
'

&

$

%

�




�

	

Week 3 9

3 Student and Parent 3

The student and the parent, in parallel, behave more

or less as we expected. The only slight surprise is that

after the student has passed an exam, present and the

next year can happen in either order. The transition

diagram for SYSTEM contains two squares, which

are characteristic of a pair of events which must both

happen but in either order.

If processes P and Q are completely independent

(there are no events which are in both alphabets)

then the number of states of P

A

k

B

Q is the prod-

uct of the number of states of P and the number

of states of Q . However, if the processes must syn-

chronise on some events, this is no longer true. For

example, STUDENT has 8 states and PARENT has

2 states, but SYSTEM has only 14 states. Because

pass cannot happen until after year1 , PARENT can-

not get into its second state while STUDENT is still

in its �rst state.

Any process can be rewritten in a form which does

not involve k. Try it for SYSTEM | it becomes

fairly complex. Roughly speaking, if P has m states

and Q has n states, then P

A

k

B

Q has m�n states

(although synchronisation might reduce the number).



'

&

$

%

�




�

	

Week 3 10

If we de�ne a processR which has the same transition

diagram as P

A

k

B

Q but does not use k, then the

syntactic \size" of R will be m � n. However, the

syntactic size of P

A

k

B

Q is only m + n. De�ning a

system as a parallel combination of several processes

is very compact, and is closer to the way we think

about it.

3 Prizes 3

Recall the parallel combination of STUDENT , PARENT

and COLLEGE . If the student passes every year,

then the system works as we intended and eventu-

ally COLLEGE does prize. However, if fail happens,

then COLLEGE becomes Stop and cannot do any-

thing else afterwards. This causes a problem because

pass and fail must still be synchronised, and there-

fore STUDENT can no longer either pass or fail |

the whole system stops.

We need to change the de�nition of COLLEGE so

that after fail it can still do pass or fail | but never

do prize.

4

Write down the new de�nition of COLLEGE .



'

&

$

%

�




�

	

Week 3 11

3 Peterson's Algorithm 3

We can de�ne a model of Peterson's Algorithm in

CSP. We de�ne separate processes to represent the

variables flag1, flag2 and turn, and the two turn-

stile processes P1 and P2.

Events such as p1setag1 , p2resetag2 and so on

are used to represent the interaction between the

processes and the variable; for example, if P1 and

FLAG1 synchronise on the event p1setag1 , that cor-

responds to the instruction flag1 := true being

executed by P1.

The large number of events, and the large number

of choices within some of the processes, make the

de�nitions look quite complex. We will see later that

it is possible to simplify them considerably.

ProBE can be used to explore the behaviour of the

system and investigate mutual exclusion. Later, we

will see how to write a speci�cation of mutual exclu-

sion which can be automatically checked by the FDR

tool.

The de�nitions are in the �le peterson1.csp. They

could be modi�ed to correspond to the programs for

Coursework 1, and then ProBE provides an alterna-

tive way of tackling the question.



'

&

$

%

�




�

	

Week 3 12

3 Operational Semantics 3

The semantics of a programming language is a de�ni-

tion of what expressions in the language (either com-

plete programs or program fragments) mean. One

style of semantics is operational | the meaning of

program expressions is de�ned by describing how they

should be executed. An operational semantics can be

thought of as an idealised implementation, or as in-

structions to an implementor.

In CSP, we are interested in the events which a pro-

cess may perform, and we have informally introduced

the operators by describing when processes can do

certain events. We will now introduce the idea of

labelled transitions as the basis of the operational se-

mantics of CSP. Labelled transitions allow us to de-

�ne CSP operators more formally; they contain the

same information as transition diagrams, but in a

more manageable form.

A labelled transition has the form

P

e

-

Q

where P and Q are processes and e is an event. It

captures the idea that P can change state to Q by

doing the event e.



'

&

$

%

�




�

	

Week 3 13

Example: The execution of the process

coin ! choc ! Stop

can be described by the labelled transitions:

(coin ! choc ! Stop)

coin

-

(choc ! Stop)

(choc ! Stop)

choc

-

Stop

When de�ning CSP operators, we will use labelled

transitions to precisely describe the possible behaviour

of the processes being de�ned. We use inference rules

of the form

hypothesis 1 : : : hypothesis n

side condition

conclusion

In such a rule, the hypotheses are usually labelled

transitions of certain processes; the conclusion is a la-

belled transition of a process being de�ned by means

of a new operator. Some rules have a side condition,

which is an extra condition necessary for the rule to

be applicable. We will often refer to these rules as

transition rules.

The rule for pre�xing is

(a ! P)

a

-

P

There are no hypotheses, which means that we al-

ways know that (a ! P)

a

-

P . This is true for all

processes P , and all events a.



'

&

$

%

�




�

	

Week 3 14

There is no transition rule for Stop. This means that

it is never possible to deduce a transition for Stop,

which is exactly what we want.

