
rdp supp – support routines for

the rdp compiler compiler

User manual for version 1.5

Adrian Johnstone Elizabeth Scott

Technical Report

CSD –TR– 97 – 26

December 20, 1997

! () + ,

- . / 0 1

2 3 4 5 6

Department of Computer Science
Egham, Surrey TW20 0EX, England

Abstract

rdp is a system for implementing language processors. It accepts a gram-
mar written in an extended Backus-Naur Form annotated with inherited and
synthesized attributes and C-language semantic actions. rdp checks that the
grammar is LL(1), providing detailed error messages pinpointing the source of
any problems. A parser written in ANSI C may then be output. rdp is par-
ticularly suited to student use because it constructs ready to run parsers and
interpreters and provides detailed diagnostics.

This report describes the user accessible parts of the rdp support library—
rdp supp for short. rdp supp comprises seven packages to manage memory
(memalloc.c), sets (set.c), graphs (graph.c), scanners (scan.c), text buffers
(textio.c), command line arguments (arg.c) and symbol tables (symbol.c).
These packages are designed to be useful for general purpose programming and
may be used independently of the rdp system. The internal operation of the
packages is not documented here, but the rdp distribution pack does include
commented source code for all parts of the system.

The rdp source code is public domain and has been successfully built using
Borland C++ 3.1 and Microsoft C++ version 7 on MS-DOS, GNU gcc and
g++ running on OSF/1, Ultrix, MS-DOS, Linux and SunOS, and a variety of
vendor’s own compilers running on many flavours of Unix. rdp has also been
built for the Macintosh using a console support library, and a version modified
to take account of the unusual filenaming conventions on the Acorn Archimedes
is available on request.

This document is c©Adrian Johnstone and Elizabeth Scott 1997.

Permission is given to freely distribute this document electronically and
on paper. You may not change this document or incorporate parts of it
in other documents: it must be distributed intact.

The rdp system itself is c©Adrian Johnstone but may be freely copied
and modified on condition that details of the modifications are sent to
the copyright holder with permission to include such modifications in
future versions and to discuss them (with acknowledgement) in future
publications.

The version of rdp described here is version 1.50 dated 20 December
1997.

Please send bug reports and copies of modifications to the author at the
address on the title page or electronically to A.Johnstone@rhbnc.ac.uk.

Contents

1 Introduction 1

2 arg – command line argument services 3

2.1 Command line format 3
2.2 The help message 4
2.3 arg boolean 4

2.4 arg help 4
2.5 arg message 4
2.6 arg numeric 4

2.7 arg process 5
2.8 arg string 5
2.9 An example program 5
2.10 Limitations 5

3 graph – a graph data structure handler 9

3.1 Internal structure of a graph 10
3.2 Graph data and handles 10

3.3 graph compare double 12
3.4 graph compare long 12
3.5 graph compare mem 12

3.6 graph compare string 12
3.7 graph delete edge 13
3.8 graph delete graph 13

3.9 graph delete node 13
3.10 graph get atom number 13
3.11 graph get next edge 13
3.12 graph get edge target 13

3.13 graph get final edge 14
3.14 graph get final node 14
3.15 graph hash double 14

3.16 graph hash long 14
3.17 graph hash mem 14
3.18 graph hash string 14
3.19 graph insert edge 15

3.20 graph insert graph 15
3.21 graph insert node 15
3.22 graph insert node child 15

ii CONTENTS

3.23 graph insert node parent 15

3.24 graph vcg 16

3.25 graph vcg atoms 16

4 memalloc – memory management routines 17

4.1 mem calloc 17

4.2 mem free 17

4.3 mem malloc 17

4.4 mem print statistics 18

4.5 mem realloc 18

5 scan – scanner support routines 19

5.1 scan column number 19

5.2 scan init 19

5.3 scan line number 20

5.4 scan load keyword 20

5.5 scan prune tree 20

5.6 scan test 20

5.7 scan test set 21

5.8 scan vcg print node 21

6 set – a dynamic set handler 23

6.1 set array 24

6.2 set cardinality 24

6.3 set assign element 25

6.4 set assign list 25

6.5 set assign set 25

6.6 set compare 25

6.7 set difference element 25

6.8 set difference list 25

6.9 set difference set 26

6.10 set free 26

6.11 set grow 26

6.12 set includes element 26

6.13 set includes list 26

6.14 set includes set 26

6.15 set intersect element 26

6.16 set intersect list 27

6.17 set intersect set 27

6.18 set complement 27

6.19 set minimum size 27

6.20 set normalise 27

6.21 set print element 27

6.22 set print set 28

6.23 set unite element 28

6.24 set unite list 28

6.25 set unite set 28

CONTENTS iii

7 symbol – a hash coded symbol table manager 29

7.1 Data structures 29
7.2 symbol compare double 31

7.3 symbol compare double reverse 31
7.4 symbol compare long 32
7.5 symbol compare long reverse 32

7.6 symbol compare string 32
7.7 symbol compare string reverse 32

7.8 symbol find 32
7.9 symbol free scope 33
7.10 symbol free symbol 33

7.11 symbol free table 33
7.12 symbol get scope 33

7.13 symbol hash double 33
7.14 symbol hash long 33
7.15 symbol hash mem 33

7.16 symbol hash string 34
7.17 symbol insert key 34

7.18 symbol insert symbol 34
7.19 symbol lookup key 34
7.20 symbol new scope 34

7.21 symbol new symbol 34
7.22 symbol new table 35

7.23 symbol next symbol 35
7.24 symbol next symbol in scope 35
7.25 symbol print all table 35

7.26 symbol print all table statistics 35
7.27 symbol print double 36
7.28 symbol print long 36

7.29 symbol print string 36
7.30 symbol print scope 36

7.31 symbol print symbol 36
7.32 symbol print table 36
7.33 symbol print table statistics 36

7.34 symbol set scope 37
7.35 symbol sort table 37

7.36 symbol sort scope 37
7.37 symbol unlink scope 37
7.38 symbol unlink symbol 37

7.39 symbol unlink table 37

8 textio – text buffering and messaging services 39

8.1 Global variables 39
8.1.1 *text bot 39

8.1.2 *text top 39
8.1.3 int text char 39
8.1.4 void *text scan data 40

CONTENTS

8.2 text capitalise string 40
8.3 text default filetype 40
8.4 text dump 40
8.5 text echo 40
8.6 text extract filename 41
8.7 text find ASCII element 41
8.8 text force filetype 41
8.9 text free 41
8.10 text get char 41
8.11 text init 41
8.12 text insert char 41
8.13 text insert characters 42
8.14 text insert integer 42
8.15 text insert string 42
8.16 text insert substring 42
8.17 long text is valid C id 42
8.18 long text line number 42
8.19 text lowercase string 43
8.20 text make C identifier 43
8.21 text message 43
8.22 text open 43
8.23 text print C char 44
8.24 text print C char file 44
8.25 text print C string 44
8.26 text print C string file 44
8.27 text print statistics 44
8.28 text print time 44
8.29 text printf 44
8.30 text print total errors 45
8.31 text redirect 45
8.32 text total errors 45
8.33 text total warnings 45
8.34 text uppercase string 45

A Acquiring and installing rdp 47

A.1 Installation 47
A.2 Build log 49

Chapter 1

Introduction

rdp is a system for implementing language processors. Compilers, assemblers
and interpreters may all be written in the rdp source language (an extended
Backus-Naur Form) and then processed by the rdp command to produce a
program written in ANSI C which may then be compiled and run.

rdp generated parsers use a set of general purpose support modules collec-
tively known as rdp_supp. There are seven parts to rdp supp:

⋄ a hash coded symbol table handler which allows multiple tables to be
managed with arbitrary user data fields (symbol.c),

⋄ a set handler which supports dynamically resizable sets (set.c),

⋄ a set of routines for creating and manipulating general graph data struc-
tures which can also output graphs in a form that may be displayed on-
screen by the VCG tool (graph.c),

⋄ a memory manager which wraps fatal error handling around the standard
ANSI C heap allocation routines (memalloc.c),

⋄ a text handler which provides line buffering and string management with-
out imposing arbitrary limits on input line length (textio.c),

⋄ a set of routines for processing command line arguments and automati-
cally building help routines (arg.c),

⋄ scanner support routines for testing tokens in recursive descent parsers
(scan.c).

Writing effective language processors in rdp requires a detailed understand-
ing of these modules. This report documents the user accessible functions in the
rdp supp library. Implementation details are hidden except where a knowledge
of the underlying data structures is required for efficient exploitation of the li-
brary. The full source code of the rdp supp library is available in directory
rdp_supp of the rdp distribution, and the various rdp tools provide examples
of the use of rdp supp routines.

This manual is part of a four manual series. In addition to this support
library manual, the user manual [JS97b] describes the rdp source language,

2 INTRODUCTION

command switches and error messages.A third, tutorial, report assumes no
knowledge of parsing, grammars or language design and shows how to use rdp
to develop a small calculator-like language [JS97c]. The emphasis in the tutorial
guide is on learning to use the basic rdp features and command line options. A
large case study is documented in [JS97a] which extends the language described
in the tutorial guide with details of a syntax checker, an interpreter and a
compiler along with an assembler and simulator for a synthetic architecture
which is used as the compiler target machine.

