
'
&

$
%

�



�
	

Week 10 1

3 Semaphores 3

Semaphores are a new datatype introduced into lan-

guages such as Pascal-FC to support mutual exclusion

and synchronisation between processes.

A semaphore stores a value (a non-negative integer)

and there are two operations which can be applied to

it: wait and signal.

If s is a semaphore then:

signal(s) increases the value of s by 1

wait(s) decreases the value of s by 1 as soon as

the result would be non-negative.

i.e. wait(s) waits until the value of s is at least 1,

then subtracts 1 from the value.

The idea is that semaphores can be used safely by

many processes running in parallel, i.e. there should

be no problems of mutual exclusion when manipulat-

ing a semaphore. This means that:

signal must be implemented as a single indivisible

action;

the conditional statement

if s > 0 then s := s - 1

'
&

$
%

�



�
	

Week 10 2

required to implement wait(s) must also be an in-

divisible action.

wait could be implemented by using busy waiting,

but usually a waiting process would be blocked |

unable to be executed | until the semaphore be-

comes non-zero.

Semaphores can be used to implement mutual exclu-

sion; this might seem circular because implementing

semaphores requires mutual exclusion, but the point

is that the mutual exclusion required by semaphores

only involves a very small critical section and it is

much easier to handle it at the machine or operating

system level.

3 Mutual Exclusion with

Semaphores 3

Declare a semaphore s globally. In each process with

a critical section, the entry protocol is wait(s) and

the exit protocol is signal(s).

The semaphore needs to be initialised to the value

1. The initial(s,v) function initialises s with the

value v. Semaphores must be initialised before any

processes which use them are activated.



'
&

$
%

�



�
	

Week 10 3

program gardens2;

(*

semaphore solution to

Ornamental Gardens problem

File is

/CS/ftp/pub/CS375/mutex/gardens2.pfc

*)

var
count: integer;

s: semaphore;

process turnstile1;

var
loop: integer;

begin

for loop := 1 to 20 do

begin

wait(s);

count := count + 1;

signal(s)

end

end; (* turnstile1 *)

process turnstile2;

(* The same definition as turnstile1 *)

'
&

$
%

�



�
	

Week 10 4

begin

count := 0;

initial(s,1);

cobegin

turnstile1;

turnstile2

coend;

writeln('Total admitted: ',count)

end.

It is straightforward to prove that this program obeys

mutual exclusion, so we will do it.

First of all, at all times

s > 0

(this is guaranteed by the implementation of semaphores).

Also, if we write s

0

for the initial value of s , #signals

for the number of signal(s) operations carried out

so far, and #waits for the number of completed

wait(s) operations, then

s = s

0

+ #signals�#waits

Writing #CS for the number of processes in their

critical sections at any given time, we have

#CS = #waits�#signals

because each wait corresponds to a process entering

its critical section and each signal corresponds to a

process leaving its critical section.



'
&

$
%

�



�
	

Week 10 5

From

#CS = #waits�#signals

and

s = s

0

+ #signals�#waits

we deduce

s = 1�#CS

because s

0

= 1 and therefore

#CS + s = 1:

Because#CS and s are both non-negative, this means

that

#CS 6 1

(which is what we wanted to prove), and also

s 6 1

which means that the semaphore s only ever has val-

ues 0 or 1.

Notice that if we initialised s to 0 then we would get

#CS = 0 always, i.e. neither process would ever be

allowed into its critical section. If we initialised s to

any value larger than 1, then mutual exclusion would

not be guaranteed.

'
&

$
%

�



�
	

Week 10 6

3 Producer-Consumer Problems 3

Consider a situation in which one process produces

data while another process consumes it. Examples

might be:

� A computer generating documents to be printed,

and a printer printing them;

� A tokeniser (lexical analyser) producing tokens (in

the syntax of some programming language) and a

parser receiving them;

� A mailserver sending messages to a mail router.

To allow for di�erences in processing speeds of the

producer and consumer, there is a bu�er between

them, so that if the consumer is temporarily slower

than the producer, the producer is not held up. How-

ever, the bu�er has a �nite capacity, so we would like

to producer to be blocked whenever the bu�er is full;

this gives the connsumer a chance to catch up.

