

Visual Studio 2012
Cookbook

50 simple but incredibly effective recipes to immediately
get you working with the exciting features of Visual
Studio 2012

Richard Banks

BIRMINGHAM - MUMBAI

Visual Studio 2012 Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2012

Production Reference: 1290812

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-652-5

www.packtpub.com

Cover Image by David Gimenez (bilbaorocker@yahoo.co.uk)

Credits

Author
Richard Banks

Reviewers
Dave McKinstry

Quinten Miller

Anand Narayanaswamy

Justin "JT" Taylor

Acquisition Editor
Stephanie Moss

Lead Technical Editor
Kedar Bhat

Technical Editor
Joyslita D'Souza

Project Coordinator
Joel Goveya

Proofreader
Kevin McGowan

Indexer
Monica Ajmera Mehta

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

Foreword

When we sat down to map out the next version of our premier software development tool,
Microsoft Visual Studio 2012, we had a few key scenarios in mind.

One of those scenarios was Developers are Raving Fans. We clearly heard the feedback about
the speed of Visual Studio, about the discoverability of features, its ability to support ever
changing and improving engineering practices, and various other sources of frustration. With
Microsoft Visual Studio 2012 we wanted to not only address that feedback but to then go on
and exceed people's expectations as to what Visual Studio can do for them. We wanted to
surprise and delight them with the features on offer and to give them both the reason and
opportunity to fall back in love with the software they use every day.

We also wanted developers to regard Visual Studio as a key enabler in developing fantastic
experiences for Windows 8 and not as a tax on their development efforts. We wanted
them to enjoy the process of developing world changing software and to make it eminently
approachable; not just for those familiar with Visual Studio but also for those who are new to
Windows development.

We believe we have met these goals, and then some.

Richard's book is a perfect complement to Visual Studio 2012 for both the experienced and
new Visual Studio developer alike. It is highly approachable and educational and is a book
that you can pick up and use immediately in your daily development efforts. The cookbook
style recipe format helps you quickly get to grips with how Microsoft Visual Studio 2012 can
be used for building fantastic software and answers the key question you have, which is
"What's new in Microsoft Visual Studio 2012?".

Brian Harry
Technical Fellow, Microsoft Corporation

About the Author

Richard Banks has developed software for the last 20 years for a wide range of industries
and development platforms and over the years has filled many roles including Developer,
Team Lead, Project Manager, and CIO/CTO. He is a Professional Scrum Trainer, runs the
Sydney Alt.Net user group and the Talking Shop Down Under podcast, owns and contributes
to a few open source projects, and has spoken at Microsoft Tech.Ed and a number of other
events and user groups around Australia. For some strange reason he gets a real kick out
of helping development teams to improve and produce great software. If you want to get in
touch, his tweet handle is @rbanks54. He blogs at http://www.richard-banks.org/.
He currently works as a Principal Consultant for Readify and is a Microsoft Visual Studio
ALM MVP.

It might have my name on the front cover but a book is never the work of
just one person.

I would firstly like to thank my fantastic wife, Anne, and my two wonderful
children, Hannah and Leisel, for giving me the time and space to work on
this book. Their support throughout the process has been invaluable and
without that I would have never undertaken this book in the first place.

I'd also like to thank the staff of Packt Publishing for the opportunity and
help in bringing this together, and my tech reviewers who gave up their
spare time reading my scribble and checking that what I wrote actually
made sense, instead of being just a delirium fuelled pile of nonsense.

Thank you all!

http://sydney.ozalt.net/
http://talkingshopdownunder.com/
http://twitter.com/rbanks54
http://www.richard-banks.org/
http://www.readify.net/

About the Reviewers

Dave McKinstry has over 20 years professional experience in computer systems, including
programming and system administration on VAX minicomputers through development and
architecture in Microsoft technologies. For the past dozen years, he has been helping clients
adopt modern technologies and best practices for application development.

He is currently the ALM practice manager for Microsoft's 2011 ALM Partner of the
year, Imaginet Resources. Before merging with Imaginet, he was a founding partner
with Notion Solutions.

He was a Technical Reviewer on Architecting Web Services (ISBN 1-893115-58-5).

Thank you to my wife, Liana and my son for their patience with this and all of
my other "side-projects".

Anand Narayanaswamy is an ASPInsider who works as a freelance technical writer based
in Trivandrum, India. He has worked as a Technical Editor/Reviewer for various publishers
such as Sams, Addison-Wesley, Mc Graw Hill, Packt Publishing, and ASPAlliance.com. He has
expertise in the installation, management, and usage of popular ASP.NET and PHP based
blogs/Content Management Systems (CMS). He is the author of Community Server Quickly
(www.packtpub.com/community-server/book) published by Packt Publishing, and can
be reached at visualanand@gmail.com. His tweet handle is @anandenclave.

First, I would like to thank the Almighty for giving me the strength and energy
to work every day. I would specially like to thank my father, mother, and
brother for providing valuable help, support, and encouragement. I would
also like to thank Joel Goveya, Project Coordinator at Packt Publishing,
for his assistance, cooperation, and understanding throughout the review
process of this book.

http://www.packtpub.com/community-server/book
mailto:visualanand@gmail.com

Justin "JT" Taylor has been developing software for fun and profit for the last 12 years. He
has worked on a variety of technologies throughout his career, but most recently has focused
his craft on utilizing Microsoft XAML based technologies, WPF, Silverlight, and WinRT. Working
with Readify, he provides opinions (of which he has many) and expertise to clients to help
them get the most out of their software development efforts. He prefers to remain somewhat
nomadic in nature, changing his place of residence as fast as the landscape of the industry
he loves so much. If he weren't working in the software industry, he would most like to be
caped and cowled, fighting crime on the mean streets of Gotham City.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Discovering Visual Studio 2012	 5

Introduction	 5
Creating a new project	 5
Upgrading an existing solution	 8
Managing editor windows	 11
Finding Visual Studio commands	 16
Navigating and searching	 19
Searching your code	 23
Using the graphics tools	 25

Chapter 2: Getting Started with Windows Store Applications	 31
Introduction	 31
Creating a Windows Store app	 33
Adding a Windows Store item template to your app	 40
Using the Windows 8 simulator	 44
Defining capabilities and contracts	 52
Packaging your Windows Store app	 58
Validating your Windows Store app	 63

Chapter 3: Web Development: ASP.NET, HTML5, CSS, and JavaScript	 65
Introduction	 65
Creating HTML5 web pages	 66
Taking advantage of CSS editor improvements	 70
Understanding the JavaScript editor improvements	 75
JavaScript and CSS bundling and minification	 79
Verifying pages with the Page Inspector	 84

ii

Table of Contents

Chapter 4: .NET Framework 4.5 Development	 91
Introduction	 91
Adding the Ribbon to a WPF application	 92
Creating a state machine in Visual Studio 2012	 97
Creating a Task-based WCF service	 103
Managing packages with NuGet	 107
Unit testing .NET applications	 111
Sharing class libraries across runtimes	 117
Detecting duplicate code	 119

Chapter 5: Debugging Your .NET Application	 125
Introduction	 125
Debugging on remote machines and tablets	 126
Debugging code in production	 133
Debugging parallel code	 139
Visualizing concurrency	 144

Chapter 6: Asynchrony in .NET	 149
Introduction	 149
Making your code asynchronous	 150
Asynchrony and Windows Runtime	 156
Asynchrony and web applications	 161
Actors and the TPL Dataflow Library	 165

Chapter 7: Unwrapping C++ Development	 171
Introduction	 171
Using XAML with C++	 172
Unit testing C++ applications	 175
Analyzing your C++ code	 180
Working with DirectX in Visual Studio 2012	 182
Creating a shader using DGSL	 186
Creating and displaying a 3D model	 191
Using the Visual Studio Graphics Debugger	 194

Chapter 8: Working with Team Foundation Server 2012	 201
Introduction	 201
Managing your work	 202
Using local workspaces for source control	 207
Storyboarding user requirements	 214
Performing code reviews	 219
Getting feedback from your users	 225

iii

Table of Contents

Appendix: Visual Studio Pot Pourri	 231
Introduction	 231
Creating installer packages	 231
Submitting apps to the Windows Store	 236
Using the new SQL Server Data Tools	 239
Creating Visual Studio add-ins and extensions	 242
Creating your own snippets	 244

Index	 249

iv

Table of Contents

Preface
Visual Studio 2012 Cookbook is a set of simple-to-follow recipes that you can use to discover
and master the features of the latest version of Microsoft's premier development tool.

While you could try and discover features by clicking around in the menus, it's easy to miss the
new features and to see how they can help you. Plus Visual Studio 2012 has so much more
to offer than just features that can be accessed via menu entries. The recipes in this book will
help you quickly get up to speed with what those features are, how they work, and how you
might use them to produce fantastic software in less time than you thought possible.

What this book covers
Chapter 1, Discovering Visual Studio 2012, introduces you to the common IDE features that
you can take advantage of, regardless of the language you are developing in or the type of
software you are building. Discover the new project types, navigation options, search facilities,
and more.

Chapter 2, Getting Started with Windows Store Applications, shows you how Visual Studio
2012—the only way you can build the new modern style apps for Windows 8—supports
Windows Store app development, how the simulator works, and how to package up an
application for submission to the Windows Store.

Chapter 3, Web Development: ASP.NET, HTML5, CSS, and JavaScript, brings you up to speed
with the wide ranging improvements in web development that Visual Studio 2012 brings to
the table. This includes the CSS and JavaScript editing improvements, the new Page Inspector,
and the bundling and minification features in ASP.NET.

Chapter 4, .NET Framework 4.5 Development, shows you how Visual Studio 2012 provides
outstanding support for the .NET Framework 4.5 development and touches on some of the
new key features in the framework. You will also be shown how Visual Studio 2012 helps
you raise the quality of the code you build using the new Test Explorer and code clone
detection features.

Preface

2

Chapter 5, Debugging Your .NET Application, steps you through the new and improved
debugging capabilities of Visual Studio 2012. These include the new production debugging
capability and improved ways of understanding what your parallel and concurrent code
is doing.

Chapter 6, Asynchrony in .NET, takes a deeper look into the support Visual Studio 2012
provides for writing asynchronous code in .NET so that you can make better use of multi-core
machines to improve your application's responsiveness and performance. You will see how the
async and await keywords make development much simpler and how new libraries such as
the TPL DataFlow library can open up new ways of solving concurrency problems.

Chapter 7, Unwrapping C++ Development, gives you an insight into Visual Studio 2012's
fresh love for C++ developers, the new language features it supports, and the tooling to make
developing C++ applications quicker. You will see how you can mix C++ and XAML to build a
Windows Store app UI, how to unit test and analyze your code, and how to diagnose how a
single pixel was drawn to screen in DirectX apps.

Chapter 8, Working with Team Foundation Server 2012, guides you through both the Team
Foundation Server 2012 and Visual Studio 2012 improvements for team-based development,
and agile development in particular. This includes source control, code reviews, gaining
feedback from your users, and more.

Appendix, Visual Studio Pot Pourri, is all about the wonderful features of Visual Studio 2012
that didn't really fit anywhere else but that are still of great value. This includes features such
as the new SQL Server Developer Tools, the creation of application installers, and how to
submit an app to the Windows Store.

What you need for this book
To follow the recipes in this book you will need a copy of Visual Studio 2012. Some of the
features covered in the recipes may only be available in specific editions of Visual Studio,
such as Ultimate.

If you wish to follow one of these recipes and you do not have the right edition, trial versions
can be downloaded from the Microsoft website.

For any of the recipes that deal with Windows Store applications you will need to be using
Windows 8 as your operating system.

Who this book is for
If you already know your way around previous versions of Visual Studio, if you are familiar
with Microsoft development, and if you're looking to quickly get up to speed with the latest
improvements in the 2012 incarnation of Microsoft's number one development tool then this
book is for you.

Preface

3

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Open the VS2010_Web solution and run
the application."

Any command-line input or output is written as follows:

Get-Command *intelli*

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The Preview Selected Items
button is a toggle button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

4

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Discovering Visual

Studio 2012

In this chapter, we will cover:

ff Creating a new project

ff Upgrading an existing solution

ff Managing editor windows

ff Finding Visual Studio commands

ff Navigating and searching

ff Searching your code

ff Using the graphics tools

Introduction
When you open Visual Studio 2012 for the first time you're going to notice a few changes.
We're going to start out by looking at some of the standard activities you will perform with
Visual Studio in your normal development activities and in doing so discover a number of
new and changed features in this powerful development tool.

These are tasks which are common to all developers regardless of the language they program
in or the platform they are targeting.

Creating a new project
It might look the same as it did before, but there are a few changes when creating a new
project. Let's create a new project and see what has changed.

Discovering Visual Studio 2012

6

Getting ready
Just make sure you have installed Visual Studio 2012 and you're all set to go.

How to do it...
1.	 Start Visual Studio 2012.

2.	 Choose the File | New Project menu option.

3.	 Examine the list of project types that are available and choose one that is of interest
to you. If you're not sure what to choose, select Visual C# | Class Library.

4.	 Ensure that the project is targeting .NET Framework 4.5 as shown in the
following screenshot:

5.	 Enter a name of your choice for the project. If you feel lacking in creativity, take the
default name and then click on OK.

6.	 The project is now created and you are ready to start writing code.

How it works...
On its own the project creation process in Visual Studio works exactly as it did in previous
versions of Visual Studio, with the only difference being that you can now target .NET
Framework 4.5.

Chapter 1

7

There's more...
If that's all there was to it, it would hardly be worth talking about, however there are larger
differences to be seen in the project creation area. Let's talk about them.

New project types and your development operating system
It's here that you will notice the first major change from Visual Studio 2010 and where you
will see differences between Visual Studio 2012 running on Windows 8 versus a prior version
of Windows.

The operating system you are using dictates whether you have access to the new Windows
Runtime (WinRT) or not and thus whether you can write Windows Store Applications or not.
On Windows 8 you will see a range of options for creating Windows Store Applications, whereas
on Windows 7 and prior you will only see options for creating applications that do not use WinRT.

Portable class libraries
The Portable Class Library project template allows developers to create class library
assemblies that can be referenced from not only standard .NET Framework applications,
but also from Silverlight, Xbox 360 (XNA), and Windows Phone 7 projects.

This is at its most valuable when sharing service and data contracts or common domain
classes between backend web services and frontend clients built using different technologies.
For example, if previously you had a Silverlight application that used a set of web services
running under ASP.NET then you would have to share code for those services by having
separate projects for each runtime that looked exactly the same and used linked files to share
the source.

Now all you have to do is move your common code into a single portable class library and add
a reference to that portable library project from both your Silverlight project and your ASP.NET
Web Application project.

Note that Portable Class Libraries are also available for Visual Studio 2010 using the Portable
Library Tools extension from the Visual Studio Gallery (http://visualstudiogallery.
msdn.microsoft.com/b0e0b5e9-e138-410b-ad10-00cb3caf4981).

Office projects
Visual Studio 2012 only provides project templates for Office 2010 projects. For Office 2007
projects you will need to continue using Visual Studio 2010.

Retired project templates
Visual Studio 2012 no longer has the Crystal Reports project template, nor does it feature
Visual Studio Installer projects. If you are using Visual Studio Installer projects at the moment
you will need to look at some different approaches. We cover some of the choices for creating
installers in the Appendix, Visual Studio Pot Pourri

http://visualstudiogallery.msdn.microsoft.com/b0e0b5e9-e138-410b-ad10-00cb3caf4981
http://visualstudiogallery.msdn.microsoft.com/b0e0b5e9-e138-410b-ad10-00cb3caf4981

Discovering Visual Studio 2012

8

See also
ff The Creating a Windows Store app recipe in Chapter 2, Getting Started with Windows

Store Applications

Upgrading an existing solution
It's always nice to start a new project and if you've been working with legacy code for a while
there's no better feeling! Unfortunately that feeling is often all too rare and we spend most of
our time dealing with existing code with a long history.

All that legacy code is probably what's keeping you employed, so what you really want is to be
able to open up that existing code in your shiny new copy of Visual Studio 2012 and bring the
power of Visual Studio 2012 to bear on it, making life just that little bit easier for yourself.

One of the big changes in Visual Studio 2012 is that projects opened in Visual Studio 2012
are also backwards compatible with Visual Studio 2010 Service Pack 1 and we will see how
that works. This process is called round tripping.

The good news for teams is that round tripping means they can gradually move from Visual
Studio 2010 to Visual Studio 2012 as and when they are ready. They won't have the problems
of the past where one team member checks in an upgraded solution file to source control,
thus forcing the rest of the team to upgrade simply to continue working.

Getting ready
If you don't have any existing code you want to use you can use the sample Visual Studio 2010
solution we've prepared for you.

The solution we will be using throughout this chapter is called VS2010_
Web and can be found at Chapter 1/VS2010_Web.

If you are going to use some of your existing code, ensure that the current code is in source
control or that you have backed up the code.

In order to see the backwards compatibility in action you will need Visual Studio 2010 with
Service Pack 1 installed on your machine.

Chapter 1

9

How to do it...
1.	 Using either the Open Project link on the Visual Studio start page or the

File | Open | Project/Solution menu select the VS2010_Web solution to
start the conversion process.

2.	 Visual Studio will automatically migrate the solution and all the projects within it.
When the process is complete you will be shown a migration report.

3.	 Close the report when you have finished looking at it.

4.	 From Solution Explorer open the Default.aspx file in the VS2010_Web project
and change the Welcome to ASP.NET! text on the page to Welcome to Visual
Studio 2012!.

5.	 Build and run the project to see that the application is working as expected.

6.	 Close Visual Studio 2012 and open Visual Studio 2010 with Service Pack 1.

7.	 Open the VS2010_Web solution and run the application.

8.	 You should see the web application appear, showing the updated message
from Visual Studio 2012.

Discovering Visual Studio 2012

10

How it works...
The Visual Studio team worked with the various language and development product teams
to ensure that project file formats would work consistently between Visual Studio 2010 and
Visual Studio 2012. The first stage of these changes rolled out publicly with the release of
Service Pack 1 for Visual Studio 2010, allowing Visual Studio 2010 to understand the new
project formats.

When Visual Studio 2012 opens a Visual Studio 2010 project it will automatically upgrade the
project format unless those changes will affect the ability to open the project in Visual Studio
2010. Any compatibility breaking changes will cause a dialog to be shown describing the
changes and you can decide what action to take.

Visual Studio 2012 will also upgrade projects created in Visual Studio
2008 and Visual Studio 2005, however round tripping of those projects
is not supported. Likewise, the opening of a Visual Studio 2012 upgraded
project in Visual Studio 2010 without Service Pack 1 is not supported.

There's more...
Not all project types will work with round tripping.

Visual Studio database projects
Visual Studio database projects aren't supported for round tripping. Visual Studio 2012
obsoleted Visual Studio database projects and replaced them with the new SQL Server Data
Tools (SSDT) projects. When you open an old database project in Visual Studio 2012 you can
upgrade it to an SSDT project. This project format also supports round tripping. However, if
you wish to open an SSDT project in Visual Studio 2010 you will need to install the SQL Server
Data Tools separately. You can download the tools from http://msdn.microsoft.com/
en-us/data/hh297027.

ASP.NET MVC 2 projects
Visual Studio 2012 ships with support for both ASP.NET MVC 3 and ASP.NET MVC 4 projects.
ASP.NET MVC 2 projects are not supported for round tripping in Visual Studio 2012 and
therefore you will need to upgrade your MVC 2 projects to MVC 3 projects before opening
them in Visual Studio 2012.

To help with the upgrade process you can use the ASP.NET MVC 3 Application Upgrader
available from the ASP.NET Codeplex site at http://aspnet.codeplex.com/releases/
view/59008.

http://aspnet.codeplex.com/releases/view/59008

Chapter 1

11

Silverlight 3 and earlier
In a similar manner to ASP.NET MVC 2 projects, Silverlight 3 projects and prior will not be
supported for round tripping with Visual Studio 2012. You will need to upgrade these projects
to a later version of Silverlight first.

Visual Studio 2012 supports both Silverlight 4 and Silverlight 5 projects and you will be
prompted for the version of Silverlight to use when you create a new project.

See also
ff The Using the new SQL Server Data Tools recipe in Appendix, Visual Studio Pot Pourri

Managing editor windows
As you would expect, with a new Visual Studio version there comes a number of changes
to how windows are managed. The changes that have been made have been done with the
intention of reducing the clutter in your editing workspace and making the development
experience one that is more focused on what you are doing.

Getting ready
Open either the VS2010_Web solution we have been using or use a solution of your choice.

Ensure that the Solution Explorer is open.

How to do it...
1.	 In Solution Explorer locate the Default.aspx.cs file in the VS2010_Web project

and double-click it. The source file will open in the main window area as with
previous versions of Visual Studio; however you will now notice that the
document tab features a pin icon next to the tab name as you can see in
the following screenshot. You'll use that pin in just a few steps.

Discovering Visual Studio 2012

12

2.	 Using Solution Explorer, open both the About.aspx.cs and the Global.asax.cs
files by double-clicking on them. You should now have three documents open
with their tabs showing in the tab well.

3.	 Click on the Default.aspx.cs tab to select it and then click on the pin. The pin will
change to point downwards indicating that the document is now pinned. Visual Studio
2012 will keep pinned tabs visible in the tab well even when you have so many open
that Visual Studio starts hiding tabs. The pinned document tab will be moved to the
left next to any other pinned documents you may have open.

4.	 Right-click the Global.asax.cs document tab and click on Close All But This to close
all open documents except for the one currently selected. This will include closing any
pinned documents.

5.	 Reopen both the Default.aspx.cs and About.aspx.cs files that you closed by
double-clicking on them in Solution Explorer.

6.	 One of the usability problems with document tabs in Visual Studio 2010 was that
you could accidentally float documents by double-clicking a document tab. In Visual
Studio 2012 this behavior has changed. Double-click on a document tab of your
choice and notice how Visual Studio sets the focus to that tab instead of floating it.
Much better!

7.	 Press Ctrl+Shift+F to open the Find in Files dialog. Enter Class in the Find what field
and ensure Look in is set to Solution, then click on Find All.

8.	 In the Find Results 1 window select a result from the ChangePassword.aspx file.
The file will open in the preview tab, located on the right-hand side of the tab well.

Chapter 1

13

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

9.	 The preview tab shows the contents of the currently selected document if it is not
already open. In the Find Results 1 window select a result from Login.aspx. It will
now be opened automatically in the preview tab and the ChangePassword.aspx
document will be closed.

http://www.packtpub.com
http://www.packtpub.com/support

Discovering Visual Studio 2012

14

10.	 Assume you now want to keep Login.aspx open for a while. Either click the Keep
Open icon in the tab or change the contents of the file. Any document in the preview
tab that is changed is automatically promoted to a normal tab.

Visual Studio will move the document from the preview tab area into the main tab
area. The color of the tab will also be changed from purple to blue indicating that the
tab is now a normal document tab.

How it works...
Pinning documents works much like pinning does in any other part of Visual Studio and
makes it very handy for keeping those documents you are working on regularly within easy
reach, especially when you have many documents open at once.

The preview document tab is a great way to prevent tab clutter and becomes very useful
when debugging deeply nested code. For example, say you have a section of code where
a result you are expecting from a high-level method call is incorrect, and the source of the
error actually is from a much lower-level method called at the end of a chain of four other
intermediate methods, each from a different class. The odds are that you aren't really
interested in those intermediate classes. Sure, you're happy to see those classes as you
step through them on the way to the source of the problem, but you don't want to keep
the documents open once you've moved past them. The preview tab means that during
debugging, these class files are only opened temporarily, not permanently, helping you focus
on just the code you are genuinely interested in and preventing the tab well filling up with
documents you just aren't interested in.

There's more...
As always there are ways to customize the behavior of the document tabs in Visual Studio.

Single click preview in Solution Explorer
The preview tab isn't restricted to just the find results window. It can also be used from within
Solution Explorer. If you activate the Preview Selected Items button in the Solution Explorer
toolbar then every item you click on will be opened in the preview tab automatically.

Chapter 1

15

The Preview Selected Items button is a toggle button. If you want to disable the behavior then
you only need to click on the button to deselect it and the preview behavior will be turned off.

Customizing tab and window behavior
Navigating to the Tools | Options menu in Visual Studio will show the following dialog box:

There are a number of options in here that let you control how the tabs behave. With Visual
Studio 2010 Productivity Power Tools many developers found different ways to configure their
tab well to get the experience they wanted, and while not everything from the power tools
came across to the final Visual Studio 2012 product, a number of features most certainly did.
Feel free to experiment with the Tabs and Windows settings to get Visual Studio working the
way you like it most.

Discovering Visual Studio 2012

16

Finding Visual Studio commands
Visual Studio has a number of new commands in this release, combined with all the previous
Visual Studio commands. Well, that makes for a lot of commands to try and keep in your head
at once. Why take those brain cells where you stored all your sci-fi movie quotes and overwrite
them with the intricate details of Visual Studio commands, when Visual Studio 2012 gives you
an easy way to find the commands you're looking for with nothing more than a quick keystroke
and a keyword or two? That's a win-win situation right there!

Let's see how this works.

Getting ready
Start Visual Studio 2012 and either open a project of your choice or the VS2010_Web project
we've been using throughout this chapter.

How to do it...
1.	 Have a look at the top-right hand side of the Visual Studio editor window and you will

see the new Quick Launch search box.

For maximum speed the fastest developers try to minimize mouse usage and you're
going to do the same for this recipe, so instead of clicking in the textbox to activate,
press the shortcut key (Ctrl+Q). You will see that the Quick Launch box now activates
and is waiting for your input.

2.	 Assume you want to open a file but you can't remember what the command is or
where it might be hiding amongst all those menus. Yes, there's a really obvious File
menu and it is the obvious place to look, but for the sake of the exercise pretend that
you had almost no sleep last night, that you've just arrived at work today, that the
coffee hasn't taken effect, your brain hasn't yet kicked into motion, and that you've
forgotten where the open command lives.

With the Quick Launch box active, enter the word open without pressing Enter and
wait a moment for the search results to appear:

Chapter 1

17

3.	 Take a look at the results. You'll see that not only are there the commands you might
reasonably expect to see from the File | Open submenu, but also other commands
you might not have realized existed, such as Open Developer Account (only if you are
working in Windows 8). You can also see that the search results include Visual Studio
options, not just the commands that are available.

4.	 Remembering that you are going through this recipe using only the keyboard, use
the up and down cursor keys to navigate to a result of your choice and press Enter
to execute that command.

5.	 You now need to open the Default.aspx page using just the Quick Launch tool and
only with the keyboard. To do this you need to navigate to the Default.aspx file. Hit
the Quick Launch shortcut (Ctrl+Q) and type in nav to see what commands
are available:

6.	 Press cursor down until the Edit | Navigate To entry is highlighted. Press Enter to
activate the command.

Discovering Visual Studio 2012

18

7.	 In the resulting dialog box type default and wait momentarily for the search results
to appear. Press cursor down until Default.aspx is highlighted and then hit Enter.

8.	 Now that you have the file open press the Quick Launch shortcut (Ctrl+Q) and type in
default. In the search results you will not only see matching Visual Studio options, but
also commands that perform different operations on the open Default.aspx file.
That's pretty cool!

Chapter 1

19

9.	 When there are a large number of results Visual Studio will show you a subset of
those results based on what it deems to be the best matches for your search.

10.	 Use the Quick Launch control and enter the value debug. You will see a subset of all
available results.

11.	 To see the full set of results simply press the Quick Launch shortcut again (Ctrl+Q).
The expanded results are then shown.

How it works...
The Visual Studio team realized that the growing number of commands in Visual Studio
was overwhelming for many people. Those people needed an easy way to quickly locate
a command they were after without dredging through their memory cells for where that
command might be hiding, or to waste time browsing through the various Visual Studio
menus until they found it.

The Quick Launch search box is the recommended interface to find the commands you need,
but don't use often enough to remember where they are.

There's more...
If you're a developer looking to improve your skills, be more productive, and maximize your use
of the IDE, then knowing how to navigate your way around Visual Studio 2012 with nothing but
the keyboard is a great goal to aim for. It minimizes the movement of your hand between the
keyboard and the mouse which saves you time as well as gives you a greater sense of mastery
over your tools. As a bonus, you'll also be able to impress your colleagues and dazzle them
with your awesome Visual Studio skills!

If you find you use a command regularly, take the time to learn its specific shortcut key so you
don't have to search for it every time you want to use it. For everything else, as long as you
remember the name of the command or something close to it, you can use the Quick Launch
control to find and execute that command without wasting time hunting through menus, and
you won't have had to move your hands off the keyboard to do it.

Navigating and searching
As a code base grows it's important to be able to understand and find things quickly in your
solution. The Solution Explorer we were used to in Visual Studio 2010 was good for being able
to understand how files were organized into the various projects of a solution, but it didn't do
much more than that.

With Visual Studio 2012, Microsoft has revisited Solution Explorer and given it an overhaul. It
still contains all the functionality you know from the old Solution Explorer and adds to that a
range of new features intended to make navigating and searching within your solution a more
powerful, yet simpler experience.

Discovering Visual Studio 2012

20

Getting ready
Open the same VS2010_Web solution we have been using for the other recipes in this chapter
or choose a solution of your own.

How to do it...
1.	 We'll begin with navigating through our solution. Locate the Default.aspx page

in the VS2010_Web project and click the arrow next to it so that its contents are
displayed. As you would expect there is a code behind file and a designer file.

2.	 Look at the Default.aspx.cs file. You can see that there is a small arrow next to it
just as there was for the Default.aspx page. Click on the arrow.

3.	 Visual Studio 2012 expands the file to show its contents and in the case of a code
behind file those contents are the class definitions it contains. Classes have methods
and properties in them, so click the arrow next to the _Default class to see the
methods inside it. Since the VS2010_Web project is just a shell there is only an
empty Page_Load() method as shown in the following screenshot:

Chapter 1

21

4.	 Now select the IService1.cs file from the VS2010_Web.Services project and
expand it to see its contents. You will see that there is both an interface definition
in this file (IService1) and a class definition (CompositeType) as shown in the
following screenshot:

5.	 Right-click on the IService1 interface and click Derived Types to see what classes
implement this interface.

6.	 Solution Explorer will change views to show you the types that either implement this
interface or inherit from it, as shown in the following screenshot. Click on the back
button (showing the blue background) to return to the standard Solution Explorer view.

7.	 Right-click on the IService1 interface and choose the Is Used By option to see
where the interface is currently being used. As with the Derived Types option you
will see Solution Explorer change context to only show the interface and where that
interface is used in the solution, including line and column numbers.

Discovering Visual Studio 2012

22

8.	 Return to the regular Solution Explorer view by clicking on the home button.

9.	 At this point you know how to navigate using Solution Explorer and you have already
used the existing Navigate To feature from Visual Studio 2010 in the previous recipe
(Finding Visual Studio commands) when opening a file. With the enhancements to
Solution Explorer you can locate files in much the same way as with the Navigate To
command, albeit with a slightly different user experience.

Click in the Search Solution Explorer textbox at the top of Solution Explorer or use
the default shortcut key of Ctrl+; (Ctrl+Semicolon).

10.	 Enter serv into the textbox and wait a moment for the search results to display.
The results should look similar to the following screenshot. You can see not only the
file names that match the search term, but also any matching references, classes,
and methods.

Chapter 1

23

How it works...
The Navigate To command from Visual Studio 2010 was a fantastic addition to Visual Studio.
It had problems in large projects with many search matches since the location of a match was
embedded in the result itself making it hard to locate the specific match you were after.

The new Solution Explorer search tool provides similar results to the Navigate To command,
but having the location of a match represented in the tree view makes it very easy to quickly
identify the specific match you are interested in.

There's more...
It's worth mentioning a few other things about searching within your solution.

Navigation behavior
Assuming you have the Preview tab enabled for Solution Explorer then as you navigate using
Solution Explorer to various classes and methods you may have noticed that the document
preview tab was updating and showing exactly where the selected class, method, or property
is declared.

This makes it easy to see what the code is doing without the need to specifically open the file
or scroll through a source file to see what code is actually inside a method, class, or property.

CSS, HTML, and JavaScript files
Even though it's possible to extract structure from CSS, HTML, and JavaScript files, Solution
Explorer doesn't show the internal structure of these files. You can navigate to the source file
but not to any of its contents.

See also
ff The Finding Visual Studio commands recipe

Searching your code
You now know how to search within your solution for classes and methods and how to drill
down into various items, but what if you are looking for a specific variable or piece of text in
your code?