Chapter 2

arg – command line argument services

The arg library provides automatic processing for Unix style command line
arguments. The library is used to implement rdp’s ARG_... directives in which
command line switches are associated with variables in the parser called switch

variables. When the command line is processed, the switch variables are loaded
with values from the command line switches supplied by the user.

The arg library is set up at run time by calling one of a family of routines to
declare command line switches. When all of the switches have been set up, the
command line can be processed by passing the normal argc (argument count)
and argv (argument vector) parameters from the ANSI-C main() function to
the library. Each command line switch has an associated switch variable which
will be updated during command line processing and a description string which
gives a short summary message describing the switch’s function. The library
creates a help message by concatenating these descriptions which may be issued
along with a fatal error message if an invalid command line is detected.

2.1 Command line format

The model supported by the library is that of a command line made up of file
arguments and switches separated by spaces made up of space or tab characters.
Switches are distinguished by a leading minus sign (-). Any space delimited
field beginning with a - character is a switch and anything else is a file argument.

Switches are distinguished one from another by their key character which
immediately follows the - character. Switches are processed in strict left-to-
right order as they appear on the command line and may be of three types.

1. Boolean switches declared using the function arg_boolean which take
an integer switch variable that is initialised to false (integer 0). Each
instance of the boolean switch in the command line toggles the state of
the switch variable by exclusive or-ing its value with logical true.

2. Numeric switches declared using the function arg_numeric which take an
unsigned long switch variable that is initialised to zero. Each instance of
the numeric switch in the command line must be immediately followed
by a decimal integer without any intervening spaces. The ASCII coded

4 ARG – COMMAND LINE ARGUMENT SERVICES

number on the command line is converted to binary and loaded into the
switch variable, overwriting any previous value.

3. String switches declared using the function arg_string which take a
string (char *) switch variable that is initialised to NULL. Each instance
of the numeric switch in the command line must be followed by a string
of characters which will be collected and loaded into the switch variable,
overwriting any previous value. No intervening spaces are allowed be-
tween the switch key and the actual string: a string switch key followed
by a space will be interpreted as an empty (zero length) string parameter.

2.2 The help message

It is usual to provide a summary help message that can be issued by a program
if it receives invalid command parameters. The arg library automatically con-
structs such a message by concatenating the description lines from the declared
command line switches. The routine arg_help() may be called to issue this
message.

2.3 arg boolean

void arg_boolean(char key, char* description, int *intvalue)

Declare a boolean switch with key character key, help message description

and switch variable intvalue.

2.4 arg help

void arg_help(char *msg)

Issue a fatal error message msg followed by the help message formed by con-
catenating the description lines from each declared command line switch. The
program exits after calling this function with exit status EXIT_FAILURE.

2.5 arg message

void arg_message(char* description)

Declare a line to be added to the help message without an associated command
line switch. This function is useful for adding blank spacing lines or titles and
other general information to the help message.

2.6 arg numeric

void arg_numeric(char key, char* description, unsigned long *unsignedvalue)

Declare a numeric switch with key character key, help message description

and switch variable unsignedvalue.

arg process 5

2.7 arg process

char ** arg_process(int argc, char *argv[])

Process the command line parameters held in argv according to the switches
declared using the switch definition functions. All the non-switch (filename)
arguments are collected into an array of pointers to strings (a char ** variable)
which is returned by the function. If no filename arguments are seen, then NULL

is returned.

2.8 arg string

void arg_string(char key, char* description, char **str)

Declare a string switch with key character key, help message description and
switch variable str.

2.9 An example program

The example shown in Figure 2.1 is an extract from the source of the rdp tool
which illustrates the use of most of the arg routines. The output produced
by the arg_help() function when rdp is called with no source file is shown in
Figure 2.2.

2.10 Limitations

Unix commands use a wide variety of conventions for command line switches,
not all of which are supported by the arg library. Here is a list of such limita-
tions.

1. Command line switches can only be of the three kinds described above:
there is no built-in facility for real number switches, for instance, although
a string switch could be used to collect the characters for later processing.

2. There is no straightforward way to allow embedded spaces in string switches.
This is a side-effect of the way in which the ANSI-C standard command
line handler parses the fields in a command line.

3. Command line switch keys can only be made up of a single character.

4. No spaces are allowed between a key and its argument.

5. There is no way to associate command line switches with particular file
parameters. Consider, for instance a switch -l which is intended to switch
on the listing for a source file. It would be reasonable to interpret a
command line of the form

mytool first_file -l second_file third_file -l

6 ARG – COMMAND LINE ARGUMENT SERVICES

arg_message("Recursive descent parser generator V1.50 (c) Adrian Johnstone 1997\n\n"

"Usage: rdp [options] source[.bnf]");

arg_message(""); /* Add a blank line to the help message */

arg_boolean(’f’, "Filter mode (read from stdin and write to stdout)", &rdp_filter);

arg_boolean(’l’, "Make a listing", &rdp_line_echo);

arg_string (’o’, "Write output to filename", &rdp_outputfilename);

arg_boolean(’s’, "Echo each scanner symbol as it is read", &rdp_symbol_echo);

arg_boolean(’S’, "Print summary symbol table statistics", &rdp_symbol_statistics);

arg_numeric(’t’, "Tab expansion width (default 8)", &rdp_tabwidth);

arg_numeric(’T’, "Text buffer size in bytes for scanner (default 20000)", &rdp_textsize);

arg_boolean(’v’, "Set verbose mode", &rdp_verbose);

arg_string (’V’, "Write derivation tree to filename in VCG format", &rdp_vcg_filename);

arg_message("");

arg_boolean(’e’, "Write out expanded BNF along with first and follow sets", &rdp_expanded);

arg_boolean(’E’, "Add rule name to error messages in generated parser", &rdp_error_production_name);

arg_boolean(’F’, "Force creation of output files", &rdp_force);

arg_boolean(’p’, "Make parser only (omit semantic actions from generated code)", &rdp_parser_only);

arg_boolean(’R’, "Add rule entry and exit messages", &rdp_trace);

arg_message("");

arg_message("You can contact the author (Adrian Johnstone) at:");

arg_message("");

arg_message("Computer Science Department, Royal Holloway, University of London");

arg_message("Egham, Surrey, TW20 0EX UK. Email: A.Johnstone@rhbnc.ac.uk");

rdp_sourcefilename = *arg_process(argc, argv);

if (rdp_sourcefilename == NULL)

arg_help("No source file specified");

Figure 2.1 Example usage of the arg library

Limitations 7

Fatal - No source file specified

Recursive descent parser generator V1.50 (c) Adrian Johnstone 1997

Generated on Dec 20 1997 12:04:45 and compiled on Dec 20 1997 at 12:02:49

Usage: rdp [options] source[.bnf]

-f Filter mode (read from stdin and write to stdout)

-l Make a listing

-o <s> Write output to filename

-s Echo each scanner symbol as it is read

-S Print summary symbol table statistics

-t <n> Tab expansion width (default 8)

-T <n> Text buffer size in bytes for scanner (default 20000)

-v Set verbose mode

-V <s> Write derivation tree to filename in VCG format

-e Write out expanded BNF along with first and follow sets

-E Add rule name to error messages in generated parser

-F Force creation of output files

-p Make parser only (omit semantic actions from generated code)

-R Add rule entry and exit messages

You can contact the author (Adrian Johnstone) at:

Computer Science Department, Royal Holloway, University of London

Egham, Surrey, TW20 0EX UK. Email: A.Johnstone@rhbnc.ac.uk

Figure 2.2 Output from the arg help() function

8 ARG – COMMAND LINE ARGUMENT SERVICES

as an instruction to process files the three files first_file, second_file
and third_file with the source listing being switched on for the first
and third files but switched off for the second file. However, the arg

library processes all command line switches in left to right order and then
returns the file parameters in a block, so the interleaving of command line
arguments and file parameters is not preserved.

Chapter 3

graph – a graph data structure handler

A graph is a collection of nodes and edges, often drawn as a collection of round
nodes and arrows representing the edges. There may or may not be data as-
sociated with individual nodes and edges. In a general graph, there is no limit
to the number of edges leaving or entering a node, and there is no limit of the
number of nodes in a graph.

Graphs are fundamental objects in computing, being used to represent rela-
tionships between objects. Special cases of graphs, such as linked lists or trees
have restrictions on the number of edges that may enter or leave nodes and the
kinds of paths that may be traced through the graph. A singly linked list, for
instance is a collection of nodes each with either one or zero edges entering and
one or zero edges leaving. Every node in the list has exactly one edge entering
it and one edge leaving it except for one node (called the head) which has no
edge entering it and one node (called the tail) which has no edge leaving it.

These special cases along with the properties of more general graphs are de-
scribed in most standard books on data structures. The graph library described
in this chapter provides a completely general mechanism for implementing unre-
stricted graphs in an efficient manner. It is possible to provide more space (and
time) efficient implementations of some important special cases such as trees
of fixed order, queues and circular buffers but the implementation used here is
the cheapest simple method we know of for handling completely unconstrained
graphs.

