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Preface 

This second edition of The History of Mathematics: A Brief Course must begin 
with a few words of explanation to all users of the first edition. The present vol-
ume constitutes such an extensive rewriting of the original that it amounts to a 
considerable stretch in the meaning of the phrase second edition. Although parts 
of the first edition have been retained, I have completely changed the order of pre-
sentation of the material. A comparison of the two tables of contents will reveal 
the difference at a glance: In the first edition each chapter was devoted to a single 
culture or period within a single culture and subdivided by mathematical topics. 
In this second edition, after a general survey of mathematics and mathematical 
practice in Part 1, the primary division is by subject matter: numbers, geometry, 
algebra, analysis, mathematical inference. 

For reasons that mathematics can illustrate very well, writing the history of 
mathematics is a nearly impossible task. To get a proper orientation for any par-
ticular event in mathematical history, it is necessary to take account of three inde-
pendent "coordinates": the time, the mathematical subject, and the culture. To 
thread a narrative that is to be read linearly through this three-dimensional ar-
ray of events is like drawing one of Peano's space-filling curves. Some points on 
the curve are infinitely distant from one another, and the curve must pass through 
some points many times. From the point of view of a reader whose time is valuable, 
these features constitute a glaring defect. The problem is an old one, well expressed 
eighty years ago by Felix Klein, in Chapter 6 of his Lectures on the Development of 
Mathematics in the Nineteenth Century: 

I have now mentioned a large number of more or less famous names, 
all closely connected with Riemann. They can become more than 
a mere list only if we look into the literature associated with the 
names, or rather, with those who bear the names. One must learn 
how to grasp the main lines of the many connections in our science 
out of the enormous available mass of printed matter without get-
ting lost in the time-consuming discussion of every detail, but also 
without falling into superficiality and dilettantism. 

Klein writes as if it were possible to achieve this laudable goal, but then his 
book was by intention only a collection of essays, not a complete history. Even 
so, he used more pages to tell the story of one century of European mathematics 
than a modern writer has available for the history of all of mathematics. For a 
writer who hates to leave any threads dangling the necessary sacrifices are very 
painful. My basic principle remains the same as in the first edition: not to give a 
mere list of names and results described in general terms, but to show the reader 
what important results were achieved and in what context. Even if unlimited pages 

XV 
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were available, time is an important consideration for authors as well as readers. 
To switch metaphors, there were so many times during the writing when tempting 
digressions arose which I could not resist pursuing, that I suspected that I might 
be traversing the boundary of a fractal snowflake or creating the real-life example 
of Zeno's dichotomy. Corrections and supplementary material relating to this book 
can be found at my website at the University of Vermont. The url is: 

http: / / w w w . cem. uvm. edu/~cooke/history/seconded. html 

Fortunately, significant mathematical events are discrete, not continuous, so 
that a better analogy for a history of mathematics comes from thermodynamics. If 
the state of mathematics at any given time is a system, its atoms are mathematical 
problems and propositions, grouped into molecules of theory. As they evolve, these 
molecules sometimes collide and react chemically, as happened with geometry and 
algebra in the seventeenth century. The resulting development of the mathemati-
cal system resembles a Brownian motion; and while it is not trivial to describe a 
Brownian motion in detail, it is easier than drawing a space-filling curve. 

Now let me speak more literally about what I have tried to do in the present 
book. As mentioned above, Part 1 is devoted to a broad survey of the world of 
mathematics. Each of the six subsequent parts, except Part 3, where the color 
plates are housed, concentrates on a particular aspect of mathematics (arithmetic, 
geometry, algebra, analysis, and mathematical inference) and discusses its develop-
ment in different cultures over time. I had two reasons for reorganizing the material 
in this way. 

First, I am convinced that students will remember better what they learn if they 
can focus on a single area of mathematics, comparing what was done in this area 
by different cultures, rather than studying the arithmetic, geometry, and algebra 
of each culture by turns. Second, although reviewers were for the most part kind, 
I was dissatisfied with the first edition, feeling that the organization of the book 
along cultural lines had caused me to omit many good topics, especially biographical 
material, and sources that really ought to have been included. The present edition 
aims to correct these omissions, along with a number of mistakes that I have noticed 
or others have pointed out. I hope that the new arrangement of material will make it 
possible to pursue the development of a single area of mathematics to whatever level 
the instructor wishes, then turn to another area and do the same. A one-semester 
course in mostly elementary mathematics from many cultures could be constructed 
from Chapters 1-7, 9-11, and 13 14. After that, one could use any remaining time 
to help the students write term papers (which I highly recommend) or go on to read 
other chapters in the book. I would also point out that, except for Chapters 8-12, 
and 15 19, the chapters, and even the sections within the chapters, can be read 
independently of one another. For a segment on traditional Chinese mathematics, 
for example, students could be assigned Section 3 of Chapter 2, Subsection 3.4 of 
Chapter 5, Section 2 of Chapter 6, Section 3 of Chapter 7, Section 3 of Chapter 9, 
Section 4 of Chapter 13, and Section 2 of Chapter 14. 

Because of limitations of time and space, the present book will show the reader 
only a few of the major moments in the history of mathematics, omitting many 
talented mathematicians and important results. This restriction to the important 
moments makes it impossible to do full justice to what Grattan-Guinness has stated 
as the question the historian should answer: What happened in the past? We 
are reconstructing an evolutionary process, but the "fossil record" presented in 
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any general history of mathematics will have many missing links. Unavoidably, 
history gets distorted in this process. New results appear more innovative than they 
actually are. To take just one example (not discussed elsewhere in this book), it was 
a very clever idea of Hermann Weyl to trivialize the proof of Kronecker's theorem 
that the fractional parts of the multiples of an irrational number are uniformly 
distributed in the unit interval; Weyl made this result a theorem about discrete and 
continuous averages of integrable periodic functions. One would expect that in an 
evolutionary process, there might be an intermediate step—someone who realized 
that these fractional parts are dense but not necessarily that they are uniformly 
distributed. And indeed there was: Nicole d'Oresme, 500 years before Kronecker. 
There are hundreds of results in mathematics with names on them, in many cases 
incorrectly attributed, and in many more cited in a much more polished form than 
the discoverer ever imagined. History ought to correct this misimpression, but a 
general history has only a limited ability to do so. 

The other question mentioned by Grattan-Guinness—How did things come to 
be the way they are?—is often held up in history books as the main justification 
for requiring students to study political and social history.1 That job is somewhat 
easier to do in a general textbook, and I hope the reader will be pleased to learn 
how some of the current parts of the curriculum arose. 

I would like to note here three small technical points about the second edition. 

Citations. In the first edition I placed a set of endnotes in each chapter telling the 
sources from which I had derived the material of that chapter. In the present edition 
I have adopted the more scholarly practice of including a bibliography organized 
by author and date. In the text itself, I include citations at the points where they 
are used. Thus, the first edition of this book would be cited as (Cooke, 1997). 
Although I dislike the interruption of the narrative that this practice entails, I do 
find it convenient when reading the works of others to be able to note the source of 
a topic that I think merits further study without having to search for the citation. 
On balance, I think the advantage of citing a source on the spot outweighs the 
disadvantage of having to block out parenthetical material in order to read the 
narrative. 

Translations. Unless another source is cited, all translations from foreign languages 
are my own. The reader may find smoother translations in most cases. To bring 
out significant concepts, especially in quotations from ancient Greek, I have made 
translations that are more literal than the standard ones. Since I don't know 
Sanskrit, Arabic, or Chinese, the translations from those languages are not mine; 
the source should be clear from the surrounding text. 

Cover. Wiley has done me the great favor of producing a cover design in four colors 
rather than the usual two. That consideration made it possible to use a picture that 
I took at a quilt exposition at Norwich University (Northfield, Vermont) in 2003. 
The design bears the title "A Number Called Phi," and its creator, Mary Knapp 
of Watertown, New York, incorporated many interesting mathematical connections 
through the geometric and floral shapes it contains. I am grateful for her permission 
to use it as the cover of this second edition. 

1 In a lecture at the University of Vermont in September 2003 Grattan-Guinness gave the name 
heritage to the attempt to answer this question. Heritage is a perfectly respectable topic to write 
on, but the distinction between history and heritage is worth keeping in mind. See his article on 
this distinction (Grattan-Guinness, 2004). 
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This first part of our history is concerned with the "front end" of mathemat ics (to 
use an image from computer algebra)—its relation to the physical world and human 
society. It contains some general considerations about mathematics, what it consists 
of, how it may have arisen, and how it has developed in various cultures around 
the world. Because of the large number of cultures tha t exist, a considerable paring 
down of the available material is necessary. We are forced to choose a few sample 
cultures to represent the whole, and we choose those tha t have the best-recorded 
mathematical history. The general topics studied in this par t involve philosophical 
and social questions, which are themselves specialized subjects of study, to which 
a large amount of scholarly literature has been devoted. Our approach here is 
the naive commonsense approach of an author who is not a specialist in either 
philosophy or sociology. Since present-day governments have to formulate policies 
relating to mathematics and science, it is important that such questions not be left 
to specialists. The rest of us, as citizens of a republic, should read as much as t ime 
permits of what the specialists have to say and make up our own minds when it 
comes time to judge the effects of a policy. 

This section consists of four chapters. In Chapter 1 we consider the nature 
and prehistory of mathematics. In this area we are dependent on archaeologists 
and anthropologists for the comparatively small amount of historical information 
available. We ask such questions as the following: "What is the subject mat te r of 
mathematics?" "Is new mathematics created to solve practical problems, or is it an 
expression of free human imagination, or some of each?" "How are mathematical 
concepts related to the physical world?" 

Chapter 2 begins a broad survey of mathematics around the world. This chapter 
is subdivided according to a selection of cultures in which mathemat ics has arisen 
as an indigenous creation, in which borrowings from other cultures do not play 
a prominent role. For each culture we give a summary of the development of 
mathematics in that culture, naming the most prominent mathematic ians and their 
works. Besides introducing the major works and their authors, an impor tant goal of 
this chapter is to explore the question, "Why were these works writ ten?" We quote 
the authors themselves as often as possible to bring out their motives. Chapters 2 
and 3 are intended as background for the topic-based presentation tha t follows 
beginning with Chapter 5. 

In Chapter 3 we continue the survey with a discussion of mathemat ical cul-
tures that began on the basis of knowledge and techniques that had been created 
elsewhere. The contributions made by these cultures are found in the extensions, 
modifications, and innovations—some very ingenious—added to the inherited ma-
terials. In dividing the material over two chapters we run the risk of seeming to 
minimize the creations of these later cultures. Creativity is involved in mathemat-
ical innovations at every stage, from earliest to latest. The reason for having two 
chapters instead of one is simply that there is too much material for one chapter. 

Chapter 4 is devoted to the special topic of women mathematicians. Although 
the subject of mathematics is gender neutral in the sense t ha t no one could deter-
mine the gender of the author of a mathematical paper from an examinat ion of the 
mathematical arguments given, the profession of mathematics has not been and is 
not yet gender neutral. There are obvious institutional and cultural explanations 
for this fact; but when an area of human endeavor has been polarized by gender, as 
mathematics has been, that feature is an important part of its history and deserves 
special attention. 



C H A P T E R 1 

The Origin and Prehistory of Mathematics 

In this chapter we have two purposes: first, to consider what mathematics is, and 
second, to examine some examples of protomathematics, the kinds of mathematical 
thinking that people natural ly engage in while going about the practical business of 
daily life. This agenda assumes tha t there is a mode of thought called mathematics 
tha t is intrinsic to human nature and common to different cultures. The simplest 
assumption is tha t counting and common shapes such as squares and circles have 
the same meaning to everyone. To fit our subject into the space of a book of 
moderate length, we part i t ion mathematical modes of thought into four categories: 

Number. The concept of number is almost always the first thing tha t comes to mind 
when mathematics is mentioned. From the simplest finger counting by pre-school 
children to the recent sophisticated proof of Fermat 's last theorem (a theorem at 
last!), numbers are a fundamental component of the world of mathematics. 

Space. It can be argued tha t space is not so much a "thing" as a convenient way 
of organizing physical objects in the mind. Awareness of spatial relations appears 
to be innate in human beings and animals, which must have an instinctive under-
standing of space and t ime in order to move purposefully. When people began to 
intellectualize this intuitive knowledge, one of the first efforts to organize it involved 
reducing geometry to ari thmetic. Units of length, area, volume, weight, and time 
were chosen, and measurement of these continuous quantities was reduced to count-
ing these imaginatively constructed units. In all practical contexts measurement 
becomes counting in exactly this way. But in pure thought there is a distinction 
between what is infinitely divisible and what is atomic (from the Greek word mean-
ing indivisible). Over the 2500 years that have elapsed since the t ime of Pythagoras 
this collision between the discrete modes of thought expressed in arithmetic and the 
intuitive concept of continuity expressed in geometry has led to puzzles, and the 
solution of those puzzles has influenced the development of geometry and analysis. 

Symbols. Although early mathematics was discussed in ordinary prose, sometimes 
accompanied by sketches, its usefulness in science and society increased greatly 
when symbols were introduced to mimic the mental operations performed in solv-
ing problems. Symbols for numbers are almost the only ideograms tha t exist in 
languages written with a phonetic alphabet. In contrast t o ordinary words, for 
example, the symbol 8 s tands for an idea that is the same to a person in Japan, 
who reads it as hachi, a person in Italy who reads it as otto, and a person in Russia, 
who reads it as vosem'. The introduction of symbols such as + and = to stand 
for the common operations and relations of mathematics has led to both the clarity 
that mathematics has for its initiates and the obscurity it suffers from in the eyes 
of the nonmathematical . Although it is primarily in studying algebra that we be-
come aware of the use of symbolism, symbols are used in other areas, and algebra, 
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considered as the study of processes inverse to those of ari thmetic, was originally 
studied without symbols. 

Symbol-making has been a habit of human beings for thousands of years. The 
wall paintings on caves in France and Spain are an early example, even though one 
might be inclined to think of them as pictures rather than symbols. It is difficult 
to draw a line between a painting such as the Mona Lisa, an anime representation 
of a human being, and the ideogram for a person used in languages whose written 
form is derived from Chinese. The last certainly is a symbol, the first two usu-
ally are not thought of that way. Phonetic alphabets, which establish a symbolic, 
visual representation of sounds, are another early example of symbol-making. A 
similar spectrum presents itself in the many ways in which human beings convey 
instructions to one another, the purest being a computer program. Very often, 
people who think they are not mathematical are quite good at reading abstractly 
written instructions such as music, blueprints, road maps, assembly instructions for 
furniture, and clothing patterns. All these symbolic representations exploit a basic 
human ability to make correspondences and understand analogies. 

Inference. Mathematical reasoning was at first numerical or geometric, involving 
either counting something or "seeing" certain relations in geometric figures. The 
finer points of logical reasoning, rhetoric, and the like, belonged to other areas of 
study. In particular, philosophers had charge of such notions as cause, implication, 
necessity, chance, and probability. But with the Pythagoreans, verbal reasoning 
came to permeate geometry and arithmetic, supplementing the visual and numer-
ical arguments. There was eventually a countercurrent, as mathemat ics began to 
influence logic and probability arguments, eventually producing specialized mathe-
matical subjects: mathematical logic, set theory, probability, and statistics. Much 
of this development took place in the nineteenth century and is due to mathemat i -
cians with a strong interest and background in philosophy. Philosophers continue 
to speculate on the meaning of all of these subjects, but the par t s of them tha t 
belong to mathematics are as solidly grounded (apart from their applications) as 
any other mathematics. 

We shall now elaborate on the origin of each of these components. Since these 
origins are in some cases far in the past, our knowledge of them is indirect, uncer-
tain, and incomplete. A more detailed study of all these areas begins in Pa r t 2. 
The present chapter is confined to generalities and conjectures as to the s ta te of 
mathematical knowledge preceding these records. 

1. N u m b e r s 

Counting objects that are distinct but similar in appearance, such as coins, goats, 
and full moons, is a universal human activity tha t must have begun to occur as soon 
as people had language to express numbers. In fact, it is impossible to imagine that 
numbers could have arisen without this kind of counting. Several closely related 
threads can be distinguished in the fabric of elementary ari thmetic. First, there 
is a distinction that we now make between cardinal and ordinal numbers. We 
think of cardinal numbers as applying to sets of things—the word sets is meant 
here in its ordinary sense, not the specialized meaning it has in mathematical set 
theory—and ordinal numbers as applying to the individual elements of a set by 
virtue of an ordering imposed on the set. Thus, the cardinal number of the set 
{a, b, c, d, e, / , g) is 7, and e is the fifth element of this set by virtue of the s tandard 
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alphabetical ordering. These two notions are not so independent as they may 
appear in this illustration, however. Except for very small sets, whose cardinality 
can be perceived immediately, the cardinality of a set is usually determined by 
counting, that is, arranging its elements linearly as first, second, third, and so on, 
even though it may be the corresponding cardinal numbers—one, two, three, and 
so on —that one says aloud when doing the counting. 

A second thread closely intertwined with counting involves the elementary op-
erations of arithmetic. The commonest actions tha t are carried out with any col-
lection of things are taking objects out of it and put t ing new objects into it. These 
actions, as everyone recognizes immediately, correspond to the elementary opera-
tions of subtraction and addition. The etymology of these words shows their origin, 
subtraction having the meaning of pulling out (literally pulling up or under) and 
addition meaning giving to. All of the earliest mathematical documents use ad-
dition and subtraction without explanation. The more complicated operations of 
multiplication and division may have arisen from comparison of two collections of 
different sizes (counting the number of times that one collection fits into another, 
or copying a collection a fixed number of times and counting the result), or perhaps 
as a shortened way of peforming addition or subtraction. It is impossible to know 
much for certain, since most of the early documents also assume that multiplication 
of small integers is understood without explanation. A notable exception occurs 
in certain ancient Egyptian documents, where computations that would now be 
performed using multiplication or division are reduced to repeated doubling, and 
the details of the computat ion are shown. 

1.1. A n i m a l s ' u se of n u m b e r s . Counting is so useful tha t it has been observed 
not only in very young children, but also in animals and birds. It is not clear 
just how high animals and birds can count, but they certainly have the ability 
to distinguish not merely patterns, but actual numbers. The counting abilities of 
birds were studied in a series of experiments conducted in the 1930s and 1940s by 
0 . Koehler (1889-1974) at the University of Freiburg. Koehler (1937) kept the 
trainer isolated from the bird. In the final tests, after the birds had been trained, 
the birds were filmed automatically, with no human beings present. Koehler found 
that parrots and ravens could learn to compare the number of dots, up to 6, on the 
lid of a hopper with a "key" pat tern in order to determine which hopper contained 
food. They could make the comparison no matter how the dots were arranged, 
thereby demonstrating an ability to take account of the number of dots rather than 
the pattern. 

1.2. Y o u n g ch i ldren's u s e of n u m b e r s . Preschool children also learn to count 
and use small numbers. The results of many studies have been summarized by 
Karen Fuson (1988). A few of the results from observation of children at play and 
at lessons were as follows: 

1. A group of nine children from 21 to 45 months was found to have used the 
word two 158 times, the word three 47 times, the word four 18 times, and 
the word five 4 times. 

2. The children seldom had to count "one-two" in order to use the word two 
correctly; for the word three counting was necessary about half the t ime; for 
the word four it was necessary most of the t ime; for higher numbers it was 
necessary all the t ime. 
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One can thus observe in children the capacity to recognize groups of two or three 
without performing any conscious numerical process. This observation suggests that 
these numbers are primitive, while larger numbers are a conscious creation. It also 
illustrates what was said above about the need for arranging a collection in some 
linear order so as to be able to find its cardinal number. 

1.3. Archaeologica l ev idence of c o u n t i n g . Very ancient animal bones contain-
ing notches have been found in Africa and Europe, suggesting t h a t some sort of 
counting procedure was being carried on at a very early date , a l though what ex-
actly was being counted remains unknown. One such bone, the radius bone of a 
wolf, was discovered at Veronice (Czech Republic) in 1937. This bone was marked 
with two series of notches, grouped by fives, the first series containing five groups 
and the second six. Its discoverer, Karel Absolon (1887-1960), believed the bone 
to be about 30,000 years old, although other archaeologists thought it considerably 
younger. The people who produced this bone were clearly a step above mere sur-
vival, since a human portrait carved in ivory was found in the same settlement, 
along with a variety of sophisticated tools. Because of the grouping by fives, it 
seems likely tha t this bone was being used to count something. Even if the group-
ings are meant to be purely decorative, they point to a use of numbers and counting 
for a practical or artistic purpose. 

Another bone, named after the fishing village of Ishango on the shore of Lake 
Edward in Zaire where it was discovered in 1960 by the Belgian archaeologist Jean 
de Heinzelin de Braucourt (1920-1998), is believed to be between 8500 and 11,000 
years old. The Ishango Bone, which is now in the Musee d'Histoire Naturelle in 
Brussels, contains three columns of notches. One column consists of four series 
of notches containing 11, 21, 19, and 9 notches. Another consists of four series 
containing 11, 13, 17, and 19 notches. The third consists of eight series containing 
3, 6, 4, 8, 10, 5, 5, and 7 notches, with larger gaps between the second and third 
series and between the fourth and fifth series. These columns present us with a 
mystery. Why were they put there? Wha t activity was being engaged in by the 
person who carved them? Conjectures range from abstract experimentation with 
numbers to keeping score in a game. The bone could have been merely decorative, 
or it could have been a decorated tool. Whatever its original use, it comes down to 
the present generation as a reminder that human beings were engaging in abstract 
thought and creating mathematics a very, very long time ago. 

2. C o n t i n u o u s m a g n i t u d e s 

In addition to the ability to count, a second important human faculty is the ability to 
perceive spatial and temporal relations. These perceptions differ from the discrete 
objects tha t elicit counting behavior in that the objects involved are perceived 
as being divisible into arbitrarily small parts . Given any length, one can always 
imagine cutt ing it in half, for example, to get still smaller lengths. In contrast, 
a penny cut in half does not produce two coins each having a value of one-half 
cent. Just as human beings are endowed with the ability to reason numerically 
and understand the concept of equal distribution of money or gett ing the correct 
change with a purchase, it appears that we also have an innate ability to reason 
spatially, for example, to understand that two areas are equal even when they have 
different shapes, provided that they can be dissected into congruent pieces, or that 
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The Veronice wolf bone, from the Illustrated London News, Octo-

ber 2, 1937. 

two vessels of different shape have the same volume if one each holds exactly enough 

water to fill the other. 
One important feature of counting as opposed to measuring—arithmetic as 

opposed to geometry—is its exactitude. Two sets having the same number of 
members are numerically exactly equal. In contrast, one cannot assert that two 
sticks, for example, are exactly the same length. This difference arises in countless 
contexts important to human society. Two people may have exactly the same 
amount of money in the bank, and one can make such an assertion with complete 
confidence after examining the balance of each of them. But it is only within some 
limit of error tha t one could assert that two people are of the same height. The 
word exact would be inappropriate in this context. The notion of absolute equality 
in relation to continuous objects means infinite precision and can be expressed only 
through the concept of a real number, which took centuries to distill. Tha t process 
is one important thread in the tapestry of mathematical history. 

Very often, a spatial perception is purely geometrical or topological, involv-
ing similarity (having the same shape), connectivity (having holes or being solid), 
boundedness or infinitude, and the like. We can see the origins of these concepts 
in many aspects of everyday life tha t do not involve what one would call formal ge-
ometry. The perception of continuous magnitudes such as lengths, areas, volumes, 
weights, and t ime is different from the perception of multiple copies of a discrete 
object. The two kinds of perception work both independently and together to help 
a human being or animal cope with the physical world. Gett ing these two "draft 
horses" harnessed together as parts of a common subject called mathematics has 
led to a number of interesting problems to be solved. 

2 .1 . P e r c e p t i o n of s h a p e b y animals . Obviously, the ability to perceive shape 
is of value to an animal in determining what is or is not food, what is a predator, 
and so forth; and in fact the ability of animals to perceive space has been very well 
documented. One of the most fascinating examples is the ability of certain species 
of bees to communicate the direction and distance of sources of plant nectar by 
performing a dance inside the beehive. The pioneer in this work was Karl von 
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Frisch (1886-1982), and his work has been continued by James L. Gould and Carol 
Grant Gould (1995). The experiments of von Frisch left many interpretations open 
and were challenged by other specialists. The Goulds performed more delicately 
designed experiments which confirmed the bee language by deliberately misleading 
the bees about the food source. The bee will traverse a circle alternately clockwise 
and counterclockwise if the source is nearby. If it is farther away, the alternate 
traversals will spread out, resulting in a figure 8, and the dance will incorporate 
sounds and waggling. By moving food sources, the Goulds were able to determine 
the precision with which this communication takes place (about 25%). Still more 
intriguing is the fact that the direction of the food source is indicated by the di-
rection of the axis of the figure 8, oriented relative to the sun if there is light and 
relative to the vertical if there is no light. 

As another example, in his famous experiments on conditioned reflexes using 
dogs as subjects the Russian scientist Pavlov (1849-1936) taught dogs to distinguish 
ellipses of very small eccentricity from circles. He began by projecting a circle of 
light on the wall each time he fed the dog. Eventually the dog came to expect 
food (as shown by salivation) every time it saw the circle. When the dog was 
conditioned, Pavlov began to show the dog an ellipse in which one axis was twice 
as long as the other. The dog soon learned not to expect food when shown the 
ellipse. At this point the malicious scientist began making the ellipse less eccentric, 
and found, with fiendish precision, that when the axes were nearly equal (in a ratio 
of 8 : 9, to be exact) the poor dog had a nervous breakdown (Pavlov, 1928, p. 122). 

2.2. Chi ldren's c o n c e p t s of space . The most famous work on the development 
of mathematical concepts in children is due to Jean Piaget (1896 1980) of the Uni-
versity of Geneva, who wrote many books on the subject, some of which have been 
translated into English. Piaget divided the development of the child's ability to 
perceive space into three periods: a first period (up to about 4 months of age) 
consisting of pure reflexes and culminating in the development of primary habits , 
a second period (up to about one year) beginning with the manipulation of ob-
jects and culminating in purposeful manipulation, and a third period in which the 
child conducts experiments and becomes able to comprehend new situations. He 
categorized the primitive spatial properties of objects as proximity, separation, or-
der, enclosure, and continuity. These elements are present in greater or less degree 
in any spatial perception. In the baby they come together at the age of about 
2 months to provide recognition of faces. The human brain seems to have some 
special "wiring" for recognizing faces. 

The interesting thing about these concepts is tha t mathematic ians recognize 
them as belonging to the subject of topology, an advanced branch of geometry that 
developed in the late nineteenth and early twentieth centuries. It is an interesting 
paradox tha t the human ability to perceive shape depends on synthesizing vari-
ous topological concepts; this progression reverses the pedagogical and historical 
ordering between geometry and topology. Piaget pointed out tha t children can 
make topological distinctions (often by running their hands over models) before 
they can make geometric distinctions. Discussing the perceptions of a group of 3-
to-5-year-olds, Piaget and Inhelder (1967) s tated tha t the children had no trouble 
distinguishing between open and closed figures, surfaces with and without holes, 
intertwined rings and separate rings, and so forth, whereas the seemingly simpler 
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relationships of geometry—distinguishing a square from an ellipse, for example 
were not mastered until later. 

2.3 . G e o m e t r y in a r t s and crafts. Weaving and knitting are two excellent 
examples of activities in which the spatial and numerical aspects of the world are 
combined. Even the sophisticated idea of a rectangular coordinate system is implicit 
in the placing of different-colored threads at intervals when weaving a carpet or 
blanket so that a pat tern appears in the finished result. One might even go so far 
as to say that curvilinear coordinates occur in the case of sweaters. 

Not only do arts and crafts involve the kind of abstract and algorithmic thinking 
needed in mathematics , their themes have often been inspired by mathematical 
topics. We shall give several examples of this inspiration in different parts of this 
book. At this point, we note just one example, which the author happened to see 
at a display of quilts in 2003. The quilt, shown on the cover of this book, embodies 
several interesting properties of the Golden Ratio Φ = (l + v / 5) /2 , which is the ratio 
of the diagonal of a pentagon to its side. This ratio is known to be involved in the 
way many trees and flowers grow, in the spiral shell of the chambered nautilus, and 
other places. The quilt, titled "A Number Called Phi," was made by Mary Knapp 
of Watertown, New York. Observe how the quilter has incorporated the spiral 
connection in the sequence of nested circles and the rotation of each successive 
inscribed pentagon, as well as the phyllotaxic connection suggested by the vine. 

Marcia Ascher (1991) has assembled many examples of rather sophisticated 
mathematics inspired by arts and crafts. The Bushoong people of Zaire make 
part of their living by supplying embroidered cloth, articles of clothing, and works 
of art to others in the economy of the Kuba chiefdom. As a consequence of this 
work, perhaps as preparation for it, Bushoong children amuse themselves by tracing 
figures on the ground. The rule of the game is that a figure must be traced without 
repeating any strokes and without lifting the finger from the sand. In graph theory 
this problem is known as the unicursal tracing problem. It was analyzed by the Swiss 
mathematician Leonhard Euler (1707-1783) in the eighteenth century in connection 
with the famous Konigsberg bridge problem. According to Ascher, in 1905 some 
Bushoong children challenged the ethnologist Emil Torday (1875-1931) to trace a 
complicated figure without lifting his finger from the sand. Torday did not know 
how to do this, but he did collect several examples of such figures. The Bushoong 
children seem to learn intuitively what Euler proved mathematically: A unicursal 
tracing of a connected graph is possible if there are at most two vertices where an 
odd number of edges meet. The Bushoong children become very adept at finding 
such a tracing, even for figures as complicated as tha t shown in Fig. 1. 

3 . S y m b o l s 

We tend to think of symbolism as arising in algebra, since that is the subject 
in which we first become aware of it as a concept. The thing itself, however, is 
implanted in our minds much earlier, when we learn to talk. Human languages, 
in which sounds correspond to concepts and the temporal order or inflection of 
those sounds maps some relation between the concepts they signify, exemplify the 
process of abstraction and analogy, essential elements in mathematical reasoning. 
Language is, all by itself, ample proof tha t the symbolic ability of human beings is 
highly developed. Tha t symbolic ability lies at the heart of mathematics. 
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F I G U R E 1. A graph for which a unicursal tracing is possible. 

Once numbers have been represented symbolically, the next logical step would 
seem to be to introduce symbols for arithmetic operations or for combining the 
number symbols in other ways. However, this step may not be necessary for rapid 
computation, since mechanical devices such as counting rods, pebbles, counting 
boards, and the like can be used as analog computers. The operations performed 
using these methods can rise to a high level of sophistication without the need for 
any written computations. An example of the use of an automat ic counting device 
is given by Ascher (1997) in a discussion of a system of divination used by the 
Malagasy of Madagascar, in which four piles of seeds are arranged in a column 
and the seeds removed from each pile two at a t ime until only one or two seeds 
remain. Each set of seeds in the resulting column can be interpreted as "odd" or 
"even." After this procedure is performed four times, the four columns and four 
rows that result are combined in different pairs using the ordinary rules for adding 
odds and evens to generate eight more columns of four numbers. The accuracy 
of the generation is checked by certain mathematical consequences of the method 
used. If the results are satisfactory, the 16 sets of four odds and evens are used as 
an oracle for making decisions and ascribing causes to such events as illnesses. 

The Malagasy system of divination bears a resemblance to the procedures de-
scribed in the Chinese classic / Ching (Permutation Classic). In the latter, a set 
of 50 yarrow sticks is used, the first stick being laid down to begin the ceremony. 
One stick is then placed between the ring and small fingers of the left hand to rep-
resent the human race. The remaining 48 sticks are then divided without counting 
into two piles, and one pile held in each hand. Those in the right hand are then 
discarded four at a time until four or fewer remain. These are then transferred 
to the left hand, and the same reduction is applied to the other pile, so tha t a t 



3. SYMBOLS 11 

the end, the left hand contains either five or nine sticks. After a sequence of such 
procedures, a final step begins with 32 or 36 or 40 sticks, and as a result the number 
of remaining sticks will be 24, 28, 32, or 36. This number is divided by four and the 
quotient determines the bot tom row of the symbol to be used for divination. Six 
is called lesser yang, seven greater ying, eight lesser ying, and nine greater yang. 
The ying and yang are respectively female and male principles. The greater cases 
correspond to flux (tending to their opposites) and the lesser to stability. When this 
entire procedure has been carried out six times, the result is a stack of six symbols 
that can be interpreted according to the principles of divination. There are 64, tha t 
is, 2 6 , different possible stackings of ying and yang, all discussed in the / Ching, 
and the duality between stability and flux makes for 4096 possible symbols. One 
must beware of at taching too much significance to numerical coincidences, but it 
is intriguing tha t both Malagasy and Chinese forms of divination are based on the 
number four. 1 

Divination seems to fulfill a nearly universal human desire to feel in control 
of the powerful forces t ha t threaten human happiness and prosperity. It manifests 
itself in a variety of ways, as just shown by the examples of the Malagasy and the / 
Ching. We could also cite large parts of the Jewish Kabbalah, the mysticism of the 
Pythagoreans, and many others, down to the geometric logic of Ramon Lull (1232-
1316), who was himself steeped in the Kabbalah. The variety of oracles that people 
have consulted for advice about the conduct of their lives—tarot cards, crystal balls, 
astrology, the entrails of animals and birds, palmistry, and the like—seems endless. 
For the purposes of this book, however, we shall be interested only in those aspects 
of divination tha t involve mathematics. Magic squares, for example, occur in both 
the Kabbalah and the / Ching. Although the author puts no stock whatsoever in 
the theories behind all this mysticism, it remains an important fact about human 
behavior over the centuries and deserves to be studied for tha t reason alone. But 
for now it is t ime to re turn to more prosaic matters. 

Aids to computat ion, either tabular or mechanical, must be used to perform 
computations in some of the more cumbersome notational systems. Just imagine 
trying to multiply XLI by CCCIV! (However, Detlefsen and co-authors (1975) 
demonstrate that this task is not so difficult as it might seem.) Even to use the 
28 x 19 table of dates of Easter discussed in Problem 6.26, the Slavic calculators 
had to introduce simplifications to accommodate the fact that dividing a four-digit 
number by a two-digit number was beyond the skill of many of the users of the 
table. 

The earliest mathematical texts discuss arithmetical operations using everyday 
words that were probably emptied of their usual meaning. Students had to learn 
to generalize from a particular example to the abstract case, and many problems 
that refer to specific objects probably became archetypes for completely abstract 
reasoning, jus t as we use such expressions as "putting the cart before the horse" and 
"comparing apples and oranges" to refer to situations having no connection at all 
with horse-and-buggy travel or the harvesting of fruit. For example, problems of the 

1 Like all numbers, the number four is bound to occur in many contexts. One website devoted to 
spreading the lore found in the / Ching notes the coincidental fact that DNA code is written with 
four amino acids as its alphabet and rhapsodizes that "The sophistication of this method has not 
escaped modern interpretation, and the four-valued logic has been compared to the biochemistry 
of DNA amino acids. How a Neolithic shaman's divination technique presaged the basic logic of 
the human genome is one of the ageless mysteries." 
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type, "If 3 bananas cost 75 cents, how much do 7 bananas cost?" occur in the work 
of Brahmagupta from 1300 years ago. Brahmagupta named the three da ta numbers 
argument (3), fruit (75), and requisition (7). As another example, cuneiform tablets 
from Mesopotamia that are several thousand years old contain general problems 
that we would now solve using quadratic equations. These problems are stated 
as variants of the problem of finding the length and width of a rectangle whose 
area and perimeter are known. The mathematician and historian of mathematics 
B. L. van der Waerden (1903-1996) claimed t ha t the words for length and width 
were being used in a completely abstract sense in these problems. 

In algebra symbolism seems to have occurred for the first t ime in the work of 
the Greek mathematician Diophantus of Alexandria, who introduced the symbol ς 
for an unknown number. The Bakshali Manuscript, a document from India that 
may have been written within a century of the work of Diophantus, also introduces 
an abstract symbol for an unknown number. In modern algebra, beginning with the 
Muslim mathematicians more than a millennium ago, symbolism evolved gradually. 
Originally, the Arabic word for thing was used to represent the unknown in a 
problem. This word, and its Italian translation cosa, was eventually replaced by 
the familiar χ most often used today. In this way an entire word was gradually 
pared down to a single letter that could be manipulated graphically. 