The Find tools in Visual Studio 2012 have been significantly revamped. It's time to use them
and see what you can find.

Discovering Visual Studio 2012

24

Getting ready
Once again, open the same solution we have been using in the other recipes; either the
VS2010_Web solution or a solution of your choosing.

How to do it...
1.	 Open the IService1.cs file from the VS2010_Web.Services project.

2.	 Ensure that focus is set to the code window, not Solution Explorer, and press
Ctrl+F. This will trigger the new search tool as shown in the following screenshot.
Alternatively you can access this from the menu using Edit | Find and Replace |
Quick Find.

3.	 Enter the text service into the textbox. As you type you will notice that Visual
Studio matches the search term against the code on the fly and all the matches are
highlighted as shown in the following screenshot. This makes it very quick and easy
to see if you have located the code you are looking for.

4.	 Since the search term has been matched multiple times it makes sense that you
might want to quickly move between those matches. Press F3 to move to the next
match and press Shift+F3 to move to the previous match.

5.	 Change the search term to serviceHost. Because there is no match in the current
file the color of the border of the search box changes to red.

6.	 Given that you don't have a match in the current file it's worth expanding the scope
of the search. Click on the expand icon on the left side of the search box and change
the scope from Current Document to Current Project. When you do, you will notice
that the red outline disappears indicating a match has been located.

Chapter 1

25

7.	 Press F3 to find the next match. Note that the next matching file is opened as a
normal document tab, not in the preview tab.

How it works...
By making the search dialog appear within the window that currently has focus, the user
experience for both find and replace is much improved. It takes up only a small amount of
space, it doesn't use a floating window, and the search box goes away when focus moves
to a different window or document within Visual Studio, keeping the visual clutter low.

There's more...
When you clicked the button to expand the Quick Search tool window you may have noticed
the option to replace text. This works as you would expect. Simply enter the text you want the
search term replaced with and instead of pressing Find Next use the Replace Next button.

What happened to the old search dialog?
It's still there! Well, kind of. The changes in making search more context-specific mean that
the Quick Find dialog is gone. If you have the focus somewhere other than a document tab
and you press Ctrl+F or use the Quick Find command then the Find and Replace dialog
will be shown with the Find in Files option selected. This is the same dialog box you will be
familiar with from previous Visual Studio versions.

Can I use regular expressions?
This quick search dialog box doesn't support regular expression matches. Only the Find
and Replace dialog box (via the Find in Files command) still supports regular expressions.

Using the graphics tools
The graphics tools in previous versions of Visual Studio might best be described
as mediocre. However, in Visual Studio 2012 they have been revisited to provide
some much needed updates.

Discovering Visual Studio 2012

26

Visual Studio 2012 in no way replaces a full featured graphics package, however if you just
need to tweak an image or make some simple changes then Visual Studio can be very useful.

In this recipe, you'll create an image that you could use in the website project we've been
using throughout this chapter.

Getting ready
Open the VS2010_Web project that we've been working with throughout this chapter.

How to do it...
1.	 Right-click on the VS2010_Web project and select Add | New Folder. Call the new

folder Images.

2.	 With the Images folder selected, from the File menu choose New File or press
Ctrl+N. From the New File dialog select Graphics | PNG Image (.png) and click
on Open.

The new Visual Studio Graphics Designer will appear.

3.	 Save the image to the Images folder of your project using File | Save As with the
default name of Image1.png.

4.	 In Solution Explorer turn on the Show all files option and locate the image you just
saved to the Images folder. Include it in the project by right-clicking it and choosing
the Include In Project option.

Chapter 1

27

5.	 Back in Graphics Designer you will see two new toolbars. One along the top of the
image area and one along the side. For reference we will call these toolbars the top
toolbar and the side toolbar.

Discovering Visual Studio 2012

28

6.	 Select the Brush tool so you can draw on your wonderfully blank picture.

To set the color of the brush, ensure the Properties panel is open. If it isn't
it can be accessed by pressing F4 or choosing View | Properties Window.

7.	 To select the brush thickness change the Width property of Appearance to a value
of your choice, such as 10.

8.	 Now draw on the canvas and start creating your next masterpiece! Experiment with
the other options in the toolbar to get a feel for what the graphics tool provides. Just
make sure you produce something better than this horrible effort!!

Chapter 1

29

How it works...
The new graphics designer is a DirectX accelerated design surface. You can alter the DirectX
rendering output method to use software acceleration if, for example, you are using older
hardware and are seeing graphics glitches. To switch, use the side toolbar and select
Advanced | Graphics Engines | Render with D3D11WARP.

While the graphics editor is a much better editor that the previous resource editor, and even
though DirectX acceleration means that the image editor can now work with very large, and
complex images and a multitude of formats, it still isn't a match for a full featured graphics
editing program. For advanced graphics needs, use a specialist tool.

There's more...
Visual Studio 2012 doesn't simply provide the same 2D image editing options of the past with
a new interface; it now provides for some more advanced techniques specifically designed
for those who need to produce visually rich applications such as games or information
visualization tools.

MIP mapping support
MIP mapping is a technique used in video games for texture mapping 3D models. A single
image file is structured to contain a high resolution texture as well as multiple versions of
the same texture at lower levels of resolution. When the game is running, a texture of the
appropriate resolution is extracted from the image file and applied to the 3D model based
on the distance the model is from the camera. The further away the object, the lower the
resolution chosen.

Visual Studio 2012 supports the editing of MIP map images using the new Graphics Designer.

3D Model support
You may have noticed when you were creating the PNG file that you also had the option
to create a 3D scene.

Visual Studio 2012 supports the viewing, editing, and creating of AutoDesk FBX files,
and also supports the viewing and editing (but not creating) of OBJ and Collada DAE files.

Pixel shaders
Visual Studio now supports the creating of pixel shaders in a visual manner using DGSL
(Directed Graph Shader Language) as well as HLSL shaders using C++.

Discovering Visual Studio 2012

30

See also
ff The Creating a shader using DGSL recipe in Chapter 7, Unwrapping C++ Development

ff The Creating and displaying a 3D model recipe in Chapter 7, Unwrapping C++
Development

2
Getting Started

with Windows
Store Applications

In this chapter, we will cover:

ff Creating a Windows Store app

ff Adding a Windows Store item template to your app

ff Using the Windows 8 simulator

ff Defining capabilities and contracts

ff Packaging your Windows Store app

ff Validating your Windows Store app

Introduction
Microsoft Windows 8 features an all new look and feel with a redesigned Start menu and a
fresh approach to desktop applications that will change the way people interact with Windows.
These new desktop applications are known as Windows Store apps and are designed to
be full screen, highly responsive, immersive, touch and cloud enabled applications. They
are also designed to work on a wide variety of different form factors; supporting laptops,
desktops, tablets, and anything else hardware manufacturers may create in the future. They
are a radical departure from the way we have thought of applications in the past and will
require fresh thinking from developers and designers alike. Windows Store apps should follow
modern design principles of minimalism, focusing the user's attention on the information they
are interested in and removing the distractions and visual noise that have traditionally been
associated with Windows applications.

Getting Started with Windows Store Applications

32

With Windows Store apps Microsoft is also ensuring that touch-enabled devices work just
as well as the standard mouse and keyboard based desktops and laptops. Add to this that
Microsoft wants Windows Store apps to be truly portable and we have before us a complete
reimagining of the desktop application as we understand it.

There'll be no more install utilities or administrator access required in order to use an app.
No more downloading software from the Web and wondering what kind of mess it will make
on your machine or if it might have some malware with it. Instead people will purchase
Windows Store apps from the Windows Store which can then be downloaded and run on
whatever device they happen to be using at the time.

Apps listed in the Windows Store will have been verified by Microsoft as safe and as meeting
standard app guidelines. This alleviates the trust problem people have with many Windows
applications and follows the same approach Apple took with their iOS devices and the iTunes
App Store as well as the Mac and the OS X app store.

It's one thing to have an app that you can download onto any device you're using but genuine
portability requires that the data be portable as well. Microsoft has solved this problem by
providing all Windows 8 users with SkyDrive storage space that Windows Store apps can use,
making data available anywhere, anytime.

The introduction of Windows Store apps doesn't mean the traditional Windows desktop
application is dead. Windows 8 supports the running of traditional desktop applications in
desktop mode, with Visual Studio 2012 being a perfect example of one such application.

Now at this point, since you're a developer, what you are most likely interested in is not what's
different with the user interface but what has been changed under the hood. What do you
need to know to get started with Windows Store apps? The answer is the Windows Runtime.

Windows Runtime
The Windows Runtime is the API developers use for building Windows Store apps, sometimes
called WinRT. Don't confuse it with Windows RT, the ARM version of Windows 8. The Windows
Runtime API ensures apps can meet the design goals around portability, performance, and
trust and with it Microsoft can also ensure Windows Store apps have zero ability to directly
access the operating system preventing insecure and poor performing Windows API calls
being made.

Windows Runtime abstracts away the underlying hardware, minimizes security risks, and
prevents developers from making calls to long running methods that could freeze an app. It has
also provided the opportunity to expand the technologies used to develop Windows Store apps.

Chapter 2

33

Choosing the right development technology
When choosing the development technology it is critical to assess the development skill set
of you and your team.

Until now, if you wanted to build traditional Windows desktop applications using Microsoft
technologies, you were limited to using either C++ or .NET technologies. With the introduction
of Windows Store apps, Microsoft has expanded the technology choice by adding JavaScript
and HTML5 as a development choice.

If you and your team are comfortable with XAML development or you are a Java developer
then your likely choice will be .NET.

C++ developers or those wanting to build DirectX apps will want to stick with C++.

Web developers, especially those with little knowledge of C++ or .NET, will love that they can
build desktop apps with JavaScript and HTML5. For web developers Windows Runtime APIs
are exposed via the provided WinJS libraries.

Creating a Windows Store app
This recipe will show you how to create a basic Windows Store app. For this recipe we're going
to build it using HTML and JavaScript.

Getting ready
Ensure that you are running Windows 8. While Visual Studio 2012 can be installed on earlier
versions of Windows, if you want to build Windows Store apps you must be using Windows 8.
You cannot build a Windows Store app on Windows 7 or earlier.

Start Visual Studio 2012 and you're ready to go.

How to do it...
1.	 From the Visual Studio File menu select New | Project.

Getting Started with Windows Store Applications

34

2.	 A dialog of available project templates will appear. From those templates select the
JavaScript | Windows Store | Grid App template. A preview of the app layout will be
shown in the details pane as shown in the following screenshot:

3.	 Leave the name as the default and click on OK to create the app.

4.	 The project will appear in Solution Explorer and the default.js file will be open in
the document area.

5.	 Press F5 to run the application in debug mode. Visual Studio will package and launch
the app for you and you should see the app appear displaying a grouped collection of
items that you can navigate.

6.	 Explore the app and when you are finished, close the app or switch back to Visual
Studio and stop debugging.

How it works...
The steps for creating a Windows Store app are much the same as for creating any other type
of application with the choice really being about the development technology to use and the
style of app you are creating.

To create a Split App template or any of the other available Windows Store project types you
would follow the same steps as outlined in the recipe. For each of the project types you will
get a different result and a different starting point for your Windows Store development.

Chapter 2

35

There's more…
There's a lot to consider when starting your first Windows Store apps. Fortunately Microsoft
has made it fairly easy to choose the right starting point for the type of app you want to build.

What project type should I choose?
Each of the Windows Store project types, regardless of language, is described briefly here
so that you can determine what template would make a good starting point for your
development efforts.

Blank App
The Blank App template is exactly what you would expect. It is an empty shell ready for you to
start coding with.

Grid App
The Grid App template is designed to show a summarized view of a data source in a grid
layout. The project template includes a sample data source so that you can quickly get a feel
of how the app works. Running the app without changes shows the grid summary page as
shown in the following screenshot:

Getting Started with Windows Store Applications

36

Note how the data is grouped into collections and how the individual items in each collection
are shown with a placeholder for an image thumbnail and a few lines of text to describe the
item. Selecting one of the items will navigate to the detail view of that item as shown in the
following screenshot:

The template also includes a collection level summary page, shown when the back button next
to the collection name is clicked or touched. This view is shown in the following screenshot:

Chapter 2

37

Split App
The Split App template is an alternative to the Grid App template, though it is still based
around the concept of consuming data grouped into collections.

Just like the Grid App template, the Split App template provides a ready to run app so you can
see how it functions.

Launching the app shows a home page very similar to the Grid App template, but it has a very
different group level page where the items in the collection are displayed in a column on the
left side of the screen and the details of the selected item are shown on the right as seen in
the following screenshot:

Fixed Layout App
The Fixed Layout App template is only available when using JavaScript and provides a basic
app featuring a minimal splash screen and a skeleton HTML file, with all the necessary WinJS
references ready for you to start building your app.

Navigation App
The Navigation App template is the same as the Fixed Layout App template with the
inclusion of an AppBar and basic navigation controls ready for you to use. If you run the app
without any changes you will see a splash screen followed by a very minimalist page ready for
your creativity to be applied to it.

Getting Started with Windows Store Applications

38

Class Library
The Class Library project creates a managed assembly for your app logic that is automatically
set to use the .NET Framework 4.5 Windows Store profile.

Unit Test Library
The Unit Test Library project template creates an MSTest or CppUnit based test assembly
for unit testing your code.

DLL (Windows Store apps)
The DLL (Windows Store apps) template is a C++ project template for creating a DLL in which
you can write your app logic. It contains all the include files you would expect for building a DLL
for a Windows Store app as well as a skeleton DllMain method ready for you to implement.

Static Library (Windows Store apps)
The Static Library template is just as the sticker on the box says. A simple skeleton with the
include files you need for building a static library for use in a C++ Windows Store app.

Windows Runtime Component
Similar to the Class Library in .NET Windows Runtime Component is a project template for
creating a DLL using C++ and targeting Windows Runtime so that the logic can also be used
in .NET or HTML5 Windows Store apps.

Direct2D App (XAML) and Direct3D App
The Direct2D App (XAML) and the Direct3D App templates are for C++ apps using the
DirectX runtime for high performance graphics and audio processing. Typically this will be
for Windows Store game development though they could also be used for many business
apps such as medical imaging and audio processing.

At this stage DirectX is the only choice for Windows Store game development. XNA is not
supported for Windows Store apps and XNA applications on Windows 8 will only run as
Windows desktop applications. For clarity, XNA is still the technology of choice for Xbox Live
Arcade and Windows Phone 7 games.

Technology choice impacts available project templates
Given that there are a lot of project templates available and there is also more choice in
development technologies it is important to be clear about which project templates are
available for which technology.

The following table indicates which app types are available for each technology choice:

Chapter 2

39

JavaScript/HTML .NET C++
Blank App Y Y Y
Grid App Y Y Y
Split App Y Y Y
Fixed Layout App Y
Navigation App Y
Class Library Y
Unit Test Library Y Y
Windows Runtime
Component

Y Y

DLL Y
Static Library Y
Direct 2D/3D App Y

.NET projects and the Windows Store apps profile
When developing projects in Visual Basic or C# you will be working with .NET Framework
4.5 using the Windows Store profile. You will not have access to all of the .NET Framework
methods and libraries that you are used to when building traditional Windows desktop or web
applications, and if you look in your project references instead of the usual references
you will see a reference to .NET for Windows Store apps.

This change is largely because much of the functionality .NET historically provided has now
been incorporated directly into Windows Runtime. .NET is now just a supplement to the
Windows Runtime. Additionally, the .NET Windows Store profile removes classes and methods
that aren't applicable for Windows Store apps, which results in a dramatically smaller
application footprint.

Language interoperability
JavaScript Windows Store apps can call functionality written in either C++ or .NET when
that functionality is contained in libraries or DLLs that expose WinMD metadata. Unfortunately
the reverse is not the case; .NET and C++ apps cannot call functionality contained in
JavaScript libraries.

C++ Windows Store apps can however call functionality in .NET WinMD assemblies (that is,
created using the Windows Runtime Component project type) and .NET code can call C++
Windows Runtime components as well. The good news here is that there is no longer a need
to use COM Interop for any of these cross language calls, making language interoperability
much, much simpler when developing Windows Store apps than it is for Windows
desktop applications.

Getting Started with Windows Store Applications

40

Adding a Windows Store item template to
your app

Unless you're building a Hello World app you're probably going to want to add more code files
and assets to your project than are provided with the standard project templates.

Because Microsoft wants Windows Store apps to not only offer great functionality, but to also
meet the Windows Store design principles, they have provided a number of ready-made item
templates for you to use as part of your development efforts. User interface item templates
come with a common look and feel and subtle animations so your app behaves like other
Windows Store apps. Contract templates provide you with boiler plate code and UI for building
Windows 8 Contract support into your app.

In this recipe you'll see how to use an item template to add functionality to a Windows Store app.

Getting ready
Create a new blank Windows Store app using C# by following the steps in the Creating
a Windows Store app recipe.

How to do it...
1.	 Right-click your project and select Add | New Item.

2.	 Select Windows Store from the left-hand panel and choose the Items Page template
as shown in this screenshot:

Chapter 2

41

3.	 Leave the name of the item as the default and click on the Add button. The new item
will be added to your project ready for you to start working on.

4.	 You will be prompted to add files to your project to resolve dependencies in Common
namespace. Click on Yes in the dialog box to continue.

5.	 When the item page appears the XAML will be displayed but the designer will be
showing a message that the code hasn't yet been compiled. Build the project to
ensure that the designer can display correctly.

6.	 Add a new class to the project named DataClass and define it as follows, just
remember to adjust the using statement to reflect your application's name.

7.	 Navigate to ItemPage1.xaml.cs and change the body of the LoadState()
method to the following:

8.	 In the App.xaml.cs file locate the OnLaunched method and the section where
rootFrame is defined (line 58). Change the type used in the Navigate method
from MainPage to ItemsPage1 as shown in the following screenshot:

Getting Started with Windows Store Applications

42

9.	 Press F5 to debug and run the application. Your item list should now appear as
shown in the following screenshot:

How it works...
Using an item template to add functionality to an app is generally the same as in previous
versions of Visual Studio. The additional dialog to generate the Common namespaces only
appears for the first item template you add to your project.

For the UI item templates, support is provided for the various views that Windows Store apps
need to support, specifically the Full, Fill, Snapped, and Portrait states.

The DataTemplate definitions for each item displayed can be found in the Common\
StandardStyles.xaml file and is where the property names of the item specific data
binding can be found.

There's more…
Of course you aren't limited to just the Items Page template. You can use any of the other
available templates to add functionality to your app.

What are the other Windows Store item templates?
The following list describes what will be added for each of the new Windows Store
item templates.

Chapter 2

43

Blank Page
The Blank Page item template gives you an empty blank page. What did you expect?

Basic Page
The Basic Page item template is the Blank Page item template with added layout awareness,
a title, and a back button to give you a starting point for creating your own layouts.

Split Page
The Split Page item template displays a vertical list of items on the left and the details of the
selected item on the right.

Items Page
The Items Page item template displays a flat view of an object collection, as you saw
in the recipe.

Item Detail Page
The Item Detail Page item template shows a detailed view of a single item using
a FlipView control. It also provides navigation options for moving to the next or previous
item in the collection.

Grouped Items Page
The Grouped Items Page item template adds a summarized view of items arranged
into groups.

Group Detail Page
The Group Detail Page item template provides a panel for displaying the items from a single
group in a collection, and summary views of the items in the group.

File Open Picker Contract
The File Open Picker Contract item template adds a UI for displaying file selection choices
to the user via the Windows 8 file picker. The code behind for the item template includes the
Activate method with the FileOpenPickerActivatedEventArgs parameter you can
query to determine what to show. You will also need to populate the FileOpenPickerUI
property of this parameter to return selections to the calling app.

Search Contract
The Search Contract item template provides a standard page for displaying search
results initiated from the Windows 8 search charm and includes the criteria and filters
used in that search.

Share Target Contract
The Share Target Contract item template adds a standard page for selecting items to share
via the Windows 8 share contract.

Getting Started with Windows Store Applications

44

Language impacts item template options
Just like the project templates you saw in the Creating a Windows Store app recipe, the
development technology you choose limits the Windows Store item templates available for
use. The following table indicates which items are available for each technology choice in the
Windows Store item category:

.NET JavaScript C++
Blank Page Y Y
Basic Page Y Y
Split Page Y Y
Items Page Y Y
Item Detail Page Y Y
Grouped Items Page Y Y
Group Detail Page Y Y
File Open Picker
Contract

Y Y Y

Search Contract Y Y Y
Share Target Contract Y Y Y

See also
ff The Creating a Windows Store app recipe

Using the Windows 8 simulator
You may recall that one of the design goals of Windows Store apps was that they should run
equally well on a multitude of devices, including tablets and other touch-enabled devices and
they should also support a number of different views such as the Snapped and Full views.

I'm not sure about you, but most developers I know use powerful desktops or high-end laptops
for developing software and at this point in time those machines aren't typically equipped with
touch input or gyroscopes. Well, not yet anyway.

Microsoft realized that this would likely be the case and have included with Visual Studio
2012 a Windows 8 Simulator that can be used to test your Windows Store apps without
the need of a second physical machine to deploy to.

Chapter 2

45

The simulator is similar in concept to the Microsoft Windows Phone 7 emulator used
in developing Windows Phone 7 software. Let's have a look at how we make use of
the simulator.

Getting ready
Create a new C# Windows Store Split app and name it SplitApp. You can use the
information from the Creating a Windows Store app recipe if you need a refresher
on how to do this.

How to do it...
1.	 Go to the Properties page of the SplitApp project.

2.	 Select the Debug tab and change the target machine to Simulator as shown in the
following screenshot:

3.	 Start debugging the app by either pressing F5 or selecting the Debug | Start
Debugging menu option.

Getting Started with Windows Store Applications

46

4.	 Visual Studio will start the Windows 8 Simulator and launch the app for you as shown
in the following screenshot:

5.	 On the right-hand side of the simulator are a number of icons that control the
simulator's behavior. By default, the simulator starts in mouse mode so you can
navigate within the app using the keyboard and mouse.

For reference the toolbar icon functions are, from top to bottom:
Minimize, Always on top, Mouse mode, Basic touch mode, Pinch/
zoom touch mode, Rotation touch mode, Rotate clockwise, Rotate
counterclockwise, Change resolution, Set location, Copy screenshot,
Screenshot settings, and Help.

Chapter 2

47

6.	 Click on the Group Title: 3 group and then the Item Title: 3 item from the list on the
left and move the mouse over the detail section on the right. You should see the
contents of the details panel change and a scroll bar should appear as shown in the
following screenshot:

7.	 Switch to the Basic touch mode by selecting the icon on the simulator toolbar.

8.	 As you move your mouse over the simulator you will see that the cursor has now
changed to be a small crosshairs in a circle icon. Click on the second item in the
collection to select it.

9.	 Move the mouse over the details pane and simulate an upwards swipe by left-clicking
and dragging upward with your mouse to scroll the details pane.

Getting Started with Windows Store Applications

48

10.	 As you do, you should see the pointer change to a partially filled in circle indicating
that you are touching the screen, and the contents of the pane should scroll as you
move the mouse. This is illustrated in the following screenshot:

11.	 So far so good. Now it's time to flip the simulator to portrait mode. Click on the Rotate
clockwise icon.

12.	 The simulator should now look as it does in the following screenshot with the layout
of the content adapting as the device is rotated:

Chapter 2

49

Click on the Rotate counterclockwise icon in the simulator to switch back to standard
landscape mode.

13.	 Press the Windows icon on the simulator to bring up the start screen. Because the
simulator is running a copy of your Windows environment you can start any of the
apps that you have on your start screen.

Getting Started with Windows Store Applications

50

14.	 When the simulator has focus it will capture the keyboard and handle key
combinations such as Alt+Tab or Alt+F4. Close the simulator using Ctrl+Alt+F4.

15.	 Back in Visual Studio open the SplitPage.xaml.cs file and locate the
Page_OrientationChanged() method.

16.	 Set a breakpoint in the ItemListView_SelectionChanged() method either by
pressing F9 or clicking in the gutter to the left of the code. This should be line 128.

17.	 Start debugging the app again by pressing F5.

18.	 When the application starts, select a group to display. The breakpoint will be hit
and you could at this point step through the code to understand how it works.

How it works...
The Windows 8 simulator is actually connecting to your local machine via a remote desktop
connection and is why the Start screen in the simulator looks the same as the Start screen
on your Windows 8 development machine and why you are signed in automatically.

Because it's a remote desktop connection running on the local machine the debugger is
simply connecting to a local process running in a different session. If you open the Attach
to Process window via the Debug | Attach to Process menu you can see the details of the
process Visual Studio has connected to. The following screenshot highlights the details of
the running splitapp.exe and shows that it is in session 2, which is the Windows 8
Simulator session.

Chapter 2

51

There's more...
There are a few more things to note about the simulator that we didn't touch on in the recipe.

Resolution and resizing
You can adjust the resolution the simulator is running at, allowing you to experience your app
at different predefined resolutions and device sizes.

Along with changing the resolution you can also change the onscreen display size of the
simulator by dragging the bottom-right hand corner of the simulator just like a normal desktop
window. This can help if you are simulating a device on a high resolution desktop and you
have the screen real estate to spare. Why stare at those tiny fonts? Use those pixels and save
your eyes!

Remote debugging
You may have noticed that when you set the debug option for using the simulator that there
was also a Remote Machine option.

Remote debugging is much simpler under Visual Studio 2012 developing Windows Store
apps than has previously been the case for Windows desktop apps. For the Remote Machine
option to work you need to have the Remote Debugging Monitor running on the remote
machine, the firewall needs to allow connections and you need a reasonable network
connection between the two machines.

On your development machine you simply specify the machine name of the remote machine
you are targeting and start debugging. Visual Studio connects to the remote machine,
prompts for credentials if required, deploys the app, and connects the remote debugging
monitor for you.

From that point forward the debug experience is almost the same as if it were a local
process. As long as you have a stable network connection you should find the experience
very straightforward.

Getting Started with Windows Store Applications

52

Location settings
The simulator lets you enter a simulated location that incorporates not only Latitude and
Longitude but also the Altitude and an Error radius so that you can test location-aware apps
on hardware that don't support GPS or location awareness.

If you have a location-aware device then you can turn off the simulated values and use the
values of the device itself.

Taking screenshots
When you want to take screenshots of your Windows Store apps, for creating your store listing
for example, then you can do so via the simulator. Simply click on the Copy screenshot button
on the toolbar and the screenshot will be placed on the clipboard and optionally in a file on your
hard drive. You can control this behavior using the Screenshot settings button on the toolbar.

See also
ff The Creating a Windows Store app recipe

Defining capabilities and contracts
Windows 8 provides Windows Store apps with the ability to communicate with any other app
on the computer without prior knowledge of what those apps might be through a concept
called Contracts. A Contract is an operating system level interface that consumers or
providers of information implement. The operating system then keeps track of which apps
support which contracts and coordinates the information between apps using those contracts.

Window 8, as part of its focus on improving the trust level in the apps it runs, expects
Windows Store apps to communicate the capabilities they need. A Capability is a permission
or access right that a Windows Store app requires for it to run correctly, for example an app
that requires Internet access or local network permissions. There are a range of capabilities
that the operating system can provide to Windows Store apps. An app that doesn't request
capabilities from the operating system will be provided minimum level access, meaning that it
will run in its isolated process space with no access to any external resources at all.

Chapter 2

53

Similarly an app may have one or more Declarations. A Declaration is an attribute of the app
that provides extra information the operating system can use to further integrate the app
into the standard operating system experience. For instance an app declaring the file picker
contract is telling the operating system that it can be a source of files when the user is using a
file picker.

In this recipe you will add a contract declaration and adjust the capabilities of a Windows
Store app.

Getting ready
Open the SplitApp you created in the previous recipe, Using the Windows 8 simulator.

How to do it...
1.	 Open the Package.appxmanifest file from Solution Explorer. The manifest file

will open up in the main document window as shown in the following screenshot:

Getting Started with Windows Store Applications

54

2.	 Select the Capabilities tab:

3.	 You should only declare the capabilities you actually need and the SplitApp does
not require any Internet (Client) access. Deselect this capability.

4.	 Select the Declarations tab.

5.	 From the Available Declarations drop down select Search and then click on the
Add button:

Chapter 2

55

6.	 At this point you are registering the SplitApp as a search target so that users can
search the app from anywhere in the operating system using the search charm.
RuntimeType indicates to the operating system the type of items the app provides and
StartPage indicates what page the app should use to display a selected search result.
You're not going to implement a search provider as part of this recipe so for now just
click on the Remove button next to Search in the Supported Declarations section.

How it works...
One of the design goals for Windows Store apps is that they should be portable, meaning that
it should be easy to download them from the Windows Store and run them on any computer
the user desires without needing any special permissions. For this to work a Windows Store
app cannot use an installer the way a Windows desktop application does. Installers require
administrator permission to execute, generally access the registry, ask the user what parts of
the application should be installed, and decide how and where the app should be located on
disk, all of which prevents portability. In the case of Windows Store apps it's Windows itself
that determines this behavior and it does so by inspecting the App Manifest that is provided
with each app.

The App Manifest is a critical file for any Windows Store app and you need to pay attention to
it. It contains all of the declarative information to inform Windows of the capabilities it needs
as well as the contracts that it satisfies.

Getting Started with Windows Store Applications

56

There's more…
It's great that there are so many capabilities and contracts you can declare, but instead of
describing all of the possible contracts that you can implement, let's have a look at the ones
you are most likely to consider for your apps.

Contracts
The following details the various contracts that you can declare for your app.

Contact Picker
Let's say your app exposes information from your company address book. The Contact Picker
contract will let other apps wanting to retrieve contact information use your app as a source of
contact details.

File Open Picker
An app may want to include, for example, a picture in an e-mail. Your app can provide
images for that app to use by implementing the File Picker contract. The SkyDrive app
provided with Windows implements the File Picker contract, which is why it is listed as a
source when you browse for a Lock Screen picture from the PC settings app, as shown
in the following screenshot:

Search
The Search contract, as we saw in our recipe, allows the end user to search for information
from within your program. Any program that implements the Search contract item template
will be listed as a search source when the Search charm is used. For example, as shown in
the following screenshot, the Weather app implements the Search contract:

Chapter 2

57

File Type Associations
If your app is going to be accessing files in the Documents Library you will need to specify the
extensions of the files that you will be accessing and you must select the Documents Library
Access capability in the Declarations tab. Only files with these extensions will be available for
your app.

Share Target
The Share Target contract is used when you want to share something with someone else. For
example, sharing web addresses on Twitter or Facebook, or sharing a picture with friends. The
contract definition lets you determine what type of files or data can be shared (for example,
jpg files, e-mail addresses, and URLs).

This contract is a little different to the previous ones you've seen. The contract is indicating
the app is a consumer of the shared information, not a source as with the other contracts.

Capabilities
As with the contracts, not all capabilities are going to be of interest for most developers.
The following are some of the more important ones that you should be aware of.

Internet (Client)
The Internet (Client) capability lets Windows know that your app will be making requests
to Internet-based resources but it will not be receiving any connections. It is for outbound
connections on public networks only.

Getting Started with Windows Store Applications

58

Given most Windows Store apps are expected to have some level of Internet connectivity this
is enabled by default in the project templates.

Internet (Client & Server)
The Internet (Client & Server) capability informs Windows that your app will not only request
data but will also be serving data and can accept inbound connections.

Even if you specify this capability you cannot accept inbound connections on critical ports.
Specifying this capability means you do not need to specify the Internet (Client) capability,
and if you do it will have no effect.

Home or Work Networking
Windows 8 maintains the concept of network profiles for your machine and the Home and
Work networks are considered to be private networks with separate security profiles from the
public Internet. The Home or Work Networking capability allows you to make both inbound
and outbound connections on these trusted networks.

As with the Internet (Client & Server) capability, you cannot accept connections on
critical ports.

Library access
Windows Store apps have limited access to the filesystem and must request access as part
of their capabilities. The Documents Library Access, Music Library Access, Pictures Library
Access, and Videos Library Access capabilities must be selected in order to access files in
each of those locations.

When accessing a library only files with extensions listed in the File Type Association contract
will be available.

Packaging your Windows Store app
For Windows 8 to correctly load and run a Windows Store app it must be packaged in a
particular format. The information contained in the package includes the capabilities and
contracts that your app uses as well as information on the app user tile, the splash screen,
and more.

This recipe will show you what you need to do to package your Windows Store app so that it is
ready for the world to use.