Graphs can be very complex, and debugging a program which is based
on graph structures can be hard because tracing through the edges using a
conventional ANSI-C debugger is confusing and time consuming. A major
advantage of the rdp graph library is that any graph can be output as a text
file written in the language of the VCG graph visualisation tool. VCG can display
a graph at various resolutions, trace graphically through the nodes and edges
of a graph and format the graph for printing on a wide variety of devices. The
various tree diagrams shown in the rdp manuals were produced in this way: rdp
uses the graph library to build parse trees and rdp generated parsers provide a
-V command line switch which is used to output the tree in VCG compatible
format. The VCG tool is not a part of the rdp distribution but the author
of VCG has kindly given his permission for VCG to be distributed alongside
rdp—you will find versions for Windows or Unix in the rdp FTP server as

10 GRAPH – A GRAPH DATA STRUCTURE HANDLER

described in Appendix A.

3.1 Internal structure of a graph

The graph library uses a hierarchy of linked lists of graph atoms to represent
graphs that may be manipulated using a family of routines for inserting and
deleting nodes and edges. A graph atom may be used to represent

1. a graph header,

2. a graph node, or

3. a graph edge.

Each atom has a predecessor and a successor pointer which are used to form
doubly-linked lists of atoms representing the same kind of atom and an ancillary
pointer which is used to point to atoms of another type. Each atom also has a
unique number which may be displayed as part of a graph dump. The number
is only present to aid debugging: it is not used by any graph routine and may
not be changed during a run.

The library maintains a single doubly-linked list of graph headers, one
header for each graph in use by the program. Graphs may be added or deleted
during program execution and the graph list may be empty. The ancillary
pointer of each graph header points to a doubly-linked list of graph nodes,
which may be empty. Each graph node represents a single, unique, node in the
graph represented by the parent header. The ancillary pointer of each graph
node points to a doubly-linked list of graph edges, which may be empty. There
will be one graph edge in the list for each edge leaving that node. The ancillary
pointer for each edge points to the node that the edge is directed towards. In
this representation, edges are inherently unidirectional: an undirected graph
may be represented inserting both forward and reverse edges between each re-
lated pair of nodes.

Figure 3.1 shows an example of a small derivation tree generated by the
minitree compiler and its internal representation using graph atoms is shown
in Figure 3.2. In these examples, no data is associated with the edges. For
graph atoms without data, the VCG representation shows the type of the atom
followed by a colon and the unique number of the atom. Hence, in Figure 3.2
the graph header node is labeled Graph:1 and the edges are labeled as Edge:5
and so on. The nodes in the graph do have user supplied labels (in this case,
the minitree compiler that produced the derivation tree has labeled the nodes
with the scanner lexeme for terminals or the rule name for non-terminals) and
these are used as VCG node labels where they exist.

3.2 Graph data and handles

All graph atoms can carry data, be they graph headers, nodes or edges. When
a graph, node or edge atom is inserted into the current set, extra space can be
reserved for the user data in that atom. It is not possible to change the size of

Graph data and handles 11

Figure 3.1 A small tree built using the graph library

Figure 3.2 A small tree showing the internal graph structure

12 GRAPH – A GRAPH DATA STRUCTURE HANDLER

the data space in a graph atom once it is created, so although different graph
nodes and edges can contain different amounts of data each node must stay the
same size throughout their life.

The functions to insert atoms into graphs return a handle to the atom that
has been created. In detail, it turns out that the handle is a void pointer to the
start of the user data area in the atom, or (equivalently) a void pointer to the
location one past the atom’s internal pointer data block. These handles may
not be manipulated but they are used to refer to individual atoms and can be
passed into other functions to cause atoms to be printed out, set as the target
of an edge, deleted and so on. User data is accessed by casting the handle of an
atom to a pointer to the user datatype. The fields in the user data block can
then be accessed using the usual ANSI-C -> operator.

3.3 graph compare double

int graph_compare_double(void *left, void *right)

Compare double precision real fields for equality. The first element of the user
data structure must be a double. Return 0 if they are equal, +1 if left >

right or −1 if right < left, just like the ANSI routine strcmp().

3.4 graph compare long

int graph_compare_long(void *left, void *right)

Compare long unsigned integer fields for equality. The first element of the user
data structure must be a long unsigned int. Return 0 if they are equal, +1
if left > right or −1 if right < left, just like the ANSI routine strcmp().

3.5 graph compare mem

int graph_compare_mem(void *left, void *right, size_t size)

Compare memory blocks for equality. The first element of the user data struc-
ture must be a pointer and the two memory blocks are compared for string
equality over the first size bytes. Return 0 if they are equal, +1 if left >

right or −1 if right < left, just like the ANSI routine strncmp().

3.6 graph compare string

int graph_compare_string(void *left, void *right)

Compare string fields for equality. The first element of the user data structure
must be a char *. Return 0 if they are equal, +1 if left > right or −1 if
right < left, just like the ANSI routine strcmp().

graph delete edge 13

3.7 graph delete edge

void graph_delete_edge(void *edge)

Remove edge from its parent graph. The parent and target nodes for edge are
unchanged.

3.8 graph delete graph

void graph_delete_graph(void *graph)

Remove graph from the list of graphs. All of the nodes and edges in graph are
also deleted and the memory returned to the free list.

3.9 graph delete node

void graph_delete_node(void *node)

Remove node from its parent graph. All of the edges emanating from node are
also deleted and the memory returned to the free list. The nodes pointed to by
those edges are unchanged.

3.10 graph get atom number

unsigned long graph_get_atom_number(const void *graph_or_node_or_edge)

Return the unique atom number for a graph atom. Atom numbers are allo-
cated in an ascending sequence starting from 1 in the order in which atoms are
inserted. Atom numbers are never reused, even after atoms have been deleted.

3.11 graph get next edge

void *graph_get_next_edge(const void* node_or_edge)

Get the next member of the edge list emanating from a node or an edge. If
this routine is passed an atom that corresponds to a node, then the returned
edge will be the first edge in that node’s list. If the routine is passed an atom
that corresponds to an edge, then the successor to that edge will be returned.
If there is no next edge, then NULL is returned.

3.12 graph get edge target

void * graph_get_edge_target(const void * edge)

Return a handle to the node atom pointed to by the edge, that is the value of
the ancillary pointer for atom edge.

14 GRAPH – A GRAPH DATA STRUCTURE HANDLER

3.13 graph get final edge

void * graph_get_final_edge(const void * node_or_edge)

Get the final member of the edge list emanating from a node or an edge. If this
routine is passed an atom that corresponds to a node, then the returned edge
will be the last edge in that node’s list. If the routine is passed an atom that
corresponds to an edge, then the last element of that atoms’s successor list will
be returned. If the edge list is empty, then NULL is returned.

3.14 graph get final node

void * graph_get_final_node(const void * node_or_edge)

Get the final member of the node list emanating from a graph atom or a node
atom. If this routine is passed an atom that corresponds to a graph, then the
returned node will be the last node in that graph’s list. If the routine is passed
an atom that corresponds to an node, then the last element of that atoms’s
successor list will be returned. If the node list is empty, then NULL is returned.

3.15 graph hash double

unsigned graph_hash_double(unsigned hash_prime, void *data)

Hash a double precision real number. See Chapter 7 on symbol tables for more
information on hashing.

3.16 graph hash long

unsigned graph_hash_long(unsigned hash_prime, void *data)

Hash an unsigned long integer. See Chapter 7 on symbol tables for more infor-
mation on hashing.

3.17 graph hash mem

unsigned graph_hash_mem(unsigned hash_prime, void *data)

Hash a length encoded block of memory. See Chapter 7 on symbol tables for
more information on hashing.

3.18 graph hash string

unsigned graph_hash_string(unsigned hash_prime, void *data)

Hash a zero terminated string. See Chapter 7 on symbol tables for more infor-
mation on hashing.

graph insert edge 15

3.19 graph insert edge

void *graph_insert_edge(size_t size, void* target_node, void* node_or_edge)

Insert an edge into a graph, allocating size bytes for user data and setting
target_node as the destination of the edge. If parameter node_or_edge is
passed a node atom then the new edge is inserted at the first element of that
node’s edge list with the original list as the successor to the new edge. If
parameter node_or_edge is passed an edge atom then the new edge is inserted
at the successor to that edge.

3.20 graph insert graph

void *graph_insert_graph(char *id)

Insert a new graph into the library’s graph list, allocating space for a character
pointer which is set to id.

3.21 graph insert node

void *graph_insert_node(size_t size, void* node_or_graph)

Insert a node into a graph, allocating size bytes for user data. If parameter
node_or_graph is passed a graph atom then the new node is inserted at the
first element of that graph’s node list with the original list as the successor to
the new node. If parameter node_or_graph is passed a node atom then the
new node is inserted at the successor to that node.

