
lbnamed: A Load Balancing
Name Server in Perl

Roland J. Schemers, III – SunSoft, Inc.

ABSTRACT

Given a cluster of workstations, users have always wanted a way to login to the least-
loaded workstation. This paper discusses an attempt to solve that problem using a load
balancing name server. This name server also has the ability to serve other dynamic
information as well, such as /etc/passwd information (a la Hesiod [2]). The prototype was
written in Perl 4 [1], and recently converted to Perl 5. This paper describes the Perl 4 version
first and then describes some of the interesting features in the Perl 5 version. This paper
assumes the reader has a basic understanding of Perl, DNS, and BIND [3].

The Problem

When I joined the Distributed Computing
Operations (DCO) group at Stanford, some of the
machines in the public UNIX workstation clusters
were overloaded but others were idle. People logging
in remotely picked the same machine all the time, or
they always picked the same architecture. For exam-
ple, they would always login to a system running
SunOS. If their favorite host was down, they would
call the operations staff and complain that the whole
system was down.

Users constantly asked for a way to login to the
‘‘best’’ workstation. The best answer consultants
could give them was to login to some workstation,
then run a program called ‘‘sweetload’’ which would
return a sorted list of the loads on all the worksta-
tions. The user would then have to pick one worksta-
tion from the list, and login to it, possibly logging
out of the workstation they ran sweetload on. This
was not an ideal solution.

It was at that point I decided to start working
on a ‘‘real’’ load balancing name server. I was
interested in creating a DNS name server that could
receive a request and dynamically create the
response.

Stanford has a wide range of machines in the
public workstation cluster(s). Figure 1 shows the
diversity of machines. A user can login to any one
of the workstations and see essentially the same
environment: same home directory, mail, etc. This
type of environment is well-suited for a load balanc-
ing name server.

19 Sparc 2s
37 Sparc 20s
31 Alpha 3000/300s
13 DECstation 5000/240s
10 RS/6000s
15 SGI Indigos

Figure 1: Public clusters run by DCO

Unlike the MIT Athena environment where the
typical public workstation only allows console
logins, the public workstations at Stanford allow
remote logins. At any one time there could be some
poor user sitting at the console of a Sparc 2 with
limited memory and swap space trying to read their
mail while 20 other people were logged in compiling
their CS project. If we had the resources we could
have disabled remoted logins on all the public
workstations and set up some specially configured
workstations for remote logins. This is still being
investigated, but for historical reasons remote logins
are still allowed on public workstations. During the
semester we typically saw over a thousand simul-
taneous unique logins across one hundred worksta-
tions.

Other Solutions

At the time I started working on lbnamed there
were a number of existing solutions. ‘‘Shuffle
Addresses’’ (SA) are one solution implemented by
Bryan Beecher. One downside with SA records is
they require changes to the DNS specification since
they add a new resource record of type T_SA.
Another solution is Marshall Rose’s ‘‘Round Robin’’
code which is included with current versions of
BIND [4]. The problem with ‘‘Shuffle Addresses’’
and the ‘‘Round Robin’’ approaches are they don’t
factor in load when handing out addresses. For
example, the ‘‘Round Robin’’ code just cycles
through the A records in a round-robin fashion. The
‘‘Round Robin’’ solution does have its benefits, as it
provides some balancing with little to no expense.

At the time this paper was being written, RFC
1794 [5] was also published and describes a load
balancing method using a special zone transfer agent
that can obtain its information from external sources.
The new zone then gets loaded by the name server.
One problem with this method is in between zone
transfers the weighted information is essentially
static, or possibly handed out round-robin. This
method also doesn’t allow for exotic virtual/dynamic

1995 LISA IX – September 17-22, 1995 – Monterey, CA 1

lbnamed: A Load Balancing Name Server in Perl Schemers

domains where the response is created dynamically
based on the name being queried. It does elegantly
solve a class of load balancing problems though.

There have also been other load balancing
name servers hacked up over the years, but most of
them were like my initial lbnamed prototype and not
extensible.

Requirements for Initial Implementation

The project had these initial requirements:
a. No changes to the DNS protocol, should be

compatible with existing DNS implementa-
tions.

b. In between updates of load balancing informa-
tion from the external source the cached load
information should change so the server
doesn’t end up returning the same information
over and over.

c. Must respond fast. Polling for load informa-
tion will be done by a separate process and
loaded back into the load balancing name
server.

d. Should be easy to configure and maintain.
e. A host can belong to multiple groups or clus-

ters.
f. Should not preclude having virtual/dynamic

domains. The response should be dynamically
generated based on the name being queried.

g. Redundancy is handled by multiple, indepen-
dent servers.

h. The initial implementation is not a general
purpose name server. Resolver clients should
not be pointed at it and it should not be used
in lieu of a real name server like BIND.
Remember, don’t try this at home.

