >= val;*]

| ’<=’ e1:val [*result = result <= val;*]

| ’==’ e1:val [*result = result == val;*]

| ’!=’ e1:val [*result = result != val;*]

].

e1:integer ::= e2:result {’+’ e2:val [* result += val; *]

| ’-’ e2:val [* result -= val; *] } .

e2:integer ::= e3:result

{’*’ e3:val [* result *= val; *]

| ’/’ e3:val [* if(val==0)

{text_message(TEXT_FATAL,"divide by zero attempted\n");}

else {result = result / val;}; *] } .

e3:integer ::= ’+’ e4:result | ’-’ e4:val [*result = -val;*] | e4:result.

e4:integer ::= e5:result [’^’ e4:val

[*result = (integer) pow((double) result, (double) val );*] ].

e5:integer ::= ID | INTEGER:result | ’(’ e1:result ’)’ .

comment ::= COMMENT_NEST(’(*’ ’*)’).

String:char* ::= STRING_ESC(’"’ ’\\’):result .

In the grammar rule for program the call to statement is passed a constant
value 1 because its associated semantic actions should always be executed. The
actions associated with the assignment and print alternates of the statement

grammar rule will be executed if the parent statement is called with a ‘true’
flag. (Some of the actions have not actually been written because we need to use
a symbol table which will be discussed in Chapter 7.) The actions associated
with the first sub-statement in the ‘if’ alternate will be executed if both the
governing condition and the flag in the parent statement are true.

If we run an rdp-generated parser for the above grammar on input
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if 1>2 then print(1, "true") else print(2, "false") ;

we get output of the form

******:

2

false

1: if 1>2 then print(1, "true") else print(2, "false") ;

******: 0 errors and 0 warnings

******: 0.145 CPU seconds used



Chapter 7

Symbol tables in rdp

We have already mentioned that rdp-generated parsers deal with tokens, and
that there is a built-in scanner which groups the input stream into token lex-
emes. The parser must keep track of the lexemes which match each token. For
example, the parser only needs to know that the token it is currently dealing
with is ID, but in the final output code we need to restore the actual iden-
tifier originally given. So this information must be stored somewhere. Also,
at various stages in the input program an identifier will have a specific asso-
ciated value, and usually an associated type. This information is held by an
rdp-generated parser in a symbol table.

rdp has a built-in symbol table building library. The user can write parsers
which use symbol tables by including calls to the rdp symbol table library
functions. In this chapter we shall give a basic guide to using this library.

7.1 Hash coded symbol tables

The symbol table is declared by the user in the BNF file which defines their
language. The following is an example of a declaration of a symbol table which
could be used in a parser for the mini language.

SYMBOL_TABLE(mini 101 31

symbol_compare_string

symbol_hash_string

symbol_print_string

[* char* id; integer i; *]

)

The first parameter, in this case mini, is the name of the symbol table. A novice
rdp user can just use the above incantation, putting in the name they require,
but in order to have some understanding of the different components of the
definition it is necessary to have an elementary understanding of hash tables.
(More detailed information on rdp symbol tables can be found in [JS97b].)

Symbol tables need to be of arbitrary size, since we do not know in advance
how many identifiers we will encounter during a particular parse. The rdp-
generated symbol tables are based on linked lists, organised to make looking up
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a value reasonably efficient. Rather than a single list, a symbol table actually
has several lists, called buckets. So, for example, instead of having one list of
length about 100, we may have 10 lists each of length about 10 and, provided we
know which list to search, looking up an entry could be a factor of 10 quicker.

This is the principle of a hash table. The bucket in which a particular entry
should be stored is calculated from that entry by a hash function. The idea is
that the hash function should assign approximately the same number of entries
to each of the buckets.

delta delay drain dozy✲ ✲ ✲✲

count

boing

adrian

bcount

angle

beta✲

✲

✲

✲

✲

✲

Perhaps the simplest hash function for a string is to add together the ASCII
values for all of the characters in the string, and then take the modulus of the
result with the number of sub-lists available. It turns out that this function
works best if there are a prime number of sublists. An even better result is
achieved if another number, coprime with the number of lists is factored in at
each addition.

The rdp symbol table library contains a hash function of this type, called
symbol_hash_string. To use it in an rdp-generated parser just declare it in
the symbol table definition, as above. The two numbers 101 and 31 in the
definition are the primes that the hash function is to use.

Every record in the symbol table has a key field which is used to access that
record. symbol_compare_string is a function which is used by rdp’s symbol
table library to compare an input string with these keys when accessing records.