In the following example the producer produces the

letters from 'a' to 'z', and the consumer simply re-

ceives them. The bu�er is implemented by means of

an array. Three semaphores are used:



'
&

$
%

�



�
	

Week 10 7

� mutex, a binary semaphore used to ensure that

the bu�er is accessed under mutual exclusion

� spacesleft, a general semaphore indicating the

number of free spaces in the bu�er

� itemsready, a general semaphore indicating the

number of items in the bu�er.

Before adding an item to the bu�er, the producer

must wait on spacesleft. Before removing an item

from the bu�er, the consumer must wait on itemsready.

Adding and removing items are critical sections, pro-

tected by waits on mutex.

program pcsem;

(*

semaphore solution to

producer-consumer problem

*)

const

buffmax = 4;

var
buffer: array[0..buffmax] of char;

nextin, nextout: integer;

spacesleft, itemsready: semaphore;

mutex: semaphore;

'
&

$
%

�



�
	

Week 10 8

procedure put(ch: char);

begin

buffer[nextin] := ch;

nextin := (nextin + 1) mod (buffmax + 1)

end; (* put *)

procedure take(var ch: char);

begin

ch := buffer[nextout];

nextout := (nextout + 1) mod (buffmax + 1)

end; (* take *)

process producer;

var
local: char;

begin

for local := 'a' to 'z' do

begin

wait(spacesleft);

wait(mutex);

put(local);

signal(mutex);

signal(itemsready)

end

end; (* producer *)



'
&

$
%

�



�
	

Week 10 9

process consumer;

var
local: char;

begin

repeat

begin

wait(itemsready);

wait(mutex);

take(local);

signal(mutex);

signal(spacesleft);

write(local);

end

until local = 'z';

end; (* consumer *)

begin

initial(spacesleft,buffmax + 1);

initial(itemsready,0);

initial(mutex,1);

nextin := 0;

nextout := 0;

cobegin

producer;

consumer

coend

end.

'
&

$
%

�



�
	

Week 10 10

3 Binary Semaphores 3

A semaphore which only takes values 0 or 1 is called a

binary semaphore. A semaphore which can take any

value is called a general semaphore. Pascal-FC does

not distinguish between the two, but in our example

programs we can see which are which.

Binary semaphores are seemingly less general then

general semaphores, but it turns out that binary semaphores

can be used to implement general semaphores.

Suppose that there is a type BinSemaphore of bi-

nary semaphores. A type GenSemaphore of general

semaphores can be de�ned as follows.

type GenSemaphore =

record

mutex : BinSemaphore;

delay : BinSemaphore;

count : integer

end;

The component mutex is used to provide mutual ex-

clusion over the operations on GenSemaphore, and

must be initialised to 1. The component count holds

the integer value of the semaphore. The delay com-

ponent is used to block any process which calls a

wait operation when the value of count is 0.



'
&

$
%

�



�
	

Week 10 11

procedure GenWait(var s:GenSemaphore);

begin

wait(s.delay);

wait(s.mutex);

s.count := s.count - 1;

if s.count > 0 then

signal(s.delay);

signal(s.mutex)

end;

procedure GenSignal(var s:GenSemaphore);

begin

wait(s.mutex);

s.count := s.count + 1;

if s.count = 1 then

signal(s.delay);

signal(s.mutex)

end;

'
&

$
%

�



�
	

Week 10 12

3 Dining Philosophers with

Semaphores 3

The Dining Philosophers can be implemented by rep-

resenting the forks as binary semaphores. In order to

pick up a fork, a philosopher executes wait on the

corresponding semaphore; to put it down, he executes

signal.

The butler can be represented by a general semaphore,

initialised to 1 less than the number of chairs. Before

sitting down, a philosopher waits on this semaphore;

when getting up, he executes signal.



