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Abstract

rdp is a system for implementing language processors. It accepts a speci-
fication, written in an extended Backus-Naur Form, of a source language and
produces as output a parser for the language, written in C. It is possible for
the user to specify, in C, actions which should be taken when fragments of the
source language are recognised by the generated parser. rdp produces as output
a program written in C, which parses fragments of the specified language and
carries out the specified corresponding actions. rdp can produce, for example,
compilers (the actions specify the corresponding target code), interpreters (the
actions evaluate the input fragments) and pretty printers (the actions reformat
the input fragments).

This report describes the design and implementation of a family of lan-
guage translators based around a simple procedural programming language
called mini. The tools covered include two different interpreters, an assem-
bler, a simulator for an idealised processor, a näıve single-pass compiler for
that processor, and a multiple-pass compiler. We also include a pretty printer
for ANSI-C and a list of sugestions for further project work. For each tool, we
look at how the tool is used before covering the design and implementation of
the translator. All of the tools are included in the rdp standard distribution
pack and have been tested on MS-DOS, Windows-95 and Unix systems.

The rdp source code is public domain and has been successfully built using
Borland C++ version 3.1 and Microsoft C++ version 7 on MS-DOS, Borland
C++ version 5.1 on Windows-95, GNU gcc and g++ running on OSF/1, Ul-
trix, MS-DOS, Linux and SunOS, and a variety of vendor’s own C compilers.
Users have also reported straightforward ports to the Amiga, Macintosh and
Archimedes systems.

This document is c©Adrian Johnstone and Elizabeth Scott 1997.

Permission is given to freely distribute this document electronically and
on paper. You may not change this document or incorporate parts of it
in other documents: it must be distributed intact.

The rdp system itself is c©Adrian Johnstone but may be freely copied
and modified on condition that details of the modifications are sent to
the copyright holder with permission to include such modifications in
future versions and to discuss them (with acknowledgement) in future
publications.

The version of rdp described here is version 1.50 dated 20 December
1997.

Please send bug reports and copies of modifications to the authors at the
address on the title page or electronically to A.Johnstone@rhbnc.ac.uk.
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Chapter 1

Translation tools

rdp is a system for implementing language processors. It accepts a specification,
written in an extended Backus-Naur Form, of a source language and produces
as output a parser for the language, written in C. It is possible for the user
to specify, in C, actions which should be taken when fragments of the source
language are recognised by the generated parser. rdp produces as output a
program written in C, which parses fragments of the specified language and
carries out the specified corresponding actions. rdp can produce, for example,
compilers (the actions specify the corresponding target code), interpreters (the
actions evaluate the input fragments) and pretty printers (the actions reformat
the input fragments).

This report describes the design and implementation of a family of lan-
guage translators based around a simple procedural programming language
called mini. The tools covered include two different interpreters, an assem-
bler, a simulator for an idealised processor, a näıve single-pass compiler for
that processor, and a multiple-pass compiler. We also include a pretty printer
for ANSI-C and a list of sugestions for further project work. For each tool, we
look at how the tool is used before covering the design and implementation of
the translator. All of the tools are included in the rdp standard distribution
pack and have been tested on MS-DOS, Windows-95 and Unix systems.

If you have not used rdp before, we recommend that you read through the
accompanying report entitled ‘A tutorial guide to rdp for new users’ [JS97c]
which is a step by step guide to running rdp and which also describes some of
the theoretical underpinnings to parsing and translation of computer languages.
There are also two reference manuals for rdp: the user guide [JS97a] and the
support library manual [JS97b]. These reference guides provide detailed infor-
mation on rdp’s options, error messages and support library functions.

We begin by discussing the roles of interpreters and compilers, with some
historical background.

1.1 The spectrum of language translators and the limitations
of single pass translators

rdp can be used to construct many kinds of translator. In the tutorial guide [JS97c]
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we looked at a single pass interpreter for a very simple language called mini.
These kinds of translators are limited to reading the source file once and execut-
ing embedded semantic actions on the fly. This makes it hard to implement loop
constructs, which of course require parts of the source file to be executed over
and over again. This is the reason why the mini language interpreter described
in the tutorial manual does not support looping constructs.

One approach to handling loops within an interpreter might be to ‘trick’ the
parser by resetting the input pointer to the start of the mini source code loop at
the beginning of each loop iteration: a rewindable interpreter. This technique
is feasible, but requires a detailed understanding of the internals of rdp. It also
results in rather slow translation. Experiments with the mini interpreter show
that when interpreting arithmetic expressions, about 90% of the time is spent
performing the parse and only 10% of the time performing useful computation.

In fact, even this discouraging ratio represents the best-case. The use of
comments and long variable names can significantly increase the proportion
of time spent on parsing. This is unfortunate as it militates against use of
meaningful names and embedded documentation, leading to cryptic and hard
to understand programs. Treating loops using the rewinding trick would mean
that the loop would be re-parsed over and over again, and such an interpreter
would be slow. Nevertheless, this kind of trick is used in some real systems: in
particular BASIC interpreters (such as the Visual Basic engine built in some
Windows-95 tools) work this way. To improve the performance a little, it is
normal for such tools to store the program in a format that strips out comments
and white space, and replaces keywords with single characters. This eases the
job of the scanner and helps to improve performance.

A compiler does not attempt to execute a program in the way that an
interpreter does. Instead, it outputs a program in the machine language of
some target processor which can be directly executed by that processor. The
compiler’s main task is to identify operations in the source program and map
them to code templates in the target processor’s language that have the same
meaning, or semantics.

Full compilation undoubtedly provides the most efficient way of executing
most real programs, but a different target program will be required for each
kind of target processor, that is, the generated code is not portable between ar-
chitectures (or in extreme cases, not even between different models of computer
within the same architectural family). One approach to providing a measure
of portability is to strictly separate the parsing stage (which is specified by the
design of the language to be translated) and the generation phase, which is
keyed to the architecture of the target processor.

This is usually achieved by allowing the parser to make one or more passes
over the source program and by providing embedded semantic actions that
translate the program into some simple intermediate form which captures the
meaning of the program without requiring the large syntactic overhead of key-
words and English-like syntax that are used in most human-readable program-
ming languages. The compilers miniloop and minitree (described in Chap-
ters 7 and 8 respectively) are examples of this approach.
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1.2 Intermediate forms, and translation to virtual machine
code

Intermediate forms used in real compilers fall into two basic types: a tree like-
structure closely related to the derivation trees described in [JS97a] or alterna-
tively a list of instructions for a paper architecture or virtual machine1. The
virtual machine approach is illustrated by the miniloop compiler in Chapter 7
and the tree based approach by the minitree compiler described in Chapter 8.
Virtual machines are superficially similar to real processors, but they offer a
level of abstraction above that of a real processor. For instance, it is common
in intermediate forms to retain the variable names from the original user’s pro-
gram rather than translating them into machine addresses as would be required
for a real machine level program.

Both kinds of intermediate form allow a variety of optimisations to be ap-
plied, such as the evaluation of constant expressions or the replacement of mul-
tiplications by powers of two with shift operations. In general, an optimiser is
supposed to take a program in the intermediate form and output another pro-
gram written in intermediate form that has the same semantics, but is faster
or more compact, or both. Sometimes optimisers fail to make improvements,
and in some cases they may actually make things worse. In addition, some
features of programming languages (such as the unrestricted use of pointers)
can introduce subtle effects that make it hard for the optimiser to guarantee
that the semantics are preserved.

After the optimiser has finished, code must be generated for the target pro-
cessor. In general, there must be a different code generator for each processor,
but at least all of the parsing and many of the optimisation components of the
compiler can be common between target processors.

One way of providing the benefits of full portability whilst retaining much
of the efficiency of a fully compiled solution is use an intermediate form that
can itself be efficiently interpreted. In this case no final code generation phase
is required. Instead, a software simulator for the virtual machine which can
read and execute the intermediate form is supplied. This kind of approach
was popularised by the UCSD P-system in the 1970’s which was a combined
operating system and Pascal compiler that was distributed as P-code. P-
code [PD82b, PD82a] was in fact the machine language for a mythical stack
based computer that could be efficiently simulated on real architectures. The
system was so successful that a microprocessor manufacturer subsequently de-
signed and marketed a hardware implementation of the P-code processor. On
this processor, the P-code was native machine code so no software based inter-
pretation was required.

P-code was successful because its only real competitors on the very small
microprocessor based systems of the time were interpreters for BASIC. These

1This use of the term virtual machine to denote an architecture that is independent of any
physically implemented machine should not be confused with the use of the term in operating
systems and computer architecture contexts, where it denotes the ability of an architecture
to support multiple simultaneously executing processes each of which appears to own the full
resources of the host machine.
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fully interpreted languages were slow compared to the P-code simulator. As
microprocessor systems matured, true compilers for languages such as C and
Turbo-Pascal that compiled to the host machine’s machine code became widely
available and the UCSD P-system fell out of favour because it was much slower
than these so-called native-mode compilers.

Recently, virtual machine based approaches have become popular again be-
cause of the need to distribute executable programs around the Internet. Porta-
bility between different computer architectures must be absolutely guaranteed
even though there are a very wide variety of systems connected to the net,
and the programs must run in an identical fashion wherever they are executed.
In addition, the programs must be run in such a way that any suspicious be-
haviour that might undermine the host system’s security can be caught. In
practice, actually allowing arbitrary machine language programs to execute is
too dangerous. Instead, languages like Java compile to an intermediate virtual
machine, and Web browsers provide an interpreter for that virtual machine that
can in prinipal catch illegal memory accesses and attempts to access operating
system services that could threaten system integrity. The Java virtual machine
simultaneously acts as a reasonably efficient portable platform for executing
programs and as a filter on the actions of those programs that protects the
underlying operating system.

1.3 The mini family

In the following chapters we will illustrate the interpreted virtual machine ap-
proach to compilation by describing the development of single and multiple-pass
compilers for mini which work in this fashion, outputting instructions for a ‘pa-
per’ processor called the Mini Virtual Machine (MVM). Along the way we will
look at fully interpreted versions of mini and the design of an assembler and
simulator for MVM. The level of presentation is aimed at readers who are fa-
miliar with the principles of parser generators and the ANSI-C programming
language. If you are completely new to translator design you may find it helpful
to read the rdp tutorial manual [JS97c] and the accompanying user [JS97a] and
support [JS97b] manuals.

In detail we will develop the following tools.

1. A syntax checker and interpreter for minicalc, a language that provides
declarations, assignment, expression evaluation and output.

2. An interpreter for minicond which has block statements, relational oper-
ators and an if-then-else statement in addition to the basic minicalc
language.

3. A paper architecture called the Mini Virtual Machine (MVM) and its
specification as a simulator for MVM (called mvmsim) written in ANSI-C.

4. An assembler called mvmasm that translates MVM assembly language into
MVM binary code. The implementation of mvmasm illustrates the design
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issues in assemblers which are culturally rather different from high level
programming languages.

5. A single-pass compiler for the language miniloop which adds a while loop
construct to minicond and outputs MVM assembler source, suitable for
translation with mvmasm into MVM binary which may be executed by
mvmsim.

6. A multiple-pass compiler in which the parser builds a tree-based inter-
mediate form and a separate code-generation pass traverses the tree and
outputs MVM assembler source code which may then be assembled and
simulated.

7. A pretty-printer for ANSI-C which illustrates the use of a highly under-
specified grammar to process a language which will be checked for syn-
tactic correctness by another tool using a fully specified language.

We conclude this report by suggesting some design projects based on extensions
to the compilers.

All of these tools are included in the rdp distribution and are automatically
built and tested as part of the standard installation makefile. If you have
successfully installed rdp, therefore, you should already have working versions
of the tools, and all the source files described here will be found in the main
rdp directory.





Chapter 2

The minicalc language: a simple
calculator with declared variables

In this chapter we give a grammar and associated syntax checker for a tiny
language, minicalc, which includes only the features at the core of any proce-
dural programming language —expression evaluation and assignment to named
variables. In minicalc, as in most modern languages, variables must be de-
clared before they are used, so as to catch the elementary programming error
of assigning to a variable whose name has been misspelled. In early high level
programming languages, a system would quietly make a new variable with the
misspelt name and assign the value there. Subsequent expressions using the
value of the correctly spelt variable would then use the old value, causing hard
to find errors.

Variable declarations are also used to establish the type of a variable which
restricts the kinds of values that may be assigned, and the kinds of operations
that may be applied to the declared variable. Type checking can catch pro-
gramming errors such as trying to add a number to a string, or attempting to
use an integer instead of a pointer value.

minicalc provides constructs for variable declaration, for assignment of the
results of arithmetic operations to those variables and for the values of those
variables to be printed out. It is, effectively, only as powerful as a desktop cal-
culator with named variables. An example minicalc program listing is shown
in Figure 2.1: it corresponds to the file testcalc.m in the standard rdp dis-
tribution. In later chapters we shall extend mini to include control structures
such as loops and if statements.

2.1 minicalc features

minicalc programs comprise a sequence of declarations and statements. Each
statement and declaration must be terminated by a semicolon, in much the
same way as in an ANSI-C program. minicalc supports only integer variables.
Variable declarations look like ANSI-C int declarations, taking an optional
initialisation expression. Line 11 in the listing shows an example of two variables
being declared, both with initialisation expressions.
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1: (*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * testcalc.m - a piece of Mini source to test the Minicalc interpreter

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************)

10:

11: int a=3+4, b=1;

12:

13: print("a is ", a, "\n");

14:

15: b=a*2;

16:

17: print("b is ", b, ", -b is ", -b, "\n");

18:

19: int z = a ** 3;

20: print(a, " cubed is ", z, "\n");

21:

22: (* End of testcalc.m *)

Figure 2.1 An example minicalc program (testcalc.m)

minicalc expressions are built up using the four basic diadic left associative
arithmetic operators (+, -, * and /) along with unary + and - and the diadic
right associative exponentiation operator (**). Operands may be either numeric
literals or variable names. The result of an expression may be assigned to a
variable, as shown in line 15, or used within a print statement, as shown in line
17. print statements take a parenthesised, comma delimited list of expressions
or strings, which are evaluated and printed in left to right order, much like the
Pascal write statement. The usual ANSI-C escape sequences may be used to
output non-printing characters such an line end (represented by \n).

2.2 minicalc limitations

minicalc can only perform integer computations, and only allows strict se-
quencing of statements, there being no flow of control statements. In addition,
there is no read input statement to accompany the print output statement.
Enhanced versions of minicalc will be presented in later chapters.

2.3 A grammar for minicalc

It is easy to construct an LL(1) grammar for minicalc suitable for input to rdp.
A parser generated from such a grammar with no semantic actions embedded
within it acts as a pure parser or syntax checker for the minicalc language.
Figure 2.2 shows a suitable grammar from which to generate a mini syntax
checker: it is supplied with the rdp distribution as file mini_syn.bnf and will
be discussed in the remainder of this section.
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1: (*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * mini_syn.bnf - a mini grammar for syntax checking

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************)

10: TITLE("Mini_syn V1.50 (c) Adrian Johnstone 1997")

11: SUFFIX("m")

12:

13: program ::= { [var_dec | statement ] ’;’ }.

14:

15: var_dec ::= ’int’ ( ID [ ’=’ e1 ] )@’,’.

16:

17: statement ::= ID ’=’ e1 | ’print’ ’(’ ( e1 | String )@’,’ ’)’.

18:

19: e1 ::= e2 { ’+’ e2 (* Add *) | ’-’ e2 (* Subtract *) }.

20:

21: e2 ::= e3 { ’*’ e3 (* Multiply *) | ’/’ e3 (* Divide *) }.

22:

23: e3 ::= e4 | ’+’ e3 (* Posite *) | ’-’ e3 (* Negate *).

24:

25: e4 ::= e5 [ ’**’ e4 ] (* Exponentiate *).

26:

27: e5 ::= ID (* Variable *) | INTEGER (* Numeric literal *) | ’(’ e1 ’)’.

28:

29: comment ::= COMMENT_NEST(’(*’ ’*)’). (* Comments *)

30:

31: String ::= STRING_ESC(’"’ ’\\’). (* Strings for print *)

32:

33: (* End of mini_syn.bnf *)

Figure 2.2 An rdp grammar specification for minicalc (mini syn.bnf)
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A minicalc source program comprises an arbitrary number of variable dec-
larations and statements, each terminated with a semicolon, as specified by
rule program in line 13. Variable declarations, specified in line 15, comprise the
keyword int followed by a comma delimited list of variable names which may
be optionally followed by an = sign and an initialisation expression.

Statements in minicalc may be either assignments or print statements, as
specified in line 17. The print statement takes parameters by way of a comma
delimited list of strings and expressions.

Comments present particular problems for parser generators because the
modern convention is to allow a comment to occur anywhere that whitespace
is allowed: typically between any two tokens of the language. A full specifica-
tion of this convention using only the grammar rules would require a call to a
comment rule after every terminal in the grammar, and this would make the
grammar very unwieldy. The usual solution is to instruct the scanner to detect
and filter out comments in exactly the same way as whitespace (such as line
ends, tabs and space characters) is discarded.

rdp offers a range of scanner primitives to support three different com-
menting conventions. You can read more about the use of these primitives,
and the general problems of comment specification in Chapter 4 of the user
manual [JS97a]. In mini_syn.bnf comments comprising matching (* and *)

brackets are specified on line 29. This rule is only used to parameterise the
scanner, and is never actually called by the main parser so it will be deleted
when rdp processes the grammar.

2.3.1 Specifying expressions

The forms of mini expressions are specified on lines 19–27. Most programming
languages provide support for expressions made up of operators for common
arithmetic and logical operations. Some even allow control flow to be specified
using operators: the ANSI-C if-then-else operator (? :) is perhaps the most
well known example of this feature.

Syntactically, expressions are simply streams of operator and operand to-
kens. For an expression made up of diadic (two-operand) operators we expect
to see expressions of the form

operand operator operand . . . operand operator operand

Monadic (single operand) operators are distinguished by appearing between
diadic operators and operands or next to other monadic operatirs. Here is
an expression made up of monadic - (negate) and the diadic addition and
subtraction operators.

3 + -4 - -6 + 2

The following is a simple grammar that generates expressions of this form:

expression ::= {monadic_op} operand { diadic_op {monadic_op} operand }.

operand ::= INTEGER.

monadic_op ::= ’-’.

diadic_op ::= ’+’ | ’-’.
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If all we want to do is to check that an expression is syntactically valid then
we can simply extend the definitions of monadic_op and diadic_op to include
all the monadic and diadic operators present in the language being specified.
Here, for instance is a suitable grammar for mini expressions which include
monadic + and - and diadic +, -, *, / and ** (exponentiation).

expression ::= {monadic_op} operand { diadic_op {monadic_op} operand }.

operand ::= INTEGER.

monadic_op ::= ’+’ | ’-’.

diadic_op ::= ’+’ | ’-’ | ’*’ | ’/’ | ’**’.

If we extend the definition of rule operand we can similarly allow named
variables and non-integer literal operands such as REALs.

Deeper problems arise when we consider the evaluation of an expression.
The string fred = 1 - 2 - 3 is a legal minicalc statement, but what value
should actually be assigned to fred? We could begin evaluating from the left,
effectively carrying out the steps

fred = 1

fred = fred - 2

fred = fred - 3

or from the right, effectively carrying out the steps

fred = 3

fred = 2 - fred

fred = 1 - fred

In the first case fred ends up with value -4 and in the second case with value
2. The usual convention is to evaluate subtractions from left to right, i.e. using
the first of the two choices above, and this is called left associativity. The pro-
grammer may wish to override this and other order-of-evaluation conventions,
and traditionally this is done using parentheses. The following grammar allows
expressions of the form 1 - (2 - 3) and 3 + (x * y) - 2

expression ::= {monadic_op} operand { diadic_op {monadic_op} operand }.

operand ::= INTEGER | ID | ’(’ expression ’)’.

monadic_op ::= ’+’ | ’-’.

diadic_op ::= ’+’ | ’-’ | ’*’ | ’/’ | ’**’.

Note that we have introduced recursion into the grammar: the operand

rule accepts a left parenthesis after which it calls the expression rule before
accepting a matching closing parenthesis. This nested structure incorporates
the notion of ‘do-first’ into the grammar which is exactly what parentheses
‘mean’ in expressions—the parentheses in an expression are used to override the
default order of expression evaluation so that the sub-expression in parentheses
is evaluated first.
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Specifying operator priority

We have seen that parentheses can be used to override default evaluation orders
in expressions. However, expressions with lots of parentheses can be hard to
read (although LISP programmers seem to manage) and so the conventions of
operator priority have grown up to allow expressions to be written with implicit
parentheses. Most people use priority rules instinctively because they are taught
to us when we first learn arithmetic at school. Multiplication and division, for
instance, have higher precedence than addition and subtraction. This means
that the expression 3 + 4 * 5 evaluates to 23 not 35 as would be the case if
strict left-to-right evaluation were used. Effectively, the priority allows us to
write 3 + 4 * 5 as a shorthand for 3 + (4 * 5). If we need to force left-to-
right evaluation then we can write (3 + 4) * 5. In conventional arithmetic,
exponentiation has the highest priority followed by negation, multiplication
(and division) and finally addition (and subtraction). We can express these
priorities by using the nest of production rules shown in lines 19–27 of Figure 2.2.

Specifying operator associativity

In programming languages, operators take values of a particular type and return
values with a type. Integer addition, for instance, takes two integers and returns
an integer, and the ‘greater than or equal’ relational operator >= takes two
integers and returns a boolean result. If the return-type of an operator is the
same as the type of its acceptable operands then we can write expressions that
contain a run of similar operators such as 3 + 4 + 5 which we can read as either
(3 + 4) + 5 or 3 + (4 + 5). With addition, both interpretations evaluate to
12 but if we use subtraction instead then an ambiguity arises: (3 - 4) - 5 is
-6 but 3 - (4 - 5) is 3 - (-1) which is 4. The associativity of an operator
specifies which of the two interpretations should be selected: subtraction is in
fact left associative so 3 - 4 - 5 is interpreted as (3 - 4) - 5.

In general, if we have several operators at the same level of priority, we
need to decide in which order to evaluate the operands. In most cases we
evaluate from left to right, so that 2 - 3 + 4 evaluates as (2 - 3) + 4 not as
2 - (3 + 4) and 2 / 3 * 4 evaluates as (2 / 3) * 4. Evaluating from left
to right automatically gives each of the operators left associativity.

Left to right evaluation is most common, but strings of exponents, such
as 2 ** 3 ** 4, are traditionally evaluated in right to left order. The mini

grammars demonstrate how to ensure left to right (and right to left) operand
evaluation and we shall now discuss this in detail.

Left to right evaluation and left associative operators

The left associative arithmetic operators + and - are specified with rules of the
form

e1 ::= e2 { ’+’ e2 | ’-’ e2 }.

The rule specifying the left-associative operators (e1 in this case) calls its im-
mediate successor rule in the operator tree (e2) on both sides of the operators
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being recognised in e1. This has the effect of ensuring that higher priority op-
erators on both sides of a + or - are evaluated first. In addition, the use of the
zero-or-many iterator bracket { } ensures that a run of + and/or - operators
is processed in strictly left to right order, i.e. the operators are evaluated in a
left associative manner.

Right to left evaluation and right associative operators

Right associative operators, such as exponentiation ** are specified using rules
of the form

e4 ::= e5 { ’**’ e4 }.

The crucial difference between this kind of rule for right associative operators
and the previous rule for defining left associative operators is that in this case
the rule calls itself on the right hand side of the operator. Because of the way
the iterator works, this ensures that, in a run of exponentiation operators all of
the operators to the right of the first one will be processed before the first one
is processed. By extension, it is easy to see that the effect of this kind of right-
recursive rule is to ensure that a run of exponentiation operators is evaluated
in the reverse order to that in which they are read, that is right to left, which
is what we require for a right associative operator.

In detail, it is clear that the right recursion will absorb all instances in a
run of exponentiation operators, so even though we have used the zero-or-many
iterator bracket { } each invocation of rule e4 can only ever absorb zero or
one instances of the ** operator, so in practice we write such rules in this way:

e4 ::= e5 [ ’**’ e4 ].

Operators that do not combine

Some operators yield result values that are incompatible with their operands
and therefore can not be used next to each other in expressions. It is not math-
ematically meaningful, for instance, to write an expression like 3 < 4 <= 6

because the result of evaluating 3 < 4 is a boolean truth value and this cannot
reasonably be compared to the integer 6. We might loosely call such operators
‘non-associative’ but strictly speaking it is meaningless to speak of the associa-
tivity of such an operator. The arithmetic relationals are the standard examples
of such operators, and we implement them using rules such as

rel_expr ::= exp [ ’>’ exp ].

The important point here is that the curly braces { } used for the expression
rules e1 and e2 in Figure 2.2 to specify zero or more consecutive instances of
an operator are replaced by square brackets [ ] which only allow zero or one
occurrence of the relational operator, so a sequence of such operators in an
expression will be rejected by the parser.

In the next chapter we shall add relational operators to mini using a rule
of the form described here. It is, perhaps, worth noting that in some languages
this issue is rather obscured by the confusion of boolean values with integer
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values. Languages such as Pascal are strict whereas others (such as ANSI-C)
simply use integer values instead of true booleans and may even provide fully
left associative relational operators.

2.4 Hints on selecting operator priority and associativity

Most common operators are left associative since this corresponds to a left-
to-right evaluation rule which is natural for cultures that read left-to-right.
Occasionally an operator is given right associativity for special reasons. The
exponentiation operator ** is an example of such an operator. The reason that
exponentiation is traditionally right associative is that, when written in the
traditional mathematical notation using position rather than a symbol for the
operator, the expression (xy)z can be trivially rewritten as xyz. Since there is
already such a straightforward way of writing left associating exponentiation it
makes sense to define the exponent operator as right associative, so xy

z

corre-
sponds to x(y

z). Thus, using the programming language notation, x ** y ** z

is interpreted as x ** (y ** z).

Similar considerations may be used to decide the relative priorities of oper-
ators. Remember that the higher priority operators need to be evaluated first
in an expression. In common usage, for instance, it is clear that the expres-
sion -2 ** 2 (i.e. −22) is expected to yield -4, that is, it is a shorthand for
-(2 ** 2) not (-2) ** 2 which would yield +4. Hence we must give exponen-
tiation higher priority than monadic -. On the other hand it is also clear that
-2 * -2 evaluates to +4, not -4, that is we should interpret the expression as
(-2) * (-2) from which we deduce that multiplication has lower priority than
monadic -.