Solution

lbnamed: A Load Balancing Name Server in Perl

Lbnamed is a load balancing name server writ-
ten in Perl. It was meant to be a prototype that
would get re-written in C and/or integrated with a
special version of BIND. It has worked well enough
(and I’ve been too busy with other things) that I’ve
left it in Perl. Lbnamed allows you to create
dynamic groups of hosts that have one name in a
DNS domain. A host may be in multiple groups at
the same time. For example, when someone types:

telnet elaine.best.stanford.edu

they get connected to one of 57 different SPARCsta-
tions named elaine1-elaine57. Since the Elaines con-
tain both Sparc 2 and Sparc 20 class machines I also
wanted a way for people to be able login to the
‘‘best’’ Sparc 2 or Sparc 20, partly for fear that peo-
ple who knew the difference wouldn’t want to use
the ‘‘elaine.best’’ alias because chances are one of
the Sparc 2s would have the lowest load. Therefore,
someone can also type:

telnet sparc20.best.stanford.edu

or even:

telnet sparc2.best.stanford.edu

And get connected to the ‘‘best’’ Sparc 20 or Sparc
2.

The Server(s)

The server side consists of two Perl programs,
lbnamed and poller. These programs run in parallel
and communicate using signals and configuration
files.

Poller

The poller daemon contacts the client daemon
running on the hosts being polled. It reads a
configuration file that tells the poller which hosts to
poll. The poller periodically sends out requests and
receives the responses asynchronously. After it has
received all the responses it dumps the information
into a configuration file and sends a signal to
lbnamed which then reloads the configuration file. If
the poller does not receive a response from one of
the hosts being polled it removes it from the
configuration file it feeds to lbnamed.

The poller program is also the program that
calculates the weight of each system. This logic was
placed in the poller program so the weight formula
could easily be changed without having to modify all
the poller client programs.

The formula used to determine the weight of a
host is:

$WT_PER_USER = 100;
$USER_PER_LOAD_UNIT = 3;

$fudge = ($tot_user - $uniq_user) *
$WT_PER_USER/5)

$weight = $uniq_user * $WT_PER_USER
+ ($USER_PER_LOAD_UNIT* $load)
+ $fudge;

Where the variables are:
$tot_user total number of users logged in.
$uniq_user unique number of users logged in.
$load the load average over the last minute

multiplied by 100.
$WT_PER_USER

the pseudo weight for each user.
$USER_PER_LOAD_UNIT

the number to multiple the load by.
$fudge fudge factor for users logged

in more then once.
The formula tries to favor hosts with the least
amount of unique logins, and lower load averages. It
has worked well, but could be improved.

A situation still exists when a host responds to
poller requests, and has a low load, but no one can
login because of a problem (such as lack of swap).
A future version may be smarter and watch for
trends where a host is constantly handed out but the
weight of that host never changes.

2 1995 LISA IX – September 17-22, 1995 – Monterey, CA

Schemers lbnamed: A Load Balancing Name Server in Perl

The poller daemon was inspired by a previous
program I wrote called fping. See the appendix for a
brief description of fping.

Lbnamed

The lbnamed script reads the configuration file
generated by the poller and loads it into a number of
different data structures. Each group of machines is
stored in an array, while the weights of all the hosts
are stored in one hash table. When a request for a
particular group comes in, the array for that group is
sorted based on the weight of each host in that
group. The host with lowest weight is then returned
as the best host, and its weight is increased by
adding two times the constant $WT_PER_USER to
it. By increasing the weight we ensure the same host
won’t be returned over and over.

1364 elaine1 36.215.0.117 elaine sparc2 sparc sunos
1264 elaine2 36.215.0.118 elaine sparc2 sparc sunos
1602 elaine40 36.218.0.88 elaine sparc20 sparc sunos
1827 elaine41 36.218.0.89 elaine sparc20 sparc sunos

Figure 2: Poller configuration file

@group_sparc20 = ("elaine40","elaine41");
@group_sparc2 = ("elaine1", "elaine2");
@group_elaine = ("elaine1", "elaine2", "elaine40","elaine41");
@group_sparc = ("elaine1", "elaine2", "elaine40","elaine41");
@group_sunos = ("elaine1", "elaine2", "elaine40","elaine41");

%groups = (’sparc20’,2,’sparc2’,2,’elaine’,4,’sparc’,4,’sunos’,4);

%weight = (’elaine1’,1364,’elaine2’,1264,’elaine40’,1602,’elaine41’,1827);

Figure 3: Arrays created from configuration file

The best way to understand how the data is
stored internally is an example. Consider the
configuration file created by the poller shown in Fig-
ure 2 where the format of the file is:

weight host ipaddress group1 [...]