Getting ready
Open the SplitApp that you created in the Using the Windows 8 simulator recipe.

Chapter 2

59

How to do it...
1.	 Open the Package.appxmanifest file from Solution Explorer.

2.	 Examine the fields in the Application UI tab. Add a space to the Display Name field
so that it reads as Split App instead of SplitApp.

3.	 Add a useful description in the Description field. For example: A sample app using
the Split layout.

4.	 In the Tile section confirm the Show Name field is set to All Logos. This will make the
name of the app appear on the Tile on the Windows Start screen.

5.	 In the Packaging tab adjust the Package Display Name to include a space so that
the package name is Split App.

6.	 Save your changes to the manifest file.

7.	 Build the solution.

8.	 In Solution Explorer select the SplitApp project and then click on the Show All
Files icon as shown in the following screenshot:

9.	 Navigate to the bin\Debug folder so that you can see the output from the build.
This is the output that will be uploaded to the Windows store when you publish your
app. It should look something like the following following screenshot:

Getting Started with Windows Store Applications

60

10.	 In Visual Studio, right-click on the solution in Solution Explorer and select Deploy
Solution as shown in the following screenshot. This will deploy the Split App template
to your local machine ready for use.

11.	 Press the Windows key to bring up the Start screen and scroll to the far right. You
should see an icon for the Split App template as shown in the following screenshot:

12.	 Deploying locally is great, but if you want to test your app on another machine you will
need to create a package. Right-click on the SplitApp project in Solution Explorer
and select the Store | Create App Package option from the context menu

13.	 Select No when asked to build a package for the Windows Store and click on Next.
Packaging for the Windows Store is discussed in the Appendix, Visual Studio Pot
Pourri.

Chapter 2

61

14.	 Leave all the default values as they are and click on Create.

Wait until the package creation process completes and click on OK to dismiss
the notification dialog.

15.	 Once the package finishes building, refresh Solution Explorer and you should
now see an AppPackages folder appear that contains the package ready for local
deployment as shown in the following screenshot:

Getting Started with Windows Store Applications

62

How it works...
You may notice in the bin\Debug folder that there are a few extra files generated, namely the
resources.pri, AppxManifest.xml, and SplitApp.build.appxrecipe files.

The AppxManifest.xml file is simply a renamed copy of the package.appxmanifest file.

The resources.pri file contains the app resources in binary format and the SplitApp.
build.appxrecipe file is used for incremental builds of the package so that each time the
package is rebuilt, the package version number is automatically incremented.

In the AppPackages folder there is an *.appxupload file which is a zip archive containing
the app and any debug symbols, and there is a layout folder with a name based on the app,
the CPU type, and so forth. In this case it is called SplitApp_1.0.0.0.AnyCPU_Debug_
Test.

Doing a deployment of the app to a test machine is simply a matter of copying the layout
folder to the test machine and running the Add-AppDevPackage.ps1 PowerShell script
from that folder.

There's more...
There are a few other things to be aware of when packaging your app.

Package signing
Packages need to be signed in order to be uploaded to the Windows Store. When developing
locally, Visual Studio uses a temporary certificate. However deploying to the Windows Store
will require a certificate issued by the store.

Tile notifications
If you want your app to use tile notifications you need to supply a Wide Logo in the Tile
section of the App UI tab as notifications only apply to Start screen tiles in wide mode.

See also
ff The Submitting apps to the Windows Store recipe in Appendix, Visual Studio

Pot Pourri

Chapter 2

63

Validating your Windows Store app
Any app submitted to the Windows Store will be validated by Microsoft before being listed.
Part of that validation process involves running the app through an automatic certification tool
that Microsoft has included with Visual Studio 2012. You should check that your app passes
the certification tool before beginning the Windows Store submission process.

Getting ready
Ensure the SplitApp you were using in the Packaging your Windows Store app recipe is
working correctly and has been deployed.

For the certification process to work your deployed version must be in the Release mode.

How to do it...
1.	 From the Start screen launch the Windows App Cert Kit. The app will prompt

for elevation and then start a wizard as shown in the following screenshot:

2.	 Select the Validate Windows Store App option. The tool will search for Windows
Store apps installed on your machine and list them.

Getting Started with Windows Store Applications

64

3.	 Packages are listed by the Package Display Name from the app manifest file.
Locate your app and select it using the checkbox.

4.	 When the certification process completes you will be prompted to save an XML file
containing the report. Choose a location to save the file to and once the file is saved
you will see the completion dialog.

5.	 Click on the link in the dialog to view the report. The XML file you just saved will be
opened in Notepad. Scan the file for warnings and errors.

How it works...
The certification kit runs your app in order to verify each of the rules it has. It does not perform
tests of your app's functionality but rather validates how well the app behaves within the
context of the Windows operating system and whether the rules for listing the app in the store
are satisfied.

When your app passes the certification kit tests with no warnings or errors it is ready for
submission to the Windows Store.

See also
ff The Submitting apps to the Windows Store recipe in Appendix, Visual Studio

Pot Pourri

3
Web Development:

ASP.NET, HTML5, CSS,
and JavaScript

In this chapter, we will cover:

ff Creating HTML5 web pages

ff Taking advantage of CSS editor improvements

ff Understanding the JavaScript editor improvements

ff JavaScript and CSS bundling and minification

ff Verifying pages with the Page Inspector

Introduction
ASP.NET Web Development sees some significant improvements in Visual Studio 2012 and
.NET Framework 4.5.

In this chapter, we will explore a number of recipes covering the changes in ASP.NET Web
development for both Web Forms and MVC developers and specifically how Visual Studio
2012 supports those features.

Before we get into the recipes it is worth noting that IIS Express, released in January 2011, is
now included in Visual Studio 2012 and is the default web server for ASP.NET web development.
The old Visual Studio development server is still included for backward compatibility, but is no
longer the default for new web projects. When you migrate your applications to Visual Studio
2012, consider switching to IIS Express if you haven't already done so.

Web Development: ASP.NET, HTML5, CSS, and JavaScript

66

For information on IIS Express see http://learn.iis.net/
page.aspx/860/iis-express/.

Creating HTML5 web pages
With Visual Studio 2012, Microsoft has placed a strong focus on HTML5 and web standards in
particular; partly to do with the Windows Store app development process and partly to do with
being a good netizen and supporting standards based web development. This recipe will show
you how Visual Studio can help you when developing a HTML5 page.

Getting ready
Simply start Visual Studio 2012 and you're ready to go.

How to do it...
1.	 Create a new ASP.NET Web Forms Application project using C# and ensure that you

are targeting .NET Framework 4.5.

2.	 Open the Site.Master page and switch to the Source view in the editor.

3.	 In the toolbar you can change the target schema that the IDE uses to validate the
markup. By default this will be based on the DOCTYPE tag in the page, though it can
be manually changed. Verify that the schema is currently DOCTYPE: HTML5.

4.	 In the source of the page, find the <!DOCTYPE html> tag and edit it to match the
highlighted line shown in the following screenshot:

http://learn.iis.net/page.aspx/860/iis-express/
http://learn.iis.net/page.aspx/860/iis-express/

Chapter 3

67

5.	 Look at the validation schema in the toolbar again. It will have changed to match the
document schema and will be showing as DOCTYPE: HTML 4.01. You should also
see that the <meta /> tag in the document is now underlined in green, indicating a
validation problem:

6.	 What you are seeing is how Visual Studio dynamically uses DOCTYPE to validate the
HTML for your page. Undo the changes to restore the DOCTYPE tag, verifying that the
schema switches back to DOCTYPE:HTML5.

Find the asp:LoginView tag in the source and click on it. You will see the standard
Smart Tasks helper indicator appear.

7.	 Assume you need to set the users and permissions on the website. Hover over the
Smart Tasks indicator until it expands to show an arrow. Click on the arrow to see the
available tasks. Alternately you can press Ctrl+. (Ctrl+Period) to achieve the same
result. From the pop-up task menu select the Administer Website option to open the
standard ASP.NET Web Site administration page in a browser. Make any changes to
the permissions you want to and then close the browser.

Feel free to explore the contents of the Smart Tasks helper and remember
that it changes based on context. For example, the tasks available for the
asp:LoginView tag will differ from that of the asp:ScriptManager tag.

Web Development: ASP.NET, HTML5, CSS, and JavaScript

68

8.	 Look a little further down the Site.Master page until you find the <nav> element
for the menu as shown in the following screenshot:

9.	 The <nav> element is a HTML5 element that wraps a group of links intended for
navigation. The nav element in Site.Master can be further enhanced by adding
HTML5 accessibility attributes. Select the <nav> element and add a space after
the tag name. Visual Studio IntelliSense will automatically show a list of applicable
attributes that can be added to the tag:

10.	 Enter the text role. IntelliSense will show the available list of roles. Select the menu
role from the list as shown in the following screenshot:

Chapter 3

69

11.	 For accessibility reasons, list items should indicate their role as well. Select the first
 element and set the role to menuitem and repeat this for each of the other list
items in the menu.

12.	 Visual Studio 2012 now features code snippets in the HTML editor to help you write
code faster. Let's say you want to add some elevator-style background music to your
website. To do this, move the cursor below the <nav> element you were just working
on and start to add a new <audio> tag by typing <au as shown in the following
screenshot. IntelliSense will prompt you with an available code snippet you can use.

13.	 Press Tab twice to insert the snippet. Because HTML5 audio supports both mp3
and ogg formatted files to cater for different browsers, two source tags are added.

14.	 Change the name of the first audio file to FurElise and press Enter. The snippet
uses a convention where the same name is used for both audio files so you should
see the second source file name change automatically when you press Enter.

How it works...
IntelliSense in the HTML editor will filter what it displays based on the target schema used for
validation. If you were to change the schema to HTML 4.01 as you did earlier in the recipe and
then start to add an <audio> tag like we did in step 12, the snippet would not be listed as it's
not applicable to HTML 4.01.

When you edit the tag name of an element that has an opening and closing tag, Visual Studio
will automatically keep both tags synchronized to avoid common editing errors such as
forgetting to change the matching tag or changing the wrong tag.

These improvements, and in particular the inclusion of the Smart Tasks in the Source view,
mean there are very few reasons for web developers to switch to Design or Split views in the
editor. For most developers this will be a cause for minor celebrations.

Web Development: ASP.NET, HTML5, CSS, and JavaScript

70

Taking advantage of CSS editor
improvements

Just as in the HTML editor we looked at in the previous recipe, the Visual Studio 2012
mechanics gave the CSS editor a grease and oil change; and then added a sports exhaust,
better suspension, and xenon headlights.

In this recipe we'll take a look at these improvements by tweaking the default CSS
of a web project.

Getting ready
Simply start Visual Studio 2012 and you're ready to go.

How to do it...
1.	 Create a new ASP.NET Web Forms Application project in C#.

2.	 Open the Content\Site.css file.

3.	 Move your cursor to the hex color value in the background-color element of the
html style and press Ctrl+Space to activate the CSS Color Picker as shown in the
following screenshot:

4.	 Click the down chevrons (the icon with downward facing arrows) to expand the picker
to show the full gamut of colors from which you can choose. Note that the picker also
lets you change the opacity of a color.

Chapter 3

71

5.	 When building CSS for a site, sometimes you need to use a color from a picture
supplied by a designer but don't have the hex value of that color. In these cases you
can use the color picker to select the color value. Click on the Color Picker button at
the bottom right of the Color Chooser window and then click anywhere on the screen
where the color you need to use is currently showing. The color of the pixel where you
click will be automatically selected for you.

6.	 Move the cursor down into the body style definition. Right-click in the selector (that
is, the word body) and select Build Style from the context menu. You can also do this
by opening the Style property editor in the Properties pane.

7.	 In the Modify Style dialog a Category list is shown with bold entries indicating
categories with existing values. The dialog also includes a Preview of the style so you
can confirm the style appears as you wish it to. Change the Font style so that blink is
enabled and make font-weight bold. There simply aren't enough websites anymore
with bold, blinking text now that Geocities no longer exists.

Web Development: ASP.NET, HTML5, CSS, and JavaScript

72

8.	 Click on OK when you have made your changes and you will be impressed with your
ability to create CSS styles in a very short space of time.

9.	 To ensure your page is even more attention grabbing, you really should shout at your
visitors. Go to the end of the body style and add a new blank line after the font-
weight attribute. Type tex and Visual Studio will show you a list of style attributes
that can be used. Select the text-transform attribute from the list and press Tab.

10.	 Visual Studio will now display a list of possible transforms that can be applied. Select
the uppercase transform and press Tab to add it. Add a semicolon to complete the
style attribute and ensure that your web page really shouts at your visitors!

11.	 Locate the ul#menu style. You should see a number of other styles indented beneath
it as shown in the following screenshot. The CSS editor has a new hierarchical
indentation feature that can be used to indicate specificity for your styles. For
example, the ul#menu li style is indented because it has greater specificity
than the ul#menu style.

Chapter 3

73

12.	 You need some finishing touches to your styles. Just below the ul#menu li a:hover
style, add a new style with a selector of ul#menu li a:visited.

13.	 Add a color property to the rule using any color you wish. Then press Ctrl+K and
Ctr+D. This will format the document and indent it according to specificity. Your
stylesheet should now look similar to the following screenshot:

14.	 The CSS editor also features code snippets, including snippets for common CSS
properties that have vendor specific extensions. In the style you just added, insert
a new line and type op. IntelliSense will show properties with "op" in their name,
including an entry for the opacity code snippet.

15.	 Select the snippet and press Tab twice to expand the snippet, and leave the opacity
values at the defaults of 50 and 0.5.

Web Development: ASP.NET, HTML5, CSS, and JavaScript

74

16.	 CSS files often have a large number of rules in them, grouped into areas, the rules
for the menu being a good example. You might not want to see them all the time. The
CSS editor now supports regions so you can logically group your style rules and hide
them when you don't need to see them.

Head up to the existing /* menu comment. Delete both the comment and the line
of dashes below it. Add a new line, /* #region menu */, in its place.

Then move to the end of the menu-related styles and add a new line, /*
#endregion */. As soon as you close the comment, Visual Studio will show
a document outlining indicator.

17.	 Collapse the region by clicking the minus icon next to the opening #region comment.

How it works...
IntelliSense in Visual Studio 2012 not only understands CSS 3.0 but also understands
common browser hacks such as the star (*) and underscore (_) hacks used to target various
IE specific styles. IntelliSense for style properties will still work if you start typing with a star
or underscore.

When using CSS 3.0, the editor supports vendor specific extension attributes such as the
-moz- and -webkit- attributes for targeting specific browsers. You saw this behavior when
you used the opacity snippet in the recipe.

If you don't like the Hierarchical Indentation setting you can turn it off
in the Visual Studio options. Go to Tools | Options | Text Editor | CSS |
Formatting and deselect the Hierarchical Indentation checkbox.

Chapter 3

75

The CSS editor can also be configured so that IntelliSense and validation work in CSS 3.0, CSS
2.1, or CSS 1.0 modes. Go to Tools | Options | Text Editor | CSS | Validation and change
the drop down to the appropriate CSS level you wish to use.

In case you are wondering, putting bold, blinking, all uppercase text on
your pages is considered bad web design. It was used in this recipe as an
amusing way to show you how the tools work, not as an example of how to
create great styles. Unless you've got a specific reason to do this (perhaps
you run a discount retail website) please don't. Your visitors will thank you!

Understanding the JavaScript editor
improvements

As you have seen in the two previous recipes, the HTML and CSS editors have been greatly
improved in Visual Studio 2012 and you'll be pleased to know that the JavaScript editor has
also received a significant overhaul. With HTML and JavaScript being first-class choices for
developing Windows Store apps it's not really a surprise that it happened.

Within the HTML5 specification the marquee tag is no longer valid, but thanks to Aaron
Powell (http://www.aaron-powell.com/doing-it-wrong/marquee) we have a way to
implement a marquee tag using JavaScript and jQuery. In this recipe we will write a JavaScript
script to emulate a marquee tag so that we can learn how the editor works.

Getting ready
Simply start Visual Studio 2012 and you're ready to go.

How to do it...
1.	 Create a new ASP.NET Web Forms Application project.

2.	 Add a new JavaScript file named marquee.js to the Scripts folder in your solution.

3.	 The original marquee tag scrolled a block element horizontally across the page.
For this to work in JavaScript you first need to know the width of the element you
will be animating.

In your empty marquee.js file start by typing the jQuery shortcut $ character
followed by a period (.) to bring up the IntelliSense options.

http://www.aaron-powell.com/doing-it-wrong/marquee
http://www.aaron-powell.com/doing-it-wrong/marquee

Web Development: ASP.NET, HTML5, CSS, and JavaScript

76

IntelliSense should now be showing you all the valid jQuery functions you can use
along with their method signatures.

4.	 Enter the following JavaScript script in marquee.js:

5.	 At this point you have a simple method for returning the width of the text. You can
now start writing the marquee function by adding the following JavaScript script at
the bottom of the marquee.js file:

6.	 Before you go any further, put your cursor on the textwidth() method call in the
line you just added and either press F12 or right-click it and select Go To Definition.

7.	 Visual Studio will navigate to where the textwidth() method definition is declared.
In the textwidth() method, move the cursor onto the call to the jQuery append()
method and press F12 to go to its definition. You will be taken to the method in the
jquery-1.6.2-vsdoc.js file.

Chapter 3

77

If you update your jQuery version, either manually or via NuGet, then you will
be taken to a different version of the –vsdoc.js file than the one shown in
the recipe.

8.	 It's time to finish off the JavaScript you were working on before. Navigate back to the
marquee.js file by pressing Ctrl+- (Ctrl and the minus key) to navigate backwards.
Complete the first part of the marquee function by ensuring the CSS used in the
animation is defined. Replace the existing width = offset; statement with the
following code (note the change of the semicolon to a comma on the first line):

9.	 Complete the method by adding the following highlighted code to the marquee
function. The go() function is used as the main loop of the marquee effect and
adjusts the CSS of the element each time through the loop, before using the
setTimeout method to pause execution before looping again.

Web Development: ASP.NET, HTML5, CSS, and JavaScript

78

10.	 You may have noticed that, as you typed the inner go() function in the editor, the
outlining tips appeared. This is a new feature in Visual Studio 2012 to help with
document outlining. The collapsed go() method is shown in the following screenshot:

11.	 Now all that's left is to apply the marquee function to a web page! In Solution
Explorer navigate to the About.aspx page and view the HTML source.

Move to the bottom of the HTML file and just before the closing </asp:Content>
tag, add a reference to the marquee script.

12.	 The <p> element would make a good target for your marquee script. Add another
script block directly below the reference you added in the previous step and enter
$('p').marquee(); in the body of the script.

As you type, IntelliSense will provide information on the available methods, including
your newly-created marquee method, as shown in the following screenshot:

13.	 Run the application and navigate to the About.aspx page to see the marquee in
action. Simply awesome! Maybe that's overstating it a little, but it was certainly fun!

How it works...
When you first started typing the marquee script and IntelliSense displayed the jQuery
information, you may have been wondering where that information came from. IntelliSense
uses the contents of the _references.js file to discover information about the JavaScript
libraries for your project.

If you don't like this file or have another convention you wish to use then you can customize
this behavior through the Visual Studio options under Text Editor | JavaScript | IntelliSense
| References, selecting the Implicit (Web) group.

Chapter 3

79

There's more…
Visual Studio supports ECMAScript 5 and IntelliSense will show ECMAScript methods
whenever appropriate. For example, the trim() method will be displayed for string
variables but not for numeric variables.

If you want good page load times with JavaScript you should be placing your scripts at the
bottom of your page, with the exception of modernizr. In the About.aspx page you placed
the scripts at the bottom of the page but, since that page is actually loaded into an ASP.NET
content control on a master page, the scripts would be rendered mid-page. Not quite what
you want.

For more information on the impact of JavaScript positioning and the impact
on page load times see the Yahoo! Best Practices for Speeding up Your Web
Site list at http://developer.yahoo.com/performance/rules.
html.

A better approach might be to add a new content placeholder to the master page called, for
example, EndOfPageScripts, and place it below the <footer /> element. In the About.
aspx file you could then add a second ASP.NET content control for the EndOfPageScripts
placeholder and place the scripts there.

Regions
The JavaScript editor does not support regions. Personally I'm very glad about that since
developers often use them to hide ugly and problematic code rather than fixing it. They do
however have a legitimate use at times. So if you desperately want to add region support
to Visual Studio 2012 keep an eye on the Visual Studio gallery. For example, region
support in Visual Studio 2010 is available via the JSEnhancements extension at http://
visualstudiogallery.msdn.microsoft.com/0696ad60-1c68-4b2a-9646-
4b5f4f8f2e06/ and at the time of writing, there is a preliminary version available for Visual
Studio 2012 available in the gallery and also at https://jsoutlining11.codeplex.com/.

JavaScript and CSS bundling and
minification

One of the common techniques for improving website performance is to reduce the number of
requests a browser needs to make in order to get the resources required for the page, and to
compress any resources that are requested to reduce bandwidth.

When it comes to both JavaScript and CSS, this generally means combining all of the files of
the same type into a single large file (bundling) and then removing unnecessary whitespace
from them and renaming variables to use the minimum amount of space possible, while still
leaving the functionality unchanged (minification).

http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html
http://visualstudiogallery.msdn.microsoft.com/0696ad60-1c68-4b2a-9646-4b5f4f8f2e06/
http://visualstudiogallery.msdn.microsoft.com/0696ad60-1c68-4b2a-9646-4b5f4f8f2e06/
https://jsoutlining11.codeplex.com/

Web Development: ASP.NET, HTML5, CSS, and JavaScript

80

ASP.NET 4.5 supports automatic bundling and minification and in this recipe you'll add
bundling and minification to a site and see how it impacts your development activities.

Getting ready
We're going to use the project from the previous recipe, Understanding the JavaScript editor
improvements. If you haven't already done so, complete that recipe.

If you don't have time, the completed code from the previous recipe is located in the Chapter
3\Marquee.zip archive for you to use as your starting point.

The recipe assumes that your browser of choice has developer tools that are able to capture
network traffic. If you use Internet Explorer you will need Internet Explorer 9 or later, which is
what this recipe will assume you are using.

How to do it...
1.	 Build the application and run it without the debugger by pressing Ctrl+F5 or choosing

Debug | Start Without Debugging from the menu.

2.	 Navigate to the http://<yoursite>/About.aspx page in your browser and open
the browser's developer tools. If you are using Internet Explorer 9 then you can press
F12 to open them.

3.	 Go to the Network tab and click on the Start Capturing button. Press Ctrl+F5 to
force a full refresh of the page. The network trace should show that a lot of files are
required to load the page as shown in the following screenshot:

Chapter 3

81

4.	 Look at all those requests! If you want a faster loading page, you need to reduce this.
Leaving the browser open, switch back to Visual Studio and in Solution Explorer find
and open the Site.Master file.

5.	 In that file, at line 13, you will find the code shown in the following screenshot:

6.	 The Scripts.Render() statement is outputting a ~/bundles/modernizr file.
Look at Solution Explorer again. There is no bundles folder. What's going on here?

7.	 In Solution Explorer expand the App_Start folder and then open the
BundleConfig file within that. The third statement of the RegisterBundles()
method defines the missing file.

8.	 In your projects you will no doubt want bundles for your own custom JavaScript, so
create one now by adding a new statement to the RegisterBundles() method
as follows:

9.	 Go back to Site.Master and at the bottom of the page include a reference to your
customjs bundle, as shown in the following screenshot:

Web Development: ASP.NET, HTML5, CSS, and JavaScript

82

10.	 Go to the About.aspx page and remove the script reference for the marquee.js
file. Since the marquee function won't be present when it's called in the About.aspx
page, change the call to only happen when the page is ready, as follows:

11.	 Rebuild the solution, switch over to your browser and perform a full page refresh
(that is, Ctrl+F5 in Internet Explorer). Assuming the network tab is still open in the
developer tools, you should see the marquee.js file being loaded and the marquee
effect still working.

12.	 While you have defined the bundles, they still aren't actually being bundled or
minified. Switch back to Visual Studio and in Solution Explorer find and open
Global.asax.cs. In the Application_Start() method add the following
highlighted line of code to enable optimizations:

The EnableOptimizations call forces bundling to occur. Without this call
bundling only occurs when running the site in release mode. In other words,
when the debug="true" attribute of the system.web.compilation
tag of the web.config file is specified, bundling optimizations are disabled.

13.	 Rebuild the application, switch over to the browser and perform a full page
refresh again. The network trace will now show that JavaScript bundles are being
downloaded instead of individual script files and that the download size of the bundle
files is less than the download size of the original JavaScript files, as shown in the
following screenshot:

Chapter 3

83

14.	 It's worth confirming that the scripts are not only bundled but also minified. Navigate
to the Script tab in the browser developer tools and select the customjs file from
the scripts drop-down list:

15.	 Use the search box on the right to locate the marquee function as shown in the
following screenshot. In the script you can see that, not only has the whitespace been
removed, but the variable names have also been shortened and the code slightly
optimized. Exactly what you should expect minification to do.

Web Development: ASP.NET, HTML5, CSS, and JavaScript

84

How it works…
Inside the ASP.NET runtime, when a browser requests a page with a bundle in it, ASP.NET
will either render the names of the individual files in the bundle or the bundle name itself,
depending on whether optimizations are turned on or not. When optimizations are on, browsers
will request bundles by their name and ASP.NET will group the individual bundled files into a
single larger file before minifying them and sending the result back to the browser. The resulting
minified file is cached by ASP.NET so that future requests do not impact site performance.

You can create your own custom bundle types by subclassing the Bundle class allowing
you to do pretty much anything you need to provide your own minification rules and bundling
mechanisms, which may be useful if you want to support web technologies such as LESS,
Sass, or CoffeeScript, for example.

See also
ff The Understanding the JavaScript editor improvements recipe

Verifying pages with the Page Inspector
The Page Inspector is a tool provided with Visual Studio that comprises a browser that runs
inside Visual Studio and a range of page inspection tools similar to what is provided with the
Internet Explorer developer tools, but with the ability to map elements back to the line of code
that generated them.

The page inspector is so good that you can almost hear a TV shopping channel's shouty man
doing an advert like this: "See something that doesn't look right on your web pages? You're
not sure where it came from? You're wondering how on earth you'll track it down? Well, fear
not, for the Page Inspector is here! All new Page Inspector will do the dirty detective work for
you and pinpoint the sneaky culprit! For a single up-front payment and 12 easy installments
you too can own the Page Inspector! Order now and you'll also get these free steak knives and
a squeaky penguin toy for your kids! Call now!!"

Well, maybe not.:-)

Let's put that silliness aside and have a look at what the Page Inspector can really do for your
debugging experience by following this recipe.

Chapter 3

85

Getting ready
The Page Inspector requires Internet Explorer 9 (or later).

If you are developing on a Windows Server operating system you must have Internet Explorer
Enhanced Security Configuration disabled.

How to do it...
1.	 Create a new C# ASP.NET MVC 4 Internet Application project using the Razor view

engine and give it the default name.

2.	 You can launch the Page Inspector from the View | Other Windows | Page Inspector
menu, the Quick Launch tool, by right-clicking a page and selecting View In Page
Inspector, by clicking the Page Inspector icon in the toolbar, or by pressing Ctrl+K
and Ctrl+G.

For this recipe, right-click on the Views\Home\Index.cshtml page and select
View in Page Inspector.

3.	 The Page Inspector will open in a tool window next to the main document area and
display the site's home page.

Web Development: ASP.NET, HTML5, CSS, and JavaScript

86

4.	 In the bottom half of the Page Inspector is a toolbar with a number of inspection tabs
and also an Inspect button. Click that and then click on the Your logo here text of the
web page in the top section of the inspector. As you do, you will notice that the HTML
tab adjusts to show the relevant part of the DOM, and that the code where the text
came from is shown in the document pane.

5.	 Inside the Views\Shared_Layout.cshtml file, which should currently be open
in the document area, move to the bottom of the file and locate the footer element.
Highlight a section of the copyright notice, as shown, and note how the matching text
in the Page Inspector is highlighted. You will also see that the HTML tab of the Page
Inspector updates to show the page DOM and that the other Page Inspector tabs
update to reflect the details of the selected item. This bi-directional selection is very
nice and very, very useful.

Chapter 3

87

6.	 With the text still highlighted, select the Trace Styles tab in the Page Inspector and
scroll down to the margin-top attribute. Expand the item and click on the footer
p selector. When you do so, the site.css file will be shown and the footer p style
highlighted. This gives you a great way to trace a style you see on a page directly back
to the source file it came from.

If you can't find the style, you may have accidentally changed the selected
content in the Page Inspector. Try reselecting the copyright notice and then
looking at the Trace Styles tab again.

7.	 Change the margin properties of the style in the Site.css file to
margin: 10px 0 0 0;.

8.	 The Page Inspector detects that a change has occurred and displays an
informational message prompting you to save your changes and refresh the page.
Do so by clicking the message or pressing Ctrl+Alt+Enter to see the change to
the footer.

How it works...
When you first launched the Page Inspector you didn't need to compile the web application or
launch IIS Express. The Page Inspector did that for you automatically, making the process of
getting started very simple.

Web Development: ASP.NET, HTML5, CSS, and JavaScript

88

The mapping of the page elements and styles back to the source only works if those elements
are statically generated. In other words, they have to map back to the actual source and can't
be the result of any dynamic DOM manipulation performed via JavaScript. The mapping of
page elements to the JavaScript that created them is not supported by the Page Inspector.

There's more…
One thing you didn't look at in the recipe was the Files tab, located next to the HTML tab in
the Page Inspector. The Files tab shows all the source files that were used in the construction
of the layout for the page, excluding CSS and JavaScript files.

Partial pages and user controls
If you right-click a partial view or a user control in Solution Explorer and select View in Page
Inspector, the Page Inspector may not be able to determine how to launch those pages
because the routing rules aren't specific enough or for some other reason. When this happens
the Page Inspector will prompt you for a URL to navigate to that includes the view or control
you are interested in:

Enter an absolute or relative URL and then click on Set to define the mapping. The next time
you inspect the user control or partial page, the Page Inspector will remember your mapping
and launch the appropriate page for you, allowing you to inspect your element in the context
of the containing page.

Chapter 3

89

The Page Inspector is too narrow!
By default the Page Inspector is loaded in a tool window on the left of the IDE and renders the
page in a very narrow window.

You don't have to live with it this way. If you have multiple monitors then you can undock the
Page Inspector and drag it over to your second monitor. You will then be able to see the full
page in the Page Inspector as well as your code, and the two-way synchronization of code and
HTML will be easy to track.

Alternatively you can move the Page Inspector to the main document area, though doing so will
mean that you have to use Ctrl+Tab to switch between the Page Inspector and the source files.

Of course, the final option is to simply widen the Page Inspector tool window, though doing so
reduces the size of the main document area. Regardless, if the window is too narrow for your
liking, change it! It's your Visual Studio; make it work the way you want it to.

4
.NET Framework 4.5

Development

In this chapter, we will cover:

ff Adding the Ribbon to a WPF application

ff Creating a state machine in Visual Studio 2012

ff Creating a Task-based WCF service

ff Managing packages with NuGet

ff Unit testing .NET applications

ff Sharing class libraries across runtimes

ff Detecting duplicate code

Introduction
In Chapter 3, Web Development: ASP.NET, HTML5, CSS, and JavaScript, we looked at web
development and how Visual Studio supports web developers. In this chapter we turn
the spotlight on Visual Studio 2012's support for developers using the other major .NET
technologies and how it promotes good development practices in general. We will look
specifically at functionality that has been added or enhanced.

First, you should be aware that the .NET Framework 4.5 is an in-place upgrade of .NET
Framework 4.0. It is backward compatible with all .NET Framework 4.0 functionality and
encompasses both of the runtime profiles that .NET 4.0 provided.

.NET Framework 4.5 Development

92

On those profiles, the approach of having two .NET 4.0 redistributables (client and full) has
ended with .NET 4.5. It is now a single runtime only. When building .NET 4.5, Microsoft realized
that the size difference between the two profiles was insignificant and any potential deployment
savings couldn't be justified compared to the cost of testing applications against two versions
of the runtime, plus the single redistributable simplifies the overall deployment story. Of course,
there is a new profile for Windows 8 with the Windows Store profile for .NET Framework 4.5,
however it comes preinstalled with Window 8 and there is no downloadable redistributable.

Be aware that .NET Framework 4.5 is not supported on Windows XP,
Windows Vista, or Windows Server 2003.
Extended support for Windows XP SP3 ends in 2014. Extended support for
Windows Server 2003 ends in 2015 and the user base for Windows Vista
is small. For this reason the lack of framework support for those operating
systems shouldn't be a problem.