The number of priority levels provided by a language is a fundamental design
decision. Pascal provides rather few levels, and in particular expressions con-
taining adjacent logical operators must be parenthesised. ANSI-C goes to the
other extreme and provides so many priority levels that many C programmers
are unsure of the relative priorities of unusual operators. From the perspective
of the language user (as opposed to designer) the golden rule is: if in doubt,
insert explicit parentheses.

2.5 A minicalc syntax checker

As it stands, mini_syn.bnf can be processed by rdp in the normal way to make
a syntax checker for mini. Such a checker can detect badly spelled keywords,
and syntactically ill formed expressions but is not able to check that variables
have been declared before use.

The rdp make file contains the commands for constructing a syntax checker
from mini_syn.bnf and running it on a test file called testcalc.m. These
commands will be executed if you type

make ms_test



A minicalc syntax checker 15

******:

1: (* Erroneous minicalc input *)

2:

3: int a;

4:

5: Error 1 (error.m) Scanned ID whilst expecting ’=’

5: innt b = 3; (* should be int b; *)

5: -----1

6:

7: b=a*2; (* a used before being initialised *)

8:

9: Error 1 (error.m) Scanned ’*’ whilst expecting one of ID, INTEGER, ’(’, ’+’, ’-’

9: a = 3 - * 4; (* should be a = 3 * - 4; *)

9: --------1

10:

11: bb = b * 3; (* undeclared variable *)

12:

******: 2 errors and 0 warnings

******: Fatal - errors detected in source file

Figure 2.3 Error reporting in the syntax checker

This make file target is automatically built as part of the standard installation,
so if you have already built rdp using the make file then the already-compiled
syntax checker will simply be run on the test file.

Figure 2.3 shows the output of the syntax checker for an erroneous program
and illustrates the syntax checker’s limitations. The misspelling of int in line
5 and the incorrect orderings of the arithmetic operators in line 9 have been
detected, but the use of an uninitialised variable in line 7 and the assignment
to an undeclared variable in line 11 have been ignored.

These kinds of errors can only be detected by checking long range relation-
ships between program symbols. A variable declaration may occur a long way
before that variable is used, but the context free grammars used by rdp are es-
sentially only powerful enough to check local features of the language. A context
sensitive grammar may be written in such a way as to support type checking,
but efficient parsing techniques for practical context sensitive grammars are not
available. Instead, we use an external symbol table and embedded semantic ac-
tions to keep track of the declaration and use of identifiers. Our next tool, which
is a full interpreter for minicalc can check for undeclared variables without any
extra overhead: the interpreter needs a symbol table anyway to keep track of
computed results and it turns out that adding checks for undeclared variables
is straightforward.





Chapter 3

An interpreter for minicalc

The primary purpose of rdp is to construct a parser for the language generated
by an rdp-IBNF specification. Such a parser may be used as a syntax checker
for the language, as we have seen in the previous chapter. Syntax checkers
are useful, but we really want to be able to write translators that perform some
useful action as a side effect of performing a parse. An interpreter is a translator
that executes actions specified in the parser whilst a parse is occurring. To be
suitable for interpretation, the language grammar must be designed to be both
parsable and executable in a single linear pass, and minicalc is an example of
a language which has such a grammar. An interpreter which is very similar to
minicalc is described in the tutorial manual [JS97c].

rdp allows us to embed semantic actions into a grammar. rdp’s semantic
actions are written in C, and are copied into the generated parser so that as
soon as a fragment of the language to be parsed is recognised the action can be
performed. For instance, on recognition of the minicalc fragment

int temp

we can make a new symbol table entry for a variable called temp. If the fragment
is followed by an = token then we can go on to parse and evaluate an arithmetic
expression, placing the result into the symbol table record for temp. Figures 3.1
and 3.2 show the specification for a full interpreter for minicalc that operates in
this way. This interpreter IBNF specification uses the same grammar as that for
the mini syntax checker described in the last chapter. The only differences are
the addition of semantic actions and synthesised attributes to allow declaration
of variables, evaluation of arithmetic operations and the printing of results.

You can read more about semantic actions in Chapter 5 of the user man-
ual [JS97a] and Chapter 6 of the tutorial manual [JS97c]. To understand the
minicalc interpreter you also need to be familiar with the use of rdp’s built-in
symbol table package which you can read about in Chapter 7 of the support
library manual [JS97b] and Chapter 7 of the tutorial manual [JS97c].

3.1 Declaring symbol tables

Lines 14–19 of Figure 3.1 specify the creation of a symbol table to hold the
variables declared in a minicalc program. A symbol table is a repository for
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1: (*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * minicalc.bnf - a decorated mini calculator grammar with interpreter semantics

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************)

10: TITLE("Minicalc interpreter V1.50 (c) Adrian Johnstone 1997")

11: SUFFIX("m")

12: USES("math.h")

13:

14: SYMBOL_TABLE(mini 101 31

15: symbol_compare_string

16: symbol_hash_string

17: symbol_print_string

18: [* char* id; integer i; *]

19: )

20:

21: program ::= {[var_dec | statement ] ’;’ }.

22:

23: var_dec ::= ’int’

24: ( ID:name [ ’=’ e1:val ]

25: [* mini_cast(symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data)))

26: ->i = val;

27: *]

28: )@’,’.

29:

30: statement ::= ID:name

31: [* if (symbol_lookup_key(mini, &name, NULL) == NULL)

32: {

33: text_message(TEXT_ERROR, "Undeclared variable ’%s’\n", name);

34: symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));

35: }

36: *]

37: ’=’ e1:val

38: [* mini_cast(symbol_lookup_key(mini, &name, NULL))->i = val; *] |

39:

40: ’print’ ’(’ ( e1:val [* printf("%li", val); *] |

41: String:str [* printf("%s", str); *]

42: )@’,’

43: ’)’.

44:

Figure 3.1 An rdp specification for the minicalc interpreter: part 1
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45: e1:integer ::= e2:result {’+’ e2:right [* result += right; *] | (* Add *)

46: ’-’ e2:right [* result -= right; *] }. (* Subtract *)

47:

48: e2:integer ::= e3:result {’*’ e3:right [* result *= right; *] | (* Multiply *)

49: ’/’ e3:right [* if (result == 0)

50: text_message(TEXT_FATAL_ECHO, "Divide by zero attempted\n"); else result /= right; *]

51: }. (* Divide *)

52:

53: e3:integer ::= ’+’ e3:result | (* Posite *)

54: ’-’ e3:result [* result = -result; *] | (* Negate *)

55: e4:result.

56:

57: e4:integer ::= e5:result [ ’**’ e4:right

58: [* result = (integer) pow((double) result, (double) right); *]

59: ] (* Exponentiate *).

60:

61: e5:integer ::= ID:name

62: [* if (symbol_lookup_key(mini, &name, NULL) == NULL)

63: {

64: text_message(TEXT_ERROR, "Undeclared variable ’%s’\n", name);

65: symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));

66: }

67: *]

68: [* result = mini_cast(symbol_lookup_key(mini, &name, NULL))->i; *] | (* Variable *)

69: INTEGER:result | (* Numeric literal *)

70: ’(’ e1:result ’)’. (* Do-first *)

71:

72: comment ::= COMMENT_NEST(’(*’ ’*)’). (* Comments *)

73:

74: String: char * ::= STRING_ESC(’"’ ’\\’):result. (* Strings for print *)

75:

76: (* End of minicalc.bnf *)

Figure 3.2 An rdp specification for the minicalc interpreter: part 2
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records which may be stored and retrieved using a key. Typically the key
is a string corresponding to the name of an identifier, but rdp allows keys
to be made up of combinations of different fields. The symbol table package
itself is quite general— the user must supply a set of routines for comparing,
hashing and printing keys which effectively tune the package to use tables with
a particular kind of key. The library itself comes with suitable functions for
the very common case in which the single string key field is the first field in
the symbol table record, and it is those routines that are used here. For these
routines to work we must be sure to set up the data part of the symbol table
record correctly: in this case a single char* field to hold the variable’s identifier
is the first field and then an integer field is declared to hold the working value
of a variable.

3.2 Using synthesized attributes

A synthesized attribute is a value (which may be of any C type, including
primitive types such as characters and integers as well as complex types such as
structures and arrays) which is passed back up a parse tree, or equivalently in
rdp terms ‘returned’ by a grammar rule or scanner primitive. A simple example
may be found in the definition for rule e5, part of which is reproduced here:

e5:integer ::= ... | INTEGER:result | ... .

When rule e5 matches against an INTEGER the scanner can be asked to return
the binary number corresponding to the INTEGER lexeme just recognised. The
specification here indicates that the return value should be loaded into an at-
tribute called result. At the end of a rule, the current value of result is
returned to the caller of the rule, so the effect of this rdp IBNF fragment is to
parse an integer and return the corresponding binary number to the caller.

3.3 Expression evaluation

The expression tree (rules e1–e5 specified in lines 45–70) evaluates expressions
by collecting the values of operands in rule e5 and passing them back up through
the tree, performing any calculations specified by operators en route.

Each operator has an attached semantic action which evaluates its operands
into the result return value. The semantic actions just use the equivalent op-
erator in the underlying C language except in the case of the exponentiation
operator which does not exist in ANSI-C. Exponentiation is therefore han-
dled by calling the pow() standard library function (ensuring that the integer
operands supplied by the mini code are re-cast as double precision real num-
bers). The header file for the maths library must be added to the list of files
which are #includeed into the parser, and this is specified with the USES di-
rective in line 12.

We must be particularly cautious with the divide operator / because an
attempt to divide by zero would generate an arithmetic trap on some com-
puter architectures (or, even worse, quietly generate undefined results on some
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others!) The semantic action for the divide operator checks for this condition
before attempting to evaluate any divisions and issues a fatal error message
if necessary which will abort interpretation. You can read about the routine
text_message() which is used to issue error messages in Chapter 8 of the
support library manual [JS97b].

3.4 Accessing the symbol table

When a new variable is declared in a mini program using an int declaration we
must create a new symbol table entry which will hold the value of the variable.
When the corresponding variable identifier appears within an expression we
must access the symbol table to retrieve the value, and when an identifier
appears on the left hand side of an assignment we must access the symbol table
to update the variable’s value field. The symbol table library provides two
routines symbol_lookup_key() and symbol_insert_key() to search for and
insert keys. You should look at Chapter 7 of the support library manual [JS97b]
for a complete description of these routines. Lines 30–36 illustrate the use of
these functions to look up an identifier in the symbol table:

30: statement ::= ID:name

31: [* if (symbol_lookup_key(mini, &name, NULL) == NULL)

32: {

33: text_message(TEXT_ERROR, "Undeclared variable ’%s’\n", name);

34: symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));

35: }

36: *]

The ID scanner primitive will accept an alphanumeric identifier whose lexeme is
returned in attribute name. The semantic action calls symbol_lookup_key() to
search the symbol table called mini for the identifier name in any scope region. If
the symbol table does not contain name then symbol_lookup_key() will return
a NULL value, in which case the action issues an error message and then inserts
the identifier into the table. This is done so as to suppress subsequent error
messages that might be triggered by later references to the variable.





Chapter 4

The minicond language: interpretation
with conditionals

The minicalc language discussed in the last chapter is only really as powerful as
an integer-only pocket calculator with a large number of memories. Historically,
calculators were distinguished from full blown computers on the basis of their
control capability: to be worthy of the name a computer must be capable
of making decisions. A ‘decision’ in this context usually means conditionally
executing some parts of a program on the basis of calculations performed whilst
the program is running (that is, at run-time). By this definition, minicalc
has the abilities of a calculator, not a computer. We shall progressively add
capabilities to our mini language. We start in this chapter by making these
additions:

1. relational operators (>, >=, <, <=, == and !=) with lower priority than any
of the arithmetic operators, and

2. an if-then-else statement which allows conditional interpretation of
programs.

The result is a language minicond whose programs look like minicalc programs
with some additional features— minicalc is a strict subset of the minicond

language so any minicalc program will be correctly evaluated by a minicond

interpreter. Figure 4.1 shows an example minicond program. The output pro-
duced when this is run through the minicond interpreter is shown in Figure 4.2.

In a later chapter we shall see how to add looping constructs and a facility
for grouping statements together in blocks.

4.1 A grammar for minicond

The grammar for minicond shown in Figures 4.3 and 4.4 follows the general
form of the interpreter presented in the previous chapter, except that large se-
mantic actions have been placed in their own semantic rules, and the necessary
syntax and semantic actions have been added to support relational expressions
and the if statement.



24 THE MINICOND LANGUAGE: INTERPRETATION WITH CONDITIONALS

1: (*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * testcond.m - a piece of Minicond source to test the Minicond interpreter

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************)

10:

11: int a=3+4, b=1;

12:

13: print("a is ", a, "\n");

14:

15: b=a*2;

16:

17: print("b is ", b, ", -b is ", -b, "\n");

18:

19: print(a, " cubed is ", a**3, "\n");

20:

21: int z = a;

22:

23: if z==a then print ("z equals a\n") else print("z does not equal a\n");

24:

25: z=a - 3;

26:

27: if z==a then print ("z equals a\n") else print("z does not equal a\n");

28:

29: (* End of testcond.m *)

Figure 4.1 An example minicond program (testcond.m)

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

Figure 4.2 minicond output for example program
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1: (*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * minicond.bnf - a decorated mini-conditional grammar with interpreter semantics

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************)

10: TITLE("Minicond interpreter V1.50 (c) Adrian Johnstone 1997")

11: SUFFIX("m")

12: USES("math.h")

13:

14: SYMBOL_TABLE(minicond 101 31

15: symbol_compare_string

16: symbol_hash_string

17: symbol_print_string

18: [* char* id; integer i; *]

19: )

20:

21: program ::= {[var_dec(1) | statement(1)] ’;’}.

22:

23: (* semantic rules - implemented as macros in the C code *)

24: _insert(id) ::= [* if (interpret)

25: symbol_insert_key(minicond, &id, sizeof(char*),

26: sizeof(minicond_data));

27: *].

28: _lookup(id ret) ::= [* {

29: void * sym = symbol_lookup_key(minicond, &id, NULL);

30: if (sym == NULL) /* not found! */

31: {

32: text_message(TEXT_ERROR_ECHO, "Undeclared variable, ’%s’\n", id);

33: sym = symbol_insert_key(minicond, &id,

34: sizeof(char*), sizeof(minicond_data));

35: }

36: ret = minicond_cast(sym)->i;

37: }

38: *].

39: _update(id val) ::= [* if (interpret)

40: {

41: void * sym = symbol_lookup_key(minicond, &id, NULL);

42: if (sym == NULL) /* not found! */

43: {

44: text_message(TEXT_ERROR_ECHO, "Undeclared variable, ’%s’\n", id);

45: sym = symbol_insert_key(minicond, &id,

46: sizeof(char*), sizeof(minicond_data));

47: }

48: minicond_cast(sym)->i = val;

49: }

50: *].

51: _and(dst a b) ::= [* dst = a && b; *].

52: _and_not(dst a b) ::= [* dst = !a && b; *].

53: _local_int(a) ::= [* integer a; *].

54:

Figure 4.3 An rdp specification for the minicond interpreter: part 1
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55: var_dec(interpret:integer) ::=

56: ’int’ ( ID:name _insert(name) (* Declaration *)

57: [’=’ e0:val _update(name val) ] (* Initialisation *)

58: )@’,’.

59:

60: statement(interpret:integer) ::=

61: ID:name ’=’ e0:value _update(name value) | (* Assignment *)

62:

63: _local_int(flag)

64: ’if’ e0:cnd ’then’ _and(flag cnd interpret) statement(flag) (* if statement *)

65: [ ’else’ _and_not(flag cnd interpret) statement(flag) ] |

66:

67: ’print’ ’(’ ( e0:value [* if (interpret) printf("%li", value); *] | (* output *)

68: String:str [* if (interpret) printf("%s", str); *]

69: )@’,’

70: ’)’.

71:

72: e0:integer ::=

73: e1:result [’>’ e1:right [* result = result > right; *] | (* Greater than *)

74: ’<’ e1:right [* result = result < right; *] | (* Less than *)

75: ’>=’ e1:right [* result = result >= right; *] | (* Greater than or equal *)

76: ’<=’ e1:right [* result = result <= right; *] | (* Less than or equal *)

77: ’==’ e1:right [* result = result == right; *] | (* Equal *)

78: ’!=’ e1:right [* result = result != right; *] ]. (* Not equal *)

79:

80: e1:integer ::= e2:result {’+’ e2:right [* result += right; *] | (* Add *)

81: ’-’ e2:right [* result -= right; *] }. (* Subtract *)

82:

83: e2:integer ::= e3:result {’*’ e3:right [* result *= right; *] | (* Multiply *)

84: ’/’ e3:right (* Divide *)

85: [* if (result == 0)

86: text_message(TEXT_FATAL_ECHO, "Divide by zero attempted\n");

87: else result /= right;

88: *]

89: }.

90:

91: e3:integer ::= ’+’ e3:result | (* Posite *)

92: ’-’ e3:result [* result = -result; *] | (* Negate *)

93: e4:result.

94:

95: e4:integer ::= e5:result [ ’**’ e4:right (* Exponentiate *)

96: [* result = (integer) pow((double) result, (double) right); *]

97: ].

98:

99: e5:integer ::= ID:name _lookup(name result) | (* Variable access *)

100: INTEGER:result | (* Numeric literal *)

101: ’(’ e1:result ’)’. (* Do-first *)

102:

103: comment ::= COMMENT_NEST(’(*’ ’*)’). (* Comments *)

104:

105: String: char* ::= STRING_ESC(’"’ ’\\’):result. (* Strings for print *)

106:

107: (* End of minicond.bnf *)

Figure 4.4 An rdp specification for the minicond interpreter: part 2
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4.2 Adding conditional operators

The rule e0 defined in lines 72–78 adds a specification for the six new relational
operators at a priority level below that of the operators defined in the minicalc
grammar expression tree. It is not meaningful to write a sequence of relational
operators; an expression such as (3 < 2) < 4 attempts to compare a boolean
value, in this case false (the result of 3 < 2) with the integer 4. This issue is
confused in some languages such as C where booleans are not directly supported,
integers being used in their place. This expression actually yields true in ANSI-
C because the subexpression (3<2) yields 0 which is indeed less than 4. So as
to avoid this kind of confusion in minicond the rule will only accept individual
instances of relational operators: that is an expression such as

a + b > 3

is legal but

a > b > 3 and (a > b) > 3

are not. This is achieved by using the zero-or-one [ ] construct rather than
the zero-or-many { } bracket in rule e0 and only allowing bracketed expres-
sions to contain arithmetic operators as specified on line 101.

In other respects the rule is entirely conventional: on recognition of an
operator subexpression the parser will execute the associated semantic action
and in each case we have simply used the equivalent operator in the underlying
ANSI-C language.

4.3 Using inherited attributes

In the last chapter we saw how information about a token could be passed
from the scanner to the parser’s semantic actions using attributes, and we also
saw how information calculated within a parser rule could be passed back to
a calling rule using a similar mechanism. These kinds of attributes are called
synthesized attributes because the information is synthesized at the lower level
(either within the scanner or a rule) and passed back up the chain of produc-
tion rules. Synthesized attributes correspond roughly to the return values of
functions in a programming language, and as we have seen this is precisely how
they are implemented in rdp.

Sometimes we need to reverse this process and pass information down into
production rules. We can think of this as a rule inheriting information from
the rule which called it, and so these kinds of attributes are called inherited
attributes. They correspond roughly to function parameters in conventional
programming languages, and that is how they are implemented in rdp. You
can read more about the use of inherited attributes in Chapter 5 of the user
manual [JS97a] and Chapter 6 of the tutorial manual [JS97c].

In the minicond interpreter we use inherited attributes in some rules to pass
in a flag called interpret which controls the execution of semantic actions.
The use of this flag will be explained more fully in section 4.5 below. Here we
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simply note that an inherited attribute is specified on the left hand side of a
rule definition by adding parenthesised parameters to the rule name. In line 50
of minicond.bnf, for instance, the original minicalc variable declaration rule
is redefined as

var_dec(interpret:integer) ::= ...

This specifies that rule var_dec has a single inherited attribute called interpret

of type integer. rdp grammar rules can have multiple inherited attributes each
of which must be specified with an accompanying type. When such a rule is
called, the parameter values must be filled in using either literal numbers, literal
strings or the names of other attributes. You can see examples in line 21 where
the top level rule calls subrules with a literal integer:

program ::= {[var_dec(1) | statement(1)] ’;’}.

and in line 64 where the statement rule is called and passed the value of an
attribute.

4.4 Using semantic rules

In complex translators the semantic actions can become very large, and reading
a decorated rdp grammar can become difficult as the C-language semantic ac-
tions obscure the underlying form of the grammar. One solution to this problem
is to parcel all but the most trivial actions into separate C functions that reside
in the auxiliary file, in which case the semantic actions in the grammar may be
reduced to function calls. This certainly allows the grammar to ‘show through’
but then a full understanding of the translator requires two files (the rdp IBNF
file and the C language auxiliary file) to be coordinated. Semantic rules are a
sort of half way house in which the C language actions may be separated out
from the main part of the grammar whilst still residing in the same source file.

A semantic rule is one which contains only a single sequence of semantic
actions. As such, these rules do not affect the language generated by the gram-
mar (or, equivalently, matched by the parser generated from the grammar). By
convention, semantic rule names begin with a leading underscore so that when
reading the grammar we can mentally delete them from consideration of the
language generated.

Semantic rules are implemented using ANSI-C macros rather than as func-
tions. This is to allow the semantic rule to automatically have access to all of
the attributes in the rule that calls the semantic rule but you should be aware
that each instance of a semantic rule will result in the complete body of the
rule being instantiated into the parent rule, so casual use could lead to very
large generated parsers.

Semantic rules can take inherited attributes but may not return synthesized
attributes— since the semantic rule automatically has access to the complete
state of the calling rule it can access the parents attributes directly. The in-
herited attributes are treated slightly differently for semantic rules than for
normal rules in that the attributes are made into macro parameters and are
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thus available for textual substitution within the semantic actions. As such
they do not take a type and they follow the rules for macro parameters in the
ANSI-C macro preprocessor.

The minicond interpreter contains six semantic rules.

⋄ _local_int(a) ::= [* integer a; *]. generates a macro that will de-
clare a new local variable of type integer. The name of the variable will
be whatever identifier is supplied as the actual parameter in a call to this
semantic production.

⋄ _and(dst a b) ::= [* dst = a && b; *]. the destination attribute
is set to the logical and of attributes a and b.

⋄ _and_not(dst a b) ::= [* dst = !a && b; *]. the destination attribute
is set to the logical and of the inverse of attribute a and attribute b.

⋄ _insert(id) the identifier id is added to the symbol table minicond.

⋄ _lookup(id ret) the attribute ret is set to the integer value field of the
symbol table record for identifier id. If id is not found in the symbol
table then an error message is issued and the symbol is added in, so as to
suppress subsequent messages.

⋄ _update(id val) the integer value field of the symbol table record for
identifier id is set to val. If id is not found in the symbol table then
an error message is issued and the symbol is added in, so as to suppress
subsequent messages.

4.5 Adding conditional execution

Our first task when adding an if statement to mini is to define the necessary
syntax to the grammar. This is done in lines 64 and 65 of minicond.bnf:

63: ...

64: ’if’ e0:cnd ’then’ _and(flag cnd interpret) statement(flag)

65: [ ’else’ _and_not(flag cnd interpret) statement(flag) ] |

66: ...

If we strip out the semantic actions, the semantic rules and the attributes from
this rule we see that its effect on the language is to define an if statement with
this syntax:

statement ::= ’if’ e0 ’then’ statement [ ’else’ statement ].

This recursive rule allows nesting of minicond statements, which leads to
an ambiguity in the grammar. Consider this fragment of minicond code:

1: int x = 0, a = 10, b = 20, c = 30;

2: if a>b then

3: if b>c then

4: x = 1

5: else

6: x = 2
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Here we see two nested if statements, with one optional else clause present.
The ambiguity in the grammar means that we cannot tell, just by looking at
lines 1-5 whether the else clause at line 5 belongs to the if statement at line
3 or the if statement at line 2. The ambiguity is reflected in the error message
that rdp generates when presented with the full grammar:

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [ ’else’ _and_not statement ] .

contains null but first and follow sets both include: ’else’

Since an else clause may be immediately followed by another else clause and
the else clause is optional we have an LL(1) violation because the IBNF phrase
[ ’else’ statement] is (1) optional, and (2) starts with the keyword else

and may be followed by the keyword else. In practice, it is almost universally
agreed by programming language designers that an else clause should bind to
the nearest if statement, in this case to the if statement at line 3.

Whilst rdp is an LL(1) parser generator it is not strictly true that it can only
generate parsers for LL(1) grammars. When rdp is presented with a non-LL(1)
grammar it is effectively being asked to parse strings that may provide matches
for more than one alternative at some point in the derivation. By default, rdp
simply rejects such grammars with an appropriate error message, but if we add
a -F flag to the rdp command line then rdp will be forced to output a parser
that disambiguates such cases by choosing the alternative that is lexically first
in the grammar. As long as the grammar writer is able to achieve the non-
LL(1) behaviour required by putting the most important alternative first then
the generated parser will operate correctly. In the case of iterators (including
the optional bracket [ ] here) rdp will choose to go into an iterator rather
than skipping over it if the currently parsed token is in both the first and
follow sets of the iterator. This rule has the effect of parsing the else clause
in such a way that the derivation tree shows the else clause as bound to the
nearest if.

There are other techniques for handling the so-called dangling-else problem.
Perhaps the simplest is to change the language syntax so that if statements
are explicitly terminated. The Algol-68 language for instance uses a rule of this
form:

statement ::= ’if’ e0 ’then’ statement [ ’else’ statement ] ’fi’.

The closing ’fi’ (which is if backwards) marks the end of each if state-
ment and removes both the grammatical ambiguity for dangling-else’s and the
LL(1) breach caused by the presence of the keyword else in both the first and
follow sets of the optional else clause. The modern trend in programming
languages is to insist on this kind of explicit termination because it has been
observed that programmers are more likely to accidentally leave out tokens than
to add in spurious tokens. Forcing the programmer to mark the end of com-
pound statements is a useful discipline. However, languages designed during
the 60’s and 70’s such as Pascal and C typically allow unterminated control
statements.
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4.5.1 Semantic actions for conditional execution

When we write an if statement in a program we think of the computer ‘jump-
ing’ over one of the two branches. In a compiler we can generate instructions
that do indeed cause a section of code to be jumped over as we shall see in
Chapter 7, but in an interpreter we cannot simply jump over part of the input
stream because the whole source text must be checked for syntactic correctness.
Hence the parser will read and process both the then and the else branches
of an if statement, executing the semantic actions in both branches as it goes.
In practice, of course, we only want to execute the semantic actions for one
branch or the other so we need to be able to dynamically disable semantic
action execution at run-time. We do this by supplying an inherited attribute
to the productions statement and var_dec which is a boolean value. If the
attribute is true then the embedded semantic actions are executed and if not
they are skipped over.

