
'
&

$
%

�

�
	

Week 8 1

3 Traces and Choice 3

Which traces can be produced by P 2 Q and P u

Q? We know that P 2 Q can do the �rst event of

either P or Q , and then behave like the remainder of

P or Q . Therefore any trace of either P or Q can

be produced by P 2 Q , and we have

traces(P 2 Q) = traces(P) [traces(Q):

P u Q always does � �rst, and then behaves like

either P or Q . Because � does not appear in traces,

we also have

traces(P u Q) = traces(P) [traces(Q):

We have previously considered trace equivalence, writ-

ten P =

t

Q , as a de�nition of when two processes

should be considered equal or interchangeable. How-

ever, we can now see that P 2 Q =

t

P u Q ,

even though internal and external choice have been

designed to behave in di�erent ways.

In general, trace equivalence is not suitable as a def-

inition of process equivalence.

'
&

$
%

�

�
	

Week 8 2

Before we introduced u and 2 all processes were de-

terministic | the internal state was always deter-

mined by the observable events. For deterministic

processes, traces are all we need to know, and trace

equivalence is adequate. But the whole point of in-

troducing the u operator was so that a process could

make an internal state change without doing anything

observable. Similarly, if P and Q have a common

event a available at the �rst step, then observation

of the event a from P 2 Q does not tell us what the

internal state has become.

We will now try to say exactly what the di�erence

between P u Q and P 2 Q is, and develop a new

notion of process equivalence accordingly.

'
&

$
%

�

�
	

Week 8 3

3 Refusals 3

Suppose we have the following de�nitions.

P = a ! P

Q = b ! Q

What happens if we put each of P 2 Q and P u Q

in an environment consisting of P? i.e. if we look at

(P 2 Q)

fa;bg

k

fa;bg

P and (P u Q)

fa;bg

k

fa;bg

P .

First, we have P 2 Q

a

-

P

and P

a

-

P

so

(P 2 Q)

fa;bg

k

fa;bg

P

a

-

P

fa;bg

k

fa;bg

P :

Also,

P

fa;bg

k

fa;bg

P

a

-

P

fa;bg

k

fa;bg

P

so

P

fa;bg

k

fa;bg

P = P

(they both satisfy the same recursive de�nition).

So

(P 2 Q)

fa;bg

k

fa;bg

P = a ! P

i.e.

(P 2 Q)

fa;bg

k

fa;bg

P = P :

'
&

$
%

�

�
	

Week 8 4

On the other hand,

(P u Q)

fa;bg

k

fa;bg

P

�

-

P

fa;bg

k

fa;bg

P

and

(P u Q)

fa;bg

k

fa;bg

P

�

-

Q

fa;bg

k

fa;bg

P

so

(P u Q)

fa;bg

k

fa;bg

P =

(P

fa;bg

k

fa;bg

P) u (Q

fa;bg

k

fa;bg

P):

(This is a loose statement as we haven't decided what

\=" means yet.)

We know that P

fa;bg

k

fa;bg

P = P

and Q

fa;bg

k

fa;bg

P = Stop

So

(P u Q)

fa;bg

k

fa;bg

P = P u Stop:

This shows that P 2 Q and P u Q behave di�er-

ently when put in parallel with P . One is just P ,

the other can internally choose to deadlock (become

Stop).

We can use this observation to develop a general

approach to distinguishing between nondeterministic

processes. We will consider putting a process P in

an environment Q , where the alphabets of P and Q

are the same, i.e. constructing P

�P

k

�P

Q .

'
&

$
%

�

�
	

Week 8 5

Let X be a set of events which are o�ered initially by

Q . If it is possible for P

�P

k

�P

Q to deadlock at the

�rst step, then we say that X is a refusal of P . The

set of all refusals of P is obtained by considering all

possible sets X which could be initial event sets of

Q .