3.22 graph insert node child

void *graph_insert_node_child(size_t node_size, size_t edge_size,

void* parent_node)

Insert a new node and an edge from parent_node to the new node, reserving
node_size bytes of space in the new node atom and edge_size bytes of space
in the new edge atom.

3.23 graph insert node parent

void *graph_insert_node_parent(size_t node_size, size_t edge_size,

void* child_node)

Insert a new node and an edge from it to child_node, reserving node_size

bytes of space in the new node atom and edge_size bytes of space in the new
edge atom.

16 GRAPH – A GRAPH DATA STRUCTURE HANDLER

3.24 graph vcg

void graph_vcg(void *graph,

void (*graph_action)(const void *graph),

void (*node_action) (const void *node),

void (*edge_action) (const void *edge)

)

Output graph in VCG format to the current textio output stream which by
default is the screen. See Chapter 8 for information on how to redirect the textio
output stream. The three function pointers graph_action, node_action and
edge_action are callback functions that will be called once for each graph, node
and edge atom respectively in the graph with the handle of the graph atom as
a parameter. These callback functions can be used to output VCG specific tags
so as to, for instance, change the colour and shape of a node or the size of the
arrowhead on an edge. Figure 3.1 was produced using this function.

3.25 graph vcg atoms

void graph_vcg_atoms(void *graph,

void(* graph_action)(const void * graph),

void (*node_action) (const void *node),

void (*edge_action) (const void *edge)

)

Output the atoms in graph in VCG format to the current textio output stream
which by default is the screen. See Chapter 8 for information on how to redi-
rect the textio output stream. The three function pointers graph_action,
node_action and edge_action are callback functions that will be called once
for each graph, node and edge atom respectively in the graph with the handle
of the graph atom as a parameter. These callback functions can be used to
output VCG specific tags so as to, for instance, change the colour and shape of
a node or the size of the arrowhead on an edge. Figure 3.2 was produced using
this function.

Chapter 4

memalloc – memory management routines

The memalloc routines replicate the ANSI standard memory management rou-
tines but issue a fatal error message if an error occurs. They all return a
void pointer which in general will need to be cast to the required pointer type.
Several of these routines use parameters of type size_t: ANSI C translators
provide an implementation dependent definition of size_t which is guaranteed
to be able to represent the largest data object that may be created using that
translator. Most often it will be either an unsigned int or an unsigned long.

4.1 mem calloc

void *mem_calloc(size_t nitems, size_t size)

Allocate a block of memory large enough to hold nitems of size size and then
clear the contents to zero. Return a void pointer to the first location in the
block. Exit with a fatal error if insufficient memory is available to allocate the
requested block size.

4.2 mem free

void mem_free(void *block)

Free a block previously allocated by a call to one of the other mem_ routines.
Exit with a fatal error if block is null. Attempting to a free a pointer that is
not referring to a previously allocated block results in unpredictable behaviour.

4.3 mem malloc

void *mem_malloc(size_t size)

Allocate a block of memory of size size. Return a void pointer to the first
location in the block. The memory block is not initialised. Exit with a fatal
error if insufficient memory is available to allocate the requested block size.

18 MEMALLOC – MEMORY MANAGEMENT ROUTINES

4.4 mem print statistics

void mem_print_statistics(void)

Print out the number of bytes of memory allocated using mem_malloc, mem_calloc
and mem_realloc since the program started running.

4.5 mem realloc

void *mem_realloc(void *block, size_t size)

Change the size of a previously allocated memory block to size. If necessary,
a completely new memory block will be created and the necessary copying
of data between old and new blocks performed automatically. Return a void
pointer to the first location in the block. Any new memory area beyond the
end of the old block memory block is not initialised, and will therefore contain
unpredictable data immediately after a call to mem realloc. Exit with a fatal
error if insufficient memory is available to allocate the requested block size.

Chapter 5

scan – scanner support routines

The scanner is such an integral part of the rdp system that is unlikely to ever
be used as a general purpose package: all rdp generated parsers automatically
contain the necessary calls to these routines. They are documented here for
completeness.

5.1 scan column number

unsigned long scan_column_number(void)

Return the start column number for the most recently scanned lexeme.

5.2 scan init

void scan_init(const int case_insensitive,

const int newline_visible,

const int show_skips,

const int symbol_echo,

char *token_names)

Initialise the scanner subsystem. This routine must be called before calling any
other scanner routines. It is an error to call this routine twice. As well as
creating a symbol table to hold the scanner keywords,

scan_init

accepts parameters that control the overall behaviour of the scanner as follows:

⋄ case_insensitive If true, then convert uppercase alphabetic characters
to lowercase before lexical analysis except in extended tokens such as
strings and comments.

⋄ newline_visible If true, then pass newline characters to the parser as
token EOLN, otherwise discard newlines in the scanner.

⋄ show_skips If true, issue a skipping to ... message during error re-
covery.

20 SCAN – SCANNER SUPPORT ROUTINES

⋄ symbol_echo If true, print the token value of each symbol as it is scanned.

⋄ token_names A string containing the token names in ASCII, each name
terminated by a null character (\0). If null then error messages will only
report the token number in decimal. If there are fewer strings than tokens
defined, unexpected error messages will cause unpredictable behaviour.

5.3 scan line number

unsigned long scan_line_number(void)

Return the current line number of the file being scanned. The line number
reported is the line number at the start of the most recently parsed token.
Visible comment tokens can be many lines long, so the line numbers reported
during a scan may not be contiguous.

5.4 scan load keyword

void scan_load_keyword(char *id1, const char *id2, const int token,

const int extended)

Load the keyword id1 into the scanner’s symbol table and mark it as token
number token. Extended tokens such as STRING_ESC and COMMENT use the id2
parameter to specify a supplementary token. The class of an extended token is
specified using the extended parameter.

The scanner recognises keywords and punctuation symbols by comparing
the input with the contents of its own symbol table. It is sometimes useful
to add elements to the scanner table during program parsing. In particular,
the C language typedef statement creates new names for types which may be
indistinguishable from variable names without lookahead in certain contexts.
Indeed, rather remarkably it is legal in C to have a type name and a variable
name which are identical, that is the names must inhabit separate name space.
In situations like these it is sometimes useful to be able to create new keywords
during execution.

5.5 scan prune tree

void scan_prune_tree(scan_data * rdp_tree)

Prune empty (epsilon) nodes from the derivation tree.

5.6 scan test

int scan_test(const char *production, const int valid,

set_ * stop)

scan test set 21

Test to see if the current token number equals valid and return a 1 if the test
succeeds or else a 0 if the test fails. If the current token is not equal to valid

and stop is not NULL then generate an error message and skip until a token in
stop is detected. If production is not NULL, then preface the error message
with the production name. RDP uses this parameter when the -E switch is
used during parser generation.

5.7 scan test set

int scan_test_set(const char *production, set_ * valid,

set_ * stop)

Test to see if the current token number is a member of set valid and return
a 1 if the test succeeds or else a 0 if the test fails. If the current token is not

in valid and stop is not NULL then generate an error message and skip until
a token in stop is detected. If production is not NULL, then preface the error
message with the production name. RDP uses this parameter when the -E

switch is used during parser generation.

5.8 scan vcg print node

void scan_vcg_print_node(const void* node)

RDP generated parsers can automatically build derivation trees during a parse
which show how the productions in a grammar are activated: essentially the
derivation tree is a trace of the path taken by the parser. These derivation
trees can be written to a text file in a form suitable for input to the VCG
(Visualisation of Compiler Graphs) tool [San95], which can then display the
tree under MS-Windows, Windows-95 or X-windows. The derivation trees are
built using the graph library. This routine is called once for each node in the
tree during the last pass of the parser, and produces scanner specific labels in
the displayed tree.

Chapter 6

set – a dynamic set handler

Set manipulation is central to many parsing algorithms, and a space efficient
set representation is an important part of the rdp supp library. Sets are rep-
resented as variable length bit strings, and the common operations such as set
union are implemented as bitwise logical operations.

The set handler can handle sets of integers or enum elements (which in
C are really integers in disguise) in the range 0 to (MAX_UNSIGNED − 1) where
MAX_UNSIGNED is the ANSI standard C macro that expands to the largest encod-
able unsigned number. Each set is represented by a structure which contains
an unsigned integer called size, and a pointer to a block of memory on the heap
as shown in Figure 6.1. When initially created a set contains a null pointer, that
is its total memory consumption is (sizeof(unsigned) + sizeof(void *)).

As elements are added to a set, the set package automatically grows the set
by allocating extra storage. Sets can only grow in multiples of a byte, so set
size is always rounded up to the nearest eight bits.

Simply clearing bits in a set is not enough to release the memory. The only
routines that can cause a set to shrink are set_free() which clears the set and
returns allocated memory to the heap, and set_normalise() which removes
empty bytes from the end of a set.

To reduce the number of reallocation calls made to the memory manager it
is possible to define a minimum size for a set below which it will not shrink.
By default the minimum set size is zero bytes.

Set names are always passed by address since C passes structures by value
not name.