At the top level, rule program in line 21 calls the statement and var_dec

rules with the attribute set to 1 (i.e. true) so at the start of a program
all semantic actions will be executed. When an if statement is encountered,
the conditional expression is evaluated and the result is logically and-ed with
the value of the interpret attribute. This new value is then supplied as a
parameter to a new (nested) instance of the statement rule.

The semantic actions in the expression tree are not switched on and off in
this way because they do not need to be: during the evaluation of an expression
attributes are calculated and passed back up the tree of expression rules but
no changes are made to the variables declared in a minicond program until
an assignment is executed. The _update semantic rule associated with the
assignment statement is guarded by a check against the interpret attribute,
so the result of an expression is simply discarded if interpretation has been
switched off.

4.6 Next steps

The techniques used in this chapter to handle conditional interpretation can
not easily be extended to handle looping because our parsers are designed to
make complete passes over the source program, and a loop construct would
require us to skip backwards in the parse. This is certainly not impossible to
implement but would require detailed knowledge of rdp’s internals and is not
the recommended approach. Instead we shall move to a full compiler for mini
which outputs instructions for a very simple computer called the Mini Virtual
Machine (MVM). By providing an assembler and simulator for MVM we can
build a complete system that models the tasks of a compiler for a real processor.





Chapter 5

The Mini Virtual Machine (MVM)

MVM is a paper architecture designed to support efficient interpretation on
a host architecture. We will use MVM to illustrate the techniques of virtual
machine simulation, assembly language translation and compilation. In this
chapter we shall describe the MVM architecture and a simulator for that ar-
chitecture written in ANSI-C. As well as providing a means to execute MVM
programs, the simulator source code can be treated as an exact specification of
the architecture. We will begin by describing the architecture informally.

The Mini Virtual Machine is a very simple architecture based around a con-
ventional memory to memory processor. This means that all MVM operations
execute directly on the contents of memory locations: there are no registers or
stacks available for storing data, although there are two internal registers used
to hold the address and contents of the currently executing instruction.

MVM is a 16-bit processor in which arithmetic operations take place on 16-
bit quantities and in which memory addresses also fit into 16-bit words. This
limitation to 16-bit memory addresses does constrain the size of the programs
that we can write, but is sufficient for demonstrating the ideas behind the
development of a compiler. It also means that the tools can be compiled and
run on older 16-bit computers such as ordinary MS-DOS machines. If you have
a 32-bit system and a suitable C compiler, it is quite easy to extend the MVM
specification and its simulator to support 32-bit operations and addresses.

Understanding a new processor is made easier if we list the capabilities of
the architecture under three main headings:

1. the memory resources provided by the architecture,

2. the various ways in which operands may be fetched during instruction
execution (the addressing modes) and

3. the collection of operations that may be programmed on that architecture
(the instruction set).

In each of these three areas MVM provides very limited facilities. This
makes MVM easy to understand, easy to program and easy to write software
simulators for, but it does not make MVM a good target for efficient hardware
implementation. That need not concern us: MVM is only really intended to
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be used via a software simulator, so the many clever devices that hardware
designers have introduced into real architectures to aid hardware realisation
are irrelevant to our purpose. You should bear in mind, however, that writing
a compiler for a real processor is more complex than writing a compiler for
MVM: the principles remain the same, but the large scale design of a real
compiler requires much more detail to be handled.

5.1 MVM memory

All MVM data and instructions are stored in a single main memory. MVM
has no special or general purpose registers for data. The MVM memory can
be regarded as an array of eight-bit (byte) locations, individually addressed.
The size of the MVM memory is fixed at 64K (= 6553610) bytes. This allows
all MVM addresses to be specified using 16-bit numbers. A diagrammatic
representation of the MVM memory is shown in Figure 5.1.

Since the memory cells can only hold eight bit numbers, and since MVM
usually operates on 16-bit quantities, in general two adjacent cells are used to
hold each data item. When accessing 16-bit numbers, the address of the least
significant byte is specified, (say n) and the operand is understood to be made
up of the contents of the addressed cell concatenated with the contents of the
next highest address (n+1). In the example shown in the figure, the 16-bit
variable temp resides at locations 2 and 3. If memory[2] contains 910 (10012)
and memory[3] contains 310 (00112) then the value of temp is 0003 concatenated
with 0009, which is 310 × 25610 + 910 = 77710 (11000010012).

MVM instructions range in size from two to eight bytes. By analogy with
the addressing for data items, the address of the instruction is taken to be the
address of the least significant byte which will be the lowest address of the range
of locations occupied by the instruction.
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5.2 MVM instruction execution

A block diagram of the internal structure of an MVM processor is shown in
Figure 5.2. MVM is an example of a Von Neumann processor, as indeed are
most real computers in use today. In a Von Neumann machine, instructions and
data can co-exist in the same memory as described in the previous section. It is
not possible, just by looking at the contents of memory to distinguish between
instructions and data.

The processor maintains a pointer to memory (that is, a register which
holds the address of a location in memory) called the program counter. Before a
program can be executed, it must be loaded into memory and then the program
counter initialised with the address of the first instruction to be executed.

Once the machine starts running the program, it reads the instruction
pointed to by the program counter into some internal registers collectively called
the Instruction Register. In this case, the instruction register has space for an
operation code, an address mode and up to three operands called the destina-
tion, source 1 and source 2 operands. These registers between them can hold
all of the information needed to execute a single MVM instruction: the sig-
nificance of the individual registers will be described in the following sections.
For now, note that the data from memory may be loaded into the instruction
register or sent to the execution unit; that memory addresses may be supplied
by the program counter or by the operand registers; that only the execution
unit can generate data to be written back into memory and that the contents
of the operand registers may connected directly to the execution unit.

After the instruction register has been loaded with a new instruction ready
for execution, the program counter is incremented so that it points to the loca-
tion just past the end of the instruction that has just been read. The processor
then performs whatever action is specified by the instruction in the instruc-
tion register, which might for instance be the addition of two numbers or the
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copying of a data item from one memory location to another. These kinds of
instructions are called data manipulation instructions because they allow data
to be modified in various ways.

In addition to the data manipulation instructions, Von Neumann processors
like MVM have control manipulation instructions which affect the order in which
the program’s instructions are executed. By default, the program counter is
simply incremented to point to the next instruction after the current one. In
the absence of any control manipulation instructions, therefore, all programs
would simply be executed once only in strict order by address. This is the kind
of program that we can write using the simple minicalc language which has
no control flow constructs.

The control manipulation instructions allow sequences of instructions to be
jumped over. They work by loading a new value directly into the program
counter which overrides the simple sequential execution. Often the new value
is only loaded if some condition is true. An if condition then action state-
ment can be implemented as a test of condition. If condition is false, then the
program counter is loaded with the address of the instruction after the code
corresponding to action, and this has the effect of skipping over action without
executing it.

5.3 MVM addressing modes

Most high level programming languages provide both variables and numeric
literals. In minicalc, for instance, the assignments

temp = x + y

and

temp = x + 12

are both valid. In practice, they will be compiled into an ADD instruction with
three operands: a destination and two sources corresponding to the left and
right sides of the + operator. The variables x and y will be stored at specific
memory addresses. What if variable y were to be stored at location 12? How
would an MVM processor distinguish between an instruction to add the number
12 and an instruction to add the contents of a variable stored at location 12?
The answer is to provide some extra information called the addressing mode.
It is the responsibility of the compiler to specify the correct addressing mode
when it generates an MVM instruction. We shall look at how the modes are
specified in the next section.

MVM provides only two addressing modes: literal and variable. Real pro-
cessor architectures often provide many complex addressing modes which, for
instance, might allow an access within a two dimensional array to be specified
as a single machine instruction. The trend in recent years has been to discour-
age the use of any but the most straightforward addressing operations because
they complicate the use of pipelining in hardware implementations. Pipelined
processors are very efficient, but their execution units are disrupted by the
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overhead of having to decode complicated addressing modes. Broadly speak-
ing, Complex Instruction Set Computer (CISC) architectures such as the DEC
VAX, the Motorola 68000 and the Intel 80x86 family have many exotic address-
ing modes, and Reduced Instruction Set Computer (RISC) architectures such
as the MIPS, Sun SPARC and Dec Alpha have essentially only three modes.
MVM is simple, but is not comparable to a real RISC architecture because
it does not have any data registers, and the efficient use of such registers is
perhaps the defining characteristic of a true RISC architecture.

5.4 MVM instructions

MVM instructions are made up of a string of bytes. Depending on the in-
struction, the string may be between two and eight bytes long: every MVM
instruction has an operation code (opcode) byte followed by an address mode
byte, and most instructions also contain some operands. Each operand is rep-
resented by a 16-bit number, so each operand adds two bytes to the length of
an instruction one for the most significant byte (MSB) and one for the least
significant byte (LSB). The format of a three address instruction, therefore is

opcode mode dst MSB dst LSB src1 MSB src1 LSB src2 MSB src2 LSB

Instructions with less than three operands follow this general format but
simply omit the unused operand fields. Even zero address instructions such as
halt have a mode byte.

5.4.1 Instruction set capabilities

The opcode byte could encode up to 256 unique instructions, but in fact MVM
only uses the first 17 codes, numbered 0–16. As we shall see in the next chapter,
it in more convenient to use hexadecimal (base 16) than decimal (base 10) to
represent machine level quantities, so Table 5.1 which shows the complete MVM
instruction set gives the hexadecimal encodings for the instructions.

The functional description of each instruction in Table 5.1 uses a C-like syn-
tax to explain the actions of the MVM processor on receipt of each instruction.
Main memory is modeled as an array of locations called mem[] and the program
counter as a variable called PC. The function resolve() looks at the addressing
mode of its corresponding operand and fetches the actual data. Later in this
chapter we give extracts from the source code of a simulator for MVM instruc-
tions which shows exactly how these functional descriptions may be turned into
executable code.

5.4.2 Address mode encoding

The mode byte is split into two four-bit nibbles called mode fields 1. Each of the
two mode fields encode the address mode for one of the two source operands:

1Since we only have two addressing modes to encode, we could make do with only a single
bit for each field, but we wish to leave some capacity so that, for instance, a register based
variant of MVM could be easily defined.



38 THE MINI VIRTUAL MACHINE (MVM)

Opcode Mnemonic Operands Function
00 HALT – – – Stop the processor
01 ADD dst src1 src2 mem[dst] = resolve(src1) + resolve(src2)

02 SUB dst src1 src2 mem[dst] = resolve(src1) - resolve(src2)

03 MUL dst src1 src2 mem[dst] = resolve(src1) * resolve(src2)

04 DIV dst src1 src2 mem[dst] = resolve(src1) / resolve(src2)

05 EXP dst src1 src2 mem[dst] = resolve(src1) ** resolve(src2)

06 EQ dst src1 src2 mem[dst] = resolve(src1) == resolve(src2)

07 NE dst src1 src2 mem[dst] = resolve(src1) != resolve(src2)

08 GT dst src1 src2 mem[dst] = resolve(src1) > resolve(src2)

09 GE dst src1 src2 mem[dst] = resolve(src1) >= resolve(src2)

0A LT dst src1 src2 mem[dst] = resolve(src1) < resolve(src2)

0B LE dst src1 src2 mem[dst] = resolve(src1) <= resolve(src2)

0C CPY dst src1 – mem[dst] = resolve(src1)

0D BNE target src1 – if resolve(src1) != 0 then PC = target

0E BEQ target src1 – if resolve(src1) == 0 then PC = target

0F PRTS 0 src1 – Print resolve(src1) as string
10 PRTI 0 src1 – Print resolve(src1) as decimal integer

Table 5.1 The MVM instruction set

the most significant nibble encodes for src1 and the least significant nibble for
src2. For instructions that do not use one or both of the source operands, the
corresponding mode fields are set to zero. No mode field is required for the
destination operand because the destination must clearly always be an address:
it is never meaningful to assign a result to literal! On some real architectures,
multiple destination addressing modes are provided but MVM has no need of
them.

5.5 Example MVM instructions

MVM programs are made up of sequences of MVM instructions which will
usually include both data manipulation and control manipulation instructions.
Each valid program must finish with a HALT instruction which the simulator
interprets as an instruction to finish interpreting instructions and return control
to the user. It is not an accident that the HALT instruction uses opcode number
0. Within the simulator, the memory is initialised throughout to zero. If a user
programming error causes the simulator to try executing from memory that has
not been loaded with instructions, the simulator will immediately terminate
because those zeros will be interpreted as HALT instructions.

5.5.1 Data manipulation instructions and address modes

In section 5.3 we distinguished between literal and variable addressing. Here we
look at the MVM instructions that correspond to the minicalc code fragments
temp = x + y and temp = x + 12.
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If the variable x is resident at location 1010 (location 000A in hexadecimal)
and y resides at location 1210 (location 000C in hexadecimal) then the instruc-
tion to add them together and store them in a variable called temp at location
4 is

Op Mode Dst Src1 Src2
01 11 0004 000A 000C

Here we have the operation code for ADD (0116) followed by a mode byte that
specifies variable mode addressing for both source operands (1116). Then we
have three operands specified as the addresses of the destination (000416) and
the two sources (000A16 and 000C16).

By contrast, if we wish to add the number 12 to the contents of x and put
the result in temp then the correct instruction is

Op Mode Dst Src1 Src2
01 10 0004 000A 000C

The only difference between these instructions is that the mode field for
operand src2 is 1 in the first example and 0 in the second corresponding to
variable mode addressing and literal mode addressing respectively.

5.5.2 Control manipulation instructions

Control manipulation instructions are used in the implementation of if state-
ments, loop statements and goto statements. Consider the minicond fragment

if temp then a = a + 1;

z = z - 2;

If temp resides at location 000A16, a at location 000E16 and z at location 001C16,
then the following sequence of instructions based at location 213416 corresponds
to the minicond fragment.

Location Op Mode Dst Src1 Src2
2134: 0E 10 2142 000A

213A: 01 10 001C 001C 0001

2142: 02 10 000E 000E 0001

The instruction at location 213416 is a BEQ which will restart execution at
address 214216 if the variable at location 000A16 is zero. The next line adds
one to the variable at location 001C16, and the final line subtracts one from the
variable at location 000E16. The overall effect of the fragment is to skip over
the middle instruction if the value of temp at location 001C16 is zero.

5.6 Using an assembler to program MVM

Writing MVM programs in this numerical code is time consuming and highly
error prone. An assembler is a translator for a very simple language that offers
English-language like mnemonic names for the machine instructions and can
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also perform branch calculations automatically, so that instructions can be re-
ferred to by a symbolic label rather than by their numeric address. Assemblers
do not make machine level programming easy, but they do free the programmer
from a great deal of bookkeeping work. Assemblers are in themselves examples
of an interesting class of translator. We shall describe the implementation of
an assembler for MVM (called mvmasm) in the next chapter. We complete this
chapter with the description of a simulator, mvsim, for MVM code.

5.7 mvmsim – a simulator for MVM byte codes

The MVM instruction set is designed to be efficiently implemented as a simu-
lator. In this section we look at the design and use of such a simulator.

5.7.1 Using mvmsim

The function of the simulator is two-fold: firstly it provides a concrete model
of the behaviour of an MVM processor, and secondly it allows instruction ex-
ecution to be traced by printing out each instruction as it is executed. The
mvmsim executable is built as part of the standard rdp installation, so if you
have already run make on the supplied makefile you should have a working
simulator. To check, type mvmsim at the command line prompt. You should
see the following output:

Fatal: No source file specified

mvmsim v1.5 - simulator for MVM

Usage: mvmsim [options] source

-l Show load sequence

-t Print execution trace

-v Set verbose mode

You can contact the author (Adrian Johnstone) at:

Computer Science Department, Royal Holloway, University of London

Egham, Surrey, TW20 0EX UK. Email: A.Johnstone@rhbnc.ac.uk

This is the standard mvmsim help message: in this case it has been triggered
because no source file was specified. It tells you about the three optional flags
that can be supplied to mvmsim:

⋄ -l tells mvmsim to echo the data it is writing into the simulator’s memory
during the load phase

⋄ -t switches on trace mode in which instructions are echoed as they are
executed

⋄ -v sets verbose mode which causes mvmsim to print out a title line, and
then at the end of a run, the total CPU time along with the number of
MVM instructions executed
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5.7.2 The mvmsim input file format

The MVM program to be simulated is read by mvmsim from an input file which
contains binary information rendered as a hexadecimal dump of the required
memory contents. Each line of the dump file starts with a 16-bit hexadecimal
number which specifies the base address to which the rest of the data on that
line will be loaded. The data is specified as zero or more pairs of hexadecimal
digits. Each pair specifies the contents of one eight-bit memory cell, and the
corresponding memory locations are loaded in ascending order starting with
the base address.

Spaces are allowed (but not required) between each pair of digits. Blank
lines are also allowed.

This kind of load format is commonly used by assemblers for real processors,
although executable file formats used by commercially available processors are
usually in pure binary to save space. In a pure binary file each location could be
represented by a single binary byte but in our case each location requires two
bytes, each representing a hexadecimal character. Therefore, MVM executable
files are likely to be at least twice as large as their pure binary equivalents. On
the other hand, pure binary files can not easily be read into an editor or printed
out.

As well as specifying memory contents, the input file must tell the simula-
tor which memory location contains the first instruction to be executed. The
mvmsim input file uses a special format to specify this transfer address compris-
ing an asterisk followed by the transfer address itself.

The short example below shows the contents of an mvmsim input file for a
program comprising three instructions.

1000 0C 01 000A 007B

1006 10 11 0000 000A

100C 00 11

100E *1000

The first instruction, based at location 100016 copies the number 12310
(7B16) to the memory location 000A16. The next instruction prints out the
contents of that location as a decimal number and the third instruction is
a halt which will cause the simulator to terminate. The final line specifies
a transfer address of 100016: the transfer address is denoted with a leading
asterisk (*) which warns the assembler not to attempt to load the data on that
line into memory. The file may be found in the standard rdp distribution as
examples/rdp_case/mvmsim.sim.

5.7.3 Running a simulation

We can run the simulator on the above test file with all options enabled by
issuing the command

mvmsim -l -t -v examples/rdp_case/mvmsim.sim

The output of this command is shown below:
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mvmsim v1.5 - simulator for mvm

Load address 1000 0C01000A007B

Load address 1006 10110000000A

Load address 100C 0011

Load address 100E *1000

1000 CPY 000A, 007B, 0000 -> 007B

1006 PRTI 0000, 007B, 0000 -> 0000 123

100C HALT 0000, 0000, 0000 -> 0000 -- Halted --

0.006 CPU seconds used, 3 MVM instructions executed

After the title line, mvmsim echoes to the output the contents of the input
file as it is loaded into the internal memory. Execution then begins, starting
at the transfer address. As each instruction is executed, mvmsim outputs the
address of the instruction, its mnemonic and then the three operands in the
order dst, src1 and src2. If an operand is not used by an opcode, then 0000 is
output. The operands are printed after the addressing mode has been resolved,
that is the actual data to be operated on is displayed rather than its address.
Hence, when the instruction at location 100616 is being executed, its second
operand is shown as 7B16 not as 000A16 which is the address specified in the
load file.

The value written back to memory by the instruction is shown after a ‘yields’
sign (->). If no value is written back (as for instance in the case of the prti

instruction) then a zero is displayed.

Any output produced by prti or prts instructions is displayed after the in-
struction. If the -t option is not used on the command line, then the instruction
display is completely suppressed, so only program output appears.

Finally, when the simulator encounters a halt instruction, it prints the
message -- Halted -- and terminates.

5.7.4 Implementing mvmsim

The full source code of the simulator runs to a little over 300 lines of ANSI-C
which may be found in the file mvmsim.c. In this section we shall look at the
overall structure of the simulator and look in detail at the code corresponding
to the MVM instruction execution unit.

About half of the code in mvmsim.c is concerned with processing the com-
mand line options, parsing the input file and then loading of the internal mem-
ory. These functions are easy to understand, and we shall not discuss them
further here. The parts of the code we are interested in are those that model
the MVM architecture’s memory and program counter, and the function that
controls the simulated execution of the MVM instructions.



mvmsim – a simulator for MVM byte codes 43

18: #define MEM_SIZE 65536lu

22: unsigned char memory[MEM_SIZE];

23: unsigned long pc = 0;

39: static int get_memory_byte(unsigned long address)

52: static int get_memory_word(unsigned long address)

65: static void put_memory_byte(unsigned long address, int data)

71: static void put_memory_word(unsigned long address, int data)

Figure 5.3 Extracts from the mvmsim simulator: memory declarations

Memory and program counter declarations

Figure 5.3 shows the declarations that model the MVM memory. Line 18 spec-
ifies the size of the simulated memory, which is restricted to 65536lu (65536
as a long unsigned number or 64K) bytes in this 16-bit MVM simulator. It is
possible to reduce the size of the MVM memory by adjusting this figure, but
of course MVM programs must then ensure that they only work within the
available memory. The MVM internal memory itself is modeled by an array
of unsigned char (line 22) and the program counter by an unsigned long

integer (line 23).

We could access the MVM memory by simply reading and writing to the
memory array, but one of the characteristics of machine level programming
is that programs often contain errors. A bad error might cause the simu-
lator to run amok and start executing from illegal host addresses. So as
to control this kind of problem, all memory access is channeled through the
routines get_memory_byte(), get_memory_word(), put_memory_byte() and
put_memory_word() which are declared in lines 39–76. These routines vali-
date the memory address, issuing a fatal error message if the program being
simulated tried to access a non-existent location.

The get_memory_byte() and get_memory_word() routines take an address
and return either a single byte or a single word which is formed by concatenating
the addressed byte with the contents of the location address + 1. In this case,
the addressed byte forms the least significant byte of the returned word. The
put_memory_word() function takes an address and a 16-bit data word. The
least significant byte of the data word is written into memory at the specified
address, and the most significant byte is loaded to location address + 1

The main execution loop

After the simulator has loaded the memory array and set the program counter
to the value of the transfer address, the function mvmsim_execute() is called.
This function loops until a halt instruction is encountered, executing one in-
struction per iteration. The full source of the mvm_execute() function is shown
in Figures 5.4–5.6.
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160: static void mvmsim_execute(void)

161: {

162: int stop = 0;

163:

164: while (!stop)

165: {

166: unsigned op = get_memory_byte(pc),

167: mode = get_memory_byte(pc + 1);

168: int dst = get_memory_word(pc + 2),

169: src1 = get_memory_word(pc + 4),

170: src2 = get_memory_word(pc + 6);

171:

172: exec_count++;

173:

174: /* do indirections on modes */

175: if ((mode >> 4) == 1)

176: src1 = get_memory_word(src1);

177:

178: if ((mode & 7) == 1)

179: src2 = get_memory_word(src2);

180:

Figure 5.4 Extracts from the mvmsim simulator: the execute function part 1

Variable stop declared at line 162 is used as a flag to signal termination
of the simulation. It is initialised to false, and only set to true when a halt

instruction is encountered. The main simulation loop comprises lines 164 to
279. The body of the loop comprises the code to fetch the new instruction (lines
166–170), the address mode resolution code in lines 174–179 and a large switch
statement which decodes the operation code (lines 181–278 shown in Figures 5.5
and 5.6.). Within the switch statement, each of the 17 cases includes a call to
the display() function which provides the trace output if a -t option has been
specified on the simulator command line. Each case finishes with an increment
of the program counter by the length in bytes of the decoded instruction.

The address mode resolution code examines the mode byte loaded from the
instruction. If the corresponding mode field (see section 5.3) is a one, then the
source operand is reloaded with the contents of the memory location addressed
by the data. There is no need to resolve the destination operand, because
destinations are always assumed to be addresses not literal data.

The code within the simulation loop provides a detailed specification of
the meaning of each instruction in terms of the semantics of ANSI-C. The
bne instruction for instance (lines 243–249) tests the value of the first source
operand against zero, and if the test succeeds the program counter is loaded
with the address specified in the destination operand. If the test fails, the
program counter is simply incremented in the normal way, thus passing control
to the next instruction.
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181: switch (op)

182: {

183: case OP_ADD:

184: put_memory_word(dst, src1 + src2);

185: display("ADD ", dst, src1, src2);

186: pc += 8;

187: break;

188: case OP_SUB:

189: put_memory_word(dst, src1 - src2);

190: display("SUB ", dst, src1, src2);

191: pc += 8;

192: break;

193: case OP_MUL:

194: put_memory_word(dst, src1 * src2);

195: display("MUL ", dst, src1, src2);

196: pc += 8;

197: break;

198: case OP_DIV:

199: put_memory_word(dst, src1 / src2);

200: display("DIV ", dst, src1, src2);

201: pc += 8;

202: break;

203: case OP_EXP:

204: put_memory_word(dst, (int) pow((double) src1, (double) src2));

205: display("EXP ", dst, src1, src2);

206: pc += 8;

207: break;

208: case OP_EQ:

209: put_memory_word(dst, src1 == src2);

210: display("EQ ", dst, src1, src2);

211: pc += 8;

212: break;

213: case OP_NE:

214: put_memory_word(dst, src1 != src2);

215: display("NE ", dst, src1, src2);

216: pc += 8;

217: break;

218: case OP_GT:

219: put_memory_word(dst, src1 > src2);

220: display("GT ", dst, src1, src2);

221: pc += 8;

222: break;

Figure 5.5 Extracts from the mvmsim simulator: the execute function part 2
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223: case OP_GE:

224: put_memory_word(dst, src1 >= src2);

225: display("GE ", dst, src1, src2);

226: pc += 8;

227: break;

228: case OP_LT:

229: put_memory_word(dst, src1 < src2);

230: display("LT ", dst, src1, src2);

231: pc += 8;

232: break;

233: case OP_LE:

234: put_memory_word(dst, src1 <= src2);

235: display("LE ", dst, src1, src2);

236: pc += 8;

237: break;

238: case OP_CPY:

239: put_memory_word(dst, src1);

240: display("CPY ", dst, src1, src2);

241: pc += 6;

242: break;

243: case OP_BNE:

244: display("BNE ", dst, src1, src2);

245: if (src1 != 0)

246: pc = dst;

247: else

248: pc += 6;

249: break;

250: case OP_BEQ:

251: display("BEQ ", dst, src1, src2);

252: if (src1 == 0)

253: pc = dst;

254: else

255: pc += 6;

256: break;

257: case OP_PRTS:

258: display("PRTS", dst, src1, src2);

259: printf("%s", memory + src1);

260: pc += 6;

261: break;

262: case OP_PRTI:

263: display("PRTI", dst, src1, src2);

264: printf("%i", (int) src1);

265: pc += 6;

266: break;

267: case OP_HALT:

268: display("HALT", dst, src1, src2);

269: printf(" -- Halted --\n");

270: stop = 1;

271: pc += 2;

272: break;

273: default:

274: display("----", dst, src1, src2);

275: text_printf("\n");

276: text_message(TEXT_FATAL, "illegal instruction encountered\n");

277: break;

278: }

279: }

280: }

Figure 5.6 Extracts from the mvmsim simulator: the execute function part 3



Chapter 6

mvmasm – an assembler for MVM

Writing MVM programs directly in the binary machine code is very error prone.
In the early days of computing it was not unusual for programmers to take great
pride in their ability to remember all the binary codes for instructions, but even
if the machine code is easy to remember (as indeed it is for the very simple MVM
processor) it is still hard to keep track of lots of variables if they can only be
referred to by their numeric machine addresses.

