\diamond Failure Equivalence \diamond

A first attempt at a new definition of process equivalence might be to define $P =_r Q$ as

$$traces(P) = traces(Q)$$

 $refusals(P) = refusals(Q)$

but this is not quite what we want. It would make

$$a \to ((b \to Stop) \Box (c \to Stop))$$

and

$$a \to ((b \to Stop) \sqcap (c \to Stop))$$

equivalent, which is no better than using trace equivalence. The problem is that looking at *refusals* can only detect differences at the first step. As with the definition of determinism, we need to look at events refused after arbitrary traces have been observed.

The solution is to define failures(P) as follows:

$$failures(P) = \{(s, X) \mid s \in traces(P) \\ and X \in refusals(P / s)\}$$

1

and then say that $P =_f Q$ means

$$\begin{aligned} traces(P) &= traces(Q) \\ & \text{and} \\ failures(P) &= failures(Q). \end{aligned}$$

Week 9

This means that for every process P. This means that for every process P and every trace $s \in traces(P)$, $(s, \{\}) \in failures(P)$. So traces can be recovered from failures by

 $traces(P) = \{s \mid (s, \{\}) \in failures(P)\}.$

This means that if failures(P) = failures(Q) then traces(P) = traces(Q), so the definition of failure equivalence can be simplified to

failures(P) = failures(Q).

If P is deterministic, we can analyse failures(P) slightly more.

$$\begin{aligned} failures(P) \\ &= \{(s, X) \mid s \in traces(P) \text{ and } X \in refusals(P \ / \ s)) \} \\ &= \{(s, X) \mid s \in traces(P) \\ &\text{ and } X \cap initials(P \ / \ s) = \{\} \} \\ &= \{(s, X) \mid s \in traces(P) \\ &\text{ and } X \cap \{x \mid s \widehat{\ } \langle x \rangle \in traces(P)\} = \{\} \} \end{aligned}$$

which shows that failures(P) can be defined in terms of traces(P).

So if P and Q are deterministic, and traces(P) = traces(Q), then failures(P) = failures(Q).

Any process defined using just Stop, prefixing, menu choice (or |), || and guarded recursion, is deterministic.

\diamond Failure Refinement \diamond

Failure refinement is defined in a similar way to trace refinement.

$$P \sqsubseteq_{f} Q$$

if and only if
 $failures(Q) \subseteq failures(P)$

It is pronounced "P is failure refined by Q".

To see how failure refinement can be used in specifications, consider a very simple example: the process

 $SPEC = a \rightarrow b \rightarrow SPEC$

Recall that if we use SPEC as a specification with *trace* refinement, we get a *safety* specification. Processes P satisfying the specification

 $SPEC \sqsubseteq_t P$

include

$$P = Stop$$

$$P = a \rightarrow Stop$$

$$P = a \rightarrow (b \rightarrow P \Box b \rightarrow Stop)$$

$$P = a \rightarrow b \rightarrow P$$

3

What is the effect of specifying

SPEC $\sqsubseteq_f P$?

the traces of *SPEC* are alternating sequences of aand b events, starting with a. After a trace ending in a, *SPEC* refuses the sets \emptyset and $\{a\}$. After a trace ending in b, it refuses the sets \emptyset and $\{b\}$. So:

$$failures(SPEC) = \{ (\langle a, b \rangle^n \widehat{\ } \langle a \rangle, \varnothing) \mid n \ge 0 \} \\ \cup \{ (\langle a, b \rangle^n \widehat{\ } \langle a \rangle, \{a\}) \mid n \ge 0 \} \\ \cup \{ (\langle a, b \rangle^n, \varnothing) \mid n \ge 0 \} \\ \cup \{ (\langle a, b \rangle^n, \{b\}) \mid n \ge 0 \}.$$

To determine whether $SPEC \sqsubseteq_f Stop$ we need to calculate that

$$\begin{array}{l} failures(Stop) \ = \ \{(\langle \rangle, \varnothing), (\langle \rangle, \{a\}), (\langle \rangle, \{b\}), \\ (\langle \rangle, \{a, b\})\} \end{array}$$

and then we can see that the failure pairs $(\langle \rangle, \{a\})$ and $(\langle \rangle, \{a, b\})$ are in failures(Stop) but not in failures(SPEC). Therefore it is not the case that $SPEC \sqsubseteq_f Stop$. We could also write this as

SPEC $\not\sqsubseteq_f Stop$.