4. M a t h e m a t i c a l inference 

Logic occurs throughout modern mathematics as one of its key elements. In the 
teaching of mathematics, however, the student generally learns all of arithmetic 
and the rules for manipulating algebraic expressions by rote. Any justification of 
these rules is purely experimental. Logic enters the curriculum, along with proof, 
in the study of Euclidean geometry. This sequence is not historical and may leave 
the impression tha t mathematics was an empirical science until the t ime of Euclid 
(ca. 300 BCE). Although one can imagine certain facts having been discovered by 
observation, such as the rule for comparing the area of a rectangle with the area 
of a square unit, there is good reason to believe tha t some facts were deduced from 
simpler considerations at a very early stage. The main reason for thinking so is 
that the conclusions reached by some ancient authors are not visually obvious. 

4 .1 . Visua l reasoning . As an example, it is immediately obvious tha t a diagonal 
divides a rectangle into two congruent triangles. If through any point on the diago-
nal we draw two lines parallel to the sides, these two lines will divide the rectangle 
into four rectangles. The diagonal divides two of these smaller rectangles into pairs 
of congruent triangles, just as it does the whole rectangle, thus yielding three pairs 
of congruent triangles, one large pair and two smaller pairs. It then follows (see 
Fig. 2) that the two remaining rectangles must have equal area, even though their 
shapes are different and to the eye they do not appear to be equal. For each of 
these rectangles is obtained by subtracting the two smaller triangles from the large 
triangle in which they are contained. When we find an ancient author mentioning 
that these two rectangles of different shape are equal, as if it were a well-known 
fact, we can be confident that this knowledge does not rest on an experimental or 
inductive foundation. Rather, it is the result of a combination of numerical and 
spatial reasoning. 

Ancient authors often state what they know without saying how they know 
it. As the example just cited shows, we can be confident tha t the basis was not 
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F I G U R E 2. (a) The diagonal AC divides the rectangle ABCD into 
congruent triangles ABC and CD A. (b) When the congruent pairs 
(ΑΕΙ, IGA) and (IHC, CFI) are subtracted from the congruent 
pair (ABC, CDA), the remainders (rectangles EBHI and GIFD) 
must be equal. 

always induction or experiment. Perminov (1997) points out tha t solutions of com-
plicated geometric problems which can be shown to be correct are stated without 
proof—but apparently with absolute confidence—by the writers of the very earliest 
mathematical documents, such as the Rhind Papyrus from Egypt and cuneiform 
tablets from Mesopotamia. The fact tha t an author presents not merely a solution 
but a sequence of steps leading to that solution, and the fact tha t this solution can 
now be reconstructed and verified by mathematical reasoning, justify the conclu-
sion tha t the result was arrived a t through mathematical deduction, even though 
the author does not write out the details. 

4 .2 . C h a n c e a n d probabi l i ty . Logic is concerned with getting conclusions that 
are as reliable as the premises. From a behavioral point of view, the human tendency 
to make inferences based on logic is probably hardwired and expressed as the same 
mechanism by which habi ts are formed. This same mechanism probably accounts 
for the metaphysical notion of cause. If A implies B, one feels that in some sense 
A causes Β to be true. The dogs in Pavlov's experiments, described above, were 
given total reinforcement as they learned geometry and came to make associations 
based on the constant conjunction of a given shape and a given reward or lack 
of reward. In the real world, however, we frequently encounter a weaker type of 
cause, where A is usually, but not always, followed by B. For example, lightning 
is always followed by thunder, but if the lightning is very distant, the thunder will 
not be heard. The analog of this weaker kind of cause in conditioning is partial 
reinforcement. A classical example is a famous experiment of Skinner (1948), who 
put hungry pigeons in a cage and attached a food hopper to the cage with an 
automatic t imer to permit access to the food at regular intervals. The pigeons a t 
first engaged in aimless activity when not being fed, but tended to repeat whatever 
activity they happened to be doing when the food arrived, as if they made an 
association between the activity and the arrival of food. Naturally, the more they 
repeated a given activity, the more likely tha t activity was to be reinforced by the 
arrival of food. Since they were always hungry, it was not long before they were 
engaged full-time in an activity tha t they apparently considered an infallible food 
producer. This activity varied from one bird to another. One pigeon thrust its head 
into an upper corner of the cage; another made long sweeping movements with its 
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head; another tossed its head back; yet another made pecking motions toward the 
floor of the cage. 

The difficulties that people, even mathematicians, have in understanding and 
applying probability can be seen in this example. For example, the human body 
has some capacity to heal itself. Like the automatic timer tha t eventually provided 
food to the pigeons, the human immune system often overcomes the disease. Yet 
sick people, like hungry pigeons, try various methods of alleviating their misery. 
The consequence is a wide variety of nostrums said to cure a cold or arthrit is . One 
of the tr iumphs of modern mathematical statistics is the establishment of reliable 
systems of inference to replace the inferences tha t Skinner called "superstitious." 

Modern logic has purged the concept of implication of all connection with the 
notion of cause. The statement "If Abraham Lincoln was the first President of 
the United States, then 2 + 2 = 4" is considered a true implication, even though 
Lincoln was not the first President and in any case his being such would have no 
causal connection with the t ru th of the statement "2 + 2 = 4." In s tandard logic 
the statement "If A is true, then Β is true" is equivalent to the s tatement "Either 
Β is true, or A is false, or both." Absolute t ru th or falsehood is not available 
in relation to the observed world, however. As a result, science must deal with 
propositions of the form "If A is true, then Β is highly probable." One cannot infer 
from this statement that "If Β is false, then A is highly improbable." For example, 
an American citizen, taken at random, is probably not a U. S. Senator. It does not 
follow that if a person is a U. S. Senator, that person is probably not an American 
citizen. 

Q u e s t i o n s and p r o b l e m s 

1.1. At what point do you find it necessary to count in order to say how large a 
collection is? Can you look at a word such as tendentious and see immediately how 
many letters it has? The American writer Henry Thoreau (1817-1863) was said 
to have the ability to pick up exactly one dozen pencils out of a pile. Try as an 
experiment to determine the largest number of pencils you can pick up out of a pile 
without counting. The point of this exercise is to see where direct perception needs 
to be replaced by counting. 

1.2. In what practical contexts of everyday life are the fundamental operations 
of arithmetic—addition, subtraction, multiplication, and division—needed? Give 
at least two examples of the use of each. How do these operations apply to the 
problems for which the theory of proportion was invented? 

1.3. What significance might there be in the fact that there are three columns of 
notches on the Ishango Bone? What might be the significance of the numbers of 
notches in the three series? 

1.4. Is it possible that the Ishango Bone was used for divination? Can you think 
of a way in which it could be used for this purpose? 

1 .5 . Is it significant that one of the yarrow sticks is isolated a t the beginning of 
each step in the Chinese divination procedure described above? W h a t difference 
does this step make in the outcome? 

1.6. Measuring a continuous object involves finding its ratio to some s tandard unit. 
For example, when you measure out one-third of a cup of flour in a recipe, you are 
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choosing a quanti ty of flour whose ratio to the s tandard cup is 1:3. Suppose tha t 
you have a s tandard cup without calibrations, a second cup of unknown size, and 
a large bowl. How could you determine the volume of the second cup? 

1.7. Units of t ime, such as a day, a month, and a year, have ratios. In fact you 
probably know tha t a year is about 3 6 5 | days long. Imagine tha t you had never 
been taught tha t fact. How would you—how did people originally—determine how 
many days there are in a year? 

1.8. Why is a calendar needed by an organized society? Would a very small society 
(consisting of, say, a few dozen families) require a calendar if it engaged mostly in 
hunting, fishing, and gathering vegetable food? W h a t if the principal economic 
activity involved following a reindeer herd? What if it, involved tending a herd of 
domestic animals? Finally, what if it involved planting and tending crops? 

1.9. Describe three different ways of measuring t ime, based on different physical 
principles. Are all three ways equally applicable t o all lengths of time? 

1.10. In what sense is it possible to know the exact value of a number such as \ /2? 
Obviously, if a number is to be known only by its decimal expansion, nobody does 
know and nobody ever will know the exact value of this number. W h a t immediate 
practical consequences, if any, does this fact have? Is there any other sense in which 
one could be said to know this number exactly'? If there are no direct consequences 
of being ignorant of its exact value, is there any practical value in having the 
concept of an exact square root of 2? Why not simply replace it by a suitable 
approximation such as 1.41421? Consider also other "irrational" numbers, such as 
π, e, and Φ = (1 + \/Έ)/2. W h a t is the value of having the concept of such numbers 
as opposed to approximate rational replacements for them? 

1.11. Find a unicursal tracing of the graph shown in Fig. 1. 

1.12. Does the development of personal knowledge of mathematics mirror the his-
torical development of the subject? Tha t is, do we learn mathematical concepts as 
individuals in the same order in which these concepts appeared historically? 

1.13. Topology, which may be unfamiliar to you, studies (among other things) the 
mathematical properties of knots, which have been familiar to the human race a t 
least as long as most of the subject matter of geometry. Why was such a familiar 
object not studied mathematical ly until the twentieth century? 

1.14. One aspect of symbolism tha t has played a large role in human history is the 
mystical identification of things tha t exhibit analogous relations. The divination 
practiced by the Malagasy is one example, and there are hundreds of others: as-
trology, alchemy, numerology, tarot cards, palm reading, and the like, down to the 
many odd beliefs in the effects of different foods based on their color and shape. 
Even if we dismiss the validity of such divination (as the author does), is there any 
value for science in the development of these subjects? 

1.15. Wha t function does logic fulfill in mathematics? Is it needed to provide a 
psychological feeling of confidence in a mathematical rule or assertion? Consider, 
for example, any simple computer program tha t you may have written. What really 
gave you confidence t ha t it worked? Was it your logical analysis of the operations 
involved, or was it empirical testing on an actual computer with a large variety of 
different input da ta? 
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1.16. Logic enters the mathematics curriculum in high-school geometry. The rea-
son for introducing it at tha t stage is historical: Formal treatises with axioms, 
theorems, and proofs were a Greek innovation, and the Greeks were primarily ge-
ometers. There is no logical reason why logic is any more important in geometry 
than in algebra or arithmetic. Yet it seems t ha t without the explicit s tatement 
of assumptions, the parallel postulate of Euclid (discussed in Chapter 10) would 
never have been questioned. Suppose things had happened tha t way. Does it follow 
that non-Euclidean geometry would never have been discovered? How important 
is non-Euclidean geometry, anyway? What other kinds of geometry do you know 
about? Is it necessary to be guided by axioms and postulates in order to discover or 
fully understand, say, the non-Euclidean geometry of a curved surface in Euclidean 
space? If it is not necessary, what is the value of an axiomatic development of such 
a geometry? 

1.17. Perminov (1997, p. 183) presents the following example of tacit mathematical 
reasoning from an early cuneiform tablet. Given a right triangle ACB divided into 
a smaller triangle DEB and a trapezoid ACED by the line DE parallel to the leg 
AC, such tha t EC has length 20, Ε Β has length 30, and the trapezoid ACED 
has area 320, what are the lengths AC and DEI (See Fig. 3.) The author of 
the tablet very confidently computes these lengths by the following sequence of 
operations: (1) 320 -Ξ- 20 = 16; (2) 30 · 2 = 60; (3) 60 + 20 = 80; (4) 320 4 - 80 = 4; 
(5) 16 + 4 = 20 = AC; (6) 16 - 4 = 12 = DE. As Perminov points out, to present 
this computation with any confidence, you would have to know exactly what you 
are doing. Wha t was this anonymous author doing? 

To find out, fill in the reasoning in the following sketch. The author ' s first 
computation shows tha t a rectangle of height 20 and base 16 would have exactly 
the same area as the trapezoid. Hence if we draw the vertical line FH through the 
midpoint G of AD, and complete the resulting rectangles as in Fig. 3, rectangle 
FCEI will have area 320. Since AF = MI = FJ = DI, it now suffices to find 
this common length, which we will call x; for AC = CF + FA — 16 + χ and 
DE ~ EI - DI = 16 - x. By the principle demonstrated in Fig. 2, JCED has the 
same area as DKLM, so that DKLM + FJDI = DKLM + 20x. Explain why 
DKLM = 30 • 2 • x, and hence why 320 = (30 • 2 + 20) • x. 

Could this procedure have been obtained experimentally? 

1.18. A famous example of mathematical blunders committed by mathematicians 
(not statisticians, however) occurred some two decades ago. At the t ime, a very 
popular television show in the United States was called Let's Make a Deal. On 
tha t show, the contestant was often offered the chance to keep his or her current 
winnings, or to t rade them for a chance at some other unknown prize. In the case 
in question the contestant had chosen one of three boxes, knowing tha t only one 
of them contained a prize of any value, but not knowing the contents of any of 
them. For ease of exposition, let us call the boxes A, B, and C, and assume tha t 
the contestant chose box A. 

The emcee of the program was about to offer the contestant a chance to t rade 
for another prize, but in order to make the program more interesting, he had box 
Β opened, in order to show tha t it was empty. Keep in mind that the emcee knew 
where the prize was and would not have opened box Β if t he prize had been there. 
Just as the emcee was about to offer a new deal, the contestant asked to exchange 
the chosen box (A) for the unopened box (C) on stage. The problem posed to the 
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F I G U R E 3. (a) Line DE divides triangle ABC into triangle DEB 
and trapezoid ACED. (b) Line FGIH bisects line AD. Rectan-
gle FCEI has the same area as trapezoid ACED, and rectangle 
JCED equals rectangle MDKL. 

reader is: Was this a good strategy? To decide, analyze 300 hypothetical games, 
in which the prize is in box A in 100 cases, in box Β in 100 cases (in these cases, 
of course, the emcee will open box C to show tha t it is empty), and in box C 
in the other 100 cases. First assume tha t in all 300 games the contestant retains 
box A. Then assume tha t in all 300 games the contestant exchanges box A for the 
unopened box on stage. By which strategy does the contestant win more games? 

1.19. Explain why the following analysis of the game described in Problem 1.18 
leads to an erroneous result. Consider all the situations in which the contestant 
has chosen box A and the emcee has shown box Β to be empty. Imagine 100 games 
in which the prize is in box A and 100 games in which it is in box C. Suppose 
the contestant retains box A in all 200 games; then 100 will be won and 100 lost. 
Likewise, if the contestant switches to box C in all 200 games, then 100 will be won 
and 100 lost. Hence there is no advantage to switching boxes. 

1.20. The fallacy discussed in Problem 1.19 is not in the mathematics, but rather in 
its application to the real world. The question involves what is known as conditional 
probability. Mathematically, the probability of event E, given that event F has 
occurred, is defined as the probability that Ε and F both occur, divided by the 
probability of F . The many mathematicians who analyzed the game erroneously 
proceeded by taking Ε as the event "The prize is in box C" and F as the event 
"Box Β is empty." Given tha t box Β has a 2 /3 probability of being empty and the 
event "E and F " is the same as event E, which has a probability of 1/3, one can 
then compute that the probability of Ε given F is ( l / 3 ) / ( 2 / 3 ) = 1/2. Hence the 
contestant seems to have a 50% probability of winning as soon as the emcee opens 
Box B, revealing it to be empty. 

Surely this conclusion cannot be correct, since the contestant 's probability of 
having chosen the box with the prize is only 1/3 and the emcee can always open 
an empty box on stage. Replace event F with the more precise event "The emcee 
has shown t ha t box Β is empty" and redo the computation. Notice tha t the emcee 
is going to show tha t either box Β or box C is empty, and tha t the two outcomes 
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are equally likely. Hence the probability of this new event F is 1/2. Thus, even 
though the mathematics of conditional probability is quite simple, it can be a subtle 
problem to describe just what event has occurred. Conclusion: To reason correctly 
in cases of conditional probability, one must be very clear in describing the event 

that has occurred. 

1.21. Reinforcing the conclusion of Problem 1.20, exhibit the fallacy in the follow-
ing "proof" tha t lotteries are all dishonest. 

Proof. The probability of winning a lottery is less than one chance in 1,000,000 
( = 1 0 - 6 ) . Since all lottery drawings are independent of one another, the probability 
of winning a lottery five times is less than ( 1 0 ~ 6 ) 5 = 1 0 ~ 3 0 . But this probability 
is far smaller than the probability of any conceivable event. Any scientist would 
disbelieve a report tha t such an event had actually been observed to happen. Since 
the lottery has been won five times in the past year, it must be tha t winning it is 
not a random event; that is, the lottery is fixed. 

What is the event that has to occur here? Is it "Person A (specified in advance) 
wins the lottery," or is it "At least one person in this population (of 30 million 
people) wins the lottery"? Wha t is the difference between those two probabilities? 
(The same fallacy occurs in the probabilistic arguments purport ing to prove tha t 
evolution cannot occur, based on the rarity of mutations.) 

1.22. The relation between mathematical creativity and musical creativity, and the 
mathematical aspects of music itself are a fascinating and well-studied topic. Con-
sider just the following problem, based on the standard tuning of a piano keyboard. 
According to that tuning, the frequency of the major fifth in each scale should be 
3/2 of the frequency of the base tone, while the frequency of the octave should 
be twice the base frequency. Since there are 12 half-tones in each octave, start ing 
at the lowest A on the piano and ascending in steps of a major fifth, twelve steps 
will bring you to the highest A on the piano. If all these fifths are tuned properly, 
that highest A should have a frequency of ( | ) 2 times the frequency of the lowest 
A. On the other hand, that highest A is seven octaves above the lowest, so that , 
if all the octaves are tuned properly, the frequency should be 2 7 times as high. 
The difference between these two frequency ratios, 7153/4096 « 1.746 is called the 
Pythagorean comma. (The Greek word komma means a break or cutoff.) Wha t 
is the significance of this discrepancy for music? Could you hear the difference 
between a piano tuned so that all these fifths are exactly right and a piano tuned 
so tha t all the octaves are exactly right? (The rat io of the discrepancy between the 
two ratios to either ratio is about 0.01%.) 

1.23. What meaning can you make of the statement a t t r ibuted to the French poet 
Sully (Rene Frangois Armand) Prudhomme (1839-1907), "Music is the pleasure the 
soul experiences from counting without realizing it is counting" ? 



C H A P T E R 2 

Mathematical Cultures I 

In Chapter 1 we looked a t the origin of mathematics in the everyday lives of people. 
The evidence for the conclusions presented there is indirect, coming from archae-
ology, anthropology, and other studies not directly mathematical . Wherever there 
are written documents to refer to, we can know much more about what was done 
and why. The present chapter is a broad survey of the development of mathemat-
ics tha t arose spontaneously, as far as is known, in a number of cultures around 
the world. We are particularly interested in highlighting the motives for creating 
mathematics. 

1. T h e m o t i v e s for creat ing m a t h e m a t i c s 

As we saw in Chapter 1, a certain amount of numerical and geometric knowledge is 
embedded in the daily lives of people and even animals. Human beings at various 
times have developed more intricate and sophisticated methods of dealing with 
numbers and space, leading to arithmetic, geometry, and beyond. Tha t kind of 
knowledge must be taught systematically if it is to be passed on from generation 
to generation and become a useful part of a civilization. Some group of people 
must devote at least a par t of their time to learning and perhaps improving the 
knowledge tha t has been acquired. These people are professional mathematicians, 
although their pr imary activity may be commercial, administrative, or religious, 
and sometimes a combination of the three, as in ancient Egypt. 

1.1. P u r e v e r s u s a p p l i e d m a t h e m a t i c s . How does the mathematics profession 
arise? Nowadays people choose to enter this profession for a variety of reasons. Un-
doubtedly, an important motive is that they find mathematical ideas interesting to 
contemplate and work with; but if there were no way of making a living from having 
some expertise in the subject, the number of its practitioners would be far smaller. 
The question thus becomes: "Why are some people paid for solving mathematical 
problems and creating new mathematical knowledge?" Industry and government 
find uses for considerable numbers of mathematicians and statisticians. For those 
of a purer, less applied bent, the universities and offices of scientific research subsi-
dized by governments provide the opportunity to do research on questions of pure 
mathematical interest without requiring an immediate practical application. This 
kind of research has been pursued for thousands of years, and it has always had 
some difficulty justifying itself. Here, for example, is a passage from Book 7 of 
Pla to ' s Republic in which, discussing the education of the leaders of an ideal state, 
Socrates and Glaucon decide on four subjects that they must learn, namely arith-
metic, geometry, astronomy, and music. These four subjects were later to form the 
famous quadrivium (fourfold path) of education in medieval Europe. After listing 
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arithmetic and geometry, they come to astronomy, and Socrates (the narrator of 
the dialogue) reports that Glaucon was in favor of including it: 

"I certainly am," he said, "to have a clearer perception of t ime peri-
ods, both months and eras is proper in agriculture and navigation, 
and no less so in military strategy." 

"You amuse me," I said, "in tha t you apparently fear the 
crowd, lest you seem to prescribe useless studies. But it is not 
an easy thing, it is difficult, to believe tha t some organ of the soul 
of each person is purified and refreshed in these studies, while it is 
lost and blinded by other pursuits; it is more to be preserved than 
ten thousand eyes, for by it alone is t ru th seen. Now some peo-
ple will agree that what you are proposing is extremely good; but 
those who have never felt these things will regard you as having 
said nothing; for they see in them no profit worthy of the name." 

Plato adopted the Pythagorean doctrine tha t there is a human faculty at tuned 
to eternal t ruth and working through human reason. If there really is such a 
faculty, then of course mathematics is of high value for everyone. P la to , speaking 
here through Socrates, admits that some people seem to lack this faculty, so tha t 
it is difficult to believe in its universality. The difference in outlook between the 
two classes of people mentioned by Plato continues right down to the present time. 
Here, for example, is the view of the famous modern applied mathematic ian, R. W. 
Hamming (1915-1998), inventor of the Hamming codes, who if he believed at all in 
the "eye of the soul," at least did not believe it had a claim on public funds: 

[T]he computing expert needs to be wary of believing much tha t 
he learns in his mathematics courses . . . [M]uch of modern math-
ematics is not related to science b u t . . . to the famous scholastic 
arguing of the Middle Ages. . . I believe it is important to make 
these dist inctions. . . [T]he failure to do so has. . .caused govern-
ment money appropriated for numerical analysis to be diverted to 
the ar t form of pure mathematics. 

On the opposite side of the question is the following point of view, expressed 
by the famous British mathematician G. H. Hardy (1877-1947), who in 1940 wrote 
A Mathematician's Apology. After quoting an earlier address, in which he had said, 
"after all, the scale of the universe is large and, if we are wasting our t ime, the 
waste of the lives of a few university dons is no such overwhelming catas t rophe," 1 

he gave what he considered the justification of his life: 

I have never done anything "useful." No discovery of mine has 
made, or is likely to make, directly or indirectly, for good or ill, 
any difference to the amenity of the wor ld . . . The case for my life, 
t h e n , . . . , is this: tha t I have added something to knowledge, and 
have helped others to add more; and tha t these somethings have 
a value which differs in degree only, not in kind, from tha t of the 
creations of the great mathematicians. 

1 From a cosmic point of view, no doubt, this is a cogent argument. From the point of view of 
that second group of people mentioned by Plato, however, it ignores the main question: Why 
should a person expect to receive a salary for doing work that others regard as useless? 
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As Plato said, one class of people will find this argument a sufficient justification 
for being a mathematician; another class will not. By reading the motivations given 
by other mathematicians for their work, the reader may either find arguments 
to convince tha t second group of people, or else come to agree with them and 
Hamming. 

2. India 

From archaeological excavations at Mohenjo Daro and Harappa on the Indus River 
in Pakistan it is known tha t an early civilization existed in this region for about 
a millennium start ing in 2500 BCE. This civilization may have been an amalgam 
of several different cultures, since anthropologists recognize five different physical 
types among the human remains. Many of the artifacts tha t were produced by 
this culture have been found in Mesopotamia, evidence of t rade between the two 
civilizations. 

The Aryan civilization. The early civilization of these five groups of people disap-
peared around 1500 BCE, and its existence was not known in the modern world 
until 1925. The cause of i ts extinction is believed to be an invasion from the north-
west by a sixth group of people, who spoke a language closely akin to early Greek. 
Because of their language these people are referred to as Aryans. The Aryans grad-
ually expanded and formed a civilization of small kingdoms, which lasted about a 
millennium. 

Sanskrit literature. The language of the Aryans became a literary language known 
as Sanskrit, in which great classics of literature and science have been written. 
Sanskrit thus played a role in southern Asia analogous to that of Greek in the 
Mediterranean world and Chinese in much of eastern Asia. Tha t is, it provided a 
means of communication among scholars whose native languages were not mutually 
comprehensible and a basis for a common literature in which cultural values could 
be preserved and t ransmit ted. During the millennium of Aryan dominance the 
spoken language of the people gradually diverged from writ ten Sanskrit. Modern 
descendants of Sanskrit are Hindi, Gujarati, Bengali, and others. Sanskrit is the 
language of the Mahabharata and the Ramayana, two epic poems whose themes 
bear some resemblance to the Homeric epics, and of the Upanishads, which contain 
much of the moral teaching of Hinduism. 

Among the most ancient works of literature in the world are the Hindu Vedas. 
The word means knowledge and is related to the English word wit. The composition 
of the Vedas began around 900 BCE, and additions continued to be made to them 
for several centuries. Some of these Vedas contain information about mathematics, 
conveyed incidentally in the course of telling important myths. 

Hindu religious reformers. Near the end of the Aryan civilization, in the second 
half of the sixth century BCE, two figures of historical importance arise. The 
first of these was G a u t a m a Buddha, the heir to a kingdom near the Himalayas, 
whose spiritual journey through life led to the principles of Buddhism. The second 
leader, Mahavira, is less well known but has some importance for the history of 
mathematics. Like his contemporary Buddha, he began a reform movement within 
Hinduism. This movement, known as Jainism, still has several million adherents 
in India. It is based on a metaphysic that takes very seriously what is known in 
some Western ethical systems as the chain of being. Living creatures are ranked 
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according to their awareness. Those having five senses are the highest, and those 

having only one sense are the lowest. 

Islam in India. The amazingly rapid Muslim expansion from the Arabian desert in 
the seventh century brought Muslim invaders to India by the early eighth century. 
The southern valley of the Indus River became a province of the huge Umayyad 
Empire, but the rest of India preserved its independence, as it did 300 years later 
when another Muslim people, the Turks and Afghans, invaded. Still, the contact 
was enough to bring certain Hindu works, including the Hindu numerals, to the 
great center of Muslim culture in Baghdad. The complete and destructive conquest 
of India by the Muslims under Timur the Lame came a t the end of the fourteenth 
century. Timur did not remain in India but sought new conquests; eventually he was 
defeated by the Ming dynasty in China. India was desolated by his at tack and was 
conquered a century later by Akbar the Lion, a descendant of bo th Genghis Khan 
and Timur the Lame and the first of the Mogul emperors. The Mogul Empire lasted 
nearly three centuries and was a time of prosperity and cultural resurgence. One 
positive effect of this second Muslim expansion was a further exchange of knowledge 
between the Hindu and Muslim worlds. Interestingly, the official adminstrative 
language used for Muslim India was neither Arabic nor an Indian language; it was 
Persian. 

British rule. During the seventeenth and eighteenth centuries British and French 
trading companies were in competition for the lucrative t rade with the Mogul Em-
pire. British victories during the Seven Years War left Britain in complete control 
of this trade. Coming at the t ime of Mogul decline due to internal strife among 
the Muslims and continued resistance on the part of the Hindus, this t rade opened 
the door for the British to make India par t of their empire. British colonial rule 
lasted nearly 200 years, coming to an end only after World War II. British rule 
made it possible for European scholars to become acquainted with Hindu classics 
of literature and science. Many Sanskrit works were translated into English in the 
early nineteenth century and became part of the world's science and literature. 

We can distinguish three periods in the development of mathematics in the In-
dian subcontinent. The first period begins around 900 BCE with individual math-
ematical results forming part of the Vedas. The second begins with systematic 
treatises concerned mostly with astronomy but containing explanations of math-
ematical results, which appear in the second century CE. These treatises led to 
continuous progress for 1500 years, during which t ime much of algebra, trigonom-
etry, and certain infinite series that now form par t of calculus were discovered, a 
century or more before Europeans developed calculus. In the third stage, which 
began during the two centuries of British rule, this Hindu mathematics came to 
be known in the West, and Indian mathematicians began to work and write in the 
modern style of mathematics tha t is now universal. 

2 .1 . T h e Sulva Sutras. In the period from 800 to 500 BCE a set of verses of 
geometric and arithmetic content were written and became par t of the Vedas.2 

2 Most of this discussion of the Sulva Sutras is based on the work of Srinivasiengar (1967), which 
gives a clear exposition but contains statements that are rather alarming for one who is forced to 
rely on a secondary source. For example, on p. 6 we learn that the unit of length known as the 
vyayam was "about 96 inches," and "possibly this represented the height of the average man in 
those days." Indeed. Where, Mr. Srinivasiengar, have archaeologists discovered 8-foot-tall human 
skeletons? 
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These verses are known collectively as the Sulva Sutras or Sulba Sutras. The name 
means Cord Rules and probably reflects the use of a stretched rope or cord as a way 
of measuring length. The root sulv originally meant to measure or to rule, although 
it also has the meaning of a cord or rope; sutra means thread or cord, a common 
measuring instrument. In the case of the Vedas the objects being measured with 
the cords were altars. The maintenance of altar fires was a duty for pious Hindus, 
and because Hinduism is polytheistic, it was necessary to consider how elaborate 
and large the fire dedicated to each deity was to be. This religious problem led to 
some interesting problems in arithmetic and geometry. 

Two scholars who studied primarily the Sanskrit language and literature made 
important contributions to mathematics. Pingala, who lived around 200 BCE, 
wrote a treatise known as the Chandahsutra, containing one very important math-
ematical result, which, however, was stated so cryptically tha t one must rely on a 
commentary written 1200 years later to know what it meant. Later, a fifth-century 
scholar named Panini standardi2«d the Sanskrit language, burdening it with some 
4000 grammatical rules tha t make it many times more difficult to learn than any 
other Indo-European language. In the course of doing so, he made extensive use of 
combinatorics and the kind of abstract reasoning tha t we associate with algebra. 
These subjects set the most ancient Hindu mathematics apar t from that of other 
nations. 

2.2. B u d d h i s t and J a i n a m a t h e m a t i c s . As with any religion that encourages 
quiet contemplation and the renunciation of sensual pleasure, Jainism often leads 
its followers to study mathematics , which provides a different kind of pleasure, 
one appealing to the mind. There have always been some mathematicians among 
the followers of Jainism, right down to modern times, including one in the ninth 
century bearing the same name as the founder of Jainism. The early work of 
Jaina mathematicians is notable for algebra (the Sthananga Sutra, from the second 
century BCE), for its concentration on topics that are essentially unique to early 
Hindu mathematics, such as combinatorics (the Bhagabati Sutra, from around 300 
BCE), and for speculation on infinite numbers (the Anuyoga Dwara Sutra, probably 
from the first century BCE) . Buddhist monks were also very fond of large numbers, 
and their influence was felt when Buddhism spread to China in the sixth century 
CE. 

2.3 . T h e Bakshal i M a n u s c r i p t . A birchbark manuscript unearthed in 1881 in 
the village of Bakshali, near Peshawar, is believed by some scholars to date from the 
seventh century CE, al though Sarkor (1982) believes it cannot be later than the end 
of the third century, since it refers to coins named dinara and dramma, which are 
undoubtedly references to the Greek coins known as the denarius and the drachma, 
introduced into India by Alexander the Great. These coins had disappeared from 
use in India by the end of the third century. The Bakshali Manuscript contains 
some interesting algebra, which is discussed in Chapter 14. 

2.4. T h e siddhantas. During the second, third, and fourth centuries CE, Hindu 
scientists compiled treatises on astronomy known as siddhantas. The word sid-
dhanta means a sys tem. 3 One of these treatises, the Surya Siddhanta (System of 

3 A colleague of the author suggested that this word may be cognate with the Greek idon, the 
aorist participle of the verb meaning see. 
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the Sun), from the late fourth century, has survived intact. Another from approx-
imately the same time, the Paulisha Siddhanta, was frequently referred to by the 
Muslim scholar al-Biruni (973-1048). The name of this treatise seems to have been 
bestowed by al-Biruni, who says that the treatise was writ ten by an Alexandrian 
astrologer named Paul . 

2.5. A r y a b h a t a I. With the writing of treatises on mathematics and astronomy, 
we at last come to some records of the motives that led people to create Hindu 
mathematics, or at least to write expositions of it. A mathematician named Aryab-
hata, the first of two mathematicians bearing tha t name, lived in the late fifth 
and early sixth centuries at Kusumapura (now Patal iputra , a village near the city 
of Patna) and wrote a book called the Aryabhatiya. This work had been lost for 
centuries when it was recovered by the Indian scholar Bhau Daji (1822-1874) in 
1864. Scholars had known of its existence through the writings of commentators 
and had been looking for it. Writing in 1817, the English scholar Henry Thomas 
Colebrooke (1765-1837), who translated other Sanskrit mathematical works into 
English, reported, "A long and diligent research of various par ts of India has, how-
ever, failed of recovering any part of t h e . . . Algebra and other works of Aryabhata." 
Ten years after its discovery the Aryabhatiya was published at Leyden and at t racted 
the interest of European and American scholars. It consists of 123 stanzas of verse, 
divided into four sections, of which the first, third, and fourth are concerned with 
astronomy and the measurement of time. 

Like all mathematicians, Aryabhata I was motivated by intellectual interest. 
This interest, however, was closely connected with his Hindu piety. He begins the 
Aryabhatiya with the following tribute to the Hindu deity. 

Having paid reverence to Brahman, who is one but many, the true 
deity, the Supreme Spirit, Aryabhata sets forth three things: math-
ematics, the reckoning of time, and the sphere. [Clark, 1930, p. 1] 

The translator adds phrases to explain that Brahman is one as the sole creator of 
the universe, but is many via a multi tude of manifestations. 

Aryabhata then continues his introduction with a list of the astronomical ob-
servations that he will be accounting for and concludes with a promise of the reward 
awaiting the one who learns what he has to teach: 

Whoever knows this Dasagitika Sutra which describes the move-
ments of the Earth and the planets in the sphere of the asterisms 
passes through the paths of the planets and asterisms and goes to 
the higher Brahman. [Clark, 1930, p. 20] 

As one can see, students in Aryabhata 's culture had an extra reason to study 
mathematics and astronomy, beyond the concerns of practical life and the pleasures 
of intellectual edification. Learning mathematics and astronomy helped to advance 
the soul through the cycle of births and rebirths that Hindus believed in. 

After setting out his teaching on the three subjects, Aryabhata concludes with 
a final word of praise for the Hindu deity and invokes divine endorsement of his 
labors: 
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By the grace of God the precious sunken jewel of t rue knowledge 
has been rescued by me, by means of the boat of my own knowl-
edge, from the ocean which consists of t rue and false knowledge. 
He who disparages this universally t rue science of astronomy, which 
formerly was revealed by Svayambhu and is now described by me 
in this Aryabhatiya, loses his good deeds and his long life. [Clark, 
1980, p. 81] 

2.6. B r a h m a g u p t a . The establishment of research centers for astronomy and 
mathematics at Kusumapura and Ujjain produced a succession of good mathe-
maticians and mathematical works for many centuries after Aryabhata I. About a 
century after Aryabhata I another Hindu mathematician, Brahmagupta, was born 
in the city of Sind, now in Pakistan. He was primarily an astronomer, but his as-
tronomical treatise, the Brahmasphutasiddhanta (literally The Corrected Brahma 
Siddhanta), contains several chapters on computation (Ganita). The Hindu interest 
in astronomy and mathematics continued unbroken for several centuries, producing 
important work on trigonometry in the tenth century. 

2.7. Bhaskara II. Approximately 500 years after Brahmagupta, in the twelfth 
century, the mathematician Bhaskara, the second of tha t name, was born on the 
site of the modern city of Bijapur. He is the author of the Siddhanta Siromani, in 
four parts, a treatise on algebra and geometric astronomy. Only the first of these 
parts, known as the Lilavati, and the second, known as the Vija Ganita,4 concern 
us here. Bhaskara says tha t his work is a compendium of knowledge, a sort of 
textbook of astronomy and mathematics. The name Lilavati, which was common 
among Hindu women, seems to have been a fancy of Bhaskara himself. Many of 
the problems are written in the form of puzzles addressed to this Lilavati. 