Adding the Ribbon to a WPF application
Windows Presentation Foundation (WPF) is still the preferred platform for developing
desktop applications on the Windows platform. Visual Studio 2012 itself is a WPF application
and, even with Windows 8, there will still be many applications that are going to target the
Windows Desktop.

For developers of desktop applications it is good to know that WPF continues to receive
updates and enhancements. In .NET 4.5 you can now use the provided Ribbon control in
your applications and in this recipe you will see how this is done.

Getting ready
You'll need some icons for this recipe. The ones you'll be using for this recipe can be
downloaded from http://www.windowsico.com/download.htm and are licensed under
the Creative Commons license. The specific download you are looking for is the VistaICO Aero
Pack. Credit goes to VistaIco.com for making these icons available. Make sure you have
downloaded these icons before starting this recipe; alternatively have a set of your own you
can use instead.

Start Visual Studio 2012 and create a new C# WPF Application using the default name.

How to do it...
1.	 You need to add a reference to the Ribbon control in order to use it. Right-click

the project in Solution Explorer and add a reference to the System.Windows.
Controls.Ribbon assembly.

Chapter 4

93

2.	 The easiest way to work with the Ribbon is to edit the XAML directly as there are a
number of child controls that need to be added. Open the MainWindow.xaml file
and change the markup so that the base class is no longer a <Window> control but a
<RibbonWindow> control.

3.	 You need to make a similar change in the code behind file. Navigate to the
MainWindows.xaml.cs file and change the base class from Window to
RibbonWindow and add a using statement for System.Window.Controls.
Ribbon to the file as well.

Switch back to the designer. Add a Ribbon control to the form by adding a <Ribbon>
element inside the <Grid> element as shown. As you do so the Ribbon will appear in
the designer window.

.NET Framework 4.5 Development

94

4.	 The Ribbon hosts tabs, groups, and buttons (amongst other things), so populate
the Ribbon by adding the following XAML code:

5.	 Run the application to check that the Ribbon control appears correctly and that
you can switch between tab groups. The application should look like the following
screenshot. Close the application when you have confirmed things are working.

6.	 The Ribbon control also features a Quick Access Toolbar and an Application Menu.
Add a Quick Access Toolbar by adding the following code between <Ribbon> and
<RibbonTab> as shown in the following screenshot:

Chapter 4

95

7.	 Run the application again to confirm that the Quick Access Toolbar is
appearing correctly:

8.	 At this point it's time to add some images to those buttons. Start by adding an
Images folder to your project.

9.	 From Windows Explorer, unzip the Vista Icons pack (you should have downloaded this
before starting the recipe) into the Images folder.

10.	 In Visual Studio, click on the Show All Files icon in Solution Explorer. Select all the
files in the Images folder, right-click them, and select Include in Project.

11.	 Hover the mouse over one of the image files in the Images folder. You will see
a preview of what each image looks like. Such a handy little feature!

.NET Framework 4.5 Development

96

12.	 Edit the MainWindow.xaml file to replace each button background with an image.
The QuickAccessToolbar uses the SmallImageSource attribute for images and
the main RibbonTab buttons use the LargeImageSource attribute.

Make the changes for as many buttons as you like using the images you prefer.

You can avoid typing full path names by entering just the attribute name and
then dragging the image to use onto the XAML editor from Solution Explorer
as shown. Just remember to change the image path so that it is a relative path,
not an absolute one.

13.	 Run the program to confirm that the Ribbon control is looking the way you want it to.

How it works...
While this recipe shows you how to lay out the new WPF Ribbon, it is hardly an exhaustive run
through of the Ribbon control and nor is it meant to be. The recipe is to show you how Visual
Studio assists you when developing WPF applications.

You should have also noticed that the WPF designer feels better to use and more responsive
than the Visual Studio 2010 designer and that it keeps up with your XAML changes better

Chapter 4

97

than before. This will make developing WPF and XAML applications in general a lot smoother
than previously and it should remove some of the angst people have had with Visual Studio's
XAML designer.

Beyond the Ribbon, WPF also includes features such as asynchronous validation and the
ability to access collections on non-UI threads without needing to marshal calls. These extra
features, along with the improved binding, async language features, and general .NET 4.5
runtime enhancements should help you to deliver Windows Desktop applications that feel
more responsive for your users and don't suffer from the white screen of death anywhere
near as often.

See also
ff The Making your code asynchronous recipe in Chapter 6, Asynchrony in .NET

Creating a state machine in Visual Studio
2012

Windows Workflow underwent a major overhaul for .NET 4.0 and was largely a ground up
rewrite. As part of that rewrite the workflow designer was also rebuilt; however it was fairly
slow and in medium to large workflows was more than capable of crashing Visual Studio,
taking all your unsaved changes with it and generally annoying anyone who had to use it for
long periods of time.

In Visual Studio 2012 the workflow designer has been given some tender loving care and
encouraged to behave more like a grown up.

For the workflow engine itself, Microsoft has added much needed support for state machines.
Let's have a look at how to put one together.

Getting ready
Start Visual Studio 2012 and create a new Visual Basic | Workflow | Activity Library project.

How to do it...
1.	 The Activity1.xaml file should be open in the designer when the project is

created, but if it isn't, open it now.

.NET Framework 4.5 Development

98

2.	 In the Toolbox you will see the workflow activities from Visual Studio 2010 as well
as a new group called State Machine. From within that group drag a StateMachine
activity onto the Activity1.xaml designer.

3.	 Drag a State activity onto the state machine you just added in the designer.
You should now have two states as shown in the following screenshot:

4.	 Next, position your mouse near the edge of State1 as shown in the following
screenshot. A connector drag handle will appear (1). Click-and-drag it to join State1
to State2 (2). When you let go of the mouse the transition will be given a default
name of T1 (3).

Chapter 4

99

5.	 All state machine workflows need a final state, so drag a FinalState activity onto the
state machine and add transitions from the existing states to the final state as shown
in the following screenshot:

.NET Framework 4.5 Development

100

6.	 The default naming of states doesn't make much sense from a readability
perspective. Click in the headers of each state to edit their names and name
them New Task, In Progress, and Closed as shown in the following screenshot:

7.	 To rename the state transitions you will need to double-click each one and then
click the header to edit the description. Change the transition names to Commenced,
Cancelled, and Completed as shown in the following screenshot:

8.	 At the top right of the New Task state is a blue warning symbol. This exists
because there are two possible transitions from New Task to other states.

The workflow engine needs a way to choose between the two transitions.
Add an argument to your workflow by clicking the Arguments tab at the
bottom of the designer.

Chapter 4

101

9.	 Click on the Create Argument line to create a new entry. Leave the argument name
as the default one but change the Argument type to Boolean as shown in the
following screenshot:

10.	 Double-click the Commenced transition in the designer, and in the Condition enter
argument1 = True as shown in the following screenshot:

Because argument1 is a Boolean the = True comparison is
redundant. It is used here to aid readability and maintainability.

11.	 Return to the state machine view in the designer by clicking on StateMachine
in the breadcrumbs, located at the top of the designer.

12.	 Set the condition on the Cancelled transition to Not argument1 using the same
method you used in step 10.

13.	 Return again to the state machine view and note how the New Tasks state no longer
shows you the warning icon because there is now a way to choose between the
transitions. Build the application to ensure the workflow is defined correctly.

.NET Framework 4.5 Development

102

How it works...
State machines are a very welcome addition to the Windows Workflow functionality and
are useful in many situations. It isn't shown in the recipe, but each state has entry and exit
actions that are activated as the state machine transitions between states, and can be used
to customize how the workflow behaves.

Upon entering a state the entry action is processed and when the action is complete the
Trigger for each possible state transition is prepared. Triggers are effective event listeners
and state transitions only occur when a trigger event has been received and the Condition
evaluates to true. The Workflow runtime provides a number of trigger activities, though in
many cases you will need to create your own trigger activities specifically for your purposes.

There's more…
You can now search within workflows! Hooray! If you've ever dealt with large workflows then
you'll be well aware of the pain of not having a search feature.

Quick Find (Visual Studio's normal find function) will match on object properties, variables,
arguments, and expressions.

Find in Files will search the XAML representation of the workflow and match on anything it
finds in there. When double-clicking a search result, the designer will navigate to the activity
that matches the search result location.

Panning
Such a simple thing to improve usability and it's finally here!

Pan the designer either by dragging with the middle mouse button, or by holding down space
and dragging with the left mouse button.

Alternately, click on the panning icon at the bottom-right of the designer.

C# Workflows
In previous versions of Visual Studio all workflow projects required expressions to be
entered using the Visual Basic syntax. With Visual Studio 2012 C# workflow, projects
will now use C# expressions.

If you upgrade an existing workflow from .NET 4.0 to .NET 4.5, a compatibility flag is set on the
workflow so that any existing Visual Basic expressions will still work.

Chapter 4

103

Versioning your workflows
Versioning problems have long hindered the adoption of Windows Workflow. Changing
a workflow definition could easily break long running, persisted workflows and cause
applications to crash or data to be lost.

With Visual Studio 2012 a new WorkflowIdentity class has been added for dealing with
persisted workflows. WorkflowIdentity allows you to host multiple versions of a workflow
side-by-side so that your old persisted workflows can still run through to completion while new
workflows will use the new definitions you provide.

In addition, DynamicUpdate can be used to amend the definition of older, persisted
workflows if you want to bring them in line with your newer workflow definitions.

Creating a Task-based WCF service
There's not a great deal of change in Visual Studio 2012 for Windows Communication
Foundation (WCF) development. However, don't misread that as there's not a lot of
improvement for WCF developers in .NET Framework 4.5, as that's far from the truth! It's
simply that since WCF is a technology focused on network communications, the changes in
Visual Studio 2012 are quite small.

The only visible changes are in the Add Service Reference dialog and the IntelliSense support
for WCF configurations.

In this recipe you'll create a Task-based WCF service so that you can see what has changed.

Getting ready
Simply start Visual Studio 2012 and you're ready to go.

How to do it...
1.	 Create a new project using the Visual C# | WCF | WCF Service Application template

and give it the default name.

2.	 Add to the solution another project using the Visual C# | Windows | WPF
Application template, also giving it the default name.

3.	 Compile the solution and start the WCF service to make sure it starts correctly and so
that you have a working service for the next few steps. Stop the application once you
are happy that it's working.

4.	 Back in Visual Studio, right-click on the WPF application and select Add
Service Reference.

.NET Framework 4.5 Development

104

5.	 Click on the Discover button. The Service1 web service should be discovered.

6.	 Click on the Advanced button in the bottom-left of the Add Service Reference dialog.
Ensure that, in the options for service generation, Generate task-based operations is
selected and Allow generation of asynchronous operations is turned on.

7.	 Click on OK in the options dialog and then in the Add Service Reference dialog to
generate the service proxy.

8.	 Go to the app.config file for the WPF application, locate the <endpoint>
configuration section, and hover the mouse over the name attribute. A tooltip will
appear to explain what this attribute is for. Given the issues people have historically
had with understanding the details in WCF configuration, this IntelliSense information
is very welcome.

9.	 Start to add a new endpoint configuration to the <client /> section by typing
<endpoint binding=. IntelliSense will kick in to show you the values that can be
placed inside the quotes. That makes editing WCF configurations much simpler than
trying to remember what all the valid values are. Select the basicHttpsBinding value.

Chapter 4

105

10.	 Continue building the endpoint configuration by adding a bindingConfiguration
attribute. When you type the = (equals), IntelliSense will pop up again and show
you the binding configurations available as well as a tooltip about the binding.
Helpful! Select the BasicHttpBinding_IService1 option and then close the endpoint
configuration element with />.

The endpoint you just added is not yet complete. The recipe asks
you to add it so you can see the new IntelliSense support for WCF
configurations. Once you finish the recipe, try manually adding support for
basicHttpsBinding by editing the .config files and using the HTTPS
endpoint for communications.

11.	 In the WPF project, open MainWindow.xaml and change the <Grid> to a
<StackPanel>. Add a button and a textbox to the StackPanel as shown in
the following screenshot:

.NET Framework 4.5 Development

106

12.	 Navigate to the code behind file, MainWindow.xaml.cs, and add code for the
button click event handler so that it calls out to the WCF service, as follows:

13.	 In Solution Explorer, right-click the solution and select the Set StartUp
Projects option.

14.	 Choose Multiple startup projects and set Action to Start for both projects.
Click on OK to save the changes.

15.	 Press F5 to start debugging and, when the WPF application appears, click on the
Click! button to make the async call to the WCF service.

The text below the button should update to say You entered: 3, proving the call to the
service worked.

How it works...
As mentioned, the Add Service Reference dialog can generate Task-based proxy classes
that you can call from your code with an await keyword. This makes asynchronous calls to
services much easier to write, though you can still call the blocking, synchronous methods if
you really want to.

The generated code contains both the synchronous method call as well as the Task-based call
as shown in the following screenshot:

Chapter 4

107

WCF's svcutil can also be used to generate Task-based proxies if you prefer to use the
command-line tool instead of Visual Studio.

See Also
ff The Making your code asynchronous recipe Chapter 6, Asynchrony in .NET

Managing packages with NuGet
Microsoft's approach to Open Source software and Open Source projects in general has
softened over the years from the "open source is evil" stance it took at the turn of the century,
to one where open source is now valued, embraced, and recognized as an integral part of
the development ecosystem. Microsoft is now so committed to open source that they are
developing a number of frameworks in an open manner including the ASP.NET Web Stack
(http://aspnetwebstack.codeplex.com) and providing contributions for a number of
third-party open source projects such as jQuery and Node.js.

With the amount of open source now available and the acceptance of open source as a
normal part of development, developers needed an easy way to locate and find open source
packages that could be used in their own projects; much like the package managers of other
languages such as Ruby and Python. As a result Microsoft supported an open source project
to create a package manager for Visual Studio called the NuGet package manager. NuGet
allows developers to download packages of libraries that will install themselves into a project,
configure themselves, and then be ready for use by the developer. The package manager also
does the work of looking for new updates and applying those updates when they are available.

In this recipe you'll see how to use the NuGet package manager in Visual Studio 2012.

Getting ready
Create a new C# ASP.NET MVC 4 Web Application using the Internet Application project
template and give it the default name.

.NET Framework 4.5 Development

108

How to do it...
1.	 In Solution Explorer, right-click on the references node for the project and select

Manage NuGet Packages.

2.	 The Manage NuGet Packages dialog will appear. Ensure the Online group is selected
on the left side and then in the search box at the top-right enter coffeebun and wait
a moment for the results.

3.	 Click on the Install button to add the CoffeeBundler package to your project.

4.	 Wait for the installation dialog to complete and disappear. You should now see a tick
next to the CoffeeBundler package, indicating it has been installed.

5.	 Close the NuGet window and then expand the References node for the project in
Solution Explorer. You should see not only the CoffeeBundler assembly but also
assemblies for other packages that the bundler relies on in the reference list as
shown in the following screenshot:

Chapter 4

109

6.	 Open the NuGet window again by right-clicking on the References node and selecting
Manage NuGet Packages.

7.	 Over time the packages you have installed will become stale as the package owner
releases new and updated versions. In the NuGet package manager select the
Updates node on the left side of the dialog. Wait a moment to see if there are any
available updates.

8.	 In this case there are a number of packages that have updates. Select the
knockoutjs entry from the list and click on the Update button.

9.	 Wait for the installation dialog to process the update and then disappear.
A green tick will appear next to the item indicating the package is now
up-to-date. Close the dialog.

10.	 You should also update the jQuery libraries and any other packages that also have
updates. To save you time, instead of updating them one at a time NuGet offers the
ability to perform a bulk update.

From the menu select View | Other Windows | Package Manager Console.

.NET Framework 4.5 Development

110

11.	 In the console, enter the text update-package and press Enter:

12.	 NuGet will then locate and install updates for all packages automatically. Because
package installation in web projects often affects the Web.config file you may get
prompted to reload it a number of times. Each time you do, just click on Yes.

The results of the update will be shown in the Package Manager Console, as shown
in the following screenshot:

13.	 Compile and run the application to check that everything still works as expected.

How it works...
NuGet uses a central, well-known location for storing packages located at http//nuget.
org. Anyone can create and upload packages to this site and the site features a gallery
allowing you to search and browse all available packages.

For many people the NuGet site is the first port of call when looking for a package to help
them in their development efforts.

There's more…
A lot of organizations build their own utilities, frameworks, and helpers for use in development
and share them across various projects.

Chapter 4

111

Managing these dependencies can become difficult over time. Fortunately NuGet can be
configured to use local locations for packages, either using a filesystem location or your own
internal NuGet server.

If you wish to host your own NuGet server, instructions can be found at
http://github.com/NuGet/NuGetGallery/wiki/Hosting-
the-NuGet-Gallery-Locally-in-IIS.

To configure Visual Studio to use a local location for NuGet packages, go to Tools | Options
| Package Manager | Package Sources and add entries by filling in the Name and Source
fields and then clicking on the Add button.

The following screenshot shows two extra entries, one configured to point to a local NuGet
server and the other pointing to a network share:

Unit testing .NET applications
When it comes to unit testing, Visual Studio has always been tightly tied to the MSTest
framework. The inclusion of a unit test framework inside Visual Studio has been excellent. It
has encouraged developers to improve their quality by writing tests to prove code functions as
expected. On the flip side, many developers regard MSTest as an inferior unit test framework
when compared with other test frameworks such as NUnit, XUnit, MbUnit, et al. The problem
stems from the fact that MSTest does so much more than unit testing and as a result suffers
from poor speed and bloat. Additionally, its assertion methods are fragmented across multiple
classes and it has a cumbersome approach to data-driven tests and expected exceptions.
MSTest has also been tied to the release cycle of Visual Studio, so updates have been very
slow and it lags behind when compared to the other test frameworks.

.NET Framework 4.5 Development

112

Microsoft is ending the tight coupling between Visual Studio and MSTest by making the unit
test framework pluggable. MSTest is still provided out of the box but now developers can
choose the framework that they like most, on the proviso that their choice of framework
implements a Visual Studio adapter.

Microsoft is also removing Test Impact Analysis from Visual Studio (it's still there in Microsoft
Test Manager) and replacing it with a Continuous Testing style feature instead. Continuous
Testing is an approach that has been gaining popularity because of the incredibly rapid
feedback cycle it gives developers. The idea is that each time a change is saved in the
source files, the unit tests are run to see if anything has broken. This works well with dynamic
languages such as Ruby, however as .NET is a static language, this approach is not so simple.
In Visual Studio 2012, instead of having all tests run whenever the source is saved, you can
have them run automatically each time the code is compiled.

In this recipe, you will use the XUnit testing framework in a test first manner to implement a
very simple calculator and you'll see how the Continuous Testing feature works. The important
part of this recipe isn't so much the code you will write but in seeing how Visual Studio 2012
can change your development practices when it comes to unit testing. Let's get to it!

Getting ready
Install the xUnit.net runner for Visual Studio 2012 Visual Studio extension. You can do so via
the Tools | Extensions and Updates menu option (search for xUnit) or download the .vsix
file from the Visual Studio gallery and install it manually (http://visualstudiogallery.
msdn.microsoft.com/463c5987-f82b-46c8-a97e-b1cde42b9099).

In Visual Studio 2012, create a new C# Class Library and name it UnitTests.

How to do it...
1.	 Use NuGet to add the xUnit.net package to your project. See the Managing

packages with NuGet recipe in this chapter for how to do this.

2.	 Rename Class1.cs to CalculatorOperations.cs. You will be prompted to
rename all references to Class1. Click on Yes so that Visual Studio will rename
Class1 to CalculatorOperations in the code itself.

3.	 In the CalculatorOperations class file add the following test method. Don't worry
that the code won't compile yet. In a test-driven approach you write the tests first to
work out how your code should behave before you implement anything.

http://visualstudiogallery.msdn.microsoft.com/463c5987-f82b-46c8-a97e-b1cde42b9099
http://visualstudiogallery.msdn.microsoft.com/463c5987-f82b-46c8-a97e-b1cde42b9099

Chapter 4

113

4.	 You now need to add a Calculator class, but you probably don't want it in your
test assembly. Add a new C# class library to the Unit Test solution and call it
CalculationEngine.

5.	 Rename Class1.cs to Calculator.cs and, when prompted, allow Visual Studio
to rename Class1 to Calculator.

6.	 Switch back to the UnitTests project and add a project reference to the
Calculator project.

7.	 Place the cursor on the Calculator() constructor call in the unit test and either
mouse over and click the actions drop down or press Ctrl+. to show the available
actions. Select the using CalculationEngine; option to add the required using
statement to your test code.

8.	 Now place the cursor on the Add() method on the next line and bring up the
available tasks. Again, do this either by hovering over the code with the mouse
and then clicking the options drop down when it appears or by pressing Ctrl+.
and selecting the only available option to generate the method stub.

9.	 Open the Test Explorer via the Test | Windows | Test Explorer menu option.

10.	 Select the Run All option in the Test Explorer to compile the code and run the tests
in the project for the first time.

.NET Framework 4.5 Development

114

11.	 The unit test should fail at this point because the method stub you generated for the
Add method simply throws a NotImplementedException.

12.	 Turn on the continuous testing option by either selecting Test | Test Settings | Run
Tests After Build from the menu or clicking the icon in the top left of the
Test Explorer.

13.	 Switch to the Calculator class file and implement the Add() method by using the
code shown in the following screenshot:

14.	 Press Ctrl+Shift+B to rebuild the solution. Right-clicking the solution and selecting
Build All will have the same result.

15.	 Watch the Test Explorer. It will automatically rerun the unit tests without you having
to do anything. Fantastic!

Chapter 4

115

16.	 To wrap things up, check your code coverage. Click on the Run drop-down box in the
Test Explorer and select Analyze Code Coverage.

17.	 The solution will be recompiled with coverage enabled, the unit tests will be run
again, and the results then displayed in the Code Coverage Results window as
shown in the following screenshot:

How it works...
Visual Studio no longer needs a special project type for unit tests. The test adapters take care
of the discoverability aspects for you. The adapter driven approach has also allowed Microsoft
to create a unit test optimized version of MSTest that is fast and light and can be used in
standard class libraries without a problem. There is no need for special unit test projects
any more, or any of the .vsmdi and .testsettings files that you're used to.

You can also mix and match your unit test frameworks. It is entirely valid to have MSTest,
xUnit, and NUnit tests in one assembly. For example, you may have a suite of older tests in
one framework and you want to transition to a new framework without reworking all those old
tests. Now you can, without any problem at all.

Out of the box, Visual Studio 2012 only supports the MSTest framework, however adapters
are available in the Visual Studio Gallery for the major test frameworks, and the Chutzpah
test adapter adds support for both the qUnit and Jasmine JavaScript unit test frameworks.

As mentioned, MSTest no longer requires a TestSettings file for unit test projects.
If you add a new Unit Test project to your solution you simply get a class library project
with a reference already added to Microsoft.VisualStudio.QualityTools.
UnitTestFramework.

TestSettings files can still be used with MSTest unit test
projects, however if they are included, MSTest reverts to Visual
Studio 2010 compatibility mode and you will have much slower
execution of unit tests.

.NET Framework 4.5 Development

116

There's more…
The changes in the test runner are fairly dramatic and with it come a number of other changes
you should be aware of.

Can I restrict the unit tests that automatically execute?
In many projects it is common to have unit tests in one test project and integration tests in a
second project. Unit tests are considered to be those tests that execute entirely in memory
and have no interactions with external systems such as the network, filesystem, screen, or
database. Integration tests are those tests that interact with external systems.

If you want to restrict the tests that run so that only unit tests run, and slower integration tests
are excluded, you will need to use the Test Explorer filter to limit the tests to run. If you have
your unit and integration tests in separate assemblies then the FullName filter is likely to be
the filter that will help you the most.

Asynchronous tests
In .NET 4.5, MSTest now supports asynchronous tests that make use of the await keyword.

You can see this in the following code where the method signature is no longer a public
void method, but rather an async Task:

The asynchronous test ensures that the test runner will wait for the test to end before starting
the next test. It does not mean that, multiple tests will be run in parallel, just that you can test
methods that use async and await.

See also
ff The Managing packages with NuGet recipe

Chapter 4

117

Sharing class libraries across runtimes
There are a number of managed runtimes and profiles for .NET development. These include
the normal .NET Framework, Silverlight, XNA, Windows Phone 7, and now the WinRT profile for
Windows 8.

If you have to write code that can be shared across more than one of these runtimes it
usually involves either the use of copy and paste development (never a good idea!) or
multiple versions of the same project and the use of linked files. The linked files approach is
cumbersome and error prone and often a pain to work with when Visual Studio is telling you it
can't open a file as it is already open in another project.

The solution to this is to use Portable Class Libraries. The idea here is that you can build
a class library that works across all desired runtimes by ensuring that only code that works
on all runtimes is used. Further, the compiler only builds the project once, regardless of the
number of runtimes supported, making the overall solution faster to build.

Let's look at a quick example of how a Silverlight application might talk to a .NET application
using this approach. To keep the recipe focused we're only going to look at the connection
between the two runtimes, not building a full application.

Getting ready
Start Visual Studio 2012 and you're ready to go.

How to do it...
1.	 Create a Visual Basic | Silverlight | Silverlight Class Library project giving it the

default name. When you are prompted for the Silverlight version to use, choose
Silverlight 5.

2.	 Right-click on the solution and add a Visual Basic | Class Library project, again
giving it the default name.

3.	 Right-click on the solution one more time and add a Visual Basic | Portable Class
Library project, once again giving it the default name.

.NET Framework 4.5 Development

118

4.	 When you are prompted for the Target Frameworks, change the selections so that
only .NET Framework 4.5 and Silverlight 4 and higher are selected and then click
on the OK button.

5.	 Right-click on the Silverlight project in Solution Explorer and select Add Reference.
In the Reference Manager dialog, navigate to the Solution | Projects node and
select the checkbox next to PortableClassLibrary1. Click on OK to add the reference
to the project.

6.	 In the same way, add a reference to PortableClassLibrary1 to the .NET class library
project. You will get a warning about referencing a project using a different .NET
runtime and that you will need to compile the project for IntelliSense to work correctly.
Click on OK to dismiss the warning.

Chapter 4

119

7.	 Navigate to Class1.vb in the PortableClassLibrary1 project and add a
method to Class1 as shown in the following screenshot:

8.	 Compile the solution.

9.	 In Class1.vb of ClassLibrary1 check that you can make a call to the portable
library using the code shown in the following screenshot:

10.	 Navigate to Class1.vb in the Silverlight project and add the same code that you
used in step 9 to check that a call to the portable library can be made from Silverlight
as well.

11.	 Compile the solution to confirm that there are no compiler errors and prove that you
can make calls from both .NET Framework 4.5 code and Silverlight code to a single
shared, portable library.

How it works...
The portable libraries themselves are just standard .NET class libraries with restrictions on
the framework calls that can be made from within them. The set of calls that can be made
is determined by the methods that are supported across all target runtimes selected in the
project's properties.

When you write your portable libraries avoid adding references to other libraries. Try and design
them as standalone libraries. Since most people tend to use portable library classes for WCF
contracts, data transfer objects, or calculation libraries, this is unlikely to be a problem.

Detecting duplicate code
Copy and paste development is generally regarded as a bad practice because bug fixes or
enhancements in one area of code have to be repeated in all the other copies of the same
code. Not only is this time consuming and tedious, but in large code bases it's very easy to
miss a change, leading to bugs and lower overall quality.

.NET Framework 4.5 Development

120

In Visual Studio 2012, Microsoft has provided a way to detect duplicate code so that you can
take remedial action to clean it up. Fantastic! Let's see how this is done.

Getting ready
Start Visual Studio 2012 and you're ready to go.

How to do it...
1.	 Create a new C# Class Library project and name it OriginalLibrary.

2.	 Rename Class1.cs to OriginalClass.cs and allow Visual Studio to rename the
class itself when prompted.

3.	 Add a second C# Class Library to the solution giving it the name DuplicateLibrary.

4.	 Rename Class1.cs to DuplicateClass.cs and, as in step 2, allow Visual Studio
to rename the class itself when prompted.

5.	 In OriginalClass, add the following code:

6.	 Copy and paste the code you just added into DuplicateClass, renaming the
method to DuplicatedCheckDigit.

7.	 Rename the parameters in DuplicatedCheckDigit to p1 and p2.

Chapter 4

121

8.	 Rename i to loop and counter to outString. Your duplicated method should now
look like the following screenshot:

9.	 From the Visual Studio menu, select Analyze | Analyze Solution for Code Clones.
The Code Clone Analysis Results window will be displayed and will show you where
the duplication exists.

10.	 Right-click on the Weak Match 1 result and select Compare, as shown in the
following screenshot:

.NET Framework 4.5 Development

122

11.	 The two sections of duplicated code are shown in Visual Studio's new diff viewer and
you can decide what remedial action to take from there.

How it works...
You made enough changes in the duplicate method that the code would have been hard to
find if you were just using Find in Files and looking for variable names or a single line of code.
The clone detection algorithm in Visual Studio ignores differences in variable names and
instead looks at the structure of the code itself. It also limits searches to duplicates that are a
minimum of 10 statements long to prevent detection taking a very long time.

If you do want to search for smaller or specific sections of code you can highlight code in the
editor, right-click it and select Find Matching Clones in Solution.

Chapter 4

123

There's more…
There are a number of items that get ignored by the detection algorithm to help improve the
speed of detection and to exclude files that you are unlikely to be interested in.

Type declarations are ignored. Two classes with the same properties are not considered to be
clones, nor are classes with the same method signatures. Only the code within the methods
and properties is examined.

The *.designer.cs and *.designer.vb files are automatically excluded, as is code
within any InitializeComponent methods.

You can add a .codeclonesettings file to your project to exclude certain paths or file types
from the comparison. For example, if you are using T4 code generation you may want to place
all the generated code in a subfolder and then exclude that folder from the clone detection
engine by adding an entry for it in the settings file.

5
Debugging Your .NET

Application

In this chapter, we will cover:

ff Debugging on remote machines and tablets

ff Debugging code in production

ff Debugging parallel code

ff Visualizing concurrency

Introduction
It's an unfortunate fact of life, but as developers we occasionally make mistakes and
introduce bugs into our code. For some of us it's more than occasionally but we won't talk
about that now!

Of course, finding these bugs is easy enough, right? You just run your application and wait for
it to blow up. Then it's obvious where the bug is. No? Well then, surely you can run your unit
tests and they'll pinpoint the exact line of code that's broken? Hmm, well maybe that's true,
but not always. Unfortunately there are a whole range of bugs and problems that are just plain
difficult to find without actually debugging your code.

Multi-threaded code and asynchronous code are probably the two most difficult areas for
most developers to work with and also the hardest to debug when you have a problem like a
race condition. A race condition occurs when multiple threads perform an operation at the
same time and the order in which they execute makes a difference to how the software runs
or the output generated. Race conditions often result in deadlocks, incorrect data being used
in other calculations and random, unrepeatable crashes.

Debugging Your .NET Application

126

The other painful area to debug is code running on other machines, including code in
production. Hooking up a remote debugger in previous versions of Visual Studio has been less
than simple, and as for debugging code in production the usual response is "are you kidding?"

In this chapter, we're going to see how Visual Studio 2012 improves the debugging experience
for these scenarios, and how it can help you diagnose the root cause of a problem faster so
you can fix it properly and not just patch over the symptoms.

Debugging on remote machines and tablets
For most developers, debugging an application means setting a breakpoint with F9 on a line
of code, and then pressing F5 (or Debug | Start Debugging) and stepping into and over
statements with F10 and F11.

The experience is great when you're debugging code on your local machine, but what if
you need to debug code running on a different machine and Visual Studio isn't installed
on that machine?

Even though many developers aren't aware of the functionality, debugging code on remote
machines with Visual Studio isn't anything new. It's just that until now the debugging
experience has been kind of sucky and limited. In Visual Studio 2012 the experience is much
improved and combined with speed improvements and an increasing range of devices that
applications need to run on, remote debugging is something every developer should know
how to do.

This recipe shows you how to configure a machine for remote debugging and then debug
an application you have deployed to that machine.

Getting ready
For this recipe you will need a second machine to act as your remote machine. It doesn't
matter if it's a virtual or physical machine as long as your development machine and the
remote machine can communicate over a network connection.