Examples: 1. The empty set is a refusal of every

process, because if Q = Stop then P

�P

k

�P

Q =

Stop.

2. Any set of events X is a refusal of Stop.

3. If a 62 X then X is a refusal of a ! P . So if

�P = fa; b; cg then the refusals of a ! P are fg,

fbg, fcg and fb; cg. Processes Q causing

(a ! P)

fa;b;cg

k

fa;b;cg

Q

to deadlock include Stop, b ! Stop, c ! a !

Stop, (b ! Stop) 2 (c ! c ! Stop), etc.

4. The refusals of (a ! c ! Stop) 2 (b ! Stop)

are fg and fcg.

5. The refusals of (a ! c ! Stop) u (b ! Stop)

are fg, fag, fbg, fcg, fa; cg and fb; cg.

'
&

$
%

�

�
	

Week 8 6

We can de�ne

refusals(P) = fX j X � �P and

X is a refusal of Pg:

Note that refusals(P) is a set of sets of events. For

example,

refusals((a ! Stop) u (b ! Stop)) =

ffg; fag; fbg; fcg; fa; cg; fb; cgg.

In the examples we saw that

refusals((a ! Stop) 2 (b ! Stop)) 6=

refusals((a ! Stop) u (b ! Stop)):

In general, refusals(P 2 Q) 6= refusals(P u Q),

and this will be the basis for a new de�nition of pro-

cess equality which allows us to distinguish between

internal and external choice.

We can now de�ne refusals for processes de�ned in

terms of the operators we have seen so far.

refusals(Stop) = fX j X � �g

where � is the set of all events being considered |

the universal set of events.

refusals(a ! P) = fX j X � (�P � fag)g

Both of these de�nitions are subsumed by the de�ni-

tion for menu choice: if P = x : A! P(x) then

refusals(P) = fX j X � (�P � A)g

'
&

$
%

�

�
	

Week 8 7

If P can refuse X then so will P u Q if P is selected.

Similarly every refusal of Q is a possible refusal of

P u Q .

refusals(P u Q) = refusals(P) [refusals(Q)

P 2 Q can only refuse X if both P andQ can refuse

X .

refusals(P 2 Q) = refusals(P) \ refusals(Q)

P

A

k

A

Q can refuse all events refused by P and all

events refused by Q .

refusals(P

A

k

A

Q) = fX [Y j X 2 refusals(P)

and Y 2 refusals(Q)g

Refusals allow us to distinguish formally between de-

terministic and nondeterministic processes. If a pro-

cess is deterministic then it can never refuse any event

which it could possibly do. In other words, if P is de-

terministic and a is a possible initial event for P , then

a does not appear in any refusal set of P .

Writing initials(P) for the set of possible initial events

of P (so initials(P) = fx j hx i 2 traces(P)g), we

can say that if P is deterministic then

refusals(P) = fX j X � �P and

X \ initials(P) = fgg:

Determinism means that any event which is possible

cannot be taken away by an internal state transition.

'
&

$
%

�

�
	

Week 8 8

Examples: If

P = a ! c ! Stop j b ! Stop

then initials(P) = fa; bg and refusals(P) = ffg; fcgg.

If

P = (a ! c ! Stop) u (b ! Stop)

then initials(P) = fa; bg and (as before)

refusals(P) = ffg; fag; fbg; fcg; fa; cg; fb; cgg:

Although a is a possible initial event for P , P could

also internally choose to be b ! Stop which refuses

a.

To de�ne nondeterminism properly, we need to con-

sider events refused not just at the �rst step, but after

any sequence of events. For example,

(a ! b ! Stop) 2 (a ! c ! Stop)

is nondeterministic, but this does not become appar-

ent until after the �rst event.

So: P is deterministic if and only if

8 s 2 traces(P) :

(refusals(P = s) =

fX � �P j X \ initials(P = s) = fgg).

P = s is the process whose behaviour is whatever P

could do after the trace s .