Upon reading the configuration file, lbnamed
will create the arrays shown in Figure 3. The
@group_ arrays are created using ‘‘eval’’:

eval "push(@group_$group,ost);";

The groups array contains all the dynamic
groups and the number of members in each group.
This array serves two purposes. It is used to deter-
mine if a particular group exists and to reset the
current groups before the configuration file is
reloaded:

foreach $group (%groups) {
eval "@group_$group=();";

}
%groups=();

The weight array contains the weight of each
host and is used to assist in sorting a particular

group when a query is made. To find the host with
the lowest weight, the eval function is used:

$the_host =
eval "&get_best(*group_$qname);";

The get_best function just sorts the array passed to it
using the “by_weight function:

sub by_weight {
$weight{$a} <=> $weight{$b};

}

sub get_best {
local(*group)=@_;
local($best);
@group = sort by_weight @group;
$best = @group[0];
$weight{$best} += $WT_PER_USER * 2;
return $best;

}

Also note the weight of the host returned is
updated so the weight does not remain static in
between polls. Another option would have been to
sort each array once after the configuration file has
been loaded and to hand out names in a round-robin
fashion until the next poll. The current method will
degrade to round-robin in the case where all the
hosts are equally loaded, but will tend to favor the
least loaded systems in the normal case. There is
room for improvement in this algorithm.

To other name servers, lbnamed looks like a
standard DNS name server, with the exception that it
doesn’t answer recursive queries. It only handles
requests for the dynamic groups it maintains.
lbnamed gets a normal DNS request and, based on
the name in the request, it calculates the host to
return. lbnamed then constructs a standard DNS
response and sends it back to client that requested it.
The time to live (TTL) value in the response is set
to 0. This prevents the response from being cached
by other name servers.

1995 LISA IX – September 17-22, 1995 – Monterey, CA 3

lbnamed: A Load Balancing Name Server in Perl Schemers

For example, Figure 4 shows the use of ‘‘dig’’
(which is distributed with the latest version of
BIND[4]) to see data returned from a query to the
load balancing name server. Figure 5 shows a
second query for the same domain with a different
returned value.

dig elaine.best.stanford.edu

; <<>> DiG 2.1 <<>> elaine.best.stanford.edu
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6
;; flags: qr aa rd ra; Ques: 1, Ans: 2, Auth: 0, Addit: 0
;; QUESTIONS:
;; elaine.best.stanford.edu, type = A, class = IN

;; ANSWERS:
elaine.best.stanford.edu. 0 CNAME elaine19.stanford.edu.
elaine19.stanford.edu. 3600 A 36.216.0.207

;; Total query time: 60 msec
;; FROM: cardinal1.Stanford.EDU to SERVER: default -- 36.56.0.150
;; WHEN: Thu Jul 6 22:13:57 1995
;; MSG SIZE sent: 42 rcvd: 114

Figure 4: Dig results of first query

dig elaine.best.stanford.edu

[... header deleted ...]

;; ANSWERS:
elaine.best.stanford.edu. 0 CNAME elaine16.stanford.edu.
elaine16.stanford.edu. 3600 A 36.216.0.204

Figure 5: Dig results from second query

There are a few things to note in the data
returned. First, a dynamic CNAME is returned, not a
dynamic A record. By returning a dynamic CNAME
we can leverage off other data associated with the
real domain name (such as an MX record). In addi-
tion, by returning a CNAME the resolver client
doesn’t end up with an A record that doesn’t have a
corresponding PTR record.

Secondly, note that we have returned the
address of the host to which the CNAME points.
This should save an extra lookup by the resolver
client. If we just returned the CNAME record, the
client would then have to lookup the A record for
that name as well. We already have the IP address
because the poller needs it to poll the host.

Load Balancing Client Daemon

Hosts that are going to be polled by the poller
need to run a special daemon, the load balancing
client daemon (lbcd). lbcd responds to poller
requests (over UDP) using a simple protocol. The
protocol format is described in the appendix. I wrote
yet-another-remote-statistics daemon because ini-
tially I had grand plans for having it do a number of

different system management tasks. Later, I used
Sysctl [6] for those tasks.

lbcd is written in C, although it probably could
have been written in Perl with a few helper pro-
grams written in C to read information from the ker-
nel. The important thing to remember is the client
and poller can easily be replaced with something
else, as long as the poller program creates the
lbnamed configuration file in the correct format.

Configuring the load balancing name servers

For the load balancing name server to answer
requests it must be delegated a virtual domain to
serve. This is normally done in the parent domain by
adding NS records. In the stanford.edu domain the
load balancing name server uses the
best.stanford.edu domain, so in the DNS
configuration file for the stanford.edu domain there
are two NS records:

best IN NS dsodb.stanford.edu.
best IN NS sunlight.stanford.edu.