Bhaskara II apparently wrote the Lilavati as a textbook to form part of what 
we would call a liberal education. His introduction reads as follows: 

Having bowed to the deity, whose head is like an elephant's, whose 
feet are adored by gods; who, when called to mind, relieves his 
votaries from embarrassment; and bestows happiness on his wor-
shippers; I propound this easy process of computation, delightful 
by its elegance, perspicuous with words concise, soft and correct, 
and pleasing to the learned. [Colebrooke, 1817, p . 1] 

As a final advertisement at the end of his book, Bhaskara extols the pleasure 
to be derived from learning its contents: 

Joy and happiness is indeed ever increasing in this world for those 
who have Lilavati clasped to their throats, decorated as the mem-
bers are with neat reduction of fractions, multiplication, and invo-
lution, pure and perfect as are the solutions, and tasteful as is the 
speech which is exemplified. [Colebrooke, 1817, p . 127] 

* This Sanskrit word means literally source computation. It is compounded from the Sanskrit 
root vij- or bij-, which means seed. As discussed in Chapter 13, the basic idea of algebra is to 
find one or more numbers (the "source") knowing the result of operating on them in various ways. 
The word is usually translated as algebra. 
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The Vija Ganita consists of nine chapters, in the last of which Bhaskara tells 
something about himself and his motivation for writing the book: 

On earth was one named Maheswara, who followed the eminent 
path of a holy teacher among the learned. His son Bhaskara, hav-
ing from him derived the bud of knowledge, has composed this 
brief treatise of elemental computation. As the treatises of alge-
bra [vija ganita] by Brahmagupta, Shidhara and P a d m a n a b h a are 
too diffusive, he has compressed the substance of them in a well-
reasoned compendium for the gratification of learners . . . to aug-
ment wisdom and strengthen confidence. Read, do read, mathe-
matician, this abridgement, elegant in style, easily understood by 
youth, comprising the whole essence of computation, and contain-
ing the demonstration of its principles, replete with excellence and 
void of defect. [Colebrooke, 1817, pp. 275-276] 

2.8. M u s l i m India . Indian mathematical culture reflects the religious division 
between the Muslim and Hindu communities to some extent. The Muslim con-
quest brought Arabic and Persian books on mathematics to India. Some of these 
works were translated from ancient Greek, and among them was Euclid's Elements. 
These translations of later editions of Euclid contained certain obscurities and be-
came the subject of commentaries by Indian scholars. Akbar the Lion decreed a 
school curriculum for Muslims that included three-fourths of what was known in 
the West as the quadrivium. Akbar's curriculum included ari thmetic, geometry, 
and astronomy, leaving out only music. 5 Details of this Indian Euclidean tradition 
are given in the paper by de Young (1995). 

2.9. Indian m a t h e m a t i c s in t h e colonial p e r i o d a n d after . One of the first 
effects of British rule in India was to acquaint European scholars with the treasures 
of Hindu mathematics described above. It took a century before the British colonial 
rulers began to establish universities along European lines in India. According 
to Varadarajan (1983), these universities were aimed at producing government 
officials, not scholars. As a result, one of the greatest mathematical geniuses of all 
time. Srinivasa Ramanujan (1887-1920), was not appreciated and had to appeal 
to mathematicians in Britain to gain a position that would allow him to develop 
his talent. The necessary conditions for producing great mathemat ics were present 
in abundance, however, and the establishment of the T a t a Inst i tute in Bombay 
(now Mumbai) and the Indian Statistical Inst i tute in Calcu t ta were important 
steps in this direction. After Indian independence was achieved, the first prime 
minister, Jawaharlal Nehru (1889 1964), made it a goal to achieve prominence in 
science. This effort has been successful in many areas, including mathematics . The 
names of Komaravolu Chandrasekharan (b. 1920), Harish-Chandra (1923-1983), 
and others have become celebrated the world over for their contributions to widely 
diverse areas of mathematics. 

5 The quadrivium is said to have been proposed by Archytas (ca. 428-350 BCE), who lived in 
southern Italy and apparently communicated it to Plato when the latter was there to consult with 
the ruler of Syracuse; Plato incorporated it in his writings on education, as discussed in Sect. 1. 
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Srinivasa Ramanujan. The topic of power series is one in which Indian mathemati-
cians had anticipated some of the discoveries in seventeenth- and eighteenth-century 
Europe. It was a facility with this technique that distinguished Ramanujan, who 
taught himself mathematics after having been refused admission to universities in 
India. After publishing a few papers, starting in 1911, he was able to obtain a 
stipend to s tudy at the University of Madras. In 1913 he took the bold step of 
communicating some of his results to G.H. Hardy. Hardy was so impressed by 
Ramanujan's ability t h a t he arranged for Ramanujan to come to England. Thus 
began a collaboration t ha t resulted in seven joint papers with Hardy, while Ra-
manujan alone was the author of some 30 others. He rediscovered many important 
formulas and made many conjectures about functions such as the hypergeometric 
function that are represented by power series. 

Unfortunately, Ramanujan was in frail health, and the English climate did not 
agree with him. Nor was it easy for him to maintain his devout Hindu practices so 
far from his normal Indian diet. He returned to India in 1919, but succumbed to 
illness the following year. Ramanujan 's notebooks have been a subject of continuing 
interest to mathematicians. Hardy passed them on to G.N. Watson (1886-1965), 
who published a number of "theorems stated by Ramanujan." The full set of 
notebooks was published in the mid-1980s (see Berndt, 1985). 

3 . China 

The name China refers to a region unified under a central government but whose 
exact geographic extent has varied considerably over the 4000 years of its history. 
To frame our discussion we shall sometimes refer to the following dynasties: 6 

The Shang Dynasty (sixteenth to eleventh centuries BCE). The Shang rulers con-
trolled the northern par t of what is now China and had an extensive commercial 
empire. 

The Zhou Dynasty (eleventh to eighth centuries BCE). The Shang Dynasty was 
conquered by people from the northwest known as the Zhou. The great Chinese 
philosophers known in the West as Confucius, Mencius, and Lao-Tzu lived and 
taught during the period of disorder tha t came after the decay of this dynasty. 

The Period of Warring States (403-221 BCE) and the Qin Dynasty (221-206 BCE). 
Warfare was nearly continuous in the fourth and third centuries BCE, but in the 
second half of the thi rd century the northwestern border s tate of Qin gradually 
defeated all of its rivals and became the supreme power under the first Qin emperor. 
The name China is derived from the Qin. 

The Han Dynasty (206 BCE-220 CE). The empire was conquered shortly after the 
death of the great emperor by people known as the Han, who expanded their control 
far to the south, into present-day Viet Nam, and established a colonial rule in the 
Korean peninsula. Contact with India during this dynasty brought Buddhism to 
China for the first t ime. According to Mikami (1913, pp. 57-58), mathematical and 
astronomical works from India were brought to China and studied. Certain topics, 
such as combinatorics, are common to both Indian and Chinese treatises, but "there 

6 Because of total ignorance of the Chinese language, the author is forced to rely on translations of 
all documents. We shall write Chinese words in the Latin alphabet but not strive for consistency 
among the various sources that use different systems. We shall also omit the accent marks used to 
indicate the pitch of the vowels, since these cannot be pronounced by foreigners without special 
training. 
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is nothing positive tha t serves as an evidence of any actual Indian influence upon 

the Chinese mathematics." 

The Tang Dynasty (seventh and eighth centuries). The Tang Dynasty was a period 
of high scholarship, in which, for example, block printing was invented. 
The Song Dynasty (960-1279). The period of disorder after the fall of the Tang Dy-
nasty ended with the accession of the first Song emperor. Confucianism underwent 
a resurgence in this period, supplementing its moral teaching with metaphysical 
speculation. As a result, a large number of scientific treatises on chemistry, zool-
ogy, and botany were written, and the Chinese made great advances in algebra. 
The Mongol conquest and the closing of China. The Song Dynasty was ended in the 
thirteenth century by the Mongol conquest under the descendants of Genghis Khan, 
whose grandson Kublai Khan was the first emperor of the dynasty known to the Chi-
nese as the Yuan. As the Mongols were Muslims, this conquest brought China into 
contact with the intellectual achievements of the Muslim world. Knowledge flowed 
both ways, of course, and the sophisticated Chinese methods of root extraction seem 
to be reflected in the works of later Muslim scholars, such as the fifteenth-century 
mathematician al-Kashi. The vast Mongol Empire facilitated East-West contacts, 
and it was during this period that Marco Polo (1254-1324) made his famous voyage 
to the Orient. 

The Ming Dynasty (fourteenth to seventeenth centuries). While the Mongol con-
quest of Russia lasted 240 years, the Mongols were driven out of China in less than 
a century by the first Ming emperor. During the Ming Dynasty, Chinese t rade and 
scholarship recovered rapidly. The effect of the conquest, however, was to encourage 
Chinese isolationism, which became the official policy of the later Ming emperors 
during the period of European expansion. The first significant European contact 
came in the year 1582, when the Jesuit priest Matteo Ricci (1552-1610) arrived 
in China. The Jesuits were particularly interested in bringing Western science to 
China to aid in converting the Chinese to Christianity. They persisted in these 
efforts despite the opposition of the emperor. The Ming Dynasty ended in the 
mid-seventeenth century with conquest by the Manchus. 

The Ching (Manchu) Dynasty (1644-1911). After two centuries of relative pros-
perity the Ching Dynasty suffered from the depredations of foreign powers eager 
to control its trade. Perhaps the worst example was the Opium War of 1839-1842, 
fought by the British in order to gain control of the opium trade. From tha t t ime on 
Manchu rule declined. In 1900 the Boxer Rebellion against the Western occupation 
was crushed and the Chinese were forced to pay heavy reparations. In 1911 the 
government disintegrated entirely, and a republic was declared. 
The twentieth century. The establishment of a republic in China did not quell the 
social unrest, and there were serious uprisings for several decades. China suffered 
badly from World War II, which began with a Japanese invasion in the 1930s. Al-
though China was declared one of the major powers when the United Nations was 
formed in 1946, the Communist revolution of 1949 drove the ruler Chiang Kai-
Shek to the island of Taiwan. The United States recognized only the government 
in Taiwan until the early 1970s. Then, bowing to the inevitable, it recognized the 
Communist government and did not use its veto power when tha t government re-
placed the Taiwanese government on the Security Council of the United Nations. 
At present, the United States recognizes two Chinese governments, one in Beijing 
and one on Taiwan. This view is contradicted by the government in Beijing, which 
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claims the authority to rule Taiwan. The American mathematician Walter Feit 
(1930-2004) visited China in May 1976 and reported that there was a heavy em-
phasis on combining mathematical theory with practice to solve social problems 
(Feit, 1977). At first zealous in adhering to the Maoist version of Marxism, the 
Chinese Communist Par ty undertook major reforms during the 1990s and has been 
moving in the direction of a more market-driven economy since then, although 
democracy seems to be slow in arriving. China is now engaged in extensive cul-
tural and commercial exchanges with countries all over the world and hosted the 
International Congress of Mathematicians in 2002. Its mathematicians have made 
outstanding contributions to the advancement of mathematics, and Chinese stu-
dents are eagerly welcomed at universities in nearly every country. 

3 . 1 . W o r k s a n d a u t h o r s . Mathematics became a recognized and respected area 
of intellectual endeavor in China more than 2000 years ago. T h a t its origins are at 
least t ha t old is established by the existence of books on mathematics, at least one 
of which was probably written before the order of the Emperor Shih Huang Ti in 
213 BCE that all books be burned. 7 A few books survived or were reconstituted 
after the brief reign of Shih Huang-Ti, among them the mathematical classic just 
alluded to. This work and three later ones now exist in English translation, with 
commentaries to provide the proper context for readers who are unfamiliar with the 
history and language of China. Under the Tang dynasty a standardized educational 
system came into place for the training of civil servants, based on literary and scien-
tific classics, and the works listed below became par t of a mathematical curriculum 
known as the Suan Jing Shishu (Ten Canonical Mathematical Classics—there are 
actually 12 of them). Throughout this long period mathematics was cultivated to-
gether with astronomy both as an art form and for their practical application in the 
problem of obtaining an accurate lunisolar calendar. In addition, many problems 
of commercial ari thmetic appear in the classic works. 

The Zhou Bi Suan Jing. The early treatise mentioned above, the Zhou Bi Suan 
Jing, has been known in English as the Arithmetic Classic of the Gnomon and the 
Circular Paths of Heaven. A recent, very thorough study and English translation 
has been carried out by Christopher Cullen of the University of London (1996). 
According to Cullen, the t i t le Zhou Bi could be rendered as The Gnomon of the 
Zhou. The phrase suan jing occurs in the titles of several early mathematical 
works; it means mathematical treatise or mathematical manual. According to a 
tradition, the Zhou Bi Suan Jing was written during the Western Zhou dynasty, 
which overthrew the earlier Shang dynasty around 1025 BCE and lasted until 771 
BCE. Experts now believe, however, that the present text was put together during 
the Western Han dynasty, during the first century BCE, and tha t the commentator 
Zhao Shuang, who wrote the version we now have, lived during the third century 
CE, after the fall of the Han dynasty. However, the astronomical information in 
the book could only have been obtained over many centuries of observation, and 
therefore must be much earlier than the writing of the treatise. 

As the traditional title shows, the work is concerned with astronomy and sur-
veying. The study of astronomy was probably regarded as socially useful in two 
ways: (1) It helped to regulate the calendar, a mat ter of great importance when 
rituals were to be performed; (2) it provided a method of divination (astrology), 

7 The Emperor was not hostile to learning, since he did not forbid the writing of books. Appar-
ently, he just wanted to be remembered as the emperor in whose reign everything began. 
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also of importance both for the individual and for the state. Surveying is of use in 
any society where it is necessary to erect large structures such as dams and bridges, 
and where land is often flooded, requiring people to abandon their land holdings 
and reclaim them later. These considerations at least provide a reason for people 
to regard mathematics as useful in practice. However, the preface, written by the 
commentator Zhao Shuang, gives a different version of the motive for compiling 
this knowledge. Apparently a student of traditional Chinese philosophy, he had 
realized that it was impossible to understand fully all the mysteries of the changing 
universe. He reports that he had looked into this work while convalescing from an 
illness and had been so impressed by the acuity of the knowledge it contained tha t 
he decided to popularize it by writing commentaries to help the reader over the 
hard parts, saying, "Perhaps in time gentlemen with a tas te for wide learning may 
turn their at tention to this work" (Cullen, 1996, p. 171). 

Here we see mathematics being praised simply because it confers understanding 
where ignorance would otherwise be; it is regarded as a liberal ar t , to be studied 
by a leisured class of gentlemen scholars, people fortunate enough t o be free of 
the daily grind of physical labor that was the lot of the majority of people in all 
countries until very recent times. 

The Jiu Zhang Suanshu. Another ancient Chinese treatise, the Jiu Zhang Suanshu, 
meaning Nine Chapters on the Mathematical Art,6 has been part ly translated into 
English, with commentary, by Lam (1994 )· A corrected and commented edition was 
published in Chinese in 1992, assembled by Guo (1992). This work has claim to be 
called the classic Chinese mathematical treatise. It reflects the level of mathematics 
in China in the later Han dynasty, around the year 100 CE. The nine chapters 
that give this monograph its name contain 246 applied problems of a sort useful 
in teaching how to handle arithmetic and elementary algebra and how to apply 
them in commercial and administrative work. Unfortunately, these chapters have 
no prefaces in which the author explains their purpose, and so we must assume 
that the purpose was the obvious one of training people engaged in surveying, 
administration, and trade. Some of the problems have an immediately practical 
nature, explaining how to find areas, convert units of length and area, and deal 
with fractions and proportions. Yet when we analyze the algebraic parts of this 
work, we shall see that it contains impractical puzzle-type problems leading to 
systems of linear equations and resembling problems tha t have filled up algebra 
books for centuries. Such problems are apparently intended to t rain the mind in 
algebraic thinking. 

The Sun Zi Suan Jing. The most elementary of the early treatises is the Sun Zi Suan 
Jing, or Mathematical Classic of Sun Zi, even though its da te is several centuries 
later than the Jiu Zhang Suanshu. This work begins with a preface praising the 
universality of mathematics for its role in governing the lives of all creatures, and 
placing it in the context of Chinese philosophy and among the six fundamental arts 
(propriety, music, archery, charioteership, calligraphy, and mathematics) . 

The preface makes it clear that mathematics is appreciated as both a practical 
skill in life and as an intellectual endeavor. The practicality comes in the use of 
compasses and gnomons for surveying and in the use of ar i thmetic for computing 
weights and measures. The intellectual skill, however, is emphasized. Mathematics 

8 Chinese titles are apparently very difficult to render in English. Martzloff (1994) translates this 
title as Computational Prescriptions in Nine Chapters. 
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is valued because it trains the mind. "If one neglects its study, one will not be able 
to achieve excellence and thoroughness" (Lam and Ang, 1992, p. 151). 

As in the quotation from the commentary on the Zhou Bi Suan Jing, we find 
that an aura of mystery and "elitism" surrounds mathematics. It is to be pursued by 
a dedicated group of initiates, who expect to be respected for learning its mysteries. 
At the same time, it has a practical value that is also respected. 

Liu Hui. The Hai Dao Suan Jing. The fall of the Han Dynasty in the early third 
century gave rise to three separate kingdoms in the area now known as China. The 
north-central kingdom is known as the Kingdom of Wei. There, in the late third 
century CE, a mathematician named Liu Hui (ca. 220-280) wrote a commentary 
on the final chapter of the Jiu Zhang Suanshu. This chapter is devoted to the 
theorem we know as the Pythagorean theorem, and Liu Hui 's book, the Hai Dao 
Suan Jing (Sea Island Mathematical Classic), shows how to use pairs of similar 
right triangles to measure inacessible distances. The name of the work comes from 
the first problem in it, which is to find the height of a mountain on an offshore 
island and the distance to the base of the mountain. The work consists of nine 
problems in surveying tha t can be solved by the algebraic techniques practiced in 
China a t the time. A translation of these problems, a history of the text itself, and 
commentary on the mathematical techniques can be found in the paper by Ang 
and Swetz (1986). 

Liu Hui wrote a preface explaining tha t because of the burning of the books 
400 years earlier, the few ancient texts still around had deteriorated, but that a 
minister of agriculture named Zhang Cang had produced a revised and corrected 
edition. However, most historians think that the Jiu Zhang Suanshu was written 
around 200 BC, after Shih Huang Ti ordered the burning of the books. 

Zu Chongzhi and Zu Geng. According to Li and Du (1987, pp . 80-82), fifth-century 
China produced two outstanding mathematicians, father and son. Zu Chongzhi 
(429-501) and his son Zu Geng (ca. 450-520) were geometers who devised a method 
resembling what is now called Cavalieri's principle for calculating volumes bounded 
by curved surfaces. The elder Zu was also a numerical analyst, who wrote a book 
on approximation entitled Zhui Shu (Method of Interpolation), which became for a 
while part of the classical curriculum. However, this book was apparently regarded 
as too difficult for nonspecialists, and it was dropped from the curriculum and lost. 
Zu Geng continued working in the same area as his father and had a son who also 
became a mathematician. 

Yang Hui. We now leave a considerable (700-year) gap in the story of Chinese 
mathematics. The next mathematician we wish to mention is Yang Hui (ca. 1238-
1298), the author of a number of mathematical texts. According to Li and Du (1987, 
pp. 110,115), one of these was Xiangjie Jiuzhang Suan Fa (Detailed Analysis of the 
Mathematical Rules in the Jiu Zhang Suanshu), a work of 12 chapters, one on each 
of the nine chapters of the Jiu Zhang Suanshu, plus three more containing other 
methods and more advanced analysis. In 1274 and 1275 he wrote two other works, 
which were later collected in a single work called the Yang Hui Suan Fa (Yang 
Hui's Computational Methods). In these works he discussed not only mathematics, 
but also its pedagogy, advocating real understanding over rote learning. 

Zhu Shijie. Slightly later than Yang Hui, but still contemporary with him, was Zhu 
Shijie (ca. 1260-1320). He was still a young man in 1279, when China was united 



32 2. MATHEMATICAL CULTURES I 

by the Mongol emperor Kublai Khan and its capital established at what is now 
Beijing. Unification of the country enabled Zhu Shijie to travel more widely than 
had previously been possible. As a result, his Suan Shu Chimeng (Introduction to 
Mathematical Studies), although based on the Jiu Zhang Suanshu, went beyond 
it, discussing the latest methods of Chinese algebra. The original of this book 
was lost in Chinese, but a Korean version was later exported to Japan , where 
it had considerable influence. Eventually, a translation back from Korean into 
Chinese was made in the nineteenth century. According to Zharov (2001), who 
analyzed four fragments from this work, it shows some influence of Hindu or Arabic 
mathematics in its classification of large numbers. Zharov also proposed tha t the 
title be translated as "Explanation of some obscurities in mathemat ics" but says 
that his Chinese colleagues argued that the symbols for chi and meng were written 
as one and should be considered a single concept. 

The Suan Fa Tong Zong of Cheng Dawei. A later work, the Suan Fa Tong Zong 
(Treatise on Arithmetic) by Cheng Dawei (1533-1606), was published in 1592. This 
book is well described by its title. It contains a systematic t rea tment of the kinds 
of problems handled in traditional Chinese mathematics , and a t the end has a 
bibliography of some 50 other works on mathematics . The author, according to 
one of his descendents, was fascinated by books discussing problems on fields and 
grain, and assembled this book of problems over a lifetime of purchasing such 
books. Like the book of Zhu Shijie, Cheng Dawei's book had a great influence 
on the development of mathematics in Korea and Japan. According to Li and 
Du (1987, p. 186), Cheng Dawei left a record of his mathematical studies, saying 
that he had been involved in travel and trade when young and had sought teachers 
everywhere he went. He retired from this profession while still young and spent 20 
years consolidating and organizing his knowledge, so tha t "finally I rooted out the 
false and the nonsensical, put all in order, and made the text lucid." 

3.2 . China's e n c o u n t e r w i t h W e s t e r n m a t h e m a t i c s . Jesuit missionaries who 
entered China during the late sixteenth century brought with them some mathe-
matical works, in particular Euclid's Elements, the first six books of which the 
missionary Matteo Ricci and the Chinese scholar Xu Guangchi (1562-1633) trans-
lated into Chinese (Li and Du, 1987, p. 193). The version of Euclid tha t they used, 
a Latin translation by the German Jesuit Christopher Clavius (1538-1612) bearing 
the title Euclidis elementorum libri XV (The Fifteen Books of Euclid's Elements), 
is still extant, preserved in the Beijing Library. This book aroused interest in China 
because it was the basis of Western astronomy and therefore offered a new approach 
to the calendar and to the prediction of eclipses. According to Mikami (1913, p . 
114), the Western methods made a correct prediction of a solar eclipse in 1629, 
which traditional Chinese methods got wrong. It was this accurate prediction that 
at tracted the attention of Chinese mathematicians to Euclid's book, rather than 
the elaborate logical structure which is its most prominent distinguishing charac-
teristic. Martzloff (1993) has studied a commented (1700) edition of Euclid by 
the mathematician Du Zhigeng and has noted tha t it was considerably abridged, 
omitting many proofs of propositions that are visually or topologically obvious. As 
Martzloff says, although Du Zhigeng retained the logical form of Euclid, t ha t is, the 
definitions, axioms, postulates, and propositions, he neglected proofs, either omit-
ting them entirely or giving only a fraction of a proof, "a fraction not necessarily 
containing the part of the Euclidean argument relative to a given proposition and 
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devoted to the mathematical proof in the proper sense of the term." Du Zhigeng 
also a t tempted to synthesize the traditional Chinese classics, such as the Jiu Zhang 
Suanshu and the Suan Fa Tong Zong, with works imported from Europe, such 
as Archimedes' treatise on the measurement of the circle. Thus in China, West-
ern mathematics supplemented, but did not replace, the mathematics that already 
existed. 

The first Manchu Emperor Kang Xi (1654-1722) was fascinated by science and 
insisted on being taught by two French Jesuits, Jean-Frangois Gerbillon (1654-
1707) and Joachim Bouvet (1656-1730), who were in China in the late 1680s. This 
was the time of the Sun King, Louis XIV, who was vying with Spain and Portugal 
for influence in the Orient. The two Jesuits were required to be at the palace from 
before dawn until long after sunset and to give lessons to the Emperor for four 
hours in the middle of each day (Li and Du, 1987, pp . 217-218). 

The encounter with the West came at a time when mathematics was undergo-
ing an amazing efflorescence in Europe. The first books on the use of Hindu-Arabic 
numerals for computat ion had appeared some centuries before, and now trigonome-
try, logarithms, analytic geometry, and calculus were all being developed at a rapid 
pace. These new developments took a firmer hold in China t han the ancient Greek 
mathematics of Euclid and Archimedes. Jami (1988) reports on an eighteenth-
century work by Ming Antu (d. 1765) deriving power-series expansions for certain 
trigonometric functions. She notes that even though the proofs of these expansions 
would not be regarded as conclusive today, the greatest of the eighteenth-century 
Chinese mathematicians, Wang Lai (1768-1813), professed himself satisfied with 
t hem. 9 Thus, she concludes, there was a difference between the reception of Eu-
clid in China and the reception of the more computational modern mathematics. 
The Chinese took Euclid 's treatise on its own terms and at tempted to fit it into 
their own conception of mathematics; but they reinterpreted contemporary math-
ematics completely, since it came to them in small pieces devoid of context (Jami, 
1988, p . 327). 

Given the increasing contacts between East and West in the nineteenth century, 
some merging of ideas was inevitable. During the 1850s the mathematician Li Shan-
Ian (1811-1882), described by Martzloff (1982) as "one of the last representatives 
of Chinese traditional mathematics," translated a number of contemporary works 
into Chinese, including an 1851 calculus textbook of the American astronomer-
mathematician Elias Loomis (1811-1889) and an algebra text by Augustus de Mor-
gan (1806-1871). Li Shanlan had a power over formulas tha t reminds one in many 
ways of the twentieth-century Indian genius Srinivasa Ramanujan. One of his com-
binatorial formulas, s ta ted without proof in 1867, was finally proved through the 
ingenuity of the prominent Hungarian mathematician Paul Turan (1910-1976). By 
the early twentieth century Chinese mathematical schools had marked out their own 
territory, specializing in s tandard areas of mathematics such as analytic function 
theory. Despite the difficulties of war, revolution, and a period of isolation during 
the 1960s, transmission of mathematical literature between China and the West 
continued and greatly expanded through exchanges of students and faculty from 
the 1980s onward. Kazdan (1986) gives an interesting snapshot of the situation in 
China a t the beginning of this period of expansion. 

9 European mathematicians of the time also used methods that would not be considered com-
pletely rigorous today, and their arguments have some resemblance to those reported by Jami. 
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4. Anc ien t E g y p t 

Although mathematics has been practiced in Egypt continuously start ing at least 
4000 years ago, it merged with Greek mathematics during the Hellenistic period 
that began a t the end of the fourth century BCE, and it formed par t of the larger 
Muslim culture centered in Baghdad starting about 1200 years ago. W h a t we shall 
call Egyptian mathematics in this section had a beginning and an end. It began with 
hieroglyphic inscriptions containing numbers and dating to the third millennium 
BCE and ended in the time of Euclid, around 300 BCE. The city of Alexandria 
in the Nile delta was the main school of mathematics in the Hellenistic world, and 
many of the most prominent mathematicians who wrote in Greek studied there. 

The great architectural monuments of ancient Egypt are covered with hiero-
glyphs, some of which contain numbers. In fact, the ceremonial mace of the founder 
of the first dynasty contains records that mention oxen, goats, and prisoners and 
contain hieroglyphic symbols for the numbers 10,000,100,000, and 1,000,000. These 
hieroglyphs, although suitable for ceremonial recording of numbers, were not well 
adapted for writing on papyrus or leather. T h e language of the earliest writ ten 
documents that have been preserved to the present t ime is a cursive known as 
hieratic. 

The most detailed information about Egyptian mathematics comes from a sin-
gle document written in the hieratic script on papyrus around 1650 BCE and pre-
served in the dry Egyptian climate. This document is known properly as the Ah-
mose Papyrus, after its writer, but also as the Rhind Papyrus after the British 
lawyer Alexander Rhind (1833-1863), who went to Egypt for his health and be-
came an Egyptologist. Rhind purchased the papyrus in Luxor, Egypt, in 1857. 
Parts of the original document have been lost, but a section consisting of 14 sheets 
glued end to end to form a continuous roll 3 5 feet wide and 17 feet long remains. 
Part of it is on public display in the British Museum, where it has been since 1865 
(see Plate 1). Some missing pieces of this document were discovered in 1922 in the 
Egyptian collection of the New York Historical Society; these are now housed at 
the Brooklyn Museum of Art. A slightly earlier mathematical papyrus, now in the 
Moscow Museum of Fine Arts, consists of sheets about one-fourth the size of the 
Ahmose Papyrus. This papyrus was purchased by V. S. Golenishchev (1856-1947) 
in 1893 and donated to the museum in 1912. A third document, a leather roll pur-
chased along with the Ahmose Papyrus, was not unrolled for 60 years after it reached 
the British Museum because the curators feared it would disintegrate if unrolled. 
It was some time before suitable techniques were invented for softening the leather, 
and the document was unrolled in 1927. The contents turned out to be a collection 
of 26 sums of unit fractions, from which historians were able to gain insight into 
Egyptian methods of calculation. A fourth set of documents, known as the Reisner 
Papyri after the American archaeologist George Andrew Reisner (1867 1942), who 
purchased them in 1904, consists of four rolls of records from dockyard workshops, 
apparently from the reign of Senusret I (1971-1926 BCE) . They are now in the 
Boston Museum of Fine Arts. Another document, the Akhmim Wooden Tablet, 
is housed in the Egyptian Museum in Cairo. These documents show the practical 
application of Egyptian mathematics in construction and commerce. 

We are fortunate to be able to date the Ahmose Papyrus with such precision. 
The author himself gives us his name and tells us tha t he is writing in the fourth 
month of the flood season of the thirty-third year of the reign of Pharaoh A-user-re 
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(Apepi I). From this information Egyptologists arrived at a date of around 1650 
BCE for this papyrus. Ahmose tells us, however, tha t he is merely copying work 
written down in the reign of Pharaoh Ny-maat-re, also known as Amenemhet III 
(1842-1797 BCE), the sixth pharaoh of the Twelfth Dynasty. From that informa-
tion it follows that the mathematical knowledge contained in the papyrus is nearly 
4000 years old. 

Wha t do these documents tell us about the practice of mathematics in an-
cient Egypt? Ahmose begins his work by describing it as a "correct method of 
reckoning, for grasping the meaning of things, and knowing everything that is, ob-
scurities. . . and all sec re t s . " 1 0 The author seems to value mathematics because of 
its explanatory power, bu t tha t explanatory power was essentially practical. The 
problems tha t are solved bear a very strong resemblance to those in other treatises 
such as the Jiu Zhang Suanshu. 

The Akhmim Wooden Tablet contains several ways of expressing reciprocals 
of integers based on dividing unity (64/64) by these integers. According to Milo 
Gardner , 1 1 the significance of the number 64 is tha t it is the number of ro in a 
hekat of grain. This origin for the numbers makes sense and gives a solid practical 
origin for Egyptian arithmetic. 

5. M e s o p o t a m i a 

Some quite sophisticated mathematics was developed four millennia ago in the 
portion of the Middle East now known as Iraq and Turkey. Unfortunately, this 
knowledge was preserved on small clay tablets, and nothing like a systematic trea-
tise contemporary with this early mathematics exists. Scholars have had to piece 
together a mosaic picture of this mathematics from a few hundred clay tablets tha t 
show how to solve particular problems. In contrast to Egypt, which had a fairly sta-
ble culture throughout many millennia, the region known as Mesopotamia (Greek 
for "between the rivers") was the home of many civilizations. The name of the 
region derives from the two rivers, the Euphrates and the Tigris, tha t flow from the 
mountainous regions around the Mediterranean, Black, and Caspian seas into the 
Persian Gulf. In ancient times this region was a very fertile floodplain, although 
it suffered from an unpredictable climate. It was invaded and conquered many 
times, and the successive dynasties spoke and wrote in many different languages. 
The convention of referring to all the mathematical texts tha t come from this area 
between 2500 and 300 BCE as "Babylonian" gives undue credit to a single one of 
the many dynasties tha t ruled over this region. The cuneiform script is used for 
writing several different languages. The tablets themselves date to the period from 
2000 to about 300 BCE. 

Of the many thousands of cuneiform texts scattered through museums around 
the world, a few hundred have been found to be mathematical in content. Deci-
phering them has not been an easy task, although the work was made simpler by 
mutilingual tablets tha t were created because the cuneiform writers themselves had 
need to know what had been written in earlier languages. It was not until 1854 
that enough tablets had been deciphered to reveal the system of computation used, 
and not until the early twentieth century were significant numbers of mathematical 

1 0 This is the translation given by Robins and Shute (1987, p. 11). Chace (1927, p. 49) gives the 
translation as "the entrance into the knowledge of all existing things and all secrets." 
1 1 See ht tp: //mathworld. wolfram. com/AkhmimWoodenTablet. html. 
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texts deciphered and analyzed. The most complete analysis of these is the 1935 
two-volume work by Otto Neugebauer (1899 1992), Mathematische. Ke.ilschrifttexte, 
recently republished by Springer-Verlag. A more up-to-date study has been pub-
lished by the Oxford scholar Eleanor Rohsou (1999). 

Cuneiform tablet BMP 15 285. © The British Museum. 

Since our present concern is to introduce authors and their works and discuss 
motivation, there is little more to say about the cuneiform tablets a t this point, 
except to speculate on the uses for these tablets. Some of the tablets tha t have 
been discussed by historians of mathematics appear to be "classroom materials," 
written by teachers as exercises for students. This conclusion is based on the 
fact tha t the answers so often "come out even." As Robson (1995, p. 11, quoted 
by Melville, 2002, p. 2) states. "Problems were constructed from answers known 
beforehand." Melville provides an example of a different kind from tablet 4652 of 
the Yale Babylonian Collection in which the figures are not adjusted this way, but a 
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certain technique is presumed. Thus, although there is an unavoidable lack of unity 
and continuity in the Mesopotamian texts compared with mathematics written on 
more compact and flexible media, the cuneiform tablets nevertheless contain many 
problems like those considered in India, China, and Egypt. The applications that 
these techniques had must be inferred, but we may confidently assume tha t they 
were the same everywhere: commerce, government administration, and religious 
rites, all of which call for counting and measuring objects on Earth and making 
mathematical observations of the sky in order to keep track of months and years. 

6. T h e Maya 

The Maya civilization of southern Mexico and Central America began around 2600 
BCE. Its period of greatest material wealth lasted from the third to tenth centuries 
CE. Archaeologists have found evidence of economic decline from the tenth century 
onward. This civilization was conquered by Spanish explorers in the sixteenth 
century, with devastating effect on the ancient culture. Some authorities estimate 
that as much as 90% of the population may have perished of smallpox. Those who 
survived were dispersed into the countryside and forbidden to practice their ancient 
religion. In the 1550s the Franciscan friar Diego de Landa (1524-1579) undertook 
to destroy all Maya b o o k s . 1 2 Fortunately, three Maya books had already been 
sent to Europe by earlier colonizers. From these few precious remnants, something 
can be learned of Maya religion and astronomy, which are their main subjects. 
The authors remain u n k n o w n , 1 3 so that the books are named for their present 
locations: the Dresden Codex, the Madrid Codex, and the Paris Codex. A fourth 
work, consisting of par t s of 11 pages of Venus tables, was recovered in Mexico in 
1965. It was shown to the Maya scholar Michael Coe, who published it (Coe, 1973). 
It is known as the Grolier Codex, after the New York publisher of Coe's book, and 
it now resides in Mexico City. 