Now look at $P = a \rightarrow Stop$. $failures(a \rightarrow Stop) = \{(\langle \rangle, \varnothing), (\langle \rangle, \{b\}), (\langle a \rangle, \varnothing), (\langle a \rangle, \{a\}), (\langle a \rangle, \{a\}), (\langle a \rangle, \{b\}), (\langle a \rangle, \{a, b\})\}$

The failure pairs $(\langle a \rangle, \{b\})$ and $(\langle a \rangle, \{a, b\})$ are in failures(P) but not in failures(SPEC), so again SPEC $\not\sqsubseteq_f P$.

4)

\diamond Exercise \diamond

If we define $P = a \rightarrow (b \rightarrow P \Box b \rightarrow Stop)$, is it true that $SPEC \sqsubseteq_f P$? Either show that all the failure pairs of P are also failure pairs of SPEC, or find a failure pair of P which is not a failure pair of SPEC.

\diamond Liveness \diamond

SPEC $\sqsubseteq_f P$ is a *liveness* specification which requires P to do certain events. Which definitions of P satisfy the specification? Obviously

 $P = a \to b \to P$

does, because that is the same process as *SPEC*. In fact this is the only process satisfying this specification. So in this example, the specification is very restrictive indeed: it pins down the implementation precisely.

5

\diamond Safety and Liveness \diamond

Saying that $t \in traces(P)$ is a *positive* statement: it describes something that P can do. A specification of the form

 $SPEC \sqsubseteq_t P$

puts a limit on the traces that P can do, so it is a specification which restricts behaviour.

Saying that $(t, X) \in failures(P)$ is a *negative* statement: it describes something that P cannot do. A specification of the form

 $SPEC \sqsubseteq_f P$

puts a limit on what P can fail to do, so it requires P to accept at least a certain range of behaviours.

Alternatively: P fails a safety (trace) specification by doing too much. P fails a liveness (failure) specification by refusing too much, i.e. by not doing enough.

\diamond Another Example \diamond

Process P will have alphabet $\{a, b, c\}$, and we want to specify that P must be able to do an infinite sequence of alternating a and b events, starting with a; we do not care when c events occur.

6)

we can use the process

 $ALT = a \rightarrow b \rightarrow ALT$

as a specification for the a and b events, as before. To allow the c events to occur freely we use hiding, and express the specification as

 $\mathsf{ALT}\sqsubseteq_f (P \setminus \{c\})$

Definitions of P satisfying this specification include

$$P = a \rightarrow b \rightarrow P$$

$$P = c \rightarrow a \rightarrow c \rightarrow c \rightarrow b \rightarrow P$$

$$P = a \rightarrow b \rightarrow c \rightarrow P$$

$$P = a \rightarrow c \rightarrow b \rightarrow a \rightarrow b \rightarrow P$$

because in each case, $P \setminus \{c\}$ is the same process as ALT.

Definitions of \boldsymbol{P} not satisfying the specification include

$$Q = c \to b \to Q$$

$$P = a \to (b \to P \Box b \to Q)$$

$$P = a \to b \to (P \Box a \to c \to Stop).$$

7

\diamond Level Crossing Liveness \diamond

In our model of the level crossing, there is an infinite stream of cars trying to cross, and also an infinite stream of trains. We can specify liveness (the requirement that whenever a car approaches it should eventually be allowed to cross, and similarly for the trains) as follows.

 $CARSPEC = car.approach \rightarrow car.enter \rightarrow car.leave \rightarrow CARSPEC$ $TRAINSPEC = train.approach \rightarrow train.enter \rightarrow train.leave \rightarrow TRAINSPEC$

The specifications are

 $CARSPEC \sqsubseteq_f (SAFE_SYSTEM \setminus \{train, gate\})$

TRAINSPEC $\sqsubseteq_f (SAFE_SYSTEM \setminus \{car, gate\})$

8

(all the gate.??? events are hidden, etc.)

These specifications can be checked using FDR.

\diamond Scheduler Liveness \diamond

A liveness specification for the cyclic scheduler is that the processes continue to be started, in turn, forever. This can be written

$CYCLE_0 \sqsubseteq_f (SCHED \setminus \{finish\})$

where $CYCLE_0$ is the process which was used for the safety specification, and all the *finish.i* events are hidden. This specification can be checked with FDR.

Another liveness specification might be to pick a particular process *i* and specify that *start.i* and *finish.i* keep happening alternately forever. This can be done with a specification process in which *start.i* and *finish.i* alternate, by hiding all the other *start* and *finish* events in *SCHED*.

9