The basic set operations such as union and intersection are implemented in
three different forms—so-called element, list and set forms. Each form takes
the address of a set as the destination parameter, but the source might be
either a single integer (the element form), a list of integers (the list form) or
another set (the set form). A list is terminated by the constant SET_END which
is defined in set.h to be MAX_UNSIGNED. This extract illustrates the use of the
three different forms:

set_unite_element(&first, 5)

set_unite_list(&first, 8, 1, 3, SET_END)

set_unite_set(&first, &second)

24 SET – A DYNAMIC SET HANDLER

0 NULL

1

10010000

�
�
�
�
�

�
�
��✒

3
❅
❅
❅
❅
❅

❅
❅❅❘ 11000111 01011010 00000010

The null set

The set {0, 3}

The set {0, 1, 5, 6, 7, 9, 11, 12, 14, 22}

Figure 6.1 Set data structure

6.1 set array

unsigned *set_array(const set_ * src)

When iterating over the contents of a set it is inefficient to test each bit indi-
vidually. This routine takes a set and returns an array of unsigned integers,
one for each element of the set. A final element is set to SET_END. Once this
array has been created, set iterations may be implemented by iterating over the
elements of the array:

set_ src

unsigned *elements = set_array(src)

while (*elements != SET_END)

{

...

elements++

}

When you have finished using the array created by calling set_array, you
can free the memory by simply calling mem_free():

mem_free(elements)

6.2 set cardinality

unsigned set_cardinality(const set_ * src)

Return the number of elements in set src.

set assign element 25

6.3 set assign element

void set_assign_element(set_ * dst, const unsigned element)

Clear dst and then assign the single element to it.

6.4 set assign list

void set_assign_list(set_ * dst,...)

Clear dst and then assign the list of elements to it.

6.5 set assign set

void set_assign_set(set_ * dst, const set_ * src)

Copy src to dst.

6.6 set compare

int set_compare(set_ * dst, set_ * src)

Return 0 if src and dst are each subsets of each other (i.e. they contain exactly
the same elements). It is not necessary for the sets to be the same length for
this test to succeed. The routine returns −1 if src is ‘less than’ dst and +1 if
src is ‘greater than’ dst. The exact definition of greater than and less than is
not significant: the existence of a collation sequence allows sets to be used as
symbol table keys.

6.7 set difference element

void set_difference_element(set_ * dst, const unsigned element)

Remove element from dst. It is not an error to remove an element that is not
in a set.

6.8 set difference list

void set_difference_list(set_ * dst,...)

Remove each member of the list of elements from dst. It is not an error to
remove an element that is not in a set.

26 SET – A DYNAMIC SET HANDLER

6.9 set difference set

void set_difference_set(const set_ * dst, const set_ * src)

Remove every element in src from dst. It is not an error to remove an element
that is not in a set.

6.10 set free

void set_free(set_ * dst)

Clear dst and return the bit vector storage to the heap.

6.11 set grow

void set_grow(set_ * dst, const unsigned length)

Expand dst so that it is length bytes long and therefore capable of holding
elements in the range 0 . . . (length×8)− 1.

6.12 set includes element

int set_includes_element(set_ * dst, const unsigned element)

Return 1 if set dst contains element otherwise 0.

6.13 set includes list

int set_includes_list(set_ * dst,...)

Return 1 if set dst contains every element in the list otherwise 0.

6.14 set includes set

int set_includes_set(const set_ * dst, const set_ * src)

Return 1 if set dst contains every element in src otherwise 0.

6.15 set intersect element

void set_intersect_element(set_ * dst, const unsigned element)

Remove every element in dst apart from element.

set intersect list 27

6.16 set intersect list

void set_intersect_list(set_ * dst,...)

Remove every element in dst that is not in the list.

6.17 set intersect set

void set_intersect_set(set_ * dst, const set_ * src)

Remove every element in dst that is not in src.

6.18 set complement

void set_invert(set_ * dst, const unsigned universe)

Form the complement of dst in universe 0, . . . , universe by complementing all
bits in the vector and then clearing bits corresponding to universe and above.

6.19 set minimum size

unsigned set_minimum_size(const unsigned minimum_size)

Set a minimum length below which set_normalise() will not shrink any set.

6.20 set normalise

void set_normalise(set_ * dst)

Delete zero bytes from the end of a bit vector and update the size field, i.e.
reduce a set to its minimum storage requirement. Do not shrink to less than
the value set by the last call to set_minimum_size.

6.21 set print element

void set_print_element(const unsigned element, const char *element_names)

Print a single set element. If element_names is NULL then simply print the
decimal representation of the element number. If element_names is non-null,
it is assumed to be an ASCII string made up of null delimited substrings, one
per element. The routine counts substrings from the left until it finds the name
of the set element and prints that instead of the decimal number.

28 SET – A DYNAMIC SET HANDLER

6.22 set print set

void set_print_set(const set_ * src, const char *element_names,

unsigned line_length)

Print all elements in src. If element_names is NULL then simply print the
decimal representation of the element numbers. If element_names is non-null,
it is assumed to be an ASCII string made up of null delimited substrings, one
per element. The routine finds counts substrings from the left until it finds the
name of the set element and prints that instead of the decimal number.

Whenever the routine starts to print out a new set element, it checks to
see whether the length of the current output line exceeds line_length. If so,
it prints a newline before proceeding. This parameter can be used to avoid
printing very long lines by setting an upper bound on the start column of a set
element. Note that this does not have the effect of limiting line length to the
set value because the actual line lengths will depend on the length of the set
element names.

This routine is used by rdp to build the error messages when a parser syntax
error occurs. See the routine scan_test_set().

6.23 set unite element

void set_unite_element(set_ * dst, const unsigned element)

Add element to dst.

6.24 set unite list

void set_unite_list(set_ * dst,...)

Add a list of elements to dst.

6.25 set unite set

void set_unite_set(set_ * dst, const set_ * src)

Add each element in src to dst.

Chapter 7

symbol – a hash coded symbol table

manager

7.1 Data structures

An efficient symbol table manager is crucial to the performance of any trans-
lator. Many languages require symbol table access during scanning simply to
resolve grammatical ambiguities, and semantic analysis usually requires symbol
table manipulation if the underlying grammar is to remain context free. The
rdp symbol table manager is particularly flexible, allowing multiple symbol ta-
bles to be managed. The user data associated with each symbol can be defined
with complete freedom, and the internal links used to maintain the hash ta-
ble are hidden. There is no inherent reason why symbols in a particular table
should not carry different user data as long as the key fields are in the same
place in each record. The rdp EBNF provides a SYMBOL_TABLE directive which
automatically creates and initialises symbol tables. See the file rdp.bnf for a
particularly complicated example of its use.

rdp maintains a linked list of symbol tables. Each symbol table is described
by a header record that contains pointers to a hash table, a scope list, vari-
ous maintenance functions and some book keeping data. The basic layout is
illustrated in Figure 7.1.

Whenever a symbol is to be inserted into the table, its key fields are hashed
generating a random number in the range 0 . . . size. This hash number is
then used to index into the hash table, selecting one of the linked lists. The
symbol is then added to the head of the list. A lookup is performed by hashing
the test symbol and then searching down the list for a match. Since the most
recent additions are always examined first, the structure directly implements
nested scope rules in that a new symbol will hide any symbols with the same
key deeper in the table.

The hash lists are in fact doubly linked so that symbols can be quickly
unlinked from the chain.

Whenever a symbol is added to a hash list, it is also added to the head of
the current scope chain. New scope regions may be declared, in which case a
new scope record is created and added to the head of the scope list. The scope
pointers are represented in Figure 7.1 by curved arrows. Although not shown

30 SYMBOL – A HASH CODED SYMBOL TABLE MANAGER

data data
✲

data data
✲ ✲

data
✲

data

data
✲

✲

✲

data data
✲ ✲

data
✲

data
✲

scope scope
✲ ✲

scope
✲

✻

✻✻ ❪

❥

✻

✻❪

✌

✎

✙

❥

bucket[hashsize-1]

bucket[hashsize-2]

bucket[hashsize-3]

bucket[1]

bucket[0]

scopes

current

✛

✛ ✛✛✛

✛✛

✛✛✛✛

✛✛✛

Figure 7.1 Symbol table data structure

symbol compare double 31

on the diagram, each symbol maintains a back link to its scope record allowing
efficient checking of the scope level for a particular symbol. The current scope
may be reset to a previously declared scope.

Different kinds of user data record are allowed for by parameterising the
functions that hash, compare and print symbols. These are supplied as func-
tion pointers when the symbol table is declared. Most symbol tables (certainly
all those in the distributed grammars) simply use a single string as the key field.
The library provides standard hash and compare functions for the special (al-
though common) case of a symbol in which the first field is a character string (i.e.
a pointer to char) which acts as the key field. Functions are also provided for an
initial set_ key field. If you need to do something more baroque, such as hash-
ing on both a string and a numeric name space, then you will have to write your
own functions. Try looking at the source code for symbol_compare_string(),
symbol_hash_string() and symbol_print_string() for ideas.

All of the pointers embedded in the symbols are hidden from the user, and
symbols are manipulated via void pointers to the first location in the user data
block. rdp defines casting macros for each symbol table to make user data field
access less verbose. See the file miniplus.bnf for examples.

