<& Traces and Choice &

Which traces can be produced by P O () and P I
)7 We know that P O () can do the first event of
either P or (), and then behave like the remainder of
P or (). Therefore any trace of either P or () can
be produced by P O (), and we have

traces(P O Q) = traces(P) U traces(Q).

P M @ always does 7 first, and then behaves like
either P or (). Because 7 does not appear in traces,
we also have

traces(P M Q) = traces(P) U traces(Q).

We have previously considered trace equivalence, writ-
ten P =; (), as a definition of when two processes
should be considered equal or interchangeable. How-
ever, we can now see that P O () =, P M (@,
even though internal and external choice have been
designed to behave in different ways.

In general, trace equivalence is not suitable as a def-
inition of process equivalence.

(Week 8

Before we introduced ' and O all processes were de-
terministic — the internal state was always deter-
mined by the observable events. For deterministic
processes, traces are all we need to know, and trace
equivalence is adequate. But the whole point of in-
troducing the 'l operator was so that a process could
make an internal state change without doing anything
observable. Similarly, if P and () have a common
event o available at the first step, then observation
of the event o from P O () does not tell us what the
internal state has become.

We will now try to say exactly what the difference
between P M () and P O () is, and develop a new
notion of process equivalence accordingly.

(Week 8

<& Refusals &

Suppose we have the following definitions.
P=a—P
Q=1-0Q

What happens if we put each of P O () and P T Q)

in an environment consisting of P? i.e. if we look at

(PO Q) {upll{asy P and (P Q) rasyllasy P.
First, we have P O @) “.p
and P-"-P

SO

(P O Q) tanll{any P——P tanylliany P-
Also,

a

P{a,b}“{a,b} P P{a.,b}”{(hb} P

so
Pionllany P=P
(they both satisfy the same recursive definition).
So
(POQ) wnllagny P=0a—P
i.e.

(P [Q) {a,b}”{a,b} P =P

(Week 8

On the other hand,

(P M Q) {a,b}”{a,b} P

and

(P M Q) {a,b}”{a,b} P

T

P {a,b}”{a,b} P

T

Q {a,b}”{a,b} P

SO

(P M Q) {a,b}”{a,b} P =

(P (oiplltary P) M (Q (anyllfasy P)-

(This is a loose statement as we haven't decided what

i ”

=" means yet.)

We know that P ¢, n||(usy P =P
and @ ;45}l{asy P = Stop

So

(P11 @Q) tantll{asy P = PN Stop.

This shows that P O () and P M () behave differ-
ently when put in parallel with P. One is just P,

the other can internally choose to deadlock (become
Stop).

We can use this observation to develop a general
approach to distinguishing between nondeterministic
processes. We will consider putting a process P in
an environment (), where the alphabets of P and ()
are the same, i.e. constructing P .p||.r Q.

(Week 8

Let X be a set of events which are offered initially by
Q. If it is possible for P ,p||l.p @ to deadlock at the
first step, then we say that X is a refusal of P. The
set of all refusals of P is obtained by considering all
possible sets X which could be initial event sets of

Q.
Examples: 1. The empty set is a refusal of every

process, because if () = Stop then P ,p|lop Q@ =
Stop.

2. Any set of events X is a refusal of Stop.

3. If a € X then X is a refusal of a — P. So if
aP = {a,b, c} then the refusals of a — P are {},
{b}, {c} and {b, c}. Processes () causing

(CL — P) {a,b,c}“{a,(uc} Q
to deadlock include Stop, b — Stop, ¢ — a —
Stop, (b — Stop) O (¢ — ¢ — Stop), etc.

4. The refusals of (a — ¢ — Stop) O (b — Stop)
are {} and {c}.
5. The refusals of (¢ — ¢ — Stop) M (b — Stop)

are {}, {a}, {b}, {c} {a,c} and {b,c}.

(Week 8

4 N
We can define
refusals(P) = {X | X C aP and
X is a refusal of P}.
Note that refusals(P) is a set of sets of events. For
example,
refusals((a — Stop) M (b — Stop)) =
{}: {a}: {0}, {c} {a, e} {b, e}
In the examples we saw that
refusals((a — Stop) O (b — Stop)) #
refusals((a — Stop) M (b — Stop)).
In general, refusals(P O Q) # refusals(P M Q),
and this will be the basis for a new definition of pro-
cess equality which allows us to distinguish between
internal and external choice.
We can now define refusals for processes defined in
terms of the operators we have seen so far.
refusals(Stop) = {X | X C ¥}
where Y is the set of all events being considered —
the universal set of events.
refusals(a - P) ={X | X C (aP —{a})}
Both of these definitions are subsumed by the defini-
tion for menu choice: if P =z : A — P(x) then
refusals(P) = {X | X C (aP — A)}
- /
(Week 8 6)

If P can refuse X then sowill P 1 Q if P is selected.
Similarly every refusal of () is a possible refusal of

PMaQ.
refusals(P M Q) = refusals(P) U refusals(Q)

P O () can only refuse X if both P and () can refuse
X.

refusals(P O Q) = refusals(P) N refusals(Q)

P 4||4 @ can refuse all events refused by P and all
events refused by ().

refusals(P 4]|4 @) = {X U Y | X € refusals(P)
and Y € refusals(Q)}

Refusals allow us to distinguish formally between de-
terministic and nondeterministic processes. If a pro-
cess is deterministic then it can never refuse any event
which it could possibly do. In other words, if P is de-
terministic and a is a possible initial event for P, then
a does not appear in any refusal set of P.

Writing initials(P) for the set of possible initial events
of P (so initials(P) = {z | (z) € traces(P)}), we
can say that if P is deterministic then
refusals(P) = {X | X C aP and
X Ninitials(P) = {}}.
Determinism means that any event which is possible
cannot be taken away by an internal state transition.

\

/

(Week 8

)

Examples: If
P = a— c¢c— Stop | b — Stop
then initials(P) = {a, b} and refusals(P) = {{}, {c}}.
If
P = (a = ¢ — Stop) 1 (b — Stop)
then initials(P) = {a, b} and (as before)
refusals(P) = {{},{a}, {b},{c}, {a, c}, {b, c}}.

Although a is a possible initial event for P, P could
also internally choose to be b — Stop which refuses
a.

To define nondeterminism properly, we need to con-
sider events refused not just at the first step, but after
any sequence of events. For example,

(a = b — Stop) O (a — ¢ — Stop)

is nondeterministic, but this does not become appar-
ent until after the first event.

So: P is deterministic if and only if

Vs € traces(P) .

(refusals(P | s) =

{X CaP | X Ninitials(P | s) = {}}).

P / s is the process whose behaviour is whatever P
could do after the trace s.

(Week 8

