
'

&

$

%

�

�

	

Week 9 1

3 Failure Equivalence 3

A �rst attempt at a new de�nition of process equiv-

alence might be to de�ne P =

r

Q as

traces(P) = traces(Q)

refusals(P) = refusals(Q)

but this is not quite what we want. It would make

a ! ((b ! Stop) 2 (c ! Stop))

and

a ! ((b ! Stop) u (c ! Stop))

equivalent, which is no better than using trace equiv-

alence. The problem is that looking at refusals can

only detect di�erences at the �rst step. As with the

de�nition of determinism, we need to look at events

refused after arbitrary traces have been observed.

The solution is to de�ne failures(P) as follows:

failures(P) = f(s ;X) j s 2 traces(P)

and X 2 refusals(P = s)g

and then say that P =

f

Q means

traces(P) = traces(Q)

and

failures(P) = failures(Q):

'

&

$

%

�

�

	

Week 9 2

Recall that fg 2 refusals(P) for every process P .

This means that for every process P and every trace

s 2 traces(P), (s ; fg) 2 failures(P). So traces

can be recovered from failures by

traces(P) = fs j (s ; fg) 2 failures(P)g:

This means that if failures(P) = failures(Q) then

traces(P) = traces(Q), so the de�nition of failure

equivalence can be simpli�ed to

failures(P) = failures(Q):

If P is deterministic, we can analyse failures(P)

slightly more.

failures(P)

= f(s ;X) j s 2 traces(P) and X 2 refusals(P = s)g

= f(s ;X) j s 2 traces(P)

and X \ initials(P = s) = fgg

= f(s ;X) j s 2 traces(P)

and X \ fx j s b hx i 2 traces(P)g = fgg

which shows that failures(P) can be de�ned in terms

of traces(P).

So if P and Q are deterministic, and traces(P) =

traces(Q), then failures(P) = failures(Q).

Any process de�ned using just Stop, pre�xing, menu

choice (or j), k and guarded recursion, is determinis-

tic.

'

&

$

%

�

�

	

Week 9 3

3 Failure Re�nement 3

Failure re�nement is de�ned in a similar way to trace

re�nement.

P v

f

Q

if and only if

failures(Q) � failures(P)

It is pronounced \P is failure re�ned by Q".

To see how failure re�nement can be used in speci�-

cations, consider a very simple example: the process

SPEC = a ! b ! SPEC

Recall that if we use SPEC as a speci�cation with

trace re�nement, we get a safety speci�cation. Pro-

cesses P satisfying the speci�cation

SPEC v

t

P

include

P = Stop

P = a ! Stop

P = a ! (b ! P 2 b ! Stop)

P = a ! b ! P

What is the e�ect of specifying

SPEC v

f

P?

'

&

$

%

�

�

	

Week 9 4

We need to calculate failures(SPEC). In words �rst:

the traces of SPEC are alternating sequences of a

and b events, starting with a. After a trace ending in

a, SPEC refuses the sets ? and fag. After a trace

ending in b, it refuses the sets ? and fbg. So:

failures(SPEC) = f(ha; bi

n

b hai;?) j n > 0g

[f(ha; bi

n

b hai; fag) j n > 0g

[f(ha; bi

n

;?) j n > 0g

[f(ha; bi

n

; fbg) j n > 0g:

To determine whether SPEC v

f

Stop we need to

calculate that

failures(Stop) = f(hi;?); (hi; fag); (hi; fbg);

(hi; fa; bg)g

and then we can see that the failure pairs (hi; fag)

and (hi; fa; bg) are in failures(Stop) but not in

failures(SPEC). Therefore it is not the case that

SPEC v

f

Stop. We could also write this as

SPEC 6v

f

Stop:

Now look at P = a ! Stop.

failures(a ! Stop) = f(hi;?); (hi; fbg); (hai;?);

(hai; fag); (hai; fbg);

(hai; fa; bg)g

The failure pairs (hai; fbg) and (hai; fa; bg) are in

failures(P) but not in failures(SPEC), so again

SPEC 6v

f

P .