To de�ne choice (from a �nite number of alterna-

tives) we use one rule for each possible initial event.

For example, the process a ! P j b ! Q is de�ned

by the following pair of rules.

a ! P j b ! Q

a

-

P

a ! P j b ! Q

b

-

Q

For menu choice we use this rule:

a 2 A

x : A! P(x )

a

-

P(a)

The side condition a 2 A indicates that the rule

only applies to events in the speci�ed set A of initial

possibilities.

Notation: the use of x in the process x : A! P(x )

suggests a general, as yet undetermined event. The

use of a for the event labelling the transition repre-

sents a particular event. This usage follows the com-

mon mathematical convention of using letters close

to the end of the alphabet as variables, and letters

close to the beginning of the alphabet as constants.



'

&

$

%

�




�

	

Week 3 15

When a named process is de�ned, we should be able

to replace the name by its de�nition wherever it is

used. The transition rule for named processes states

that any transition of the right hand side of a de�ni-

tion is also a transition of the de�ned process.

P

e

-

P

0

N = P

N

e

-

P

0

Example: If we de�ne

DOOR = open ! close ! DOOR

then because we have

(open ! close ! DOOR)

open

-

(close ! DOOR)

we also have

DOOR

open

-

(close ! DOOR):

Then

(close ! DOOR)

close

-

DOOR

This is all the information we need about the be-

haviour of DOOR .

Note: the operational semantics of CSP appears in

Roscoe's \Theory and Practice of Concurrency" but

not in Hoare's \Communicating Sequential Processes".



'

&

$

%

�




�

	

Week 3 16

3 Transitions for Concurrency 3

Here are the transition rules for the concurrency op-

erator.

P

a

-

P

0

a 2 A; a 62 B

P

A

k

B

Q

a

-

P

0

A

k

B

Q

Q

a

-

Q

0

a 2 B ; a 62 A

P

A

k

B

Q

a

-

P

A

k

B

Q

0

P

a

-

P

0

Q

a

-

Q

0

a 2 A \ B

P

A

k

B

Q

a

-

P

0

A

k

B

Q

0

3 Examples 3

Example: Processes VM and CUST with

�VM = fcoin; choc ; beepg = A

�CUST = fcoin; choc ; eatg = B

VM = coin ! beep ! choc ! VM

CUST = coin ! choc ! eat ! CUST :

In

VM

fcoin;choc ;beepg

k

fcoin;choc ;eatg

CUST

the events beep and eat happen independently, but

coin and choc require synchronisation.



'

&

$

%

�




�

	

Week 3 17

VM

A

k

B

CUST

beep ! choc ! VM

A

k

B

choc ! eat ! CUST

coin

?

choc ! VM

A

k

B

choc ! eat ! CUST

beep

?

VM

A

k

B

eat ! CUST

choc

?

VM

A

k

B

CUST

eat

?



'

&

$

%

�




�

	

Week 3 18

If we change CUST so that

�CUST = fcoin; choc ; shoutg = A

CUST = coin ! shout ! choc ! CUST

then

VM

A

k

B

CUST

coin

-

beep ! choc ! VM

A

k

B

shout ! choc ! CUST

and now beep and shout, neither of which requires

synchronisation, could happen in either order. Here

is the complete transition diagram.



'

&

$

%

�




�

	

Week 3 19

Example: To describe the movement of a counter

on the board

we can de�ne two processes:

�LR = fleft; rightg

�UD = fup; downg

LR = left ! right ! LR j right ! left ! LR

UD = up ! down ! UD

and then

LR

fleft ;rightg

k

fup;downg

UD

describes the whole system.

An alternative way of describing this system is to de-

�ne a collection of processes R

x ;y

representing the

behaviour when the counter starts from coordinate

position (x ; y):

R

0;0

= right ! R

1;0

j up ! R

0;1

R

0;1

= right ! R

1;1

j down ! R

0;0

: : :

and then

R

1;0

= LR

fleft ;rightg

k

fup;downg

UD :



'

&

$

%

�




�

	

Week 3 20

Because of the way synchronisation is needed for events

in both alphabets, it is possible to control or restrict

the behaviour of a process by adding another process

in parallel.

Example: Recall that with the most recent de�ni-

tions of VM and CUST , VM k CUST can do beep

and shout in either order. If we de�ne another pro-

cess CONTROL with

�CONTROL = fbeep; shoutg = C

CONTROL = beep ! shout ! CONTROL

then

(VM

A

k

B

CUST )

A[B

k

C

CONTROL

behaves like the process P de�ned by

P = coin ! beep ! shout ! choc ! P :

This also illustrates the need to be careful about al-

phabets: if

�CONTROL = fbeep; shout ; coin; chocg = D

and CONTROL has the same de�nition, then

(VM

A

k

B

CUST )

A[B

k

D

CONTROL = Stop

because CONTROL cannot do a coin event.