The recipe assumes that the remote machine doesn't have Visual Studio 2012 installed. The
remote machine will need Remote Tools for Visual Studio 2012 installed before starting. If you
don't have the Remote Tools already installed, download them from the Microsoft website at
http://go.microsoft.com/fwlink/?linkid=219549 and then install them.

Since you're going to be debugging a .NET application you should also ensure that the .NET
Framework 4.5 runtime is installed on the remote machine.

Chapter 5

127

How to do it...
1.	 Create a new C# console application using the default name.

2.	 Open the Program.cs file and fill in the body of the Main() method as shown in the
following screenshot:

3.	 Run the program locally by pressing F5. When the console window appears, press any
key and you should see a string of characters appear. Press any key again to close
the program.

4.	 It might not be Hello World, but it's certainly close! You should now check if it works
on the remote machine. On your remote machine, start the Remote Debugger
Configuration Wizard and ensure that the Run the "Visual Studio Remote
Debugger" service checkbox is deselected. Also ensure that the firewall configuration
is set as appropriate for your network and then complete the remaining steps of the
wizard by taking the default values.

5.	 Now that you have configured it, start the Remote Debugger on your
remote machine.

6.	 When the application appears you should see a message showing the machine
name and port number that the debugger is listening on. Take a note of the machine
name as you'll be using it later on. In the following screenshot the machine is named
WIN-2008R2 and it is running on port 4016:

Debugging Your .NET Application

128

7.	 For the smoothest development and debugging experience, the remote machine will
need to run the code from your development machine via a network share. Either add
a specific share to the bin\debug folder of your development machine or access
it via the inbuilt C$ share. For example, \\dev-machine\C$\Users\Richard\
Documents\Visual Studio 2012\Projects\ConsoleApplication1\bin\
debug (your location will vary).

Ensure that you can connect to your network share from the remote machine.

Code Access Security is not applied to .NET 4.0 applications by default, but
it is for .NET 2.0 applications. To debug a .NET 2.0 application on a remote
machine via a file share you need to make sure the share is a trusted
location. Use the caspol.exe utility in both the x86 and x64 versions of
the framework to modify the security settings of your machine. CasPol.
exe -m -pp off -ag 1.2 -url "file://\\server\share*"
FullTrust will set full trust permissions on a file share.

8.	 In Visual Studio 2012 on your development machine, open the project properties by
right-clicking the project in Solution Explorer and choosing Properties. Select the
Debug tab.

9.	 Change the Start Action to Start external program and enter the path to the
compiled application using the path that will be used by the remote machine
to start the application. For example, \\dev-machine\sharename\
ConsoleApplication1.exe.

10.	 In the Start Options check the Use remote machine checkbox and enter the name of
the remote machine. This is the machine name you noted in step 6. Your Debug tab
should now look similar to the following screenshot:

file:///\\richard-dev\C$\Users\Richard\Documents\Visual
file:///\\richard-dev\C$\Users\Richard\Documents\Visual
file:///\\dev-machine\C$\path\to\ConsoleApplication1\bin\Debug\ConsoleApplication1.exe
file:///\\dev-machine\C$\path\to\ConsoleApplication1\bin\Debug\ConsoleApplication1.exe

Chapter 5

129

11.	 On your development machine press F5 to start debugging. Assuming there are no
firewall issues and your permissions are ok, Visual Studio will communicate with the
remote machine and launch the application for you automatically.

Note that, depending on the accounts used on each machine, you may be prompted
for login credentials. If that happens, enter the details of the user running the
debugging monitor on the remote machine.

If you have a problem communicating with the remote machine check that
the firewall on the remote machine is allowing incoming connections. If it
isn't, you can either rerun the Remote Debugger Configuration Wizard to
confirm the firewall settings, or manually add a rule to allow a connection
on the port number the Remote Debugger is using (the port number is
shown in step 6).

12.	 The application is now waiting for you to press a key. Go back to your development
machine and set a breakpoint in the Main() method of Program.cs, somewhere
after the ReadKey() method. A good place would be where the outputBuilder
variable is initialized.

13.	 Switch back to the remote machine and press a key to continue program execution.

14.	 Switch back to the development machine. You should find that your breakpoint has
been hit and that the application is ready for you to continue debugging.

15.	 Step through the code in Visual Studio to get a feel of how quick the remote
debugging experience is and then continue execution down to the second Console.
ReadKey() statement. The easiest way to do this, rather than looping through the
for loop 26 times, is to right-click on the Console.ReadKey() statement and
select Run to Cursor.

16.	 You may notice that the output has dropped the 'a' at the start of the output string.
Is that a display problem or a bug in the code? You can check the string length to be
sure. Navigate to the Immediate Window and type ?output.Length to see how
long the output string is.

If the Immediate Window isn't visible you can display it by pressing
Ctrl+Alt+I or choosing Debug | Windows | Immediate from the menu.

Debugging Your .NET Application

130

17.	 You should see the value 25 displayed. Note that this value is not from a process
on the local machine, it is from the process running on your remote machine. To
verify this, select Debug | Attach to Process from the menu. In the Qualifier drop
down, select the remote machine. It will be suffixed by the port number the remote
debugger is listening on. When the Available Process list is populated you should see
ConsoleApplication1 is the only process on the remote machine that the debugger is
attached to.

18.	 Stop debugging by either pressing Shift+F5, clicking on the stop button in
the debugging toolbar, or choosing Debug | Stop Debugging from the menu.
This will also terminate the process on the remote machine.

19.	 Fix the bug in the for loop by altering the loop variable to start from 0 instead of 1.
Your for loop should now look like the code shown in the following screenshot:

20.	 Without changing any other setting, press F5 to start debugging again. Visual Studio
will compile the application and launch it on your remote machine for you.

21.	 Run through the application again to verify that the output is now correct.

Chapter 5

131

How it works...
The main thing to keep in mind when using the remote debugger is that you are looking at
data from the remote machine. The debug experience can feel so smooth and so normal that
it's easy at times to forget that a path name for a file, for example, is a path relative to the
remote machine, not your local machine!

Normally the debugger runs using Windows authentication, however it can be switched over to
the "No Authentication" mode. The No Authentication mode enables debugging scenarios for
managed and native debugging across versions of Windows that were previously not possible.
The danger of this approach is that it opens up a security hole, including allowing attackers to
launch any application they choose. Do not run the remote debugger on production machines
in this way. The remote debugger is a developer tool and should only be run when developers
require it.

There's more…
If you don't want to install the remote debugger on the remote machine, you can run it directly
from a file share, however you won't be able to debug Windows Store apps in Windows 8 or
debug JavaScript.

Another thing to note is that when you are debugging a Windows Store app on Windows 8 you
will not need to change the Start Action of the project to start an external program. Leaving
it set to Start project and then ticking the checkbox and setting the value of the Use remote
machine field will tell Visual Studio that the project should be packaged and deployed to the
remote machine before debugging commences.

Debugging an ASP.NET process
To debug ASP.NET websites running under IIS you do not need to make any changes
to the project properties to configure the remote debugger. In fact, you can't. The options
aren't available.

For remote debugging you will either need to run the remote debugger as a service or run the
application as an administrator. On your development machine you then use the Attach to
Process dialog to connect to the ASP.NET worker process and begin the debugging session.

To configure the remote debugger as a service, rerun the Remote Debugger Configuration
Wizard and check the option to run it as a service.

Much like you did in this recipe, for the best debugging experience you should configure
the IIS application on the remote machine to run from a network share, pointing to the web
application's source folder on your development machine.

Debugging Your .NET Application

132

Once the web application is running in Visual Studio, select the Debug | Attach to Process
menu option. The Qualifier drop down is the name of the debugger instance you are
connected to and this should be the remote machine. If you are unsure of what the machine
name is, you can use the Find button to locate available debuggers.

Once you are connected to the correct machine, locate the ASP.NET worker process (w3wp)
from the list, select Attach, and then close the window. You are now connected to the remote
debugger for the web application and can set breakpoints in your pages and step through
code just as you would expect. Perfect!

I don't want to use a file share
The suggestion to run the programs on the remote machine via a file share is just a tip to
make the development process simpler and to eliminate the time it takes to redeploy the
application you are trying to debug each time you make a change.

If you don't want to run the application from a file share then you will need to deploy the
application to the remote machine and use the Attach to Process dialog to connect the
debugging session each time.

I'm missing symbols
When debugging remote processes you may find that after you attach to a process and set a
breakpoint it will look similar to the following screenshot:

This occurs because Visual Studio either can't load the symbol information (the PDB file) of
the executable file or the version that is running on the remote machine is not the same as
the one on your development machine (you may have recompiled the code since you last
deployed, for example).

Never fear! There's a way to fix this. Follow the given steps:

1.	 Go to the Debug | Windows | Modules menu entry to display the Modules window.

Chapter 5

133

2.	 Right-click on the entry with the missing symbols and, from the options, choose Load
Symbols From | Symbol Path.

3.	 From the file selection dialog box, locate the correct symbol file (PDB file) to load.
Once you do this, the debug breakpoints will change to show filled in red dots, as
expected, and the Modules window will indicate that symbols are loaded.

Debugging code in production
If you're like most people there's nothing more exciting than having a fully-tested application
that goes to production and then starts randomly misbehaving for no apparent reason. It's a
great way to get the adrenalin going as you rapidly try to figure out what's going wrong from
bug reports such as "it just stopped working" and "nothing updated but I don't know why".
Wait, what, you don't like that? You're not one of those people? Oh, I see.

Ok, so let's say this does happen to you and your application has random crashes, hangs,
misbehaves, and has other bugs. Diagnosing these problems in a production environment can
be rather tricky, especially if you are in an environment where you have no production access.
This is where IntelliTrace can help.

IntelliTrace was introduced in Visual Studio 2010 as a way for developers and testers to
record what they'd just done leading up to a bug and then step back through those actions to
make diagnosis of the bug simpler. In Visual Studio 2012 this feature has been extended so
that system administrators can capture IntelliTrace information from live, running production
systems and send the logs to developers for diagnosis.

This recipe will show you how to gather information from a live application running in a
production environment and then diagnose and debug problems.

Getting ready
You will need a machine to use as your "production" machine. It doesn't have to be a genuine
production machine, just a second machine without Visual Studio installed. A virtual machine
is perfectly acceptable.

Your nominated production machine will need to have .NET Framework 4.5, PowerShell and,
as you will be diagnosing a web application, Internet Information Server, installed on it.

If you are really tight for machines and can't even run a virtual machine
then you can use your development machine as your "production" server
for the purposes of this recipe.

Debugging Your .NET Application

134

How to do it...
1.	 On your development machine, create a new application with the default name by

selecting Visual Basic | ASP.NET Web Forms Application.

2.	 Open the default.aspx page and add a button to the bottom of the page. Give
it an ID of clicky, set the text attribute to Click Me!, and ensure that a button click
event is created as shown in the following screenshot:

3.	 In the code behind file, add code for the button's click event handler as shown in the
following screenshot:

4.	 Now when you run the application and click on the button, an exception will be
thrown whenever the current time has an even numbered second.

5.	 Deploy your web application to your production server. Confirm that it runs and that it
throws exceptions randomly when the button is clicked.

6.	 On your production server, create two folders, c:\IntelliTrace and
c:\IntelliTraceLogs. The first will hold the IntelliTrace executables
and the second will be where the captured data is placed.

7.	 Download the IntelliTrace Collector for Visual Studio from http://go.microsoft.
com/fwlink/?LinkId=245688. Run the executable and, when prompted for the
location to place the extracted files, enter C:\IntelliTrace.

8.	 Extract the contents of the IntelliTraceCollection.cab file by opening a
command prompt, changing directory to the C:\IntelliTrace folder, and then
typing the following command:
expand IntelliTraceCollection.cab -F:*.* .

http://go.microsoft.com/fwlink/?LinkId=245688

Chapter 5

135

9.	 You next need to import the IntelliTrace PowerShell module. Open an elevated
PowerShell prompt (that is, Run As Administrator), change the directory to
C:\IntelliTrace, and then enter the following command:
Import-Module
.\Microsoft.VisualStudio.IntelliTrace.PowerShell.dll

10.	 To verify that the module was imported correctly and to see the available
commandlets, use the following command:
Get-Command *intelli*

You should see the following output:

11.	 Before you start the IntelliTrace data collection you need to ensure that the web
server can write to the log location. In the production server, start IIS Manager,
navigate to your web application, and select Basic Settings. Make a note of the
name of the Application pool being used.

12.	 Navigate to the Application Pools node in IIS Manager and make a note of the
Identity (that is, the account name) used by the application pool your application
is running under; as identified in step 11.

13.	 Grant the account used by the application pool full access to the
c:\IntelliTraceLogs location. In Windows Explorer, right-click on the folder and
select Properties. Click on the Security tab. If the account is not listed in the Group or
User Names list, click on the Edit button and add the account used by the application
pool to the list. If you use the inbuilt ApplicationPoolIdentity then you will need to enter
the account as IIS APPPOOL\<Pool Name> as shown in the following screenshot:

Debugging Your .NET Application

136

14.	 Once the account for the application pool is added, ensure that the account has
write access to the c:\IntelliTraceLogs folder, then click on OK to close all
the dialogs.

15.	 Go back to the PowerShell prompt and start collecting IntelliTrace information by
entering the following command. Note that the first parameter is the name of the
application pool the site is running under and may vary for your web application.
Start-IntelliTraceCollection "DefaultAppPool" c:\IntelliTrace\
collection_plan.ASP.NET.trace.xml c:\IntelliTraceLogs

16.	 From your browser, navigate to your web application and click on the button until you
have seen both successful and unsuccessful button click events.

17.	 Once you have enough event information, stop the collection process by going back to
the production server, and in the PowerShell prompt enter the following command:
Stop-IntelliTraceCollection "DefaultAppPool"

An .iTrace file will now be present in the C:\IntelliTraceLogs folder
containing the IntelliTrace logging information that you recorded.

18.	 Now it's time to see what happened. Copy the .iTrace file from the
c:\IntelliTraceLog folder of your production server to a folder on
your local machine.

19.	 Double-click on the .iTrace file to open it in Visual Studio. Alternately, if Visual
Studio is already open, you can either press Ctrl+O or use the File | Open | File
menu option to load it. Once the file loads, you should be able to see a Web
Requests section that looks a little like the following screenshot:

Chapter 5

137

20.	 In the request list, find a request with a return code of 500, select it, and then click
on the Request Details button below the list, as shown in the following screenshot:

21.	 The details of the individual request are shown along with the actions that occurred
and any exceptions that were thrown:

22.	 Select the entry in the list where the exception is first thrown, as in the screenshot in
step 21, and click on the Start Debugging button.

Debugging Your .NET Application

138

23.	 The code will be displayed and the execution point will be positioned where the
exception was thrown:

24.	 You can then use the IntelliTrace debugging controls to move around the code and
diagnose what occurred by following the execution path and inspecting parameters.

How it works...
No recompilation of code was required for this to work. The application is untouched and the
website didn't need to be restarted. Collecting Intellitrace data is something that your systems
administrators can do on your behalf, safe in the knowledge that the application will be
unchanged, and that existing web requests will complete normally. This makes debugging
and diagnosing those tricky production problems a much more viable prospect.

There's more…
The IntelliTrace settings used in the recipe are the detailed trace settings. They will record
execution flow as well as events and will have some impact on production performance.
There is a second collection plan provided in the cab file, collection_plan.ASP.NET.
default.xml, that only records events and therefore has a minimal impact on performance.

Finding errors in large trace files
When there are many requests in the trace you can make it easier to find web requests
that have thrown exceptions by using filtering. For example, entering 500 in the Search box
and clicking on Filter would only show requests with a HTTP 500 return code or where 500
appears in the request URL.

Don't forget that IntelliTrace files can get very big, very quickly. Make sure that the location you
place them in has plenty of space if you want to capture data over a reasonable time period,
and more so if you have a busy production server. Logging to the system drive like we did in
the recipe is generally not recommended since filling your system drive will bring your server
to a grinding halt.

Chapter 5

139

Where are my variable values?
If you haven't used it before you might expect IntelliTrace to be equivalent to the normal
debugging experience. Unfortunately the performance impact of recording all the data
needed to simulate the full debugging experience makes this prohibitive.

By default, variable values are not recorded by IntelliTrace unless a breakpoint has been set
or an event occurs. In the recipe, if during the debugging session you hovered your mouse
over the second variable in the code window, you would see an indication that the data was
not collected, as shown in the following screenshot:

If you wanted to capture that information you could configure IntelliTrace to record tracing
information and add trace statements for your code, or you could write custom IntelliTrace
events (outside the scope of this book) and add them to the IntelliTrace configuration. In
either case it would require recompiling and redeploying code to production. So there is an
assumption that you know the level of trace information you will need ahead of time.

Debugging parallel code
With the prevalence of multi-core CPU's we are seeing more and more applications taking
advantage of parallel processing to improve performance.

.NET Framework 4.0 added a number of features such as Task Parallel Library (TPL) and
Parallel LINQ (PLINQ) to make developing applications that take advantage of multi-core
CPUs much simpler to write.

While the debugging experience for threaded applications in Visual Studio 2010 was
good, it gets even better with Visual Studio 2012, and this recipe will show you how to
use these improvements.

Getting ready
Start Visual Studio 2012 and create a new C# console application. For this recipe call the
application ParallelDebugging.

Debugging Your .NET Application

140

How to do it...
1.	 Use the following code to populate the body of Program.cs. It's a pretty simple

program that starts a parallel for loop which, in turn, calls a method that performs
meaningless calculations intended to keep the CPU busy.

2.	 Press F5 to run the program and after a second or two break into the debugger either
by pressing the pause button in Visual Studio or by pressing Ctrl+Alt+Break.

3.	 You will most likely break inside SlowMethod(). When you do, you should be able to
see the current value of the variable i by hovering over the variable name as shown
in the following screenshot:

4.	 This is standard behavior when debugging however you are only seeing the value of
i for a single thread. What about the value of i on all the other threads? From the
menu, select Debug | Windows | Threads and you will see all the threads in the
application, including the threads the parallel for loop has created.

Chapter 5

141

5.	 Right-click on a different thread from the one you are currently on and select Switch
To Thread from the context menu. Now look at the values of i, loop, and total and
you will see they are different.

6.	 This is useful but still fairly cumbersome if you want to see the value of i across
all threads. For a more holistic view, from the menu, choose Debug | Windows |
Parallel Watch | Parallel Watch 1. You will see all the current threads listed and an
area in the header of the last column for adding watch expressions. Any expression
entered will be evaluated across all threads for you automatically.

Add watch expressions for i and 100000-loop as shown in the following screenshot
so you can see how this works:

Debugging Your .NET Application

142

7.	 Stop debugging. In Visual Studio, add a second console application to the solution
named Parallel2. In Program.cs, use the following code for the body of the file:

8.	 Right-click on the solution in Solution Explorer and in the context menu select Set
Startup Projects. Select Multiple startup projects and ensure the Action value for
both console applications is Start.

9.	 Click on OK to save the changes and then press F5 to start debugging.

10.	 Wait for a short period of time and then break into the debugger using the same
process as explained in step 3.

11.	 From the menu, select Debug | Windows | Parallel Tasks. You will see now that
you have multiple processes, each with multiple tasks. You can also see what thread
each task is running on, as shown in the following screenshot:

Chapter 5

143

12.	 From the menu, choose Debug | Windows | Parallel Stacks. This view was added
in Visual Studio 2010, and in Visual Studio 2012 it was extended to show stacks
for multiple processes. As can be seen in the following screenshot, you now have
two processes being displayed, each with a main thread and the spawned threads
created by the parallel for loops of each process.

How it works…
Apart from the debugging improvements themselves, Microsoft has worked hard on the
Task Parallel Library, PLINQ, and other multi-threading related framework features and
gained some serious performance improvements for .NET 4.5. Since .NET 4.5 is an in-place
replacement of the .NET 4.0 runtime it means that any of your .NET 4.0 code that uses these
libraries will automatically benefit from the performance improvements without you making
any recompilation or code changes. Free speed is a good thing!

See also
ff The Visualizing concurrency recipe

Debugging Your .NET Application

144

Visualizing concurrency
The Concurrency Visualizer is another tool that was added in Visual Studio 2010 to assist
with multi-threaded code and, just like the other features of Visual Studio related to threading
in Visual Studio 2012, it too has been the subject of a number of improvements.

In this recipe, we'll take a look at these improvements and see how you can better understand
what is happening inside your application when it runs.

Getting ready
Create a new C# console application named Concurrency.

How to do it...
1.	 Open the Program.cs file and add the following statements to the using

statements at the top of the file:

2.	 In the body of Program.cs add the following code. It's fairly straightforward. You
simply build up a list of tasks you want to run and then you execute them. Each task
then calls SpinWait on the thread for a period of time. It's much the same as a
Thread.Sleep method but, instead of the thread yielding back to the operating
systems task scheduler, it keeps the CPU busy.

3.	 Next add a custom event source as shown in the following screenshot. It will be called
whenever a new task is created in the main program loop.

Chapter 5

145

4.	 Launch the Concurrency Visualizer, either by pressing the keyboard shortcut of
Alt+Shift+F5, or from the menu by selecting Analyze | Concurrency Visualizer |
Start With Current Project.

For the purpose of the recipe, if you are prompted to configure a symbol
cache or you see a warning about running without executive paging on
an x64 machine you can select No in each case.
If you are prompted for elevation then select Yes since the collection
analyzer requires administrative privileges.

5.	 When the process completes and the data collection ends you will see a window like
the following screenshot:

Debugging Your .NET Application

146

6.	 At the very top of the window is an overview area with drag handles that you can use
to limit the amount of data displayed. Move the red drag handles toward each other
so that the selected area contains the high activity area of the trace file.

7.	 Navigate to the Threads view by clicking on the button just under the overview area.
You will be shown what has been happening in each thread, but you can also see that
your custom event isn't displaying yet. It's high time you sorted that out.

8.	 Go to the Analyzer | Concurrency Visualizer | Advanced Settings menu entry and
select the Markers tab.

Chapter 5

147

9.	 Click on the green plus icon to add a new marker. Enter RecordAnEvent as the
name of the marker and in the Provider GUID field enter the GUID you used in the
MyEventSource Event attribute. The following screenshot shows how this should
look. Click on OK to close the dialogs.

To make this step a little easier, copy the GUID from the code and
paste it into the dialog. It'll help prevent errors when entering the
GUID.

10.	 Repeat step 4 to reanalyze the application and collect updated results, including
your newly-added event marker.

11.	 When the Concurrency Visualizer opens, switch to the Threads view as
before. You should be able to find the custom event information as shown
in the following screenshot:

Debugging Your .NET Application

148

How it works...
The Concurrency Visualizer exists to help you understand what the CPU is doing when your
application runs and where performance issues may be originating from.

The ability to add your own custom markers is very useful when you want to tie events
specific to your application to the visualizer. Apart from custom event data the visualizer also
understands the events from the Task Parallel Library, PLINQ, synchronized data structures,
and more. This information gives you great insight into your code and will hopefully help you
isolate where performance bottlenecks and bugs might be originating from.

See also
ff The Debugging parallel code recipe

6
Asynchrony in .NET

In this chapter, we will cover:

ff Making your code asynchronous

ff Asynchrony and Windows Runtime

ff Asynchrony and web applications

ff Actors and the TPL Dataflow Library

Introduction
Microsoft realized that, while most developers understand the benefits of asynchronous
code and the improvements it can bring about in their applications, the programming models
involved in asynchrony were fairly cumbersome, verbose and in some cases quite difficult to
get right. As a result most developers ignored asynchrony unless circumstances forced it upon
them. The extra complexity, effort, time, chance for bugs, and difficulty in debugging meant
that it simply wasn't worth it for most developers.

To ensure reading and writing asynchronous code is no longer restricted to only the
superhuman amongst us, Visual Studio 2012 and .NET 4.5 introduced the async and await
keywords for both the C# and Visual Basic languages. Keywords make asynchronous code as
easy to read, write, and debug as normal synchronous code.

As you saw in Chapter 5, Debugging Your .NET Application, the debugging experience is
greatly improved in multi-threaded asynchronous code, and now with .NET 4.5 the language
support is present to make the development of asynchronous code so easy that there is no
excuse for not using it.

In this chapter, you'll be looking specifically at the async and await keywords and seeing how
Visual Studio 2012 supports them.

Asynchrony in .NET

150

Making your code asynchronous
So you've got yourself an application that might be lacking in the performance department.
If you're honest, it's probably horribly slow, and yet when you look at the performance counters
on the machine it doesn't seem to be doing all that much. What are the odds that your code
is doing a slow operation and blocking the execution thread, preventing other code from
executing? Pretty high, huh?

It gets even worse in web applications that come under heavy load. Every request thread that
gets blocked is a point where other requests can get queued, and before too long you've got
yourself a server that is throwing 503 Service Unavailable errors.

Time to take that synchronous code, stick an "a" on the front of it and make your system start
to sing.

Just remember that before you make all of your code asynchronous, you should understand
where it blocks and where it doesn't. The overhead of threading can actually make your
application run slower if you aren't careful. Now with that in mind, let's go and make some
asynchronous code.

Getting ready
You will need an Internet connection for this recipe to work since you load data from various
RSS feeds and display it.

Ensure you have a connection, then simply start Visual Studio 2012 and you're ready to go.

How to do it...
Perform the following steps:

1.	 Create a C# Console Application named FeedReader. This application will read
the feeds from a number of sites and display them on the console. At the end of
the display, the total time required for the feeds to be fetched and displayed will
be shown.

2.	 In the program, classes from a number of different namespaces will be used.
To save some time, add the following code to the using statements at the top
of Program.cs:

Chapter 6

151

3.	 Before you implement the main method, you need to create some supporting
methods. Add a ReadFeed() private method, as shown after the Main() method.
It creates a web client to read an RSS feed with the cache setting turned off. This will
ensure that we always pull data from the Internet and not a local cached copy.

4.	 Add a PublishedDate() method below the ReadFeed() method. It will convert
dates in the feed, that System.DateTime doesn't handle, into dates that can
be parsed.

5.	 Now move back into the Main() method and create a variable for the list of feeds to
read from.

Asynchrony in .NET

152

6.	 Next create a Stopwatch so that you can start timing how long the execution takes,
and then add the code to load the data from the feeds.

7.	 You need to parse the feed so you can extract something to show on screen. Add the
following code in the Main() method, to do so:

8.	 Now, tie a bow around it and finish the program. Complete the Main() method by
adding the following code to display an item from each feed on the console and show
the total time it took to process all feeds:

9.	 Compile the program and check that it runs. Don't panic if the console takes a little
while to show some text, you've got some slow code running here. When it does
eventually complete you should see output similar to the following screenshot:

Chapter 6

153

10.	 Ok, so it's not the fastest code in the world. Time to introduce the await and async
keywords and see if you can't speed this thing up.

First, locate the ReadFeed() method and change the return type from string
to Task<string>.

11.	 You will then need to return a Task<string> object from the method,
but you can't just cast the contents variable to that type. Fortunately, the
WebClient class includes a task based version of DownloadString called
DownloadStringTaskAsync that returns a Task<string>. Perfect for your
needs. Change the code to use client.DownloadStringTaskAsync(url).

12.	 Navigate back up to the Main() method and you will see a problem with the
Parse() method in the LINQ statement. The root cause is that the feeds variable
is now an array of the Task<string> objects, and not string objects.

Asynchrony in .NET

154

13.	 Change the code where feeds is assigned to wrap the LINQ statement in a Task.
WhenAll() call instead of using .ToArray(). The Task.WhenAll method creates
a task that waits until all of the inner tasks returned by the enclosed LINQ statement
are complete. The await keyword tells the compiler that the task should be executed
asynchronously and the result assigned to the feeds variable.

14.	 There is still a problem. The compiler is now complaining about the await keyword
not being valid. Any method where the await keyword is used must have the async
keyword in its declaration. Go to the declaration of the Main() method and add the
async keyword as shown in the following screenshot:

15.	 Compile the application. You will get an error indicating the Main method can't be
made asynchronous as it is the program entry point.

16.	 This is easy enough to work around. Simply rename the Main() method to
ProcessFeedsAsync() and insert a new Main() method above it, using the code
shown in the following screenshot. Also, remove the ReadKey() method from the
end of the ProcessFeedsAsync() method so that you are not prompted for user
input twice.

Chapter 6

155

17.	 Compile and run the program. You should see output somewhat similar to the
following screenshot and the elapsed time should be shorter than before:

How it works...
As you've seen, Visual Studio offers enough warnings and errors through IntelliSense to make
conversion of synchronous code to asynchronous reasonably straightforward, as long as you
make changes in small, incremental steps. Large scale changes of code, regardless of what
those changes may be, are always difficult and error prone, especially if you lack unit tests or
other mechanisms to verify your changes haven't broken any functionality.

The DownloadStringTaskAsync() method shows off an important convention to be aware
of in the .NET 4.5 Framework design. There is a naming convention to help you to locate the
asynchronous versions of methods, where methods that are asynchronous all have an "Async"
suffix on their names. In situations where an asynchronous method exists from previous
framework versions the newer, task-based, asynchronous methods are named with the
"TaskAsync" suffix instead.

In step 16, the ReadKey() method was added to stop the main method from completing
immediately and terminating the program before any output was returned. In the console
window you can see that the starting and finishing messages are displayed before any of
the feed details appear. This occurs because the ProcessFeedsAsync method was being
executed asynchronously on a separate thread, while the Main() method was still being
executed on the main application thread. This is exactly what we would expect from
non-blocking, asynchronous code.

Asynchrony in .NET

156

There's more…
It's possible to overdo it. Every piece of asynchronous code comes with a certain amount of
overhead. There is a CPU cost to context switching and a higher memory footprint needed for
maintaining memory state for each thread, and if you have too many threads you can actually
reduce the performance of your application.

The design guideline for the Windows Runtime libraries in Windows 8 was that any method
that was likely to take more than 50 ms to complete was to be made asynchronous; there was
a minimum duration used as a way of determining when it made sense to go asynchronous.
50 ms is probably a good final target for your methods as well, but before you go and improve
all the methods in your application, start by determining which of your current methods are
the slowest. These should be what you target first. Start by improving only methods that take
more than 500 ms to complete and resolve those first, before targeting the faster methods.

Whenever determining the appropriate balance between synchronous and asynchronous
code, you should be doing performance and load testing on your application to determine
what the current performance profile is, and what effect your changes will have on it. Because
each and every application is different, finding the right mix can be an art. As a tip, identify the
slowest areas of your application and target them first. As you improve performance, keep an
eye on how much time it costs you to make your code asynchronous versus the improvement
you are seeing in the overall application performance.

Asynchrony and Windows Runtime
When developing the Windows Runtime for Windows 8, Microsoft followed a design guideline
where any synchronous method that might take longer than 50 ms to complete was to be
removed and replaced with an asynchronous version. The goal behind this design decision is
to dramatically improve the chances of developers building applications that feel smooth and
fluid by not blocking threads on framework calls.

In this recipe you're going to load the RSS feed details again, just as you did in the
Making your code asynchronous recipe, though this time you're going to be creating
a Windows Store application.

There are a few differences between a Windows Store application and a console one,
including differences in the classes available. For example, the WebClient class doesn't
exist in WinRT so you'll be using the HttpClient class instead.

For variety, you will be writing this code using Visual Basic.

Getting ready
Ensure you are running Windows 8 and then launch Visual Studio 2012.

Chapter 6

157

How to do it...
Perform the following steps:

1.	 Create a new project by selecting Visual Basic | Windows Store | Blank App (XAML)
and name it FeedReader.

2.	 Add a class named Post to the application using the following code. This class will
hold the details of each post from the RSS feed that we will show on screen.

3.	 Open MainPage.xaml and add the following XAML to the <Grid /> element to
define the markup of how the results should appear. The layout consists of a button
to start the feed loading and a ListBox element in which the results are displayed.
You also have a TextBlock element in which you'll post the time it takes to read
the feeds.

Asynchrony in .NET

158

4.	 Next, navigate to the code behind file MainPage.xaml.vb, and add a couple of
imports statements that you will need for later:

5.	 Now add some initial code to define the RSS feeds to use and a collection to hold the
Post objects.

6.	 Add the PublishedDate() helper method to the class after the New() method.

Chapter 6

159

7.	 Add the ReadFeed() helper method below the PublishedDate() method using
the following code:

8.	 It's now time to add some functionality to the button that loads the feeds. Write a
handler for the LoadFeeds button's click event using the following code:

Asynchrony in .NET

160

9.	 Compile and run the program. When the UI appears click on the Load Feeds button,
wait a few seconds and you should see the results of your work appear as in the
following screenshot:

How it works...
In step 8 you added a LoadFeeds.Click event handler. The important thing to note about
this method is that it is an async method and that await is used with the Task.WhenAll
method. When the application runs and you click on the button, the click event fires the
event handler, which in turn starts the background processing that reads the feeds. While
the application is waiting for that background process to complete, control is returned to the
main application for any other work that needs to be done, ensuring you do not block the
application while waiting for the feeds to be retrieved. When the feed retrieval completes,
execution returns back to the click event handler, which then updates the UI with the results.