These two NS records delegate the best.stanford.edu
domain to the lbnamed’s running on dsodb and sun-
light. Now when the primary servers for the
stanford.edu domain get a request like
elaine.best.stanford.edu they know to forward it to
the lbnamed’s. Note that the two lbnamed’s don’t
communicate with each other; they both operate
independently for simplicity and redundancy.

4 1995 LISA IX – September 17-22, 1995 – Monterey, CA

Schemers lbnamed: A Load Balancing Name Server in Perl

Perl 5 Server

Although the Perl 4 version has worked fine, it
serves a single purpose: handing out load informa-
tion in the ‘‘best.stanford.edu’’ domain. It is possible
to modify it to serve other information was well, but
doing so using Perl 4 would not have been easy due
to the lack of nested data structures. After this paper
was accepted, I decided to re-write the name server
in Perl 5, using Perl 5 features like references to
achieve nested data structures, and the Socket
module to provide portability.

Server Organization

The Perl 5 server is organized into four dif-
ferent files: DNS.pm, lbnamed, lbnamed.conf, and
LBDB.pm.

DNS.pm

DNS.pm is a Perl 5 package containing con-
stants and functions that assist in creating and pars-
ing DNS messages. It was created by starting with
/usr/include/arpa/nameser.h and converting it into
Perl 5. From there functions were added to expand
compressed domain names, create resource records,
etc. After importing DNS.pm, programs can use
these functions and constants. For example:

$flags |= QR_MASK | AA_MASK | NOTIMP;

Functions are provided for encoding data into
resource records (RRs). After the RR is encoded it
is returned as string. Only the common RRs were
implemented, see Figure 6.

$data = rr_A($ipaddress);

$data = rr_CNAME("stanford.edu");

$data = rr_HINFO("PowerPC","Solaris/2.5");

$data = rr_MX(10,"leland.stanford.edu");

$data = rr_NS("bestserver.stanford.edu");

$data = rr_NULL;

$data = rr_PTR("leland.stanford.edu");

$data = rr_SOA("foo.stanford.edu","root.stanford.edu",
1234, 1200, 300, 604800,86400)

$data = rr_TXT("this is text");

Figure 6: Prototypes for implemented common resource record encodings

An answer to a DNS query consists of of 6
pieces of data. The domain name which the resource
records pertains to, the type of the RR, the class of
the RR, the time-to-live (TTL) of the data, the
length of the data, and the data the itself. The
dns_answer function is used to create an answer:

$answer = dns_answer(QPTR, T_TXT,
C_IN, 60, rr_TXT($date));

Note that the length of the resource data is not
passed to the dns_answer function because the
resource data is passed in as a string. The

dns_answer function uses the string’s length as the
resource data’s length since Perl strings can contain
null characters, unlike null-terminated C strings.
Also note the special constant ‘‘QPTR’’. QPTR is a
compressed domain name pointer which points to the
original question in the DNS message. If the domain
name of RR that is getting added to the answer sec-
tion is the same as the domain name in the question
you should use QPTR. QPTR takes only two bytes
as opposed to duplicating the original domain name.

lbnamed

lbnamed is the main server. It loads
lbnamed.conf, sets up the TCP and UDP sockets,
and then answers requests after performing a
select(2) on the TCP and UDP sockets. Upon receiv-
ing a request it calls the do_dns_request function
which attempts to parse the DNS request. If the
request is invalid (i.e., a unsupported operation is
requested or the request could not be parsed), an
error is returned. Otherwise lbnamed first checks to
see if there is a static answer available. If not, it
attempts to find a dynamic domain that will answer
the question. If neither a static or dynamic answer is
found then the NXDOMAIN (non-existent domain)
error is returned.

A static domain name is a domain name that
does not change from one query to the next. A
dynamic domain name is a domain that can possibly
change from query to query. Static and dynamic
domains are discussed in detail a little later.

Figure 7 shows the code for checking for static
and dynamic domain names. The response to the
query is generated using Perl’s ‘‘pack’’ function, as
shown in Figure 8. Note that the LBDB::
check_static and LBDB::check_dynamic functions
are free to modify the various variables in the
$dnsmsg associative array, such as setting the
response code (rcode) and adding data to the answer,
authority, and additional section of the response.