6.1. T h e D r e s d e n C o d e x . The information on the Dresden Codex given here 
comes from the following website. 

h t t p : / / w w w . t u - d r e s d e n . d e / s l u b / p r o j /maya/maya. html 

An English summary of this information can be found at the following website. 

h t t p : / / w w w . t u - d r e s d e n . d e / s l u b / p r o j /maya/mayaeng .html 

The codex that is now in the Sachsische Landesbibliothek of Dresden was pur-
chased in Vienna in 1739 by Johann Christian Goetze (1692-1749), who was a t 
the time director of the royal library at the court of Saxony. It is conjectured tha t 
the codex was sent to the Hapsburg Emperor Charles V (1500-1558; he was also 
King Carlos I of Spain). The codex consists of 74 folios, folded like an accordion, 
with texts and illustrations in bright colors (see Pla te 3). It suffered some damage 
from the Brit ish-American bombing of Dresden during World War II. Fortunately, 

1 2 Sources differ on the dates of Diego de Landa's life. Ironically, de Landa's own work helped 
in deciphering the Maya hieroglyphs, which he tried to summarize in a history of events in the 
Yucatan. He had no quarrel with the Maya language, only with the religious beliefs embodied in 
its books. According to Sharer (1994, P- 558), de Landa recognized and wrote about the vigesimal 
place system used by the Maya. 
1 3 One can infer something about Maya mathematics from the remains of Maya crafts and archi-
tecture. Closs (1992, p. 12) notes that one Maya vase contains a painting with a scribe figure who 
is apparently female and bears the name "Ah Ts'ib, The Scribe." 
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considerable work had been done earlier on the codex by another director of the 
Dresden library, a philologist named Ernst Forstemann (1822-1906), who had 200 
copies of it made. 

The work consists of eight separate treatises and, according to the experts, 
shows evidence of having been written by eight different people. Dates conjectured 
for it vary from the thirteenth to the fifteenth centuries, and it may have been 
a copy of an earlier document. The first 15 folios are devoted to almanacs and 
astronomy/astrology, while folios 16 23 are devoted to the Moon Goddess. Both of 
these sections are based on a 260-day calendar known as the Tzolkin (see Chapter 
5). It is believed tha t these pages were consulted to determine whether the gods 
were favorably inclined toward proposed undertakings. Folio 24 and folios 46-50 
are Venus tables, containing 312 years of records of the appearance of Venus as 
morning and evening star. Such records help to establish the chronology of Maya 
history as well as the date of the manuscript itself. The pictures accompanying 
the text (Plate 3) seem to indicate a belief tha t Venus exerted an influence on 
human life. These pages are followed by eclipse tables over the 33-year period from 
755 to 788 CE. Folios 25-28 describe new-year ceremonies, and folios 29-45 give 
agricultural almanacs. Folios 61-73 give correlations of floods and storms with 
the 260-day calendar in order to predict the end of the next world cycle. Finally, 
folio 74 describes the coming end of the current world cycle. The Maya apparently 
believed there had been at least three such cycles before the current one. 

The mathematics that can be gleaned from these codices and the steles tha t 
remain in Maya territory is restricted to applications to astronomy and the calen-
dar. The arithmetic that is definitely attested by documents is rudimentary. For 
example, although there is no reason to doubt tha t the Maya performed multiplica-
tion and division, there is no record showing how they did so. Undoubtedly, there 
was a Maya arithmetic for commerce, but it is very difficult to reconstruct, since 
no treatises on the subject exist. Thus, our understanding of the achievements 
of Maya scientists and mathematicians is limited by the absence of sources. The 
Maya documents tha t have survived to the present are "all business" and contain no 
whimsical or pseudo-practical problems of an algebraic type such as can be found 
in ancient Chinese, Hindu, Mesopotamian, and Egyptian texts. 

Q u e s t i o n s and p r o b l e m s 

2 .1 . Does mathematics realize Plato 's program of understanding the world by con-
templating eternal, unchanging forms that are perceived only by reason, not by the 
senses? 

2.2. To what extent do the points of view expressed by Hamming and Hardy 
on the value of pure mathematics reflect the nationalities of their authors and 
the prevailing at t i tudes in their cultures? Consider tha t unlike the public radio 
and television networks in the United States, the CBC in Canada and the BBC 
in Britain do not spend four weeks a year pleading with their audience to send 
voluntary donations to keep them on the air. The BBC is publicly funded out of 
revenues collected by requiring everyone who owns a television set to pay a yearly 
license fee. 

2.3 . In an article in the Review of Modern Physics, 5 1 , No. 3 (July 1979), the 
physicist Norman David Mermin (b. 1935) wrote, "Bridges would not be safer if 
only people who knew the proper definition of a real number were allowed to design 
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them" (quoted by Mackay, 1991, p. 172). Granting tha t at the final point of contact 
between theory and the physical world, when a human design is to be executed in 
concrete and steel, every number is only an approximation, is there any value for 
science and engineering in the concept of an infinitely precise real number? Or is 
this concept only for idealistic, pure mathematicians? (The problems below may 
influence your answer.) 

2.4. In 1837 and 1839 the crystallographer Auguste Bravais (1811-1863) and his 
brother Louis (1801-1843) published articles on the growth of p l an t s . 1 4 In these 
articles they studied the spiral patterns in which new branches grow out of the 
limbs of certain trees and classified plants into several categories according to this 
pattern. For one of these categories they gave the amount of rotation around the 
limb between successive branches as 137° 30' 28". Now, one could hardly measure 
the limb of a tree so precisely. To measure within 10° would require extraordi-
nary precision. To refine such crude measurements by averaging to the claimed 
precision of 1", tha t is, 1/3600 of a degree, would require thousands of individual 
measurements. In fact, the measurements were carried out in a more indirect way, 
by counting the total number of branches after each full tu rn of the spiral. Many 
observations convinced the brothers Bravais that normally there were slightly more 
than three branches in two turns, slightly less than five in three turns, slightly more 
than eight in five turns, and slightly less than thirteen in eight turns. For that rea-
son they took the actual amount of revolution between successive branches to be 
the number we call 1/Φ = (\/5 — l)/2 = Φ - 1 of a. complete (360°) revolution, 
since 

3 8 Λ 13 5 

2 < 5 < * < T < 3 -
Observe tha t 360°-=-Φ « 222.4922359° « 222° 29 '32" = 360° - (137° 30 '28") . Was 
there scientific value in making use of this real (infinitely precise) number Φ even 
though no actual plant grows exactly according to this rule? 

2.5. P la te 4 shows a branch of a flowering crab apple tree from the author 's garden 
with the twigs cut off and the points from which they grew marked by pushpins. 
The "zeroth" pin at the left is white. After that , the sequence of colors is red, 
blue, yellow, green, pink, clear, so that the red pins correspond to 1, 7, and 13, 
the blue to 2 and 8, the yellow to 3 and 9, the green to 4 and 10, the pink to 5 
and 11, and the clear to 6 and 12. (The green pin corresponding to 4 and par t of 
the clear pin corresponding to 12 are underneath the branch and cannot be seen in 
the picture.) Observe t ha t when these pins are joined by string, the string follows 
a helical path of nearly constant slope along the branch. Which pins fall nearest 
to the intersection of this helical path with the meridian line marked along the 
length of the branch? How many turns of the spiral correspond to these numbers 
of twigs? On tha t basis, what is a good approximation to the number of twigs per 
turn? Between which pin numbers do the intersections between the spiral and the 
meridian line fall? For example, the fourth intersection is between pins 6 and 7, 
indicating tha t the average number of pins per turn up to tha t point is between 

1 4 See the article by I. Adler, D. Barabe, and R. V. Jean, "A history of the study of phyllotaxis," 
Annals of Botany, 8 0 (1997), 231-244, especially p. 234. The articles by Auguste and Louis 
Bravais are "Essai sur la disposition generate des feuilles curviseriees," Annates des sciences na-
turelles, 7 (1837), 42-110, and "Essai sur la disposition generate des feuilles rectiseriees," Congres 
scientifique de France, 6 (1839), 278-330. 
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I = 1.5 and | = 1.75. Get upper and lower estimates in this way for all numbers of 
turns from 1 to 8. W h a t are the narrowest upper and lower bounds you can place 
on the number of pins per turn in this way? 

2.6. Suppose tha t the pins in Plate 4 had been joined by a curve winding in the 
opposite direction. How would the numbers of turns of the spiral and the number 
of pins joined compare? What change would occur in the slope of the spiral? 

2.7. Wi th which of the two groups of people mentioned by Pla to do you find 
yourself more in sympathy: the "practical" people, who object to being taxed to 
support abstract speculation, or the "idealists," who regard abstract speculation as 
having value to society? 

2.8. The division between the practical and the ideal in mathematics finds an 
interesting reflection in the interpretation of what is meant by solving an equation. 
Everybody agrees tha t the problem is to find a number satisfying the equation, but 
interpretations of "finding a number" differ. Inspired by Greek geometric methods, 
the Muslim and European algebraists looked for algorithms to invert the operations 
that defined the polynomial whose roots were to be found. Their object was to 
generate a sequence of arithmetic operations and root extractions tha t could be 
applied to the coefficients in order to exhibit the roots. The Chinese, in contrast, 
looked for numerical processes to approximate the roots with arbitrary accuracy. 
Wha t advantages and disadvantages do you see in each of these approaches? Wha t 
would be a good synthesis of the two methods? 

2.9. When a mathematical document such as an early treatise or cuneiform tablet 
contains problems whose answers "come out even," should one suspect or conclude 
that it was a teaching device—either a set of problems with simplified da t a to 
build students ' confidence or a manual for teachers showing how to construct such 
problems? 

2.10. From what is known of the Maya codices, is it likely t ha t they were textbooks 
intended for teaching purposes, like many of the cuneiform tablets and the early 
treatises from India, China, and Egypt? 

2.11 . Why was the Chinese encounter with the Jesuits so different from the Maya 
encounter with the Franciscans? Wha t differences were there in the two situations, 
and what conditions account for these differences? Was it merely a mat te r of 
the degree of zeal tha t inspired Diego de Landa and Mat teo Ricci, or were there 
institutional or national differences between the two as well? How much difference 
did the relative strength of the Chinese and the Maya make? 



C H A P T E R 3 

Mathematical Cultures II 

Many cultures borrow from others but add their own ideas t o what they borrow and 
make it into something richer than the pure item would have been. The Greeks, for 
example, never concealed their admiration for the Egyptians or the debt that they 
owed to them, yet the mathematics that they passed on to the world was vastly 
different from what they learned in Egypt. To be sure, much of it was created in 
Egypt, even though it was written in Greek. The Muslim culture tha t flourished 
from 800 to 1500 CE learned something from the Greeks and Hindus, but also 
made many innovations in algebra, geometry, and number theory. The Western 
Europeans are still another example. Having learned about algebra and number 
theory from the Byzantine Empire and the Muslims, they went on to produce such a 
huge quanti ty of first-rate mathematics that for a long time European scholars were 
tempted to think of the rest of the world as merely a footnote to their own work. 
For example, in his history of western philosophy (1945), the British philosopher 
Bertrand Russell wrote (p. xvi), "In the Eastern Empire, Greek civilization, in a 
desiccated form, survived, as in a museum, till the fall of Constantinople in 1453, but 
nothing of importance to the world came out of Constantinople except an artistic 
tradition and Just inian's Codes of Roman law." He wrote further (p. 427), "Arabic 
philosophy is not impor tant as original thought. Men like Avicenna and Averroes 
are essentially commentators." Yet Russell was not consciously a chauvinist. In 
the same book (p. 400), he wrote, "I think that, if we are to feel at home in the 
world after the present war [World War II], we shall have to admit Asia to equality 
in our thoughts, not only politically, but culturally." 

Until very recently, many textbooks regarded as authoritative were written 
from this "it all started with the Greeks" point of view. As Chapter 2 has shown, 
however, there was mathemat ics before the Greeks, and the Greeks learned it before 
they began making their own remarkable innovations in it. 

1. G r e e k a n d R o m a n m a t h e m a t i c s 

The Greeks of the Hellenic period (to the end of the fourth century BCE) traced 
the origins of their mathematical knowledge to Egypt and the Middle East. This 
knowledge probably came in "applied" form in connection with commerce and 
astronomy/astrology. The evidence of Mesopotamian numerical methods shows 
up most clearly in the later Hellenistic work on astronomy by Hipparchus (second 
century BCE) and Ptolemy (second century CE). Earlier astronomical models by 
Eudoxus (fourth century BCE) and Apollonius (third century BCE) were more 
geometrical. Jones (1991, p. 445) notes that "the astronomy that the Hellenistic 
Greeks received from the hands of the Babylonians was by then more a skill than 
a science: the quality of the predictions was proverbial, but in all likelihood the 
practitioners knew little or nothing of the origins of their schemes in theory and 
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observations." Among the techniques t ransmit ted to the Greeks and ultimately 
to the modern world was the convention of dividing a circle into 360 equal parts 
(degrees). Greek astronomers divided the radius into 60 equal par ts so tha t the 
units of length on the radius and on the circle were very nearly equal. 

The amount tha t the Greeks learned from Egypt is the subject of controversy. 
Many scholars who have read the surviving mathematical texts from papyri have 
concluded tha t Egyptian methods of computing were too cumbersome for applica-
tion to the complicated measurements of astronomers. Yet both P la to and Aristotle 
speak approvingly of Egyptian computational methods and the ways in which they 
were taught. As for geometry, it is generally acknowledged tha t the Egyptian in-
sight was extraordinary; the Egyptians knew how to find the volume of a pyramid, 
for example. They even found the area of a hemisphere, the only case known before 
Archimedes in which the area of a curved surface is found. 1 The case for advanced 
Egyptian mathematics is argued in some detail by Bernal (1992), who asserts tha t 
Ptolemy himself was an Egyptian. The argument is difficult to settle, since little is 
known of Ptolemy personally; for us, he is simply the author of certain works on 
physics and astronomy. 

Because of their extensive commerce, with its need for counting, measuring, 
navigation, and an accurate calendar, the Ionian Greek colonies such as Miletus 
on the coast of Asia Minor and Samos in the Aegean Sea provided a very favor-
able environment for the development of mathematics, and it was there, with the 
philosophers Thales of Miletus (ca. 624 547 BCE) and Pythagoras of Samos (ca. 
570-475 BCE), that Greek mathematics began. 

1.1. Sources . Since the material on which the Greeks wrote was not durable, all 
the original manuscripts have been lost except for a few ostraca (shells) found in 
Egypt. We are dependent on copyists for preserving the information in early Greek 
works, since few manuscripts that still exist were written more than 1000 years ago. 
We are further indebted to the many commentators who wrote summary histories 
of philosophy, including mathematics, for the little that we know about the works 
that have not been preserved and their authors. The most prominent among these 
commentators are listed below. They will be mentioned many times in the chapters 
that follow. 

Marcus Vitruvius (first century BCE) was a Roman architect who wrote an 
extremely influential treatise on architecture in 10 books. He is regarded as a 
rather unreliable source for information about mathematics, however. 

Plutarch (45-120 CE) was a pagan author, apparently one of the best educated 
people of his time, who wrote on many subjects. He is best remembered as the 
author of the Parallel Lives of the Greeks and Romans, in which he compares 
famous Greeks with eminent Romans who engaged in the same occupation, such 
as the orators Demosthenes and Cicero. 2 Plutarch is important to the history of 
mathematics for what he reports on natural philosophers such as Thales. 

1 Some authors claim that the surface in question was actually half of the lateral surface of a 
cylinder, but the words used seem more consistent with a hemisphere. In either case it was a 
curved surface. 
2 Shakespeare relied on Plutarch's account of the life of Julius Caesar, even describing the mirac-
ulous omens that Plutarch reported as having occurred just before Caesar's death. 
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Theon of Smyrna (ca. 100 CE) was the author of an introduction to mathemat-
ics written as background for reading Plato, a copy of which still exists. It contains 
many quotations from earlier authors. 

Diogenes Laertius (third century CE) wrote a comprehensive history of phi-
losophy, Lives of Eminent Philosophers, which contains summaries of many earlier 
works and gives details of the lives and work of many of the pre-Socratic philoso-
phers. He appears to be the source of the misnomer "Pythagorean theorem" tha t 
has come down to us (see Zhmud, 1989, p. 257). 

Iamblichus (285-330 CE) was the author of many treatises, including 10 books 
on the Pythagoreans, five of which have been preserved. 

Pappus (ca. 300 CE) wrote many books on geometry, including a comprehensive 
treatise of eight mathematical books. He is immortalized in calculus books for his 
theorem on the volume of a solid of revolution. Besides being a first-rate geometer 
in his own right, he wrote commentaries on the Almagest of Ptolemy and the tenth 
book of Euclid's Elements. 

Proclus (412-485 CE) is the author of a commentary on the first book of 
Euclid, in which he quoted a long passage from a history of mathematics, now lost, 
by Eudemus, a pupil of Aristotle. 

Simplicius (500-549 CE) was a commentator on philosophy. His works contain 
many quotations from the pre-Socratic philosophers. 

Eutocius (ca. 700 CE) was a mathematician who lived in the port city of Askelon 
in Palestine and wrote an extensive commentary on the works of Archimedes. 

Most of these commentators wrote in Greek. Knowledge of Greek sank to a 
very low level in western Europe as a result of the upheavals of the fifth century. 
Although learning was preserved by the Church and all of the New Testament 
was written in Greek, a Latin translation (the Vulgate) was made by Jerome in 
the fifth century. From tha t t ime on, Greek documents were preserved mostly in 
the Eastern (Byzantine) Empire. After the Muslim conquest of North Africa and 
Spain in the eighth century, some Greek documents were translated into Arabic and 
circulated in Spain and the Middle East. From the eleventh century on, as secular 
learning began to revive in the West, scholars from northern Europe made journeys 
to these centers and to Constantinople, copied out manuscripts, translated them 
from Arabic and Greek into Latin, and tried to piece together some long-forgotten 
parts of ancient learning. 

1.2. Genera l f ea tures o f G r e e k m a t h e m a t i c s . Greek mathematics—that is, 
mathematics written in ancient Greek—is exceedingly rich in authors and works. 
Its most unusual feature, compared with what went before, is its formalism. Math-
ematics is developed systematically from definitions and axioms, general theorems 
are stated, and proofs are given. This formalism is the outcome of the entanglement 
of mathematics with Greek philosophy. It became a model to be imitated in many 
later scientific treatises, such as Newton's Philosophise naturalis principia mathe-
matica. Of course, Greek mathematics did not arise in the finished form found in 
the treatises. Tradition credits Thales only with knowing four geometric proposi-
tions. By the time of Pythagoras, much more was known. The crucial formative 
period was the first half of the fourth century BCE, when Plato 's Academy flour-
ished. P la to himself was interested in mathematics because he hoped for a sort of 
"theory of everything," based on fundamental concepts perceived by the mind. 
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Plato is famous for his theory of ideas, which had both metaphysical and epis-
temological aspects. The metaphysical aspect was a response to two of his pre-
decessors, Heraclitus of Ephesus (ca. 535-475 BCE), who asserted tha t everything 
is in constant flux, and Parmenides (born around 515 BCE) , who asserted that 
knowledge is possible only in regard to things tha t do not change. One can see 
the obvious implication: Everything changes (Heraclitus). Knowledge is possible 
only about things that do not change (Parmenides). Therefore.... To avoid the 
implication tha t no knowledge is possible, Plato restricted the meaning of Heracli-
tus' "everything" to objects of sense and invented eternal, unchanging Forms that 
could be objects of knowledge. 

The epistemological aspect of Plato 's philosophy involves universal proposi-
tions, statements such as "Lions are carnivorous" (our example, not Plato 's) , mean-
ing "All lions are carnivorous." This sentence is grammatically inconsistent with 
its meaning, in that the grammatical subject is the set of all lions, while the asser-
tion is not about this set but about its individual members. It asserts tha t each 
of them is a carnivore, and therein lies the epistemological problem. Wha t is the 
real subject of this sentence? It is not any particular lion. Pla to tried to solve this 
problem by inventing the Form or Idea of a lion and saying that the sentence really 
asserts a relation perceived in the mind between the Form of a lion and the Form 
of a carnivore. Mathematics, because it dealt with objects and relations perceived 
by the mind, appeared to Plato to be the bridge between the world of sense and 
the world of Forms. Nevertheless, mathematical objects were not the same thing as 
the Forms. Each Form, Plato claimed, was unique. Otherwise, the interpretation 
of sentences by use of Forms would be ambiguous. But mathematical objects such 
as lines are not unique. There must be at least three lines, for example, in order for 
a triangle to exist. Hence, as a sort of hybrid of sense experience and pure mental 
creation, mathematical objects offered a way for the human soul to ascend to the 
height of understanding, by perceiving the Forms themselves. Incorporating math-
ematics into education so as to realize this program was Plato 's goal, and his pupils 
studied mathematics in order to achieve it. Although the philosophical goal was 
not reached, the effort expended on mathematics was not wasted; certain geometric 
problems were solved by people associated with Pla to , providing the foundation of 
Euclid's famous work, known as the Elements. 

Within half a century of Plato 's death, Euclid was writing t ha t treatise, which 
is quite free of all the metaphysical accoutrements tha t Plato 's pupils had experi-
mented with. However, later neo-Platonic philosophers such as Proclus a t tempted 
to reintroduce philosophical ideas into their commentary on Euclid's work. The 
historian and mathematician Ot to Neugebauer (1975, p. 572) described the philo-
sophical aspects of Proclus' introduction as "gibberish," and expressed relief that 
scientific methodology survived despite the prevalent dogmatic philosophy. 

According to Diels (1951, 44A5), Plato met the Pythagorean Philolaus in Sicily 
in 390. In any case, Plato must certainly have known the work of Philolaus, since 
in the Phaedo Socrates says that both Cebes and Simmias are familiar with the 
work of Philolaus and implies that he himself knows of it a t second hand. It 
seems likely, then, tha t Plato 's interest in mathematics began some t ime after the 
death of Socrates and continued for the rest of his life, t ha t mathemat ics played 
an important role in the curriculum of his Academy and in the research conducted 
there, and that P la to himself played a leading role in directing tha t research. We 
do not, however, have any theorems that can with confidence be a t t r ibuted to Pla to 
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himself. Lasserre (1964, P- 17) believes tha t the most important mathematical work 
at the Academy was done between 375 and 350 BCE. 

Socrates explained tha t arithmetic was needed both to serve the eye of the soul 
and as a practical instrument in planning civic projects and military campaigns: 

The kind of knowledge we are seeking seems to be as follows. It is 
necessary for a military officer to learn (mathein) these things for 
the purpose of proper troop deployment, and the philosopher must 
have risen above change, in order to grasp the essence of things, or 
else never become skilled in calculation (logistiko). 

i 

Plato , through Socrates, complains of the lack of a government subsidy for 
geometry. In his day solid geometry was underdeveloped in comparison with plane 
geometry, and Socrates gave what he thought were the reasons for its backwardness: 

First, no government holds [the unsolved problems in solid geom-
etry] in honor; and they are researched in a desultory way, being 
difficult. Second, those who are doing the research need a mentor, 
without which they will never discover anything. But in the first 
place, to become a mentor is difficult; and in the second place, 
after one became a mentor, as things are just now, the arrogant 
people doing this research would never listen to him. But if the 
entire s tate were to act in concert in conducting this research with 
respect, the researchers would pay heed, and by their combined 
intensive work the answers would become clear. 

P la to himself was among tha t group of people mentioned in Chapter 2, for 
whom the "eye of the soul" was sufficient justification for intellectual activity. He 
seems to have had a rather dim view of the second group, the practical-minded 
people. In his long dialogue The Laws, one of the speakers, an Athenian, rants 
about the shameful Greek ignorance of incommensurables, surely a topic of limited 
application in the lives of most people. 

1.3. Works a n d a u t h o r s . Books on mathematics written in Greek begin appear-
ing early in Hellenistic times (third century BCE) and continue in a steady stream 
for hundreds of years. We list here only a few of the most outstanding authors. 

Euclid. This author lived and worked in Alexandria, having been invited by Ptolemy 
Soter (Ptolemy I) shortly after the city was founded. Essentially nothing is known 
of his life beyond that fact, but his famous treatise on the basics of geometry (the 
Elements) has become a classic known all over the world. Several of his minor 
works—the Optics, the Data, and the Phenomena—also have been preserved. Un-
like Aryabhata and Bhaskara, Euclid did not provide any preface to tell us why he 
wrote his treatise. We do, however, know enough of the Pythagorean philosophy 
to understand why they developed geometry and number theory to the extent tha t 
they did, and it is safe to conclude that this kind of work was considered valuable 
because it appealed to the intellect of those who could understand it. 
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Archimedes. Much more is known of Archimedes (ca. 287-212 BCE) . About 10 of 
his works have been preserved, including the prefaces t ha t he wrote in the form 
of "cover letters" to the people who received the works. Here is one such letter, 
which accompanied a report of what may well be regarded as his most profound 
achievement—proving that the area of a sphere is four t imes the area of its equa-
torial circle. 

On a former occasion I sent you the investigations which I had 
up to that t ime completed, including the proofs, showing t h a t any 
segment bounded by a straight line and a section of a right-angled 
cone [parabola] is four-thirds of the triangle which has the same 
base with the segment and equal height. Since then certain theo-
rems not hitherto demonstrated have occurred to me, and I have 
worked out the proofs of them. They are these: first, t ha t the 
surface of any sphere is four times its greatest c i rc le . . . For, though 
these properties also were naturally inherent in the figures all along, 
yet they were in fact unknown to all the many able geometers who 
lived before Eudoxus, and had not been observed by anyone. Now, 
however, it will be open to those who possess the requisite ability 
to examine these discoveries of mine. [Heath, 1897, Dover edition, 
pp. 1-2] 

As this letter shows, mathematics was a "going concern" by Archimedes' time, 
and a community of mathematicians existed. Archimedes is known to have studied 
in Alexandria. He perished when his native city of Syracuse was taken by the 
Romans during the Second Punic War. Some of Archimedes' letters, like the one 
quoted above, give us a glimpse of mathematical life during his t ime. Despite being 
widely separated, the mathematicians of the t ime sent one another challenges and 
communicated their achievements. 

Apollonius. Apollonius, about one generation younger than Archimedes, was a na-
tive of what is now Turkey. He studied in Alexandria somewhat after the t ime of 
Euclid and is also said to have taught there. He eventually settled in Pergamum 
(now Bergama in Turkey). He is the author of eight books on conic sections, four 
of which survive in Greek and three others in an Arabic t ranslat ion. We know 
that there were originally eight books because commentators, especially Pappus, 
described the work and told how many propositions were in each book. 

In his prefaces Apollonius implies tha t geometry was simply part of what an 
educated person would know, and that such people were as fascinated with it in 
his time as they are today about the latest scientific achievements. Among other 
things, he said the following. 

During the time I spent with you a t Pergamum I observed your 
eagerness to become aquainted with my work in conies. [Book I] 

I undertook the investigation of this subject at the request of Nau-
crates the geometer, at the time when he came to Alexandria and 
stayed with me, and, when I had worked it out in eight books, I 
gave them to him at once, too hurriedly, because he was on the 
point of sailing; they had therefore not been thoroughly revised, 
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indeed I had put down everything just as it occurred to me, post-
poning revision until the end. [Book II] 

Ptolemy. Claudius Ptolemy was primarily an astronomer and physicist, although 
these subjects were hardly distinct from mathematics in his time. He lived in 
Alexandria during the second century, as is known from the astronomical observa-
tions that he made between 127 and 141 CE. He created an intricate and workable 
Earth-centered mathematical system of explaining the motion of the planets and 
systematized it in a treatise known as the Syntaxis, which, like Euclid's, consisted 
of 13 books. Also like Euclid's treatise, Ptolemy's Syntaxis became a classic refer-
ence and was used for well over a thousand years as the definitive work on math-
ematical astronomy. It soon became known as the "greatest" work (megistos in 
Greek) and when translated into Arabic became al-megista or the Almagest, as we 
know it today. 

Diophantus. Little is known about this author of a remarkable treatise on what 
we now call algebra and number theory. He probably lived in the third century 
CE, although some experts believe he lived earlier than tha t . His treatise is of no 
practical value in science or commerce, but its problems inspired number theorists 
during the seventeenth century and led to the long-standing conjecture known as 
Fermat 's last theorem. The 1968 discovery of what may be four books from this 
treatise that were long considered lost was the subject of a debate among the 
experts, some of whom believed the books might be commentaries, perhaps written 
by the late fourth-century commentator Hypatia. If so, they would be the only-
work by Hypatia still in existence. 

Pappus. Pappus, who is known to have observed a solar eclipse in Alexandria in 
320 CE, was the most original and creative of the later commentators on Greek 
geometry and arithmetic. His Synagoge (Collection) consists of eight books of 
insightful theorems on ari thmetic and geometry, as well as commentary on the 
works of other authors. In some cases where works of Euclid, Apollonius, and 
others have been lost, this commentary tells something about these works. Pappus 
usually assumes that the reader is interested in what he has to say, but sometimes 
he gives in addition a practical justification for his study, as in Book 8: 

The science of mechanics, my dear Hermodorus, has many impor-
tant uses in practical life, and is held by philosophers to be worthy 
of the highest esteem, and is zealously studied by mathematicians, 
because it takes almost first place in dealing with the nature of the 
material elements of the universe. [Thomas, 1941, p . 615] 

As a commentator, Pappus was highly original, and the later commentators 
Theon of Alexandria (late fourth century) and his daughter Hypatia (ca. 370-
415) produced respectable work, including a standard edition of Euclid's Elements. 
Several of Theon's commentaries still exist, but nothing authored by Hypatia has 
been preserved, unless the books of Diophantus mentioned above were written by 
her. Very little of value can be found in Greek mathematics after the fourth century. 
As Gow (1884, P- 308) says: 

The Collection of Pappus is not cited by any of his successors, and 
none of them at tempted to make the slightest use of the proofs 
and aperQus in which the book abounds . . . His work is only the 
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last convulsive effort of Greek geometry which was now nearly 
dead and was never effectually revived. 

Greek mathematics held on longer in the Byzantine Empire than in Western 
Europe. Although Theon of Alexandria had found it necessary to water down 
the more difficult par ts of Greek geometry for the sake of his weak students, the 
degeneration in Latin works was even greater. The philosopher Boethius (480-
524) wrote Latin translations of many classical Greek works of mathemat ics and 
philosophy. His works on mathematics were translations based on Nicomachus and 
Euclid. Boethius' translation of Euclid has been lost. However, it is believed to be 
the basis of many other medieval manuscripts, some of which use his name. These 
are referred to as "Boethius" or pseudo-Boethius. The works of Boethius fit into 
the classical quadrivium of arithmetic, geometry, music, and astronomy. 

Politically and militarily, the fifth century was full of disasters in Italy, and some 
of the best minds of the time turned from public affairs to theological questions. 
For many of these thinkers mathematics came to be valued only to the extent tha t 
it could inspire religious feelings. The pseudo-Boethius gives a good example of 
this point of view. He writes: 3 

The utility of geometry is threefold: for work, for health, and for 
the soul. For work, as in the case of a mechanic or architect; for 
health, as in the case of the physician; for the soul, as in the case 
of the philosopher. If we pursue this ar t with a calm mind and 
diligence, it is clear in advance tha t it will illuminate our senses 
with great clarity and, more than tha t , will show what it means 
to subordinate the heavens to the soul, to make accessible all the 
supernal mechanism that cannot be investigated by reason in any 
other way and through the sublimity of the mind beholding it, also 
to integrate and recognize the Creator of the world, who veiled so 
many deep secrets. 

In the tenth century, Gerbert of Aurillac (940-1003), who became Pope Sylvester 
II in 999, wrote a treatise on geometry based on Boethius. His reasons for studying 
geometry were similar: 

Indeed the utility of this discipline to all lovers of wisdom is the 
greatest possible. For it leads to vigorous exercises of the soul, and 
the most subtle demands on the intuition, and to many certain 
inquiries by true reasoning, in which wonderful and unexpected 
and joyful things are revealed to many along with the wonderful 
vigor of nature, and to contemplating, admiring, and praising the 
power and ineffable wisdom of the Creator who apport ioned all 
things according to number and measure and weight; it is replete 
with subtle speculations. 

These uses of geometry were expressed in the last Canto of Dante ' s Divine 
Comedy, which describes the poet 's vision of heaven: 

3 This quotation and the next can be read online at http://pld.chadwyck.com, a commercial 
website. This passage is from Vol. 63Ϊ the next is from Vol. 139. Both can be reached by searching 
under "geometria" as title. 
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Like the geometer who applies all his powers 

To measure the circle, but does not find 

By thinking the principle he needs, 

Such was I, in this new vista. 

I wished to see how the image came together 

Wi th the circle and how it could be divined there. 

But my own wings could not have made the flight 

Had not my mind been struck 

By a flash in which his will came to me. 

In this lofty vision I could do nothing. 

But now turning my desire and will, 

Like a wheel tha t is uniformly moved, 

Was the love t ha t moves the sun and the other stars. 

The quadrivium, from Boethius' Arithmetic. From left to right: 
Music holding an instrument, Arithmetic doing a finger computa-
tion, Geometry studying a set of figures, Astrology holding a set 
of charts for horoscopes. © Foto Marburg/Ar t Resource. 
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The Byzantine Empire and modern Greece. Mathematics continued in the Byzan-
tine Empire until the Turks conquered Constantinople in 1453. Of several figures 
who contributed to it, the one most worthy of mention is the monk Maximus 
Planudes (ca. 1260-1310), who is best known for the l i terature tha t he preserved 
(including Aesop's Fables). Planudes wrote commentaries on the work of Diophan-
tus and gave an account of the Hindu numerals tha t was one of the sources from 
which these numerals eventually came down to us (Heath, 1921, pp. 546-547). 

The mainland of Greece was partitioned and disputed among various groups 
for centuries: the Latin West, the Byzantine Empire, the Ot toman Empire, the 
Venetians, and the Normans invaded or ruled over parts of it. In the fourteenth 
century it became a par t of the Ot toman Empire, from which it gained independence 
only in the 1820s and 1830s. Even before independence, however, Greek scholars, 
inspired by the great progress in Europe, were laying the foundations of a modern 
mathematical school (see Phili, 1997). 

2. J a p a n 

Both Korea and Japan adopted the Chinese system of writing their languages. The 
Chinese language was the source of a huge amount of technical vocabulary in Korea 
and Japan over many centuries, and even in recent t imes in Viet Nam (Koblitz, 
1990, p. 26). The establishment of Buddhism in J apan in the sixth century increased 
the rate of cultural importation from China and even from India . 4 

The influence of Chinese mathematics on both Korea and J a p a n was consider-
able. The courses of university instruction in this subject in bo th countries were 
based on reading (in the original Chinese language) the Chinese classics we discussed 
in Chapter 2. In relation to Japan the Koreans played a role as transmitters , pass-
ing on Chinese learning and inventions. This transmission process began in 553-554 
when two Korean scholars, Wang Lian-tung and Wang Pu-son, journeyed to Japan. 
For many centuries bo th the Koreans and the Japanese worked within the system of 
Chinese mathematics . The earliest records of new and original work in these coun-
tries date from the seventeenth century. By tha t t ime mathematical activity was 
exploding in Europe, and Europeans had begun their long voyages of exploration 
and colonization. There was only a brief window of t ime during which indigenous 
mathematics independent of Western influence could grow up in these countries. 
The following synopsis is based mostly on the work of Mikami (1913), Smith and 
Mikami (1914), and Murata (1994). Following the usage of the first two of these 
sources, all Japanese names are given surname first. A word of caution is needed 
about the names, however. Most Chinese symbols (kanji in Japanese) have a t least 
two readings in Japanese. For example, the symbol read as chu in the Japanese 
word for China (Chugoku), is also read as naka (meaning middle) in the surname 
Tanaka. These variant readings often cause trouble in names from the past, so that 
one cannot always be sure how a name was pronounced. As Mikami (1913, p . viii) 
says, "We read Seki Kowa, although his personal name Kowa should have been 
read Takakazu." Several examples of such al ternate readings will be encountered 
below. A list of these names and their kanji rendering can be found in a paper of 
Martzloff (1990, p. 373). 

4 The Japanese word for China—Chugoku— means literally Midland, that is, between Japan and 
India. 



2. JAPAN 51 

2.1. Chinese influence and calculating devices. All the surviving Japanese 
records date from the time after Japan had adopted the Chinese writing system. 
Japanese mathematicians were for a time content to read the Chinese classics. In 
701 the emperor Monbu established a university system in which the mathematical 
part of the curriculum consisted of 10 Chinese classics. Some of these are no longer 
known, but the Zhou Bi Suan Jing, Sun Zi Suan Jing, Jiu Zhang Suanshu, and Hai 
Dao Suan Jing were among them. Japan was disunited for many centuries after 
this early encounter with Chinese culture, and the mathematics that later grew 
up was the result of a reintroduction in the sixteen and seventeenth centuries. In 
this reintroduction, the two most important works were the Suan Fa Tong Zong 
by Cheng Dawei, and the Suan Shu Chimeng of Zhu Shijie, both mentioned in 
Chapter 2. The latter became part of the curriculum in Korea very soon after it was 
written and was published in Japan in the mid-seventeenth century. The evidence 
of Chinese influence is unmistakable in the mechanical methods of calculation used 
for centuries—counting rods, counting boards, and the abacus, which played an 
especially important role in Japan. 