'
&

$
%

�



�
	

Week 10 13

3 Semaphore Philosophers 3

program philsem1;

(* Dining Philosophers - semaphore version 1

File is /CS/ftp/pub/CS375/sems/philsem1.pfc

*)

const

N = 5;

var

fork : array [1..N] of semaphore;

(* binary *)

i : integer;

process type philosophers(name : integer);

begin

repeat

sleep(random(3)); (* THINKING *)

wait(fork[name]);

wait(fork[(name mod N) + 1]);

sleep(random(3)); (* EATING *)

writeln(name);

signal(fork[name]);

signal(fork[(name mod N) + 1]);

forever

end; (* philosophers *)

'
&

$
%

�



�
	

Week 10 14

var

phils: array[1..N] of philosophers;

begin

for i := 1 to N do

initial(fork[i],1);

cobegin

for i := 1 to N do

phils[i](i);

coend

end.



'
&

$
%

�



�
	

Week 10 15

3 Semaphore Butler 3

program philsem2;

(* Dining Philosophers - semaphore version 2

File is /CS/ftp/pub/CS375/sems/philsem2.pfc *)

const

N = 5;

var

fork : array [1..N] of semaphore;

(* binary *)

freechairs : semaphore; (* general *)

i : integer;

process type philosophers(name : integer);

begin

repeat

sleep(random(3)); (* THINKING *)

wait(freechairs);

wait(fork[name]);

wait(fork[(name mod N) + 1]);

sleep(random(3)); (* EATING *)

writeln(name);

signal(fork[name]);

signal(fork[(name mod N) + 1]);

signal(freechairs)

forever

end; (* philosophers *)

'
&

$
%

�



�
	

Week 10 16

3 Monitors 3

Semaphores enable mutually exclusive access to data

to be programmed, and also support synchronisation

between processes. However, they su�er from a num-

ber of problems:

� they are low-level

� it's easy to make mistakes, e.g. waiting at the

wrong time

� code relating to mutual exclusion is distributed

throughout the program.

Monitors provide a higher-level, more structured so-

lution.

A monitor consists of

� some data

� some procedures or functions which manipulate

the data.

The implementation guarantees that code within a

monitor is executed under mutual exclusion, i.e. if

one process is executing a monitor function then other

processes are prevented from executing any monitor

function.



'
&

$
%

�



�
	

Week 10 17

When a monitor is used, all the operations manipu-

lating a shared data structure are de�ned in the same

place, and the programmer does not have to worry

about using semaphores to ensure mutually exclusive

access to the data.

Here is the Ornamental Gardens program, implemented

with a monitor.

program gardens4;

const

nprocs = 2;

var
procloop: integer;

process type turnstype;

var
loop: integer;

begin

for loop := 1 to 20 do

counter.inc

end; (* turnstype *)

'
&

$
%

�



�
	

Week 10 18

monitor counter;

export

inc, print;

var
count: integer;

procedure inc;

begin

count := count + 1

end; (* inc *)

procedure print;

begin

writeln('Total admitted - ',count:1)

end; (* print *)

begin (* body *)

count := 0

end; (* monitor counter *)



'
&

$
%

�



�
	

Week 10 19

var
turnstile: array[1..nprocs] of turnstype;

begin

cobegin

for procloop := 1 to nprocs do

turnstile[procloop]

coend;

counter.print

end.

Points to note:

� only the exported operations are visible outside

the monitor

� the body of the monitor (count := 0) is exe-

cuted just once, before the monitor is used

� the print procedure is part of the monitor, even

though mutual exclusion is not required when ex-

ecuting it

Because monitors incorporate data and functions, they

look rather like objects. Indeed, the development of

monitors (by Per Brinch Hansen and Tony Hoare in

the early 1970s) was partly inspired by Smalltalk, an

early object oriented language.

In C++ terms, the exported functions are public;

all other functions, and all the data, are private.

'
&

$
%

�



�
	

Week 10 20

3 Monitors in Java 3

Java provides concurrency via lightweight processes

(called threads). To support mutual exclusion be-

tween threads, Java has the concept of a synchro-

nized method. Synchronized methods (designated as

synchronized by the programmer) behave like the ex-

ported functions of a monitor: if one thread (pro-

cess) calls a synchronized method of an object, then

no other thread can call any synchronized method of

the same object until the original call has �nished.