1995 LISA IX – September 17-22, 1995 – Monterey, CA 5

lbnamed: A Load Balancing Name Server in Perl Schemers

if (LBDB::check_static($qname,
$qtype,$qclass,$dnsmsg)) {

return answer
} elsif (LBDB::check_dynamic($qname,

$qtype,$qclass,$dnsmsg)) {
return answer

} else {
$dnsmsg->{’rcode’} = NXDOMAIN;

}

Figure 7: Coding to check static/dynamic domain
names

$flags |= QR_MASK | AA_MASK | $dnsmsg->{’rcode’};
$response = pack("n n n n n n", $id, $flags, $qdcount,

$dnsmsg->{’ancount’}, $dnsmsg->{’nscount’}, $dnsmsg->{’arcount’})
. $question
. $dnsmsg->{’answer’}
. $dnsmsg->{’auth’}
. $dnsmsg->{’add’};

Figure 8: Creating response to query

sub add_static {
my($domain,$type,$value,$ancount,$class,$ttl) = @_;

$ancount = 1 unless $ancount;
$class = C_IN unless $class;
$ttl = $default_ttl unless $ttl;

$static_domain{$domain} -> {$class} -> {$type} = {
"answer" => dns_answer(QPTR,$type,$class,$ttl,$value),
"ancount" => $ancount

};
}

Figure 9: LBDB::add_static

lbnamed.conf

lbnamed.conf is the place to put local
modifications, and to define two function hooks
which are called from lbnamed: do_maint,
clean_exit. The do_maint function is called from the
answer_requests function in lbnamed if the variable
need_maint is set. For example, lbnamed.conf can
install a signal handler to catch the HUP signal. This
signal handler would set the need_maint variable so
the do_maint function would get called. clean_exit is
a function which cleanly shuts down the server.

lbnamed.conf also contains calls to the
LBDB::add_static and LBDB:add_dynamic functions
to add static and dynamic data. Under normal cir-
cumstances lbnamed.conf is the only file that needs
to be changed.

LBDB.pm

LBDB.pm is a Perl 5 package that contains the
functions for adding data to and checking for static
and dynamic domain data.

Registering Static Domains

Static domain data (data that does not vary
from query to query) is added using the
LBDB::add_static function as shown in Figure 9.
The database for static information is implemented
using a four-level hash table:

$static_domain{$domain} ->
{$dns_class} -> {$dns_type} =

{ ...data... }

The first-level hash table is indexed by the domain
name of the data, the second level is indexed using
the class of the data (such as C_IN), the third level
is indexed using the type of the data (such as T_A),
and the fourth level contains the information associ-
ated with the data of that domain, class, and type.
This layout simplifies finding all the data associated
with a given domain name, even when confronted
with a query that contains C_ANY or T_ANY.

Static domain data can be used for any type of
data, but will probably be used mainly for answering
SOA queries for a dynamic domain. For example, to
register an SOA record for the ‘‘best.stanford.edu’’
domain you would make the following call in the
‘‘lbnamed.conf’’ file:

LBDB::add_static("best.stanford.edu",
T_SOA,
rr_SOA(hostname, $hostmaster,

time, 86400, 86400, 86400, 0)
);

6 1995 LISA IX – September 17-22, 1995 – Monterey, CA

Schemers lbnamed: A Load Balancing Name Server in Perl

Registering Dynamic Domains

Dynamic domains (data that gets created
dynamically, based on the name being queried) are
added using the LBDB::add_dynamic function as
shown in Figure 10. The database for dynamic infor-
mation is implemented using a hash table:

$dynamic_domain{$domain} = $handler;

The hash table is indexed by the domain name
of the data, and the value returned is a reference to a
function which gets called at the time the query is
made. The function for a dynamic domain is called
with the following arguments:

&$dfunc($domain, $residual, $qtype,
$qclass, $dnsmsg);

$domain is the dynamic domain (i.e.,
best.stanford.edu)

$residual is the data to the left of the dynamic
domain (i.e., elaine)

$qtype is the type of the of the query (i.e., T_A)
$qclass is the class of the query (i.e., C_IN)
$dnsmsg is a reference to a hash table which is used

to return information to the load balancing
name server.

The function returns 1 if it executed success-
fully (i.e., the results in $dnsmsg should be used) or
0 otherwise.

sub add_dynamic {
my($domain, $handler) = @_;
$dynamic_domain{$domain} = $handler;

}

Figure 10: LBDB::add_dynamic

The algorithm for finding a dynamic domain
attempts to find the longest dynamic domain name
that matches the query. For example, if we had the
following dynamic domains registered:

stanford.edu
best.stanford.edu

And the following query came in:

elaine.best.stanford.edu

Then the handler for the ‘‘best.stanford.edu’’ domain
would be called, since it is the longest match for
‘‘elaine.best.stanford.edu’’ Here is how the algorithm
matches ‘‘elaine.best.stanford.edu’’:

domain residual match
"elaine.best.stanford.edu" "" no
"best.stanford.edu" "elaine" yes

If the query was ‘‘foo.bar.stanford.edu’’ then the
match would look like:

domain residual match
"foo.bar.stanford.edu" "" no
"bar.stanford.edu" "foo" no
"stanford.edu" "foo.bar" yes

Dynamic domains are the heart of the load
balancing name server as they allow you to create
answers dynamically based upon the name being
queried. The best way to explain dynamic domains
is with an example.

