
CS375 Practical Class 5 | Speci�cations

This practical class uses FDR to investigate some more speci�cations.

Getting Started

1. Connect to tartan as usual, move to your CS375 directory, and start an editor.

2. Type fdr2 &. You should see two windows: one entitled \FDR 2.11", and a �le chooser window.

The Level Crossing

1. Copy the �le /CS/ftp/pub/CS375/crossing1.fdr2 to your directory, and load it into your

editor and FDR. It contains the de�nitions for the �rst version of the level crossing from lectures.

There are four assertions, corresponding to safety of SYSTEM and SAFE SYSTEM , expressed

in two di�erent ways. Check all the assertions.

2. Notice that when all the events except crash are hidden, and SYSTEM fails to satisfy the

speci�cation, selecting \Debug" from the \Assert" menu does not show all of the trace; all the

events except crash are replaced by \ tau", which is ASCII for � . This is what happens when

events are hidden; they get replaced by � , which is a \silent" or \internal" event. Therefore

there seems to be less information available about the trace which causes the speci�cation to

fail. However, by double-clicking on the process de�nitions which are shown on the left of the

debug window, it is possible to see the actual events, generated by parts of the system, which

correspond to the � events. Try this, and see that in fact you can �nd out just as much about

the behaviour of the process as you could when the events were not hidden.

3. The CONTROL process is de�ned in a particular way, but there are other possibilities. The

de�nition in the �le (and in the lecture notes) raises the gate immediately after a train has gone

through the crossing. However, at a real level crossing, the gate stays down if another train is

approaching. Change the de�nition of CONTROL so that it works in this more sophisticated

way, and check the assertions again.

The Other Level Crossing

1. Copy the �le /CS/ftp/pub/CS375/crossing2.fdr2 to your directory, and load it into your

editor and FDR. It contains the de�nitions for the second version of the level crossing, which

does not use the crash event. Check the assertions again.

2. As in the previous section, change the de�nition of CONTROL so that the gate stays down if

another train is approaching, and check the assertions again.

Peterson's Algorithm

1. Copy the �le /CS/ftp/pub/CS375/peterson1.fdr2 to your directory, and load it into your

editor and FDR. It contains the (lengthy!) CSP de�nition of Peterson's algorithm, as described

in lectures. De�ne a process SPEC so that SPEC v

t

SYSTEM is a speci�cation of mutual

exclusion between P1 and P2 , and use FDR to check that Peterson's algorithm does guarantee

mutual exclusion.

1



2. Modify the de�nitions in peterson1.fdr2 so that they model one of the mutual exclusion

algorithms from Assessed Coursework 1, and use FDR to test whether mutual exclusion is

guaranteed. Try all three algorithms. (The Pascal FC code for the three algorithms can be

found in mutex1.pfc, mutex2.pfc and mutex3.pfc).

3. The �le /CS/ftp/pub/CS375/peterson2.fdr2 contains a shorter CSP de�nition of Peterson's

algorithm. The use of channels instead of individual events makes the de�nitions of the processes

and alphabets smaller. (It would be possible to shorten the de�nitions still further, but I haven't

bothered for now; notice that FLAG1 and FLAG2 are essentially the same.) Read the de�nitions

and see how they correspond to version 1.

Dekker's Algorithm

1. The �le /CS/ftp/pub/CS375/dekker.pfc contains a Pascal FC implementation of Dekker's

Algorithm, the �rst mutual exclusion algorithm to be discovered. Produce a CSP model of

Dekker's Algorithm, following the example of either peterson1.fdr2 or peterson2.fdr2, as

you prefer. Check that mutual exclusion is guaranteed.

2