The symbol table package was originally developed along the lines described
in the ‘Dragon Book’ [ASU86]. The idea of hiding the pointers and using
function pointers in a sort of poor man’s object oriented programming was taken
from Holub’s book on compilers [Hol90] although I have implemented things
rather differently and provided a more complete set of routines. I also took the
idea of storing a symbol’s hash number within it to allow fast lookup from the
symbol table module that Terence Parr supplies with PCCTS compiler-compiler
suite.

7.2 symbol compare double

int symbol_compare_double(void *left, void *right)

Compare double precision real keys for equality. The first element of the user
data structure must be a double. Return 0 if they are equal, +1 if left

> right or −1 if right < left, just like the ANSI routine strcmp(). For
symbols that are keyed on a single double, this routine may be used as the
compare parameter to symbol_init() and the rdp directive SYMBOL_TABLE.

7.3 symbol compare double reverse

int symbol_compare_double_reverse(void *left, void *right)

Compare double precision real keys for equality with reverse polarity. The first
element of the user data structure must be a double. Return 0 if they are
equal, +1 if left < right or −1 if right > left. For symbols that are keyed
on a single double, this routine may be used as the compare parameter to
symbol_init() and the rdp directive SYMBOL_TABLE.

32 SYMBOL – A HASH CODED SYMBOL TABLE MANAGER

7.4 symbol compare long

int symbol_compare_long(void *left, void *right)

Compare long integer keys for equality. The first element of the user data
structure must be a long int. Return 0 if they are equal, +1 if left > right

or −1 if right < left, just like the ANSI routine strcmp(). For symbols that
are keyed on a single long integer, this routine may be used as the compare

parameter to symbol_init() and the rdp directive SYMBOL_TABLE.

7.5 symbol compare long reverse

int symbol_compare_long_reverse(void *left, void *right)

Compare long integer keys for equality with reverse polarity. The first element
of the user data structure must be a long int. Return 0 if they are equal, +1
if left < right or −1 if right > left, just like the ANSI routine strcmp().
For symbols that are keyed on a single long integer, this routine may be used as
the compare parameter to symbol_init() and the rdp directive SYMBOL_TABLE.

7.6 symbol compare string

int symbol_compare_string(void *left, void *right)

Compare string keys for equality. The first element of the user data structure
must be a char*. Return 0 if they are equal, +1 if left > right or −1 if
right < left, just like the ANSI routine strcmp(). For symbols that are
keyed on a single string, this routine may be used as the compare parameter to
symbol_init() and the rdp directive SYMBOL_TABLE.

7.7 symbol compare string reverse

int symbol_compare_string_reverse(void *left, void *right)

Compare string keys for equality with reverse polarity. The first element of
the user data structure must be a char*. Return 0 if they are equal, +1 if
left < right or −1 if right > left, just like the ANSI routine strcmp().
For symbols that are keyed on a single string, this routine may be used as the
compare parameter to symbol_init() and the rdp directive SYMBOL_TABLE.

7.8 symbol find

void symbol_find(const void *table, void *key, size_t key_size,

size_t symbol_size, void* scope,

enum SYMBOL_FIND_OP op)

enum SYMBOL_FIND_OP {SYMBOL_NEW, SYMBOL_OLD, SYMBOL_ANY}

symbol free scope 33

7.9 symbol free scope

void symbol_free_scope(const void *scope)

Unlink all symbols in a scope chain and then free all memory associated with
them. Unlink the scope record from the scope chain and free the memory
associated with it.

7.10 symbol free symbol

void symbol_free_symbol(void *symbol)

Free the memory associated with a symbol. Unpredictable behaviour will occur
if a symbol is freed before unlinking it from the symbol table.

7.11 symbol free table

void symbol_free_table(void *table)

Free all memory associated with a table and all symbols and scope records
within it.

7.12 symbol get scope

void *symbol_get_scope(const void *table)

Return a pointer to the scope record for the current scope level.

7.13 symbol hash double

unsigned symbol_hash_double(unsigned hash_prime, void *data)

7.14 symbol hash long

unsigned symbol_hash_long(unsigned hash_prime, void *data)

7.15 symbol hash mem

unsigned symbol_hash_mem(unsigned hash_prime, void *data)

Hash a length encoded string. For symbols that are keyed on a single length en-
coded string, this routine may be used as the hash parameter to symbol_init()
and the rdp directive SYMBOL_TABLE.

34 SYMBOL – A HASH CODED SYMBOL TABLE MANAGER

7.16 symbol hash string

unsigned symbol_hash_string(unsigned hash_prime, void *data)

Hash a zero terminated string. For symbols that are keyed on a single string,
this routine may be used as the hash parameter to symbol_init() and the rdp
directive SYMBOL_TABLE.

7.17 symbol insert key

void *symbol_insert_key(const void *table, char *str, size_t size)

Make a new symbol with a user data area size bytes long. Put a pointer to
str in the user first user data field. Hash the symbol and insert in the table.

7.18 symbol insert symbol

void *symbol_insert_symbol(const void *table, void *symbol)

Hash an existing symbol and insert it in the table.

7.19 symbol lookup key

void * symbol_lookup_key(const void * table, void * key, void * scope)

Hash the key and lookup up the symbol. Return NULL if not found, otherwise
a pointer to the base of the user data in the found symbol. Parameter scope
restricts the search to scope level scope. If scope is NULL, then all scopes are
searched.

7.20 symbol new scope

void *symbol_new_scope(void *table, char *str)

Create a new named scope and add it to the head of the scope list. Make the
new scope current.

7.21 symbol new symbol

void *symbol_new_symbol(size_t size)

Allocate enough memory for the symbol table pointers plus size bytes of user
data. Return a pointer to the base of the user data.

symbol new table 35

7.22 symbol new table

void *symbol_new_table(char *name,

const unsigned symbol_hashsize,

const unsigned symbol_hashprime,

int (*compare) (void *left_symbol, void *right_symbol),

unsigned (*hash) (unsigned hash_prime, void *data),

void (*print) (const void *symbol))

Create a new symbol table and add it to the head of the linked list of tables.
Return a pointer to the table which may be used to name the table in subsequent
calls. The table will have size hash buckets. See rdp.c for examples of use.

7.23 symbol next symbol

void *symbol_next_symbol(void *table, void *symbol)

Sometimes it is necessary to look down a hash chain beyond a found symbol, for
instance to locate instances of symbols with the same key that were inserted
previously. This routine takes a pointer to a symbol and then continues to
search down the same chain until it finds another match or reaches the end of
the list. Return NULL if no other matching symbol is found, otherwise a pointer
to the base of the user data.

7.24 symbol next symbol in scope

void *symbol_next_symbol_in_scope(void *symbol)

This routine returns the next symbol in a scope chain. Prior to any sorting,
symbols will be returned in the reverse order to that in which they were inserted.

7.25 symbol print all table

void symbol_print_all_table(void)

Print a diagnostic dump of all symbol tables currently active.

7.26 symbol print all table statistics

void symbol_print_all_table_statistics(const int histogram_size)

Print summary statistics for all symbol tables currently active. rdp generated
parsers call this routine when the -S command line option is active.

36 SYMBOL – A HASH CODED SYMBOL TABLE MANAGER

7.27 symbol print double

void symbol_print_double(const void *symbol)

Print the first element in the user data as a double precision real. For symbols
that are keyed on a single real, this routine may be used as the print parameter
to symbol_init() and the rdp directive SYMBOL_TABLE.

7.28 symbol print long

void symbol_print_long(const void *symbol)

Print the first element in the user data as a long integer. For symbols that are
keyed on a single long integer, this routine may be used as the print parameter
to symbol_init() and the rdp directive SYMBOL_TABLE.

7.29 symbol print string

void symbol_print_string(const void *symbol)

Print the first element in the user data as a pointer to string. For symbols that
are keyed on a single string, this routine may be used as the print parameter
to symbol_init() and the rdp directive SYMBOL_TABLE.

7.30 symbol print scope

void symbol_print_scope(const void *table, void *scope)

Print all symbols in the scope chain pointed to by scope.

7.31 symbol print symbol

void symbol_print_symbol(const void *table, const void *symbol)

Print a single symbol.

7.32 symbol print table

void symbol_print_table(const void *table)

Print the entire contents of the symbol table pointed to by table.

7.33 symbol print table statistics

void symbol_print_table_statistics(const void *table,

const int histogram_size)

Print summary statistics for the symbol table pointed to by table.

symbol set scope 37

7.34 symbol set scope

void symbol_set_scope(void *table, void *scope)

Set the current scope to scope, which must be a pointer returned by a previous
call to symbol_new_scope() or symbol_get_scope().

7.35 symbol sort table

void symbol_sort_table(void *table)

Sort all scope chains in a table using the ordering defined by compare function.

7.36 symbol sort scope

void symbol_sort_scope(void *table, void *scope)

Sort a scope chain using the ordering defined by compare function. rdp uses
this function to alphabetically sort token and production names.