The Koreans adopted the Chinese counting rods and counting boards, which the 
Japanese subsequently adopted from them. The abacus (suan pan) was invented 
in China, probably in the fourteenth century, when methods of computing with 
counting rods had become so efficient that the rods themselves were a hindrance to 
the performance of the computation. Prom China the invention passed to Korea, 
where it was known as the sanbob. Because it did not prove useful in Korean 
business, it did not become widespread there. It passed on to Japan, where it is 
known as the soroban, which may be related to the Japanese word for an orderly 
table (soroiban). The Japanese made two important technical improvements in the 
abacus: (1) they replaced the round beads by beads with sharp edges, which are 
easier to manipulate; and (2) they eliminated the superfluous second 5-bead on 
each string. 

2.2. Japanese mathematicians and their works. A nineteenth-century Japan-
ese historian reported that the emperor Hideyoshi sent the scholar Mori Shigeyoshi 
(Mori Kambei) to China to learn mathematics. According to the story, the Chi-
nese ignored the emissary because he was not of noble birth. When he returned to 
Japan and reported this fact, the emperor conferred noble status on him and sent 
him back. Unfortunately, his second visit to China coincided with Hideyoshi's un-
successful attempt to invade Korea, which made his emissary unwelcome in China. 
Mori Shigeyoshi did not return to Japan until after the death of Hideyoshi, but when 
he did return (in the early seventeenth century), he brought the abacus with him. 
Whether this story is true or not, it is a fact that Mori Shigeyoshi was one of the 
most influential early Japanese mathematicians. He wrote several treatises, all of 
which have been lost, but his work led to a great flowering of mathematical activity 
in seventeenth-century Japan, through the work of his students. This mathematics 
was known as wasan, and written using two Chinese characters. The first is wa, a 
word still used to denote Japanese-style work in arts and crafts, meaning literally 
harmony. The second is san, meaning calculation, the same Chinese symbol that 
respresents suan in the many Chinese classics mentioned above.5 Murata (1994, 
p. 105) notes that the primary concern in wasan was to obtain elegant results, 
even when those results required very complicated calculations, and that "many 

5 The modern Japanese word for mathematics is sugaku, meaning literally number study. 
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Wasanists were men of fine arts rather than men of mathematics in the European 
sense." 

According to Murata (1994), t n e stimulus for the development of wasan came 
largely from the two Chinese classics mentioned above, the 1593 arithmetical trea-
tise Suan Fa Tong Zong and the algebraic treatise Suan Shu Chimeng. The latter 
was particularly important, since it came with no explanatory notes and a rebellion 
in China had made communication with Chinese scholars difficult. By the time this 
treatise was understood, the Japanese mathematicians had progressed beyond its 
contents. 

Sangaku. The shoguns of the Tokugawa family (1600-1868) concentrated their for-
eign policy on relations with China and held Western visitors at arms length, with 
the result that Japan was nearly closed to the Western world for 250 years. During 
this time a fascinating form of mathematics known as sangaku (mathematical study, 
the "study" being a physical plaque) arose, involving the posting of mathematical 
plaques at sacred shrines (see Plate 2). These problems are discussed in detail in 
the book of Pukagawa and Pedoe (1989). 

Yoshida Koyu. Mori Shigeyoshi trained three outstanding students during his life-
time, of whom we shall discuss only the first. This student was Yoshida Koyu 
(Yoshida Mitsuyoshi, 1598-1672). Being handicapped in his studies at first by his 
ignorance of Chinese, Yoshida Koyu devoted extra effort to this language in order 
to read the Suan Fa Tong Zong. Having read this book, Yoshida Koyu made rapid 
progress in mathematics and soon excelled even Mori Shigeyoshi himself. Eventu-
ally, he was called to the court of a nobleman as a tutor in mathematics. In 1627 
Yoshida Koyu wrote a textbook in Japanese, the Jinkd-ki (Treatise on Large and 
Small Numbers), based on the Suan Fa Tong Zong. This work helped to popularize 
the abacus (soroban) in Japan. It concluded with a list of challenge questions and 
thereby stimulated a great deal of further work. These problems were solved in a 
later treatise, which in turn posed new mathematical problems to be solved; this 
was the beginning of a tradition of posing and solving problems that lasted for 150 
years. 

Seki Kdwa and Takebe Kenko. One figure in seventeenth-century Japanese math-
ematics stands out far above all others, a genius who is frequently compared with 
Archimedes, Newton, and Gauss. 6 His name was Seki Kowa, and he was born 
around the year 1642, the year in which Isaac Newton was born in England. The 
stories told of him bear a great resemblance to similar stories told about other 
mathematical geniuses. For example, one of his biographers says that at the age of 
5 Seki Kowa pointed out errors in a computation that was being discussed by his 
elders. A very similar story is told about Gauss. Being the child of a samurai father 
and adopted by a noble family, Seki Kowa had access to books. He was mostly self-
educated in mathematics, having paid little attention to those who tried to instruct 
him; in this respect he resembles Newton. Like Newton, he served as an advisor 
on high finance to the government, becoming examiner of accounts to the lord of 
Koshu. Unlike Newton, however, he was a popular teacher and physically vigorous. 
He became a shogunate samurai and master of ceremonies in the household of the 

6 His biography suggests that the real comparison should be with Pythagoras, since he assembled 
a devoted following, and his followers were inclined to attribute results to him even when his 
direct influence could not be established. Newton and Gauss were not "people persons," and 
Gauss hated teaching. 
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Shogun. He died at the age of 66, leaving no direct heirs. His tomb in the Buddhist 
cemetery in Tokyo was rebuilt 80 years after his death by mathematicians of his 
school. His pedagogical activity earned him the title of Sansei, meaning Arithmeti-
cal Sage, a title that was carved on his tomb. Although he published very little 
during his lifetime, his work became known through his teaching activity, and he 
is said to have left copious notebooks. 

Seki Kowa made profound contributions to several areas of mathematics, in 
some cases anticipating results that were being obtained independently in Europe 
about this time. According to Mikami (1913, p. 160), he kept his technique a secret 
from the world at large; but apparently he confided it to his pupil Takebe Kenko 
(Takebe Katahiro, 1664-1739). Some scholars say that Takebe Kenko refused to 
divulge the secret, saying, "I fear that one whose knowledge is so limited as mine 
would tend to misrepresent its significance." However, other scholars claim that 
Takebe Kenko did write an exposition of the latter method, and that it amounts to 
the principles of cancellation and transposition. These two scholars, together with 
Takebe Kenko's brother, compiled a 20-volume encyclopedia, the Taisei Sankyo 
(Great Mathematical Treatise), containing all the mathematics known in their day. 

Takebe Kenko also wrote a book that is unique in its time and place, bearing 
the title Tetsujutsu Sankyo (roughly, The Art of Doing Mathematics, published in 
1722), in which he speculated on the metaphysics of mathematical concepts and 
the kind of psychology needed to solve different types of mathematical problems 
(Murata, 1994, PP- 107-108). 

In Japan, knowledge of the achievements of Western mathematicians became 
widespread in the late nineteenth century, while the flow of knowledge in the op-
posite direction has taken longer. A book entitled The Theory of Determinants in 
the Historical Order of Development, which is a catalog of papers on the subject 
with commentaries, was written by the South African mathematician Thomas Muir 
(1844-1934) in 1905. Although this book consists of four volumes totaling some 
2000 pages, it does not mention Seki Kowa, the true discoverer of determinants! 

Other treatises. The book Sampd Ketsugi-shd (Combination Book, but it contains 
many results on areas and volumes that we now compute using calculus) was pub-
lished in 1661 by Isomura Yoshinori (Isomura Kittoku), a student of a student of 
Mori Shigeyoshi. Although Isomura is known to have died in 1710, his birth date is 
uncertain The book was revised in 1684. Sawaguchi Kazuyuki, whose exact dates 
also are not known, wrote Kokon Sampd-ki (Mathematics Ancient and Modern) in 
1671. This work is cited by Murata as the proof that wasan had developed beyond 
its Chinese origins. 

The modern era in Japan. In the seventeenth century the Tokugawa shoguns had 
adopted a very strict policy vis-a-vis the West, one that could be enforced in an 
island kingdom such as Japan. Commercial contacts with the Dutch, however, 
resulted in some cultural penetration, and Western mathematical advances came 
to be known little by little in Japan. By the time Japan was opened to the West in 
the mid-nineteenth century, Japanese mathematicians were already aware of many 
European topics of investigation. In joining the community of nations for trade 
and politics, Japan also joined it intellectually. In the early nineteenth century, 
Japanese mathematicians were writing about such questions as the rectification of 
the ellipse, a subject of interest in Europe at the same period. By the end of the 
nineteenth century there were several Japanese mathematical journals publishing 
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(in European languages) mathematical work comparable to what was being done in 
Europe at the same period, and a few European scholars were already reading these 
journals to see what advances were being made by the Japanese. In the twentieth 
century the number of Japanese works being read in the West multiplied, and 
Japanese mathematicians such as Goro Shimura (b. 1930), Shoshichi Kobayashi (b. 
1932), and many others have been represented among the leaders in nearly every 
field of mathematics. 

3. The Muslims 

From the end of the eighth century through the period referred to as Medieval in 
European history, the Umayyad and Abbasid Caliphates, centered in what is now 
Spain and Iraq respectively, produced an artistically and scientifically advanced 
culture, with works on mathematics, physics, chemistry, and medicine written in 
Arabic, the common language of scholars throughout the Muslim world. Persian, 
Hebrew, and other languages were also used by scholars working in this predomi-
nantly Muslim culture. Hence the label "Islamic mathematics" that we prefer to 
use is only a rough description of the material we shall be discussing. It is conve-
nient, like the label "Greek mathematics" used above to refer to works written in 
the culture where scholars mostly wrote in Greek. 

3.1. Islamic science in general. The religion of Islam calls for prayers facing 
Mecca at specified times of the day. That alone would be sufficient motive for 
studying astronomy and geography. Since the Muslim calendar is lunar rather than 
lunisolar, religious feasts and fasts are easy to keep track of. Since Islam forbids 
representation of the human form in paintings, mosques are always decorated with 
abstract geometric patterns (see Ozdural, 2000). The study of this ornamental 
geometry has interesting connections with the theory of transformation groups. 

Hindu influences. According to Colebrooke {1817, pp. Ixiv-lxv), in the year 773 CE, 
al-Mansur, the second caliph of the Abbasid dynasty, who ruled from 754 to 775, 
received at his court a Hindu scholar bearing a book on astronomy referred to in 
Arabic as Sind-hind (most likely, Siddhanta). Al-Mansur had this book translated 
into Arabic. No copies survive, but the book seems to have been the Brahmas-
phutasiddhanta mentioned above. This book was used for some decades, and an 
abridgement was made in the early ninth century, during the reign of al-Mamun 
(caliph from 813 to 833), by Muhammed ibn Musa al-Khwarizmi (ca. 780-850), 
who also wrote his own treatise on astronomy based on the Hindu work and the 
work of Ptolemy. Al-Mamun founded a "House of Wisdom" in Baghdad, the capital 
of his empire. This institution was much like the Library at Alexandria, a place of 
scholarship analogous to a modern research institute. 

In the early days of this scientific culture, one of the main concerns of the schol-
ars was to find and translate into Arabic as many scientific works as possible. The 
effort made by Islamic rulers, administrators, and merchants to acquire and trans-
late Hindu and Hellenistic texts was prodigious. The works had first to be located, 
a job requiring much travel and expense. Next, they needed to be understood and 
adequately translated; that work required a great deal of labor and time, often 
involving many people. The world is much indebted to the scholars who undertook 
this work, for two reasons. First, some of the original works have been lost, and 
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only their Arabic translations survive.7 Second, the translators, inspired by the 
work they were translating, wrote original works of their own. The mechanism of 
this two-part process has been well described by Berggren (1990, p. 35): 

Muslim scientists and patrons were the main actors in the acqui-
sition of Hellenistic science inasmuch as it was they who initiated 
the process, who bore the costs, whose scholarly interests dictated 
the choice of material to be translated and on whom fell the bur-
den of finding an intellectual home for the newly acquired material 
within the Islamic dar al-'ilm ("abode of learning"). 

We shall describe the two parts of the process as "acquisition" and "devel-
opment." The acquisitions were too many to be listed here. Some of the major 
ones were listed by Berggren (2002). They include Euclid's Elements, Data, and 
Phenomena, Ptolemy's Syntaxis (which became the Almagest as a result) and his 
Geography, many of Archimedes' works and commentaries on them, and Apollonius' 
Conies. 

The development process as it affected the Conies of Apollonius was described 
by Berggren (1990, pp. 27-28). This work was used to analyze the astrolabe in 
the ninth century and to trisect the angle and construct a regular heptagon in the 
tenth century. It continued to be used down through the thirteenth century in the 
theory of optics, for solving cubic equations, and to study the rainbow. To the two 
categories that we have called acquisition and development Berggren adds the pro-
cess of editing the texts to systematize them, and he emphasizes the very important 
role of mathematical philosophy or criticism engaged in by Muslim mathematicians. 
They speculated and debated Euclid's parallel postulate, for example, thereby con-
tinuing a discussion that began among the ancient Greeks and continued for 2000 
years until it was finally settled in the nineteenth century. 

The scale of the Muslim scientific schools is amazing when looked at in com-
parison with the populations and the general level of economic development of the 
time. Here is an excerpt from a letter of the Persian mathematician al-Kashi (d. 
1429) to his father, describing the life of Samarkand, in Uzbekistan, where the great 
astronomer Ulugh Beg (1374-1449), grandson of the conqueror Timur the Lame, 
had established his observatory (Bagheri, 1997, p. 243): 

His Royal Majesty had donated a charitable gift... amounting to 
thirty thousand... dinars, of which ten thousand had been ordered 
to be given to students. [The names of the recipients] were writ-
ten down; [thus] ten thousand-odd students steadily engaged in 
learning and teaching, and qualifying for a financial aid, were 
listed... Among them there are five hundred persons who have 
begun [to study] mathematics. His Royal Majesty the World-
Conqueror, may God perpetuate his reign, has been engaged in 
this ar t . . . for the last twelve years. 

7 Toomer (1984) points out that in the case of Ptolemy's Optics the Arabic translation has also 
been lost, and only a Latin translation from the Arabic survives. As Toomer notes, some of the 
most interesting works were not available in Spain and Sicily, where medieval scholars went to 
translate Arabic and Hebrew manuscripts into Latin. 
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3.2. Some Muslim mathematicians and their works. Continuing with our 
list of the major writers and their works, we now survey some of the more important 
ones who lived and worked under the rule of the caliphs. 

Muhammed ibn Musa al-Khwarizmi. This scholar translated a number of Greek 
works into Arabic but is best remembered for his Hisab al-Jabr w'al-Mugabalah 
(Book of the Calculation of Restoration and Reduction). The word restoration here 
(al-jabr) is the source of the modern word algebra. It refers to the operation of 
keeping an equation in balance by transferring a term from one side to the opposite 
side with the opposite sign. The word reduction refers to the cancellation of like 
terms or factors from the two sides of an equation. The author came to be called 
simply al-Khwarizmi, which may be the name of his home town (although this is 
not certain); this name gave us another important term in modern mathematics, 
algorithm. 

The integration of intellectual interests with religious piety that we saw in 
the case of the Hindus is a trait also possessed by the Muslims. Al-Khwarizmi 
introduces his algebra book with a hymn of praise of Allah, then dedicates his book 
to al-Mamun: 

That fondness for science, by which God has distinguished the 
Imam al-Mamun, the Commander of the Faithful..., that affability 
and condescension which he shows to the learned, that promptitude 
with which he protects and supports them in the elucidation of 
obscurities and in the removal of difficulties -has encouraged me to 
compose a short work on Calculating by (the rules of) Completion 
and Reduction, confining it to what is easiest and most useful in 
arithmetic, such as men constantly require in cases of inheritance, 
legacies, partition, law-suits, and trade, and in all their dealings 
with one another, or where the measuring of lands, the digging 
of canals, geometrical computation, and other objects of various 
sorts.. . My confidence rests with God, in this as in every thing, 
and in Him I put my trust. . . May His blessing descend upon all 
the prophets and heavenly messengers. [Rosen, 1831, pp. 3-4] 

Thabit ibn-Qurra. The Sabian (star-worshipping) sect centered in the town of Har-
ran in what is now Turkey produced an outstanding mathematician/astronomer in 
the person of Thabit ibn-Qurra (826-901). Being trilingual (besides his native Syr-
iac, he spoke Arabic and Greek), he was invited to Baghdad to study mathematics. 
His mathematical and linguistic skills procured him work translating Greek trea-
tises into Arabic, including Euclid's Elements. He was a pioneer in the application 
of arithmetic operations to ratios of geometric quantities, which is the essence of the 
idea of a real number. The same idea occurred to Rene Descartes (1596-1650) and 
was published in his famous work on analytic geometry. It is likely that Descartes 
drew some inspiration from the works of the fourteenth-century Bishop of Lisieux 
Nicole d'Oresme (1323-1382); Oresme, in turn, is likely to have read translations 
from the Arabic. Hence it is possible that our modern concept of a real number 
can be traced back to the genius of Thabit ibn-Qurra. He also wrote on mechanics, 
geometry, and number theory. 
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Abu-Kamil. Although nothing is known of the life of Abu-Kamil (ca. 850-93), he 
is the author of certain books on algebra, geometry, and number theory that had 
a marked influence on both Islamic mathematics and the recovery of mathematics 
in Europe. Many of his problems were reproduced in the work of the Leonardo of 
Pisa (Fibonacci, 1170-1226). 

Abu'l-Wafa. Mohammad Abu'l-Wafa (940-998) was born in Khorasan (now in 
Iran) and died in Baghdad. He was an astronomer-mathematician who translated 
Greek works and commented on them. In addition he wrote a number of works on 
practical arithmetic and geometry. According to RTashid (1994), his book of prac-
tical arithmetic for scribes and merchants begins with the claim that it "comprises 
all that an experienced or novice, subordinate or chief in arithmetic needs to know" 
in relation to taxes, business transactions, civil administration, measurements, and 
"all other practices... which are useful to them in their daily life." 

Al-Biruni. Abu Arrayhan al-Biruni (973-1048), was an astronomer, geographer, 
and mathematician who as a young man worked out the mathematics of maps of 
Earth. Civil wars in the area where he lived (Uzbekistan and Afghanistan) made 
him into a wanderer, and he came into contact with astronomers in Persia and Iraq. 
He was a prolific writer. According to the Dictionary of Scientific Biography, he 
wrote what would now be well over 10,000 pages of texts during his lifetime, on 
geography, geometry, arithmetic, and astronomy. 

Omar Khayyam. The Persian mathematician Omar Khayyam was born in 1044 and 
died in 1123. He is thought to be the same person who wrote the famous skeptical 
and hedonistic poem known as the Rubaiyat (Quatrains), but not all scholars agree 
that the two are the same. Since he lived in the turbulent time of the invasion of the 
Seljuk Turks, his life was not easy, and he could not devote himself wholeheartedly 
to scholarship. Even so, he advanced algebra beyond the elementary linear and 
quadratic equations that one can find in al-Khwarizmi's book and speculated on 
the foundations of geometry. He explained his motivation for doing mathematics in 
the preface to his Algebra. Like the Japanese wasanists, he was inspired by questions 
left open by his predecessors. Also, as with al-Khwarizmi, this intellectual curiosity 
is linked with piety and thanks to the patron who supported his work. 

In the name of God, gracious and merciful! Praise be to God, lord 
of all Worlds, a happy end to those who are pious, and ill-will to 
none but the merciless. May blessings repose upon the prophets, 
especially upon Mohammed and all his holy descendants. 

One of the branches of knowledge needed in that division of 
philosophy known as mathematics is the science of completion and 
reduction, which aims at the determination of numerical and geo-
metrical unknowns. Parts of this science deal with certain very dif-
ficult introductory theorems, the solution of which has eluded most 
of those who have attempted i t . . . I have always been very anxious 
to investigate all types of theorems and to distinguish those that 
can be solved in each species, giving proofs for my distinctions, be-
cause I know how urgently this is needed in the solution of difficult 
problems. However, I have not been able to find time to complete 
this work, or to concentrate my thoughts on it, hindered as I have 
been by troublesome obstacles. [Kasir, 1931, pp. 43-44] 
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Al-Tusi. Nasir al-Din al-Tusi (1201-1274) had the misfortune to live during the time 
of the westward expansion of the Mongols, who subdued Russia during the 1240s, 
then went on to conquer Baghdad in 1258. Al-Tusi himself joined the Mongols and 
was able to continue his scholarly work under the new ruler Hulegu, grandson of 
Genghis Khan. Hulegu, who died in 1265, conquered and ruled Iraq and Persia 
over the last decade of his life, taking the title Ilkhan when he declared himself 
ruler of Persia. A generation later the Ilkhan rulers converted from Buddhism to 
Islam. Hulegu built al-Tusi an observatory at Maragheh, a city in the Azerbaijan 
region of Persia that Hulegu had made his seat of goverment. Here al-Tusi was 
able to improve on the earlier astronomical theory of Ptolemy, in connection with 
which he developed both plane and spherical trigonometry into much more sophis-
ticated subjects than they had been previously. Because of his influence, the loss of 
Baghdad was less of a blow to Islamic science than it would otherwise have been. 
Nevertheless, the constant invasions had the effect of greatly reducing the vitality 
and the quantity of research. Al-Tusi played an important role in the flow of math-
ematical ideas back into India after the Muslim invasion of that country; it was his 
revised and commented edition of Euclid's Elements that was mainly studied (de 
Young, 1995, p. 144). 

4. Europe 

As the western part of the world of Islam was growing politically and militar-
ily weaker because of invasion and conquest, Europe was entering on a period of 
increasing power and vigor. One expression of that new vigor, the stream of Eu-
ropean mathematical creativity that began as a small rivulet 1000 years ago, has 
been steadily increasing until now it is an enormous river and shows no sign of 
subsiding. 

4.1. Monasteries, schools, and universities. From the sixth to the ninth cen-
turies a considerable amount of classical learning was preserved in the monasteries 
in Ireland, which had been spared some of the tumult that accompanied the decline 
of Roman power in the rest of Europe. From this source came a few scholars to the 
court of Charlemagne to teach Greek and the quadrivium (arithmetic, geometry, 
music, and astronomy) during the early ninth century. Charlemagne's attempt to 
promote the liberal arts, however, encountered great obstacles, as his empire was 
divided among his three sons after his death. In addition, the ninth and tenth cen-
turies saw the last waves of invaders from the north—the Vikings, who disrupted 
commerce and civilization both on the continent and in Britain and Ireland until 
they became Christians and adopted a settled way of life. Despite these obstacles, 
Charlemagne's directive to create cathedral and monastery schools had a perma-
nent effect, contributing to the synthesis of observation and logic known as modern 
science. 

Gerbert. In the chaos that accompanied the breakup of the Carolingian Empire 
and the Viking invasions the main source of stability was the Church. A career 
in public life for one not of noble birth was necessarily an ecclesiastical career, 
and church officials had to play both pastoral and diplomatic roles. That some of 
them also found time for scholarly activity is evidence of remarkable talent. Such 
a talent was Gerbert of Aurillac (ca. 940 1002). He was born to lower-class but 
free parents in south-central France. He benefited from Charlemagne's decree that 
monasteries and cathedrals must have schools and was educated in Latin grammar 
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at the monastery of St. Gerald in Aurillac. Throughout a vigorous career in the 
Church that led to his coronation as Pope Sylvester II in the year 999 he worked for 
a revival of learning, both literary and scientific. (He was not a successful clergyman 
or pope. He got involved in the politics of his day, offended the Emperor, and was 
suspended from his duties as Archbishop of Reims by Pope Gregory V in 998. He 
was installed as pope by the 18-year-old Emperor Otto II in 999, but after only 
three years both he and Otto were driven from Rome by a rebellion. Otto died 
trying to reclaim Rome, and Sylvester II died shortly afterward.) 

4.2. The high Middle Ages. By the midtwelfth century European civilization 
had absorbed much of the learning of the Islamic world and was nearly ready to 
embark on its own explorations. This was the zenith of papal power in Europe, 
exemplified by the ascendancy of the popes Gregory VII (1073 1085) and Innocent 
III (1198-1216) over the emperors and kings of the time. The Emperor Frederick I, 
known as Frederick Barbarossa because of his red beard, who ruled the empire from 
1152 to 1190, tried to maintain the principle that his power was not dependent on 
the Pope, but was ultimately unsuccessful. His grandson Frederick II (1194-1250) 
was a cultured man who encouraged the arts and sciences. To his court in Sicily he 
invited distinguished scholars of many different religions, and he corresponded with 
many others. He himself wrote a treatise on the principles of falconry. He was in 
conflict with the Pope for much of his life and even tried to establish a new religion, 
based on the premise that "no man should believe aught but what may be proved 
by the power and reason of nature," as the papal document excommunicating him 
stated. 

4.3. Authors and works. A short list of European mathematicians prominent 
in their time from the twelfth through sixteenth centuries begins in the empire of 
Frederick II. 

Leonardo of Pisa. Leonardo says in the introduction to his major book that he ac-
companied his father on an extended commercial mission in Algeria with a group of 
Pisan merchants. There, he says, his father had him instructed in the Hindu-Arabic 
numerals and computation, which he enjoyed so much that he continued his studies 
while on business trips to Egypt, Syria, Greece, Sicily, and Provence. Upon his re-
turn to Pisa he wrote a treatise to introduce this new learning to Italy. The treatise, 
whose author is given as "Leonardus Alius Bonaccij Pisani," that is, "Leonardo, son 
of Bonaccio of Pisa," bears the date 1202. In the nineteenth century Leonardo's 
works were edited by the Italian nobleman Baldassare Boncompagni (1821-1894), 
who also compiled a catalog of locations of the manuscripts (Boncompagni, 1854). 
The name Fibonacci by which the author is now known seems to have become 
generally used only in the nineteenth century. 

Jordanus Nemorarius. The works of Archimedes were translated into Latin in the 
thirteenth century, and his work on the principles of mechanics was extended. One 
of the authors involved in this work was Jordanus Nemorarius. Little is known 
about this author except certain books that he wrote on mathematics and statics 
for which manuscripts still exist dating to the actual time of composition. 

Nicole d'Oresme. One of the most distinguished of the medieval philosophers was 
Nicole d'Oresme, whose clerical career brought him to the office of Bishop of Lisieux 
in 1377. D'Oresme had a wide-ranging intellect that covered economics, physics, 
and mathematics as well as theology and philosophy. He considered the motion of 
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physical bodies from various points of view, formulated the Merton rule of uniformly 
accelerated motion (named for Merton College, Oxford), and for the first time in 
history explicitly used one line to represent time, a line perpendicular to it to 
represent velocity, and the area under the graph (as we would call it) to represent 
distance. 

Regiomontanus. The work of translating the Greek and Arabic mathematical works 
went on for several centuries. One of the last to work on this project was Johann 
Miiller of Konigsberg (1436-1476), better known by his Latin name of Regiomon-
tanus, a translation of Konigsberg (King's Mountain). Although he died young, 
Regiomontanus made valuable contributions to astronomy, mathematics, and the 
construction of scientific measuring instruments. In all this he bears a strong re-
semblance to al-Tusi, mentioned above. He studied in Leipzig while a teenager, 
then spent a decade in Vienna and the decade following in Italy and Hungary. The 
last five years of his life were spent in Nurnberg. He is said to have died of an 
epidemic while in Rome as a consultant to the Pope on the reform of the calendar. 

Regiomontanus checked the data in copies of Ptolemy's Almagest and made 
new observations with his own instruments. He laid down a challenge to astron-
omy, remarking that further improvement in theoretical astronomy, especially the 
theory of planetary motion, would require more accurate measuring instruments. 
He established his own printing press in Nurnberg so that he could publish his 
works. These works included several treatises on pure mathematics. He established 
trigonometry as an independent branch of mathematics rather than a tool in as-
tronomy. The main results we now know as plane and spherical trigonometry are 
in his book De triangulis omnimodis, although not exactly in the language we now 
use. 

Chuquet. The French Bibliotheque Nationale is in possession of the original man-
uscript of a comprehensive mathematical treatise written at Lyons in 1484 by one 
Nicolas Chuquet. Little is known about the author, except that he describes himself 
as a Parisian and a man possessing the degree of Bachelor of Medicine. The treatise 
consists of four parts: a treatise on arithmetic and algebra called Triparty en la 
science des nombres, a book of problems to illustrate and accompany the principles 
of the Triparty, a book on geometrical mensuration, and a book of commercial 
arithmetic. The last two are applications of the principles in the first book. 

Luca Pacioli. Written at almost the same time as Chuquet's Triparty was a work 
called the Summa de arithmetica, geometrica, proportioni et proportionalite by 
Luca Pacioli (or Paciuolo) (1445-1517). Since Chuquet's work was not printed until 
the nineteenth century, Pacioli's work is believed to be the first Western printed 
work on algebra. In comparison with the Triparty, however, the Summa seems 
less original. Pacioli has only a few abbreviations, such as co for cosa, meaning 
thing (the unknown), ce for censo (the square of the unknown), and <E for <Equitur 
(equals). Despite its inferiority to the Triparty, the Summa was much the more 
influential of the two books, because it was published. It is referred to by the Italian 
algebraists of the early sixteenth century as a basic source. 

Leon Battista Alberti. In art the fifteenth century was a period of innovation. In an 
effort to give the illusion of depth in two-dimensional representations some artists 
looked at geometry from a new point of view, studying the projection of two- and 
three-dimensional shapes in two dimensions to see what properties were preserved 
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and how others were changed. A description of such a procedure, based partly on 
the work of his predecessors, was given by Leon Battista Alberti (1404-1472) in a 
treatise entitled Delia pictura, published posthumously in 1511. 

Sixteenth-century Italy produced a group of sometimes quarrelsome but always 
brilliant algebraists, who worked to advance their science for the sheer pleasure of 
making new mathematical achievements. As happened in Japan a century later, 
each new advance brought a challenge for further progress. 

Scipione del Ferro. A method of solving a cubic equations was discovered by a 
lector (reader, that is, a tutor) at the University of Bologna, Scipione del Ferro 
(1465-1525), around the year 1500. He communicated this discovery to another 
mathematician, Antonio Maria Fior (dates unknown), who then used the knowledge 
to win mathematical contests. 

Niccolo Tartaglia. Fior met his match in 1535, when he challenged Niccolo Fontana 
(1500-1557) of Brescia, known as Tartaglia (the Stammerer) because a wound he 
received as a child when the French overran Brescia in 1512 left him with a speech 
impediment. Tartaglia had also discovered how to solve certain cubic equations 
and so won the contest. 

Girolamo Cardano. A brilliant mathematician and gambler, who became rector 
of the University of Padua at the age of 25, Girolamo Cardano (1501-1576) was 
writing a book on mathematics in 1535 when he heard of Tartaglia's victory over 
Fior. He wrote to Tartaglia asking permission to include this technique in his work. 
Tartaglia at first refused, hoping to work out all the details of all cases of the cubic 
and write a treatise himself. According to his own account, Tartaglia confided the 
secret of one kind of cubic to Cardano in 1539, after Cardano swore a solemn oath 
not to publish it without permission and gave Tartaglia a letter of introduction to 
the Marchese of Vigevano. Tartaglia revealed a rhyme by which he had memorized 
the procedure. 

Tartaglia did not claim to have given Cardano any proof that his procedure 
works. It was left to Cardano himself to find the demonstration. Cardano kept 
his promise not to publish this result until 1545. However, as Tartaglia delayed 
his own publication, and in the meantime Cardano had discovered the solution of 
other cases of the cubic himself and had also heard that del Ferro had priority 
anyway, he published the result in his Ars magna (The Great Art), giving credit 
to Tartaglia. Tartaglia was furious and started a bitter controversy over Cardano's 
alleged breach of faith. 

Ludovico Ferrari. Cardano's student Ludovico Ferrari (1522-1565) worked with 
him in the solution of the cubic, and between them they had soon found a way of 
solving certain fourth-degree equations. 

Rafael Bombelli. In addition to the mathematicians proper, we must also mention 
an engineer in the service of an Italian nobleman. Rafael Bombelli (1526-1572) is 
the author of a treatise on algebra that appeared in 1572. In the introduction to 
this treatise we find the first mention of Diophantus in the modern era. Bombelli 
said that, although all authorities are agreed that the Arabs invented algebra, he, 
having been shown the work of Diophantus, credits the invention to the latter. In 
making sense of what his predecessors did he was one of the first to consider the 
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square root of a negative number and to formulate rules for operating with such 
numbers. 

The work being done in Italy did not escape the notice of French and British 
scholars of the time, and important mathematical works were soon being produced 
in those two countries. 

Francois Viete. A lawyer named Frangois Viete (1540 1603), who worked as tutor 
in a wealthy family and later became an advisor to Henri de Navarre (who became 
the first Bourbon king, Henri IV, in 1598), found time to study Diophantus and 
to introduce his own ideas into algebra. His book Artis analyticae praxis (The 
Practice of the Analytic Art) contained some of the notational innovations that 
make modern algebra much less difficult than the algebra of the sixteenth century. 

Girard Desargues. Albertis ideas on projection were extended by the French ar-
chitect and engineer Girard Desargues (1591 1661), who studied the projections of 
figures in general and the conic sections in particular. 

John Napier. In the late sixteenth century the problem of simplifying laborious 
multiplications, divisions, root extractions, and the like, was attacked by the Scot-
tish laird John Napier, Baron of Murchiston (1550-1617). His work consisted of two 
parts, a theoretical part, based on a continuous geometric model, and a computa-
tional part, involving a discrete (tabular) approximation of the continuous model. 
The computational part was published in 1614. However, Napier hesitated to pub-
lish his explanation of the theoretical foundation. Only in 1619, two years after his 
death, did his son publish an English translation of Napier's theoretical work under 
the title Mirifici logarithmorum canonis descriptio (A Description of the Marvelous 
Law of Logarithms). This subject, although aimed at a practical end, turned out 
to have enormous value in theoretical studies as well. 

The European colonies. Wherever Europeans went during their great age of expan-
sion, science and mathematics followed once the new lands were settled and acquired 
political stability and a certain level of economic prosperity. Like the mathematics 
of Europe proper, the story of this "colonial" mathematics is too large to fit into 
the present volume, and so we shall, with regret, omit South America and South 
Africa from the story and concentrate on the origins of mathematics in Mexico, the 
United States, Canada, Australia, and New Zealand. 

5. North America 

During the American colonial period and for nearly a century after the founding of 
the United States, mathematical research in North America was extremely limited. 
Educational institutions were in most cases directed toward history, literature, and 
classics, the major exception being the academy at West Point, which became the 
United States Military Academy in 1802. Modeling itself consciously on the Ecole 
Polytechnique, the Academy taught engineering and applied mathematics. 8 For 
most of the period up to 1875 there were no professional journals devoted entirely 
to mathematics and no mathematical societies of any size. A period of rapid growth 
began in the 1870s, coinciding with the closing of the American frontier. By 1900 a 
respectable school of American mathematical researchers existed, although it was 

8 Rensselaer Polytechnic Institute was founded to teach engineering in 1824, and civil engineering 
was taught at the University of Vermont as early as 1829. 
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still puny compared with the schools in Germany, Britain, France, and Italy. Even 
as late as 1940, only about half a dozen mathematical journals were published in 
the United States. The United States vaulted to a position of world leadership 
in mathematics following World War II, and it has remained among the strongest 
nations in this area, thanks to its possession of a powerful university system and 
equally well-developed professional organizations such as the American Mathemat-
ical Society, the Mathematical Association of America, the Society for Industrial 
and Applied Mathematics, and the National Council of Teachers of Mathematics, 
together with over 100 professional journals devoted to mathematics in general or 
specific areas within it. 