Let’s create a domain called ‘‘random.
stanford.edu’’, which will return a different random
number between 0 and 10 every time it is called. We
register that domain by adding the following calls to
lbnamed.conf:

sub handle_random {
my($domain, $residual, $qtype,

$qclass, $dm) = @_;
$dm->{’answer’} .= dns_answer (

QPTR, T_TXT, C_IN,
60, rr_TXT(int(rand(10))));

$dm->{’ancount’} += 1;
return 1;

}

LBDB::add_dynamic(
"random.stanford.edu" =>
\&handle_random);

By calling LBDB::add_dynamic we are request-
ing that the load balancing name server call our
function whenever a request comes in for the name
‘‘random.stanford.edu’’. The first statement calls the
dns_answer function which creates the binary data
which will be placed in the answer section of the
DNS message:

$dm->{’answer’} .= dns_answer(
QPTR, T_TXT, C_IN,
60, rr_TXT(int(rand(10)))

);

QPTR is a constant defined in DNS.pm that is
a compressed domain name pointer which points to
the original question in the DNS message. T_TXT is
the type of data being returned. C_IN is the class of
the data being returned. 60 is the time-to-live (TTL)
of the data being returned (in seconds), and rr_TXT
is a function which given a text string returns a text
resource record. The second statement increments
the answer count in the reply message. The response
code for the reply is set to NOERROR by default, so
there is nothing else for us to set.

Let’s say we also want to define a domain that
returned a random number between 0 and 100. It
would be easy to do something like:

LBDB::add_dynamic(
"random100.stanford.edu"

=> \&handle_random_100);

But that solution does not scale. The solution is to
modify the original handle_random function so that
it examines the residual part of the domain name
passed to it. For example:

1995 LISA IX – September 17-22, 1995 – Monterey, CA 7

lbnamed: A Load Balancing Name Server in Perl Schemers

sub handle_random {
my($domain, $residual, $qtype,

$qclass, $dm) = @_;

$residual = 10 unless $residual;

$dm->{’answer’} .= dns_answer(
QPTR, T_TXT, C_IN, 60,
rr_TXT(int(rand($residual))));

$dm->{’ancount’} += 1;
return 1;

}

This enables us to make a query in the form:

random.stanford.edu

or:

N.random.stanford.edu

where the return value will be between 0 and N; see
Figure 11 for an example. While ‘‘random.
stanford.edu’’ is not a useful domain, it helps show
the basic concepts involved in creating dynamic
domains. A more useful example would create a
dynamic domain that mimicked the Hesiod
‘‘passwd’’ domain in the Athena environment.

dig 100.random.stanford.edu

[... header deleted ...]

;; ANSWERS:
100.random.stanford.edu. 60 TXT "97"

[... trailer deleted ...]

Figure 11: Querying N.random.stanford.edu

root.passwd HS TXT "root:*:0:1:Root Account:/:/bin/sh"

Figure 12: Sample database entry for root user

Using a standard BIND server that understands
class HS and type TXT records, you need a database
entry in the domain file for each user in the pass-
word file; see Figure 12 for an example. If you have
a large password file (like Stanford’s 22,000 users),
then BIND will consume a lot of memory loading
every single passwd entry. It also means that to
add/delete/update an entry you’ll have to reload the
whole file. Using lbnamed you register a dynamic
domain:

sub handle_passwd_request {
my($domain, $residual, $qtype,

$qclass, $dm) = @_;

my($name, $passwd, $uid, $gid,
$q, $c, $gcos, $dir, $shell) =
getpwnam($residual);

my($entry);

if ($name) {
$entry = "$name:*:$uid:$gid:".

"$gcos:$dir:$shell";
} else {

$dm->{’rcode’} = NXDOMAIN;
return 1;

}

$dm->{’answer’} .= dns_answer(QPTR,
T_TXT, C_HS, 3600,
rr_TXT($entry));

$dm->{’ancount’} += 1;
return 1;

}

LBDB::add_dynamic(
"passwd.ns.stanford.edu" =>

\&handle_passwd_request);

Now if someone attempts to lookup the name
‘‘root.passwd.ns.stanford.edu’’, the lookup will get
re-directed to the handle_passwd_request, which will
lookup the passwd information and construct the
correct response dynamically. Note that depending
on the OS, the getpwnam call could be getting the
password information from a local file, a DBM file,
or even NIS/NIS+. You could also replace the
getpwnam call with your own function that obtains
information from a DBM file or even a relational
database.

Results/Conclusions

Overall lbnamed has been a big win at Stan-
ford. It has helped distribute the load among a large
number of workstations. It also enables system
administrators to take systems down temporarily
without interrupting users who use the load balanc-
ing name. It also allows systems to be transparently
added and removed from groups.