At the end of the symbol table definition, between the [* *] brackets, are
the data fields which contain the actual information held for each entry in the
symbol table. The mini symbol table holds the identifiers of a mini program,
and these all have type integer. So there are two data fields; the first holds
the lexeme of the token and the other contains its (integer) value.

7.2 Assignment

The construct ID = e1 in the mini grammar is intended to assign the value
of the expression e1 to the identifier which is the particular lexeme of ID. When
an assignment is carried out the new value is placed in the appropriate field
in the symbol table. This is done by using semantic actions in the rule which
defines identifier declaration.
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statement ::= ID:name ’=’ e1:val [* mini_cast(

symbol_lookup_key(mini, &name, NULL))->i = val; *]

The call to ID returns the lexeme which matched that instance of ID, and
the symbol table is ‘keyed’ on this value. The rdp symbol library function
symbol_lookup_key() looks up the entry in the symbol table which is keyed
on name. In this entry, the field i holds the value of the identifier and the
semantic action above assigns the value of e1, returned in a variable called val,
to the field i.

When an identifier is to be assigned the value of another identifier, or when
an expression involves an identifier,

fred_copy = fred ;

total = sub_total + 15;

then the values of these identifiers need to be extracted from the symbol table.
This is also done using symbol_lookup_key().

e5:integer ::= ID:name [* result = mini_cast(

symbol_lookup_key(mini, &name, NULL))->i; *]

The return type of a function such as symbol_lookup_key() depends in part
on the user-defined structure of the entries in the symbol table, and thus is not
fixed. To cope with this symbol_lookup_key() actually returns a void pointer,
which is then cast to the appropriate type by a function table_cast(). This
function is constructed automatically by rdp. The reader who is not confident
in dealing with C-style void pointers need not worry about it. Just encase
calls to functions such as symbol_lookup_key() in a call to table cast() and
everything will be dealt with automatically.

7.3 Identifier declaration

The construct

var_dec ::= ’int’ ID:name [ ’=’ e1:val ] .

in the mini grammar allows identifiers to be declared. The effect of a declaration
is intended to be that an entry in the symbol table is created for that identifier.
There is an option to assign a value to the identifier at the same time as it is
declared. These effects can be achieved using the symbol table library function
symbol_insert_key().

var_dec ::= ’int’ ID:name [ ’=’ e1:val ] [* mini_cast(

symbol_insert_key(mini, &name, sizeof(char*),

sizeof(mini_data)))->i = val;

*].
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The function symbol_insert_key() reserves enough space for both the key
which will be used to access the particular entry and for the actual data which
will be stored. These values depend on the data types specified by the user in
their input grammar. In the case of mini we have specified that the key will be
a string (the lexeme recognised by the scanner) and that the data will contain
that string and an integer value. The size of the key is the third parameter of
symbol_lookup_key(), and the size of the entry is the fourth parameter. The
data fields enclosed between [* *] brackets in a declaration of a symbol table,
table say, is referred to as table data by rdp. Thus sizeof(mini_data) is the
value required as the fourth parameter in our example.

7.4 Using undeclared variables

The symbol table can be used to resolve context sensitivities. In mini we intend
that an identifier cannot be used before it is declared. However, to exclude
something of the form

fred = 3 ;

int fred ;

from a language usually requires a context sensitive grammar. So instead
we allow such constructs but then issue an error message when an attempt
is made to execute semantic actions on such input. We use the fact that
symbol_lookup_key() returns NULL if it doesn’t find a particular entry in the
symbol table.

statement ::= ID:name ’=’ e1:val

[* if (symbol_lookup_key(mini, &name, NULL) == NULL)

text_message(TEXT_ERROR,

"Undeclared variable ’%s’\n", name);

else { mini_cast(

symbol_lookup_key(mini, &name, NULL))->i = val;}

*]
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A mini interpreter

We are now in a position to give a full decorated grammar, mini_itp.bnf,
for the mini language. Running this grammar through rdp generates a parser
which acts as an interpreter for programs written in the mini language.

(** mini_itp.bnf **)

USES("mexp_aux.h")

SYMBOL_TABLE(mini 101 31

symbol_compare_string

symbol_hash_string

symbol_print_string

[* char* id; integer i; *]

)

program ::= {([var_dec | statement(1) ]) ’;’ }.

var_dec ::= ’int’ ( ID:name [ ’=’ e1:val ]

[* mini_cast(symbol_insert_key(mini, &name, sizeof(char*),

sizeof(mini_data)))->i = val;

*]

)@’,’.

statement(flag:integer) ::=

ID:name ’=’ e1:val

[* if(flag)

if (symbol_lookup_key(mini, &name, NULL) == NULL)

text_message(TEXT_ERROR, "Undeclared variable ’%s’\n", name);

else {

mini_cast(symbol_lookup_key(mini, &name, NULL))->i = val; }

*]

| ’if’ e0:cnd ’then’ [* cnd = cnd && flag;*] statement(cnd)

[ ’else’ [*cnd =!cnd&&flag;*] statement(cnd) ]

| ’print’’(’ ( e0:val [* if(flag){printf("%i\n", val);};*]

| String:str

[*if(flag){printf("%s\n", str);};*]

)@’,’ ’)’.