5.1. The United States and Canada before 1867. Until the late nineteenth 
century most of the mathematics done in North America was purely practical, and 
to find more than one or two examples of its practitioners we shall have to leave 
mathematics proper and delve into related areas. Nevertheless, one can find a few 
examples of Americans who practiced mathematics for its own sake, even in the 
eighteenth century. 

David Rittenhouse. Like his younger brother Benjamin (1740-1825), David Ritten-
house (1732-1796) was primarily a manufacturer of compasses and clocks. He made 
two compasses for George Washington. He also got involved in surveying and in 
1763 helped to settle a border dispute between William Penn and Lord Baltimore. 
He became the first director of the United States Mint by appointment of President 
Washington in 1792, and he became president of the American Philosophical Soci-
ety in 1791, after the death of Benjamin Franklin. According to Homann (1987), 
he was self-taught in mathematics, but enjoyed calculation very much and so was 
able to read Newton's Principia on his own. He developed a continued-fraction 
method of approximating the logarithm of a positive number, described in detail 
by Homann. Like the Japanese tradition of challenge problems, some of Ritten-
house's papers asked for proofs of results the author himself had not been able to 
supply. In one case this challenge was taken up by Nathaniel Bowditch (discussed 
below). 

Robert Adrain. An immigrant of great mathematical talent—he came to the United 
States from his native Ireland after being wounded by friendly fire in the rebellion of 
1798--was Robert Adrain (1775-1843). He taught at Princeton until 1800, when he 
moved to York, Pennsylvania; in 1804 he moved again, to Reading, Pennsylvania. 
He contributed to, and in 1807 became editor of, the Mathematical Correspondent, 
the first mathematical research journal in the United States. Parshall (2000, p. 381) 
has noted that even as late as 1874 "[t]here were no journals in the United States 
devoted to mathematical research, and, in fact, up to that time all attempts to 
sustain such publication outlets had failed almost immediately." The Mathematical 
Correspondent appears to have ended with the first issue of Vol. 2, that is, the 
first one edited by Adrain. In an interesting article on the original editor of the 
Mathematical Correspondent, George Baron (b. 1769, date of death unknown), V. 
Fred Rickey notes that perhaps it may not have been merely the American ignorance 
of mathematics that led to an early demise for this journal. Rickey points out that 
the journal had 347 subscribers and published 487 copies of its first issue, but that 
an article in The Analyst in 1875 (2, No. 5, 131-138) by one David S. Hart contains 
the following interesting comment: 
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The writer has a copy of No. 2. stitched in a blue cover, on which is 
an advertisement of a Lecture delivered in New York by G. Baron, 
which contains (as he says) "a complete refutation of the false 
and spurious principles, ignorantly imposed on the public, in the 
'New American Practical Navigator,' written by N. Bowditch and 
published by E.M. Blunt." The sub-editors endorsing the above 
say, "We agree with the author that he has shown in the most 
incontrovertible manner, that the principles on which the 'New 
American Practical Navigator' is founded, are universally false, 
and gross impositions on the public." 

Since Bowditch was, next to Adrain, the strongest mathematician in the coun-
try at the time, this sort of internecine feuding could only have been harmful to 
the development of a community of mathematicians. Rickey's article can be found 
by following links from the following website. 

http://www.dean.usma.edu/math/people/rickey/ 

Adrain is best remembered for discovering, independently of Legendre and 
Gauss, the theory of least-squares and the normal (Gaussian) distribution. How-
ever, given the low state of science in general in the United States, it is not surpris-
ing that no one in Europe noticed Adrain's work. Kowalewski (1950, pp. 84-85) 
notes that the Gottingen astronomer Tobias Mayer (1723 1762) had used a similar 
method as early as 1748. 

Commerce requires a certain amount of mathematics and astronomy to meet 
the needs of navigation, and all the early American universities taught dialing (the-
ory of the sundial), astronomy, and navigation. These subjects were standard, 
long-known mathematics, a great contrast to the rapid pace of innovation in Eu-
rope at this period. Nevertheless, to write the textbooks of navigation and calculate 
the tides a year in advance required some ability. It is remarkable that this knowl-
edge was acquired by two Americans who were not given even the limited formal 
education that could be obtained at an American university. Although neither 
was a mathematician in the strict sense, both of them understood and used the 
mathematics of astronomy. 

Benjamin Banneker. In the fall of 1791 the Baltimore publishing house of William 
Goddard and James Angell published a book bearing the title Banneker's Almanac 
and Ephemeris for the Year of our Lord 1792.... The author, Benjamin Banneker 
(1731-1806), was 60 years old at the time, the only child of parents of African 
descent9 who had left him a small parcel of land as an inheritance. For most of his 
life Banneker lived near Baltimore, struggling as a poor farmer with a rudimentary 
formal education. Nevertheless, he acquired a reputation for cleverness due to 
his skill in arithmetic. In middle age he made the acquaintance of the Ellicotts, a 
prominent local family, who lent him a few books on astronomy. From these meager 
materials Banneker was able to construct an almanac for the year 1791. Encouraged 
by this success, he prepared a similar almanac for 1792. In that year the Ellicotts 
put him in contact with James McHenry (who had been Surgeon General of the 
American Army during the Revolutionary War). McHenry wrote to the editors: 

9 Banneker's grandmother was an Englishwoman who married one of her slaves. Their daughter 
Mary, Banneker's mother, also married a slave, who had the foresight to purchase a farm jointly 
in his own name and in the name of his son Benjamin. 
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[H]e began and finished [this almanac] without the least information 
or assistance from any person, or other books than those I have men-
tioned; so that whatever merit is attached to his present performance 
is exclusively and peculiarly his own. 

Banneker's Almanac was published and sold all over the United States in the 
decade from 1792 until 1802. The contents of the Almanac are comparable with 
those of other almanacs that have been published in the United States: On alternate 
pages one finds calendars for each week or month, giving the phases of the Moon, 
the locations of the planets and bright stars visible during the period in question, 
and the times of sunrise, high and low tides, and conjunctions and oppositions 
of planets. Recognition came late to Banneker. The money he earned from his 
Almanac gave him some leisure in his old age, and his name was praised by Pitt in 
Parliament and by Condorcet before the French Academy of Sciences. 

African-American mathematicians. Although the antislavery movement had begun 
in Banneker's time, African Americans were to endure two more generations of 
slavery followed by three generations of institutionalized, legalized discrimination 
and disenfranchisement before the civil rights movement gained sufficient strength 
to open to them the opportunities that a white American of very modest means 
could expect. It is therefore no wonder that very few African Americans became 
noted scholars. Nevertheless, the scientific creativity of African Americans has been 
a significant factor in the economic life of the United States, as can be seen, for 
example, in the book of James (1989). The first African American to obtain a 
doctorate in mathematics was Elbert Cox (1895-1969), who became a professor at 
Howard University after obtaining the doctorate at Cornell in 1925, one of only 
28 doctorates awarded to Americans (of any color) that year. The first African-
American women to receive the doctorate in mathematics, both of them in 1949, 
were Marjorie Lee Brown (1914-1979) and Evelyn Boyd Granville (b. 1924). Brown 
was a differential topologist who received her degree at the University of Michigan 
and taught at North Carolina Central University. Granville received the Ph.D. 
from Yale University and worked in the space program during the 1960s. She later 
taught at California State University in Los Angeles. 

The number of African Americans choosing to enter mathematics and science 
is still comparatively small. In fact, the author of an article entitled "Black Women 
Ph.D.'s in Mathematics" in the 1980s was able to interview all of the people de-
scribed in the title who were still alive. A career in research, after all, requires a long 
apprenticeship, during which financial support must be provided either by family, 
by extra work, or by grants and loans. For people who do not come from wealthy 
families, other careers, promising earlier financial rewards, are likely to seem more 
attractive. Undoubtedly, if the average income of African Americans were higher, 
more of them would choose scientific careers. Lest these comments seem unduly 
pessimistic, it should be noted that a conference devoted to the research of African 
Americans in 1996 brought together 79 African-American mathematicians (Dean, 
1996). 

Nathaniel Bowditch. Benjamin Banneker was about 40 years old and living in ob-
scurity near Baltimore when Nathaniel Bowditch (1773-1838) was born in Salem, 
Massachusetts. His ancestors had been shipbuilders but had accumulated no sub-
stantial amount of money by this trade. His father abandoned it and became a 
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cooper, a trade that barely provided for his family of seven children. Nathaniel 
received only a rudimentary public education before being apprenticed to a ship 
chandler at the age of 10. Twelve years later, when Banneker's Almanac had been 
published for only a year or two, he signed on board a ship and, like Banneker, 
used his few intervals of leisure to study mathematics and astronomy. Bowditch 
was a natural teacher who enthusiastically shared his knowledge of navigation with 
his shipmates. With his aptitude for mathematics, he managed to get through 
Newton's Principia, learning a considerable amount of Latin on the way. Later he 
taught himself French, which had displaced Latin as the language of science as a 
result of the pre-eminence of French mathematicians and scientists. 

Bowditch first gained a scholarly reputation by pointing out errors in the stan-
dard navigational tables. His abilities immediately attracted interest, and his Prac-
tical Navigator, first published in 1800, gained him wide recognition 1 0 while he was 
still in his twenties. Bowditch became a member of the American Academy of Arts 
and Letters, and in 1818 was elected a member of the Royal Society. With recogni-
tion came leisure time to devote to purely scholarly pursuits, a luxury denied to Ban-
neker in his most vigorous years. For the last quarter-century of his life Bowditch 
labored on his monumental translation and commentary of the Mecanique celeste by 
Pierre-Simon Laplace (1749-1827). This work amounts really to a complete rewrit-
ing of Laplace's treatise, which shows the effects of a pronounced stinginess with 
ink and paper. Bowditch filled in all the missing details of arguments that Laplace 
had merely waved his hand at, not having the patience to write down arguments 
that had sometimes taken him weeks to discover. These pursuits brought Bowditch 
international fame, and he died covered with honors. The American Journal of 
Science published his obituary with a portrait of him in a classical Roman tunic 
which it is unlikely he ever actually wore. 

5.2. The Canadian Federation and post Civil War United States. The 
end of the American Civil War in 1865 was followed closely by the founding of the 
Canadian Federation in 1867. The Federation was the result of the North America 
Act, which reserved some constitutional controls for Britain. Full independence 
came in 1982. From that time on, both countries experienced a cultural flowering, 
which included advances in mathematics. Americans and Canadians began to go to 
Europe to learn advanced mathematics. This early generation of European-trained 
mathematicians generally found no incentive to continue research upon returning 
home. However, they at least made the curriculum more sophisticated and prepared 
the way for the next generation. 

In Europe there were more Ph.D. mathematicians being produced than the uni-
versities could absorb. Most of these entered other professions, but a few emigrated 
across the Atlantic. A scholarly coup was scored by Johns Hopkins University, which 
opened in 1876 with a first-rate mathematician on board, James Joseph Sylvester. 
Despite being 62 years old, Sylvester was still a creative algebraist, whose presence 
in America attracted international attention. One of his first acts was to found the 
first mathematical research journal in the United States, the American Journal of 
Mathematics. The founding of this journal had been suggested by William Edward 
Story (1850-1930), one of many Americans who went abroad to get the Ph.D. de-
gree but, atypically, continued to do mathematical research after returning to the 
United States. Before Johns Hopkins was founded, there had been a few graduate 

And apparently some detractors associated with the Mathematical Correspondent (see above). 
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programs in mathematics in places such as Harvard and the University of Michigan, 
but now such programs began to multiply. Bryn Mawr College opened in the mid-
1880s with a graduate program in mathematics. The founding of Clark University 
in Worcester, Massachusetts and the University of Chicago in the late 1880s and 
early 1890s promised that the United States would soon begin to make respectable 
contributions to mathematical research. An account of this development giving the 
details of the mathematical areas studied in American universities can be found 
in the article by David Rowe (1997). A review of a number of professional "self-
studies" made by American mathematicians can be found in the article by Karen 
Hunger Parshall (2000); both of these articles contain extensive bibliographies on 
the development of mathematics in the United States. We now continue our list of 
prominent mathematicians. 

George William Hill. The mathematical side of astronomy, known as celestial me-
chanics, was pursued in the United States by the Canadian Simon Newcomb, who 
is discussed below, and by George William Hill (1838-1914). Hill worked for a time 
at the Nautical Almanac Office in Cambridge, Massachusetts, but was perfectly 
content to work in isolation at his home in Nyack, New York, most of his life. His 
work on the motion of the Moon was so profound that it received extravagant praise 
from Henri Poincare (1854-1912), one of the greatest mathematicians of the late 
nineteenth and early twentieth centuries. In a paper on the motion of the lunar 
perigee published in the Swedish journal Acta mathematica in 1886, Hill derived a 
differential equation that bears his name and even today continues to generate new 
work. 

Although the rise of the United States to a position of world leadership in 
mathematics after World War II was partly the result of the turbulence of the 
1930s and 1940s, which drove many of the best European intellectuals to seek 
refuge far from the dangers that threatened them in their homelands, one should 
not think that the country was intellectually backward before that time. Americans 
had made significant contributions to algebra and logic in the nineteenth century, 
and in the early twentieth century a number of Americans achieved worldwide fame 
for their mathematical contributions. We mention only two here. 

George David Birkhoff. Harvard professor George David Birkhoff (1884-1944) made 
contributions to differential equations, difference equations, ergodic theory, and 
mathematical physics (the kinetic theory of gases, in which the ergodic theorem 
plays a role, quantum mechanics, and relativity). He was held in such high esteem 
that a crater on the Moon now bears his name. 

Norbert Wiener. An early prodigy who graduated from high school at age 11 and 
received the doctoral degree at age 18, despite having changed universities and ma-
jors more than once, Norbert Wiener (1894-1964) contributed to harmonic analy-
sis, probability, quantum mechanics, and cybernetics, of which he was one of the 
founders. (The name comes from the Greek word kybernetes, meaning a ship's 
captain or pilot.) 

Like American schools of the same period, English-language Canadian insti-
tutions of higher learning tended to rely on British textbooks such as those of 
Charles Hutton (1737-1823, a professor at the Miltary School in Woolwich). In 
French Canada there was a long tradition of educational institutions, and a French 
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calculus text written by Abbe Jean Langevin, who was to become Bishop of Ri-
mouski in 1867, was published in 1848. For Canadians, as for Americans, the 
importance of research as an activity of the mathematics professor arose only af-
ter the founding of Johns Hopkins University in 1876. In fact, the early volumes 
of the American Journal of Mathematics contain articles by two Canadians, J. G. 
Glashan (1844-1932), superintendent of schools in Ottawa, and G. Paxton Young 
(1818-1889), a professor of philosophy at the University of Toronto. 

Simon Newcomb. An outstanding nineteenth-century Canadian mathematician was 
Simon Newcomb (1835-1909), a native of Nova Scotia who taught school in a num-
ber of places in the United States before procuring a job at the Nautical Almanac 
Office in Cambridge, Massachusetts, where he attended Harvard. He eventually 
became director of the Naval Observatory in Washington, and after 1884 professor 
of mathematics at Johns Hopkins. 

H.S.M. Coxeter. The geometer Harold Scott MacDonald Coxeter (1907-2003), 
a native of Britain, emigrated to Canada in 1936 and played a leading role in 
Canadian research in symmetry groups and symmetric geometric objects of all 
kinds. His work on tessellations inspired many famous paintings by the Dutch 
artist Maurits Escher (1898 1972). 

John Synge. Although, strictly speaking, he counts as an Irish mathematician, who 
was born in Dublin and died there, John Synge (1897-1995) taught at the University 
of Toronto from 1920 to 1925 and again during the 1930s. From 1939 until 1948 he 
worked in the United States before returning to Ireland. He is listed here because 
of his daughter, Cathleen Synge Morawetz, who is discussed below. 

John Charles Fields. One of the best-remembered Canadian mathematicians, John 
Charles Fields (1863-1932), was a native of Hamilton, Ontario. He received the 
Ph.D. from Johns Hopkins in 1887 and studied in Europe during the 1890s. In 
1902 he became a professor at the University of Toronto. He wrote one book (on 
algebraic functions). Like many other mathematicians on the intellectual periph-
ery of Europe, much of his activity was devoted to encouraging research in his 
native country. In the last few years of his life he established the Fields Medals, 
the highest international recognition for mathematicians, which are awarded at the 
quadrennial International Congress of Mathematicians. Beginning in 1936, when 
two awards were given, then resuming in 1950, the Fields Medals have by tradition 
been awarded to researchers early in their careers. As of 2002 about 40 mathemati-
cians had been so honored, among them natives of China, Japan, New Zealand, the 
former Soviet Union, many European countries, and the United States. 

Cecilia Krieger Dunaij. Canada has always taken in those fleeing oppression else-
where, and some of these refugees have become prominent mathematicians. One 
example is Cypra Cecilia Krieger Dunaij (1894-1974), who studied mathematical 
physics at the University of Vienna before coming to Toronto in 1920, where she 
entered the university and took courses given by John Synge and John Fields. In 
1930 she became the first woman to receive the doctoral degree in mathematics at 
a Canadian university (Toronto) and only the third woman to receive a doctoral 
degree in Canada. 
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Abraham Robinson. Among the mathematicians that the turbulent twentieth cen-
tury condemned to wander the world was Abraham Robinson (1918-1974). He was 
born in what was then Germany and is now Poland, but emigrated with his family 
to Jerusalem in 1933, when the Nazis came to power in Germany. In 1940 he was 
studying in Paris, but evacuated to London when Paris fell to the Nazi invasion. 
After obtaining the Ph. D. and teaching in Britain for a few years, he spent six of 
his most productive years at the University of Toronto, beginning in 1951. While 
there he produced several Ph.D. students in mathematical logic. He left Toronto 
in 1957 to return to Jerusalem, but eventually moved to California and finally to 
Yale. The story of his Toronto years can be found in the article by Dauben (1996). 

Cathleen Morawetz. Cathleen Synge Morawetz (b. 1923 in Toronto) is the daughter 
of John Synge. She attended the University of Toronto during World War II and 
then obtained the master's degree at the Massachusetts Institute of Technology in 
1946. For a dissertation in mathematical physics she received the doctoral degree 
at New York University in 1951. Her subsequent career was very distinguished. 
She became associate director of the Courant Institute of Mathematical Sciences in 
1978. In 1995-1996 she was president of the American Mathematical Society, the 
second woman to hold this post. In 1998 she was awarded the National Medal of 
Science, the highest scientific honor bestowed by the United States. 

5.3. Mexico. The area that is now Mexico was the first part of the North Amer-
ican mainland to be colonized by Europeans and was the site of the first university 
in North America, the Universidad Real y Pontificia de Mexico, founded in 1551. 
Unfortunately, the history of mathematics in modern Mexico has not been thor-
oughly studied, despite the fact that the mathematics of the earlier rulers of this 
part of the world, the Aztecs and Maya, has received quite a bit of scholarly atten-
tion. The present discussion amounts to a summary of the article by A. Garciadiego 
(2002), in which the author remarks that "the professionalization of the history of 
mathematics in Mexico is comparatively recent." 

The Royal University opened its doors just two years after its founding, offering 
a curriculum that was essentially medieval, consisting of theology, law, and related 
subjects. The first technical and scientific studies came more than a century later, 
with the establishment of a chair of astrology and mathematics. Unfortunately, 
some important scientific works were on the Index Librorum Prohibitorum, and 
Catholics were forbidden to read them. 1 1 Among these books were the works of 
Galileo and Newton, so that no real progress in science was to be expected. 

Mexico became an independent country in 1821. An attempt by the French 
Emperor Louis Napoleon to make Mexico part of a renewed French Empire by 
establishing the puppet emperor Maximilian in 1864 soon failed. The French army 
left, and Maximilian was executed in 1867. The new leaders of Mexico sought 
to establish intellectual freedom that would incorporate material progress based 
on science. Despite these intentions, the University was closed at various times 
for political reasons. The National University of Mexico opened in 1910 and was 
accompanied by preparatory schools and schools for advanced studies. The most 
prominent name in the advance of mathematics and science in Mexico was Sotero 
Prieto (1884-1935), who taught advanced mathematics and physics and advocated 

1 1 It is interesting that astrology, belief in which is listed as a sin in the Catholic catechism, was 
not only permitted, but actually encouraged. The Index was not officially abolished until 1966, 
long after it had ceased to be taken seriously by either the faithful or the clergy. 
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the use of history in teaching. He is quoted as saying, "The history of a science 
clarifies the origins of its fundamental concepts and exhibits the evolution of its 
methods" (Garciadiego, 2002, p. 259). 

Four years after the death of Prieto the Department of Mathematics was es-
tablished as part of the Faculty of Sciences of the University, now known as the 
Universidad Nacional Autonoma de Mexico. At this point, it could be said that the 
University had reached academic maturity. Seminars on current research opened, 
including one on scientific and philosophical problems. Foreign scholars came there 
to visit, and graduates from the University were able to find admission to first-
rate universities in other countries. Upon his retirement from Princeton University 
in 1954, the distinguished topologist Solomon Lefschetz (1884-1972) accepted a 
position at the University of Mexico and began sending students to the graduate 
program at Princeton. 1 2 An amusing anecdote revealing the relations between the 
uninhibited Lefschetz and the Mexicans was reported by his student Gian-Carlo 
Rota (1932-1999). (See Rota's article 1989.) 

6. Australia and New Zealand 

Because of their proximity to each other, we discuss Australia and New Zealand 
together, although they are not twins. Australia was settled by pioneers from Asia 
around 70,000 years ago, when the ocean levels were much lower than now. Even 
with the lower ocean levels, this settlement involved a long sea journey. When ocean 
levels rose after the last ice age, many of the original settlements were offshore and 
under water. New Zealand, in contrast, was settled by seafaring people only 1500 
years ago. Europeans first arrived in this area in the sixteenth century, but actual 
settlement by Europeans did not begin until late in the eighteenth century. As in 
the United States, there were conflicts between the aboriginal inhabitants and the 
new settlers, very fierce in Australia but surprisingly mild in New Zealand. Britain 
proclaimed sovereignty over New Zealand in 1840 by including it in the Australian 
colony of New South Wales. This merger lasted only 10 months, at which time New 
Zealand became an independent colony. At this time a declaration of equal rights 
for settlers and Maoris was made; a constitution followed 12 years later. In 1850 
the six Australian states gained self-government by act of Parliament, and in 1901 
they united in the Commonwealth of Australia. 

Comparatively little has been written about the development of mathematics 
in these countries, and the present account is based largely on an article (1988) by 
Garry J. Tee, a professor of computer science at the University of Auckland, who 
has written a great deal on the history of mathematics in general. Tee says that 
the indigenous peoples of this area had a well-developed system of numeration and 
makes the point that "the common assertions to the effect that 'Aborigines have 
only one, two, many' derive mostly from reports by nineteenth century Christian 
missionaries, who commonly understood less mathematics than did the people on 
whom they were reporting." At the same time, he notes that these missionaries did 
teach Western-style mathematics to indigenous people. 

6.1. Colonial mathematics. As in other countries, European colonists were not 
long in establishing universities in these new lands. Australia acquired universities 
at Sydney (1850), Melbourne (1853), Adelaide (1874), and Hobart (University of 

1 2 During the present author's years at Princeton (1963-1966) several of the graduate students in 
mathematics were Mexican students of Lefschetz. 
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Tasmania, 1890). In New Zealand universities opened at Dunedin (University of 
Otago, 1869), Christchurch (University of Canterbury, 1873), Auckland (1883), and 
Wellington (Victoria University, 1897). The New Zealand universities were from 
the beginning co-educational. The Australian Mathematical Society was founded in 
1956 and the New Zealand Mathematical Society in 1974. Long before that, how-
ever, good mathematicians were being born and working in these two countries. 
The following short list is far from complete, but it does show that world-class 
mathematics and science have been produced in this region almost from the begin-
ning. 

The Bragg family. In 1915 two Australians, father and son, were awarded the Nobel 
Prize for physics. Each of them served as director of the Royal Institution in 
London. William Henry Bragg (1862-1942) was a professor of mathematics at the 
University of Adelaide from 1885 to 1908. His son William Lawrence Bragg (1890-
1971) became Cavendish Professor of physics at Cambridge and director of the 
National Physical Laboratory. 

Horatio Scott Carslaw. One of the standard texts on Fourier series, which was 
reprinted many times and eventually became immortalized in a Dover edition, was 
written by H. S. Carslaw (1870-1954), the third professor of mathematics at the 
University of Sydney (1903 1935). Carslaw was born in Scotland but moved to 
Australia in 1903 to take up the position at the University of Sydney. Besides his 
book on Fourier series, he also collaborated on a standard textbook on the Laplace 
transform and had an interest in the history of logarithms. 

Thomas Gerald Room. Carslaw's successor at the University of Sydney was Thomas 
Gerald Room (1902-1986), a native of London who, like Carslaw, moved to Aus-
tralia to take up an academic position. He is well remembered by combinatoricists 
for the concept of Room squares, about which he published a paper in 1955. 

Ernest Rutherford. Another physicist with mathematical gifts was the New Zealan-
der Ernest Rutherford (1871-1937), who studied at Canterbury University, worked 
at McGill University in Montreal (1898-1907), and eventually, working at Manch-
ester University, performed a famous experiment that helped to determine the struc-
ture of the atom (the positively charged nucleus surrounded by electrons that is 
still the popular picture of atoms). 

V. F. R. Jones. One of the brightest stars in the mathematical firmament at the 
moment is Vaughan Frederick Randal Jones (b. 1952), who graduated from the 
University of Auckland in 1973. From there he went to Switzerland, where he 
received the doctoral degree for a prize-winning dissertation. Since 1980 he has 
worked in the United States. He won the Fields Medal in 1990 for his ground-
breaking work in knot theory. (The Jones polynomial is named after him.) This 
discovery came about while he was working in a seemingly unrelated area (von 
Neumann algebras) and had links to areas of mathematical physics (topological 
quantum field theories) that were studied by mathematical physicists such as the 
American Edward Witten (b. 1951) and the British topologist Simon Donaldson 
(b. 1957), both of whom also won the Fields Medal, Donaldson in 1986 and Witten 
alongside Jones in 1990. The Jones polynomial was described by the French journal 
La recherche in its issue of July-August 1997 as one of the 300 most important 
discoveries of the last three centuries. 
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Refugee mathematicians. Like the United States and Canada, Australia took in 
some prominent European mathematicians who were fleeing persecution during the 
Nazi era. Among them were Kurt Mahler (1903-1988), Hans Schwerdtfeger (1902-
1990), George Szekeres (b. 1911), Hanna Neumann (1914-1971), and her husband 
Bernhard Neumann (1909-2002). In honor of the mathematical achievements of 
these refugees the Australian Mathematical Society sponsors a Mahler Lectureship, 
a George Szekeres Medal, and a B.H. Neumann Prize. 

Ties provided by the British Commonwealth seem to have facilitated the careers 
of many of these people. Rutherford and Schwerdtfeger, for example, both worked 
for a time at McGill University in Montreal, besides the time they spent in New 
Zealand, Australia, Britain, and elsewhere. 

7. The modern era 

The advanced work in number theory, geometry, algebra, and calculus that began in 
the seventeenth century will be incorporated into the discussion of the mathematics 
itself beginning in Chapter 5. There are two reasons for not discussing it here. 
First, many of the names from this time on, such as Pascal, Descartes, Leibniz, 
Newton, Cauchy, Riemann, Weierstrass are probably already familiar to the reader 
from mathematics courses. Second, the increasing unity of the world makes it 
less meaningful to talk of "European mathematics" or "Chinese mathematics" or 
"Indian mathematics," since in the modern era mathematicians the world over work 
on the same types of problems and use the same approaches to them. We shall now 
look at some general features of modern mathematics the world over. 

Up to the nineteenth century mathematics for the most part grew as a wild 
plant. Although the academies of science of some of the European countries nour-
ished mathematical talent once it was exhibited, there were no mathematical so-
cieties dedicated to producing mathematicians and promoting their work. This 
situation changed with the French Revolution and the founding of technical and 
normal schools to make education systematic. The effects of this change were mo-
mentous. The curriculum shifted its emphasis from classical learning to technology, 
and research and teaching became linked. 

7.1. Educational institutions. At the time of the French Revolution the old 
universities began to be supplemented by a system of specialized institutions of 
higher learning. The most famous of these was the Ecole Polytechnique, founded 
in 1795. A great deal of the content of modern textbooks of physics and mathe-
matics was first worked out and set down in the lectures given at this institution. 
Admission to the Ecole Polytechnique was a great honor, and only a few hundred 
of the brightest young scholars in France were accepted each year. This institution 
and several others founded during the time of the French Revolution, such as the 
Ecole Normale Superieure, produced a large number of brilliant mathematicians 
during the nineteenth century. Some of their research was devoted to questions of 
practical importance, such as cartography and canal building, but basic research 
into theoretical questions also flourished. 

In Germany the unification of teaching and research proceeded from the other 
direction, as professors at reform-minded universities such as Gottingen (founded 
in 1737) began to undertake research along with their teaching. This model of 
development was present at the founding of the University of Berlin in 1809. This 
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educational trend was duplicated elsewhere in the world. During his Italian cam-
paign Napoleon founded the Scuola Normale Superiore in Pisa, which reopened in 
1843 after a long hiatus. In Russia a university opened along with the Petersburg 
Academy of Sciences in 1726, and the University of Moscow was founded a genera-
tion later (1755) with the aim of producing qualified professionals. It was not until 
the nineteenth century, however, that the faculty in Moscow began to engage in 
research. The University of Stockholm opened in 1878 with aims similar to those 
of the institutions just named. In Japan an office of translations was opened in the 
Shogunate Observatory in 1811. It was renamed the Institute for the Study of For-
eign Books in 1857 and became the home of a department of Western mathematics 
in 1863, taking on two Dutch faculty members in 1865. By 1869 only Western 
mathematics was being taught, and the teaching was being done by French and 
British teachers. 

7.2. Mathematical societies. Another aspect of the professionalization of math-
ematics was the founding of professional societies to supplement the activities of the 
mathematical sections in academies of sciences. The oldest of these is the Moscow 
Mathematical Society (founded in 1864). The London Mathematical Society was 
founded in 1866, the Japanese Mathematical Society in 1877. The American Math-
ematical Society (originally the New York Mathematical Society) was founded in 
1888 and the Canadian Mathematical Society in 1945. 

7.3. Journals. These educational institutions and professional societies also pub-
lished their own research journals, such as the Journal de I'Ecole Polytechnique 
and the Journal de I 'Ecole Normale Superieure. These journals contained some of 
the most profound research of the nineteenth century. Other nations soon emulated 
the French. The German Journal fur die reine und angewandte Mathematik was 
founded by August Leopold Crelle (1780-1855) in 1826. Informally, it is still called 
Crelle's Journal. The Italian Annali di scienze matematiche e fisiche appeared 
in 1850; the Moscow Mathematical Society began publishing the Matematicheskii 
Sbornik (Mathematical Collection) in 1866; the Swedish Acta mathematica was 
founded in 1881. By the end of the nineteenth century there were mathemati-
cal research journals in every European country, in North America, and in Japan. 
The first American research journal, The American Journal of Mathematics, was 
founded at Johns Hopkins University in 1881 with the British mathematician J.J . 
Sylvester as its principal editor, assisted by the American William Edward Story. 
The first issue of The Canadian Journal of Mathematics was dated 1949. 

Questions and problems 

3.1. Compare the way in which mathematicians have been supported in various 
societies discussed in this chapter. If you were in charge of distributing the federal 
budget, how high a priority would you give to various forms of pure and applied 
research in mathematics? What justification would you give for your decision? 
Would it involve a practical "payoff" in economic terms, or do you believe that 
the government has a responsibility to support the creation of new mathematics, 
without regard to its economic value? 

3.2. Why is Seki Kowa the central figure in Japanese mathematics? Are compar-
isons between him and his contemporary Isaac Newton justified? 
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3.3. What is the justification for the statement by the historian of mathematics T. 
Murata that Japanese mathematics was not a science but an art? 

3.4. Why might Seki K5wa and other Japanese mathematicians have wanted to 
keep their methods secret, and why did their students, such as Takebe Kenko, honor 
this secrecy? 

3.5. For what purpose was algebra developed in Japan? Was it needed for science 
and/or government, or was it an "impractical" liberal-arts subject? 

3.6. Dante's final stanza, quoted above, uses the problem of squaring the circle 
to express the sense of an intellect overwhelmed, which was inspired by his vision 
of heaven. What resolution does he find for the inability of his mind to grasp the 
vision rationally? Would such an attitude, if widely shared, affect mathematical 
and scientific activity in a society? 

3.7. One frequently repeated story about Christopher Columbus is that he proved 
to a doubting public that the Earth was round. What grounds are there for believing 
that "the public" doubted this fact? Which people in the Middle Ages would have 
been likely to believe in a flat Earth? Consider also the frequently repeated story 
that people used to believe the stars were near the Earth. How is that story to 
be reconciled with Ptolemy's assertion that it was acceptable to regard Earth as 
having the dimensions of a point relative to the stars? 

3.8. What are the possible advantages and disadvantages of eliminating or greatly 
reducing the volume of journals, placing all articles on electronic files that can be 
downloaded from various information systems? 

3.9. Mathematical research is like any other commercial commodity in the sense 
that people have to be paid to do it. We have mentioned the debate over taxing the 
entire public to support such research and asked the student to consider whether 
there is a national interest that justifies this taxation. A similar taxation takes 
place in the form of tuition payments to American universities. Some of the money 
is spent to provide the salaries of professors who are required to do research. Is 
there an educational interest in such research that justifies its increased cost to the 
student? 



CHAPTER 4 

Women Mathematicians 

The subject of women mathematicians has become a major area in the history 
of mathematics over the past generation, naturally connected with the women's 
movement in general. Any history of mathematics should include a discussion 
of the conditions under which mathematics flourishes and the reasons why some 
people and cultures develop mathematics to a high degree while others do not. 
To give as complete a picture of the history of mathematics as possible we need 
to examine these conditions, and the case of women in mathematics is a very 
instructive example. 

The author, who began studying the history of mathematics by researching 
the career of Sof'ya Kovalevskaya (1850-1891), has heard it objected that women 
mathematicians are receiving attention out of proportion to their mathematical 
merit while many talented male mathematicians are being neglected by histori-
ans. Such an objection is beside the point. Male mathematicians did not have 
to overcome the energy- and time-consuming obstacles that women faced. The 
justification for devoting a full chapter to women mathematicians and for making 
women mathematicians a separate area of study is very simple: Until recently, all 
women mathematicians had one thing in common, a societal expectation that they 
would spend most of their time ministering to the needs of their families. A di-
rect corollary of that expectation was that a mathematical career should not be 
a woman's first priority and that societal institutions need not support or even 
recognize any striving for such a career. In fact, Barnard College once had a policy 
of firing women who got married on the grounds that "the College cannot afford 
to have women on the staff to whom the college work is secondary; the College is 
not willing to stamp with approval a woman to whom self-elected home duties can 
be secondary."1 In other words, if a woman chooses to marry, her duties as a wife 
should be first priority. If they aren't, she is a bad woman and hence unfit to be on 
the staff; if they are, her duties at the College must be secondary, and again, she is 
unfit to be on the staff. 

The subject "women mathematicians" could be replaced by a category having 
no reference to gender, as "mathematics practiced under conditions of discrimina-
tion." In that way the subject would be enlarged so as to include minorities such 
as Jewish mathematicians in Europe and the United States from the Middle Ages 
until the twentieth century and African Americans up to very recent years. To keep 
this chapter of manageable size, however, we confine it to women. 

1 http: //cwp. 1 ibrary. ucla. edu/Phase2/Maltby_Margaret_El iza0901234567. html 
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1. Individual achievements and obstacles to achievement 

A useful periodization of the progress —and it is a story of progress—of women in 
mathematics, is as follows: (1) before 1800, a time when only the most exceptional 
woman in the most exceptionally fortunate circumstances could hope to achieve 
anything in mathematics; (2) the nineteenth century, a period when the support of 
society for a woman to have a career in mathematics was missing, but a very deter-
mined, financially independent woman could at least break into the world of science 
and mathematics; (3) the twentieth century, when the dam restraining women from 
mathematical achievement developed cracks and finally burst completely, leading 
to a flood of women that continues to swell right up to the present. We first discuss 
in general terms the obstacles that needed to be overcome, and then give brief bi-
ographies describing the lives and achievements of a number of prominent women 
mathematicians. 