In step 7 the ReadFeed() method looks similar to what you used in the console application
in the Making your code asynchronous recipe, however you will now see that you are using
the HttpClient class instead of the WebClient class as it isn't available in the Windows
Runtime. The HttpClient class also requires different code to set up the cache control
values and you have to specify the response buffer size, otherwise you can get runtime
exceptions on long feeds.

Chapter 6

161

Since this is a Windows Store app and you are coding against WinRT and the .NET Framework
4.5 Windows Store app profile you cannot produce a synchronous version of the application.
The synchronous API calls that you might have used with a console or WPF application simply
aren't available.

This makes the await and async keywords critical for Windows Store apps. Get used to
them, know them, love them; even send them thank you cards! Without these keywords,
developing asynchronous applications that meet modern design guidelines would be so much
harder to do and so much more fragile and difficult to debug. These two little keywords make
asynchronous programming very, very simple.

See also
ff The Making your code asynchronous recipe

Asynchrony and web applications
Web applications don't need to be asynchronous, do they? IIS gives each request its own
thread so people don't need to worry about it, right? Even if one request goes slow, all the
others will still be processed quickly so it's not really a problem, right?

It's surprising how many times this is said by developers, often the same ones who have
slow sites even though they have small user loads and few requests per second. If you want
a responsive, scalable web application that supports hundreds or thousands of users per
server, you need to make the best use of the hardware you are on and you must consider the
problems that are caused by blocking threads.

IIS has limits on the number of requests and I/O threads it uses. Blocking any of these
threads means IIS is forced to wait until the thread is released before another request can
be processed. When there are no threads available to process requests (because of blocking
or high-server load), requests start to queue up and, over time, that queue can grow until it
reaches its maximum size, at which point the dreaded 503 Service Unavailable message will
start showing to your site's visitors. Not really what you want.

High-server load due to a large volume of visitors is not something you can control. What is in
your control, however, is your ability to write code that doesn't block threads and allows IIS to
scale and process more requests than would have been possible otherwise.

Once again, you'll use the feed reader scenario, but for simplicity you'll just make the network
calls to retrieve the RSS feeds and then display the time it took to do so.

Asynchrony in .NET

162

We're not going to cover load testing the site in this recipe since it's a feature that's been
around in Visual Studio for quite some time now. See http://msdn.microsoft.com/en-
us/library/dd293540.aspx for more information on the load testing features in
Visual Studio.

Getting ready
Simply start Visual Studio 2012 and you're ready to go.

How to do it...
Create an asynchronous web application by following these steps:

1.	 Start a new ASP.NET Empty Web Application project using C# and give it the
default name.

2.	 Add a new Web Form item to the project, leaving it with the default name, which
should be the very creative WebForm1.

3.	 In WebForm1.aspx add async="true" to the end of the page directive. This tells
ASP.NET to allow the page lifecycle events prior to the PreRender event to execute
asynchronous tasks.

4.	 Further down in the page body add an id attribute to the <div> element and a
runat="server" attribute so that you can place the timing results in it when the
page executes.

5.	 Now navigate to the WebForm1.aspx.cs code behind file and add some supporting
using statements as follows:

http://msdn.microsoft.com/en-us/library/dd293540.aspx

Chapter 6

163

6.	 Next add the supporting ReadFeed() method to read a single RSS feed.

7.	 Now that you have the ReadFeed() method implemented, you should implement
the Page_Init() method to read all the feed information during page startup.
Because you want the page to load asynchronously you will need to register a
PageAsyncTask object. This lets ASP.NET know that you are performing an
asynchronous operation, which is important since page lifecycle events themselves
are not asynchronous and without them the page would render before your tasks
were complete.

Asynchrony in .NET

164

8.	 Finally, add code to the Page_PreRender() method so that the duration of the
entire page lifecycle, inclusive of the RSS reading, can be seen in the debug console
in Visual Studio.

9.	 Press F5 to start debugging the application. After a few seconds the page load should
complete and render a screen similar to the following screenshot:

10.	 Leaving the page open, switch back to Visual Studio which should still be in debug
mode. Look at the contents of the Output window and the Debug messages in
particular. As shown in the following screenshot, you should see that the debug
message from the PreRender event is displayed before the four numbers, showing
the size of data pulled from the RSS feeds.

The duration shows as zero because the Page_Init method has completed, but
PageAsyncTask you registered has not yet executed by the time the PreRender
method is called.

How it works...
It's important to keep in mind that with ASP.NET Web Forms the page methods are executed
synchronously, even if you put the async keyword on the method declarations. You must use
RegisterAsyncTask, just as you needed to in previous .NET versions.

Chapter 6

165

Because of the async keyword, the registering of tasks is now simply a matter of including
a lambda in the code. You don't need to follow the old style of asynchronous programming
anymore and you don't have to write any begin and end methods for the framework to call.

You will also notice that the page itself still took a while to load. The asynchronous approach
you used allows the web server as a whole to scale and process more requests concurrently.
It doesn't magically make those slow network calls to the RSS feeds any faster, so be prepared
to think of other ways to improve your user interface to indicate to your users
that something is happening and to just be patient.

There's more…
You may be thinking "what about ASP.NET MVC 4?". Well, in ASP.NET MVC 4, things are
even simpler.

Your controller still inherits from the AsyncController class, however, instead of having
to write method pairs for the beginning and ending of an asynchronous operation, you simply
have to create a controller method that returns a Task<T>.

For example:

This is much better than how asynchronous controllers worked in previous versions of ASP.
NET MVC. It's now so easy!

See also
ff The Making your code asynchronous recipe

Actors and the TPL Dataflow Library
With Visual Studio 2010 and .NET 4.0 we were given the Task Parallel Library (TPL),
which allowed us to process a known set of data or operations over multiple threads using
constructs like the Parallel.For loop.

Coinciding with the release of Visual Studio 2012, Microsoft has now given us the ability to
take any data we like and process it in chunks through a series of steps, where each step can
be processed independently of the others. This library is called the TPL Dataflow Library.

Asynchrony in .NET

166

An interesting thing to note about this library is that it was originally included as part of .NET
Framework in the pre-release versions, but the team moved it to a NuGet distribution model so
that changes and updates to the package could be made outside of the normal .NET lifecycle.
A similar approach has been taken with the Managed Extensibility Framework (MEF) for
web and Windows Store apps. This change to the distribution model shows a willingness from
Microsoft to change their practices so that they can be more responsive to developer needs.

From a terminology perspective, the processing steps are called Actors because they "act" on
the data they are presented with and the series of steps performed are typically referred to as
a pipeline.

A fairly common example of this is in image processing where a set of images needs to be
converted in some way, such as adding sepia tones, ensuring all images are in portrait mode,
or doing facial recognition. Another scenario might be taking streaming data, such as sensor
feeds, and processing that to determine actions to take.

This recipe will show you how the library works. However, to keep things short, we won't do any
fancy image processing. Instead, we'll just take some keyboard input and display it back on
the screen after having converted it to uppercase and Base64 encoding it.

In order to do this we will use an ActionBlock object and a TransformBlock object.
An ActionBlock object takes a piece of data passed to it and does something with it,
that is, it performs an action using it, and a TransformBlock object takes a piece of
data and changes it in some way.

In this recipe, you will use a TransformBlock object to convert characters to uppercase
and encode them before passing them to an ActionBlock object to display them on screen.

Getting ready
Simply start Visual Studio 2012 and you're ready to go.

How to do it...
Create a DataFlow powered application using the following steps:

1.	 Create a new application targeting .NET Framework 4.5 by selecting Visual C# |
Console Application and name it DataFlow.

2.	 Using NuGet, add the TPL Dataflow library to the project.

Chapter 6

167

3.	 Open Program.cs and at the top of the file add the following using statements:

4.	 In the Main() method of Program.cs add the following code to define the
ActionBlock. The method in the ActionBlock object displays a String on the
console and has a Sleep method call in it to simulate long running work. This gives
you a way to slow down processing and force data to be queued between steps in
the pipeline.

5.	 Next, add the code for TransformBlock. The TransformBlock object will
take a char as input and return an uppercase base64 encoded string. The
TransformBlock object is also linked to the ActionBlock object to create
a two- step pipeline.

Asynchrony in .NET

168

6.	 Now add code to take input from the console and pass it to the first step of the
pipeline (the TransformBlock object in this case). You also need to close and
flush the pipeline when you hit Enter so that you can exit the program.

7.	 Run the program. When the console window appears, just randomly press characters,
and when you are done hit Enter. You should see an output similar to the following.
Note how the encoded strings appear in batches up to four, though this may be one
or two if you have a CPU with less than four cores.

Chapter 6

169

How it works...
So what just happened here?

Firstly, you defined two actors. The first being the ActionBlock object that takes a string and
displays it on screen and a second, the TransformBlock, that takes a character as input
and returns an encoded string as output. You then linked the TransformBlock object to the
ActionBlock object to create the pipeline for the data to flow through.

Then you took data that was streaming to you (the console key presses) and passed each
key press to the pipeline as soon as it arrived. This continued until the user hit Enter at which
point the Complete() method is used to tell the actors that they should expect no more
data. Once the queues flush, the user is prompted to hit a key to close the program.

If you fail to flush the queues you will lose the data that is still in them when the program
completes. I'm not sure about you, but I find that losing data tends to upset people at times
and I prefer not having those "please explain" conversations with people.

Now when you ran the program the TransformBlock object did its work very quickly and
passed its output to the ActionBlock. The interesting thing to note is that even though
the data was queuing up to be processed by the ActionBlock object, the amount of code
you had to write to do that was zero! The TPL Dataflow library takes care of all the difficult
plumbing code, thread management, and the communication of data between actors,
as well as determining how many actors it can run at once.

There's more…
You may also be wondering what happens in less straightforward scenarios, such as when you
want to conditionally pass data or messages to the next actor. Fortunately, the TPL Dataflow
Library is quite powerful and you've only scratched the surface in this recipe. For example, the
LinkTo() method has a predicate parameter that you can use to filter the messages and
decide which actors should do what.

You could also batch up data for processing in the later steps by adding data to a buffer using
the BufferBlock object and only passing buffered data to subsequent pipeline steps when
the buffer is full. There are lot of possibilities! Feel free to go and explore what the library has
to offer!

The eagle eyed amongst you may also have noticed that the lambda function used by the
ActionBlock object featured the async keyword. This was done so that the action block
doesn't itself block execution of the program when performing the long-running task and
prevent any more input from being processed.

Asynchrony in .NET

170

See also
ff The Making your code asynchronous recipe

ff The Debugging parallel code recipe in Chapter 5, Debugging Your .NET Application

7
Unwrapping C++

Development

In this chapter, we will cover:

ff Using XAML with C++
ff Unit testing C++ applications
ff Analyzing your C++ code
ff Working with DirectX in Visual Studio 2012
ff Creating a shader using DGSL
ff Creating and displaying a 3D model
ff Using the Visual Studio Graphics Debugger

Introduction
C++ as a language has been declining in use over recent years and becoming more of a
specialist language, to the point where it is now commonly seen as the language for writing
operating systems, device drivers, games engines, and those rare applications when speed
is of the essence.

This decline hasn’t been helped by the slow pace of improvements in the C++ language and the
volume of code needed when compared to more modern languages. However the introduction
of Windows 8 and Visual Studio 2012 sees a chance for the decline to stop. Microsoft has
recognized that C++ developers are still a viable and valuable part of the developer ecosystem
and that it’s about time they got some love. C++ developers will be pleased with the support
for C++ 11; the inclusion of reference counting smart pointers alone will make memory
management much simpler. They will also be pleased with the tooling improvements Visual
Studio 2012 offers and this is what we’ll be looking at in the recipes in this chapter.

So without any further ado, let’s get to it.

Unwrapping C++ Development

172

Using XAML with C++
User interface development with C++ has always been, how shall we say it, a less than
optimal experience. When Visual Basic first appeared all those years ago developers flocked
to it because building a user interface in it was so much more productive than building the
equivalent UI using C++ at the time, and C++ has never really caught up since.

Over recent years, with Microsoft’s move away from WinForms, and the rise of declarative
interface design with XAML, building a flexible yet powerful user interface has never been
easier and the functionality offered by XAML based UI technologies is impressive, with data
binding in particular being a genuine productivity improver.

Meanwhile, C++ developers have been left further and further behind, with the only interface
development using C++ largely being the domain of games studios and the teams within
Microsoft building products and platforms.

In Visual Studio 2012, the power and flexibility of XAML based user interface design is now
available for C++ developers, making C++ a legitimate choice for business applications.

C++ and XAML can only be used to create WinRT applications.
You cannot use them to create traditional desktop applications.

It’s not just business applications that benefit though. Developers of DirectX applications
can use XAML to render interface elements and composite them with the rest of the DirectX
application. For game developers this might be things like application menus, score displays,
and so on. Alternatively, you can have XAML based applications with islands of DirectX in
them, allowing developers of applications with a need for 3D imaging such as medical or
geospatial systems to mix and match DirectX and XAML as required.

The choice and flexibility is up to you. For this recipe you’ll create a simple XAML based
interface with data binding to see how it all fits together.

Getting ready
Ensure you are booted into a Windows 8 machine. Windows Store app development is not
supported on prior versions of Windows.

Start Visual Studio 2012 and you’re ready to go.

Chapter 7

173

How to do it...
Create the app by following these steps:

1.	 Create a new Visual C++ | Windows Store | Blank App (XAML) project and give it
the name CppDataBinding.

2.	 Open the MainPage.xaml file and add the following code inside the
<Grid> element:

3.	 For the data binding to work you will need an object to bind to. Add a new header file
to your project and call it MyColor.h. As a note, hold off on compiling the code until
you get to step 9; compiling before then will result in compiler errors.

4.	 Enter the following code as the contents of the MyColor.h source file:

Unwrapping C++ Development

174

5.	 Add a new C++ file named MyColor.cpp and enter the following code as its content:

6.	 Now go to MainPage.xaml.h and add MyColor.h to the #include list.

7.	 In the public members of the MainPage class add the following highlighted line
of code:

8.	 Navigate to the code behind for the MainPage class (that is, the MainPage.xaml.
cpp file) and add the following highlighted lines of code to the constructor:

9.	 Compile and run the application. You should see a screen similar to the following
screenshot appear. As you enter values in the text field or move the slider, the two
fields should remain in sync, as shown in the following screenshot:

Chapter 7

175

How it works...
The C++ code you have been writing is C++/CX; an extension of the normal C++. You can still
use straight C++ if you prefer but it will mean dealing with the IInspectable interface and
writing more COM code than would otherwise be the case.

The ref keyword you used for creating an instance of the MyColor class tells the compiler
that you are using a Windows runtime object. The carat (^) symbol on variable declarations
is a reference counting smart pointer to a Windows runtime object. It is similar to a normal
pointer but performs reference counting and automatic cleanup of resources when the last
reference is cleared.

Data binding in C++ kicks into action when you put the [Bindable] attribute on a
class. When the compiler sees this it will automatically generate code in a file called
xamltypeinfo.g.cpp that implements the appropriate binding behaviors for interacting
with the XAML markup.

In your code you implemented the INotifyPropertyChanged interface. This was done
so that you could use the two-way binding between the data class and the UI elements on
screen. The implementation of the interface should look familiar to anyone who has worked
with INotifyPropertyChanged in either WPF or Silverlight before.

There’s more…
If you were compiling the code after each step in the recipe you may have seen a few compiler
errors, some of which might have not made much sense.

If you compiled the application after step 5 you may have seen a number of errors in
XamlTypeInfo.g.cpp.

This occurs because of the way the compiler handles the [Bindable] attribute and the
generation of the code. The generated code only includes the .h files from the XAML pages
in the application, yet it includes generated code for any types that are bindable. This means
that if you have a bindable type but no references to it in any of the .xaml.h files, you will
have undeclared identifier errors as shown in the following screenshot:

Adding the #include statement for the bindable class’ header file as you did in step 6 fixes
this compiler error.

Unit testing C++ applications
We saw the Unit testing .NET application recipe in Chapter 4, .NET Framework 4.5
Development, C++ developers were not forgotten and Visual Studio 2012 includes support
for cppUnit for unit testing your applications.

Unwrapping C++ Development

176

Just to help with the confusion, C++ developers can choose from two types of unit test
projects—the Native Unit Test project and the Unit Test Library (Windows Store apps)
project. The first applies exclusively to desktop C++ development, while the second applies
exclusively to Windows Store apps.

In this recipe we’ll create a simple piece of code and add some unit tests to it.

Getting ready
Simply start Visual Studio 2012 and you’re ready to go. You can do this in any version
of Windows since you’re going to be creating a Native Unit Test.

How to do it...
To unit test your code, follow these steps:

1.	 Create a new C++ Test | Native Unit Test project application using the default name.

2.	 In Solution Explorer right-click on the project and select Class Wizard from the menu
to create a new class.

3.	 Click on the Add Class button in the dialog to add a new class to the project. Use the
class name BankVault and click on Finish.

4.	 The Class Wizard will update its context to the newly-added BankVault class.
Click on the Methods tab and then click on the Add Method button within that tab.

5.	 In the Add Member Function Wizard set Function name to AddFunds and add a
parameter named amount of type int (yes, our wonderful bank vault only accepts
whole units of currency). Don’t forget to click on Add to add the parameter!

6.	 Click on Finish in the Add Member Function Wizard and then click on OK in the
Class Wizard.

Chapter 7

177

7.	 Open the Source Files\unittest1.cpp file from Solution Explorer and at the
top of the file add an #include statement for BankVault.h.

8.	 Update the body of TestMethod1 as follows:

9.	 From the Visual Studio menu select Test | Run | All Tests.

10.	 The code will compile. Test Explorer will then appear and show the results of running
the test.

11.	 From the menu, select Test | Test Settings | Run Tests After Build so that the unit
tests will run automatically each time the solution is built.

12.	 Navigate back to the BankVault.cpp file and update the code as follows:

Unwrapping C++ Development

178

13.	 Build the solution and wait a few moments. As soon as the build completes, Test
Explorer should refresh and show the results of the unit test. Assuming you made
the correct changes, the code should now look like the following screenshot:

14.	 Time to add a few new methods. In BankVault.h add the following two highlighted
lines of code:

15.	 In BankVault.cpp add the implementation for these two methods as follows:

Chapter 7

179

16.	 Now add a test for this code in unittest1.cpp by adding the following code:

17.	 Compile the solution and wait for Test Explorer to rerun the tests. You should now
see one failing test result and one passing result.

18.	 There’s a small mistake in your code, and clicking on the first line of the stack trace
in the error detail should help you isolate the problem (the initial funds aren’t as
expected). Start to fix the problem by navigating to BankVault.h and adding a
private int variable named total.

19.	 In BankVault.cpp, remove the int total = 0; declaration and change the class
constructor to initialize total to zero.

20.	 Compile the code one last time. The tests will be rerun and Test Explorer will show all
tests working as expected.

How it works...
The test project you created has a reference to the cppUnit test framework already included,
as well as the necessary header files to define the various Assert methods available and the
macros for creating the test methods.

You could build all of this up by hand but there’s really no need to when the project template
has defined it for you up front.

There are a few slight differences when creating a Unit Test Library project for a Windows
Store app. You will be referencing the WinRT libraries instead of normal libraries, you will be
using the C++/CX extensions, and you can only add references to other WinRT based libraries.

There’s more…
The option to run unit tests with code coverage is available from Test Explorer, however for
Windows Store app Unit Test Library projects you will get no results as the diagnostic data
adapters are not supported for unit tests of Windows Store app libraries.

Coverage information is only supported for Native Unit Test projects, and coverage analysis
will be displayed in the Code Coverage Results window.

Unwrapping C++ Development

180

Running a unit test in debug mode
In the .NET languages you can right-click inside a test method in the code window and select
the option to run and debug a unit test. This isn’t available for C++ unit tests.

To debug unit tests you must select them from Test Explorer and either right-click on them
and choose the Debug Selected Tests context menu option or you must select Test | Debug
| Selected Tests from the Visual Studio menu.

See also
ff The Unit testing .NET applications recipe in Chapter 4, .NET Framework 4.5

Development

Analyzing your C++ code
Static analysis of C++ code is a feature offered by Visual Studio 2010 and Visual Studio
2012 continues to build on that feature by making static analysis easier to perform, problems
easier to locate, and helps expand the available rules allowing you to catch a wider range of
problems earlier.

Getting ready
Start Visual Studio 2012 and create a new C++ Empty Project, giving it a name
could take this to the previous line.

How to do it...
Perform the following steps:

1.	 Right-click on the project and select Properties.

2.	 In Configuration Properties | General change Configuration Type to Static Library
(.lib) and click on OK.

3.	 Add a new Header File to the project and name it AnalyzeThis.h.

4.	 Enter the following code in the body of the header file:

5.	 Add a new C++ File to the project and name it AnalyzeThis.cpp.

Chapter 7

181

6.	 Enter the following code as the body of the code file:

7.	 Compile the project. There should be no errors or warnings showing.

8.	 Right-click on the project and select Properties again. Select the Code Analysis
group and ensure the rule selected is Microsoft Native Recommended Rules.
Click on OK to close the window.

9.	 From the Analyze menu select Run Code Analysis on Solution.

10.	 The Code Analysis tool window will be displayed and it will show a single warning
about the use of uninitialized memory, as shown in the following screenshot:

11.	 Click on the entry to expand it. The reasons for the analysis warning will be shown
and the code where the warning occurs will be highlighted in the document window.

Unwrapping C++ Development

182

12.	 Change the code so that both x and y are initialized correctly with zero values.

13.	 Rerun the analysis. No messages should be displayed.

How it works...
There are two rule sets provided for native code in Visual Studio 2012.

The Microsoft Native Minimum Rules rule set contains rules for basic correctness such as
potential security holes and application crashes (invalid memory access, buffer overruns, and
so on).

The Microsoft Native Recommended Rules rule set is a superset of the minimum rules and
provides a more in-depth set of rules to evaluate and, with Visual Studio 2012, this includes
new rule checks for problems such as lock problems, race conditions, and other concurrency
related issues.

To get an understanding of what rules each rule set uses, go to the project properties and
select the Code Analysis settings. Clicking on the Open button will display the rules enabled
for the rule set. In order to see all available rules, click on the red down arrow in the toolbar.

Working with DirectX in Visual Studio 2012
C++ and DirectX are being promoted by Microsoft as the primary way to build high performance
games in Windows 8 with XNA left out in the cold. XNA developers can still use XNA in Windows
8 but only for desktop applications, not for creating Windows Store apps.

As a DirectX developer you will be pleased there is no longer a separate DirectX download
required for Windows 8. The DirectX SDK is now incorporated into the Windows SDK, and
the DirectX 11.1 runtime is built into the Windows 8 operating system. For older versions of
Windows, the current requirement to download a separate SDK and runtime remains in place.

If you have used previous versions of DirectX and C++ then Visual Studio 2012 will feel
somewhat different as you will be using C++/CX and many of the DirectX calls have
differences in them, not only due to the use of ref pointers but also in the way displays are
referenced and the restrictions placed on you by the Windows Store app sandbox. It will likely
require some tweaking to the approaches you may have used in the past.

For this recipe, we’ll use the default application template to display a rotating cube on screen
and then alter the code to stop and start the rotation when we touch the screen, click the
mouse, or press a key.

Chapter 7

183

Getting ready
Start Visual Studio 2012 in Windows 8 and you’re ready to go.

How to do it...
Create the app by following these steps:

1.	 Create a new Visual C++ | Windows Store | Direct3D App project and name it
RotatingCube.

2.	 The default project template includes all the code to display a cube, apply shaders to
it, and then rotate it. Before you go any further, ensure that the application works, by
compiling and running it. You should see a screen similar to the following screenshot:

3.	 Stop the application by pressing Alt+F4 and then switch back to Visual Studio.
In RotatingCube.h add the following code block to the protected event
handler declarations:

4.	 To the private variables in the header file, add bool m_isRotating;.

Unwrapping C++ Development

184

5.	 In RotatingCube.cpp, locate the RotatingCube::SetWindow method and add
the following highlighted code to register the event handlers for the user input events
and to set the m_isRotating flag:

6.	 Now add the code for the event handlers. The handlers simply toggle the
m_isRotating flag to indicate whether to rotate the cube or not.

7.	 Locate the RotatingCube::Run() method and wrap the m_renderer->Update
call in an if statement that checks the m_isRotating flag as shown in the
following screenshot:

8.	 Run the application and check that you can start and stop the rotation by pressing
any key, clicking with the mouse, or tapping on the screen.

9.	 Stop the application when you have finished testing.

10.	 The colors on the cube are determined by a combination of a vertex shader and a
pixel shader. The vertex shader uses the color assigned to each vertex in the cube’s
definition, in CubeRenderer::CreateDeviceResources, and each pixel shader
is shaded based on blending the colors of the vertexes nearest to it. Open the
SimplePixelShader.hlsl file to look at the pixel shader.

Chapter 7

185

11.	 At the moment the shader simply takes the color passed to it and sets the alpha
channel to 1.0f making it opaque. Alter the shader to remove all trace of red from
the cube by changing the body of the main() method to the following:

12.	 Rebuild and run the application. The cube should now look similar to the following
screenshot, with no red color showing:

How it works...
The key areas to focus on in this application involve creating the drawing surface and the
handling of user input. You saw how user input can be handled via the event listeners and
that the PointerEventArgs class is used for both touch and mouse-based input.

The bulk of the work to create the rendering surface is encapsulated in the Direct3DBase
class. It is in here that the call to D3D11CreateDevice is made as is the call to
CreateSwapChainForCoreWindow, which is needed in order to get DirectX up
and running correctly.

It is also useful to note that an Application Manifest is included in the project and that the
linker has prepopulated references to the required DirectX libraries so that you don’t have
to remember to add them yourself.

Unwrapping C++ Development

186

There’s more…
The pixel and vertex shaders used in the application are written using HLSL; a C++ style
DSL for describing how color should be calculated for each rendered pixel in an object.

When the compiler sees a HLSL file it compiles it into a .cso file that you can then use
in your application. You can see this in CubeRenderer::CreateDeviceResourc
es() where the .cso files of the two shaders are read into memory and then passed
to the DirectX calls to create shader instances. The shaders are then used later in the
CubeRenderer::Render() method with the vertex shader called before the pixel
shader to ensure the cube renders correctly.

Jumpy rotation
When you stop and start the rotation you will notice that the cube jumps in its position and
doesn’t cleanly resume rotation. If you take a look at the CubeRenderer::Update method
in CubeRenderer.cpp you will see that the algorithm to rotate the cube uses an elapsed
time value (timeTotal). As an exercise, feel free to alter this code so that the cube resumes
its rotation from the point at which it was paused.

Is managed DirectX supported?
With Windows Runtime and the improvements in the way .NET languages interop with COM
in Windows 8 you may be wondering if DirectX development using managed languages such
as C# is possible. The answer is yes, but not without using third-party libraries. If you are
interested in using DirectX in a managed language you may want to keep an eye on open
source projects such as SharpDX (http://code.google.com/p/sharpdx/). Just keep in
mind that this approach is not supported by Microsoft and that DirectX applications written in
.NET will run a little slower than native C++ applications. Regardless, applications built using
third-party libraries such as SharpDX and others should still be able to pass the verification
process and be listed in the store.

See also
ff The Creating a Windows Store app recipe in Chapter 2, Getting Started with Windows

Store Applications
ff The Creating a shader using DGSL recipe
ff The Using the Visual Studio Graphics Debugger recipe

Creating a shader using DGSL
With Visual Studio 2012, Microsoft has added a new mechanism for building shaders, using
a language called DGSL (Directed Graph Shader Language). This language can be used to
create very complex shaders that are still easily understandable at a high level and are thus
more maintainable than shaders written in pure HLSL.

http://code.google.com/p/sharpdx/

Chapter 7

187

In this recipe, we’ll create a shader that applies a texture to an object and colors it.

Getting ready
Ensure you are running Windows 8 and start Visual Studio 2012.

How to do it...
Create a shader by following these steps:

1.	 Create a new Visual C++ | Windows Store | Direct3D App project and give it the
default name.

2.	 Right-click on the project, select Add | New Item, and then choose Graphics | Visual
Shader Graph (.dgsl). Leave the name as the default, Shader.dgsl, and click
on Add.

3.	 The shader will be added to the project and the design surface will be displayed.
Open the toolbox to see all the nodes that can be used in your shader. Click on the
black background of the design surface to see the properties of the shader.

4.	 From the Toolbox window, drag a Texture Sample node onto the design surface.

Unwrapping C++ Development

188

If you have trouble finding the Texture Sample in the toolbox, use the
search box at the top of the toolbox to filter the items displayed.

5.	 In the properties for the Texture Sample node you just added, set the Filename
to the full path of the Assets\SmallLogo.png file. You can do this fairly easily
by selecting the image file in Solution Explorer, copying the Full Path from the
Properties window for the file, and pasting that value into the Filename property
of the Texture Sample node.

6.	 Drag a Texture Coordinate node from the Toolbox window onto the design surface.

7.	 On the side of each of the shader nodes are connectors; the small circles that
represent the input and output variables for each node. Drag the Output connector
of the Texture Coordinate node to the UV input connector of the Texture Sample
node to link the two nodes together.

8.	 Next, you should color the texture based on the color of the point at which it will be
applied. To do this, drag a Multiply node onto the designer and connect the RGB
output of both the Point Color and Texture Sample nodes to the X and Y inputs of
the Multiply node.

Chapter 7

189

9.	 Next, drag the result output of the Multiply node to the RGB input of the Final Color
node. In doing so, the RGB link from the Point Color node to the Final Color node will
be removed as inputs can only have one source.

10.	 In the document toolbar, click on the Preview with teapot button. Why a teapot?
Because it wouldn’t be 3D rendering if there wasn’t a teapot involved!

Unwrapping C++ Development

190

11.	 In the shader designer, select the Final Color node and then hold down Ctrl while you
move the mouse scroll wheel forward to zoom in on the element until you can zoom
no further. You will now see a better 3D representation of what the shader will do
to a model.

12.	 Press and hold Alt and then click-and-drag on the teapot to rotate it so that you have
a better idea of how the texture will be applied to the various surfaces of the teapot.

13.	 Save the Shader.dgml file by pressing Ctrl+S.

14.	 In the designer’s left-side toolbar, click on the Advanced icon. It will launch an Export
command where you can choose to save the shader as HLSL, a compiled pixel shader
(.cso), or as a C++ header file (.h). Select the HLSL file option and save the shader
into your Documents folder.

15.	 From the Visual Studio menu, select File | Open | File or press Ctrl+O and then open
the file you just saved. You can now see the HLSL version of the shader you created.

Chapter 7

191

How it works...
Shaders are effectively a pipeline of instructions to affect the rendering of an object on screen.
They can be applied to vertices, pixels, and geometries to produce varying effects. The key to all
shaders is to try and do as few operations as possible since the higher the number of nodes in a
shader the more computationally expensive they will be and the slower your overall frame rate in
the application will be.

In this particular recipe, the shader we built was fairly rudimentary since the intent was to show
how one can be built in Visual Studio. For complex shaders such as flame or smoke there are
parameter nodes for Time and Normalized Time that you will want to use, and for geometry
shaders you will want to consider using nodes such as World Position and Mask Vector.

See also
ff The Creating and displaying a 3D model recipe

ff The Working with DirectX in Visual Studio 2012 recipe

Creating and displaying a 3D model
In the previous recipe, Creating a shader using DGSL, you created a shader for applying a
texture to a model. This is great, but without having a model to apply the shader to it’s kind
of useless. It would be great if there was an easy way to create your own 3D models and
Visual Studio provides a mechanism for doing just that. Visual Studio offers a fairly basic
3D modeling tool and, while it’s nowhere near as fully featured as Maya or other specialist
modeling tools, it does come in the box and it meets the needs of the homebrew developer
or those simply wanting to “rough in” some models or tweak some properties of a model
supplied by a designer.

Getting ready
This recipe uses the shader from the previous Creating a shader using DGSL recipe.
So, if you haven’t already completed that, go ahead and do so now.