56 A MINI INTERPRETER

e0:integer ::= e1:result

[ ’>’ e1:val [*result = result > val;*]

| ’<’ e1:val [*result = result < val;*]

| ’>=’ e1:val [*result = result >= val;*]

| ’<=’ e1:val [*result = result <= val;*]

| ’==’ e1:val [*result = result == val;*]

| ’!=’ e1:val [*result = result != val;*]

].

e1:integer ::= e2:result {’+’ e2:val [* result += val; *]

| ’-’ e2:val [* result -= val; *] } .

e2:integer ::= e3:result

{’*’ e3:val [* result *= val; *]

| ’/’ e3:val [* if(val==0)

{text_message(TEXT_FATAL,"divide by zero attempted\n");}

else {result = result / val;}; *] } .

e3:integer ::= ’+’ e4:result | ’-’ e4:val [*result = -val;*] | e4:result.

e4:integer ::= e5:result [’^’ e4:val

[*result = (integer) pow((double) result, (double) val );*] ].

e5:integer ::= ID:name

[* if (symbol_lookup_key(mini, &name, NULL) == NULL)

text_message(TEXT_ERROR,

"Undeclared variable ’%s’\n", name);

else { result = mini_cast(

symbol_lookup_key(mini, &name, NULL))->i; }

*]

| INTEGER:result | ’(’ e1:result ’)’ .

comment ::= COMMENT_NEST(’(*’ ’*)’).

String:char* ::= STRING_ESC(’"’ ’\\’):result .

If we input the above grammar to rdp

rdp -F examples\rdp_tut\mini_itp

bcc32 -P -Irdp_supp -c rdparser.c

bcc32 -erdparser.exe rdparser.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

rdparser examples\rdp_tut\mini_itp.str

running the resultant parser on the input

(****** mini_itp.str ******)

int fred = 1 ;

print("value of fred = ", fred) ;

int me = fred + 1 ;

print("value of me = ", me) ;

me = fred * me + 6/3*5 ;
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print("value of me = ", me) ;

undefined = 4 * me ;

fred = undefined + 4 ;

then the following output is printed on the screen.

value of fred =

1

value of me =

2

value of me =

12

9: Error (examples\rdp_tut\mini_itp.str) Undeclared variable ’undefined’

10: Error (examples\rdp_tut\mini_itp.str) Undeclared variable ’undefined’

******: Fatal - errors detected in source file

The parser has evaluated each statement, printing out error messages when un-
declared variables are used – as specified in the semantic actions in the grammar.

In this sense the program produced by rdp is an interpreter; no executable
code from the mini input statements remains when the interpreter has finished
running. In the associated case study document [JS97a] the mini grammar is
extended and given different semantic actions so that rdp generates a compiler
from the grammar rather than an interpreter.





Appendix A

Acquiring and installing rdp

rdp may be fetched using anonymous ftp to ftp.dcs.rhbnc.ac.uk. If you
are a Unix user download pub/rdp/rdpx_y.tar or if you are an MS-DOS user
download pub/rdp/rdpx_y.zip. In each case x_y should be the highest number
in the directory. You can also access the rdp distribution via the rdp Web
page at http://www.dcs.rhbnc.ac.uk/research/languages/rdp.shmtl. If
all else fails, try mailing directly to A.Johnstone@rhbnc.ac.uk and a tape or
disk will be sent to you.

A.1 Installation

1. Unpack the distribution kit. You should have the files listed in Table A.1.

2. The makefile can be used with many different operating systems and
compilers.

Edit it to make sure that it is configured for your needs by uncommenting
one of the blocks of macro definitions at the top of the file.