The problems have been minor. The biggest
problem has been hosts that respond to load balanc-
ing queries, but don’t allow logins (due to other
problems). This could be fixed by falling back to a
strict round-robin scheme in between polls, or some
variant, such as changing the weight of the host
handed out to be slightly more than the host in the
middle of the list, for example.

8 1995 LISA IX – September 17-22, 1995 – Monterey, CA

Schemers lbnamed: A Load Balancing Name Server in Perl

The other problem has been resolver clients
that don’t deal well with TTL values of 0. This has
only happened in a few cases and generally only
happens in clients with old software.

Some people may not feel comfortable using a
TTL of 0, but I personally don’t have any trouble
sleeping at night because I chose it. As mentioned in
RFC 1794, there are plenty of versions of BIND that
treat anything less than 300 seconds as 300 seconds,
which can defeat the whole purpose of trying to bal-
ance the load. I figured the added load on the name
servers was worth the benefit of getting a truly
dynamic response to every query. When trying to
load balance your cache can be trash...

Future Directions

One of the reasons I decided to write this paper
was to get people thinking about ‘‘exotic’’ name
servers. There are a number of directions someone
could take the concepts presented here, some of
which have already been hinted at in a future version
of BIND. For example, the registration of dynamic
domains could be added to BIND by loading shared
objects at runtime, or by allowing external daemons
to register with BIND and communicate via IPC
mechanisms.

As far as the Perl implementation of lbnamed
is concerned, a number of improvements immedi-
ately come to mind:
� recognizing when a particular host is con-

sistently handed out as being the best, even
though no one can login to it.

� adding more factors to the determine the
weight of a host, such as a swap space, free
memory, number of processes, CPU model,
etc.

� modifying the poller protocol so poller clients
can specify their weight rather then letting the
poller calculate it for them. For example, you
could load balance requests to a name such as
‘‘www.stanford.edu’’ based on the average
number of requests over the last few minutes,
etc.

� modifying the poller so it periodically reloads
the IP addresses of clients into its cache.

� adding logging and statistics back to the Perl
5 version.

� generalize support for domain name compres-
sion in answers.

Acks

The Perl 4 version was written while I was at
Stanford. The Perl 5 code was written (in my free
time after work) after I left Stanford, and after this
paper was accepted. Special thanks to Shirley Gruber
at Stanford University and Kevin Kluge at SunSoft
for finding and correcting plenty of errors in early
versions of this paper. My English is a little better
and they probably know a little more about DNS ;-)

Availability

The code is available using the following URL:
http://www-leland.stanford.edu/~schemers/dist/lb.tar
Use the code at your own risk. The Perl 4 version
has been in use at Stanford for over two years.

Author Info

Roland Schemers received his M.S degree in
Computer Science from Oakland University in
Rochester, Michigan. He currently is working in the
DCE engineering group at SunSoft. He previously
worked in the Distributed Computing Group at Stan-
ford, and helped manage and maintain such campus-
wide services as AFS, Kerberos, and DNS, as well
as the public workstation clusters and servers. He
can be reached electronically at <schemers@
eng.sun.com>.

While at Stanford he also co-authored a chapter
in the book Distributed Computing, Implementation
and Management Strategies, Raman Khanna, Editor,
which probably would have sold better if it had the
words ‘‘Client/Server’’ in the title.

He is patiently waiting for the day when he can
login into any UNIX system and access /usr/bin/perl.

References

[1] Larry Wall, Randal L. Schwartz, Programming
perl, O’Reilly and Associates, Sebastopol, CA.

[2] Stephen P. Dyer, The Hesiod Name Server,
Proc. USENIX Winter Conference, 1988.

[3] Paul Albitz, Cricket Lui, DNS and BIND,
O’Reilly and Associates, Sebastopol, CA.

[4] Paul Vixie, BIND, http://www.isc.org/isc/

[5] Thomas P. Brisco, DNS Support for Load
Balancing, RFC 1794.

[6] Salvatore DeSimone, Christine Lombardi,
Sysctl: A Distributed System Control Package,
Proc. USENIX LISA Conference, November
1993.

[7] Dan Farmer, Wietse Venema, SATAN,
satan@fish.com.

1995 LISA IX – September 17-22, 1995 – Monterey, CA 9

lbnamed: A Load Balancing Name Server in Perl Schemers

APPENDIX

Poller configuration file

The poller configuration file tells which hosts the poller should poll, and which dynamic groups those hosts
are in. The format is:

host weight-multiplier group1 [group2 ...]

The weight-multiplier field is currently not used but could be used in the future to allow for better selection
among different hardware in the same group.

The following is a sample poller configuration file with some lines removed to save space.