If you have already completed it then go ahead, open up the solution you created
and you’re ready to get started.

Unwrapping C++ Development

192

How to do it...
Create a 3D model using the following steps:

1.	 Right-click on the project and select Add | New Item.

2.	 In the dialog box, choose Graphics | 3D Scene (.fbx) and leave the name as Scene.
fbx before clicking on Add.

3.	 Visual Studio will open the scene editor where you can create your model. Ensure the
Toolbox and Properties panes are visible, and then add a cylinder to the scene by
double-clicking on the Cylinder in the Toolbox window.

4.	 Select the cylinder in the designer by clicking on it. In the scene editor toolbar at the
left of the design surface click on the scale icon. The cylinder will be overlaid with x,
y, and z drag handles (the red, green, and blue boxes) that you can use to resize the
object in any single direction and a central drag handle (a white box) for scaling the
object evenly in all directions. Resize the cylinder to make it larger by clicking on the
central white handle and dragging it to the right.

Chapter 7

193

5.	 In the Properties window, locate the Effect property.

6.	 Click on the triangle next to the Effect property to expand its details and click on the
ellipsis […] on the Filename property to open the file selection dialog.

7.	 Browse for the Shader.dgsl file you created in the previous recipe and click on OK.

8.	 Change the value of the Name property in the Shader property group to MyShader.

9.	 Once you’ve made the shader changes you may notice that the name of the shader
property group in the Properties window didn’t change. Don’t panic. It will refresh
the next time the Properties window is asked to display properties for the cylinder.
You can force this by clicking on a file in Solution Explorer and then clicking on the
cylinder again. You should also see that the scene has been updated to show the
effects of the shader on the cylinder.

Unwrapping C++ Development

194

10.	 A common way of looking at 3D models is to look at the wireframe. To view the
scene in wireframe mode click on the wireframe icon on the main toolbar (not the
embedded toolbar). It’s the last icon in the list, as shown in the following screenshot:

How it works...
At this point you now have a model that is ready to be used. As mentioned in the introduction,
the modeling tool is not meant to compete with full featured 3D modeling tools and is instead
offered as an entry level modeling toolkit only.

Given that the packaging of models is typically application specific, Visual Studio provides no
inbuilt method for packing models into a data file nor a method to load them. The choice of
how you package models depends on your application, its performance characteristics, and
any of the restrictions you have to work within. Because of the diversity, Visual Studio provides
a single, simple method for editing a model and for everything else, it’s up to you.

There’s more…
There are many more features available in the model viewer than were covered in this recipe.
Most of these features are self-explanatory and deal with the basics of moving and rotating
objects within the scene, changing selection modes, and changing view modes. Advanced
functionality such as merging objects is contained under the Advanced menu of the designer’s
left-side toolbar

See also
ff The Creating a shader using DGSL recipe

Using the Visual Studio Graphics Debugger
One of the hard things to do in DirectX applications is to determine the cause of a visual glitch
or bug on the screen and there are many websites featuring screenshots taken by gamers of
weird things happening in a game.

Visual Studio 2012 addresses some of the debugging issues for DirectX applications by
including in it a new feature called the Graphics Debugger that lets you look at pixel history
to determine just how a specific pixel came to be rendered on screen. Let’s see how it works.

Chapter 7

195

Getting ready
Simply start Visual Studio 2012 and you’re ready to go.

How to do it...
Perform the following steps:

1.	 Create a new Visual C++ | Windows Store | Direct3D App project and leave
the default name as it is.

2.	 The project template includes code to display a spinning cube, so build the
application to ensure it compiles.

3.	 Start the graphics debugger by pressing Alt+F5 or by choosing Debug | Graphics |
Start Diagnostics from the Visual Studio menu.

4.	 When the application starts you should see the debugger HUD displayed in the
top-left corner of the application.

5.	 While the application is running press Print Screen a few times to capture some
frames from the application. The debugger HUD should update to display Captured
frame indicating the capture was successful.

6.	 Stop debugging when you are ready, and in Visual Studio you should see something
similar to the following screenshot:

Unwrapping C++ Development

196

7.	 Select one of the frames you captured from the Frame List window and in the frame
view click on one of the pixels in the cube. If you can’t see the entire frame you can
hold Ctrl and drag with the left mouse button to pan around the frame.

8.	 The Graphics Pixel History window should have appeared when you clicked the pixel.
If it isn’t showing, in the graphics toolbar click on the Pixel History icon (it’s the one
that looks like a clock going backwards, third from the left).

9.	 The history of that selected pixel will be shown on the screen.

In the previous screenshot, this selected pixel started as blue (the background color)
and was eventually rendered as yellow. Your color will likely be different. Click on the
expansion arrow for the event when the color changes to expand it.

10.	 Expand the Triangle further to show all of its component details.

Chapter 7

197

11.	 Clicking either on the Vertex Shader or Pixel Shader links will take you to the HLSL
source for the shader so you can see the shader calculation.

12.	 You can examine how the shader values were calculated even after normal debugging
has concluded. Click on the Debug icon (the play button) for one of the vertices in
the vertex shader or for the pixel shader to debug it using the captured values. Step
through the shader code until the debugger finishes.

13.	 From the Visual Studio menu select Debug | Graphics | Event Call Stack or click on
the Event Call Stack button in the Graphics toolbar. The Event Call Stack window
will be displayed, similar to the following screenshot:

Unwrapping C++ Development

198

14.	 This is a normal call stack, so double-click one of the method calls from your
application to jump to that line of code.

15.	 From the Visual Studio menu select Debug | Graphics | Event List or click the
Event List icon on the Graphics toolbar. A list of all DirectX operations that occurred
in rendering the frame will be shown.

Clicking any of the events will show the operation details in the document area
allowing you to delve further into what occurred. It will also update the Event Call
Stack window to show call stack information, when available, and the frame preview
window to show what the frame looked like at that specific point in time, which can
be very helpful in locating overdraw problems.

How it works...
The Graphics Debugger is the result of the work that was put into the PIX debugging tool
that shipped with the DirectX SDK. With it now being built directly into Visual Studio, the user
experience is much better for developers.

The level of detail presented by the Graphics Debugger is extensive and should help you track
down to the root cause of many of your rendering problems. Of course, fixing them and getting
your code right is going to be up to you!

There’s more…
One thing that wasn’t touched on in the recipe was the rendering pipeline. If you want to look
at the way a frame was built up then understanding how the object meshes were used can be
very useful.

Chapter 7

199

If you select a DirectX Draw event from the Events List and then select Debug | Graphics |
Pipeline Stages from the menu you will see how the frame was put together. Clicking on one
of the stages in the Graphics Pipeline Stages window will show you the details of that stage
in a document preview tab as shown in the following screenshot:

8
Working with

Team Foundation
Server 2012

In this chapter, we will cover:

ff Managing your work

ff Using local workspaces for source control

ff Storyboarding user requirements

ff Performing code reviews

ff Getting feedback from your users

Introduction
Visual Studio 2012 includes an overhauled Team Explorer client for connecting to Team
Foundation Server 2012 (TFS) and the hosted TFS service currently known as TFS Preview.

One of Microsoft's goals with this release of Visual Studio was to have "raving fans". They want
users of Visual Studio to be so happy with the experience that they go and tell others about it
and how great it is to use. One part of meeting this goal has been to improve the experience
developers have when using TFS and, as a result, a number of the main friction and pain
points people have had are now smoothed over. In addition a number of new features have
also been added to make using TFS more compelling for developers.

The most visible change is in Team Explorer with the transition from a tree view of items
to a set of task-based hubs built around the activities that developers need to perform.

Working with Team Foundation Server 2012

202

The second is the introduction of local workspaces for source control and the decision to
make these the default for new workspaces. Local workspaces address the primary grievance
developers have with TFS; that source control is managed by the server, not the client, and
that the read-only flag is set, making editing of source controlled files outside of Visual
Studio difficult.

As for new team-related features, Microsoft has added a lightweight UI prototyping tool, the
ability to perform code reviews and an effective way to gather feedback from users on the
features you have developed.

The recipes in this chapter will walk you through using these new improvements and features,
so let's get started.

Managing your work
If you work in a team then odds are you will have a list of requirements describing what
you need to build. Scrum teams use product backlogs, traditional teams use functional
specifications, and other teams will have their own variations of these. With TFS this
information is stored in the various work item types in the team project.

Regardless of the mechanics used for tracking the work to be done, every developer really just
wants the answer to one simple question: "What am I meant to be working on now?".

The new task-based Team Explorer in Visual Studio 2012 makes this question much easier to
answer. It also makes it simpler to track what you are doing.

In this recipe, we'll show you how to manage your work using Visual Studio 2012 and TFS.

Getting ready
You will need to have access to a TFS server. It would be best if you use a sandbox project;
a project where you can try things and change data without worrying about it affecting your
normal work.

The recipe also requires that your team project be based on the Microsoft Visual Studio Scrum
2.0 process template. If your project uses a different process template the work item types
may be different from those in the recipe.

Start Visual Studio 2012 and you're ready to go.

Chapter 8

203

How to do it...
Perform the following steps:

1.	 When you first connect to a TFS server you will need to set up the connection. From
the Visual Studio menu select Team | Connect to Team Foundation Server. Use the
Servers button in the connection dialog to add a new connection for the TFS server
you want to connect to, just like you did in Visual Studio 2010, and then connect to
the project collection and the specific team project you wish to use for this recipe.

2.	 If the Team Explorer tool window isn't visible, open it by selecting View | Team
Explorer from the menu, by pressing Ctrl+\, Ctrl+M, or by using the Quick
Launch tool.

3.	 When it is open, ensure you are connected to your TFS server by confirming that the
Home hub is displaying the correct team project name.

Your Home hub may look slightly different if your team
project has a team portal or reporting is enabled.

Working with Team Foundation Server 2012

204

4.	 This recipe needs some work for you to track, so start out by creating a new work
item. Click on the Work Items entry in Team Explorer to navigate to the Work Items
hub. Alternatively, select the Work Items hub from the hub list at the top of Team
Explorer, as shown in the following screenshot:

5.	 Click on the New Work Item drop down from the Work Items hub and select Product
Backlog Item from the list.

6.	 A new Work Item form will be displayed in the Visual Studio document area. Enter a
title of your choice and set the Assigned To user to yourself. You can set the value of
any of the other fields as you wish and when you are ready click on the Save Work
Item button in the form's toolbar or press Ctrl+S to save the work item.

7.	 Right-click on the background of the Product Backlog Item form (that is, right-click in
the white space) and select the New Linked Work Item option.

Chapter 8

205

8.	 In Work Item Type, select Task from the list and enter a Title for the item before
clicking on OK.

9.	 The linked work item will have automatically set you to be the Assigned To person so
just hit Ctrl + S to save the work item, or click on the Save Work Item button.

10.	 In Team Explorer, switch to the My Work hub by using the hub selection drop down.
The hub will then display all the work you currently have to do, including any work
items assigned to you.

11.	 To commence work on the task, simply select it and click on Start or drag it up to the
In Progress Work Items & Changes section of the hub.

Working with Team Foundation Server 2012

206

12.	 Behind the scenes the task will be moved to the In Progress state and will also be
automatically associated with any source control check-ins that occur. Pretend you
did some useful work on the item, then complete it by clicking on the Finish link in
Team Explorer followed by Yes in the confirmation dialog that appears. If only all your
tasks were so simple to do!

13.	 To confirm that the work item is actually complete, search for it using the Work
Item Search field. Enter a few words from the work item title, as shown in the
following screenshot:

14.	 Double-click on the task from the Search Results to open it and confirm that the
State of the work item is now Done.

How it works...
The work items for both the In Progress Work Items & Changes and the Available Work
Items sections of the My Work hub are sourced from a work item query that selects work
items of the "task" category, which have a state of To Do or In Progress. You can check the
details of the query by selecting the Open Query link in the My Work hub and then clicking on
the Edit Query button in the query results to see the specifics of the query definition. The task
category doesn't have to be limited to just the Task work item type, but can also incorporate
any custom work item types you include in the task category.

If you double-click on a work item in Team Explorer that isn't already opened, it is opened by
default in the preview pane in Visual Studio to prevent window clutter.

There's more…
The My Work hub encourages you to only have one logical task in progress at a time. This
can help you limit the amount of work in progress you have and push you towards finishing
a task completely before starting the next one. Doing one thing at a time is generally a more
productive approach to getting things done than having a lot of different items in progress at
once, never finishing them, and spending all your time context switching between them. If you
want to improve your personal productivity and work smarter, not harder, then this is a good
practice to follow.

Chapter 8

207

On the flip side, if you only work on one thing at a time then what happens when you have to
pause what you are doing and deal with an emergency issue?

If you have used previous versions of TFS you may be familiar with the concept of shelving and
unshelving code. Shelving takes a copy of the changes you have made, stores them on the
server, and then optionally resets your local workspace. Unshelving is just the reverse of that.

In previous versions of Visual Studio, shelving is generally used to either pause work so an
urgent task can be attended to, or as a means of sending code to a colleague for a code
review. Shelvesets could also be associated with work items so that the context of the task
being worked on was retained when the shelveset was created, but as the user experience
wasn't great, most people didn't bother tracking the information.

With Visual Studio 2012 and TFS 2012, the two main shelving activities have been
streamlined and made explicit. Pausing work is now simply a matter of clicking on the
Suspend & Shelve link in the My Work hub. This automatically shelves your current changes,
the work items that were in progress, and the current state of your Visual Studio windows
when you hit the button. It then resets your workspace, clears the work items that were in
progress, and puts you back in a state ready to start another work item.

The work that you had going is then visible in the Suspended & Shelved Work area as shown
in the following screenshot:

See also
ff The Using local workspaces for source control recipe

ff The Performing code reviews recipe

Using local workspaces for source control
By far the biggest gripe that most people have with previous versions of TFS is the source
control management system and the server-based workspace approach. With this approach
the server keeps track of what files it thinks you have on your development machine, and all
check-in and check-out operations require communication with the server.

Working with Team Foundation Server 2012

208

It makes offline work very difficult, and if ever there are changes on your development
machine that the server isn't aware of, you can have problems during check-ins and "get
latest" operations. To prevent this from happening, TFS sets the read-only flag on all files that
are under source control, but this only frustrates developers more since they can't easily edit
files unless they use a tool that knows how to communicate with TFS.

There are valid reasons for a server-side workspace approach related to managing
extremely large source repositories (think multiple gigabytes of source) and you can still
use server-side workspaces if you wish, but for the overwhelmingly large majority of
developers, it is an optimization and tax on development practices that simply isn't needed.

TFS 2012 sees the arrival of a Subversion style approach to source control with the
introduction of local workspaces.

With local workspaces, the TFS server is still the source of truth for source control and is the
only place to which check-ins can occur. However, the decision over which files have been
changed now occurs on your development machine, not the TFS server. Further, Visual Studio
no longer needs to ask the TFS server if it can open a file for editing or not. Also, you can use
any program you want to edit files because the read-only flag is no longer applied to files. This
change also improves the offline editing scenario and you no longer need to mess around with
the "go offline" and "go online" operations that were required with previous TFS versions.

In this recipe, we'll make some changes to the source code so that you can see how the new
approach to source control works.

Getting ready
You will need to have access to a TFS server in order to follow this recipe. It would be best
if you also had a sandbox team project; a project where you can try things and change data
without worrying about it affecting your normal work.

Start Visual Studio 2012, connect to your team project and you're ready to go.

How to do it...
Perform the following steps:

1.	 Create a new Visual Basic .NET class library using the default name. Ensure that the
Add to source control flag is turned on.

Chapter 8

209

2.	 If you choose a local path for your project that is not already mapped to a folder in
source control, you will be prompted for a location in TFS where it should be stored.
Select a folder in your source control tree in which to store the project and click
on OK.

3.	 In Team Explorer, navigate to the Pending Changes hub. The files that will be added
to source control are shown in the Included Changes section.

4.	 Enter a check-in Comment to describe what you are doing and then click on Check In
to submit the changes to TFS. If you are asked to confirm your check-in, click on Yes.

Working with Team Foundation Server 2012

210

5.	 The files will be checked-in and a confirmation of the changes will be displayed in
Team Explorer. If you wish to look at the contents of the changeset you can click on
the changeset number displayed in the notification.

6.	 In Solution Explorer, right-click on the class library project and select Open Folder
in Windows Explorer.

7.	 Right-click on Class1.vb and open the file with Notepad.

8.	 Add some comments to the body of the class, save your changes, and then
close Notepad.

9.	 Switch back to Visual Studio and, if prompted to reload any files, select Yes to All.

10.	 In Solution Explorer you should now see that Class1.vb has been modified (it will
have a tick next to it). Navigate to Team Explorer and within that, go to the Pending
Changes hub. You should now see that Class1.vb is listed as a pending change.

11.	 Switch back to Windows Explorer and make a copy of Class1.vb. Edit the file
in Notepad and change the class name to Class2. Alter the comments in the
body of the class to differentiate it further from the original before saving it and
closing Notepad.

Switch back to Visual Studio, and navigate to the Team Explorer | Pending Changes
hub. The new file you just added won't be listed as an included change, but it has
been detected as a change. Since it's not part of the solution, you will only see it by
looking at the Excluded Changes section and clicking on the Detected changes link.

Chapter 8

211

Instead of including the file into source control directly, you'll want to add it to the
solution properly. To do so, navigate to Solution Explorer and click on the Show All
Files button on the toolbar.

12.	 Right-click on Class 1 – Copy.vb and click on Include in Project.

13.	 Navigate to Team Explorer and the Pending Changes hub again and confirm that the
file is now included as a pending change as shown in the following screenshot. Add a
check-in Comment and then Check In the changes.

Working with Team Foundation Server 2012

212

14.	 A file name of Class1 – Copy.vb is embarrassingly bad. You could rename the file
in Solution Explorer to Class2.vb but that would be too easy! Instead switch to
Windows Explorer and perform the rename there.

15.	 Switch back to Visual Studio and navigate to the Pending Changes hub in Team
Explorer. The rename isn't detected automatically since it wasn't made in Visual
Studio, however you may notice that there are two changes in the Detected
Changes section.

16.	 Click on the Detected Changes link and you will see that the rename is detected as a
delete of the old filename and an add of the new filename. You can let Visual Studio
know that this change is actually a rename by selecting both changes in the add/
delete pair, right-clicking one and choosing the Promote as Rename option. When
you have done this click on the Cancel button to close the window.

17.	 Not only is the rename now listed in the Included Changes section, but the
solution file has also been updated to reflect the change and is also included
as a pending change. Very cool! The Pending Changes hub should now look
like the following screenshot:

Chapter 8

213

18.	 Check-in your changes when you are ready.

How it works...
When using a local workspace, Visual Studio creates a hidden local folder named $tf and
stores within it zipped copies of the workspace version of your source files. Visual Studio
detects changes by comparing the contents of your local files and folders to the contents
of the $tf folder and adds any differences as pending changes.

It might be an obvious warning, but don't delete the $tf folder or any of
its contents, not even if you are short on disk space. Doing so will cause
problems.

You might have noticed that at no time during the recipe did you have to change the read-only
flag on any of the files, nor did you have to check-out any files for edit. In fact the only time
Visual Studio communicated with the TFS server was during the check-in process. All other
changes were managed and tracked locally.

This should alleviate a lot of pain for people who have been used to older versions of TFS
and the way server tracked workspaces operated.

You cannot check in when offline. Check in operations are still server
based and require that you be online and connected to the TFS server.

The detected changes list can grow quite large over time and you may want to ignore certain
folders or files (for example, the /obj and /bin folders). You can either create .tfignore
files to specify what files and paths to ignore, or in Team Explorer you can open the list of
detected changes and exclude files either individually, by extension, or by folder path. Doing so
will create or alter .tfignore files for you and add them to the pending changes list so that
they can be checked-in and shared with all the other developers on the team.

Working with Team Foundation Server 2012

214

There's more…
Be aware that when using a local workspace, you will no longer have any real visibility on the
server over who has checked-out a file. The exception to this is locking files. If you lock a file
the server is notified and can report that you have locked it.

Unshelving a shelveset now merges any shelveset changes with your local edits. Hooray! Any
conflicts between the shelveset and your local version will cause a merge conflict and you will
need to resolve it in the normal manner.

For fans of git (a distributed version control system), Microsoft has recently announced a TFS
plugin for git and made it available at http://gittf.codeplex.com. You can now have a
local git repository that can push/pull from a TFS server. Nice!

See also
ff The Managing your work recipe

Storyboarding user requirements
To help developers improve communication with their stakeholders, Microsoft has added a
tool known as Storyboarding. A storyboard is a set of wireframes and mockups that visually
describe how an application's user interface should work and the interactions that can occur
within that interface.

For Visual Studio 2010 Microsoft pushed Sketch Flow as the tool for UI prototyping. But it is a
complex tool with a fairly steep learning curve, especially for people who aren't familiar with
XAML. People instead turned to lightweight tools such as Balsamiq because of their ease of
use and effectiveness.

Visual Studio 2012's Storyboarding tool is a simple tool much like the other lightweight
prototyping tools, with the benefit that it is built directly into PowerPoint, making it not only
easy to mock up a user interface, but also to add animations and show UI ideas to a room
of people.

In this recipe, you'll create a (very) simple UI prototype with some navigation using the
Storyboarding tool.

Getting ready
Open PowerPoint and you're ready to get started.

Chapter 8

215

How to do it...
Create a Storyboard using these steps:

1.	 In the PowerPoint ribbon, select the Storyboarding tab.

2.	 When you open PowerPoint the default presentation has a single slide that uses the
Title Slide layout. Using the Layout button on the ribbon, change this to the Blank
layout in order to remove the placeholders from the slide.

3.	 Click on the Storyboard Shapes button in the ribbon to show the Storyboard Shapes
tool window.

Working with Team Foundation Server 2012

216

4.	 In the Backgrounds category, double-click on the Web Browser (Windows 8)
item to add it to the slide. Position it at the bottom of the slide as shown in the
following screenshot:

5.	 In the Common category, double-click on the List shape to add it to the slide.

6.	 Now grab the bottom-right drag handle of the shape and change the width and
height of the list box as shown in the following screenshot:

Chapter 8

217

7.	 Add a new slide to the presentation and then navigate back to the first slide.

8.	 Select the web browser control at the bottom of slide 1 and then click on the next
button within the control so that it is selected.

9.	 Now right-click on the selected shape and choose Hyperlink from the context menu.

10.	 In the dialog box, choose Place in This Document from the Link to options, select
Next Slide from the Select a place in this document options, and then click on OK.

11.	 Press F5 to start the presentation.

12.	 Click on the next button in the address bar to advance to the blank slide. The blank
slide represents the next screen/page you might have in your application.

How it works...
Building the layout of an application is simply a matter of placing the appropriate shapes on
slides. Anyone who knows how to use PowerPoint should feel right at home doing this. By
leveraging that inbuilt functionality you were also able to run a slide show and click elements
of your storyboard to simulate navigation.

Working with Team Foundation Server 2012

218

What you may not have noticed was the automatic resizing applied to the list box's scroll bar
when the list box was resized. Normally if you change the size of a PowerPoint shape all the
elements of the shape are resized equally. This would mean the scroll bar should have been
resized when the list box was made larger, but that would make it look very wrong. To prevent
this from happening, the storyboard shapes have metadata in them to specify which elements
are resizable and in which directions. For example, the scroll bar wasn't resized for width but it
was for height, and the up/down arrows at the ends of the scroll bar remained a single,
static size.

There's more…
Some of the shapes include animations in them, such as the Click shape. When you add the
Click shape to your slide you will see the path the shape will travel along when the animation
begins. Simply resize and reposition this path as desired and you can easily add simulated
interactivity to your prototypes and further improve understanding of how the user interface
should behave.

Storyboards make most sense when they are linked to work items and used as design notes,
with the new process templates in TFS 2012 specifically catering for this.

In order to link a storyboard to a work item the PowerPoint file needs to be saved to a shared
location (that is, a network share). Once that is done you can click on the Storyboard Links
button in the Storyboarding ribbon to begin the process.

In the dialog box, click on the Link to button, find the work item you want to attach the
storyboard to, and then click on OK.

The storyboard will then be linked to the work item(s) as shown in the following screenshot:

Clicking on the View Work Item link will display the selected work item's details and clicking
on the Storyboards tab of that work item will show the linked storyboard(s).

Chapter 8

219

Obviously, if you saved the storyboard to a network location that others can't access, you won't
be helping the team very much, so make sure storyboards are saved to shares that the whole
team can access, or use your SharePoint project portal (if you have one).

Performing code reviews
When developing in a team, one of the more widely recommended practices for improving
code quality and overall consistency is to conduct code reviews.

Visual Studio 2012 combined with TFS 2012 supports the code review process and does so in
a very straightforward manner.

In this recipe you'll see just how this works.

Getting ready
You will need to have access to a TFS server in order to follow this recipe. It would be best if
you use a sandbox team project, a project where you can try things and change data without
worrying about it affecting your normal work.

You will also need to have two accounts you can use; one for the submitter of the code review
and one for the reviewer. If you don't personally have two accounts, that's ok. Just get a
colleague to act as your reviewer, it's what you'd need to do in a real project in any case!

Start Visual Studio 2012 and connect to your team project using the submitter's account.

Working with Team Foundation Server 2012

220

How to do it...
Perform a code review using the following steps:

1.	 Start a new C# ASP.NET MVC 4 Web Application project using the Internet
Application template and add the solution to source control. See the Using local
workspaces for source control recipe if you're not sure how to do this.

2.	 Go to the Pending Changes hub in Team Explorer and check-in the code.

3.	 Open the Controllers\HomeController.cs file and remove the blank lines from
the controller methods, change the contents of the message text, and change the
name of the About method to AboutUs.

4.	 Open the Views\Home\Index.cshtml view and alter the text of the page
to something you like. The Pending Changes hub should now look like the
following screenshot:

5.	 Click on the Actions drop-down menu and select Request Review.

Chapter 8

221

6.	 In the New Code Review pane, enter the name of your reviewer and press Enter.
The reviewer should be the second user account you are using in this recipe, as
mentioned in the Getting Ready section. Add a subject for the code review, such as
Check my code please and then click on Submit Request.

Team Explorer will then switch to the My Work hub and show the code review
request as an outgoing request.

7.	 Switch to your reviewer user account, open Visual Studio, and connect to Team
Foundation Server.

8.	 In Team Explorer, open the My Work hub. You should see a code review request
displayed. Note the arrow next to the review indicating it is an incoming request for
you to look at.

Working with Team Foundation Server 2012

222

9.	 Double-click on the code review to begin the review process. Team Explorer will
switch to the Code Review pane and display the details of the review and information
on the files that have been modified.

10.	 Click on Accept in the top section of the Code Review window to start the review
process and dismiss the accept/reject message.

11.	 Click on the HomeController.cs file in the code review. You will see both
the original and modified versions of the file displayed using Visual Studio's
new diff viewer.

Chapter 8

223

12.	 Select the entire AboutUs method from the right-hand pane, right-click on the
selection, and then choose Add Comment from the context menu.

13.	 The focus switches to the comment box in the Code Review pane. Enter a comment,
as shown in the following screenshot, and then click on Save (Ctrl + Enter):

Working with Team Foundation Server 2012

224

14.	 Click on the checkbox next to the HomeController.cs file in the Code Review
pane to indicate that there are no further comments to make on that file.

15.	 Click on the Add Overall Comment link and supply a general comment on the code
review and then click on Save (Ctrl + Enter).

16.	 Make further comments on the review as you wish and, when you are done, click
on the Send & Finish link, choosing the With Comments option from the drop
down that appears.

17.	 Switch back to the submitter user account. In Team Explorer, go to the My Work hub
and click on the refresh button (assuming you left Visual Studio running). Click on the
arrow next to the review request to see the status of the review, and if the review is
complete, double-click on it to display the Code Review hub.

18.	 Click on the HomeController.cs file in the Code Review hub and the diff
viewer will be displayed, including highlights of where comments have been
made by the reviewer.

19.	 As the submitter you would then take action on the review comments as appropriate,
but for the purpose of this recipe, you're going to close the code review. Click on the
Close Review drop-down link and select Complete from the list of options to close
the entire code review request.

Chapter 8

225

How it works...
If you noticed, the code review occurred on code that wasn't even checked-in to source
control. Behind the scenes, asking for a code review automatically creates a shelveset for the
reviewer to look at. Unlike the Suspend & Shelve operation, requesting a code review doesn't
reset your workspace or clear any of the work items you have marked as in progress.

You can also request reviews for changesets that have already been checked-in and other
shelvesets that have been manually created.

See also
ff The Managing your work recipe

ff The Using local workspaces for source control recipe

Getting feedback from your users
When working on a product, one of the most valuable things you can do is get feedback from
your users as to whether the software you have built meets their requirements or not, and
what their opinions of it are.

Even if you have a process that defines clear acceptance criteria for requirements, and you
have a clear definition of what it means to be "done" with a piece of work, you still want
feedback from your users to determine whether there are any other points that may have
been missed when the requirement was first discussed, or if new ideas have occurred now
that they have seen the software running.

A normal feedback process involves telling your users that the software is available and
asking them to please go and try it and let you know what they think. The feedback you
get can often be patchy, verbally reported, and hard to turn into actionable items for
improving the software.

With the new Visual Studio Feedback tool, gathering user feedback becomes a lot simpler
to do and fairly straightforward, so let's try it!

Getting ready
Just make sure you have access to a TFS server and team project.

Working with Team Foundation Server 2012

226

How to do it...
Gather feedback from people by following these steps:

1.	 Go to the Web Access site for your team project and, in the Activities section of the
home page, you should see a Request feedback link. Click on the link to start the
feedback gathering process.

2.	 A dialog will appear asking you to fill in the information in three distinct sections.
Section 1 is named Select Stakeholders, and you must enter the details of the
people you want feedback from. They must be valid TFS users in order to be selected.
For this recipe enter your own account here.

3.	 In section 2, supply the details of how users should access the application.
This would typically be the details of a test site or application to install and run.
Enter the address www.packtpub.com as the address of the web application/site.

http://www.packtpub.com
http://www.packtpub.com

Chapter 8

227

4.	 In section 3, add details for the specific feedback you want from your users.
Click on the add feedback item link to add extra items for feedback, as shown
in the following screenshot:

5.	 Click on the Send button to send the e-mails to your users. Then check your e-mail.
You should see a message similar to the following screenshot:

Working with Team Foundation Server 2012

228

6.	 Because Visual Studio automatically installs the feedback client, you can just
click on the Start you feedback session link in the e-mail. The Feedback client
will then launch.

7.	 Click on the application link to launch the website and then click on the Next button
in the feedback client.

8.	 The feedback client is now ready to accept feedback from the users, and the specific
instructions you entered for the feedback session are shown.

Chapter 8

229

9.	 In the comment section, enter some text and then click on the Screenshot button.
Select a section of the screen for your snapshot by dragging with the mouse to
create a rectangle. The screenshot you take is inserted wherever the cursor is in the
comments box.

10.	 Click on Next when you are ready to move to the next item. Provide more feedback if
you wish and, when ready, click on the Next button again.

11.	 A summary of the feedback will be shown and you can rate each item using a five star
approach. If you are happy with the feedback you have provided, click on the Submit
and Close button to complete the feedback session.

12.	 Switch back to Visual Studio and, in Team Explorer, navigate to the Work Items hub
and double-click on the Feedback query to run it.

Working with Team Foundation Server 2012

230

13.	 The query results will display all of the feedback responses received from your users.
Select one of the items in the list to view the specific details of the feedback along
with any images and attachments that may have been created by the feedback tool.

14.	 At this point you can create new work items based on the feedback or close the
items, just as you would for any other work item.

How it works...
Under the hood, all feedback requests are stored as work items in TFS. The feedback client
adds all responses as child works items linked to the feedback request.

If your users record feedback using audio or video then that data will be included as an
attachment to the work item so that you can replay it when you review the responses.

There's more…
Since a picture speaks a thousand words, you can annotate your feedback screenshots by
double-clicking on them once they have been added to the comments section. By default, this
will open Microsoft Paint, however if you prefer different image editors such as SnagIt or Paint.
NET, then you can configure this using the gear icon at the top of the feedback tool.

Visual Studio
Pot Pourri

In this chapter, we will cover:

ff Creating installer packages

ff Submitting apps to the Windows Store

ff Using the new SQL Server Data Tools

ff Creating Visual Studio add-ins and extensions

ff Creating your own snippets

Introduction
Just like pot pourri, this chapter is a mix of all the little things that go into Visual Studio to
make it smell even nicer! The items in here don't really fit nicely with any of the previous
chapters but are still very valuable and will help you in your day-to-day development activities.