Assemblers evolved as the earliest available programming aids. Most assem-
blers provide two basic facilities:

⋄ a set of mnemonic names for the machine instructions

⋄ the ability to label instructions and data locations allowing jump targets
and variable addresses to be referred to using symbolic names rather than
numeric values.

In addition, assemblers usually allow arithmetic to be performed on symbolic
addresses. This allows the address calculations associated with array indexing,
record field selection and jump branch selection to be done by the assembler,
rather than by the programmer.

6.1 A first example

The mvmasm source code corresponding to the short example used in section 5.7.3
is shown below: a variable is loaded with decimal 123 and then printed.

;Simulator example file

DATA 0x000A ;start assembling data at address 000A hex

temp: WORD 1 ;declare an integer variable called temp

CODE 0x1000 ;switch to assembling code at address 1000 hex

start:

CPY temp, #123 ;load temp with decimal 123

PRTI temp ;print the value of temp as an integer

HALT ;terminate the simulator

END start ;transfer address is code start



48 MVMASM – AN ASSEMBLER FOR MVM

Each line of mvmasm source code may contain a label such as temp: or
start:, an instruction such as PRTI temp and a comment which comprises
anything between a semicolon ; and the end of a line. All three of these fields
are individually optional, so lines containing only a label, only an instruction
or only a comment are valid as indeed are blank lines.

Most instructions in an assembler program correspond to machine opcodes,
but some are directives which are instructions to the assembler. In the example
above, the instructions DATA, CODE, WORD and END are directives.

6.1.1 Assembler output

The effect of assembling opcodes and executing directives is best seen by ex-
amining the assembler’s output. The example source code is available within
the rdp distribution as file examples/rdp_case/mvmsim.mvm. Executing the
command

mvmasm -l examples/rdp_case/mvmsim

produces the following output listing:

******:

0000 1: ;Simulator example file

0000 2: DATA 0x000A ;start assembling data at address 000A hex

000A 0001 3: temp: WORD 1 ;declare an integer variable called temp

000C 4:

000C 5: CODE 0x1000 ;switch to assembling code at address 1000 hex

1000 6: start:

1000 0C01000A007B 7: CPY temp, #123 ;load temp with decimal 123

1006 10110000000A 8: PRTI temp ;print the value of temp as an integer

100C 0011 9: HALT ;terminate the simulator

100E 10:

100E *1000 11: END start ;transfer address is code start

******: Transfer address 00001000

******: 0 errors and 0 warnings

Listing format

This listing shows the familiar line numbered source file listing on the right,
with the assembler generated output on the left. The first field of the output
is the current assembly address, that is the MVM memory address to which
any data or instructions following on the line will be loaded. A single space is
followed by a string of pairs of hexadecimal digits representing the assembled
output. You will see that the output is in the same format as the input for the
mvmsim.

Assembly using the DATA and CODE pointers

Two internal counters are maintained by mvmasm called the current data ad-
dress and the current code address. Their values are set by the DATA and CODE

directives respectively and they keep track of the next available data and code
memory locations. Since MVM is a Von Neumann processor, data and code
may be loaded at any memory locations, but it is conventional to separate them
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into blocks. Line 2 (DATA 0x000A) sets the current data address to hexadecimal
000A and makes the data pointer the current assembly address. All subsequent
instructions will be assembled into succeeding locations until such time as an-
other DATA or CODE directive is encountered. If a DATA or CODE directive appears
on its own without an operand then it simply switches the current assembly
address to the current data address or current code address respectively.

Labels

Labels have the same syntactic form as C language identifiers, that is an al-
phabetic character or an underscore followed by zero or more alpha-numeric
characters or underscores. A label definition must be followed by a colon (:).
When a label is encountered, it is given the value of the current assembly ad-
dress. Whether a label gets the current data address or the current code address
depends upon which of the DATA and CODE directives was most recently encoun-
tered. Hence, in the above example temp is given the value 000A16 (the current
data address) and start the value 100016 (the current code address).

Machine instructions and addressing modes

Lines 7, 8 and 9 show actual machine instructions being assembled. Each
line comprises one of the operation codes from Table 5.1 followed by between
zero and three operands. An operand may be either an address or literal
data, which is distinguished by a preceding hash # sign. Hence the instruc-
tion CPY temp, #123 assembles to 0B 01 000A 007B where 000A is the value
of the label temp and 007B is the hexadecimal form of the literal decimal con-
stant #123. As in ANSI-C, hexadecimal numbers are marked by the prefix 0x.
Numeric values lacking this prefix are assumed to be decimal.

Data declaration directives

Data may be declared using the WORD directive, which specifies that enough
space be reserved for a machine word (two bytes) and in this case also provides
an initialisation expression so that temp is initialised to 1. There are other data
declaration directives which may be used to reserve larger blocks of storage.
These other directives are described below in section 6.2.5.

The END directive

Line 11 shows an END directive which both marks the end of the assembler input
file and specifies the transfer address, that is the address of the first instruction
to be executed by the simulator. In this case, the value of the start label,
which is 100016

6.1.2 Using the assembler and the simulator together

The assembler is usually used to prepare input for the mvmsim simulator, and if
the assembler is invoked with a -x option then the simulator will be automati-
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cally run in trace mode on the assembler output. Hence issuing this command

mvmasm -l -x examples/rdp_case/mvmsim.mvm

produces this output:

******:

0000 1: ;Simulator example file

0000 2: DATA 0x000A ;start assembling data at address 000A hex

000A 0001 3: temp: WORD 1 ;declare an integer variable called temp

000C 4:

000C 5: CODE 0x1000 ;switch to assembling code at address 1000 hex

1000 6: start:

1000 0C01000A007B 7: CPY temp, #123 ;load temp with decimal 123

1006 10110000000A 8: PRTI temp ;print the value of temp as an integer

100C 0011 9: HALT ;terminate the simulator

100E 10:

100E *1000 11: END start ;transfer address is code start

******: Transfer address 00001000

******: Calling simulator: mvmsim -t -v mvmasm.out

mvmsim v1.5 - simulator for mvm

1000 CPY 000A, 007B, 0000 -> 007B

1006 PRTI 0000, 007B, 0000 -> 0000 123

100C HALT 0000, 0000, 0000 -> 0000 -- Halted --

0.030 CPU seconds used, 3 MVM instructions executed

******: 0 errors and 0 warnings

6.2 Assembler syntax reference

In this section we describe the features of the mvmasm assembler in terms of
the lexical structure, the available arithmetic operators, the directives and the
machine instructions. The implementation of mvmasm as an rdp translator spec-
ification is described in the next section. Large examples of mvmasm code which
exercise most of the features may be found in the following chapters, which
describe compilers that translate to mvmasm.

6.2.1 Line oriented and free format languages

The mvmasm syntax follows the tradition of assemblers in being line oriented with
only one statement allowed per line. Early high level programming languages
were line oriented in this way, but most programming languages designed since
the early 1960’s have been free format, allowing whitespace and line breaks to
appear between any two language tokens. Low level languages such as assem-
blers have tended to retain the older style, not least because it can be simpler
to hand write a parser for a line oriented language. In particular, error recovery
is eased: if a syntax error is detected on a line then after reporting the error the
parser can simply restart at the start of the next line. The re-synchronisation
of the parser after an error in a free format language can be much harder, and
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as a result errors in free format languages can generate an avalanche of spurious
error messages.

6.2.2 Lexical elements

Identifiers in mvmasm follow the rules for identifiers in ANSI-C, that is an identi-
fier may begin with an alphabetic character or an underscore and continue with
zero or more alphabetic characters, digits or underscores. The length of an iden-
tifier is limited only by the available memory within the running assembler and
is for practical purposes unbounded.

Numbers start with a digit. If the first digit is a zero (0) and this is immedi-
ately followed by a lower or upper case x character, then the rest of the number
is assumed to be in hexadecimal format, otherwise the number is assumed to
be decimal. Decimal numbers are made up of the digits 0–9. Hexadecimal
numbers can additionally use the letters A–F in either upper or lower case to
represent hexadecimal 10–15 respectively.

Within a line, space and tab characters may be used to format the source.
Comments are marked by a leading semicolon (;). Any characters between a
semicolon and the end of a line are ignored by the assembler. A comment may
start in any column.

6.2.3 Expressions

In any mvmasm context requiring a numeric value, an expression may be used.
Expression operands may be identifiers or numbers as defined above, or the pre-
defined identifiers TRUE and FALSE which are synonyms for the values 1 and 0

respectively. The full set of ANSI-C numeric operators is provided, augmented
by the operator ** which stands for exponentiation. The supported operators,
with their priorities on a scale of 1 (the lowest) to 11 (the highest) are listed
in Table 6.1. Internally, all assembler arithmetic is done with the precision of
a long integer. Most C compilers treat this as a 32-bit integer.

6.2.4 Instructions and addressing modes

The 17 MVM instructions are assembled using the mnemonics listed in Ta-
ble 5.1. Operands are separated by commas, and take the form of an expression
as defined above. For source, but not destination, operands the expression may
be preceded by a hash sign (#) denoting literal addressing mode. The hash has
no effect on the value returned by the expression, but sets the addressing mode
for the operand containing the # to literal mode.

The following are all valid instructions:

ADD temp, x, y ;sum x and y

SUB temp, temp, #1 ;decrement temp by 1

SUB temp, temp, #x ;decrement temp by the value of x

SUB temp, temp, x ;decrement temp by the value of the contents

;of memory location with address x
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Operator Priority Function

> 1 Greater than
< 1 Less than
>= 1 Greater than or equal to
<= 1 Less than or equal to
== 1 Equal to
!= 1 Not equal to

|| 2 Logical inclusive OR

&& 3 Logical AND

^ 4 Bitwise exclusive OR

| 5 Bitwise inclusive OR

& 6 Bitwise AND

<< 7 Shift left
>> 7 Shift right

+ 8 Add
- 8 Subtract

* 9 Divide
/ 9 Multiply

- 10 Monadic - (negate)
+ 10 Monadic + (posite)
~ 10 Bitwise complement
! 10 Logical not

** 11 Exponentiate

Table 6.1 Operator priorities in mvmasm
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CPY temp, #(300 + 6) * 2 ;assign 612 to temp

HALT ;terminate execution

BEQ temp, start ;If temp is zero, branch to start otherwise

;continue execution with the next instruction

6.2.5 Directives

File inclusion

INCLUDE ("filename") – Open filename for reading at this point, continuing
to read the parent file after the end of filename has been reached. This
directive works just like the #include preprocessor directive in ANSI-C
and the INCLUDE directive in rdp’s IBNF source language.

Assembly pointer manipulation

CODE optional-expression – Use the CODE pointer for subsequent assembly. If
the optional-expression is present, set the CODE pointer to its value, oth-
erwise carry on assembling starting at the most recent value of the CODE

pointer. The CODE pointer is initialised to zero when the assembler starts.

DATA optional-expression – Use the DATA pointer for subsequent assembly. If
the optional-expression is present, set the DATA pointer to its value, oth-
erwise carry on assembling starting at the most recent value of the DATA

pointer. The DATA pointer is initialised to zero when the assembler starts.

Data declaration directives

WORD expression – Reserve a word (two bytes) of memory and initialise the
contents to the value of expression.

BLOCKW expression – Reserve expression words (2 × expression bytes) of mem-
ory. No initialisation of the memory is performed.

STRING "character-string" – Reserve sufficient bytes to hold the number of
characters in character-string plus one, and initialise them to hold the
character-string and a terminating zero byte.

Symbol assignment

label: EQU expression – Force the value of label to be the value of expression.
This allows symbols to be set to arbitrary values, rather than the default
behaviour which is for symbols to acquire the value of the assembly pointer
at the time they are translated. The following are legal uses of EQU:

large_prime: EQU 131 ;large_prime <- 131

top_bit: EQU 128 ;top_bit <- 128
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length: EQU top_bit + 1 ;length <- 129

Transfer address specification

END expression – Mark the last valid line of the assembler source file and set
the transfer address to the value of expression. The transfer address is
written into the output file, and is used by the simulator to specify the
address of the first instruction to be executed by the simulator.

6.3 Implementing mvmasm

Assembler syntax is designed to be easy to parse, and it is quite straightforward
to design an assembler completely by hand. However, this tutorial manual is
about rdp, so we shall use rdp to implement mvmasm. It turns out that two
special rdp features are needed to efficiently implement assemblers: support for
multiple passes and support for line oriented languages.

6.3.1 Multiple pass parsers

An interesting aspect of nearly all high level languages is that they may be
translated in a single pass. This requires variables and functions to be declared
before they are used, a rule rigidly enforced by Pascal and loosely enforced with
the help of default behaviour in C. In an assembler, however, such a rule would
make writing programs very tedious because of the large number of forward
jumps present in real code. A forward jump has this form:

BEQ temp, done

...

...

done:

...

Recall that labels take the value of the current assembly address at the point
of their declaration, so declaring a label before it is used is not helpful here.
On the other hand, the actual value of done will be unknown when the BEQ

instruction is encountered for the first time.
There are three solutions to this predicament: we can either ban forward

references; we can use a fixup; or we can use a multiple pass assembler. The
first option is draconian since it means that only backward jumps are allowable.
Remarkably, the standard assembler for at least one real computer (the Digico
M16 minicomputer, a 16-bit machine with an architecture similar to that of the
12-bit DEC PDP-8) did indeed enforce this restriction. This machine assembled
from paper tape, and internal memory was very limited. In addition, the design
of the instruction set meant that forward jumps were less common than on
modern machines so the designers thought that only having to feed the source
papertape through once was a sufficient advantage to justify banning forward
references.
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A fixup assembler assembles the source into a buffer in memory. When
it encounters the BEQ instruction above, it assumes a value of zero for the
value of the label done, but also adds the instruction to a list of references for
done. When it subsequently assembles the definition of done, it then knows the
correct value and so can go back through the list for done filling in the correct
value wherever it has been used. This approach, called fixing up the forward
references, allows assembly to be completed in a single pass of the source file,
but it requires the assembler to maintain an internal buffer which is as large
as the largest possible program that could be assembled, and in addition a
potentially large number of reference lists. In practice, a fixup based assembler
can be rather complicated and might require a large amount of runtime storage.

By far the most common solution to the problem is to make two or more
passes over the source file. On the first pass, a symbol table is loaded with
the labels and their values as they are encountered. If they are first seen as an
operand, then the corresponding table entry is loaded with an arbitrary value.
By the end of the first pass, however, definitions will have been seen for all the
symbols if the source program is syntactically well formed. The assembler then
repeats the entire process, but making use of the label information from the
first pass. The success of this approach relies on the fact that all instructions
use a fixed size field to hold symbol values. As a result, the position of each
instruction and data item in memory is fixed during the first pass, so symbol
values will not change as a result of other symbols changing their value.

Are two passes sufficient? Well, if our only concern is forward references the
two passes are enough, but consider this use of the EQU directive:

first: EQU second + 2

second: EQU third + 3

third: EQU 100

Here we have a chain of forward references. On pass one, labels first and
second are to receive the value of expressions which include unknown data but
label third will be correctly set to 100. On pass two label second can be
correctly set to 103, but label first is still indeterminate, so in this case two
passes is not sufficient. In general, we need as many passes as there are levels of
forward referencing plus one. Since we can always add another level of forward
referencing to a source file, any fixed number of passes is insufficient.

In practice, this situation is rather artificial, and real assemblers typically
put an upper limit on the number of passes although it is not hard to simply
keep re-parsing until all the symbols in the symbol table are determined. The
mvmasm parser makes three passes, so it can in fact handle the situation shown
above, but no more than two levels of forward referencing are allowed. As we
shall see in a later section, rdp generated parsers can be set to make multiple
passes by adding a directive of the form PASSES(3) to the rdp BNF specification
file.
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6.3.2 The EOLN scanner primitive

As noted in section 6.2.1 assemblers (and some early languages like the original
FORTRAN) are line oriented, in that a maximum of one statement per line
of source file is allowed. The rdp generated parsers that we have looked at
previously have been free format in that line ends and white space may be
introduced arbitrarily between language tokens so as to format the source file for
human convenience. rdp provides a special scanner primitive denoted by EOLN

which matches against the line end marker, and a special comment primitive
COMMENT_LINE which can be used to specify comments which are introduced by
a grammar token and terminated by a line end. If an rdp grammar does not
include any instances of EOLN then line end markers are suppressed and treated
as whitespace.

6.4 The mvmasm grammar

A listing of mvmasm.bnf, the rdp specification for mvmasm is shown in Fig-
ures 6.1–6.3. The main body of the mvmasm grammar is shown in Figure 6.2.
The third part of the listing (Figure 6.3) shows a self contained interpreter
for arithmetic expressions based on the C-language operators. This part of
the grammar is a useful starting point for any small language based around
expression evaluation. We shall look at the three parts in turn.

6.4.1 Directives for setting up the parser

mvmasm source files have default file type .mvm as specified in line 11. Three
header files are used by the grammar: mvm_aux.h which contains the function
prototypes for the auxiliary functions described in the next section, mvm_def.h
which contains an enumeration listing the MVM operation codes (see Fig-
ure 6.4) and the ANSI-C library file math.h which is used to implement the
exponentiation operator.

6.4.2 The MVM definition header

The parser uses three passes to resolve forward references in the way described
above. Output file handling is performed by the PRE and POST_PARSE functions
(init() and quit(), respectively) declared on lines 18 and 19. The -x com-
mand line switch is set up using an ARG_BOOLEAN directive in line 21 along with
some other additional information for the help message.

mvmasm uses a symbol table to keep track of labels and their contents. When
a label is first declared it is added to the symbol table and given the value of
the assembler’s current location counter. However, the EQU directive can be
used to assign arbitrary numeric values to labels by evaluating expressions,
and label values may of course be used in those expressions. Thus labels in
mvmasm perform the same rôle as variables in the minicalc interpreter and
it is perhaps to be expected that the symbol table declaration in lines 28–35
is essentially identical to the symbol table declaration in the minicalc and
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1: (*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * mvmasm.bnf - an assembler for Mini Virtual Machine assembler language

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************)

10: TITLE("mvmasm v1.5 - absolute assembler for mvm")

11: SUFFIX("mvm")

12: USES("mvm_aux.h")

13: USES("math.h")

14: USES("mvm_def.h")

15: PASSES(3)

16: PARSER(unit) (* name of start production *)

17:

18: PRE_PARSE([* init(rdp_outputfilename); *])

19: POST_PARSE([* quit(rdp_outputfilename); *])

20:

21: ARG_BOOLEAN(x execute_sim "execute assembled code using mvmsim simulator")

22: ARG_BLANK("")

23: ARG_BLANK("You can contact the author (Adrian Johnstone) at:")

24: ARG_BLANK("")

25: ARG_BLANK("Computer Science Department, Royal Holloway, University of London")

26: ARG_BLANK("Egham, Surrey, TW20 0EX UK. Email: A.Johnstone@rhbnc.ac.uk")

27:

28: SYMBOL_TABLE(mvmasm 101 31

29: symbol_compare_string

30: symbol_hash_string

31: symbol_print_string

32: [* char *id;

33: integer val;

34: *]

35: )

36:

37: unit ::= [* emit_code = (rdp_pass == 3);

38: data_location = code_location = 0; /* clear location counters */

39: location = &code_location; /* make code counter current */

40: dummy_label = symbol_new_symbol(sizeof(mvmasm_data)); /* initialise error symbol */

41: *]

42: { code }.

43:

44: code ::= [* emit_eoln(); emit_loc(); last_label = NULL; *]

45: [label ’:’] [instr] [* emit_fill(); *] EOLN.

46:

Figure 6.1 An rdp BNF specification for mvmasm part 1: rdp directives and the
start production
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47: label ::= ID:lab

48: [* if ((last_label = symbol_lookup_key(mvmasm, &lab, NULL)) == NULL)

49: last_label = symbol_insert_key(mvmasm, &lab, sizeof(char*), sizeof(mvmasm_data));

50: mvmasm_cast(last_label)->val = *location;

51: *].

52:

53: instr ::= diadic | copy | branch | print | halt | directive.

54:

55: diadic ::= [* int op, m1 = 1, m2 = 1; *]

56: (

57: ’ADD’ [* op = OP_ADD; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2 |

58: ’SUB’ [* op = OP_SUB; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2 |

59: ’MUL’ [* op = OP_MUL; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2 |

60: ’DIV’ [* op = OP_DIV; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2 |

61: ’EXP’ [* op = OP_EXP; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2 |

62:

63: ’EQ’ [* op = OP_EQ; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2 |

64: ’NE’ [* op = OP_NE; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2 |

65: ’GT’ [* op = OP_GT; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2 |

66: ’GE’ [* op = OP_GE; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2 |

67: ’LT’ [* op = OP_LT; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2 |

68: ’LE’ [* op = OP_LE; *] e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src1 ’,’ [’#’ [* m2=0; *] ] e1:src2

69: ) [* emit_op(op, dst, src1, src2, m1, m2, 3); *] .

70:

71: copy ::= [* int m1 = 1; *]

72: ’CPY’ e1: dst ’,’ [’#’ [* m1=0; *] ] e1: src [* emit_op(OP_CPY, dst, src, 0, m1, 1, 2); *] .

73:

74: branch ::= ’BEQ’ e1: src ’,’ e1: label [* emit_op(OP_BEQ, label, src, 0, 1, 1, 2); *] |

75: ’BNE’ e1: src ’,’ e1: label [* emit_op(OP_BNE, label, src, 0, 1, 1, 2); *] |

76: ’BRA’ e1: label [* emit_op(OP_BEQ, label, 0, 0, 0, 1, 2); /* force immediate mode */ *] .

77:

78: print ::= [* int m1 = 1; *]

79: (

80: ’PRTS’ e1: src [* emit_op(OP_PRTS, 0, src, 0, 0, 1, 2); /* force immediate mode */ *] |

81: ’PRTI’ [’#’ [* m1=0; *] ] e1: src [* emit_op(OP_PRTI, 0, src, 0, m1, 1, 2); *]

82: ).

83:

84: halt ::= ’HALT’ [* emit_op(OP_HALT, 0, 0, 0, 1, 1, 0); *] .

85:

86: directive ::= ’INCLUDE’ ’(’ string: filename ’)’

87: [* if (text_open(filename) == NULL)

88: text_message(TEXT_ERROR_ECHO, "include file ’%s’ not found\n", filename);

89: else

90: {

91: text_get_char();

92: scan_();

93: }

94: *] |

95:

96: ’CODE’ [* location = &code_location; *] [ e1:n [* *location = n; *] ] |

97: ’DATA’ [* location = &data_location; *] [ e1:n [* *location = n; *] ] |

98: ’WORD’ e1:val [* emit2(val); *] |

99: ’BLOCKW’ e1:val [* *location += 2 * val; *] |

100: ’STRING’ string:str [* while (*str!=0) emit1(*str++); emit1(0); *] |

101: ’EQU’ e1:val [* mvmasm_cast(current_label())->val = val; *] |

102: ’END’ e1: val [* transfer = val; emit_transfer(); *] .

103:

Figure 6.2 An rdp BNF specification for mvmasm part 2: instructions
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104: (* Expression interpreter using C operators and long int data ***************)

105:

106: e1:integer ::= e2:result [’>’ e2:right [* result = result > right; *] | (* Greater than *)

107: ’<’ e2:right [* result = result < right; *] | (* Less than *)

108: ’>=’ e2:right [* result = result >= right; *] | (* Greater than or equal to *)

109: ’<=’ e2:right [* result = result <= right; *] | (* Less than or equal to *)

110: ’==’ e2:right [* result = result == right; *] | (* Equal to *)

111: ’!=’ e2:right [* result = result != right; *] ]. (* Not equal to *)

112:

113: e2:integer ::= e3:result {’||’ e3:right [* result = result || right; *]}. (* Logical inclusive OR *)

114:

115: e3:integer ::= e4:result {’&&’ e4:right [* result = result && right; *]}. (* Logical AND *)

116:

117: e4:integer ::= e5:result {’^’ e5:right [* result ^= right; *]}. (* Bitwise exclusive OR *)

118:

119: e5:integer ::= e6:result {’|’ e6:right [* result |= right; *]}. (* Bitwise inclusive OR *)

120:

121: e6:integer ::= e7:result {’&’ e7:right [* result &= right; *]}. (* Bitwise AND *)

122:

123: e7:integer ::= e8:result {’<<’ e8:right [* result <<= right; *] | (* Shift left *)

124: ’>>’ e8:right [* result >>= right; *] }. (* Shift right *)

125:

126: e8:integer ::= e9:result {’+’ e9:right [* result += right; *] | (* Add *)

127: ’-’ e9:right [* result -= right; *] }. (* Subtract *)

128:

129: e9:integer ::= e10:result {’*’ e10:right [* result *= right; *] | (* Divide *)

131:

132: e10:integer ::= ’+’ e10:result | (* Posite *)

133: ’-’ e10:result [* result = -result; *] | (* Negate *)

134: ’~’ e10:result [* result = ~result; *] | (* Bitwise complement *)

135: ’!’ e10:result [* result = !result; *] | (* Logical not *)

136: e11:result.

137:

138: e11:integer ::= e0:result [’**’ e10:right [* result = (integer) pow((double) result, (double) right); *]].