3. To build everything, go to the directory containing the makefile and type
make. The default target in the makefile builds rdp, the mini_syn syn-
tax analyser, the minicalc interpreter, the minicond interpreter, the
miniloop compiler, the minitree compiler an assembler called mvmasm

and its accompanying simulator mvmsim, a parser for the Pascal language
and a pretty printer for ANSI-C. The tools are run on various test files.
None of these should generate any errors, except for LL(1) errors caused
by the mini and Pascal if statements and warnings from rdp about un-
used comment() rules, which are normal.

make then builds rdp1, a machine generated version of rdp. rdp1 is then
used to reproduce itself, creating a file called rdp2. The two machine
generated versions are compared with each other to make sure that the
bootstrap has been successful. Finally the machine generated versions are
deleted.

4. If you type make clean all the object files and the machine generated
rdp versions will be deleted, leaving the distribution files plus the new
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00readme.1_5 An overview of rdp
makefile Main rdp makefile
minicalc.bnf rdp specification for the minicalc interpreter

minicond.bnf rdp specification for the minicond interpreter

miniloop.bnf rdp specification for the miniloop compiler

minitree.bnf rdp specification for the minitree compiler

mini_syn.bnf rdp specification for the mini syntax checker

ml_aux.c miniloop auxiliary file
ml_aux.h miniloop auxiliary header file
mt_aux.c minitree auxiliary file
mt_aux.h minitree auxiliary header file
mvmasm.bnf rdp specification of the mvmasm assembler
mvmsim.c source code for the mvmsim simulator
mvm_aux.c auxiliary file for mvmasm
mvm_aux.h auxiliary header file for mvmasm
mvm_def.h op-code definitions for MVM
pascal.bnf rdp specification for Pascal
pretty_c.bnf rdp specification for the ANSI-C pretty printer
pr_c_aux.c auxiliary file for pretty_c
pr_c_aux.h auxiliary header file for pretty_c
rdp.bnf rdp specification for rdp itself
rdp.c rdp main source file generated from rdp.bnf

rdp.exe 32-bit rdp executable for Win-32 (.zip file only)
rdp.h rdp main header file generated from rdp.bnf

rdp_aux.c rdp auxiliary file
rdp_aux.h rdp auxiliary header file
rdp_gram.c grammar checking routines for rdp
rdp_gram.h grammar checking routines header for rdp
rdp_prnt.c parser printing routines for rdp
rdp_prnt.h parser printing routines header for rdp
test.c ANSI-C pretty printer test source file
test.pas Pascal test source file
testcalc.m minicalc test source file
testcond.m minicond test source file
testloop.m miniloop test source file
testtree.m minitree test source file
rdp_doc\rdp_case.dvi case study TEX dvi file
rdp_doc\rdp_case.ps case study Postscript source
rdp_doc\rdp_supp.dvi support manual TEX dvi file
rdp_doc\rdp_supp.ps support manual Postscript source
rdp_doc\rdp_tut.dvi tutorial manual TEX dvi file
rdp_doc\rdp_tut.ps tutorial manual Postscript source
rdp_doc\rdp_user.dvi user manual TEX dvi file
rdp_doc\rdp_user.ps user manual Postscript source
rdp_supp\arg.c argument handling routines
rdp_supp\arg.h argument handling header
rdp_supp\graph.c graph handling routines
rdp_supp\graph.h graph handling header
rdp_supp\memalloc.c memory management routines
rdp_supp\memalloc.h memory management header
rdp_supp\scan.c scanner support routines
rdp_supp\scan.h scanner support header
rdp_supp\scanner.c the rdp scanner
rdp_supp\set.c set handling routines
rdp_supp\set.h set handling header
rdp_supp\symbol.c symbol handling routines
rdp_supp\symbol.h symbol handling header
rdp_supp\textio.c text buffer handling routines
rdp_supp\textio.h text buffer handling header
examples\... examples from manuals

Table A.1 Distribution file list
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executables. If you type make veryclean then the directory is cleaned
and the executables are also deleted.

A.2 Build log

The output of a successful makefile build on MS-DOS is shown below. Note
the warning messages from rdp on some commands: these are quite normal.

cc -Irdp_supp\ -c rdp.c

rdp.c:

cc -Irdp_supp\ -c rdp_aux.c

rdp_aux.c:

cc -Irdp_supp\ -c rdp_gram.c

rdp_gram.c:

cc -Irdp_supp\ -c rdp_prnt.c

rdp_prnt.c:

cc -Irdp_supp\ -c rdp_supp\arg.c

rdp_supp\arg.c:

cc -Irdp_supp\ -c rdp_supp\graph.c

rdp_supp\graph.c:

cc -Irdp_supp\ -c rdp_supp\memalloc.c

rdp_supp\memalloc.c:

cc -Irdp_supp\ -c rdp_supp\scan.c

rdp_supp\scan.c:

cc -Irdp_supp\ -c rdp_supp\scanner.c

rdp_supp\scanner.c:

cc -Irdp_supp\ -c rdp_supp\set.c

rdp_supp\set.c:

cc -Irdp_supp\ -c rdp_supp\symbol.c

rdp_supp\symbol.c:

cc -Irdp_supp\ -c rdp_supp\textio.c

rdp_supp\textio.c:

cc -erdp.exe rdp.obj rdp_*.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

rdp -F -omini_syn mini_syn

cc -Irdp_supp\ -c mini_syn.c

mini_syn.c:

cc -emini_syn.exe mini_syn.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

mini_syn testcalc

rdp -F -ominicalc minicalc

cc -Irdp_supp\ -c minicalc.c

minicalc.c:

cc -eminicalc.exe minicalc.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minicalc testcalc

a is 7

b is 14, -b is -14

7 cubed is 343

rdp -F -ominicond minicond

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [ ’else’ _and_not statement ] .
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contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c minicond.c

minicond.c:

cc -eminicond.exe minicond.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minicond testcond

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

rdp -F -ominiloop miniloop

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [ ’else’ statement ] .

contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c miniloop.c

miniloop.c:

cc -Irdp_supp\ -c ml_aux.c

ml_aux.c:

cc -eminiloop.exe miniloop.obj ml_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

rdp -F -omvmasm mvmasm

cc -Irdp_supp\ -c mvmasm.c

mvmasm.c:

cc -Irdp_supp\ -c mvm_aux.c

mvm_aux.c:

cc -emvmasm.exe mvmasm.obj mvm_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

cc -Irdp_supp\ -c mvmsim.c

mvmsim.c:

cc -emvmsim.exe mvmsim.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

miniloop -otestloop.mvm testloop

mvmasm -otestloop.sim testloop

******: Transfer address 00001000

mvmsim testloop.sim

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

a is 3

a is 2

a is 1

-- Halted --

rdp -F -ominitree minitree

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [ ’else’ statement ] .

contains null but first and follow sets both include: ’else’
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******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c minitree.c

minitree.c:

cc -Irdp_supp\ -c mt_aux.c

mt_aux.c:

cc -eminitree.exe minitree.obj m*_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minitree -otesttree.mvm testtree

mvmasm -otesttree.sim testtree

******: Transfer address 00001000

mvmsim testtree.sim

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

a is 3

a is 2

a is 1

-- Halted --

rdp -opascal -F pascal

******: Error - LL(1) violation - rule

rdp_statement_9 ::= [ ’else’ statement ] .

contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c pascal.c

pascal.c:

cc -epascal.exe pascal.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

pascal test

rdp -opretty_c pretty_c

cc -Irdp_supp\ -c pretty_c.c

pretty_c.c:

cc -Irdp_supp\ -c pr_c_aux.c

pr_c_aux.c:

cc -epretty_c.exe pretty_c.obj pr_c_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

pretty_c test

test.c,2133,12267,5.75

fc test.c test.bak

Comparing files test.c and test.bak

FC: no differences encountered

del test.bak

rdp -F -ordp1 rdp

cc -Irdp_supp\ -c rdp1.c

rdp1.c:

cc -erdp1.exe rdp1.obj rdp_*.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

copy rdp1.c rdp2.c

rdp1 -F -ordp1 rdp



64 ACQUIRING AND INSTALLING RDP

fc rdp1.c rdp2.c

Comparing files rdp1.c and rdp2.c

****** rdp1.c

*

* Parser generated by RDP on Dec 20 1997 21:05:05 from rdp.bnf

*

****** rdp2.c

*

* Parser generated by RDP on Dec 20 1997 21:05:02 from rdp.bnf

*

******



Bibliography

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: prin-

ciples techniques and tools. Addison-Wesley, 1986.

[AU72] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Trans-

lation and Compiling, volume 1 — Parsing of Series in Automatic

Computation. Prentice-Hall Inc., 1972.

[JS97a] Adrian Johnstone and Elizabeth Scott. Designing and implement-
ing language translators with rdp – a case study. Technical Report
TR-97-27, Royal Holloway, University of London, Computer Science
Department, December 1997.

[JS97b] Adrian Johnstone and Elizabeth Scott. rdp - a recursive descent com-
piler compiler. user manual for version 1.5. Technical Report TR-97-
25, Royal Holloway, University of London, Computer Science Depart-
ment, December 1997.

[JS97c] Adrian Johnstone and Elizabeth Scott. rdp supp – support routines
for the rdp compiler compiler version 1.5. Technical Report TR-97-26,
Royal Holloway, University of London, Computer Science Department,
December 1997.