1.1. Obstacles to mathematical careers for women. In the United States 
many of the best graduate schools were all-male until the 1960s. A classmate of 
the author at Northwestern University, a very bright and mathematically talented 
young woman, mentioned in 1962 that she had written to an Ivy League school to 
inquire about study for the doctoral degree and had received a reply saying, "We 
have no place to house you." A decade later, the women's movement began to 
focus attention on the small number of women in mathematics, and the resulting 
investigation into causes has helped to remove some of the obstacles to women's 
achievement in mathematics. Among the obstacles, the following have been identi-
fied: 

Institutionalized discrimination. It required considerable time for society to realize 
that all-male institutions receiving government grants were discriminating against 
women. Indeed, the author's classmate mentioned above, whatever she may have 
thought, did not complain publicly of discrimination for being rejected by an Ivy 
League school. Ironically, the existence of women's colleges, which had arisen partly 
in response to this discrimination, was sometimes cited as proof that men's colleges 
were not discriminatory. If the opportunities and facilities at the women's colleges 
had been equal to those at the men's colleges, that argument would have had merit; 
but they were not. 

Discrimination went beyond the student body; it was, if anything, even worse 
among the faculty. Until the 1970s most universities and many companies had "anti-
nepotism" rules that forbade the hiring of both a husband and wife. Since women 
mathematicians often married men who were mathematicians, marriage became a 
serious impediment to a career, whether or not the husband was supportive of his 
wife's ambition. Karen Uhlenbeck (b. 1942) encountered this kind of discrimination 
and later wrote about it: 

I was told that there were nepotism rules and that they could not 
hire me for this reason, although when I called them on this issue 
years later, they did not remember saying these things. 

In earlier times Ivy League universities were not the only places women were 
not allowed to be. In the eighteenth century, they were not allowed to attend meet-
ings of the Academy of Sciences in Paris nor (by social convention) to enter cafes. 
These were the two places where the best scientific minds of the time assembled 
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2 Kowalewski believed himself to be distantly related to Vladimir Kovalevskii, husband of Sof'ya 
Kovalevskaya, but this connection has never been verified. 
3 The kind of behavior exhibited by Roethe eventually disappeared, thanks in large part to the 
efforts of the Prussian Kultusminister Friedrich Althoff (1839-1908), who had asked Felix Klein 
(1854-1925) to be on the lookout for promising women students. In 1894, with AlthofT's approval, 
Klein took Grace Chisholm Young as his student, and the doors of Gottingen University were 
thereafter open to women. One of Althoff's last acts as Kultusminister was to unify the education 
of boys and girls. Klein can be described as a liberal but not a radical, one who believed in equal 
opportunity for women and even affirmative action to recruit women; but he insisted that only 
women with demonstrated talent and background should be admitted to universities. 

for conversation. The Marquise du Chatelet defied convention and went to cafes 
anyway, dressed as a man. In the nineteenth century women were not allowed into 
laboratories at some universities, so that Christine Ladd-Franklin (1847-1930) be-
came a mathematics major even though she would have preferred physics. After 
writing a brilliant dissertation but being unable to obtain a degree, she turned to 
the new profession of psychology, but even there was shut out of professional life. In 
the twentieth century, when his colleagues were objecting to hiring Emmy Noether 
at Gottingen, Hilbert is reported (Dick, 1981, p. 168; Mackay, 1991, p. 117) to have 
ridiculed their objections, saying, "The Senate is not a locker room; why shouldn't 
a woman go there?" As our narrative proceeds, the same three institutions the 
University of London, Bryn Mawr College, and the University of Gottingen will 
appear repeatedly, showing how few opportunities there were for women to pursue 
advanced studies in mathematics until quite recently. 

The situation in the early twentieth century was described by the mathemati-
cian Gerhard Kowalewski (1876-1950) in his memoirs:2 

At that time [1905] the first women students began to appear at 
the University of Bonn. They were still being met with harsh rejec-
tion on the part of distinguished professors at other universities, 
for example, Berlin, where Gustav Roethe, if he caught sight of 
women in the auditorium, simply refused to begin his lecture until 
they left the room. 3 People were not so narrow-minded at Bonn. 
The women students formed a Society and arranged balls to which 
they invited their professors. There was a whole series of talented 
women mathematicians. Many of them took the state examina-
tion under my supervision: [among them was] Maria Vaerting, who 
later became a famous novelist and whose first novel.. .was based 
on her student days.. . At the same time she was working on a very 
difficult topic for a doctoral dissertation under my direction. In 
the end, however, she didn't receive the doctorate as my student, 
since I was called to Prague. She then moved to Giessen, where 
her work was accepted by Professor Pasch. [Kowalewski, 1950, pp. 
206-207] 

Discouragement from family, friends, and society in general. We do not know what 
attitudes were faced by the very earliest women mathematicians, but from the eigh-
teenth century on there are many documented cases of family opposition to such a 
career; particularly good examples are Sophie Germain and Sof'ya Kovalevskaya, 
both of whom had to go to extraordinary lengths to participate in the mathemat-
ical community. (Kovalevskaya was fortunate in being able eventually to win her 
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father's blessing on her career.) In addition, most women who have had both chil-
dren and a career have had to invest more time in the children than men have done. 
This extra responsibility and a host of other societal expectations requiring time 
and effort on the part of women have made it more difficult for women to con-
centrate on their careers with the same single-mindedness that has characterized 
the most outstanding male mathematicians. In at least one case, that of Grace 
Chisholm Young (1868-1944), marriage meant a rather complete submersion of her 
talents for a time, with her husband (William H. Young, 1863-1942) getting all the 
credit for papers that were a joint effort. Such unequal partnerships, which seem 
terribly unfair a century later, were probably not common, but other such cases 
are known.4 

Lack of role models. It cannot be a coincidence that many of the women "pioneers" 
in mathematics were the daughters of mathematicians or engineers. The absence 
of prominent women in these fields during the early days meant that many young 
girls thinking about their futures did not consider a career in technical areas. Most 
of the exceptions were in contact with mathematics and science from an early age 
because of the work their fathers did. The women who did choose such careers 
could get little advice from their male mentors as to how to deal with the special 
problems faced by a woman wishing a career in science. For example, Cathleen 
Morawetz, who was mentioned in Chapter 3, noticing how few job opportunities 
there were for women with doctorates in mathematics, nearly decided to choose 
a career in industry after getting her master's degree. It was her mentor Cecilia 
Krieger (1894-1974, later Cecilia Krieger Dunaij) who encouraged her to go to New 
York University. Such role models and encouragement were naturally present in 
greater degree at women's colleges. 

Inappropriate teaching methods. The usefulness of women's colleges in helping 
women to develop their talents and ultimately overcome society's low expectations 
cannot be overemphasized. That girls, at least those being raised in traditional 
ways, needed to be taught differently from boys, is very clear from the following 
description of a geometry lesson given by Prince Bolkonskii to his daughter, Princess 
Mar'ya, in Leo Tolstoy's War and Peace. 

Leaning on the table, the prince pushed forward a notebook full of 
geometrical diagrams. 

"Now, young lady," the old man began, bending over the note-
book close to his daughter and putting one hand on the arm of the 
chair in which the princess was sitting, so that she felt herself com-
pletely surrounded by her father's pungent old-man and tobacco 
scent, so long familiar to her. "Now, young lady, these triangles 
are similar. Notice the angle abc..." 

The princess looked nervously at her father's sparkling eyes 
close by; blushes rose to her cheeks, and it was apparent that she 
didn't understand anything and was so frightened that fear was 
preventing her from understanding any of her father's subsequent 
reasoning, no matter how clear it was. Whether it was the fault 

4 It is now well documented that Einstein's first wife made significant contributions to his 1905 
paper on special relativity and deserved to be listed as a co-author. Although she never received 
the Nobel Prize in her own name, she did get Einstein's prize money under the terms of their 
divorce settlement. 
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of the tutor or of the pupil, the same thing happened every day: 
everything swam in front of the princess' eyes, she saw and heard 
nothing, but only sensed her father's dry, stern face next to her, 
was aware of his breath and his scent, and thought only of getting 
out of the study as soon as possible so that she could understand 
the problem in the spacious freedom of her own room. The old man 
made extraordinary efforts: noisily moving the chair he was sitting 
in back and forth, he struggled not to lose his temper; but nearly 
always lost it, shouted at her, and sometimes threw the notebook. 

The princess had given an incorrect answer. 
"What a stupid thing to say!" shouted the prince, shoved the 

notebook aside, and quickly turned away. But then he immediately 
got up, walked around, touched the princess' hair, and sat down 
again. 

He came closer and continued his reasoning. 
"No, no, Princess," he said, when at last the princess had 

taken the notebook with the assignments in it and was prepar-
ing to leave. "Mathematics is a great thing, young lady. I don't 
want you to be like those silly debutantes. Perseverance brings 
pleasure." He stroked her cheek with his hand. "The frivolity 
will eventually jump out of your head." [War and Peace, Book 1, 
Part 1, Chapt. 22] 

The vividness of this scene shows that Tolstoy must have drawn it from real 
life. Even an enlightened father, such as Tolstoy's Prince Bolkonskii, who loved his 
daughter and wanted more for her than the frivolous life offered to most women in 
the Russian aristocracy, did not know how to carry out his own good intentions. 

Sexual harassment. This painful topic has apparently not been much talked about 
in relation to mathematics specifically. Keith and Keith (2000) report that at a 
1988 conference on women in mathematics and the sciences every woman present 
had experienced discrimination, not only "gender harassment... but more brutal 
sexual harassment." The harm that can be done by sexual harassment includes 
creating anxiety that interferes with work, discouraging women from seeking help 
in a professor's office, and blocking professional advancement for women who protest 
harassment or reject unwanted advances. 

To struggle against all of these obstacles was the task of heroic individual 
women for many centuries, and what they achieved seems in many ways miracu-
lous. Who would have guessed, for example, that a journal named The Woman 
Inventor was published more than a century ago? 5 But real progress could be 
expected only when society as a whole undertook to provide support. To overcome 
these obstacles legislation was enacted at the federal level during the 1960s for-
bidding discrimination on the basis of gender. To overcome the more entrenched 
and subtle problems of societal discouragement and lack of role models a variety of 
measures have been introduced, including special workshops and institutes devoted 
to introducing women to mathematical research and the founding of the Associa-
tion for Women in Mathematics in 1971. All major universities and corporations 

5 It was published by Charlotte Smith (1840-1917) and managed only two issues, in April and 
June of 1891 (Stanley, 1992). 
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now have procedures for preventing and prosecuting sexual harassment. Although 
it cannot be said that all of these obstacles have been overcome, it is certainly the 
case that more and more women are choosing careers in mathematics. In many 
universities the number of undergraduate women majoring in mathematics is now 
larger than the number of men, and the number of women graduate students is 
approaching equality with the number of men. Equality of numbers, however, is 
not necessarily the goal. It may be that, given equal opportunity, more women than 
men would choose to be mathematicians; or the number of women freely choosing 
such a career might be less. What is (in the author's view) the ultimate goal—that 
each person should be aware of the opportunities for any career and accorded equal 
opportunity to pursue the career of her or his choice has not quite been achieved, 
but it is fair to say that a woman can now pursue a career in mathematics and 
science with the same expectation of success, depending on her talent, as in any 
other major. 

2. Ancient women mathematicians 

Very few women mathematicians are known by name from early times. How-
ever, Closs (1992, p. 12) mentions a Maya ceramic with a picture of a female 
scribe/mathematician. From ancient Greece and the Hellenistic culture, at least 
two women are mentioned by name. Diogenes Laertius, in his work Lives of Em-
inent Philosophers, devotes a full chapter to the life of Pythagoras, and gives the 
names of his wife, daughter, and son. Since it is known that the Pythagoreans 
admitted women to their councils, it seems that Pythagoras' wife and daughter en-
gaged in mathematical research at the highest levels of their day. However, nothing 
at all is known about any works they may have produced. All that we know about 
them is contained in the following paragraph from Diogenes Laertius: 

Pythagoras had a wife named Theano. She was the daughter of 
Brontinus of Croton, although some say that she was Brontinus' 
wife and Pythagoras' pupil. He also had a daughter named Damo, 
as Lysis mentions in a letter to Hipparchus. In this letter he speaks 
of Pythagoras as follows: "And many say that you [Hipparchus] 
give public lectures on philosophy, as Pythagoras once did. He 
entrusted his Commentaries to Damo, his daughter, and told her 
not divulge them to anyone not of their household. And she refused 
to part with them, even though she could have sold them for a 
considerable amount of money; for, despite being a woman, 6 she 
considered poverty and obedience to her father's instructions to be 
worth more than gold." He also had a son named Telauges, who 
succeeded him as head of the school, and who, according to some 
authors, was the teacher of Empedocles. Hippobotus, for one, 
reports that Empedocles described him as "Telauges, the noble 
youth, whom in due time, Theano bore to the sage Pythagoras." 
But no books by Telauges survive, although there are still some 
that are attributed to his mother Theano. 

6 It is hardly worth pointing out the slur on women's character implicit in this phrase. 
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Hypatia. There are two primary sources for information about the life of Hypatia. 
One is a passage in a seven-book history of the Christian Church written by Socrates 
Scholasticus, who was a contemporary of Hypatia but lived in Constantinople; the 
other is an article in the Suda, an encyclopedia compiled at the end of the tenth 
century, some five centuries after Hypatia. 7 In addition, several letters of Synesius, 
bishop of Ptolemais (in what is now Libya), who was a disciple of Hypatia, were 
written to her or mention her, always in terms of high respect. In one letter 
he requests her, being in the "big city," to procure him a scientific instrument 
(hygrometer) not available in the less urban area where he lived. In another he 
asks her judgment on whether to publish two books that he had written, saying 

If you decree that I ought to publish my book, I will dedicate it to 
orators and philosophers together. The first it will please, and to 
the other it will be useful, provided of course that it is not rejected 
by you, who are really able to pass judgment. If it does not seem 
to you worthy of Greek ears, if, like Aristotle, you prize truth more 
than friendship, a close and profound darkness will overshadow it, 
and mankind will never hear it mentioned. [Fitzgerald, 1926] 

The account of Hypatia's life written by Socrates Scholasticus occupies Chap-
ter 15 of Book 7 of his Ecclesastical History. Socrates Scholasticus describes Hy-
patia as the pre-eminent philosopher of Alexandria in her own time and a pillar of 
Alexandrian society, who entertained the elite of the city in her home. Among that 
elite was the Roman procurator Orestes. There was considerable strife at the time 
among Christians, Jews, and pagans in Alexandria; Cyril, the bishop of Alexan-
dria, was apparently in conflict with Orestes. According to Socrates, a rumor was 
spread that Hypatia prevented Orestes from being reconciled with Cyril. This ru-
mor caused some of the more volatile members of the Christian community to seize 
Hypatia and murder her in March of 415. 

The Suda devotes a long article to Hypatia, repeating in essence what was 
related by Socrates Scholasticus. It says, however, that Hypatia was the wife of the 
philosopher Isodoros, which is definitely not the case, since Isodoros lived at a later 
time. The Suda assigns the blame for her death to Cyril himself. 

Yet another eight centuries passed, and Edward Gibbon came to write the story 
in his Decline and Fall of the Roman Empire (Chapter XLVII). In Gibbon's version 
Cyril's responsibility for the death of Hypatia is reported as fact, and the murder 
itself is described with certain gory details for which there is no factual basis. (The 
version given by Socrates Scholasticus is revolting enough and did not need the 
additional horror invented by Gibbon.) 

A fictionalized version of Hypatia's life can be found in a nineteenth-century 
novel by Charles Kingsley, bearing the title Hypatia, or New Foes with an Old Face. 
What facts are known were organized into an article by Michael Deakin (1994) and 
a study of her life by Maria Dzielska (1995). 

3. Modern European women 

Women first began to break into the intellectual world of modern Europe in the 
eighteenth century, mingling with the educated society of their communities, but 
not allowed to attend the meetings of scientific societies. The eighteenth century 

7 This work bears the traditional name Suidas, erroneously thought to be the name of the person 
who compiled it. 
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produced three notable women mathematicians, whose biographies exhibit some 
noticeable similarities and some equally noticeable differences. 

3.1. Continental mathematicians. The first two of three prominent eighteenth-
century women mathematicians were the Marquise du Chatelet and Maria Gaetana 
Agnesi. Both were given strong classical educations at the insistence of their fa-
thers, both took a strong interest in science, and both wrote expository works that 
incorporated their own original ideas. Apart from those similarities, however, there 
are a great many differences between the two women, beyond the obvious fact that 
the Marquise du Chatelet was French and Maria Gaetana Agnesi was Italian. 

The Marquise du Chatelet. The Marquise du Chatelet was born Gabrielle-Emilie 
Tonnelier de Breteuil, the daughter of a court official of the "Sun King" Louis XIV, 
in 1706. She was presented at court at age 16, married to a nobleman at 19, and 
had a number of lovers throughout her life. She bore several children and died in 
1749, apparently of complications from the birth of a child; she was 42 years old at 
the time. 

In a preface to her translation and reworking of an English book entitled The 
Fable of the Bees, she wrote eloquently about the situation of women in general, 
and the difficulties she herself faced, saying 

I am convinced that many women are either unaware of their tal-
ents by reason of the fault in their education or that they bury 
them on account of prejudice for want of intellectual courage. My 
own experience confirms this. [Ehrman, 1986, p. 61] 

As a teenager Gabrielle-Emilie received encouragement to study mathematics 
from a family friend, M. de Mezieres, but would have had contact with science 
in any case, just from being in a home where intellectual questions were taken 
seriously. Her scientific interests were in the area known as natural philosophy, 
which was the physics and chemistry of the time, but contained strong admixtures 
of philosophical doctrines that have since been purged. In 1740 she published 
Institutions de physique, in which she attempted a synthesis of the ideas of Newton, 
Descartes, and Leibniz. Five years later, she began the work for which she is 
best remembered, a French translation, with commentary, of Newton's Philosophies 
naturalis principia mathematica. This work was published in 1756, seven years 
after her death. 

Maria Gaetana Agnesi. In contrast to the Marquise du Chatelet, Maria Gaetana 
Agnesi much preferred a simple, spartan life, even though her father was the heir 
to a fortune made in the silk trade. Born in 1718 in Bologna, which at the time was 
located in the Papal States, she wanted to be a nun, and only her father's plead-
ing prevented her from going to a convent as a young woman. She never married 
and spent her time at home in activities that would be appropriate to a convent, 
reading religious books, praying, and studying mathematics. 8 She was encouraged 
in her interest in mathematics by a monk who was also a mathematician and who 
frequently visited her father. In the preface to her book Istituzioni analitiche ad 
uso della gioventu italiana, she expressed her gratitude for this support, saying 

8 If those three activities seem incongruous, one should keep in mind that a considerable portion 
of the women mathematicians in the United States during the 1930s were nuns. 



3. MODERN EUROPEAN WOMEN 83 

that, despite her strong interest in mathematics, she would have gotten lost with-
out his instruction. Using the famous mathematician Jacopo Riccati (1676-1754), 
for whom the Riccati equation is named, as an editor, she worked methodically on 
this textbook for many years. Riccati even gave her some of his own results on 
integration. The work was published in two volumes in 1748 and 1749 and imme-
diately recognized as a masterpiece of organization and exposition, earning praise 
from the Paris Academy of Sciences. The Pope at the time, Benedict XIV, had 
an interest in mathematics, and he appointed her to a position as reader at the 
University of Bologna. Soon afterward, the Academy of Bologna offered her the 
chair of mathematics at the university, and the Pope confirmed this offer. 

However, she does not seem to have accepted the offer. Her name remained on 
the rolls at the university, but she devoted herself to her charitable work, with ever 
more zeal after her father died in 1752. She gave away her fortune to the poor and 
died in poverty in 1799. 

As is often the case with people who are kept away from full participation in 
scientific circles, the originality of Maria Agnesi's work is in the organization of 
the material. The small part of it that has immortalized her name is a curve that 
she called la versiera, meaning the twisted curve. It was translated into English by 
her contemporary John Colson, but the translation was not published until 1801. 
Colson apparently confused la versiera with I'avversiera, which means wife of the 
devil. Accordingly he gave this curve the name witch of Agnesi, a name that has 
unfortunately stuck to it and is both sad and ironic, considering the exemplary 
character of its author. 9 

Sophie Germain. Even though she was born much later than Maria Gaetana Agnesi 
and the Marquise du Chatelet, the third prominent woman mathematician of the 
eighteenth and early nineteenth centuries, Marie-Sophie Germain, was more isolated 
from the intellectual world than her two predecessors. She was born in Paris during 
the reign of Louis XVI, on April 1, 1776. Like Maria Gaetana Agnesi, her family 
had grown wealthy in the silk trade, and the family home was a center of intellectual 
activity. She, however, was strongly discouraged from scientific studies by her family 
and had to stay up late and study the works of Newton and Euler (1707-1783), 
teaching herself Latin in order to do so. Her persistence finally won acceptance, 
and she was allowed to remain unmarried and devoted to her studies. Even so, 
those studies were not easy to conduct. Even after the French Revolution, she was 
not allowed to attend school. She did venture to send some of her work to Joseph-
Louis Lagrange (1736-1813) under the pseudonym "M. LeBlanc," work he found 
sufficiently impressive to seek her out. He was her only mentor, but the relationship 
between them was not nearly so close as that between Sof'ya Kovalevskaya and 
her adviser Weierstrass 80 years later. She conducted a famous correspondence 
with Adrien-Marie Legendre (1752-1833) on problems of number theory, some of 
which he included in the second edition of his treatise on the subject. Later she 
corresponded with Carl Friedrich Wilhelm Gauss (1777-1855), again disguised as 
"M. LeBlanc." Although they shared a love for number theory, the two never met 
face to face. Sophie Germain proved a special case of Fermat's last theorem, which 
asserts that there are no nonzero integer solutions of a" + bn = c" when ç > 2. 
Her special case assumes that the prime number ç does not divide a, b, or c and 

9 Despite the widely recognized name witch of Agnesi, Agnesi was not the first person to study 
this curve. 
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is less than 100. 1 0 Gauss also praised her work very highly. He did not learn her 
identity until 1806, when French troops occupied his homeland of Braunschweig. 
Remembering the death of Archimedes, Sophie Germain wrote to some friends, 
asking them to take care that Gauss came to no harm. Gauss' opinion of her, 
expressed in a letter to her the following year, is often quoted: 

But how to describe to you my admiration and astonishment at 
seeing my esteemed correspondent Monsieur LeBlanc metamor-
phose himself into this illustrious personage who gives such a bril-
liant example of what I would find it difficult to believe. The 
enchanting charms of this sublime science reveal themselves only 
to those who have the courage to go deeply into it. But when 
a woman, who because of her sex and our prejudices encounters 
infinitely more obstacles than a man in familiarizing herself with 
complicated problems, succeeds nevertheless in surmounting these 
obstacles and penetrating the most obscure parts of them, with-
out doubt she must have the noblest courage, quite extraordinary 
talents and superior genius. 

Remembering that Sophie Germain was completely self-taught in mathematics 
and had little time to learn physics, which was increasingly developing its own 
considerable body of theory, we can only marvel that she had the courage to enter 
a prize competition in 1811 for the best paper on the vibration of an elastic plate. 
She had to start from zero in this enterprise, and Lagrange had warned that the 
necessary mathematics simply did not yet exist. According to Dahan-Dalmedico 
(1987, p. 351), she had learned mechanics from Lagrange's treatise and from some 
papers of Euler "painfully translated" from Latin. It is not surprising that her 
paper contained errors and that she did not win the prize. Actually, no one did; 
she was the only one who ventured to enter. Even so, her paper contained valuable 
insights, in the form of modeling assumptions that allowed the aged Lagrange to 
derive the correct differential equations for the displacement of the middle plane of 
the plate. She then set to work on these equations and in 1816 was awarded a prize 
for her work. This work became fundamental in the development of the theory of 
elasticity during the nineteenth century. 

Perhaps because of the inevitable deficiencies resulting from her inadequate 
education, but more likely because she was a woman, Sophie Germain never received 
the respect she obviously deserved from the French Academy of her time. Prominent 
academicians seem to have given her papers the minimum possible attention. In 
their defense, it should be said that they were a galaxy of brilliant stars—Cauchy, 
Poisson, Fourier, and others—and it is unfortunate that their occasional neglect of 
geniuses such as Sophie Germain and Niels Henrik Abel stand out so prominently. 

Like the Marquise du Chatelet, Sophie Germain had a strong interest in phi-
losophy and published her own philosophical works. She continued to work in 
mathematics right up to the end of her life, writing papers on number theory and 

1 0 The divisibility hypothesis makes for a nice theorem, since it is obviously impossible to satisfy 
if ç = 1 or ç = 2. It seems to explain why those cases are exceptions. However, we now know 
that it is not a necessary hypothesis. 
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the curvature of surfaces (another interest of Gauss, but also connected with elas-
ticity through a principle Sophie Germain had derived from Euler's work) from the 
time she was stricken with breast cancer in 1829 until her death in 1831. 

3.2. Nineteenth-century British women. In Britain, as on the Continent, the 
admission of women to universities began at a very slow pace in the late nine-
teenth century. Before that time women had to have some means of support for 
private study or otherwise blaze their own trails through the wilderness. As on the 
Continent, the earliest women were not specialists in mathematics but had general 
philosophical interests. 

Mary Somerville. The work of Mary Somerville, coming about 75 years later than 
that of the Marquise du Chatelet, bears many resemblances to the latter, being 
largely expository and philosophical in nature. Mary Somerville was born in Jed-
burgh, Scotland, on December 26, 1780, to the family of William George Fairfax, 
a naval officer. Like Sophie Germain, she received no encouragement toward a 
scientific education. Indeed, although her mother taught her to read, she had to 
learn to write all by herself. Education was reserved for her brothers, although she 
did spend one year, which she hated, in a boarding school for girls. Like Sophie 
Germain, she decided to educate herself. With the encouragement of an uncle, 
she began learning Latin, so that alongside the education given to most girls in 
her day—piano, painting, needlework—she was undertaking technical subjects. A 
chance remark of her painting tutor, overheard by Mary, to the effect that Euclid 
was both the secret of perspective in art and the foundation of many other sciences, 
led her to study geometry with her younger brother's tutor. A brief first marriage, 
to a naval officer who had no appreciation of her ability or her desire to learn, led to 
the birth of two sons. When her husband died after only three years, she returned 
to Scotland with her sons, where she found a circle of sympathetic friends, including 
the geometer John Playfair (1748-1819), editor of a famous edition of Euclid and 
the man who formulated the now-common version of Euclid's fifth postulate, which 
is known as Playfair's Axiom. For one solution to a mathematical problem set in a 
popular journal, she received a silver medal in 1811 (which, it will be remembered, 
was the year in which Sophie Germain unsuccessfully sought a prize from the Paris 
Academy for work on a much more substantial problem). 

The following year she married William Somerville, an inspector of hospitals. 
William proved to be much more supportive than her first husband, and together 
they studied geology. When he was appointed as inspector to the Army Medical 
Board in 1816 and elected to the Royal Society, they moved to London, where they 
made the acquaintance of the leading scientists of the day. In an 1826 treatise 
on electromagnetism by Harvard professor John Farrar (1779-1853), used widely 
throughout American universities in the 1830s, Mary Somerville is mentioned as 
having performed a vanguard experiment in electromagnetic theory. In Italy it had 
been discovered that when a beam of violet light was used to stroke a metal needle 
repeatedly in the same direction for a long time, the needle became magnetized. 
At the time physicists speculated that this effect might be due to the particular 
properties of sunlight in Italy. By verifying that the same effect could be obtained in 
Edinburgh, Mary Somerville showed that the explanation had to be in the physics 
of violet light itself. Her paper on this subject was reported in a paper bearing the 
title "The magnetic properties of the violet rays of the solar spectrum," published 
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in the Proceedings of the Royal Society in 1826 and, as mentioned, quoted by John 
Farrar and thereby made famous throughout the United States. 

In an interesting reciprocity with the French translation of Newton's Principia 
made by the Marquise du Chatelet, Mary Somerville made a translation of Laplace's 
Mecanique celeste, (as, it will be recalled, Nathaniel Bowditch had also done). Like 
the Marquise and Bowditch, Mary Somerville went far beyond merely translating, 
supplementing Laplace's laconic style with extensive commentaries. This work was 
published in 1831 and was a great success. Her book The Connection of the Physical 
Sciences (1834) went through many editions, and its speculation on the existence 
of an eighth planet, eventually to be known as Neptune, beyond Uranus (which 
had been discovered in 1781), inspired one of the co-discoverers of that planet. 
According to Baker (1948). her next book, Physical Geography (1848), was less 
successful from her own point of view, although not from the point of view of the 
experts. She was disappointed that it went through only six editions, and blamed 
its lack of commercial success on the appearance of cheap imitations that were 
"just keeping within the letter of the law [on plagiarism]." She began it in 1839 
but had to delay because of her husband's illness and the need to revise her earlier 
book. Then, just when the manuscript was ready to go to press, another book on 
geography, entitled Cosmos and written by the great German scholar Alexander 
von Humboldt (1769 1859) appeared, apparently discouraging her so greatly that 
she considered burning her manuscript and had to be persuaded by friends to allow 
it to be published. It finally appeared in 1848. The reviews from those capable of 
reading it were glqwing. Humboldt himself wrote to her, "I do not know of any 
book on geography in any language that can be compared with yours. You have 
not missed any fact or any of the grand sights of nature," and he signed himself 
"the author of the imprudent Cosmos.'' The subject of geography was not yet 
established in the curriculum in Britain, and her two-volume work did much to 
gain it a secure place. 

As a result of these and other works, Mary Somerville was elected to a number 
of professional societies, including the Societe de Physique et d'Histoire Naturelle 
in Geneva (1834), the Royal Irish Academy (1834), the Royal Astronomical Society 
(1835), the American Geographical and Statistical Society (1857), and the Italian 
Geographical Society (1870). She also won a number of academic honors. Recog-
nizing the need for women to be liberated from their traditional confinement to the 
home, Mary Somerville was the first to sign the petition to Parliament organized 
by the philosopher John Stuart Mill (1806-1873), asking that the right to vote 
be extended to women. (Together with his wife, Mill had written a book entitled 
The Enfranchisement of Women and had also published Mary Wollstonecraft's The 
Subjugation of Women.) As in the United States, this right was finally granted just 
after the end of World War I. In 1862 she petitioned the University of London on 
behalf of women seeking degrees. (Note that she was 82 years old at the time!) Al-
though this petition was rejected at that time, the University was awarding degrees 
to women only a few years later. Her long life finally came to an end near the end 
of her ninety-second year, on November 29, 1872, in Naples, Italy, where much of 
her geographical research had been done. 

Florence Nightingale. Occasionally, new mathematics is created when people who 
arc not professional mathematicians exercise their mathematical imaginations to 



3. MODERN EUROPEAN WOMEN 87 

solve urgent practical problems. Most often today such work comes from physi-
cists, who state mathematical conjectures based on their physical intuition; the 
conjectures are then either proved or modified by other mathematicians or mathe-
matical physicists. The most useful mathematics from a social point, of view is the 
mathematics used every day to settle important questions. Today, that generally 
means statistics. We are used to seeing histograms, line graphs, and pie charts in our 
newspapers, and most professional journals of even moderate technical pretensions 
will have articles referring to standard deviations, chi-square tests, p-numbers, and 
related concepts. The graphical representations of data that we are used to seeing 
in our newspapers owe something to the imagination of this remarkable woman. 

She was born in Italy on May 12,1820, the second daughter of a wealthy couple 
who were taking an extended trip. She was about one year younger than Victo-
ria, heir to the British throne. As happened with many women of achievement, 
Florence's father took an interest in the education of his daughters and both en-
couraged and tutored them. Her decision to enter the health professions, taken in 
1837, the year that Queen Victoria came to the throne, was made, she later said, 
as the result of a direct (though nonspecific) call from God. By the late 1840s 
she had persuaded her family to allow her to travel on the Continent and study 
the operation of hospitals. She had less technical training and inclination than did 
Maria Gaetana Agnesi, but she was able to integrate her technical competence with 
the charitable and public health activity that was her primary occupation. 

The central episode in the life of Florence Nightingale was the Crimean War 
of 1854-1855, in which Britain and France compelled Russia to remove its fleet 
and fortifications from the Black Sea. Deaths from battle in this war, which was 
essentially a siege of the fortress of Sevastopol, were fewer than deaths from disease. 
Florence Nightingale was appointed to lead a party of 38 nurses to the front to 
treat wounded soldiers. Seeing the conditions that existed there, she was inspired 
to write, in collaboration with William Farr (1807 1883), a series of papers on 
public health, complete with statistics on the numbers and cause of deaths, which 
were presented in the form of a polar diagram, an early version of what we now 
recognize as a pie chart (Plate 5). In 1860, for this and other such innovations 
in data handling, she became the first woman elected a fellow of the Statistical 
Society. Because of her dedication to caring for the sick, comparisons with Maria 
Gaetana Agnesi naturally come to mind. One important difference between the two 
women appears to be Florence Nightingale's greater organizing skills and her belief 
in social rather than individual action. The explanation probably lies in the fact 
that the two women were born a century apart and that Florence Nightingale lived 
in a society where people felt themselves to have some influence over government. 
Maria Gaetana Agnesi, who grew up in the artistically fruitful but politically chaotic 
eighteenth-century Italy, probably did not have that sense of a duty to participate 
in political life. 

Despite being an invalid for many years before her death at age 90 in 1910, 
Florence Nightingale worked constantly to improve health standards. To this end 
she published over 200 books and pamphlets, many of which are still read and still 
influential today. In 1907 she became the first woman awarded the Order of Merit. 
A museum in London is dedicated to her life and work, and links to information 
about her can be found at its website: 

http://www.florence-nightingale.co.uk 
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3.3. Four modern pioneers. The struggle for a woman's right to be a scientist 
or mathematician was very much an obstacle course, similar to running the high 
hurdles. The first hurdle was to get the family to support a scientific education. 
That hurdle alone caused many to drop out at the very beginning, leaving only a 
few lucky or very determined women to go on to the second hurdle, gaining access 
to higher education. All of the women discussed above had only private tutoring 
in mathematics. The second hurdle began to be surmounted in the late nineteenth 
century. On the continent a few women were admitted to university lectures without 
being matriculated, as exceptional cases. These cases established a precedent, and 
the exceptions eventually became regularized. In Britain the University of London 
began admitting women in the 1870s, and in the United States there were women's 
colleges for undergraduate education. The opening of Bryn Mawr College in 1885 
with a program of graduate studies in mathematics was an important milestone 
in this progress. Once a woman had surmounted the second hurdle, the third and 
highest of all had to be faced: getting hired and accepted as a scientist. The four 
pioneers we are about to discuss had to improvise their solutions to this problem. 
The fundamental societal changes needed to provide women with the same assured, 
routine access that men enjoyed when pursuing such a career required many decades 
to be recognized and partially implemented. 

Charlotte Angas Scott. One of the first women to benefit from the relaxation of 
restrictions on women's education was Charlotte Angas Scott, who was born in 
Lincoln, England on June 8, 1858. Like many of the earlier women, she was fortu-
nate in that her parents encouraged her to study mathematics with a tutor. She 
attended Girton College, Cambridge and took the comprehensive Tripos examina-
tion at Cambridge in 1880, being ranked as the eighth Wrangler (that is, she was 
eighth from the top of the class of mathematics majors). However, the Tripos alone 
was not enough to earn her a degree at Cambridge. She was very fortunate in being 
able to go on to graduate work in algebraic geometry under the direction of one of 
the greatest nineteenth-century mathematicians, Arthur Cayley (1821-1895). She 
earned a first (highest-rank) degree from the University of London in 1882 and, 
with Cayley's recommendation, the Ph. D. in 1885. Having now surmounted the 
second hurdle, she faced the third and highest one: finding an academic position. 

Cayley, who had spent some time a few years earlier at Johns Hopkins Uni-
versity in Baltimore, knew that Bryn Mawr College was opening that year. On 
his recommendation, Scott was hired there as a professor of mathematics. There 
she was able to set rigorous standards for the mathematical curriculum. When the 
American Mathematical Society was founded a few years later, she was a member 
of its first Council. Another of the nine women among the original membership of 
the AMS was her first Ph. D. student. Her contributions to mathematical scholar-
ship were impressive. She published one paper giving a new proof of an important 
theorem of Max Noether (1844-1921) in the Mathematische Annalen, a very presti-
gious German journal, and many papers in the American Journal of Mathematics, 
which had been founded by her countryman James Joseph Sylvester (1815-1897) 
when he was head of mathematics at Johns Hopkins. From 1899 to 1926 she was 
an editor of this journal, and in 1905 she became vice-president of the American 
Mathematical Society. 