139:

140: e0:integer ::= [* mvmasm_data* temp; *]

141: ID:name

142: [* temp = mvmasm_cast(symbol_lookup_key(mvmasm, &name, NULL));

143: if (temp == NULL)

144: {

145: if (rdp_pass == 3)

146: text_message(TEXT_ERROR_ECHO,"Undefined symbol ’%s’\n", name);

147: result = 0;

148: }

149: else

150: result = temp->val;

151: *] | (* Variable *)

152: INTEGER:result | (* Numeric literal *)

153: ’TRUE’ [* result = 1; *] | (* Logical TRUE *)

154: ’FALSE’ [* result = 0; *] | (* Logical FALSE *)

155:

156: ’(’ e1:result ’)’. (* Parenthesised expression *)

157:

158: string: char* ::= STRING_ESC(’"’ ’\\’):result.

159:

160: Comment ::= COMMENT_LINE(’;’).

Figure 6.3 An rdp BNF specification for mvmasm part 3: expressions
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1: /*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * mvm_def.h - Mini Virtual Machine opcode definitions

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************/

10: enum opcodes{OP_HALT, OP_ADD, OP_SUB, OP_MUL, OP_DIV, OP_EXP,

11: OP_EQ, OP_NE, OP_GT, OP_GE, OP_LT, OP_LE,

12: OP_CPY,

13: OP_BNE, OP_BEQ,

14: OP_PRTS, OP_PRTI};

Figure 6.4 The MVM opcode definitions

minicond grammars. The alphanumeric label indentifier is stored in the char*
field id and the value of the label is held in the val field.

6.4.3 The main mvmasm grammar

The top level rule unit accepts zero or more lines of assembler source. unit

itself is activated three times, once for each pass over the source. rdp auto-
matically resets the input at the start of each pass, but some mvmasm variables
need to be re-initialised each time as shown in lines 37–40. The boolean flag
emit_code is set to true on pass three and is used to control the output to
the binary file: code emission is inhibited on passes one and two when this
flag is false. Both the data and code location counters are zeroed, and the
code location is set as the default assembly address. Finally, dummy_label is
initialised to point to a new symbol table record. This record is used to handle
errors involving the EQU assembler directive as will be described below.

Each line of assembler source is processed by the code rule which can match
an optional label, an optional instruction and a line end (EOLN) primitive. At
the start of each line, an end of line character is sent to the output by calling
emit_eoln() followed by the value of current location counter. The global
variable last_label is set to NULL to indicate that no label has been seen
yet on this line. After processing the contents of the line the code rule calls
emit_fill() to pad the binary output to column 16. This ensures that the
mixed binary/source output listing is properly aligned.

Labels are processed by rule label. The string representing the label’s
name is returned in attribute lab and the semantic action in lines 48–51 first
looks up the label in the symbol table (inserting it if not already present) before
loading the current value of the location counter into the symbol’s val field. It
should be clear that labels may be redefined in mvmasm, that is they may appear
more than once in a label field. This is primarily intended to allow labels to
have new values assigned with the EQU directive, but it does mean that a label
might accidentally be used several times within a code segment and it is hard
to imagine a situation where this would not represent a programming error.
The reader might like to consider whether it would be appropriate to issue a
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warning message when such a doubly-declared label is encountered.

Rule instr on line 53 splits the handling of instructions into six cases: the
first five handle the five syntactically different classes of MVM instructions and
the sixth handles the assembler directives.

The diadic instructions (matched by rule diadic) illustrate the general prin-
ciples used in all MVM instruction processing. Three local variables op, m1 and
m2 are used to collect the operation code and the addressing modes for the
two destination operands. Upon recognition of the opcode op is set to the
corresponding member of the opcodes enumeration shown in Figure 6.4. The
addressing modes are set to 1 (variable mode addressing) by default but are
set to 0 (constant mode addressing) if the corresponding operand starts with
a # character. The expression evaluator (which is described in the next sec-
tion) is called for each operand. After the line has been processed the auxiliary
function emit_op() is called to output the binary pattern corresponding to the
instruction.

The other MVM instructions are processed similarly. The eight assembler
directives are handled by rule directive. The INCLUDE directive collects a
filename and calls text_open() to lookup and open the file. If the file is not
found, text_open() returns NULL and an error message is issued. If the file
is successfully opened, the text handler and scanner are initialised (lines 91–
92). There is no need to restore the scanner and text handler context when an
included file is closed because the text handler performs this task automatically.

The CODE and DATA directives switch the current assembly location to the
code or data pointer respectively. They also optionally take an expression and
update the location accordingly.

The WORD, BLOCKW and STRING directives allocate storage space for data.
WORD takes an expression which is evaluated and emitted directly. The BLOCKW
also takes an expression which is then used to update the location counter which
has the effect of reserving a block of storage without initialising it. The STRING
directive accepts a double quote delimited string and then emits along with a
terminating zero (the ASCII nul character).

The EQU directive takes an expression and updates the current label’s val
field accordingly. The END directive marks the end of the assembly unit and
specifies the start address of the unit.

6.4.4 The expression evaluator

The expression evaluator follows the general principles used in the minicalc

interpreter. In mvmasm a more complete set of operators is available than in
minicalc, corresponding to the complete set of ANSI-C integer operators aug-
mented with the exponentiation operator **. Two literal values have also been
added, true and false, which yield 1 and 0 respectively. Identifiers are checked
for validity on the final pass (lines 143–150): undefined labels on earlier passes
are simply ignored.
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1: /*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * mvm_aux.c - Mini Virtual Machine assembler semantic routines

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************/

10: #include <stdarg.h>

11: #include <stdio.h>

12: #include <stdlib.h>

13: #include "scan.h"

14: #include "memalloc.h"

15: #include "textio.h"

16: #include "mvmasm.h"

17: #include "mvm_aux.h"

18:

19: int emit_code = 0;

20: int execute_sim = 0;

21:

22: static FILE * objfile = NULL;

23:

24: unsigned long * location;

25: unsigned long data_location;

26: unsigned long code_location;

27: unsigned long transfer = 0;

28:

29: void * last_label = NULL; /* pointer to most recently seen label */

30: void * dummy_label = NULL; /* dummy symbol returned by current label on error */

31:

32: static int emitted = 0; /* Count of bytes emitted this line */

33:

Figure 6.5 mvmasm auxiliary functions part 1: declarations

6.5 mvmasm auxiliary functions

The mvmasm auxiliary functions shown in Figures 6.5 –6.7 perform file handling
and output to the binary object file. Function emitf() (lines 34–51) forms the
heart of the output routines: it simulates the behaviour of the ANSI-C printf()

output function by accepting a formatted output string and an arbitrary number
of output fields and then using ANSI-C vprintf() and vfprintf() functions
to format the output. The ANSI-C standard library macros va_list, va_start
and va_end are used to handle the variable number of arguments which emitf()

may be passed—see any good book on ANSI-C for an explanation of their use.
If the emit_code flag is false, the output is simply discarded, but if it is true (as
it will be on pass 3) then the output is sent to the object file. In addition, if text
echoing is enabled with a -l command line option (to construct an assembler
listing) then up to the first 16 characters are also echoed to the screen.

The functions emit_transfer(), emit_loc() and emit_fill() call emitf()
to print the transfer address and the current value of the location counter and
to pad the line with spaces to column 16.
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34: static int emitf(char * fmt, ...) /* conditional print to object file */

35: {

36: int i;

37: va_list ap; /* argument list walker */

38:

39: va_start(ap, fmt);

40:

41: if (emit_code) /* no-op if not emitting... */

42: {

43: if (emitted < 16 && text_get_echo())

44: i = vprintf(fmt, ap);

45: vfprintf(objfile, fmt, ap); /* ... otherwise pass to fprintf() */

46: }

47:

48: va_end(ap);

49:

50: return(i); /* for completeness, although not used here */

51: }

52:

53: void emit_eoln(void)

54: {

55: if (emit_code)

56: fprintf(objfile, "\n");

57: }

58:

59: void emit_transfer(void)

60: {

61: if (emit_code)

62: emitted += emitf("*%.4lX", transfer);

63: }

64:

65: void emit_loc(void)

66: {

67: emitted = 0;

68: emitf("%.4lX ", * location);

69: }

70:

71: void emit_fill(void)

72: {

73: if (text_get_echo())

74: {

75: while (emitted++ < 16) printf(" ");

76: printf(" ");

77: }

78: }

79:

80: void emit_op(int op, unsigned long oper1, unsigned long oper2, unsigned long oper3,

int mode1, int mode2, int opers)

81: {

82: emit1((unsigned long) op); /* output opcode */

83: emit1((unsigned long)((mode1 << 4)| mode2)); /* output addressing modes */

84: if (opers > 0)

85: emit2(oper1);

86: if (opers > 1)

87: emit2(oper2);

88: if (opers > 2)

89: emit2(oper3);

90: }

91:

Figure 6.6 mvmasm auxiliary functions part 2: main output routines
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92: void emit1(unsigned long val)

93: {

94: emitted += emitf("%.2lX", val);

95: (* location)++;

96: }

97:

98: void emit2(unsigned long val)

99: {

100: emitted += emitf("%.4lX", val);

101: (* location)+= 2;

102: }

103:

104: void * current_label(void) /* check that there is a valid label on this line */

105: {

106: if (last_label == NULL)

107: {

108: text_message(TEXT_ERROR_ECHO, "Missing label on directive\n");

109: return & dummy_label;

110: }

111: else

112: return last_label;

113: }

114:

115: void init(char * outputfilename)

116: {

117: if (* outputfilename == ’-’)

118: objfile = stdout;

119: else if ((objfile = fopen(outputfilename, "w"))== NULL)

120: text_message(TEXT_FATAL, "Unable to open object file");

121: }

122:

123: int quit(char * outputfilename)

124: {

125: fclose(objfile);

126:

127: text_message(TEXT_INFO, "Transfer address %.8lX\n", transfer);

128:

129: if (execute_sim && * outputfilename != ’-’)

130: {

131: #define COMMAND "mvmsim -t -v "

132: char * command =(char *) mem_calloc(1, strlen(outputfilename)+ strlen(COMMAND)+ 1);

133:

134: command = strcat(command, COMMAND);

135: command = strcat(command, outputfilename);

136:

137: text_message(TEXT_INFO, "Calling simulator: %s \n", command);

138:

139: if (system(command)!= 0)

140: text_message(TEXT_FATAL, "Not enough memory or simulator not found\n");

141: }

142:

143: return 0;

144: }

Figure 6.7 mvmasm auxiliary functions part 3: housekeeping functions
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The emit1() and emit2() functions in lines 92–102 output one and two
byte (two and four hexadecimal digit) values and then update the current as-
sembly location accordingly. They are used by the emit_op() function to out-
put complete MVM instructions. Each instruction comprises an opcode byte
and a mode byte constructed from the two mode fields passed into the function.
Between zero and three 16-bit operands are then output.

Function current_label() (lines 104–113) returns the value of the last la-
bel seen. At the start of each line of assembler source, the parser resets the vari-
able last_label to NULL. This flags the error condition for the EQU directive— if
no label has been seen an error message is issued and a pointer to dummy_label

is returned instead. This is so as to ensure that subsequent assignments to the
label fields of the symbol table record returned by current_label() do not
need to check for a NULL pointer.

The init() function in lines 115–121 is straightforward: it simply attempts
to open the output file and issues an error message if the file open fails. The
quit() function closes the object file and echoes the transfer address to the
screen. If the -x command line option has been used then the flag execute_sim
will be true. Assuming that the object file was not sent to stdout, i.e. that a
file containing the object code exists, a command is constructed that will run
the simulator on the object file and then the ANSI-C library function system()

is called to pass control to the simulator.





Chapter 7

A single pass compiler for miniloop

This chapter describes the first of two full compilers for an extended version of
the minicond syntax that provides a while loop and a compound statement
delimited by begin and end keywords. The compiler works by recognising
compilable fragments of the source code, such as an individual assignment or
an arithmetic operation, and then emitting the corresponding MVM assembler
instruction. The output of the compiler is a complete assembler program with
the same semantics as the miniloop source program, and this can then be
assembled using mvmasm and executed using mvmsim.

In this chapter we shall describe the language features added to miniloop,
give an example of the compiler’s output and then describe the assembler code
patterns that are used to implement the miniloop high level language con-
structs. We shall then describe in detail the rdp grammar and auxiliary routines
that are used to implement miniloop. In the next chapter we shall describe an-
other compiler called minitree which compiles from the same source language
to the same MVM assembler code as miniloop. The difference between the
two compilers is that miniloop emits assembler code during the parse whereas
minitree builds an internal representation of the source program (a modified
derivation tree) and then, in a separate phase, traverses the tree to output the
assembler code. The two compilers are functionally almost identical as they
stand, but minitree allows code optimisations such as rearranging the order
of instructions to be performed. Since miniloop is a single pass compiler it
cannot perform code re-ordering.

7.1 miniloop features

miniloop programs look like minicond programs with some additional fea-
tures— the minicond and minicalc languages are almost strict subsets of the
miniloop language so any minicalc or minicond program will be correctly
handled by the miniloop compiler. The only exception to this rule is that
miniloop variable names must not start with two underscore characters. This
is because miniloop generates internal identifier names with that form, and we
do not want user identifiers and internal identifiers to clash. Figure 7.1 shows
an example miniloop program.
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1: (*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * testloop.m - a piece of Miniloop source to test the Miniloop compiler

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************)

10:

11: int a=3+4, b=1;

12:

13: print("a is ", a, "\n");

14:

15: b=a*2;

16:

17: print("b is ", b, ", -b is ", -b, "\n");

18:

19: print(a, " cubed is ", a**3, "\n");

20:

21: int z = a;

22:

23: if z==a then print ("z equals a\n") else print("z does not equal a\n");

24:

25: z=a - 3;

26:

27: if z==a then print ("z equals a\n") else print("z does not equal a\n");

28:

29: a = 3;

30:

31: while a > 0 do

32: begin

33: print("a is ", a, "\n");

34: a = a - 1

35: end;

36:

37: (* End of testloop.m *)

Figure 7.1 An example miniloop program (testloop.m)

The output produced when this is run through the miniloop compiler and
then assembled and simulated by mvmasm and mvmsim, is shown in Figure 7.2.
The assembler code produced by miniloop is shown in Figures 7.6–7.8 and
discussed in section 7.8.

7.1.1 The begin end block (compound statement)

It is useful to be able to group statements together into blocks so that a single
if statement can control the execution of a list of statements. In minicond

only a single statement could be placed within the then or else clause of an
if statement. The begin end brackets allow statements to be grouped and
treated as a single, compound, statement. It is worth noting that miniloop

is strict about the placement of semicolons which are statement separators not
statement terminators as they are in ANSI-C. The last statement in a begin end
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a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

a is 3

a is 2

a is 1

-- Halted --

Figure 7.2 mvmsim output for assembled output from miniloop for the example
program

block cannot by definition therefore have a semicolon following it, so it is always
an error to have a semicolon before an end statement. This usage follows that
of Pascal and Algol-68 although Pascal does allow an empty statement which
in most cases allows spurious semicolons to be accepted.

7.1.2 The while loop

Lines 31–35 of Figure 7.1 illustrate the use of the while loop which is essentially
identical to the while loop in Pascal. A relational expression is repeatedly
evaluated and the statement after the do keyword is evaluated as long as the
expression is true. The statement may be either a simple statement (such as
print or indeed another while) or it may be a compound statement, as in the
example.

7.2 Arranging data and code in memory

MVM is limited to 64K bytes of memory because the address fields in the in-
structions are only 16 bits long and 216 = 65536 = 64K. MVM instructions can
be executed from any location and operands can also reside anywhere in mem-
ory, but miniloop places code in a single sequence starting at location 100016
and data in a single block starting at location 800016. Within the data block,
internal temporary variables created during the compilation of expressions are
placed at the end. This memory map is shown in Figure 7.3.

We establish this memory map by setting the CODE and DATA assembly
pointers appropriately. At the start of each program, miniloop issues the
following assembler directives:

DATA 0x8000

__MPP_DATA:

CODE 0x1000

__MPP_CODE:

This has the effect of initialising the start address for data assembly to
800016 and setting the label __MPP_DATA to the address of the first data item,
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Spare memory
100016

800016

Code

Unused code space

User data

Internal temporary data

Unused data space

Figure 7.3 MVM memory map for programs compiled by miniloop

and then initialising the start address for code assembly to 100016 and set-
ting the label __MPP_CODE to the address of the first instruction, which will
subsequently be used as the transfer address.

At the end of each program miniloop writes out directives of this form:

DATA

__temp: BLOCKW 9 ;declare array of temporaries

END __MPP_CODE

Here assembly is switched to the data region and a block of temporaries (in
this case nine words long) is specified. These form the array of temporary
variables used during expression evaluation (as described in section 7.4) and
represented by the region Internal temporary data in Figure 7.3. Finally, the
value of __MPP_CODE is established as the transfer address by naming it in an
END directive.

7.3 Compiling declarations

A declaration in miniloop such as

int a;

reserves space for one integer in memory and makes the identifier a a synonym
for the address of that variable. Whenever the compiler encounters a declaration
it switches to the DATA location and assembles a WORD directive:

DATA

a: WORD 0
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The WORD directive reserves one word (two bytes) of memory and initialises
them, in this case to zero. Following such a declaration we can use the identifier
a to refer symbolically to the location holding the contents of the variable a

just as we would in the high level source code.

7.4 Compiling arithmetic expressions

The parser breaks expressions down into individual operations taking account
of operator priority and associativity as discussed in Chapter 2. Each operation
is then compiled into the corresponding MVM instruction with the destination
operand being a temporary variable. A sub-expression of the form 3 + 4 will
be compiled to

ADD __temp + 0,#3,#4 ;__temp + 0 := #3 + #4

The temporary variables do not need to be separately declared in the way that
user variables were handled in the previous section. Instead, the compiler keeps
count of the number of temporaries used and declares them in a block at the
end of the program. The temporaries are always referred to as __temp + n

where n us the number of the temporary. This uses the address calculation
capability of the assembler to avoid the need for a large number of separate
labels.

7.5 Compiling print statements

The print statement can take an arbitrary number of parameters of either
string or integer type. The MVM instruction set provides two opcodes specifi-
cally for printing strings and integers.

For an integer parameter, code to evaluate the arithmetic expression is is-
sued which leaves a value in a temporary variable t. The compiler then simply
issues an instruction of the form

PRTI __temp + t ;print integer

For the case of an expression made up of a single variable, the expression eval-
uator returns the name of that variable instead of the name of a temporary, so
code of the form

PRTI v ;print integer

will be issued, where v is the name of the variable.
For a string parameter the compiler outputs code of the form

DATA

__STR_2: STRING "b is "

CODE

PRTS __STR_2

The string is stored in data space and given a unique label (in this case __STR_2).
The compiler then switches back to code space and emits a PRTS instruction.
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IF n:

relational test

then block

ELSE n:

else block

FI n:

❄

❄

❄

❄

Figure 7.4 Flow of control through a compiled if-then-else statement

7.6 Compiling if statements

An if-then-else statement defines three blocks of code: a relational expres-
sion, a then block and an else block. Figure 7.4 illustrates the code template
used by miniloop and the allowed forms of control flow through the construct.
miniloopmaintains an internal label counter which is advanced each time a new
unique label is required. Such labels are needed for labelling the strings used
when assembling print statements containing string parameters and whenever
a structured statement (such as if-then or while-do) is encountered. In the
case of an if-then-else statement the start of the statement (corresponding to
the first assembler instruction in the compiled version of the relational expres-
sion) is labeled __IF_n where n is the current value of the label counter. n is
called the number of the control statement. Similarly, the end of the statement
is labeled __FI_n and the start of the else block is labeled with __ELSE_n.

The relational expression is compiled first, yielding a temporary variable
which will contain a zero if the expression evaluates to false and a one other-
wise. The compiler then issues the assembler instruction

BEQ __temp + t, __ELSE_n ;ifn __temp + t go to __ELSE_n

where t is the number of the temporary containing the result of evaluating the
relational expression and n is the number of the control statement as defined
above. This has the effect of jumping to the else block if the condition was
false.

The compiler then emits the code for the then block followed by the assem-
bler instruction

BRA __FI_n ;go to __FI_n



Compiling while loops 73

DO n:

relational test

do block

OD n:

❄

❄

❄

❄

Figure 7.5 Flow of control through a compiled while-do statement

which causes control to flow unconditionally to the end of the if statement.
Finally, the compiler emits the __ELSE_n label and the code for the else block
(which may be empty) finishing off with the __FI_n label.

7.7 Compiling while loops

A while-do statement is similar to an if-then statement (with no else) clause
which is followed by a jump back to the relational test. There are two blocks
of code: a relational expression, and the do block. Figure 7.5 illustrates the
code template used by miniloop and the allowable control flow through the
construct.

The compiler emits two labels for each while-do loop: one of the form
__DO_n to mark the start of the statement and one of the form __OD_n to mark
the end, where n is the number of the control statement.

The relational expression is compiled first, yielding a temporary variable
which will contain a zero if the expression evaluates to false and a one other-
wise. The compiler then issues the assembler instruction

BEQ __temp + t, __OD_n ;ifn __temp + t go to __OD_n

where t is the number of the temporary containing the result of evaluating the
relational expression and n is the number of the control statement. This has
the effect of jumping to the end of the while-do if the condition was false. The
code for the do block is then emitted followed by the __OD_n label.

7.8 Typical compiler output

Figures 7.6–7.8 show the compiled output for the test program in Figure 7.1
which contains instances of all the constructs described above. In particular,
note the setup and wrapup code in lines 3–6 and 137–142, the declaration in
lines 8–9, the arithmetic expression evaluation in line 12 and the assignment
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of its result to user variable a in line 13, the if-then-else statement at lines
97–114 and the while-do statement at lines 116–135.

7.9 Implementing miniloop

The miniloop compiler makes a single pass over the source file emitting MVM
instructions as it goes. We shall examine the grammar first and then look at
the auxiliary functions which perform the actual code output.

7.9.1 A grammar for miniloop

The overall form of the miniloop grammar shown in Figures 7.9 and 7.10 is
similar to the minicond grammar with the addition of syntax for a while-do

loop in lines 56–61 and syntax for the begin-end compound statement on line
67. The symbol table declared in lines 17–22 is used only for keeping track of
whether a variable has been correctly identified and so the symbol table data
specified in line 21 includes only the id field—there is no need for an integer
data field as there was for the minicalc and minicond interpreters. When a
variable is declared it is checked for validity (line 39–40): miniloop variable
names must not begin with a double underscore (__) because these might clash
with the internal label names. Lines 44–67 show the statement compiler. This
emits code according to the templates described in the previous sections.

A significant difference between the miniloop grammar and the earlier
minicond and minicalc grammars is that here the expression rules return
char* attributes rather then integer ones. In the previous grammars, the
expression rules formed an interpreter that returned values. In miniloop the
rules return the labels of locations that will contain the values at run time.
Each level of the expression tree has this basic form:

79: e1:char* ::= [* char* dst; *] e2:left { [* dst = new_temporary(); *]

80: ( ’+’ e2:right [* emit("ADD", "+", dst, left, right); *] |

81: ’-’ e2:right [* emit("SUB", "-", dst, left, right); *]

82: )

83: [* left = dst; *]

84: } [* result = left; *].

The auxiliary function emit() outputs one assembler instruction constructed
from the supplied opcode and operand parameters. The new_temporary()

function constructs a string of the form __temp + n where n is the name of the
next available temporary variable. This temporary then becomes the destina-
tion operand for the assembler instruction corresponding to the operator being
processed.