A class can de�ne both synchronized and non-synchronized

methods, so in the ornamental gardens program there

would be no need to make the print procedure syn-

chronized. It is up to the programmer to decide which

methods need to be synchronized.

Amusingly, one Java book states that \Java pro-

vides unique language-level support for [mutual ex-

clusion]".



'
&

$
%

�



�
	

Week 10 21

3 Producer-Consumer with

Monitors 3

Now we can attempt to implement the producer-

consumer program using a monitor. The monitor

takes care of the necessary mutually exclusive access

to the bu�er, but we are also using the semaphores

itemsready and spacesleft as before.

program pcmon1;

(* producer-consumer problem -

first attempt at

monitor solution (incorrect)

file is

/CS/ftp/pub/CS375/mutex/pcmon1.pfc *)

monitor buffer;

export

put, take;

const

buffmax = 4;

var
store: array[0..buffmax] of char;

count: integer;

spacesleft, itemsready: semaphore;

nextin, nextout: integer;

'
&

$
%

�



�
	

Week 10 22

procedure put(ch: char);

begin

wait(spacesleft);

store[nextin] := ch;

nextin := (nextin + 1) mod (buffmax + 1);

signal(itemsready)

end; (* put *)

procedure take(var ch: char);

begin

wait(itemsready);

ch := store[nextout];

nextout := (nextout + 1) mod (buffmax + 1);

signal(spacesleft)

end; (* take *)

begin (* body of buffer *)

initial(itemsready,0);

initial(spacesleft,buffmax+1);

nextin := 0;

nextout := 0

end; (* buffer *)



'
&

$
%

�



�
	

Week 10 23

process producer;

var
local: char;

begin

for local := 'a' to 'z' do

buffer.put(local);

end; (* producer *)

process consumer;

var
ch: char;

begin

repeat

buffer.take(ch);

write(ch)

until ch = 'z';

writeln

end; (* consumer *)

begin (* main *)

cobegin

producer;

consumer

coend

end.

'
&

$
%

�



�
	

Week 10 24

3 Condition Variables 3

The following sequence of events shows that there is

a problem with this program.

1. Initially the bu�er is empty, and itemsready =

0.

2. The producer calls buffer.take.

3. Inside buffer.take, the producer does wait on

itemsready.

4. The consumer cannot call buffer.put because

the producer is in the monitor.

The result is either a livelock, if the consumer is busy

waiting on itemsready, or a form of deadlock with

no process able to be executed.

Semaphores are not designed to work with monitors

in this way. Instead, we need to use condition vari-

ables. A condition variable is like a binary semaphore

in that a process can be blocked by it. It contains a

queue of blocked processes (either a FIFO queue or

possibly a priority queue, depending on whether the

operating system/language supports di�erent priori-

ties for processes).



'
&

$
%

�



�
	

Week 10 25

The crucial di�erence is that if a process enters a

monitor, then �nds itself blocked by a condition vari-

able, it leaves the monitor until it becomes unblocked.

This allows other processes to enter the monitor in

the meantime.

The operations on a condition variable are delay,

which causes a process to become blocked immedi-

ately (and join the queue of blocked processes on

that condition variable), and resume, which allows

the �rst blocked process to execute.

The previous program does not compile, because Pascal-

FC does not allow semaphores to be declared within

a monitor. Instead, we can replace the semaphores

by condition variables, as follows.

var
store: array[0..buffmax] of char;

count: integer;

notfull, notempty: condition;

nextin, nextout: integer;

'
&

$
%

�



�
	

Week 10 26

procedure put(ch: char);

begin

if count > buffmax then

delay(notfull);

store[nextin] := ch;

count := count + 1;

nextin := (nextin + 1) mod (buffmax + 1);

resume(notempty)

end; (* put *)

procedure take(var ch: char);

begin

if count = 0 then

delay(notempty);

ch := store[nextout];

count := count - 1;

nextout := (nextout + 1) mod (buffmax + 1);

resume(notfull)

end; (* take *)

Java has one condition variable implicitly associated

with each monitor, and uses methods wait and notify

to control blocking.