'

&

$

%

�

�

	

Week 9 5

3 Exercise 3

If we de�ne P = a ! (b ! P 2 b ! Stop), is

it true that SPEC v

f

P ? Either show that all the

failure pairs of P are also failure pairs of SPEC , or

�nd a failure pair of P which is not a failure pair of

SPEC .

3 Liveness 3

SPEC v

f

P is a liveness speci�cation which requires

P to do certain events. Which de�nitions of P satisfy

the speci�cation? Obviously

P = a ! b ! P

does, because that is the same process as SPEC . In

fact this is the only process satisfying this speci�ca-

tion. So in this example, the speci�cation is very

restrictive indeed: it pins down the implementation

precisely.

'

&

$

%

�

�

	

Week 9 6

3 Safety and Liveness 3

Saying that t 2 traces(P) is a positive statement: it

describes something that P can do. A speci�cation

of the form

SPEC v

t

P

puts a limit on the traces that P can do, so it is a

speci�cation which restricts behaviour.

Saying that (t ;X) 2 failures(P) is a negative state-

ment: it describes something that P cannot do. A

speci�cation of the form

SPEC v

f

P

puts a limit on what P can fail to do, so it requires

P to accept at least a certain range of behaviours.

Alternatively: P fails a safety (trace) speci�cation by

doing too much. P fails a liveness (failure) speci�ca-

tion by refusing too much, i.e. by not doing enough.

3 Another Example 3

Process P will have alphabet fa; b; cg, and we want

to specify that P must be able to do an in�nite se-

quence of alternating a and b events, starting with

a; we do not care when c events occur.

'

&

$

%

�

�

	

Week 9 7

We can use the process

ALT = a ! b ! ALT

as a speci�cation for the a and b events, as before.

To allow the c events to occur freely we use hiding,

and express the speci�cation as

ALT v

f

(P n fcg)

De�nitions of P satisfying this speci�cation include

P = a ! b ! P

P = c ! a ! c ! c ! b ! P

P = a ! b ! c ! P

P = a ! c ! b ! a ! b ! P

because in each case, P n fcg is the same process

as ALT .

De�nitions of P not satisfying the speci�cation in-

clude

Q = c ! b ! Q

P = a ! (b ! P 2 b ! Q)

P = a ! b ! (P 2 a ! c ! Stop):

'

&

$

%

�

�

	

Week 9 8

3 Level Crossing Liveness 3

In our model of the level crossing, there is an in�nite

stream of cars trying to cross, and also an in�nite

stream of trains. We can specify liveness (the re-

quirement that whenever a car approaches it should

eventually be allowed to cross, and similarly for the

trains) as follows.

CARSPEC = car.approach ! car.enter !

car.leave ! CARSPEC

TRAINSPEC = train.approach! train.enter !

train.leave ! TRAINSPEC

The speci�cations are

CARSPEC v

f

(SAFE SYSTEM n ftrain; gateg)

TRAINSPEC v

f

(SAFE SYSTEM n fcar ; gateg)

(all the gate.??? events are hidden, etc.)

These speci�cations can be checked using FDR.

'

&

$

%

�

�

	

Week 9 9

3 Scheduler Liveness 3

A liveness speci�cation for the cyclic scheduler is that

the processes continue to be started, in turn, forever.

This can be written

CYCLE

0

v

f

(SCHED n f�nishg)

where CYCLE

0

is the process which was used for the

safety speci�cation, and all the �nish.i events are hid-

den. This speci�cation can be checked with FDR.

Another liveness speci�cation might be to pick a par-

ticular process i and specify that start.i and �nish.i

keep happening alternately forever. This can be done

with a speci�cation process in which start.i and �nish.i

alternate, by hiding all the other start and �nish

events in SCHED .