7.9.2 miniloop auxiliary functions

The miniloop auxiliary functions are shown in Figures 7.11 and 7.12. They
perform file handling, output to the assembler object file and some housekeeping
concerned with the generation of unique labels. Function emitf() (lines 24–
31) forms the heart of the output routines: it simulates the behaviour of the
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0000 1: ; testloop.mvm - generated from ’testloop.m’

0000 2:

0000 3: DATA 0x8000

8000 4: __MPP_DATA:

8000 5: CODE 0x1000

1000 6: __MPP_CODE:

1000 7:

1000 8: DATA

8000 0001 9: a: WORD 0

8002 10:

8002 11: CODE

1000 0100807400030004 12: ADD __temp + 0, #3, #4 ;__temp + 0 := #3 + #4

1008 0C1180008074 13: CPY a, __temp + 0 ;a := __temp + 0

100E 14:

100E 15: DATA

8002 0001 16: b: WORD 0

8004 17:

8004 18: CODE

100E 0C0180020001 19: CPY b, #1 ;b := #1

1014 20:

1014 21: DATA

8004 612069732000 22: __STR_0: STRING "a is "

800A 23:

800A 24: CODE

1014 0F0100008004 25: PRTS __STR_0

101A 101100008000 26: PRTI a ;print integer

1020 27:

1020 28: DATA

800A 0A00 29: __STR_1: STRING "\n"

800C 30:

800C 31: CODE

1020 0F010000800A 32: PRTS __STR_1

1026 0310807580000002 33: MUL __temp + 1, a, #2 ;__temp + 1 := a * #2

102E 0C1180028075 34: CPY b, __temp + 1 ;b := __temp + 1

1034 35:

1034 36: DATA

800C 622069732000 37: __STR_2: STRING "b is "

8012 38:

8012 39: CODE

1034 0F010000800C 40: PRTS __STR_2

103A 101100008002 41: PRTI b ;print integer

1040 42:

1040 43: DATA

8012 2C202D6220697320 44: __STR_3: STRING ", -b is "

801B 45:

801B 46: CODE

1040 0F0100008012 47: PRTS __STR_3

1046 0211807600008002 48: SUB __temp + 2, 0, b ;__temp + 2 := 0 - b

104E 101100008076 49: PRTI __temp + 2 ;print integer

1054 50:

Figure 7.6 miniloop compiled output for the example program: part 1
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1054 51: DATA

801B 0A00 52: __STR_4: STRING "\n"

801D 53:

801D 54: CODE

1054 0F010000801B 55: PRTS __STR_4

105A 101100008000 56: PRTI a ;print integer

1060 57:

1060 58: DATA

801D 2063756265642069 59: __STR_5: STRING " cubed is "

8028 60:

8028 61: CODE

1060 0F010000801D 62: PRTS __STR_5

1066 0510807780000003 63: EXP __temp + 3, a, #3 ;__temp + 3 := a ** #3

106E 101100008077 64: PRTI __temp + 3 ;print integer

1074 65:

1074 66: DATA

8028 0A00 67: __STR_6: STRING "\n"

802A 68:

802A 69: CODE

1074 0F0100008028 70: PRTS __STR_6

107A 71:

107A 72: DATA

802A 0001 73: z: WORD 0

802C 74:

802C 75: CODE

107A 0C11802A8000 76: CPY z, a ;z := a

1080 77: __IF_7:

1080 06118078802A8000 78: EQ __temp + 4, z, a ;__temp + 4 := z == a

1088 0E11109A8078 79: BEQ __temp + 4,__ELSE_7 ;ifn __temp + 4 go to __ELSE_7

108E 80:

108E 81: DATA

802C 7A20657175616C73 82: __STR_8: STRING "z equals a\n"

8038 83:

8038 84: CODE

108E 0F010000802C 85: PRTS __STR_8

1094 0E0110A00000 86: BRA __FI_7 ;go to __FI_7

109A 87: __ELSE_7:

109A 88:

109A 89: DATA

8038 7A20646F6573206E 90: __STR_9: STRING "z does not equal a\n"

804C 91:

804C 92: CODE

109A 0F0100008038 93: PRTS __STR_9

10A0 94: __FI_7:

10A0 0210807980000003 95: SUB __temp + 5, a, #3 ;__temp + 5 := a - #3

10A8 0C11802A8079 96: CPY z, __temp + 5 ;z := __temp + 5

10AE 97: __IF_10:

10AE 0611807A802A8000 98: EQ __temp + 6, z, a ;__temp + 6 := z == a

10B6 0E1110C8807A 99: BEQ __temp + 6,__ELSE_10 ;ifn __temp + 6 go to __ELSE_10

10BC 100:

Figure 7.7 miniloop compiled output for the example program: part 2
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10BC 101: DATA

804C 7A20657175616C73 102: __STR_11: STRING "z equals a\n"

8058 103:

8058 104: CODE

10BC 0F010000804C 105: PRTS __STR_11

10C2 0E0110CE0000 106: BRA __FI_10 ;go to __FI_10

10C8 107: __ELSE_10:

10C8 108:

10C8 109: DATA

8058 7A20646F6573206E 110: __STR_12: STRING "z does not equal a\n"

806C 111:

806C 112: CODE

10C8 0F0100008058 113: PRTS __STR_12

10CE 114: __FI_10:

10CE 0C0180000003 115: CPY a, #3 ;a := #3

10D4 116: __DO_13:

10D4 0810807B80000000 117: GT __temp + 7, a, #0 ;__temp + 7 := a > #0

10DC 0E111108807B 118: BEQ __temp + 7,__OD_13 ;ifn __temp + 7 go to __OD_13

10E2 119:

10E2 120: DATA

806C 612069732000 121: __STR_14: STRING "a is "

8072 122:

8072 123: CODE

10E2 0F010000806C 124: PRTS __STR_14

10E8 101100008000 125: PRTI a ;print integer

10EE 126:

10EE 127: DATA

8072 0A00 128: __STR_15: STRING "\n"

8074 129:

8074 130: CODE

10EE 0F0100008072 131: PRTS __STR_15

10F4 0210807C80000001 132: SUB __temp + 8, a, #1 ;__temp + 8 := a - #1

10FC 0C118000807C 133: CPY a, __temp + 8 ;a := __temp + 8

1102 0E0110D40000 134: BRA __DO_13 ;go to __DO_13

1108 135: __OD_13:

1108 136:

1108 0011 137: HALT

110A 138:

110A 139: DATA

8074 140: __temp: BLOCKW 9 ;declare array of temporaries

8086 141:

8086 *1000 142: END __MPP_CODE

Figure 7.8 miniloop compiled output for the example program: part 3
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1: (*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * miniloop.bnf - a decorated mini loop grammar with single pass compiler semantics

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************)

10: TITLE("Miniloop compiler V1.50 (c) Adrian Johnstone 1997")

11: SUFFIX("m")

12: PARSER(program)

13: USES("ml_aux.h")

14: TREE

15: OUTPUT_FILE("miniloop.mvm")

16:

17: SYMBOL_TABLE(mini 101 31

18: symbol_compare_string

19: symbol_hash_string

20: symbol_print_string

21: [* char* id; *]

22: )

23:

24: check_declared ::= [* if (symbol_lookup_key(mini, &dst, NULL) == NULL)

25: {

26: text_message(TEXT_ERROR, "Undeclared variable ’%s’\n", dst);

27: symbol_insert_key(mini, &dst, sizeof(char*), sizeof(mini_data));

28: }

29: *].

30:

31: program ::= [* emit_open(rdp_sourcefilename, rdp_outputfilename); *]

32: { [var_dec | statement] ’;’}

33: [* emit_close(); *].

34:

35: var_dec ::= ’int’ ( ID:dst

36: [* emitf(" \n DATA\n%s: WORD 0\n\n CODE\n",dst); *]

37: [’=’ e0:left [* emit("CPY", "", dst, left, NULL); *] ]

38: [* symbol_insert_key(mini, &dst, sizeof(char*), sizeof(mini_data));

39: if (*dst == ’_’ && *(dst+1) == ’_’)

40: text_message(TEXT_ERROR_ECHO, "variable names must not begin with two underscores\n");

41: *]

42: )@’,’. (* Declaration *)

43:

44: statement ::= ID:dst check_declared

45: ’=’ e0:left [* emit("CPY", "", dst, left, NULL); *] | (* assignment *)

46:

47: [* integer label = new_label(); *] (* if statement *)

48: [* emitf("__IF_%lu:\n", label); *]

49: ’if’ e0:left

50: [* emitf(" BEQ %s,__ELSE_%lu\t;ifn %s go to __ELSE_%lu \n",left,label,left, label); *]

51: ’then’ statement

52: [* emitf(" BRA __FI_%lu\t;go to __FI_%lu\n__ELSE_%lu:\n", label, label, label); *]

53: [ ’else’ statement ]

54: [* emitf("__FI_%lu:\n", label); *] |

55:

Figure 7.9 An rdp BNF specification for miniloop part 1: statements
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56: [* integer label = new_label(); *] (* while do statement *)

57: [* emitf("__DO_%lu:\n", label); *]

58: ’while’ e0:left

59: [* emitf(" BEQ %s,__OD_%lu\t;ifn %s go to __OD_%lu \n",left,label,left, label); *]

60: ’do’ statement

61: [* emitf(" BRA __DO_%lu\t;go to __DO_%lu\n__OD_%lu:\n", label, label, label); *] |

62:

63: ’print’ ’(’ ( e0:left [* emit_print(’I’, left); *] |

64: String:left [* emit_print(’S’, left); *]

65: )@’,’ ’)’ | (* print statement *)

66:

67: ’begin’ (statement)@’;’ ’end’. (* compound statement *)

68:

69: e0:char* ::= [* char* dst; *] e1:left [ [* dst = new_temporary(); *]

70: (’>’ e1:right [* emit("GT ", ">", dst, left, right); *] | (* Greater than *)

71: ’<’ e1:right [* emit("LT ", "<", dst, left, right); *] | (* Less than *)

72: ’>=’ e1:right [* emit("GE ", ">=", dst, left, right); *]| (* Greater than or equal *)

73: ’<=’ e1:right [* emit("LE ", ">=", dst, left, right); *]| (* Less than or equal *)

74: ’==’ e1:right [* emit("EQ ", "==", dst, left, right); *]| (* Equal *)

75: ’!=’ e1:right [* emit("NE ", "!=", dst, left, right); *] (* Not equal *)

76: ) [* left = dst; *]

77: ] [* result = left; *].

78:

79: e1:char* ::= [* char* dst; *] e2:left { [* dst = new_temporary(); *]

80: ( ’+’ e2:right [* emit("ADD", "+", dst, left, right); *] | (* Add *)

81: ’-’ e2:right [* emit("SUB", "-", dst, left, right); *] (* Subtract *)

82: )

83: [* left = dst; *]

84: } [* result = left; *].

85:

86: e2:char* ::= [* char* dst; *] e3:left { [* dst = new_temporary(); *]

87: ( ’*’ e3:right [* emit("MUL", "*", dst, left, right); *] | (* Multiply *)

88: ’/’ e3:right [* emit("DIV", "/", dst, left, right); *] (* Divide *)

89: )

90: [* left = dst; *]

91: } [* result = left; *].

92:

93: e3:char* ::= [* int negate = 0; char* dst;*]

94:

95: {(’+’|’-’ [* negate ^= 1; *])} e4:result (* Posite or negate *)

96: [* if (negate) {dst = new_temporary(); emit("SUB", "-", dst, "0", result); result = dst; } *].

97:

98: e4:char* ::= [* char *dst; *]

99: e5:left

100: [ [* dst = new_temporary(); *]

101: ’**’ e4:right [* emit("EXP", "**", dst, left, right); *] (* Exponentiate *)

102: [* left = dst; *]

103: ] [* result = left; *].

104:

105: e5:char* ::= ID:dst check_declared [* result = dst; *] | (* Variable access *)

106: INTEGER:val [* result = (char*) mem_malloc(12); sprintf(result, "#%lu", val); *] |

107: ’(’ e1:result ’)’. (* Parenthesised expression *)

108:

109: comment ::= COMMENT_NEST(’(*’ ’*)’). (* Comments: stripped by lexer *)

110: String:char* ::= STRING_ESC(’"’ ’\\’):result. (* Strings for print *)

111:

112: (* End of miniloop.bnf *)

Figure 7.10 An rdp BNF specification for miniloop part 2: expressions
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ANSI-C printf() output function by accepting a formatted output string and
an arbitrary number of output fields and then using ANSI-C vprintf() and
vfprintf() functions to format the output. The ANSI-C standard library
macros va_list, va_start and va_end are used to handle the variable number
of arguments which emitf() may be passed—see any good book on ANSI-C
for an explanation of their use.

The emit_open() and emit_close() functions open and close the output
file as well as writing the wrapper code that appears at the start and end
of every compiled program (see section 7.2). The function emit() is used to
output a single assembler instruction along with a comment that renders the
operation in an algebraic form to make reading the output easier for those
not used to assembler format. The emit_print() function is a specialised
output routine for handling the print statement in miniloop. It generates
the code templates discussed in section 7.5. The new_temporary() function
allocates a block of memory to hold the name of the temporary and then uses
the sprintf() function to construct the name.
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1: /*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * ml_aux.c - miniloop one pass compiler semantic routines

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************/

10: #include <stdarg.h>

11: #include <stdio.h>

12: #include <string.h>

13: #include "textio.h"

14: #include "memalloc.h"

15: #include "ml_aux.h"

16:

17: FILE * outfile;

18:

19: static long unsigned temp_count = 0;

20:

21: int emitf(const char * fmt, ...)

22: {

23: int i;

24: va_list ap; /* argument list walker */

25:

26: va_start(ap, fmt); /* pass parameters to vprintf */

27: i = vfprintf(outfile, fmt, ap); /* remember count of characaters printed */

28: va_end(ap); /* end of var args block */

29:

30: return i; /* return number of characters printed */

31: }

32:

33: void emit_open(char * sourcefilename, char * outfilename)

34: {

35: if ((outfile = fopen(outfilename, "w"))== NULL)

36: text_message(TEXT_FATAL, "unable to open output file \’%s\’ for writing\n", outfilename);

37: emitf("; %s - generated from \’%s\’\n\n", outfilename, sourcefilename);

38: emitf(" DATA 0x8000\n__MPP_DATA:\n CODE 0x1000\n__MPP_CODE:\n");

39: }

40:

41: void emit_close(void)

42: {

43: emitf("\n HALT\n\n DATA\n__temp: BLOCKW %lu ;declare array of temporaries\n\n"

44: " END __MPP_CODE\n", temp_count);

45: fclose(outfile);

46: }

47:

Figure 7.11 miniloop auxiliary functions part 1: low level output
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48: void emit(char * asm_op, char * alg_op, char * dst, char * src1, char * src2)

49: {

50: emitf(" %s %s, %s", asm_op, dst, src1);

51: if (src2 != NULL)

52: emitf(", %s", src2);

53:

54: /* Now output algebraic style */

55: emitf(" \t;%s := %s %s", dst, src1, alg_op);

56: if (src2 != NULL)

57: emitf(" %s", src2);

58: emitf("\n");

59: }

60:

61: void emit_print(char kind, char * src)

62: {

63: if (kind == ’S’)

64: {

65: unsigned long label = new_label();

66:

67: emitf("\n DATA\n__STR_%lu: STRING \"", label);

68: text_print_C_string_file(outfile, src);

69: emitf("\"\n\n CODE\n PRTS __STR_%lu\n", label);

70: }

71: else

72: {

73: emitf(" PRTI ");

74: text_print_C_string_file(outfile, src);

75: emitf("\t;print integer\n");

76: }

77: }

78:

79: char * new_temporary(void)

80: {

81: char * ret =(char *) mem_malloc(30);

82:

83: sprintf(ret, "__temp + %lu", temp_count++);

84:

85: return ret;

86: }

87:

88: unsigned long new_label(void)

89: {

90: static long unsigned label = 0;

91:

92: return label++;

93: }

94:

95: /* End of ml_aux.c */

Figure 7.12 miniloop auxiliary functions part 2: high level output and house-
keeping



Chapter 8

minitree – a multiple pass compiler

Some translation tasks are difficult to perform during a parse, even if a multi-
pass parser is employed. High quality compilers, for instance, can perform many
different code improvement transformations as part of an optimisation phase.
Typically, optimisations work by relating together widely separated parts of
the source text. Take for example, common sub-expression elimination which is
one of the most commonly applied optimisations: an assignment between array
elements in ANSI-C such as

a[i,j] = b[i,j];

actually contains two identical calculations if the sizes of the a and b arrays are
the same. (In detail, i must be multiplied by the width of the array and added
to j.) A single pass translator has to process each of these identical calculations
in isolation and so is unlikely to be able to rearrange the calculations into the
equivalent but more efficient form

temp = (j * array_width) + i; *(a+temp) = *(b+temp);

If a multiple pass translator is to be used then it is usual to construct a data
structure in memory that represents the user program in a manner which may
be efficiently processed. Simply storing the original program text is inefficient
because discovering a derivation for an input text is so time consuming: that is
after all the primary function of the parsers that rdp constructs and it would
clearly be wasteful to run the process several times. (Of course, just because
this is a wasteful process it need not stop us using it where applicable and rdp

provides the PASSES directive for precisely this purpose. Simple multi-pass ap-
plications, such as the implementation of a translator from a machine’s assembly
language to its machine code, may usefully exploit this strategy. You can read
about the design and implementation of such as assembler in Chapter 6.)

Leaving aside issues of efficiency, making multiple independent passes over
the source text does not allow us to make connections between widely separated
parts of the text because the parsers generated by rdp only look at a single
symbol at a time: they do not of themselves keep track of complete sentences
or program statements. However, rdp can be set to build a derivation tree
whilst it performs a parse. This tree shows explicitly the relationships between
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symbols in the source program that are only implicitly present in the original
text, and can be traversed and rearranged efficiently.

This chapter is about a compiler called minitree that accepts the same
source language as the miniloop compiler described in the previous chapter
and which outputs almost identical MVM assembler code, but which uses a tree
as an internal data structure. During the parse, the rdp generated minitree

parser automatically constructs the intermediate form, and then a POST_PARSE

function called code_generate() is called which traverses the tree, emitting
MVM instructions as it goes. In principle, optimising phases could be inserted
between the parse phase and the code generation phase that would rearrange
the tree to create more efficient code, although we do not describe such optimi-
sations here.

We strongly recommend that before proceeding with this chapter you read
Chapters 9 and 10 of the rdp user manual [JS97a] which describe rdp’s tree
generation facilities in detail.

8.1 minitree intermediate form

When designing a tree-based compiler, the central decision concerns the infor-
mation to be retained in the tree after parsing. One extreme option is to simply
use the entire derivation tree which contains all the terminals matched as well
as a node for every rule instance activated during the parse.

The small programs in Figures 8.1–8.6 exercise all of the major syntactic
features of minitree including declarations (with and without initialisation);
assignment of expressions to variables; print statements; both if-then and
if-then-else statements; a while-do statement; and a compound begin-end

statement. Each program fragment is accompanied by a full derivation tree
and the corresponding reduced derivation tree used as an intermediate form by
minitree.

Full derivation trees for a parse grow rapidly with program length: putting
all the program fragments together into a ten-line program yields a tree contain-
ing 184 nodes. The tree is mostly broad and flat with long ‘catkins’ hanging off
of some nodes. The catkins are generated by the expression rules: every time
an integer or a variable is referenced the parser must recurse right down to the
bottom of the expression tree giving rise to these long vertical chains. More
than a quarter of the nodes in the derivation tree are of this form, and the pro-
portion would be even higher if the expression tree had more levels (that is, if
we had more priority levels in the expressions as we do in the mvmasm grammar,
for instance). Our reduced derivation trees typically contain only one quarter
of the nodes of a full derivation tree and yet the original program may be re-
constructed from a reduced derivation tree. In particular, the expression rules
no longer generate ‘catkins’ but are only as deep as they need to be to show
the operators actually used in the source expression.

An efficient intermediate form for a compiler should retain all the informa-
tion needed to reconstruct the original program but no more. Text books on
compilers often distinguish between Concrete Syntax Trees and Abstract Syn-
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1: int a,

2: b = 3 + 4;

Figure 8.1 A minitree declaration, its full derivation tree and a reduced deriva-
tion tree
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1: int a, b;

2:

3: a = (a + b * 3) / 2;

Figure 8.2 A minitree expression, its full derivation tree and a reduced deriva-
tion tree
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1: int a;

2:

3: print("a is ", a, "\n");

Figure 8.3 A minitree print statement, its full derivation tree and a reduced
derivation tree
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1: int a,b;

2:

3: begin

4: a = a + b;

5: b = b - 1

6: end;

Figure 8.4 A minitree compound statement, its full derivation tree and a
reduced derivation tree
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1: int a = 1, b = 1;

2:

3: if a == 1 then a = 0;

4:

5: if a > b then a = 0 else a = 1;

Figure 8.5 A minitree if statement, its full derivation tree and a reduced
derivation tree
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1: int a = 1, b =10;

2:

3: while a < b do

4: begin

5: print(a);

6: a = a + 1

7: end;

Figure 8.6 A minitree while statement, its full derivation tree and a reduced
derivation tree
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tax Trees (AST’s). There is little agreement on the formal definition of these
objects, but broadly speaking a Concrete Syntax Tree is either a full derivation
tree or a parse tree made up of just the terminal nodes whilst an AST is usually
a tree made up of some of the terminals.

The reason for the distinction between concrete and abstract forms is that
some terminals in real programming languages are just there to make the pro-
gram more readable (so-called ‘syntactic sugar’) and some are only there to
represent the two-dimensional nature of programs. The concrete form includes
all such terminals but they may be dropped in the abstract forms.

An example of the first case is the parentheses that appear around the con-
ditional expression in the ANSI-C if () else and while () do statements:
it is perfectly straightforward to write an unambiguous grammar that does not
include these parentheses and in fact the equivalent Pascal statements do not
require them. They are just there to ‘please the eye’ and may be omitted from
the intermediate form.

The second case is represented by the many kinds of brackets used in pro-
gramming languages including parentheses in arithmetic expressions, the brack-
ets around array index expressions and the begin end constructs (or { } in
ANSI-C). These brackets are used to show the nesting in a program, but any
tree form can show nesting naturally in terms of the parent-child relationships
between nodes, so the bracketing terminals are redundant.

The intermediate tree forms used by real compilers tend to be rather ad
hoc. rdp provides a standardised way to build trees by applying promotion
operators to nodes within the full derivation tree. The user manual [JS97a]
contains examples of standard approaches to common language features and
we have applied these to the implementation of minitree.

8.2 Implementing minitree

One of the advantages of a multi-pass implementation scheme is that it allows
a clean separation between the grammar and the semantics of code generation.
The only semantic actions left in the grammar file minitree.bnf are those
that use the symbol table to check that all variables encountered have been
correctly declared. All of the code generation calls to the various emit...()

auxiliary functions have been shifted to the tree walker code. minitree uses
the same auxiliary semantic functions as miniloop and so needs to be linked
with the functions in ml_aux.c. In addition, three extra functions to handle
the tree walking are contained in the auxiliary file mt_aux.c. We shall look at
the grammar first, and then the new auxiliary functions.

8.2.1 A grammar for minitree

The starting point for the minitree grammar is the miniloop grammar stripped
of its semantic actions apart from those associated with the symbol table. We
then add promotion operators to terminals and nonterminals so as to prune
the derivation tree into the forms shown in Figures 8.1–8.6. The first task is to
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remove nodes that are pure syntactic sugar such as the semicolon and comma
nodes. These are used to separate items in lists when represented as a linear
text, but within a tree we can simply represent the list items as siblings under a
parent node. Hence, in line 33 the semicolon node is promoted under its parent,
and thus effectively deleted from the tree. Similarly, in line 46, the parentheses
in the print statement and the comma separating the parameters to be printed
are deleted.

The if and while statements also contain sugar nodes that are deleted: the
if statement is represented in the tree as a single if node with two or three
children, the first being the expression tree for the relational condition and the
second and third corresponding to the then block and the optional else block.

The expression tree in lines 49–74 uses the techniques described in the user
manual to build operator trees with the usual priority and associativity rela-
tionships built into their structure. The promote-above operator (^^^) is used
to handle the left associative operators and the natural tree ordering ensures
that the operator priorities are correctly implemented. We assume that the tree
is to be traversed in a depth-first, left-to-right manner so that higher priority
operators will appear deeper in the tree.

8.3 minitree auxiliary functions

minitree makes use of the miniloop auxiliary functions described previously
for handling output to the assembler file and opening and closing the file. You
should refer to the previous chapter for a discussion of these code emission
functions. The minitree auxiliary file mt_aux.c shown in Figures 8.9–8.13
contains three extra functions:

1. a top level function (code_generate() at lines 188–193) that is called as
the POST_PARSE function from the grammar,

2. a depth-first, left-to-right tree traversal function that processes expression
trees (expression_walk() at lines 20–76), and

3. a depth-first, left-to-right tree traversal function that processes statements
and calls the expression walker where appropriate (tree_walk() at lines
78–186).

The code_generate() function is straightforward: it calls the emit_open()
and emit_close() functions used by miniloop to initialise and close the as-
sembler output file, and between them the tree walker is called.

8.3.1 Use of the graph library

rdp’s trees are built using the graph library which you can read about in the
support library manual [JS97b]. The base of the tree is held in global vari-
able rdp_tree which is a pointer to the graph header node in the tree. The
first node in the underlying graph is the root of the derivation tree, and the
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1: (*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * minitree.bnf - a mini parser which builds an intermediate form

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************)

10: TITLE("Minitree compiler V1.50 (c) Adrian Johnstone 1997")

11: SUFFIX("m")

12: PARSER(program)

13: USES("ml_aux.h")

14: USES("mt_aux.h")

15: OUTPUT_FILE("minitree.mvm")

16: TREE

17: POST_PARSE([* code_generate(rdp_sourcefilename, rdp_outputfilename, rdp_tree); *])

18:

19: SYMBOL_TABLE(mini 101 31

20: symbol_compare_string

21: symbol_hash_string

22: symbol_print_string

23: [* char* id; *]

24: )

25:

26: check_declared ::= [* if (symbol_lookup_key(mini, &name, NULL) == NULL)

27: {

28: text_message(TEXT_ERROR, "Undeclared variable ’%s’\n", name);

29: symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));

30: }

31: *].

32:

33: program ::= { [var_dec | statement] ’;’^}.

34:

35: var_dec ::= ’int’^^ (dec_body)@’,’^.

36:

37: dec_body ::= ID:name^^ [’=’^ e0 ]:^

38: [* symbol_insert_key(mini, &name, sizeof(char*), sizeof(mini_data));

39: if (*name == ’_’ && *(name+1) == ’_’)

40: text_message(TEXT_ERROR_ECHO, "variable names must not begin with two underscores\n");

41: *].

42:

43: statement ::= ID:name check_declared ’=’^^ e0 | (* assignment *)

44: ’if’^^ e0 ’then’^ statement [ ’else’^ statement ] | (* if statement *)

45: ’while’^^ e0 ’do’^ statement | (* while do statement *)

46: ’print’^^ ’(’^ ( e0 | String )@’,’^ ’)’^ | (* print statement *)

47: ’begin’^^ (statement)@’;’^ ’end’^. (* compound statement *)

48:

Figure 8.7 An rdp BNF specification for minitree part 1: statements
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49: e0 ::= e1^^ [ ’>’^^^ e1 | (* Greater than *)

50: ’<’^^^ e1 | (* Less than *)

51: ’>=’^^^ e1 | (* Greater than or equal *)

52: ’<=’^^^ e1 | (* Less than or equal *)

53: ’==’^^^ e1 | (* Equal *)

54: ’!=’^^^ e1 (* Not equal *)

55: ] .

56:

57: e1 ::= e2^^ { ’+’^^^ e2 | (* Add *)

58: ’-’^^^ e2 (* Subtract *)

59: } .

60:

61: e2 ::= e3^^ { ’*’^^^ e3 | (* Multiply *)

62: ’/’^^^ e3 (* Divide *)

63: } .

64:

65: e3 ::= e4^^ |

66: ’+’^ e3 | (* Posite: note suppression from intermediate form! *)

67: ’-’^^ e3 . (* Negate *)

68:

69:

70: e4 ::= e5 [ ’**’^^ e4 ]:^^.