7.37 symbol unlink scope

void symbol_unlink_scope(void *data)

Unlink all symbols in a scope chain from their hash chains. The symbols them-
selves (and the scope chain data) are preserved. This function is usually called
at the exit from a scope block.

7.38 symbol unlink symbol

void symbol_unlink_symbol(void *data)

Unlink a single symbol from its hash chain. The symbol itself (and the scope
chain data) are preserved.

7.39 symbol unlink table

void symbol_unlink_table(void *table)

Unlink all symbols in a table from their hash chains. The symbols themselves
(and the scope chain data) are preserved.

Chapter 8

textio – text buffering and messaging

services

Text buffering is a surprisingly troubling part of lexical analyser design. Sup-
porting nested include files, source echoing and synchronised error messages
requires careful design. The rdp text buffer manager maintains a single large
area of memory. New strings can be inserted at low addresses and grow up-
wards.

The top of the region is used as a pushdown stack of line buffers for the set
of included files. As each nested include file is opened, a record containing the
previous state of the text manager is pushed onto a linked list and a new line
buffer opened up. At the end of the included file, the buffer is released, the
record list popped and scanning continue where it left off. End of file is not
returned to the caller until the outermost file is completely consumed.

This arrangement allows arbitrary strings of arbitrary lengths to be stored,
and files with arbitrarily long lines to be read. As each new line is read in, it
is stored backwards at the top of the buffer. rdp does not run out of memory
until the strings meet the line buffers, so memory can always be fully used.
This data arrangement is illustrated in Figure 8.1.

As well as these text input routines, messaging routines are provided to
centralise the production of error messages.

8.1 Global variables

8.1.1 *text bot

A pointer to the first location in the text buffer.

8.1.2 *text top

A pointer to the first free location above the string base.

8.1.3 int text char

The last character read by textio.

40 TEXTIO – TEXT BUFFERING AND MESSAGING SERVICES

text buffer

s1 s2 s3 s4 ✲

✛
outer line buffer

inner line buffer

Figure 8.1 Text buffer structure

8.1.4 void *text scan data

A pointer to the last scanner symbol read by the scanner.

8.2 text capitalise string

char *text_capitalise_string(char *str)

Capitalise the first character of each space delimited word in string str.

8.3 text default filetype

char *text_default_filetype(char *fname, const char *ftype)

If fname has no filetype then add a period and the string ftype to it.

8.4 text dump

void text_dump(void)

Print out (in order of creation time) all the inserted strings in the text buffer.

8.5 text echo

void text_echo(const int i)

Enable listing for all lines.

text extract filename 41

8.6 text extract filename

char * text_extract_filename(char * fname)

Return the file name part of a path, after stripping off leading directories and
the trailing file type.

8.7 text find ASCII element

char * text_find_ASCII_element(int c)

Return a string representing the ASCII code for c. Non-printing character
codes return a three digit mnemonic code.

8.8 text force filetype

char *text_force_filetype(char *fname, const char *ftype)

Force fname to have filetype ftype even if it already has one.

8.9 text free

void text_free(void)

Release all memory held by the textio package. It is an error to access any
textio functions after calling text_free.

8.10 text get char

void text_get_char(void)

Get a single character from the line buffer into text_char.

8.11 text init

void text_init(const long max_text,

const unsigned max_errors,

const unsigned max_warnings,

const unsigned tab_width)

Initialise the text subsystem with a buffer of max_text bytes.

8.12 text insert char

char *text_insert_char(const char c)

Insert a single character into the string buffer. Return a pointer to the inserted
character.

42 TEXTIO – TEXT BUFFERING AND MESSAGING SERVICES

8.13 text insert characters

char *text_insert_characters(const char *str)

Insert the string str into the string buffer, but omit the terminating null char-
acter. Return a pointer to the first character.

8.14 text insert integer

char *text_insert_integer(const unsigned n)

Insert the ASCII decimal representation of an unsigned integer into the text
buffer. Return a pointer to the start of the string.

8.15 text insert string

char *text_insert_string(const char *str)

Insert the string str into the string buffer and include the terminating null
character. Return a pointer to the start of the string.

8.16 text insert substring

char *text_insert_substring(const char * prefix, const char *str,

const unsigned n)

Insert the string prefix into th string buffer followed by the string str followed
by an underscore and then insert the ASCII decimal representation of unsigned
integer n with a terminating null character. Return a pointer to the start of
the string. This routine is used to construct sub-production names in the rdp

grammar checking routines.

8.17 long text is valid C id

int text_is_valid_C_id(char * s)

Return true (integer 1) if s conforms to the rules for valid ANSI-C identifiers,
otherwise return false (integer 0).

8.18 long text line number

unsigned long text_line_number(void)

Return the current line number in the current file.

text lowercase string 43

8.19 text lowercase string

char *text_lowercase_string(char *str)

Go through string str, converting all upper case letters to lower case and return
that string.

8.20 text make C identifier

char *text_make_C_identifier(char * str)

Use text_find_ASCII_element to construct a valid C identifier from the names
of the characters in str.

8.21 text message

int text_message(const enum text_message_type type, const char *fmt, ...)

Generate an error message. type is one of

⋄ TEXT_INFO print the current filename and the message.

⋄ TEXT_WARNING print Warning, the current filename and the message.

⋄ TEXT_ERROR print Error, the current filename and the message.

⋄ TEXT_FATAL print Fatal, the current filename and the message. Exit to
the operating system after issuing the message.

⋄ TEXT_INFO_ECHO echo the current source line, print the current filename
and the message.

⋄ TEXT_WARNING_ECHO echo the current source line, print Warning, the cur-
rent filename and the message.

⋄ TEXT_ERROR_ECHOecho the current source line, print Warning, the current
filename and the message.

⋄ TEXT_FATAL_ECHO echo the current source line, print Warning, the current
filename and the message. Exit to the operating system after issuing the
message.

Any valid printf() parameters may be supplied after type.

8.22 text open

FILE *text_open(char *s)

Open a file. s is an ASCII string containing the file name. An error message
will be issued if the file cannot be opened. There is no corresponding close
function because files are automatically closed by the handler when an EOF is
encountered.

44 TEXTIO – TEXT BUFFERING AND MESSAGING SERVICES

8.23 text print C char

int text_print_C_char(char * string)

Print the contents of string as an ANSI-C character literal, using escape se-
quences where necessary.

8.24 text print C char file

int text_print_C_char_file(FILE * file, char * string)

Print the contents of string as an ANSI-C character literal to file stream file,
using escape sequences where necessary.

8.25 text print C string

int text_print_C_string(char * string)

Print the contents of string as an ANSI-C string literal, using escape sequences
where necessary.

8.26 text print C string file

int text_print_C_string_file(FILE * file, char * string)

Print the contents of string as an ANSI-C string literal to file stream file,
using escape sequences where necessary.

8.27 text print statistics

void text_print_statistics(void)

Print summary text buffer statistics. Use this routine to find out how much
free space is left in the text buffer.

8.28 text print time

void text_print_time(void)

Print the currently consumed CPU time for this run.

8.29 text printf

int text_printf(const char *fmt, ...)

Send a formatted message to the message stream. Any valid printf() param-
eters are valid here.

text print total errors 45

8.30 text print total errors

int text_print_total_errors(void)

Print the total number of errors across all input files.

8.31 text redirect

void text_redirect(FILE* file)

At startup, messages are sent to the stream named in the TEXT_MESSAGESmacro
defined in textio.h, which is usually stderr. Output can be redirected to any
other text file with this routine. filemust be an initialised file variable pointer.

8.32 text total errors

unsigned text_total_errors(void)

Return the total number of errors across all input files.

8.33 text total warnings

unsigned text_total_warnings(void)

Return the total number of warnings across all input files.

8.34 text uppercase string

void text_uppercase_string(char *str)

Go through string str, converting all lower case letters to upper case and return
that string.

Appendix A

Acquiring and installing rdp

rdp may be fetched using anonymous ftp to ftp.dcs.rhbnc.ac.uk. If you
are a Unix user download pub/rdp/rdpx_y.tar or if you are an MS-DOS user
download pub/rdp/rdpx_y.zip. In each case x_y should be the highest number
in the directory. You can also access the rdp distribution via the rdp Web
page at http://www.dcs.rhbnc.ac.uk/research/languages/rdp.shmtl. If
all else fails, try mailing directly to A.Johnstone@rhbnc.ac.uk and a tape or
disk will be sent to you.

A.1 Installation

1. Unpack the distribution kit. You should have the files listed in Table A.1.

2. The makefile can be used with many different operating systems and
compilers.

Edit it to make sure that it is configured for your needs by uncommenting
one of the blocks of macro definitions at the top of the file.

3. To build everything, go to the directory containing the makefile and type
make. The default target in the makefile builds rdp, the mini_syn syn-
tax analyser, the minicalc interpreter, the minicond interpreter, the
miniloop compiler, the minitree compiler an assembler called mvmasm

and its accompanying simulator mvmsim, a parser for the Pascal language
and a pretty printer for ANSI-C. The tools are run on various test files.
None of these should generate any errors, except for LL(1) errors caused
by the mini and Pascal if statements and warnings from rdp about un-
used comment() rules, which are normal.

make then builds rdp1, a machine generated version of rdp. rdp1 is then
used to reproduce itself, creating a file called rdp2. The two machine
generated versions are compared with each other to make sure that the
bootstrap has been successful. Finally the machine generated versions are
deleted.