#
groups

sweet all machines
elaine elaine1-elaine57
sparc elaine1-elaine57
sunos elaine1-elaine57
sparc2 sparc2 (elaine1-elaine19)
sparc1 sparc1 (elaine20-elaine57)
adelbert adelbert1-adelbert26
ultrix adelbert1-adelbert26
dec adelbert1-adelbert26
dec5000 adelbert1-adelbert13
dec3100 adelbert14-adelbert26
rs rs1-rs10
rs6000 rs1-rs10
aix rs1-rs10
#
rs1 1 rs rs6000 aix
rs2 1 rs rs6000 aix
rs10 1 rs rs6000 aix
#
elaine1 1 elaine sparc2 sparc sunos sweet
elaine2 1 elaine sparc2 sparc sunos sweet
elaine19 1 elaine sparc2 sparc sunos sweet
#
elaine20 1 elaine sparc1 sparc sunos sweet
elaine21 1 elaine sparc1 sparc sunos sweet
elaine57 1 elaine sparc1 sparc sunos sweet
#
adelbert1 1 adelbert dec5000 dec ultrix sweet
adelbert2 1 adelbert dec5000 dec ultrix sweet
adelbert13 1 adelbert dec5000 dec ultrix sweet
#
adelbert14 1 adelbert dec3100 dec ultrix sweet
adelbert26 1 adelbert dec3100 dec ultrix sweet
#

lbnamed configuration file

The lbnamed configuration file tells lbnamed what the weight of each host is, what its IP address is, and
which dynamic groups a hosts is in. The format is:

weight host ipaddress group1 [group2 ...]

The following is a sample lbnamed configuration file with some lines removed to save space.

2200 elaine11 36.214.0.127 elaine sparc2 sparc sunos sweet
639 adelbert10 36.211.0.81 adelbert dec5000 dec ultrix sweet
651 elaine20 36.215.0.208 elaine sparc1 sparc sunos sweet
2336 elaine3 36.212.0.119 elaine sparc2 sparc sunos sweet
...

10 1995 LISA IX – September 17-22, 1995 – Monterey, CA

Schemers lbnamed: A Load Balancing Name Server in Perl

866 adelbert6 36.211.0.76 adelbert dec5000 dec ultrix sweet
243 adelbert26 36.212.0.201 adelbert dec3100 dec ultrix sweet

Protocol

The protocol between the poller and client daemon is simple. Everything is in network byte order. I used
UDP so I could easily send out multiple polls at the same time and receive responses asynchronously. The
packet format (described by C structures) is:

#define PROTO_PORTNUM 4330
#define PROTO_MAXMESG 2048 /* max udp message to receive */
#define PROTO_VERSION 2

typedef enum P_OPS {
op_lb_info_req =1, /* load balance info, request and reply */

} p_ops_t;

typedef enum P_STATUS {
status_request =0, /* a request packet */
status_ok =1, /* ok */
status_error =2, /* generic error */
status_proto_version =3, /* protocol version error */
status_proto_error =4, /* any other protocol error */
status_unknown_op =5, /* unknown operation requested */

} p_status_t;

typedef struct {
u_short version; /* protocol version */
u_short id; /* requestor’s uniq request id */
u_short op; /* operation requested */
u_short status; /* set on reply */

} P_HEADER,*P_HEADER_PTR;

typedef struct {
P_HEADER h;
u_int boot_time;
u_int current_time;
u_int user_mtime; /* time user information last changed */
u_short l1; /* (int) (load*100) */
u_short l5;
u_short l15;
u_short tot_users; /* total number of users logged in */
u_short uniq_users; /* total number of uniq users */
u_char on_console; /* true if someone on console */
u_char reserved; /* future use, padding... */

} P_LB_RESPONSE, *P_LB_RESPONSE_PTR;

The protocol was meant to be extensible but I have yet to use the daemon for anything but load balancing
requests.

fping

The poller daemon was inspired by a previous program I wrote called fping. fping is a ping(8) like program
which uses the Internet Control Message Protocol (ICMP) echo request to determine if a host is up. fping is dif-
ferent from ping in that you can specify any number of hosts on the command line, or specify a file containing
the lists of hosts to ping. Instead of trying one host until it times out or replies, fping will send out a ping
packet and move on to the next host in a round-robin fashion. If a host replies, it is noted and removed from the
list of hosts to check. If a host does not respond within a certain time limit and/or retry limit it will be con-
sidered unreachable. fping is used by SATAN [7] to quickly ping a list of hosts and/or ip addresses.

fping is currently being maintained and updated by R. L. ‘‘Bob’’ Morgan <morgan@
networking.stanford.edu> and can be obtained via the following URL:

ftp://networking.stanford.edu/pub/fping/fping.2.0.tar.gz

1995 LISA IX – September 17-22, 1995 – Monterey, CA 11

12 1995 LISA IX – September 17-22, 1995 – Monterey, CA