71:

72: e5 ::= ID:name^^ check_declared | (* Variable access *)

73: INTEGER^^ | (* Numeric literal *)

74: ’(’^ e1^^ ’)’^. (* Parenthesised expression *)

75:

76: comment ::= COMMENT_NEST(’(*’ ’*)’). (* Comments: stripped by lexer *)

77: String^ ::= STRING_ESC(’"’ ’\\’). (* Strings for print *)

78:

79: (* End of minitree.bnf *)

Figure 8.8 An rdp BNF specification for minitree part 2: expressions

1: /*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * mt_aux.c - Minitree multiple pass compiler semantic routines

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************/

10: #include <stdarg.h>

11: #include <stdio.h>

12: #include <string.h>

13: #include "graph.h"

14: #include "memalloc.h"

15: #include "textio.h"

16: #include "minitree.h"

17: #include "ml_aux.h"

18: #include "mt_aux.h"

19:

Figure 8.9 minitree auxiliary functions part 1: declarations
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20: char * expression_walk(rdp_tree_data * root)

21: {

22: /* Postorder expression walk */

23: if (root->token == SCAN_P_ID)

24: return root->id;

25: else if (root->token == SCAN_P_INTEGER)

26: {

27: char * result =(char *) mem_malloc(12);

28:

29: sprintf(result, "#%lu", root->data.u);

30: return result;

31: }

32: else

33: {

34: void * left_edge = graph_get_next_edge(root);

35: void * right_edge = graph_get_next_edge(left_edge);

36:

37: char * left = expression_walk((rdp_tree_data *) graph_get_edge_target(left_edge));

38:

39: if (right_edge == NULL) /* monadic operator */

40: {

41: char * dst = new_temporary();

42:

43: switch (root->token)

44: {

45: case RDP_T_26 /* - */ : emit("SUB", "-", dst, "0", left); break;

46: default:

47: text_message(TEXT_FATAL, "unexpected monadic operator found in expression walk: "

48: "token number %i, identifier \’%s\’\n", root->token, root->id);

49: }

50: return dst;

51: }

52: else

53: {

54: char * right = expression_walk((rdp_tree_data *) graph_get_edge_target(right_edge));

55: char * dst = new_temporary();

56:

57: switch (root->token)

58: {

59: case RDP_T_17 /* != */ : emit("NE ", "!=", dst, left, right); break;

60: case RDP_T_22 /* * */ : emit("MUL", "*", dst, left, right); break;

61: case RDP_T_23 /* ** */ : emit("EXP", "**", dst, left, right); break;

62: case RDP_T_24 /* + */ : emit("ADD", "+", dst, left, right); break;

63: case RDP_T_26 /* - */ : emit("SUB", "-", dst, left, right); break;

64: case RDP_T_27 /* / */ : emit("DIV", "/", dst, left, right); break;

65: case RDP_T_29 /* < */ : emit("LT ", "<", dst, left, right); break;

66: case RDP_T_30 /* <= */ : emit("LE ", "<=", dst, left, right); break;

67: case RDP_T_32 /* == */ : emit("EQ ", "==", dst, left, right); break;

68: case RDP_T_33 /* > */ : emit("GT ", ">", dst, left, right); break;

69: case RDP_T_34 /* >= */ : emit("GE ", ">=", dst, left, right); break;

70: default: text_message(TEXT_FATAL, "unexpected diadic operator found in expression walk: "

71: "token number %i, identifier \’%s\’\n", root->token, root->id);

72: }

73: return dst;

74: }

75: }

76: }

77:

Figure 8.10 minitree auxiliary functions part 2: expression walker
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78: void tree_walk(rdp_tree_data * root)

79: {

80: /* Preorder tree walk */

81: if (root == NULL)

82: return;

83: else

84: {

85: void * this_edge = graph_get_next_edge(root);

86:

87: switch (root->token)

88: {

89: case 0: /* scan root or begin node’s children */

90: case RDP_T_begin:

91: {

92: void * this_edge = graph_get_next_edge(root);

93:

94: while (this_edge != NULL) /* walk children, printing results */

95: {

96: tree_walk((rdp_tree_data *) graph_get_edge_target(this_edge));

97: this_edge = graph_get_next_edge(this_edge);

98: }

99: break;

100: }

101:

102: case RDP_T_31 /* = */ :

103: emit("CPY",

104: "",

105: ((rdp_tree_data *) graph_get_edge_target(this_edge))->id, expression_walk(

106: (rdp_tree_data *) graph_get_edge_target(graph_get_next_edge(this_edge))), NULL);

107: break;

108:

109: case RDP_T_int:

110: {

111: void * this_edge = graph_get_next_edge(root);

112:

113: while (this_edge != NULL) /* walk children, declaring each variable */

114: {

115: void * child_edge;

116: rdp_tree_data * this_node =(rdp_tree_data *) graph_get_edge_target(this_edge);

117:

118: emitf(" \n DATA\n%s: WORD 1\n\n CODE\n", this_node->id);

119: if ((child_edge = graph_get_next_edge(this_node))!= NULL)

120: emit("CPY", "", this_node->id,

121: expression_walk((rdp_tree_data *) graph_get_edge_target(child_edge)), NULL);

122: this_edge = graph_get_next_edge(this_edge);

123: }

124: break;

125: }

126:

Figure 8.11 minitree auxiliary functions part 3: program, assignment and
declaration
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127: case RDP_T_print:

128: {

129: void * this_edge = graph_get_next_edge(root);

130:

131: while (this_edge != NULL) /* walk children, printing results */

132: {

133: rdp_tree_data * this_node =(rdp_tree_data *) graph_get_edge_target(this_edge);

134:

135: if (this_node->token == RDP_T_18 /* " */)

136: emit_print(’S’, this_node->id);

137: else

138: emit_print(’I’, expression_walk(this_node));

139:

140: this_edge = graph_get_next_edge(this_edge);

141: }

142: }

143: break;

144:

145: case RDP_T_if:

146: {

147: char * relation;

148: rdp_tree_data

149: * rel_stat =(rdp_tree_data *) graph_get_edge_target(this_edge),

150: * then_stat =(rdp_tree_data *) graph_get_edge_target(graph_get_next_edge(this_edge)),

151: * else_stat =(rdp_tree_data *) graph_get_edge_target(graph_get_next_edge(

152: graph_get_next_edge(this_edge)));

153:

154: integer label = new_label();

155: emitf("__IF_%lu:\n", label);

156: relation = expression_walk(rel_stat);

157: emitf(" BEQ %s,__ELSE_%lu\t;ifn %s go to __ELSE_%lu \n", relation, label, relation, label);

158: tree_walk(then_stat);

159: emitf(" BRA __FI_%lu\t;go to __FI_%lu\n__ELSE_%lu:\n", label, label, label);

160: tree_walk(else_stat);

161: emitf("__FI_%lu:\n", label);

162: break;

163: }

164:

Figure 8.12 minitree auxiliary functions part 4: print and if
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165: case RDP_T_while:

166: {

167: char * relation;

168: rdp_tree_data

169: * rel_stat =(rdp_tree_data *) graph_get_edge_target(this_edge),

170: * do_stat =(rdp_tree_data *) graph_get_edge_target(graph_get_next_edge(this_edge));

171:

172: integer label = new_label();

173: emitf("__DO_%lu:\n", label);

174: relation = expression_walk(rel_stat);

175: emitf(" BEQ %s,__OD_%lu\t;ifn %s go to __OD_%lu \n", relation, label, relation, label);

176: tree_walk(do_stat);

177: emitf(" BRA __DO_%lu\t;go to __DO_%lu\n__OD_%lu:\n", label, label, label);

178: break;

179: }

180:

181: default:

182: text_message(TEXT_FATAL, "unexpected tree node found: "

183: "token number %i, identifier \’%s\’\n", root->token, root->id);

184: }

185: }

186: }

187:

188: void code_generate(char * source, char * output, void * tree_root)

189: {

190: emit_open(source, output);

191: tree_walk((rdp_tree_data *) graph_get_next_node(tree_root));

192: emit_close();

193: }

194:

195: /* End of mt_aux.c */

Figure 8.13 minitree auxiliary functions part 5: while and POST PARSE func-
tion
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edges emanating from that node point to the first level children. The func-
tion graph_get_next_edge() is used to traverse the edge list, and the function
graph_get_edgetarget()+ is used to retrieve the node pointed to by a partic-
ular edge.

8.3.2 The tree walker

The expression walker is recursively called, once for each node in the expression
tree. At each call a subtree is passed as a parameter, and the function examines
the token number of the root node in that subtree. The token numbers comprise
either one of the scanner primitives such as SCAN_P_ID (the ID primitive) or a
keyword from the minitree grammar such as RDP_T_17 (the != token). The
definitions of the primitives may be found in rdp_supp/scan.h and the defini-
tions of the minitree tokens in minitree.h. The expression walker returns at
each level the name of the variable containing the result of the calculation per-
formed at that level in exactly the same way as the expression rules in miniloop

transmit the names of locations back up the tree.

The leaf nodes in an expression must be either INTEGER or ID tokens. In
these two cases expression_walk() simply returns a string corresponding to
the lexeme of the token. Any other nodes will be operator nodes, and the ex-
pression walker will call their children before emitting an assembler instruction
corresponding to the operator. The left child is called at line 37. The right child
is then examined in line 39 and if it is NULL (empty) then the node must be a
monadic operator so assembler code for the monadic operators (only monadic
- in this case) is emitted via the switch statement at lines 43–49. For non-
monadic operators, the right child is processed and then the switch statement
at lines 57–72 is used to select the assembler instruction corresponding to the
operator.

The tree walker has this following outline form:

78: void tree_walk(rdp_tree_data * root)

79: {

80: /* Preorder tree walk */

81: if (root == NULL)

82: return;

83: else

84: {

85: void * this_edge = graph_get_next_edge(root);

86:

87: switch (root->token)

88: {

89: case 0: /* scan root or begin node’s children */

90: case RDP_T_begin:

91: {

92: void * this_edge = graph_get_next_edge(root);

93:

94: while (this_edge != NULL) /* walk children, printing results */

95: {

96: tree_walk((rdp_tree_data *) graph_get_edge_target(this_edge));

97: this_edge = graph_get_next_edge(this_edge);

98: }
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99: break;

100: }

case ...:

.

.

.

}

}

The function is designed to be called recursively and at each level to look at
the type of node in the root of the subtree being processed and act accordingly.
The first case, shown here, corresponds to a begin node or the root node of
the reduced derivation tree which has token number 0. begin nodes do not of
themselves generate any output code but their children are minitree statements
that must be recursively processed, hence in line 96 we see tree_walk() being
called on the current node’s children.

Five other statements are handled within the tree walker. Assignment
(lines 102–107) emits a CPY assembler instruction with the first child of the
root as the destination operand. The source is obtained by calling the expres-
sion walker on the right child of the root.

Declarations are denoted by a sub-tree with an INT root node which have
one or more child nodes containing the names of the variables to be declared.
The while loop at lines 113–123 walks the children outputting a WORD assembler
directive for each variable labeled with the name of that variable. The optional
initialisation expression is represented in the tree as an expression sub-tree
hanging under the node containing the name of the variable being declared, so
if this tree is non-null then the expression walker is called to generate code to
evaluate the initialisation expression.

print statements are handled in lines 127–143. The while loop in lines
131–141 walks the children of the print node. If the child is a string (marked
with a node type of RDP_T_18 corresponding to the " token) then emit_print()

is called to emit a print string instruction. If not, then the expression walker is
called on the child and emit_print() is called to emit a print integer instruc-
tion.

The code to handle if and while statements is at lines 145–163 and 165–
179 respectively. The general format of the code is exactly the same as for the
semantic actions in the miniloop grammar except that the tree walker is called
in lines 158, 160 and 176 to generate the code for the then, else and do blocks.

It would be quite straightforward to integrate the expression and statement
walker functions together into a single function. We have separated them for
clarity, but the reader may like to consider how to combine them together.
Further ideas for projects are given in the final chapter.



Chapter 9

A pretty-printer for ANSI-C

A pretty-printer is a tool that rearranges the formatting of a program so as
to meet some standard for indentation and comment placement. It turns out
that ANSI-C and its embedded preprocessor present some difficult challenges
in the design of a pretty-printer which we shall explore in this chapter. The
tool described here is called pretty_c and you can see some examples of its
output in Figures 9.4–9.7.

rdp is usually used to specify parsers that describe a language tightly, that is
the parser should accept inputs that are in the language and reject inputs that
are not. It can be very hard to ensure that a parser does have this property,
and we know that some aspects of language (such as type checking) are not
amenable to specification using just context-free grammars. In these cases we
must use semantic checks to increase the checking power of the parser.

For our pretty-printer, we look at a radically different approach to language
parsing in which a minimilist rdp grammar is constructed that will parse all
valid ANSI-C programs as well as a large number of syntactically invalid ones.
The rationale here is that an ANSI-C programmer who wishes to use the pretty-
printer will also have access to an ANSI-C compiler which will be able to detect
syntactically invalid programs, so we can reasonably assume that the ANSI-
C program presented to the pretty-printer will already have been checked for
validity. Therefore we can safely use a parser for a superset of the ANSI-C
language and not bother to check every detail. This allows us to use a very
significantly simplified grammar, but the limitation is that our pretty-printer
has to make formatting decisions on the basis of the current input lexeme and its
immediate predecessor. The pretty-printer never ‘knows’ whether it is inside a
function definition or processing global definitions, for instance, and as a result
it cannot vary formatting according to the kind of construct it is processing.

9.1 Using the pretty-printer

The pretty-printer is built during installation of rdp as a side effect of running
the command make. To check whether all is well type

pretty_c

and you should receive the following help message:
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Fatal - No source file specified

C pretty-printer V1.50 (c) Adrian Johnstone 1997

Generated on Dec 20 1997 21:55:41 and compiled on Dec 20 1997 at 21:51:16

Usage: pretty_c [options] source[.c]

-f Filter mode (read from stdin and write to stdout)

-l Make a listing

-o <s> Write output to filename

-s Echo each scanner symbol as it is read

-S Print summary symbol table statistics

-t <n> Tab expansion width (default 8)

-T <n> Text buffer size in bytes for scanner (default 20000)

-v Set verbose mode

-V <s> (Write derivation tree to filename in VCG format - not available in this parser)

-i <n> Number of spaces per indent level: 0 means use tabs (default 2)

-c <n> Preferred start column for trailing comments (default 30)

These command line options are described below. Now type

pretty_c test.c

The pretty printer will reformat the file test.c (which is part of the standard
distribution) and print out

test.c,2133,12267,5.75

The first field is the name of the file that was formatted, the second is the
number of lines in the file (2133) and the third is the number of language
tokens processed (12267 in this case). The final field is the average number of
tokens per line.

9.1.1 Command line options

The pretty-printer provides the normal rdp-generated parser command line
options along with the following two pretty-printer specific flags.

-i indent spacing

The default indentation spacing is two spaces. A larger value makes the inden-
tation clearer (whilst making the lines longer) and some standards require the
use of tab characters to show indentation. A flag of -i0 will force pretty_c to
use one tab character per indent. A non-zero value (such as -i4) will set the
pretty-printer to use that number of spaces per indent.

-c comment start column

The pretty-printer handles comments specially, as will be described in the next
section. pretty_c attempts to line up comments by moving them across to the
comment start column, which is column 30 by default. This flag may be used
to change the comment start column.
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9.1.2 File usage

pretty_c is a single pass parser which reads the lexemes in the input file from
left to right in the usual way and writes a reformatted version to a temporary
file. By default, this file is called pretty.c but a different temporary file name
can be specified with the -o option. At the end of a successful run, pretty_c
renames the source file to a file with the same name but a filetype of .bak and
then renames the temporary file to the original source file name. It is a fatal
error to try to make the temporary output file the same name as the input file
because under some operating systems (such as MS-DOS) the temporary file
will overwrite the input file during processing which results in a corrupted file.

9.1.3 Making a listing

pretty_c can be used to make a line-numbered listing of a program by using
the -l option. However, bear in mind that it is the input file that will be listed,
not the pretty-printed file. If you run the pretty-printer twice on the same file,
then a listing generated on the second run will show the formatted file.

9.1.4 Error messages

Although pretty_c accepts a very loose C grammar it will reject files that
contain invalid C lexemes. In such cases pretty_c issues the usual syntax
error messages. In addition, one of the following three fatal error messages may
appear if pretty_c has difficulty accessing files.

temporary output filename is the same as the source filename

An output file name that is the same as the source file name has been specified.
It is a fatal error to try and make the temporary output file the same name
as the input file because under some operating systems (such as MS-DOS) the
temporary file will overwrite the input file during processing which results in a
corrupted file. Use a different output file name.

unable to open output file output filename

pretty_c was unable to open the temporary output file for writing. This may
be because there is no disk space left, or there may already exist a file of that
name that is write protected.

unable to rename filename 1 to filename 2

pretty_c was unable to rename the first file to the second file. This may be
because there is no disk space left, or there may already exist a file called
filename 2 that is write protected.
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9.2 Pretty-printer features

The first requirement of a pretty-printer is that it should only modify the spac-
ing of a program and not change its meaning: a pretty-printer is an interesting
example of a translator whose input and output language are the same! The
particular details of the formatting changes are essentially a matter of taste.
A variety of standards exist for C formatting, but there is no universal agree-
ment on how a C program should be indented. We choose to follow the format
that rdp uses for its machine generated parsers. In detail, pretty_c uses the
following conventions.

1. Each line of a program has an indentation level. The indentation level of
the first line of a program is 0.

2. All of the original spacing in the file to be pretty printed is discarded,
except for the contents of comments, preprocessor directives and string
literals which are preserved.

3. Each output line is preceded by a (possibly zero-length) space, the length
of which is proportional to the indentation level. By default, each in-
dentation level is represented by two spaces, but the user can specify via
the -i command line argument, the use of a single tab character or an
arbitrary non-zero number of space characters per indentation level.

4. Some lexemes are output with a preceding inter-token space. Diadic oper-
ators such as >> or %, for instance, are always surrounded by single space
characters. In detail, pretty_c classifies each language token into one
of 16 kinds and maintains a 16 × 16 array of boolean values that spec-
ify whether an ordered pair of language tokens should be separated by a
space or not.

5. All line endings are preserved. (Some pretty-printers attempt to ensure
that a blank line is inserted after each block of declarations and in some
other contexts. pretty_c preserves whatever convention for vertical spac-
ing already exists in the file to be formatted: the only changes made are
within a line.)

6. An opening brace { increases the indentation level by one, and a closing
brace } decreases the indentation level by one.

7. The keywords do, while, for, if, else and switch are indenting key-
words. The line after an indenting keyword will have its indentation level
increased by one unless it starts with an open brace {. Subsequent lines
will not be affected and will be indented as they would have been if the
indenting keyword had not been encountered.

8. A comment that starts in the first column is never indented.

9. A comment that does not start in the first column but which is the first
lexeme on a line is indented using the current indentation level for that
line.
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10. A comment that is not the first lexeme on a line is reformatted to begin
in the comment start column, or two columns to the right of the previous
lexeme, whichever is the least. By default, the comment start column is
column 30, but this may be changed with the -c command line option.

9.3 Pretty-printer limitations

The conventions listed above are a useful start, but it turns out that there are
some sequences of C statements that can result in ugly formatting. In its present
form, pretty_c is good enough for everyday use (all of the rdp source has been
formatted using it, for instance) but in this section we note a series of special
cases that are handled poorly. In the next chapter we make some suggestions
on how to extend the tool to cope with some more esoteric constructions.

9.3.1 Operators which may be monadic or diadic

Some language tokens serve a dual rôle. The * operator, for instance, is used
to denote multiplication, pointer definition and pointer dereferencing. Ideally
we should like to produce formatted output is the following form:

char *str;

int a;

a = *str * 4;

Since pretty_c only ever examines the token to be formatted and its immediate
predecessor it is hard to distinguish between the monadic and diadic uses of *.
In the present pretty-printer, * is always treated as a diadic operator with a
space on both sides, resulting in output of the form

char * str;

int a;

a = * str * 4;

9.3.2 Consecutive indenting keywords

The convention for indenting keywords is that they should cause a temporary
indentation of the following line. This is inadequate for the case of a sequence
of indenting keywords on neighbouring lines. For instance, this piece of code

if (x != 0)

do

y += 3;

while (y < x);

will be reformatted as

if (x != 0)

do

y += 3;

while (y < x);
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This is because temporary indentations do not accumulate.

9.3.3 Continuation lines

Occasionally, a long expression or function call will be broken over several lines,
with significant horizontal formatting. pretty_c does not preserve this format-
ting. Consider

x = 4 +

long_function_call(first,

second,

third

);

Ideally we would like pretty_c to recognise that the open parenthesis marks
the start of a new indentation level, but in fact pretty_c will simply reformat
this as

x = 4 +

long_function_call(first,

second,

third

);

9.3.4 Embedded comments

A comment which is not the first lexeme on a line will be moved to the comment
start column, if possible. This is undesirable if the comment is intended to be
embedded within a line.

x = func(3 /* parameter width */, 45, 67);

will be reformatted as

x = func(3 /* parameter width */, 45, 67);

9.3.5 Formatting of lexemes

In one place, pretty_c does not even follow its own conventions: a string or
character literal containing an octal escape sequence such as

’\03’ or An embedded control \012 character

will be output with the numerical escape sequence reformatted to use hexadec-
imal notation, as in

’\X03’ or An embedded control \X0A character

This minor unpleasantness arises from a limitation of the rdp scanner which
only returns the binary version of a string or character literal.
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9.4 A grammar for a superset of ANSI-C

Our aim with the grammar for pretty_c is to accept all valid ANSI-C programs,
but we are not limited to accepting only valid ANSI-C. The outline form of the
grammar is:

program ::= { any valid ANSI-C lexeme }.

This will be a string of zero or more ANSI-C lexemes in whatever order,
including sequences that are not syntactically correct ANSI-C, so for instance
pretty_c would accept a ‘program’ of the form

int main(void)

{

else 3 do case 16:

}

which should certainly be rejected by any real C compiler.
The full pretty_c grammar specification is shown in Figures 9.1 and 9.2.

The top level rule program accepts zero or more matches against one of 16
subrules that between them generate the complete ANSI-C lexicon. Each of
the 16 subrules defines a particular kind of token, and each kind has different
spacing conventions—all of the diadic operators, for instance, are defined in
rule diadic. Rule program receives (in the synthesized attribute lexeme) the
string of characters matched by the scanner, and a local attribute kind is as-
signed one member of the kind enumeration which is defined in the auxiliary
file pr_c_aux.h shown in Figure 9.3. Rule program also includes calls to the
auxiliary functions pretty_open() and pretty_close() that control the file
handling.

There are two cases where the string returned in lexeme is not necessarily
the actual string matched by the scanner. In the case of both character and
string literals (defined in lines 82 and 84) the scanner will process embedded
escape sequences to produce a string which may contain binary characters.
This is the source of the restriction noted in section 9.3.5 in which octal escape
sequences will be rewritten as hexadecimal escape sequences on output: the
scanner does not preserve information on whether a particular escape sequence
was octal or hexadecimal so we have arbitrarily decided to output them all as
hexadecimal.

Comments in rdp generated parsers are usually defined using one of the
‘invisible’ comment scanner primitives and quietly suppressed by the scan-
ner. In this application, of course, we wish to pass comments from the parser
into the pretty printer (otherwise the comments would be removed from the
formatted output!) As a result, comments are defined in line 56 using the
COMMENT_VISIBLE primitive.

Preprocessor directives in ANSI-C present the pretty printer with particular
problems. Unusually for a high level language, spacing is critical in preprocessor
definitions. These two commands have quite different meanings:

#define a(b) b=3;

#define a (b) b=3;
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1: (*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * pretty_c.bnf - a pretty-printer for ANSI-C

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: * This grammar illustrates a rather different approach to writing language

10: * parsers. Instead of trying to exactly define the language with the

11: * grammar we try and find a simple grammar that accepts the language, and

12: * also allow it to accept lots of incorrect strings. The rationale is that

13: * a pretty-printer does not need to check a program for syntax errors

14: * because a conventional compiler will be used subsequently to do that.

15: * As a result we end up with a very flat, loose grammar

16: *

17: *******************************************************************************)

18: TITLE("C pretty-printer V1.50 (c) Adrian Johnstone 1997")

19: SUFFIX("c")

20: PARSER(program)

21: OUTPUT_FILE("pretty.c")

22: TEXT_SIZE(100_000)

23: USES("pr_c_aux.h")

24:

25: ARG_NUMERIC(i indent_size "Number of spaces per indent level: 0 means use tabs (default 2)")

26: ARG_NUMERIC(c comment_start "Preferred start column for trailing comments (default 30)")

27:

28: program ::= [* enum kinds kind;

29: long unsigned line, column;

30: pretty_open(rdp_sourcefilename, rdp_outputfilename);

31: *]

32: {

33: [* line = scan_line_number(); column = scan_column_number(); *]

34: (

35: comment: lexeme [* kind = K_COMMENT; *] |

36: string: lexeme [* kind = K_STRING; *] |

37: character: lexeme [* kind = K_CHARACTER; *] |

38: block_open: lexeme [* kind = K_BLOCK_OPEN; *] |

39: block_close: lexeme [* kind = K_BLOCK_CLOSE; *] |

40: preprocessor: lexeme [* kind = K_PREPROCESSOR; *] |

41: monadic: lexeme [* kind = K_MONADIC; *] |

42: diadic: lexeme [* kind = K_DIADIC; *] |

43: open_bracket: lexeme [* kind = K_OPEN_BRACKET; *] |

44: close_bracket: lexeme [* kind = K_CLOSE_BRACKET; *] |

45: item: lexeme [* kind = K_ITEM; *] |

46: field_delim: lexeme [* kind = K_FIELD_DELIM; *] |

47: punctuation: lexeme [* kind = K_PUNCTUATION; *] |

48: keyword: lexeme [* kind = K_KEYWORD; *] |

49: keyword_indent: lexeme [* kind = K_KEYWORD_INDENT; *] |

50: EOLN: lexeme [* kind = K_EOLN; *]

51: )

52: [* pretty_print(lexeme, kind, column, line); *]

53: }

54: [* pretty_close(rdp_sourcefilename, rdp_outputfilename); *].

55:

Figure 9.1 rdp grammar for pretty-printer: part 1
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56: comment: char* ::= COMMENT_VISIBLE(’/*’ ’*/’):result.

57:

58: preprocessor: char* ::= COMMENT_LINE_VISIBLE(’#’):result.

59:

60: monadic: char* ::= ’!’:result | ’++’:result | ’--’:result | ’~’:result .

61:

62: diadic: char* ::= ’&&’:result | ’&’:result | ’^’:result | ’|’:result |

63: ’||’:result | ’%’:result | ’*’:result | ’/’:result |

64: ’+’:result | ’-’:result | ’<<’:result | ’>>’:result |

65: ’<’:result | ’<=’:result | ’==’:result | ’>’:result |

66: ’>=’:result | ’?’:result | ’!=’:result | ’%=’:result |

67: ’&=’:result | ’*=’:result | ’+=’:result | ’-=’:result |

68: ’/=’:result | ’=’:result | ’^=’:result | ’|=’:result |

69: ’<<=’:result | ’>>=’:result | ’\\’:result.

70:

71: block_open: char* ::= ’{’:result.

72:

73: block_close: char* ::= ’}’:result.

74:

75: open_bracket: char* ::= ’(’:result | ’[’:result.

76:

77: close_bracket: char* ::= ’)’:result | ’]’:result.

78:

79: item: char* ::= ([* result = SCAN_CAST->id; *] (INTEGER | REAL)) |

80: ID:result | ’...’:result .

81:

82: string: char* ::= STRING_ESC(’"’’\\’):result.