4. If you type make clean all the object files and the machine generated
rdp versions will be deleted, leaving the distribution files plus the new

48 ACQUIRING AND INSTALLING RDP

00readme.1_5 An overview of rdp
makefile Main rdp makefile
minicalc.bnf rdp specification for the minicalc interpreter

minicond.bnf rdp specification for the minicond interpreter

miniloop.bnf rdp specification for the miniloop compiler

minitree.bnf rdp specification for the minitree compiler

mini_syn.bnf rdp specification for the mini syntax checker

ml_aux.c miniloop auxiliary file
ml_aux.h miniloop auxiliary header file
mt_aux.c minitree auxiliary file
mt_aux.h minitree auxiliary header file
mvmasm.bnf rdp specification of the mvmasm assembler
mvmsim.c source code for the mvmsim simulator
mvm_aux.c auxiliary file for mvmasm
mvm_aux.h auxiliary header file for mvmasm
mvm_def.h op-code definitions for MVM
pascal.bnf rdp specification for Pascal
pretty_c.bnf rdp specification for the ANSI-C pretty printer
pr_c_aux.c auxiliary file for pretty_c
pr_c_aux.h auxiliary header file for pretty_c
rdp.bnf rdp specification for rdp itself
rdp.c rdp main source file generated from rdp.bnf

rdp.exe 32-bit rdp executable for Win-32 (.zip file only)
rdp.h rdp main header file generated from rdp.bnf

rdp_aux.c rdp auxiliary file
rdp_aux.h rdp auxiliary header file
rdp_gram.c grammar checking routines for rdp
rdp_gram.h grammar checking routines header for rdp
rdp_prnt.c parser printing routines for rdp
rdp_prnt.h parser printing routines header for rdp
test.c ANSI-C pretty printer test source file
test.pas Pascal test source file
testcalc.m minicalc test source file
testcond.m minicond test source file
testloop.m miniloop test source file
testtree.m minitree test source file
rdp_doc\rdp_case.dvi case study TEX dvi file
rdp_doc\rdp_case.ps case study Postscript source
rdp_doc\rdp_supp.dvi support manual TEX dvi file
rdp_doc\rdp_supp.ps support manual Postscript source
rdp_doc\rdp_tut.dvi tutorial manual TEX dvi file
rdp_doc\rdp_tut.ps tutorial manual Postscript source
rdp_doc\rdp_user.dvi user manual TEX dvi file
rdp_doc\rdp_user.ps user manual Postscript source
rdp_supp\arg.c argument handling routines
rdp_supp\arg.h argument handling header
rdp_supp\graph.c graph handling routines
rdp_supp\graph.h graph handling header
rdp_supp\memalloc.c memory management routines
rdp_supp\memalloc.h memory management header
rdp_supp\scan.c scanner support routines
rdp_supp\scan.h scanner support header
rdp_supp\scanner.c the rdp scanner
rdp_supp\set.c set handling routines
rdp_supp\set.h set handling header
rdp_supp\symbol.c symbol handling routines
rdp_supp\symbol.h symbol handling header
rdp_supp\textio.c text buffer handling routines
rdp_supp\textio.h text buffer handling header
examples\... examples from manuals

Table A.1 Distribution file list

Build log 49

executables. If you type make veryclean then the directory is cleaned
and the executables are also deleted.

A.2 Build log

The output of a successful makefile build on MS-DOS is shown below. Note
the warning messages from rdp on some commands: these are quite normal.

cc -Irdp_supp\ -c rdp.c

rdp.c:

cc -Irdp_supp\ -c rdp_aux.c

rdp_aux.c:

cc -Irdp_supp\ -c rdp_gram.c

rdp_gram.c:

cc -Irdp_supp\ -c rdp_prnt.c

rdp_prnt.c:

cc -Irdp_supp\ -c rdp_supp\arg.c

rdp_supp\arg.c:

cc -Irdp_supp\ -c rdp_supp\graph.c

rdp_supp\graph.c:

cc -Irdp_supp\ -c rdp_supp\memalloc.c

rdp_supp\memalloc.c:

cc -Irdp_supp\ -c rdp_supp\scan.c

rdp_supp\scan.c:

cc -Irdp_supp\ -c rdp_supp\scanner.c

rdp_supp\scanner.c:

cc -Irdp_supp\ -c rdp_supp\set.c

rdp_supp\set.c:

cc -Irdp_supp\ -c rdp_supp\symbol.c

rdp_supp\symbol.c:

cc -Irdp_supp\ -c rdp_supp\textio.c

rdp_supp\textio.c:

cc -erdp.exe rdp.obj rdp_*.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

rdp -F -omini_syn mini_syn

cc -Irdp_supp\ -c mini_syn.c

mini_syn.c:

cc -emini_syn.exe mini_syn.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

mini_syn testcalc

rdp -F -ominicalc minicalc

cc -Irdp_supp\ -c minicalc.c

minicalc.c:

cc -eminicalc.exe minicalc.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minicalc testcalc

a is 7

b is 14, -b is -14

7 cubed is 343

rdp -F -ominicond minicond

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [’else’ _and_not statement] .

50 ACQUIRING AND INSTALLING RDP

contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c minicond.c

minicond.c:

cc -eminicond.exe minicond.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minicond testcond

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

rdp -F -ominiloop miniloop

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [’else’ statement] .

contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c miniloop.c

miniloop.c:

cc -Irdp_supp\ -c ml_aux.c

ml_aux.c:

cc -eminiloop.exe miniloop.obj ml_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

rdp -F -omvmasm mvmasm

cc -Irdp_supp\ -c mvmasm.c

mvmasm.c:

cc -Irdp_supp\ -c mvm_aux.c

mvm_aux.c:

cc -emvmasm.exe mvmasm.obj mvm_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

cc -Irdp_supp\ -c mvmsim.c

mvmsim.c:

cc -emvmsim.exe mvmsim.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

miniloop -otestloop.mvm testloop

mvmasm -otestloop.sim testloop

******: Transfer address 00001000

mvmsim testloop.sim

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

a is 3

a is 2

a is 1

-- Halted --

rdp -F -ominitree minitree

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [’else’ statement] .

contains null but first and follow sets both include: ’else’

Build log 51

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c minitree.c

minitree.c:

cc -Irdp_supp\ -c mt_aux.c

mt_aux.c:

cc -eminitree.exe minitree.obj m*_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minitree -otesttree.mvm testtree

mvmasm -otesttree.sim testtree

******: Transfer address 00001000

mvmsim testtree.sim

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

a is 3

a is 2

a is 1

-- Halted --

rdp -opascal -F pascal

******: Error - LL(1) violation - rule

rdp_statement_9 ::= [’else’ statement] .

contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c pascal.c

pascal.c:

cc -epascal.exe pascal.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

pascal test

rdp -opretty_c pretty_c

cc -Irdp_supp\ -c pretty_c.c

pretty_c.c:

cc -Irdp_supp\ -c pr_c_aux.c

pr_c_aux.c:

cc -epretty_c.exe pretty_c.obj pr_c_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

pretty_c test

test.c,2133,12267,5.75

fc test.c test.bak

Comparing files test.c and test.bak

FC: no differences encountered

del test.bak

rdp -F -ordp1 rdp

cc -Irdp_supp\ -c rdp1.c

rdp1.c:

cc -erdp1.exe rdp1.obj rdp_*.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

copy rdp1.c rdp2.c

rdp1 -F -ordp1 rdp

52 ACQUIRING AND INSTALLING RDP

fc rdp1.c rdp2.c

Comparing files rdp1.c and rdp2.c

****** rdp1.c

*

* Parser generated by RDP on Dec 20 1997 21:05:05 from rdp.bnf

*

****** rdp2.c

*

* Parser generated by RDP on Dec 20 1997 21:05:02 from rdp.bnf

*

Bibliography

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: prin-

ciples techniques and tools. Addison-Wesley, 1986.

[Hol90] Allen I. Holub. Compiler design in C. Prentice Hall, 1990.

[JS97a] Adrian Johnstone and Elizabeth Scott. Designing and implement-
ing language translators with rdp – a case study. Technical Report
TR-97-27, Royal Holloway, University of London, Computer Science
Department, December 1997.

[JS97b] Adrian Johnstone and Elizabeth Scott. rdp - a recursive descent com-
piler compiler. user manual for version 1.5. Technical Report TR-97-
25, Royal Holloway, University of London, Computer Science Depart-
ment, December 1997.

[JS97c] Adrian Johnstone and Elizabeth Scott. A tutorial guide to rdp for
new users. Technical Report TR-97-24, Royal Holloway, University of
London, Computer Science Department, December 1997.

[San95] Georg Sander. VCG Visualisation of Compiler Graphs. Universität
des Saarlandes, 66041 Saarbrücken, Germany, February 1995.