Creating installer packages
With the release of Visual Studio 2010, Microsoft announced that the Visual Studio Installer
project template would no longer ship with Visual Studio and, true to their word, there is no
Visual Studio Installer project in Visual Studio 2012.

So, what are you meant to do if you need to create an installer package for your application?

Visual Studio Pot Pourri

232

If you are creating a Windows Store app then you don't need an installer, as the new
deployment model makes installers obsolete. If you are creating a web application then
Microsoft would prefer you either use XCopy deployment or the MSDeploy web deployment
technology, which means installers are only required for desktop applications, and even for
those there's the Click Once deployment technology to make things easier. Even then, there
are a set of desktop applications that require installer packagers and if you are building
one of those, Microsoft has partnered with InstallShield and included the InstallShield
Limited Edition project type in Visual Studio 2012 that you can use. If you don't want to use
InstallShield you can always fall back to using WiX for creating projects.

In this recipe we will use InstallShield LE to create an installer package for a simple application.

Getting ready
The recipe assumes you haven't yet installed InstallShield Limited Edition. If you have, then
some of the early steps in this recipe will be different.

Simply start Visual Studio 2012, and you're ready to go.

How to do it...

Create an installer using these steps:

1.	 Create a new Visual C# | WPF Application project and name it Simple WPF
Application.

2.	 Go to the project properties page by right-clicking on the project in Solution Explorer
and selecting Properties. In the Application tab set the icon for the application to
either an icon of your choice or the icon located at C:\Program Files (x86)\
Microsoft Visual Studio 11.0\Common7\IDE\ItemTemplates\CSharp\
General\1033\Icon\Icon.ico.

If you are using a 32-bit operating system the path will use
Program Files instead of Program Files (x86).

3.	 Build the solution to make sure it compiles properly. If you have already installed
InstallShield Limited Edition you can jump down to step 7.

4.	 Right-click on the solution and add a new project using the Other Project Types |
Setup and Deployment | Enable InstallShield Limited Edition template.

Appendix

233

5.	 A browser window will appear with instructions on how to enable InstallShield in Visual
Studio 2012. Click on the link to redirect to the InstallShield website, register your
details, and download the file as directed. When the download completes, save your
solution, close Visual Studio 2012, and then run the InstallShield setup executable.

6.	 Restart Visual Studio 2012 and open the solution you created in Step 1.

7.	 Right-click on the solution in Solution Explorer and choose Add | New Project from
the context menu. In the Add New Project dialog, choose Other Project Types |
InstallShield Limited Edition | InstallShield Limited Edition Project, give it the
default name, and then click on OK.

8.	 If this is the first time you have used InstallShield since it was installed you will be
asked whether you wish to evaluate or register. Choose to register and activate the
product using the serial number you should have received in your e-mail.

9.	 The InstallShield project assistant will appear in the document window.

10.	 Click on the right arrow (the "next" button) at the bottom of the project assistant to
advance to the Application Information page. Enter a company web address such
as www.company.com.

http://www.company.com

Visual Studio Pot Pourri

234

11.	 Advance through the project assistant until you get to the Application Files
page. Select the My Product Name node from the tree and then click on Add
Project Outputs.

12.	 In the Visual Studio Output Selector dialog, select the Primary output item and click
on OK.

13.	 Click on the next button to go to the Application Shortcuts page. Click on the New
button to add a shortcut to your application. Choose [ProgramFilesFolder]\My
Company Name\My Product Name\Simple WPF Application.Primary output from
the dialog and click on Open.

14.	 The shortcut is named Built by default. That's not very useful, so click the shortcut
name to edit it and rename it to Simple WPF Application.

15.	 Right-click on the Setup1 project in Solution Explorer and select Install from the
menu. If prompted to build out of date projects, click on Yes.

Appendix

235

16.	 Step through the setup wizard to install the program. Verify that the program is
installed correctly by looking for the application in your Start Menu or Start Page.

17.	 Remove the program from your system by right-clicking on the Setup1 project and
selecting Uninstall.

How it works...
InstallShield reduces the complexity in creating installers by providing a set of sensible default
configuration options and an easy to use user interface. It also understands exactly how
the Windows installer system works and warns when there are problems in how you have
configured the installation process. For example, if you look at the warning outputs from the
recipe when the package was built, you would have seen a warning about the .NET Framework
and how it would be a good idea if that was included with the setup kit to ensure people who
don't have .NET already installed won't have extra setup dependencies.

While you can achieve the same result using WiX, the amount of work required to get the
XML written and debugged to achieve the same result would have made this a much, much
longer recipe!

A license for the Limited Edition is provided free of charge with Visual Studio 2012 and will
be sufficient for the basic installation purposes. If you need a heavily customized installation
process then you should investigate the more advanced versions of InstallShield or competing
offerings such as Nullsoft's NSIS.

Visual Studio Pot Pourri

236

Submitting apps to the Windows Store
While existing legacy desktop style applications can be distributed using current mechanisms,
the only way to distribute Windows Store apps will be via the Windows Store, and they must
pass a certification process for that to happen.

Enterprises and developers will be able to side-load their Windows Store apps, bypassing the
store restrictions.

Getting ready
Start Visual Studio 2012 in Windows 8 and you're all set to begin.

How to do it...
Perform the following steps:

1.	 Start a new Visual C# | Windows Store | Blank App (XAML) project.

2.	 From the menu, select Project | Store | Open Developer Account.

3.	 A browser window will open and you can apply for a developer account using the
process as outlined on the page. Windows Store accounts may require a payment
of a small license fee, so have a credit card handy when you perform this step.

4.	 Once you have an account, switch back to Visual Studio and from the menu choose
Project | Store | Reserve app name.

5.	 Again a browser window will open and you will be directed to the Windows Store to
register the name for your application. Follow the process as described on that page.

6.	 From the Visual Studio menu, select Project | Store | Edit App Manifest and use the
information from the app name reservation to populate the appropriate fields. Take
particular note of the fields on the packaging tab.

7.	 Alternatively you can select the Project | Store | Associate App with the Store menu
entry and follow the steps of the wizard to automatically populate the packaging tab
with the appropriate values.

Appendix

237

8.	 Write your application. No, really you should. There is no point submitting an
application that does nothing.

9.	 Verify your application using the Windows App Certification Kit. Refer to the Validating
your Windows Store app recipe in Chapter 2, Getting Started with Windows Store
Applications to do this.

10.	 Package your application for uploading to the store by choosing Project | Store |
Create App Package.

11.	 Upload the package to the store by selecting Project | Store | Upload App Package
from the menu and following the steps presented in the ensuing upload wizard.

12.	 Once the upload completes you can monitor the progress of your package through
the approval process using the tools provided by the store.

Visual Studio Pot Pourri

238

How it works...
The Store submenu is only available when running Visual Studio in Windows 8 and when you
have opened the solution for a Windows Store app.

When you upload a package to the store there are a number of basic sanity checks to verify your
package is acceptable and meets the requirements of the Windows Store. These checks include
running the certification toolkit on your app and verifying the manifest information against the
information you supplied when you registered the app name. Using Visual Studio's Associate
app with the store wizard is an easy way to make sure you don't have any typographical errors
in your manifest and it improves the chances of a successful first time submission.

There's more…
If you want to make money with Windows Store apps you aren't limited solely to upfront
purchase revenues.

You can also distribute your app using a trial mode that encourages a try before you buy
approach, provides functionality for in-app purchases, in-app advertising using any ad platform
you choose, and you can even implement you own transaction system if you so desire.

For in-app purchases and trial versions of your product, Microsoft bundles supporting
functionality in the Windows.ApplicationModel.Store namespace to make it easier
for you to build applications with these features.

If you want to confirm what are the requirements for App certification refer to the Microsoft
documentation on the subject at http://msdn.microsoft.com/en-us/library/
windows/apps/hh694083.aspx.

See also
ff The Packaging your Windows Store app recipe, Chapter 2, Getting Started with

Windows Store Applications

ff The Validating your Windows Store app recipe, Chapter 2, Getting Started with
Windows Store Applications

http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx

Appendix

239

Using the new SQL Server Data Tools
Visual Studio 2012 has removed the old Visual Studio Database Project type (also known
as DataDude) and replaced it with the new SQL Server Database Project type, powered by
the new SQL Server Data Tools (SSDT) and including support for SQL Server 2012 and SQL
Server Azure.

There's a lot we could cover here but we'll keep it short and you can go exploring for yourself
once you've cooked up this particular recipe.

For this recipe, you're just going to create the simplest of database definitions and deploy it so
that you can see how the basic operations are performed.

Getting ready
You will need a SQL Server database server for this recipe, and you will need to have
permissions to deploy to it. A SQL 2012 Express database is included with the Visual Studio
2012 installation and is recommended for use with this recipe.

Make a note of the connection string for your database. If you are using SQL 2012 Express
then it is most likely (localdb)\Database1 or something very similar. You can confirm this
by using SQL Server Object Explorer in Visual Studio, as shown in the following screenshot:

How to do it...
Create a database using the following steps:

1.	 Create a new SQL Server | SQL Server Database Project project using the
default name.

2.	 Right-click on the project in Solution Explorer and from the context menu select
Add | Table. Leave the table name as Table1 and click on Add.

Visual Studio Pot Pourri

240

3.	 Table1.sql will be added and the designer will be opened in the document
area. Just like the previous database projects, a declarative approach to creating
databases is used.

4.	 In the designer, add a column to the table called Description with a type
of nvarchar(50) and turn off the Allow Nulls flag. As you do so, the T-SQL
in the designer will be updated to reflect the changes you have made.

5.	 Build the project and look at the Build information in the Output window.
You should see that both a .dll file and a .dacpac file were created as part
of the build process.

6.	 Assume Table1 is designed to store reference data for an application. In other
words the table must be populated when the database is deployed or it will be
invalid. Right-click on the project and from the context menu select Add | Script,
then choose Post-Deployment Script. Leave the name as the default and click
on Add.

7.	 In the script, add the following T-SQL code to populate the table with the values
you want:

Appendix

241

8.	 Right-click on the project in Solution Explorer and select Publish.

9.	 In the Publish Database dialog box click on Edit to define the connection string
for the database you will deploy to, confirm the Database name is correct and then
click Publish.

If you don't have a SQL 2012 database available for use you can change
the Target Platform to match your database server version in the project's
property pages.

How it works...
While it should be familiar to developers who used the previous Visual Studio Database
Projects (also known as DataDude), the changes under the hood for SSDT are significant.
Not only does it support two new data platforms, but it also sports a new deployment model
and the new DacPac format that can either be imported directly into a SQL 2012 database
or applied using the SqlPackage command-line tool that comes with the database server.

The SQL Server Data Tools are intended to be a replacement for SQL Server Management
Studio, so you should find that SQL Server Object Explorer provides you with much the same
level of functionality as you are used to in Management Studio, albeit with a different manner
of getting to that functionality.

Visual Studio Pot Pourri

242

Creating Visual Studio add-ins and
extensions

When Microsoft released Visual Studio 2010 they changed the approach to extensibility by
introducing the VSIX format and the number of extensions in the Visual Studio gallery is a
testament to how successful this change has been.

So, what do you do if you want to make your own add-ins and extensions in Visual Studio?
This recipe will walk you through that process, though the magic that happens inside the
add-in or extension is up to you!

Getting ready
To create extensions you will need the Visual Studio 2012 SDK, which you can download
from Microsoft.

Once the SDK is installed, start Visual Studio 2012 and you're ready to go.

How to do it...
Perform the following steps:

1.	 Start a new project using the Other Project Types | Extensibility | Visual Studio
Add-in project type and the default name.

2.	 The Add-in Wizard will launch. Click on Next on the first page.

3.	 Choose the language you want to develop in. For the recipe choose C# and click
on Next.

4.	 Click on Next to choose the default Application Host (which will be Visual
Studio 2012).

5.	 Provide a name and description for the add-in if you are feeling creative, otherwise
just click on Next.

6.	 Click on Next to take the defaults for the Add-in Options, click on Next again to skip
the Help About information, and finally click on Finish.

7.	 The wizard will generate an application skeleton including all of the necessary
references for building Visual Studio 2012 add-ins.

8.	 At this point you can go and make magic by implementing your application.

9.	 Pressing F5 will start a new instance of Visual Studio in debug mode (it may take
a while to start) where you can use the Add-in manager to enable your add-in and
check its functionality. For now, leave the add-in as it is so you can move on to
creating an extension.

Appendix

243

10.	 Add a new project to your solution using the Visual C# | Extensibility | Editor
Viewport Adornment template, leaving the name as the default. If this option isn't
available check if you have installed the Visual Studio SDK correctly.

11.	 Open the source.extension.vsixmanifest file and populate the Author field
with your name.

12.	 Set the new extension project as the default startup project and press F5 to start
debugging. A new instance of Visual Studio will be launched using the experimental
hive. The experimental hive is a separate set of Visual Studio settings you can use
when testing extensions that won't affect your normal development settings.

Because a debugger is attached, starting the experimental instance
of Visual Studio may take longer than you are used to.

13.	 When Visual Studio has finished loading it will automatically instantiate the extension
making it active and available. From the Visual Studio menu, select File | New File
| File, select General | Text File, and on click Open. You should see a purple box at
the top-right of the editor surface, proving that the extension is working as expected.

14.	 Close the experimental instance of Visual Studio.

How it works...
There's a big difference between add-ins and extensions in Visual Studio. Add-ins are the old
way of extending Visual Studio and are fairly complex to build, whereas Extensions are the
preferred approach from Visual Studio 2010 onwards and are much easier to implement.

An add-in has to implement an extensibility interface and, while this means your add-in can
work with Visual Studio versions prior to 2010, it is limited to functionality exposed by the
DTE interfaces and as a developer you have to deal with a number of COM interfaces. An
extension, on the other hand, has to implement a Managed Extensibility Framework (MEF)
contract and is not as restricted in the API's it can access or in the way it is implemented.

There's more…
There is a lot more flexibility in building extensions over add-ins and this also applies to the
update and distribution mechanism, however if you really need to get to the internals of Visual
Studio or you need to support Visual Studio 2008 or earlier then you will need to look at the
add-in approach.

Visual Studio Pot Pourri

244

The Extension Manager introduced with Visual Studio 2010 is the way extensions are
distributed and it becomes even more central to a great Visual Studio 2012 experience as
Microsoft is now distributing Visual Studio updates via the extension manager. If you look at
the Updates section you will see categories for Visual Studio Gallery and Samples Gallery,
as well as a new one for Product Updates. When new updates for Visual Studio are available
they will appear in this area though it's still up to you as to whether you install them or not.

When you complete the recipe, if you want to remove all trace of your
add-in from Visual Studio remove the .addin file from Documents\
Visual Studio 2012\Addins.

Creating your own snippets
Visual Studio snippets are a great way to quickly write repetitive chunks of code using the
same basic structure and can save you a lot of time and typing.

In Visual Studio 2012, snippets have been extended to work on more than just standard code
files, so whenever you find yourself writing repetitive code and thinking "I've typed this sort
of thing before!", then you are probably looking at a piece of code that could be turned into
a code snippet.

For example, you may want to generate a class signature that inherits from a specific base
class you use in your application, or you may have a certain attribute that needs to be placed
above method calls to enable logging, or you may have specific IDs you want to use in HTML
elements to ensure CSS styles can be consistently applied to your web pages.

Unfortunately Visual Studio still doesn't have an inbuilt way of authoring your own snippets so
you will have to use XML. Fortunately it only takes a few minutes to create a snippet and the
time you can save once it exists makes it worth doing.

This recipe will show you how to create your own snippets and make them available inside
Visual Studio.

Getting ready
Simply start Visual Studio 2012 and you're ready to go.

Appendix

245

How to do it...
Create your own snippet using the following steps:

1.	 From the menu, choose File | New | File, select XML File, and click on Open.

2.	 Populate the file using the following XML code:

3.	 Save the file as spanned text.snippet in your Documents folder.

4.	 From the menu, select Tools | Code Snippets Manager.

5.	 Click on the Import button. Select the file you saved in step 3 and click on OK.

6.	 Leave the location as My HTML Snippets, as suggested, and click on Finish. The
snippet file will be automatically copied to the appropriate location in Documents\
Visual Studio 2012\Code Snippets.

Visual Studio Pot Pourri

246

7.	 In the Snippet Manager, change the Language to HTML and expand the My HTML
Snippets location to confirm your snippet has been loaded.

8.	 From the menu, select File | New | File, select General | HTML Page, and click
on Open.

9.	 In the contents of the body tag, enter <p>this is some text</p>.

10.	 Select the words is some. Right-click on the selection, choose Surround With, then
My HTML Snippets | Wrap text in a span, and hit Enter.

11.	 The snippet will be expanded and the contents of the id attribute for the span will be
selected. Enter the text myId to replace the highlighted elementId placeholder and
hit Enter.

12.	 The cursor will move to the end of the closing span tag.

How it works...
The Declarations section of the snippet defined id as a Literal variable. By declaring
the snippet as an Expansion snippet, Visual Studio automatically scanned the code body
of the snippet for an identifier placeholder of id so that it could populate it with the default
value and prompt you for your own value.

By declaring the snippet as a SurroundsWith snippet, the selected text is passed to
the $selected$ placeholder in the body, and when the snippet completes the end
placeholder indicates where the cursor should be positioned.

Appendix

247

There's more…
There is a Snippet Designer project on Codeplex (http://snippetdesigner.codeplex.
com/) that offers a GUI tool to make creating snippets much easier. It also enables you to
select a section of code and export that as a snippet so that you have an easy starting point
for making your own custom snippets.

Remember that snippets are more than just a simple text entry/replacement mechanism
and it's worth spending a little time looking through the full schema reference for snippets on
MSDN at http://msdn.microsoft.com/en-us/library/ms171418(VS.110).aspx
to get a better idea of what they can do for you.

http://snippetdesigner.codeplex.com/
http://msdn.microsoft.com/en-us/library/ms171418(VS.110).aspx
http://msdn.microsoft.com/en-us/library/ms171418(VS.110).aspx

Index
Symbols
3D model

creating 191
creating, steps for 192-194
working 194

3D Model support 29
[Bindable] attribute 175
-moz- attribute 74
.NET applications

unit testing 111-115
.NET projects

and Metro profile 39
-webkit- attribute 74

A
Aaron Powell

URL 75
AboutUs method 223
ActionBlock object 166, 167
actors 166
add feedback item link 227
add-ins, Visual Studio

creating 242, 243
Add Overall Comment link 224
append() method 76
App Manifest 55
ASP.NET MVC 2 projects 10
ASP.NET process

debugging 131, 132
ASP.NET Web Stack

URL 107
Associate app with the store wizard 238
AsyncController class 165

asynchronous code
about 125
creating 150
creating, steps for 150-155
working 155

asynchronous tests 116
asynchronous web applications

about 161, 162
creating, steps for 162-164

asynchronous Windows Runtime
about 156
steps 157-161

async keyword 153, 154, 164
async method 160
Attach to Process dialog 131, 132
Available Declarations drop down 54
await keyword 154

B
Basic Page item template 43
Blank App template 35
Blank layout 215
bundling 79-83

C
C++

about 171
data binding 175
XAML, using 172-175

Calculator class 113
Calculator() constructor 113
capabilities

about 52
Home or Work Networking capability 58

250

Internet (Client) capability 57
Internet (Client & Server) capability 58

C++ applications
unit testing 175-179

C++ code
analyzing 180
analyzing, steps for 180-182
working 182

class libraries
portable class libraries 117
sharing, across runtimes 117-119

Class Library project 38
C++ Metro apps 39
code

in production, debugging 133-138
making asynchronous 150
old search dialog 25
regular expressions, using 25
searching 23
searching, steps for 24

code reviews
performing 219
performing, steps for 220-230

CoffeeBundler package 108
Color Picker button 71
color property 73
COM Interop 39
commands, Visual Studio

finding 16-19
Common category 216
Complete() method 169
concurrency visualizer

about 144
improvements 144-147
working 148

Console.ReadKey() statement 129
contents variable 153
Continuous Testing 112
contract picker 56
contracts

about 52
contract picker 56
file open picker 56
File Type Associations contarct 57
search contarct 56
share target contarct 57

CSS bundling 79-83
CSS editor

improvements 70-74
CubeRenderer$$Render() method 186
C# Workflows 102

D
DataDude. See Studio Database Project type
declaration 53
Declarations section 246
DGSL (Directed Graph Shader Language)

about 29, 186
used, for creating shader 186-190

Direct2D App (XAML) template 38
Direct3D App template 38
DirectX acceleration 29
DirectX application 172
DirectX, Visual Studio 2012

working with 182-185
DLL (Metro style apps) template 38
DownloadStringTaskAsync() method 155
duplicate code

detecting 119-121
working 122

E
editor windows

managing 11-14
Effect property 193
existing solution

upgrading 8-10
Extension Manager 244
extensions, Visual Studio

creating 242, 243

F
feedback

getting, from users 225-229
Filename property 193
File Open Picker Contract item template 43
file picker contract 56
File Type Associations contract 57
Final Color node 190
Find button 132

251

Find in Files option 102
Find tool 23
Fixed Layout App template 37
for loop 130

G
go() function 77
go() method 78
Graphics Pipeline Stages window 199
graphic tools

3D Model support 29
MIP mapping 29
pixel shaders 29
using 25-27

Grid App template 35-37
Group Detail Page item template 43
Grouped Items Page item template 43

H
hierarchical indentation feature 72
HLSL shaders 29
Home or Work Networking capability 58
HTML5 web pages

about 66
creating, steps for 66-69
working 69

HttpClient class 156, 160

I
IIS Express

about 65
URL 66

INotifyPropertyChanged interface 175
Install button 108
installer packages

creating 231
creating, steps for 232-235
working 235

InstallShield 235
IntelliTrace 133
Internet (Client) capability 57
Internet (Client & Server) capability 58
Item Detail Page item template 43
ItemListView_SelectionChanged() method 50
Items Page item template 43

J
JavaScript editor

improvements 75-78
regions 79
working 78

jumpy rotation 186

L
library access 58
LinkTo() method 169
LoadFeeds button 159
LoadFeeds.Click event handler 160
local workspaces

using, for source control 207-213

M
Main() method 151, 185
MainPage class 174
Managed Extensibility Framework. See MEF
margin-top attribute 87
MEF 166
Metro app

validating 63, 64
Metro item templates

adding, to app 40-42
Basic Page item template 43
File Open Picker Contract item template 43
Group Detail Page item template 43
Grouped Items Page item template 43
Item Detail Page item template 43
Items Page item template 43
Search Contract item template 43
Share Target Contract item template 43
Split Page item template 43
technology choices 44

Metro profile
and .NET projects 39

Metro project types
about 35
Blank App template 35
Class Library project 38
Direct2D App (XAML) template 38
Direct3D App template 38
DLL (Metro style apps) template 38
Fixed Layout App template 37

252

Grid App template 35-37
Navigation App template 37
Split App template 37
Static Library (Metro style apps) template 38
technology choices 38
Unit Test Library project 38
Windows Runtime Component 38

Metro style apps
about 7, 31, 32
notifications 62
package, signing 62
packaging 58
packaging, steps for 59-61
working 62

Microsoft Native Minimum Rules rule set 182
Microsoft Native Recommended Rules rule

set 182
Microsoft website

URL 126
minification 79-83
MIP mapping 29
m_isRotating flag 184
MSDN

snippets, URL 247
MSTest 111, 112
multithreaded code 125
MyColor class 175

N
navigating 19-23
Navigation App template 37
NuGet

packages, managing with 107-109
working 110, 111

O
office projects 7
old search dialog 25
OnLaunched method 41
opacity code snippet 73

P
packages

managing, with NuGet 107-109

PageAsyncTask object 163
Page_Init() method 163
page inspector

used, for verifying pages 84-87
Page_Load() method 20
Page_OrientationChanged() method 50
Page_PreRender() method 164
pages

partial pages and user control 88
verifying, page inspector used 84-87

panning 102
parallel code

debugging 139
debugging, steps for 140-143
working 143

Parallel.For loop 165
Parallel LINQ. See PLINQ
Parse() method 153
partial pages

and user control 88
Pending Changes hub 212
pipeline 166
Pixel History icon 196
pixel shaders 29
PLINQ 139
PointerEventArgs class 185
Portable Class Library project 7, 117
Preview Selected Items button 14, 15
private variable 183
ProcessFeedsAsync method 155
ProcessFeedsAsync() method 154
production code

debugging 133-138
project

and operating system 7
new project, creating 5-7
new project, types 7
office projects 7
Portable Class Library project 7
retired project templates 7

Promote as Rename option 212
PublishedDate() method 151, 159

Q
Qualifier drop down 132
Quick Access Toolbar 94

253

Quick Find option 102
Quick Launch control 19

R
ReadFeed() helper method 159
ReadFeed() method 151, 153, 163
ReadKey() method 129, 154, 155
RegisterBundles() method 81
remote machines

debugging on 126-131
retired project templates 7
ribbon

adding, to WPF 92-96
RibbonTab button 96
RotatingCube$$Run() method 184
round tripping 8
runtimes

class libraries, sharing 117-119

S
Scripts.Render() statement 81
search contract 56
Search Contract item template 43
searching 19-23
setTimeout method 77
shader

about 191
creating, DGSL used 186-190

Shader property 193
Share Target Contract item template 43, 57
SharpDX

URL 186
Silverlight 3 11
single click preview

in Solution Explorer 14
SkyDrive app 56
SkyDrive storage space 32
SmallImageSource attribute 96
smart pointer 175
Snippet Designer project

URL 247
snippets, Visual Studio

creating 244-246
Solution Explorer

single click preview 14

source control
local workspaces, using 207-213

Split App template 34, 37
Split Page item template 43
SQL Server Data Tools

database creating, steps for 239, 240
using 239
working 241

Start Debugging menu option 45
Start you feedback session link 228
state machine

creating, in Visual Studio 2012 97-102
Static Library (Metro style apps) template 38
storyboarding

about 214
creating, steps for 215-217
working 217

Storyboard Shapes tool window 215
Studio Database Project type 239
Style property editor 71

T
tab

customizing 15
tablets

debugging on 126-131
Task Parallel Library. See TPL
Task<string> object 153
Task.WhenAll method 154, 160
Team Explorer tool 203
Team Foundation Server 2012. See TFS
TestSettings files 115
textwidth() method 76
TFS

about 201
code reviews, performing 219-225
feedback, getting from users 225-230
local workspaces, using for source control

207-212
used, for managing work 202-205

Thread.Sleep method 144
Title Slide layout 215
TPL 139

about 165
TPL Dataflow Library

about 165

254

creating 166-168
working 169

TransformBlock object 166, 167
trim() method 79

U
unit testing

.NET applications 111-115
C++ applications 175-179
running, in debug mode 180

Unit Test Library project 38
user control

and partial pages 88
users

feedback, getting from 225-230

V
variable values 139
Visual Studio

database projects 10
Visual Studio 2012

about 5
DirectX, working with 182-185
new project, creating 5-7
state machine, creating 97-102

Visual Studio add-ins
creating 242, 243

Visual Studio commands
finding 16-19

Visual Studio extensions
creating 242, 243

Visual Studio Graphics Debugger
using 194-197
working 198

Visual Studio snippets
creating 244-246

W
WCF service, task-based

creating 103
creating, steps for 103-106
working 106

web applications
and asynchrony 161, 162

WebClient class 156
window

customizing 15
Windows 8 Metro app

about 33
creating, steps for 34
Metro item template, adding 40-42
submitting, to Windows store 236, 237

Windows 8 simulator
about 44, 45
location settings 52
remote debugging 51
resizing 51
resolution 51
screenshots, taking 52
using, steps for 45-50
working 50

Windows Presentation Foundation. See WPF
Windows RT 32
Windows Runtime

about 7
and asynchrony 156, 157
development technology, selecting 33

Windows Runtime Component 38
Windows store

Windows 8 Metro app, submitting to 236,
237

WinRT. See Windows Runtime
work

managing 202
managing, TFS used 202-206
managing, Visual Studio 2012 used 202-206

WorkflowIdentity class 103
workflows

versioning 103
Work Item form 204
Work Item Search field 206
WPF

about 92
ribbon, adding 92-96

X
XAML

using, with C++ 172-175
xamltypeinfo.g.cpp 175

Thank you for buying
Visual Studio 2012 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Software Testing using
Visual Studio 2010
ISBN: 978-1-849681-40-7 Paperback: 400 pages

A step-by-step guide to understand the features and
concepts of testing applications using Visual Studio.

1.	 Master all the new tools and techniques in Visual
Studio 2010 and the Team Foundation Server for
testing applications

2.	 Customize reports with Team foundation server

3.	 Get to grips with the new Test Manager tool for
maintaining Test cases

4.	 Take full advantage of new Visual Studio features
for testing an application's User Interface

Microsoft Visual Studio
LightSwitch Business
Application Development
ISBN: 978-1-849682-86-2 Paperback: 384 pages

A jump-start guide to application development with
Microsoft's Visual Studio LightSwitch

1.	 A hands-on guide, packed with screenshots and
step-by-step instructions and relevant background
information—making it easy to build your own
application with this book and ebook

2.	 Easily connect to various data sources with
practical examples and easy-to-follow instructions

3.	 Create entities and screens both from scratch and
using built-in templates

Please check www.PacktPub.com for information on our titles

Microsoft SharePoint
2010 Development with
Visual Studio 2010: Expert
Cookbook
ISBN: 978-1-849684-58-3 Paperback: 296 pages

Develop, debug, and deploy business solutions for
SharePoint applications using Visual Studio 2010

1.	 Create applications using the latest client object
model and create custom web services for your
SharePoint environment with this book and ebook.

2.	 Full of illustrations, diagrams and key points for
debugging and deploying your solutions securely
to the SharePoint environment.

Refactoring with Microsoft
Visual Studio 2010
ISBN: 978-1-849680-10-3 Paperback: 372 pages

Evolve your software system to support new and
ever-changing requirements by updating your C# code
base with patterns and principles

1.	 Make your code base maintainable with
refactoring

2.	 Support new features more easily by making your
system adaptable

3.	 Enhance your system with an improved object-
oriented design and increased encapsulation and
componentization

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Discovering Visual Studio 2012
	Introduction
	Creating a new project
	Upgrading an existing solution
	Managing editor windows
	Finding Visual Studio commands
	Navigating and searching
	Searching your code
	Using the graphics tools

	Chapter 2: Getting Started with Windows Store Applications
	Introduction
	Creating a Windows Store app
	Adding a Windows Store item template to your app
	Using the Windows 8 simulator
	Defining capabilities and contracts
	Packaging your Windows Store app
	Validating your Windows Store app

	Chapter 3: Web Development: ASP.NET, HTML5, CSS, and JavaScript
	Introduction
	Creating HTML5 web pages
	Taking advantage of CSS editor
improvements
	Understanding the JavaScript editor
improvements
	JavaScript and CSS bundling and
minification
	Verifying pages with the Page Inspector

	Chapter 4: .NET Framework 4.5 Development
	Introduction
	Adding the Ribbon to a WPF application
	Creating a state machine in Visual Studio 2012
	Creating a Task-based WCF service
	Managing packages with NuGet
	Unit testing .NET applications
	Sharing class libraries across runtimes
	Detecting duplicate code

	Chapter 5: Debugging Your .NET Application
	Introduction
	Debugging on remote machines and tablets
	Debugging code in production
	Debugging parallel code
	Visualizing concurrency

	Chapter 6: Asynchrony in .NET
	Introduction
	Making your code asynchronous
	Asynchrony and Windows Runtime
	Asynchrony and web applications
	Actors and the TPL Dataflow Library

	Chapter 7: Unwrapping C++ Development
	Introduction
	Using XAML with C++
	Unit testing C++ applications
	Analyzing your C++ code
	Working with DirectX in Visual Studio 2012
	Creating a shader using DGSL
	Creating and displaying a 3D model
	Using the Visual Studio Graphics Debugger

	Chapter 8: Working with Team Foundation Server 2012
	Introduction
	Managing your work
	Using local workspaces for source control
	Storyboarding user requirements
	Performing code reviews
	Getting feedback from your users

	Appendix: Visual Studio
Pot Pourri
	Introduction
	Creating installer packages
	Submitting apps to the Windows Store
	Using the new SQL Server Data Tools
	Creating Visual Studio add-ins and
extensions
	Creating your own snippets

	Index