83:

84: character:char* ::= STRING_ESC(’\’’’\\’): result.

85:

86: field_delim: char* ::= ’->’:result | ’.’:result.

87:

88: punctuation: char* ::= ’:’:result | ’;’:result | ’,’: result.

89:

90: keyword: char* ::= ’auto’:result | ’break’:result | ’case’:result |

91: ’char’:result | ’const’:result | ’continue’:result |

92: ’default’:result | ’double’:result | ’enum’:result |

93: ’extern’:result | ’float’:result | ’goto’:result |

94: ’int’:result | ’long’:result | ’register’:result |

95: ’return’:result | ’short’:result | ’signed’:result |

96: ’sizeof’:result | ’static’:result | ’struct’:result |

97: ’union’:result | ’unsigned’:result | ’void’:result |

98: ’volatile’:result.

99:

100: keyword_indent: char* ::= ’do’:result | ’else’:result | ’for’:result |

101: ’if’:result | ’switch’:result | ’while’:result.

Figure 9.2 rdp grammar for pretty-printer: part 2
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The first defines a macro called a with a parameter b which has 3 assigned to
it in the body of the macro. The second defines a parameterless macro a which
expands to the string (b) b=3;. The absence or presence of the space between
the macro name and the opening parenthesis is used to decided whether a
macro has parameters or not. This is an immediate problem for the rdp scanner
because spaces are discarded and must be reconstructed from the token stream.
It would be possible to do this by keeping track of the column numbers for the
tokens immediately after a #define token, but fortunately for us there is a
simpler solution. In the C preprocessor, no line endings are allowed within
preprocessor directives. As a result we can make use of the rdp scanner’s
COMMENT_LINE_VISIBLE primitive to define a ‘comment’ that opens with the
token # and closes with the line end. This will cause the complete preprocessor
directive to be handled in the parser as a single monolithic unit, just like a
comment. In this way the spacing is preserved. Of course, a side effect of
this is that preprocessor lines will never be ‘prettified’, but given the subtleties
of parsing preprocessor directives this conservative design decision is perhaps
justified.

The lexeme and its associated kind value are passed to the auxiliary function
pretty_print() in line 52 along with the line and column numbers for the
token. This function will be described in the next section: we simply note here
that the lexeme will be printed (possibly with a preceding space) to the output
file, and that line end tokens will be followed by a string of spaces corresponding
to the indentation level.

9.5 Auxiliary routines

The auxiliary functions and the kind enumeration are defined in the auxiliary
header file pr_c_aux.h shown in Figure 9.3. The two externally visible vari-
ables, indent_size and comment_start receive the values of the -i and -c

command line arguments. The kind enumeration has 17 values: the first 16
correspond to the 16 subrules in the pretty_c grammar and the last one K_TOP
is a dummy value that is set to the number of subrules.

The source code for the three auxiliary functions is shown in Figures 9.4–9.7.
The data declarations are in Figure 9.4 and include variables to keep count of
the number of line endings seen, the number of lexemes seen and the number of
comments. We also remember the value of the last reported line number. This
may be different to the number of line endings seen because a comment that
spans a line ending will be parsed as a single comment lexeme, and so some line
endings may be hidden.

The file handling routines pretty_open() and pretty_close() are shown
in Figure 9.5 and are straightforward.

9.5.1 The space array

The 16 × 16 array of booleans space_array is used by the pretty printer to
decide whether a space should precede the current lexeme before it is output.
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1: /****************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * pr_c_aux.h - pretty-printer semantic routines

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: ****************************************************************************/

10: enum kinds

11: {

12: K_BLOCK_CLOSE, K_BLOCK_OPEN, K_CHARACTER, K_CLOSE_BRACKET, K_COMMENT,

13: K_DIADIC, K_EOLN, K_FIELD_DELIM, K_KEYWORD, K_KEYWORD_INDENT, K_ITEM,

14: K_MONADIC, K_OPEN_BRACKET, K_PREPROCESSOR, K_PUNCTUATION, K_STRING, K_TOP

15: };

16:

17: extern unsigned long indent_size;

18: extern unsigned long comment_start;

19:

20: void pretty_close(char * sourcefilename, char * outputfilename);

21: void pretty_open(char * sourcefilename, char * outputfilename);

22: void pretty_print(char * lexeme, enum kinds kind, unsigned long column, unsigned long line);

23:

24: /* End of pr_c_aux.h */

Figure 9.3 Pretty-printer auxiliary functions: header file

The pretty_print() function remembers in a static variable the token kind of
last lexeme seen, so at each stage it has access to the token kinds of the previous
and current lexemes. Line 129 uses the space array to check whether a space
should be output:

129: if (space_table[last_kind][kind]) /* insert space if necessary */

130: printed += fprintf(outputfile, " ");

Here we see that if there is a one at position (last, current) of the space array
then a preceding space will be output. Line 54, for instance, specifies that a
space shall always be output if the last kind was punctuation (such as a comma
or semicolon). This effectively inserts a space after every punctuation character.

This lookup table mechanism is very flexible and almost sufficiently powerful
but it does suffer from some limitations. In particular, it is not easy to decide
whether a * token is a diadic multiplication or a monadic pointer dereference
operator, especially in contexts such as mytype *temp; where mytype is a user
defined type definition that has been created using a typedef statement. To be
able to handle such cases we would need to keep track of all typedef statements
which would require a much more detailed grammar. In fact, we would have to
implement a complete C preprocessor to perform this task perfectly because it
is conceivable that the user defined type mytype had been defined in a macro
or in an included file. pretty_c simply ignores these complications and always
treats * (and for that matter &) as a diadic operator with spaces on both sides.
This is the source of the restrictions described in section 9.3.1.
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1: /*******************************************************************************

2: *

3: * RDP release 1.50 by Adrian Johnstone (A.Johnstone@rhbnc.ac.uk) 20 December 1997

4: *

5: * pr_c_aux.c - pretty printer semantic routines

6: *

7: * This file may be freely distributed. Please mail improvements to the author.

8: *

9: *******************************************************************************/

10: #include <stdio.h>

11: #include "scan.h"

12: #include "textio.h"

13: #include "pr_c_aux.h"

14:

15: static int lexeme_count = 0;

16: static int eoln_count = 0;

17: static int comment_count = 0;

18: static int last_line = 1;

19: static FILE * outputfile;

20: unsigned long indent_size = 2l;

21: unsigned long comment_start = 30l;

22:

23:

24: static int space_table[K_TOP][K_TOP]= {

25: /* K

26: C E

27: L Y O P

28: B O F W P R P

29: L B S I O E E U

30: O L C E E R N P N

31: C O H _ L D _ R C

32: K C A B C D K _ M B O T

33: _ K R R O D _ E I O R C U S

34: C _ A A M I D Y N N A E A T

35: L O C C M A E E W D I A C S T R

36: O P T K E D O L O E T D K S I I

37: S E E E N I L I R N E I E O O N

38: E N R T T C N M D T M C T R N G

39: ---------------------------------------------- */

40: /* BLOCK_CLOSE */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},

41: /* BLOCK_OPEN */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

42: /* CHARACTER */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

43: /* CLOSE_BRACKET */ {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0},

44: /* COMMENT */ {1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1},

45: /* DIADIC */ {1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1},

46: /* EOLN */ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

47: /* FIELD_DELIM */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

48: /* KEYWORD */ {0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0},

49: /* KEYWORD_INDENT */ {0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0},

50: /* ITEM */ {0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1},

51: /* MONADIC */ {1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1},

52: /* OPEN_BRACKET */ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

53: /* PREPROCSSOR */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1},

54: /* PUNCTUATION */ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

55: /* STRING */ {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}

56: };

57:

Figure 9.4 Pretty-printer auxiliary functions: part 1
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58: void pretty_open(char * sourcefilename, char * outputfilename)

59: {

60: if (strcmp(sourcefilename, outputfilename)== 0)

61: text_message(TEXT_FATAL, "temporary output filename is the same as the source filename");

62:

63: if (* outputfilename == ’-’)

64: outputfile = stdout;

65: else if ((outputfile = fopen(outputfilename, "w"))== NULL)

66: text_message(TEXT_FATAL, "unable to open output file \’%s\’", outputfilename);

67: }

68:

69: void pretty_close(char * sourcefilename, char * outputfilename)

70: {

71: unsigned long useful_lexeme_count = lexeme_count - comment_count - eoln_count;

72: char * backup_filename = text_force_filetype(sourcefilename, "bak");

73:

74: fclose(outputfile);

75:

76: remove(backup_filename);

77:

78: if (rename(sourcefilename, backup_filename)!= 0)

79: text_message(TEXT_FATAL, "unable to rename \’%s\’ to \’%s\’\n", sourcefilename, backup_filename);

80:

81: if (rename(outputfilename, sourcefilename)!= 0)

82: text_message(TEXT_FATAL, "unable to rename \’%s\’ to \’%s\’\n", outputfilename, sourcefilename);

83:

84: text_printf("%s,%lu,%lu,%.2lf\n", sourcefilename,

85: last_line,

86: useful_lexeme_count,

87: (double) useful_lexeme_count /(double) last_line);

88: }

89:

Figure 9.5 Pretty-printer auxiliary functions: part 2
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90: void pretty_print(char * lexeme, enum kinds kind, unsigned long column, unsigned long line)

91: {

92: static int last_kind = K_EOLN;

93: static int indentation = 0;

94: static int temporary_indent = 0;

95: static int printed = 0;

96:

97: lexeme_count++; /* bump lexeme counter for statistics */

98: last_line = line; /* remember the highest line number seen */

99:

100: if (kind == K_BLOCK_CLOSE)

101: indentation--;

102: else if (last_kind == K_BLOCK_OPEN)

103: indentation++;

104:

105: if (last_kind == K_EOLN) /* do indentation */

106: {

107: int indent_count, space_count;

108:

109: if (temporary_indent && kind != K_BLOCK_OPEN) /* add an indent of we aren’t opening a block */

110: indentation++;

111:

112: for (indent_count = 0; indent_count < indentation; indent_count++)

113: if (!((column == 1)&&(kind == K_COMMENT))) /* Don’t indent comments that start in column 1 */

114: if (indent_size == 0)

115: {

116: fprintf(outputfile, "\t"); /* indent using a tab */

117: printed += text_get_tab_width();

118: }

119: else

120: for (space_count = 0; space_count < indent_size; space_count++)

121: printed += fprintf(outputfile, " ");

122:

123: if (temporary_indent && kind != K_BLOCK_OPEN) /* reset temporary indent */

124: indentation--;

125:

126: temporary_indent = 0;

127: }

128:

129: if (space_table[last_kind][kind]) /* insert space if necessary */

130: printed += fprintf(outputfile, " ");

131:

Figure 9.6 Pretty-printer auxiliary functions: part 3
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132: /* Print the lexeme: some kinds need special actions */

133: switch (kind)

134: {

135: case K_EOLN:

136: fprintf(outputfile, "\n");

137: eoln_count++;

138: printed = 0;

139: break;

140:

141: case K_COMMENT:

142: comment_count++;

143: if (last_kind != K_EOLN) /* comments that aren’t first on a line move to middle */

144: do

145: printed += fprintf(outputfile, " ");

146: while (printed < comment_start);

147:

148: printed += fprintf(outputfile, "/*%s*/", lexeme);

149: break;

150:

151: case K_STRING:

152: printed += fprintf(outputfile, "\"");

153: printed += text_print_C_string_file(outputfile, lexeme);

154: printed += fprintf(outputfile, "\"");

155: break;

156:

157: case K_CHARACTER:

158: printed += fprintf(outputfile, "\’");

159: printed += text_print_C_char_file(outputfile, lexeme);

160: printed += fprintf(outputfile, "\’");

161: break;

162:

163: case K_PREPROCESSOR:

164: printed += fprintf(outputfile, "#%s", lexeme);

165: break;

166:

167: default:

168: printed += fprintf(outputfile, "%s", lexeme);

169: break;

170: }

171:

172: if (kind == K_KEYWORD_INDENT) /* Set an indent for next line */

173: temporary_indent = 1;

174:

175: last_kind = kind;

176: }

177: /* End of pr_c_aux.c */

Figure 9.7 Pretty-printer auxiliary functions: part 4
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9.5.2 The pretty-print function

The pretty-print function is called after each lexeme read by the parser. It is
defined in Figures 9.6 and 9.7, lines 90–176. The internal state of the pretty
printer is maintained between calls in four static integer variables:

1. last_kind contains the token kind of the lexeme processed on the previ-
ous call to pretty_print(),

2. indentation contains the current indentation level,

3. temporary_indent is a boolean flag that is set after an indenting keyword
such as if or while is seen, and

4. printed contains the number of characters output since the last new line
character, or (equivalently) the current output column number.

In lines 97 and 98 the global variables lexeme_count and last_line are
updated. These variables are used within function pretty_close to output the
number of lines, number of lexemes and the average lexeme per line count at
the end of a run.

The indentation of lines is performed by the code in lines 105-127, which is
only executed if the last token seen was a new line so as to ensure that inden-
tation is only performed at the beginning of a line. Lines 109-110 temporarily
increment the indentation level if the temporary_indent flag is set and we are
not processing a new block. Any temporary increment is reset in lines 123–124.

Line 113 detects comments that start in column 1 and suppresses their in-
dentation. Lines 114–121 output tab characters or groups of spaces according
to the value of the indent_size variable that is set using the -i command
line option. In each case, the printed variable is updated to show the col-
umn number after printing. The routine text_get_tab_width() is used to get
the current value of the tab setting as set using the -t command line option.
Incidentally, note the ugly layout of this code which is a manifestation of the
problem described in section 9.3.2.

The space table is accessed in lines 129–130 to control the output of a space
character before the current lexeme is printed. You may dislike the spacing
convention used here (some people like a space after an opening parenthesis
and a space before a closing parenthesis, for instance) in which case you should
experiment with modifications to the space table.

The lexemes are printed out under the control of the switch statement at
lines 133–170. Most token kinds receive the default treatment of being simply
printed out. However the following token kinds require special treatment:

1. K_EOLN must be output as a newline character, and the eoln_count and
printed variables must be updated at the same time,

2. K_COMMENT lexemes do not contain the delimiting /* and */ brackets so
these must be reinstated on output, and the comment must be placed as
near to the comment start column as possible,
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3. K_STRING and K_CHARACTER lexemes do not contain the delimiting quote
marks so these must be reinstated on output, and

4. K_PREPROCESSOR lexemes do not contain the delimiting # token, so this
must be inserted before output of the body of the preprocessor command.

The final actions of the pretty-print function are to set a temporary indent if
an indentable keyword has been output and to update the last_kind variable
ready for the next invocation.





Chapter 10

Design projects

In this chapter we list suggestions for enhancements to the mini languages
described in earlier chapters that might reasonably be undertaken as exercises,
as well as a larger project to build a subset C compiler.

1. Add block definition to minicond (hint: follow the syntax in miniloop.bnf).

2. Add left and right shift operators to minicalc and its descendent lan-
guages.

3. Add logical operators to minicalc and its descendent languages.

4. Add real arithmetic minicalc and its descendent languages.

5. Add a switch statement minicond and miniloop.

6. Add a for loop to miniloop.

7. Add a goto statement to miniloop.

8. Add function definition and call to miniloop.

9. Implement common mode subexpression elimination for minitree.

10. Add registers to MVM and a simple register allocator to minitree.

11. Add a graph colouring register allocator to minitree.

12. Add conditional assembly to mvmasm.

13. Add macro definition and call to mvmasm.

14. Implement a subset C compiler with rdp.

This is an ambitious project which could build into a complete compiler
for C targeted at a virtual machine of the MVM form. The suggestions
here form a coherent path through the tasks but an experienced language
implementor would probably coalesce some of the intermediate stages
together.
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(a) Define a language for the target machine. The MVM assembly lan-
guage used in this manual is suitable as a basic language and has
the advantage that an assembler and a simulator already exist for
that language. An extremely ambitious choice would be to use the
language of a real processor, although this is only recommended for
readers that are very familiar with programming the chosen proces-
sor.

(b) Define a tree-like intermediate data structure to represent the result
of parsing the source program. The student can either decide to build
this structure using actions embedded in the parser specification or
use the automatic tree building capability of rdp.

(c) Define a subset of C. A simple subset might correspond to a ver-
sion of C that only allows integer operations, has no pointers, no
user-defined types and no capability to define functions. Control
structures might also be restricted: a simple if-then-else state-
ment and a while-do statement would suffice in the first instance.

(d) Write an rdp specification that parses the chosen subset language
and test it against a set of test examples illustrating both correct
and incorrect usage.

(e) Enhance the rdp specification using either explicit semantic actions
or the rdp tree operators to build the intermediate form.

(f) Write a POST_PARSE function that traverses the intermediate form
emitting instructions for the target processor.

(g) Demonstrate correct compilation and execution of test programs us-
ing simulation or by direct execution on the target architecture.

(h) Add a full complement of C control structures, including switch,

break, goto and for.

(i) Add support for floating point arithmetic.

(j) Add support for function definition.

(k) Add support for user defined type definition.

(l) Add support for pointers.

(m) Implement common subexpression elimination.

(n) Implement register allocation using graph colouring.



Appendix A

Acquiring and installing rdp

rdp may be fetched using anonymous ftp to ftp.dcs.rhbnc.ac.uk. If you
are a Unix user download pub/rdp/rdpx_y.tar or if you are an MS-DOS user
download pub/rdp/rdpx_y.zip. In each case x_y should be the highest number
in the directory. You can also access the rdp distribution via the rdp Web
page at http://www.dcs.rhbnc.ac.uk/research/languages/rdp.shmtl. If
all else fails, try mailing directly to A.Johnstone@rhbnc.ac.uk and a tape or
disk will be sent to you.

A.1 Installation

1. Unpack the distribution kit. You should have the files listed in Table A.1.

2. The makefile can be used with many different operating systems and
compilers.

Edit it to make sure that it is configured for your needs by uncommenting
one of the blocks of macro definitions at the top of the file.

3. To build everything, go to the directory containing the makefile and type
make. The default target in the makefile builds rdp, the mini_syn syn-
tax analyser, the minicalc interpreter, the minicond interpreter, the
miniloop compiler, the minitree compiler an assembler called mvmasm

and its accompanying simulator mvmsim, a parser for the Pascal language
and a pretty printer for ANSI-C. The tools are run on various test files.
None of these should generate any errors, except for LL(1) errors caused
by the mini and Pascal if statements and warnings from rdp about un-
used comment() rules, which are normal.

make then builds rdp1, a machine generated version of rdp. rdp1 is then
used to reproduce itself, creating a file called rdp2. The two machine
generated versions are compared with each other to make sure that the
bootstrap has been successful. Finally the machine generated versions are
deleted.

4. If you type make clean all the object files and the machine generated
rdp versions will be deleted, leaving the distribution files plus the new
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00readme.1_5 An overview of rdp
makefile Main rdp makefile
minicalc.bnf rdp specification for the minicalc interpreter

minicond.bnf rdp specification for the minicond interpreter

miniloop.bnf rdp specification for the miniloop compiler

minitree.bnf rdp specification for the minitree compiler

mini_syn.bnf rdp specification for the mini syntax checker

ml_aux.c miniloop auxiliary file
ml_aux.h miniloop auxiliary header file
mt_aux.c minitree auxiliary file
mt_aux.h minitree auxiliary header file
mvmasm.bnf rdp specification of the mvmasm assembler
mvmsim.c source code for the mvmsim simulator
mvm_aux.c auxiliary file for mvmasm
mvm_aux.h auxiliary header file for mvmasm
mvm_def.h op-code definitions for MVM
pascal.bnf rdp specification for Pascal
pretty_c.bnf rdp specification for the ANSI-C pretty printer
pr_c_aux.c auxiliary file for pretty_c
pr_c_aux.h auxiliary header file for pretty_c
rdp.bnf rdp specification for rdp itself
rdp.c rdp main source file generated from rdp.bnf

rdp.exe 32-bit rdp executable for Win-32 (.zip file only)
rdp.h rdp main header file generated from rdp.bnf

rdp_aux.c rdp auxiliary file
rdp_aux.h rdp auxiliary header file
rdp_gram.c grammar checking routines for rdp
rdp_gram.h grammar checking routines header for rdp
rdp_prnt.c parser printing routines for rdp
rdp_prnt.h parser printing routines header for rdp
test.c ANSI-C pretty printer test source file
test.pas Pascal test source file
testcalc.m minicalc test source file
testcond.m minicond test source file
testloop.m miniloop test source file
testtree.m minitree test source file
rdp_doc\rdp_case.dvi case study TEX dvi file
rdp_doc\rdp_case.ps case study Postscript source
rdp_doc\rdp_supp.dvi support manual TEX dvi file
rdp_doc\rdp_supp.ps support manual Postscript source
rdp_doc\rdp_tut.dvi tutorial manual TEX dvi file
rdp_doc\rdp_tut.ps tutorial manual Postscript source
rdp_doc\rdp_user.dvi user manual TEX dvi file
rdp_doc\rdp_user.ps user manual Postscript source
rdp_supp\arg.c argument handling routines
rdp_supp\arg.h argument handling header
rdp_supp\graph.c graph handling routines
rdp_supp\graph.h graph handling header
rdp_supp\memalloc.c memory management routines
rdp_supp\memalloc.h memory management header
rdp_supp\scan.c scanner support routines
rdp_supp\scan.h scanner support header
rdp_supp\scanner.c the rdp scanner
rdp_supp\set.c set handling routines
rdp_supp\set.h set handling header
rdp_supp\symbol.c symbol handling routines
rdp_supp\symbol.h symbol handling header
rdp_supp\textio.c text buffer handling routines
rdp_supp\textio.h text buffer handling header
examples\... examples from manuals

Table A.1 Distribution file list
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executables. If you type make veryclean then the directory is cleaned
and the executables are also deleted.

A.2 Build log

The output of a successful makefile build on MS-DOS is shown below. Note
the warning messages from rdp on some commands: these are quite normal.

cc -Irdp_supp\ -c rdp.c

rdp.c:

cc -Irdp_supp\ -c rdp_aux.c

rdp_aux.c:

cc -Irdp_supp\ -c rdp_gram.c

rdp_gram.c:

cc -Irdp_supp\ -c rdp_prnt.c

rdp_prnt.c:

cc -Irdp_supp\ -c rdp_supp\arg.c

rdp_supp\arg.c:

cc -Irdp_supp\ -c rdp_supp\graph.c

rdp_supp\graph.c:

cc -Irdp_supp\ -c rdp_supp\memalloc.c

rdp_supp\memalloc.c:

cc -Irdp_supp\ -c rdp_supp\scan.c

rdp_supp\scan.c:

cc -Irdp_supp\ -c rdp_supp\scanner.c

rdp_supp\scanner.c:

cc -Irdp_supp\ -c rdp_supp\set.c

rdp_supp\set.c:

cc -Irdp_supp\ -c rdp_supp\symbol.c

rdp_supp\symbol.c:

cc -Irdp_supp\ -c rdp_supp\textio.c

rdp_supp\textio.c:

cc -erdp.exe rdp.obj rdp_*.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

rdp -F -omini_syn mini_syn

cc -Irdp_supp\ -c mini_syn.c

mini_syn.c:

cc -emini_syn.exe mini_syn.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

mini_syn testcalc

rdp -F -ominicalc minicalc

cc -Irdp_supp\ -c minicalc.c

minicalc.c:

cc -eminicalc.exe minicalc.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minicalc testcalc

a is 7

b is 14, -b is -14

7 cubed is 343

rdp -F -ominicond minicond

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [ ’else’ _and_not statement ] .
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contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c minicond.c

minicond.c:

cc -eminicond.exe minicond.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minicond testcond

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

rdp -F -ominiloop miniloop

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [ ’else’ statement ] .

contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c miniloop.c

miniloop.c:

cc -Irdp_supp\ -c ml_aux.c

ml_aux.c:

cc -eminiloop.exe miniloop.obj ml_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

rdp -F -omvmasm mvmasm

cc -Irdp_supp\ -c mvmasm.c

mvmasm.c:

cc -Irdp_supp\ -c mvm_aux.c

mvm_aux.c:

cc -emvmasm.exe mvmasm.obj mvm_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

cc -Irdp_supp\ -c mvmsim.c

mvmsim.c:

cc -emvmsim.exe mvmsim.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

miniloop -otestloop.mvm testloop

mvmasm -otestloop.sim testloop

******: Transfer address 00001000

mvmsim testloop.sim

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

a is 3

a is 2

a is 1

-- Halted --

rdp -F -ominitree minitree

******: Error - LL(1) violation - rule

rdp_statement_2 ::= [ ’else’ statement ] .

contains null but first and follow sets both include: ’else’
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******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c minitree.c

minitree.c:

cc -Irdp_supp\ -c mt_aux.c

mt_aux.c:

cc -eminitree.exe minitree.obj m*_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

minitree -otesttree.mvm testtree

mvmasm -otesttree.sim testtree

******: Transfer address 00001000

mvmsim testtree.sim

a is 7

b is 14, -b is -14

7 cubed is 343

z equals a

z does not equal a

a is 3

a is 2

a is 1

-- Halted --

rdp -opascal -F pascal

******: Error - LL(1) violation - rule

rdp_statement_9 ::= [ ’else’ statement ] .

contains null but first and follow sets both include: ’else’

******: Warning - Grammar is not LL(1) but -F set: writing files

******: 1 error and 1 warning

cc -Irdp_supp\ -c pascal.c

pascal.c:

cc -epascal.exe pascal.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

pascal test

rdp -opretty_c pretty_c

cc -Irdp_supp\ -c pretty_c.c

pretty_c.c:

cc -Irdp_supp\ -c pr_c_aux.c

pr_c_aux.c:

cc -epretty_c.exe pretty_c.obj pr_c_aux.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

pretty_c test

test.c,2133,12267,5.75

fc test.c test.bak

Comparing files test.c and test.bak

FC: no differences encountered

del test.bak

rdp -F -ordp1 rdp

cc -Irdp_supp\ -c rdp1.c

rdp1.c:

cc -erdp1.exe rdp1.obj rdp_*.obj arg.obj graph.obj memalloc.obj

scan.obj scanner.obj set.obj symbol.obj textio.obj

copy rdp1.c rdp2.c

rdp1 -F -ordp1 rdp
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fc rdp1.c rdp2.c

Comparing files rdp1.c and rdp2.c

****** rdp1.c

*

* Parser generated by RDP on Dec 20 1997 21:05:05 from rdp.bnf

*

****** rdp2.c

*

* Parser generated by RDP on Dec 20 1997 21:05:02 from rdp.bnf

*

******
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