Near the end of her career the American Mathematical Society held a confer-
ence in her honor at Bryn Mawr. and one of the speakers was the great British 
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philosopher-mathematician Alfred North Whitehead (1861-1947), who paid trib-
ute to her work in promoting a community of scholars, saying, "A life's work such 
as that of Professor Charlotte Angas Scott is worth more to the world than many 
anxious efforts of diplomatists. She is a great example of the universal brotherhood 
of civilisations." 

Charlotte Angas Scott retired from Bryn Mawr in 1924. The following year she 
returned to Cambridge, where she lived the rest of her life. She died in 1931. 

Sof 'ya Kovalevskaya. Most of the women discussed up to now came from a leisured 
class of people with independent incomes. Only such people can afford both to defy 
convention and to spend most of their time pursuing what interests them. However, 
merely having an independent income was not in itself sufficient to draw a young 
woman into a scientific career. In most cases, some contact with intellectual circles 
was present as well. Hypatia was the daughter of a distinguished scholar, and Maria 
Gaetana Agnesi's father encouraged her by hiring tutors to instruct her in classical 
languages. In the case of Sof'ya Kovalevskaya, the urge to study mathematics and 
science fused with her participation in the radical political and social movements 
of her time, which looked to science as the engine of material progress and aimed 
to establish a society in accordance with the ideals of democracy and socialism. 

She was born Sof'ya Vasil'evna Kryukovskaya in Moscow, where her father was 
an officer in the army, on January 15, 1850 (January 3 on the Julian calendar in 
effect in the Russia of her day). As a child she looked with admiration on her older 
sister Anna (1843-1887) and followed Anna's lead into radical political and social 
activism. According to her Polish tutor, she showed talent for mathematics when 
still in her early teens. She also showed great sympathy for the cause of Polish 
independence during the rebellion of 1863, which was crushed by the Tsar's troops. 
When she was 15, one of her neighbors, a physicist, was impressed upon discovering 
that she had invented the rudiments of trigonometry all by herself in order to read 
a book on optics; he urged her father to allow her to study more science. She 
was allowed to study up through the beginnings of calculus with a private tutor 
in Saint Petersburg, but matriculation at a Russian university did not appear to 
be an option. Thinking that Western Europe was more enlightened in this regard, 
many young Russian women used a variety of methods to travel abroad. Some were 
able to persuade their parents to let them go. Others had to adopt more radical 
means, either running away or arranging a fictitious marriage, in Sof'ya's case to 
a young radical publisher named Vladimir Onufrevich Kovalevskii (1842-1883). 
They were married in 1868 and soon after left for Vienna and Heidelberg, where 
Kovalevskaya studied science and mathematics for a year without being allowed 
to enroll in the university, before moving on to Berlin with recommendations from 
her Heidelberg professors to meet the dominant influence on her professional life, 
Karl Weierstrass (1815-1897). At Berlin also, the university would not accept her 
as a regular student, but Weierstrass agreed to tutor her privately. (Comparisons 
with the relationship between Charlotte Angas Scott and Arthur Cayley inevitably 
come to mind here.) 

Although the next four years were extremely stressful for a number of personal 
reasons, her regular meetings with Weierstrass brought her knowledge of math-
ematical analysis up to the level of the very best students in the world (those 
attending Weierstrass' lectures). By 1874, Weierstrass thought she had done more 
than enough work for a degree and proposed throe of her papers as dissertations. 
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Since Berlin would not award the degree, he wrote to the more liberal University 
of Gottingen and requested that the degree be granted in absentia. It was, and one 
of the three papers became a classic work in differential equations, published the 
following year in the most distinguished German journal, the Journal fur die reine 
und angewandte Mathematik. 

The next eight years may well be described as Kovalevskaya's wandering in 
the intellectual wilderness. She and Vladimir, who had obtained a doctorate in 
geology from the University of Jena, returned to Russia; but neither found an 
academic position commensurate with their talents. They began to invest in real 
estate, in the hope of gaining the independent wealth they would need to pursue 
their scientific interests. In 1878 Kovalevskaya gave birth to a daughter, Sof'ya 
Vladimirovna Kovalevskaya (1878- 1951). Soon afterward, their investments failed, 
and they were forced to declare bankruptcy. Vladimir's life began to unravel at 
this point, and Kovalevskaya, knowing that she would have to depend on herself, 
reopened her mathematical contacts and began to attend mathematical meetings. 
Recognizing the gap in her resume since her dissertation, she asked Weierstrass for 
a problem to work on in order to re-establish her credentials. While she was in Paris 
in the spring of 1883, Vladimir (back in Russia) committed suicide, leading Sof'ya to 
an intense depression that nearly resulted in her own death. When she recovered, 
she resumed work on the problem Weierstrass that had given her. Meanwhile, 
Weierstrass and his student Gosta Mittag-Lefflcr (1846-1927) collaborated to find 
her a teaching position at the newly founded institution in Stockholm. 1 1 At first 
she was Privatdozent, meaning that she was paid a certain amount for each student 
she taught. After the first year, she received a regular salary. She was to spend the 
last eight years of her life teaching at this institution. 

In the mid- 1880s, Kovalevskaya made a second mathematical discovery of pro-
found importance. Mathematical physics is made complicated by the fact that 
the differential equations used to describe even simple, idealized cases of physical 
laws are extremely difficult to solve. The obstacle consists of two parts. First, 
the equations must be reduced to a set of integrals to be evaluated; second, those 
integrals must be computed. In many important cases, such as the equations of the 
three-body problem, the first is impossible using only algebraic methods. When 
it is possible, the second is often impossible using only elementary functions. For 
example, the equation of pendulum motion can be reduced to an integral, but that 
integral involves the square root of a cubic or quartic polynomial; it is known as 
an elliptic integral. The six equations of motion for a rigid body in general cannot 
be reduced to integrals at all using only algebraic surfaces. In Kovalevskaya's day 
only two special cases were known in which such a reduction was possible, and the 
integrals in both cases were elliptic integrals. Only in the case of bodies satisfying 
the hypotheses of both of these cases simultaneously were the integrals elementary. 
With Weierstrass, however, Kovalevskaya had studied not merely elliptic integrals, 
but integrals of completely arbitrary algebraic functions. Such integrals were known 
as Abelian integrals after Niels Henrik Abel (1802-1829), the first person to make 
significant progress in studying them. She was not daunted by the prospect of 
working with such integrals, since she knew that the secret of taming them was to 
use the functions known as theta functions, which had been introduced earlier by 
Abel and his rival in the creation of elliptic function theory, Carl Gustav Jacobi 

1 1 It is now the University of Stockholm. 
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First page of an undated letter from Kovalevskaya. Probably the 
letter was written in June 1886 and meant for Charles Hermite. 
The reason it was not sent is probably that she saw Hermite in 
person before posting it. The letter communicates her discovery of 
a completely integrable case of the equations of motion of a rigid 
body about a fixed point under the influence of gravity. Courtesy 
of the Institut Mittag-Leffler. 
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(1804 1851). All she had to do was reduce the equations of motion to integrals; 
evaluating them was within her power, she knew. Unfortunately, it turns out that 
the completely general set of such equations cannot be reduced to integrals. But 
Kovalevskaya found a new case, much more general than the cases already known, 
in which this reduction was possible. The algebraic changes of variable by which 
she made this reduction are quite impressive, spread over some 16 pages of one of 
the papers she eventually published on this subject. Still more impressive is the 
80-page argument that follows to evaluate these integrals, which turn out to be 
hyperelliptic, involving the square root of a fifth-degree polynomial. This work so 
impressed the leading mathematicians of Paris that they decided the time had come 
to propose a contest for work in this area. When the contest was held in 1888, Ko-
valevskaya submitted a paper and was awarded the prize. She had finally reached 
the top of her profession and was rewarded with a tenured position in Stockholm. 
Sadly, she was not to be in that lofty position for long. In January 1891 she con-
tracted pneumonia while returning to Stockholm from a winter vacation in Italy 
and died on February 10. 

Bronze bust of Sof'ya Kovalevskaya, placed outside the Institut 
Mittag-Leffler in Djursholm, Sweden on January 15, 2000, the 
150th anniversary of her birth. 
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Resistance from conservatives. Lest it be thought that the presence of such power-
ful talents as Charlotte Angas Scott and Sof'ya Kovalevskaya removed all doubt as 
to women's ability to create mathematics, we must point out that minds did not 
simply change immediately. Confronted with the evidence that good women math-
ematicians had already existed, the geometer Gino Loria (1862-1954) rationalized 
his continuing opposition to the admission of women to universities as follows, in 
an article in Revue scientifique in 1904: 

As for Sophie Germain and Sonja Kowalevsky, the collaboration 
they obtained from first-rate mathematicians prevents us from fix-
ing with precision their mathematical role. Nevertheless what we 
know allows us to put the finishing touches on a character por-
trait of any woman mathematician. She is always a child prodigy, 
who, because of her unusual aptitudes, is admired, encouraged, and 
strongly aided by her friends and teachers. In childhood she man-
ages to surpass her male fellow-students; in her youth she succeeds 
only in equalling them; while at the end of her studies, when her 
comrades of the other sex are progressing vigorously and boldly, 
she always seeks the support of a teacher, friend, or relative; and 
after a few years, exhausted by efforts beyond her strength, she 
finally abandons a work which is bringing her no joy. 

The analysis of the factual errors and statistical and logical fallacies in this 
farrago of nonsense is left to the reader (see Problem 4.9 below). Loria could have 
known better. Six years before Loria wrote these words Felix Klein was quoted by 
the journal he progres de Vest as saying that he found his women students to be in 
every respect the equals of their male colleagues. 

Grace Chisholm Young. Klein began taking on women students in the 1890s. The 
first of these students was Grace Chisholm, who completed the doctorate under 
his supervision in 1895 with a dissertation on the algebraic groups of spherical 
trigonometry. Her life and career were documented by her daughter and written up 
in an article by I. Grattan-Guinness (1972), which forms the basis for the present 
essay. 

She was born on March 15, 1868, near London, the fifth child of parents of 
modest but comfortable means and the third child to survive. As a child she 
was stricken with polio and never completely recovered the use of her right hand. 
Like Charlotte Angas Scott, she was tutored at home and passed the Cambridge 
Senior Examination in 1885. Also like Scott, she attended Girton College and met 
Cayley. Her impressions of him were not flattering. To her he seemed to be a 
lumbering intellectual dinosaur, preventing any new life from emerging to enjoy 
the mathematical sunshine. In a colorful phrase, she wrote, "Cayley, unconscious 
himself of the effect he was having on his entourage, sat, like a figure of Buddha 
on its pedestal, dead-weight on the mathematical school of Cambridge" (Grattan-
Guinness, 1972, p. 115). 

In her first year at Cambridge she might have been tutored by William Young 
(1863-1942), who later became her husband, except that she heard that his teach-
ing methods were ill suited to young women. She found that Newnham College, 
the other women's college at Cambridge, had a much more serious professional 
atmosphere than Girton. She made contacts there with two other young women 
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who had the same tutor that she had. With the support of this tutor and her 
fellow women students, she began to move among the serious mathematicians at 
Cambridge. In particular, she made friends with a student named Isabel Maddi-
son (1869-1950) of Newnham College, who was being tutored by William Young. 
It will be recalled that a decade earlier Charlotte Angas Scott had been eighth 
Wrangler in the Tripos. In 1890, after reading a few names of the top Wranglers, 
the moderator—W. W. Rouse Ball (1850-1925), the author of a best-selling popular 
history of mathematics—made a long pause to get the attention of the audience, 
then said in a loud, clear voice, "Above the Senior Wrangler: Fawcett, Newnham." 
The young woman, Philippa Fawcett 1 2 of Newnham College, had scored a major 
triumph for women's education, being the top mathematics student at Cambridge 
in her year. No better role model can be imagined for students such as Isabel 
Maddison and Grace Chisholm. They finished first and second respectively in the 
year-end examinations at Girton College the following year. That fall, due to the 
absence of her regular tutor, Chisholm was forced to take lessons from William 
Young. In 1892 she ranked between the 23rd and 24th men on the Tripos, and 
Isabel Maddison finished in a tie with the 27th. (The rankings went as far as 112.) 
As a result, each received a First in mathematics. That same year they became the 
first women to attempt the Final Honours examinations at Oxford, where Chisholm 
obtained a First and Maddison a Second. This achievement made Chisholm the 
first person—of either gender— to obtain a First in any subject from both Oxford 
and Cambridge. 1 3 

Unfortunately, Cambridge did not offer Grace Chisholm support for graduate 
study, and her application to Cornell University in the United States was rejected. 
As an interesting irony, then, she was forced to apply to a university with a higher 
standard of quality than Cornell at the time, and one that was the mathematical 
equal of Cambridge: the University of Gottingen. There, thanks to the liberal 
views of Felix Klein and Friedrich Althoff, she was accepted, along with two young 
American women, Mary Frances ("May") Winston (1869-1959) and Margaret Eliza 
Maltby (1860-1944). In 1895, Chisholm broached the subject of a Ph. D. with Klein, 
who agreed to use his influence in the faculty to obtain authorization for the degree. 
It turned out to be necessary to go all the way to the Ministry of Culture in Berlin 
and obtain permission from Althoff personally. Fortunately, Althoff continued to 
be an enthusiastic supporter, and her final oral examination took place on April 
26 of that year. She passed it and was granted the Ph. D. magna cum laude. 
She herself could hardly take in the magnitude of her achievement. More than 
two decades had passed since the university had awarded the Ph.D. to Sof'ya 
Kovalevskaya in absentia. Grace Chisholm had become the first woman to obtain 
that degree in mathematics through regular channels anywhere in Germany. She 
and Mary Winston were left alone together for a few minutes, which they used 
"to execute a war dance of triumph." Her two companions Mary Winston and 

1 2 Philippa Garrett Fawcett (1868-1948) was the daughter of a professor of political economy at 
Cambridge. Her mother was a prominent advocate of women's rights, and her sister was the first 
woman to obtain a medical degree at St. Andrew's in Scotland. Philippa used her Cambridge 
education to go to the Transvaal in 1902 and help set up an educational system there. From 1905 
to 1934 she was Director of Education of the London County Council. 
1 3 Isabel Maddison was awarded the Bachelor of Science degree at the University of London in 
1892. She received the Ph.D. at Bryn Mawr in 1896 under the supervision of Charlotte Angas 
Scott. She taught at Bryn Mawr until her retirement in 1926. 
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Portraits of Felix Klein and David Hubert in the Mathematisches 
Institut and streets in Gottingen named after them. 

Margaret Maltby also received the Ph. D. degree at Gottingen, Maltby (in physics) 
in 1895 and Winston in 1896.1 4 

Grace Chisholm sent a copy of her dissertation to her former tutor William 
Young, and in the fall of 1895 they began collaboration on a book on astronomy, a 
project that both soon forgot in the pleasant fog of courtship. They were married 
in June 1896. They planned a life in which Grace would do mathematical research 
and William would support the family by his teaching. Grace sent off her first 
research paper for publication, and William, who was then 33 years old, continued 
tutoring. Circumstances intervened, however, to change these plans. Cambridge 
began to reduce the importance of coaching, and the first of their four children 
was born in June 1897. Because of what they regarded as the intellectual dryness 
of Cambridge and the need for a more substantial career for William, they moved 
back to Germany in the autumn of 1897. With the help of Felix Klein, William 
sent off his first research paper to the London Mathematical Society. It was Klein's 
advice a few years later that caused both Youngs to begin working in set theory. 
William, once started in mathematics, proved to be a prolific writer. In the words of 
Grattan-Guinness (1972, p. 142), he "definitely belongs to the category of creative 

1 4 Margaret Maltby taught at Barnard College (now part of Columbia University in New York) 
for 31 years and was chair of physics for 20 of those years. Mary Winston had studied at Bryn 
Mawr with Charlotte Angas Scott. She had met Felix Klein at the World's Columbian Exposition 
in Chicago in 1893 and had moved to Gottingen at his invitation. After returning to the United 
States she taught, at Kansas State Agricultural College, married Henry Newson, a professor of 
mathematics at the University of Kansas, bore three children, and went back to teaching after 
Henry's early death. From 1921 to 1942 she taught at Eureka College in Illinois. 
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men who published more than was good for him." Moreover, he received a great 
deal of collaboration from his wife that, apparently by mutual consent, was not 
publicly acknowledged. He himself admitted that much of his role was to lay out 
for Grace problems that he couldn't solve himself. To the modern eye he appears 
too eager to interpret this situation by saying that "we are rising together to new 
heights." As he explained in a letter to her: 

The fact is that our papers ought to be published under our joint 
names, but if this were done neither of us get the benefit of it. No. 
Mine the laurels now and the knowledge. Yours the knowledge 
only. Everything under my name now, and later when the loaves 
and fishes are no more procurable in that way, everything or much 
under your name. [Grattan-Guinness, 1972, p. 141] 

Perhaps the criticism Loria made of Sophie Germain and Sof'ya Kovalevskaya 
for obtaining help from first-rate mathematicians might more properly have been 
leveled against William Young. To the author, the rationalization in this quotation 
seems self-serving. Yet, the only person who could make that judgment, Grace 
Chisholm Young herself, never gave any hint that she felt exploited, and William 
was certainly a very talented mathematician in his own right, whose talent simply 
manifested itself very late in life. 

In 1903 Cambridge University Press agreed to publish a work on set theory 
under both their names. That book appeared in 1906; a book on geometry appeared 
under both names in 1905. Grace was busy bearing children all this time (their last 
three children were born in 1903, 1904, and 1908) and studying medicine. She began 
to write mathematical papers under her own name in 1913, after William took a 
position in Calcutta, which of course required him to be away for long periods 
of time. These papers, especially her paper on the differentiability properties of 
completely arbitrary functions, added to her reputation and were cited in textbooks 
on measure theory for many decades. 

Sadly, the fanaticism of World War I caused some strains between the Youngs 
and their old mentor Felix Klein. As a patriotic German, Klein had signed a 
declaration of support for the German position at the beginning of the war. Four 
years later, as the defeat of Germany drew near, Grace wrote to him, asking him 
to withdraw his signature. Of course, propaganda had been intense in all the 
belligerent countries during the war, and even the mildest-mannered people tended 
to believe what they were told and to hate the enemy. Klein replied diplomatically, 
saying that, "Everyone will hold to his own country in light and dark days, but we 
must free ourselves from passion if international cooperation such as we all desire is 
to assert itself again for the good of the whole" (Grattan-Guinness, 1972, p. 160). 
If only other scholars had been as magnanimous as Klein, German scholars might 
have had less justification for complaining of exclusion in the bitter postwar period. 
At least there was no irreparable breach between the Youngs and Klein. When 
Klein died in 1925, his widow thanked the Youngs for sending their sympathy, 
saying, "From all over the world I received such lovely letters full of affection and 
gratitude, so many tell me that he showed them the way on which their life was 
built. I had him for fifty years, this wonderful man; how privileged I am above 
most women..." (Grattan-Guinness, 1972, p. 171). 

All four of their children eventually obtained doctoral degrees, and the pair had 
good grounds for being well-satisfied with their married life. When World War II 
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began in September 1939 they were on holiday in Switzerland, and there was real 
fear that Switzerland would be invaded. Grace immediately returned to England, 
but William stayed behind. The fall of France in 1940 enforced a long separation on 
them. The health of William, who was by then in his late 70s, declined rapidly, and 
he died in a nursing home in June 1942. Grace survived for nearly two more years, 
dying in England in March 1944. Grattan-Guinness [1972, p. 181) has eloquently 
characterized this remarkable woman: 

She knew more than half a dozen languages herself, and in addition 
she was a good mathematician, a virtually qualified medical doctor, 
and in her spare time, pianist, poet, painter, author, Platonic and 
Elizabethan scholar—and a devoted mother to all her children. 
And in the blend of her roles as scholar and as mother lay the 
fulfillment of her complicated personality. 

Emmy Noether. Sof'ya Kovalevskaya and Grace Chisholm Young had had to im-
provise their careers, taking advantage of the opportunities that arose from time 
to time. One might have thought that Amalie Emmy Noether was better situated 
in regard to both the number of opportunities arising and the ability to take ad-
vantage of them. After all, she came a full generation later than Kovalevskaya, the 
University of Gottingen had been awarding degrees to women for five years when 
she enrolled, and she was the eldest child of the distinguished mathematician Max 
Noether. 1 5 According to Dick (1981), on whose biography of her the following 
account is based, she was born on March 23, 1882 in Erlangen, Germany, where her 
father was a professor of mathematics. She was to acquire three younger brothers 
in 1883, 1884, and 1889. Her childhood was quite a normal one for a girl of her day, 
and at the age of 18 she took the examinations for teachers of French and English, 
scoring very well. This achievement made her eligible to teach modern languages 
at women's educational institutions. However, despite the difficulties women were 
having at universities, as depicted by Gerhard Kowalewski, she decided to attend 
the University of Erlangen. There she was one of only two women in the student 
body of 986, and she was only an auditor, preparing simultaneously to take the 
graduation examinations in Niirnberg. After passing these examinations, she went 
to the University of Gottingen for one year, again not as a matriculated student. If 
it seems strange that Grace Chisholm was allowed to matriculate at Gottingen and 
Emmy Noether was not, the explanation seems to be precisely that Emmy Noether 
was a German. 

In 1904 she was allowed to matriculate at Erlangen, where she wrote a disserta-
tion under the direction of Paul Gordan (1837-1912). Gordan was a constructivist 
and disliked abstract proofs. According to Kowalewski (1950, p. 25) he is said 
to have remarked of one proof of the Hubert basis theorem, "That is no longer 
mathematics; that is theology." In her dissertation Emmy Noether followed Gor-
dan's constructivist methods; but she was later to become famous for work done 
from a much more abstract point of view. She received the doctorate summa cum 
laude in 1907. Thus, she surmounted the first two obstacles to a career in math-
ematics with only a small amount of difficulty, not much more than faced by her 
brother Fritz (1884-1941), who was also a mathematician. That third obstacle, 

1 5 It will be recalled that Charlotte Angas Scott had given a new proof of a theorem by Max 
Noether. 
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however, finding work at a university, was formidable. Emmy Noether spent many 
years working without salary at the Mathematical Institute in Erlangen. This po-
sition enabled her to look after her father, who had been frail since he contracted 
polio at the age of 14. It also allowed her to continue working on mathematical 
ideas. For nearly two decades she corresponded with Ernst Fischer (1875-1954, 
Gordan's successor in Erlangen), who is best remembered for having discovered 
the Riesz-Fischer theorem independently of F. Riesz (1880-1956). By staying in 
touch with the mathematical community and giving lectures on her discoveries, 
she kept her name before certain influential mathematicians, namely David Hilbert 
(1862-1943) and Felix Klein, 1 6 and in 1915 she was invited to work as a Privat-
dozent in Gottingen. (This was the same rank originally offered to Kovalevskaya 
at Stockholm in 1883.) Over the next four years Klein and Hilbert used all their 
influence to get her a regular appointment at Gottingen; during part of that time 
she lectured for Hilbert in mathematical physics. That work led her to a theorem 
in general relativity that was highly praised by both Hilbert and Einstein. Despite 
this brilliant work, however, she was not allowed to pass the Habituation needed to 
acquire a professorship. Only after the German defeat in World War I, which was 
followed by the abdication of the Kaiser and a general spirit of reform in Germany, 
was she allowed to "habilitate." Between Sof'ya Kovalevskaya and Emmy Noether 
there was a curious kind of symmetry: Kovalevskaya was probably aided in her ef-
forts to become a student in Berlin because many of the students were away at war 
at the time. Noether was aided in her efforts to become a professor by an influx of 
returning war veterans. She began lecturing in courses offered under the name Dr. 
Emmy Noether (without any mention of Hilbert) in the fall of 1919. Through the 
efforts of Richard Courant (1888-1972) she was eventually granted a small salary 
for her lectures. 

In the 1920s she moved into the area of abstract algebra, and it is in this area 
that mathematicians know her work best. Noctherian rings became a basic area 
of study after her work, which became part of a standard textbook by her student 
Bartel Leendert van der Waerden (1903 1996). He later described her influence on 
this work (1975, p. 32): 

When I came to Gottingen in 1924, a new world opened up be-
fore me. I learned from Emmy Noether that the tools by which 
my questions could be handled had already been developed by 
Dedekind and Weber, by Hilbert, Lasker, and Macaulay, by Steinitz 
and by Emmy Noether herself. 

Of all the women we have discussed Emmy Noether was unquestionably the 
most talented mathematically. Her work, both in quantity and quality, places her 
in the elite of twentieth-century mathematicians, and it was recognized as such 
during her lifetime. She became an editor of Mathematische Annalen, one of the 
two or three most prestigious journals in the world. She was invited to speak at 
the International Congress of Mathematicians in Bologna in 1928 and in Zurich 
in 1932, when she shared with Emil Artin (1898-1962) a prestigious prize for the 
advancement of mathematical knowledge. This recognition was clear and simple 

1 6 Klein wrote to Hilbert, "You know that FVaulein Noether is continually advising me in my 
projects and that it is really through her that I have become competent in the subject." (Dick, 
1981, p. 31) 
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Emmy Noether Hermann Weyl 

proof of her ability, but it was still short of what she deserved. Hubert's successor in 
Gottingen, Hermann Weyl (1885-1955), made this point when wrote her obituary: 

When I was called permanently to Gottingen in 1930, I earnestly 
tried to obtain from the Ministerium a better position for her, 
because I was ashamed to occupy such a preferred position be-
side her, whom I knew to be my superior as a mathematician in 
many respects. I did not succeed, nor did an attempt to push 
through her election as a member of the Gottinger Gesellschaft 
der Wissenschaften. Tradition, prejudice, external considerations, 
weighted the balance against her scientific merits and scientific 
greatness, by that time denied by no one. In my Gottingen years, 
1930-1933, she was without doubt the strongest center of mathe-
matical activity there. [Dick, 1981, p. 169] 

To have been recognized by one of the twentieth century's greatest mathemati-
cians as "the strongest center of mathematical activity" at a university that was 
second to none in the quality of its research is high praise indeed. It is unfortu-
nate that this recognition was beyond the capability of the Ministerium. The year 
1932 was to be the summit of Noether's career. The following year, the advanced 
culture of Germany, which had enabled her to develop her talents to their fullest, 
turned its back on its own brilliant past and plunged into the nightmare of Nazism. 
Despite extraordinary efforts by the greatest scientists on her behalf, Noether was 
removed from the position that she had achieved through such a long struggle and 
the assistance of great mathematicians. Along with hundreds of other Jewish math-
ematicians, including her friends Richard Courant and Hermann Weyl (who was 
not Jewish, but whose wife was), she had to find a new life in a different land. She 
accepted a visiting professorship at Bryn Mawr, which allowed her also to lecture 
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at the Institute for Advanced Study in Princeton. 1 7 Despite the gathering clouds 
in Germany, she returned there in 1934 to visit her brother Fritz, who was about 
to seek asylum in the Soviet Union. (Ironically, he was arrested in 1937, during 
one of the many purges conducted by Stalin, and executed as a German spy on the 
day the Germans occupied Smolensk in 1941.) She returned to Bryn Mawr in the 
spring of 1934. 

Weyl, who went to Princeton in 1933, expressed his indignation at the Nazi 
policy of excluding "non-Aryans" from teaching. In a letter sent to Heinrich Brandt 
(1886-1954) in Halle he wrote: 1 8 

What impresses me most about Emmy Noether is that her research 
has become more and more concrete and profound. Why should 
this Jewess not work in the area that has led to such great achieve-
ments in the hands of the "Aryan" Dedekind? I am happy to leave 
it to Herrn Spengler and Bieberbach to assign mathematical modes 
of thought according to cultures and races. [Jentsch, 1986, p. 9] 

At Bryn Mawr she was a great success and an inspiration to the women studying 
there. She taught several graduate and postdoctoral students who went on to 
successful careers, including her former assistant from Gottingen, Olga Taussky 
(1906-1995), who was forced to leave a tutoring position in Vienna in 1933. Her 
time, however, was to be very brief. She developed a tumor in 1935, but she does 
not seem to have been worried about its possible consequences. It was therefore a 
great shock to her colleagues in April 1935 when, after an operation at Bryn Mawr 
Hospital that seemed to offer a good prognosis, she developed complications and 
died within a few hours. 

4. American women 

In the United States higher education was open to women from the late nineteenth 
century on in the large, well-supported state universities. The elite eastern univer-
sities later known as the Ivy League remained mostly all-male for another century; 
but some of them were near women's colleges, and some of the women from those 
colleges were able to take courses at places like Harvard and the University of Penn-
sylvania. Although mathematics in general in the United States was not yet on a 
par with what was being done in Europe, American women began to participate 
in the profession in the late nineteenth century. Our summary of this story is very 
incomplete, and the reader is referred to the excellent article of Green and LaDuke 
(1987) for complete statistics on the women mathematicians and the institutions 
where they studied and worked. 

1 7 There was no chance of her lecturing at Princeton University itself, which was all-male at the 
time. 
1 8 Oswald Spengler (1880-1936) was a German philosopher of history, best known for having 
written Der Untergang des Abendlandes (The Decline of the West). His philosophy of history, 
which Weyl alludes to in this quote, suited the Nazis. Although at first sympathetic to them, 
he was repelled by their crudity and their antisemitism. By the time Weyl wrote this letter, the 
Nazis had banned all mention of Spengler on German radio. Ludwig Bieberbach (1886-1982) was 
a mathematician of some talent who worked at Berlin during the Nazi era and edited the Party-
approved journal Deutsche Mathematik. At the time when Weyl wrote this letter, Bieberbach 
was wearing a Nazi uniform to the university and enthusiastically endorsing the persecution of 
non-Aryans. 
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Christine Ladd-Franklin. The first of the two American women we shall discuss was 
induced by prevailing prejudice to abandon mathematics for psychology, a field in 
which she also encountered firm exclusion. Christine Ladd was born in New York 
in 1847. Her mother and aunt were advocates of women's rights. Her mother died 
when she was 12, and she was sent to live with her father's mother. Education for 
girls had come to be seen as a necessity by the American middle class, and so she was 
enrolled at Wesleyan Academy along with boys her age who expected to be admitted 
to Harvard. She herself could have no such expectations, but she did dream of 
attending Vassar. Her father encouraged her in her studies at Wesleyan Academy, 
but the grandmother she was living with was opposed to Vassar. Nevertheless, 
she prevailed and her mother ' s sister supported her financially for the first year. 
At Vassar she was particularly encouraged by Maria Mitchell (1818-1889, the first 
American woman astronomer of note). After obtaining a bachelor's degree in 1869, 
she spent nine years as a teacher of science and mathematics , writing articles on 
mathematics education tha t were published in England. Burnout, tha t familiar 
phenomenon among those who teach adolescents, finally set in, and she began to 
cast about for other careers. 

Such an opportuni ty came along at just the right time. In 1876 Johns Hopkins 
University opened in Baltimore, the first American university devoted exclusively 
to graduate studies. Moreover, it managed to hire one of the greatest European 
mathematicians, James Joseph Sylvester, who, being Jewish, could not obtain a po-
sition a t Cambridge or Oxford . 1 9 By great good fortune, the name Christine Ladd 
was familiar to Sylvester from her articles on education. On his recommendation 
the university agreed to allow her to at tend lectures, but only lectures by Sylvester. 
This restriction was lifted after the first year, and she was able to attend lectures 
by William Edward Story and by Charles Sanders Peirce (1839 1914, described by 
the British philosopher Bertrand Russell as "the greatest American thinker ever"). 
While working at Hopkins, she married Fabian Franklin (1853-1939), a young pro-
fessor of mathematics who was born in Hungary but whose parents had moved to 
the United States when he was 2 years old. They were to have two children in 
rapid succession, one of whom died in infancy. After her marriage, she wrote her 
name with a hyphen as Ladd-Franklin. Under the influence of Peirce she wrote a 
dissertation bearing the title The Algebra of Logic, which was published in 1883 
in the American Journal of Mathematics, the new journal founded by Sylvester a t 
Story's suggestion. In fact, she published several papers in tha t journal, and was, 
by any objective s tandards, one of the best-qualified mathematicians in the United 
States. Nevertheless, Sylvester and Peirce together could not fulfill the mentoring 
role that Weierstrass performed for Kovalevskaya, Cayley for Charlotte Angas Scott 
and Klein for Grace Chisholm Young. She was unable to obtain either the Ph. D. 
degree or an academic position. Although she had overcome the first obstacle, get-
t ing her family's support for an education, the second and third stymied her for 
the rest of her life. 

She had always been interested in areas of science other than mathematics, and 
her choice of mathemat ics as a major at Vassar had been part ly the result of being 
excluded, as a woman, from the physics laboratories. In the mid-1880s she began 
to take an interest in psychology, especially the psychology of color perception. 

1 9 An earlier stay at the University of Virginia in 1841, when slavery still existed, had ended in 
disaster for Sylvester. 
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She wrote a study of this subject that was published in the first volume of the 
American Journal of Psychology in 1887. Vassar awarded her an honorary doctor 
of laws degree that year. 

The laboratories she had not been allowed to enter at Vassar were finally opened 
to her in Germany, where her husband took a sabbatical (in Gottingen) in 1891 
1892. She took advantage of the occasion to spend some time in Berlin with the 
great physicist Hermann von Helmholtz (1821-1894). She presented the results of 
her theory and experiments at a conference in London tha t year. 

Upon returning to the United States, she began a long quest for a degree and 
an academic position suited to her talents. Hopkins, where her husband continued 
to teach, refused her applications year after year. She continued to work inde-
pendently (what else could she do?) and for many years played an active role in 
administering fellowships to support postdoctoral work for women. Not until 1904 
was she allowed to teach a course in psychology a t Hopkins. The following year her 
husband gave up mathematics in favor of journalism. He found a position in New 
York in 1910, and they moved there. Remembering the "dean's rule" at Barnard 
College, no one will be surprised to learn tha t as a married woman, she had no 
hope of obtaining a position there. She was allowed, however, to lecture par t - t ime 
at Columbia University during 1912-1913. In 1913 she lectured at Harvard and 
at Clark University, where her old professor from Johns Hopkins, William Edward 
Story, was chair of the Mathematics Department and the president, G. Stanley 
Hall (1844-1924), was a famous psychologist . 2 0 She also lectured at the Univer-
sity of Chicago in 1914. By this time, of course, she was no longer regarded as a 
mathematician; her lectures were on psychology. 

Except for the position of editor for Baldwin's Dictionary of Philosophy and 
Psychology, which she occupied from 1901 to 1905, she was excluded rather com-
pletely from participation in the professional life of a psychologist. In particular, 
she was not allowed to attend meetings and deliver papers. Only in 1929 was she 
finally able to publish a lifetime of work in psychology in her treatise Colour and 
Colour Theories. This work was published simultaneously in London and New 
York (which explains the British spelling of the title). In a great anticlimax in 
1926, Johns Hopkins finally awarded her the Ph. D. in mathematics tha t she had 
earned 43 years earlier. One hardly knows whether the old saying "better late than 
never" applies in such a case. She died in 1930. 

Anna Johnson Pell Wheeler. A few decades of social change can make a great 
deal of difference to one's life. The social t radit ions and prejudice tha t deprived 
Christine Ladd-Franklin of what would have been a brilliant career were, with 
difficulty, overcome by one of the first American women to achieve recognition in 
mathematics, Anna Johnson (later Anna Johnson Pell, still later Anna Johnson Pell 
Wheeler). She was born in Iowa in 1883 and entered the University of South Dakota 
in 1899, graduating in 1903. The following year she earned a master 's degree at 
the University of Iowa, and then in 1905 she earned a second master 's degree at 
Radcliffe. She remained there another year in order to s tudy with two of the first 
prominent American mathematicians, Harvard professors William Fogg Osgood 

G. Stanley Hall was the first American to obtain a doctoral degree in psychology; he had been 
a professor at Johns Hopkins during the early 1880s and had brought Sigmund Freud to lecture 
at Clark in 1910. 
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(1864-1943, a student of Max Noether at Erlangen) and Maximc Bocher (1867-
1918, a student of Felix Klein). Even though she was not a student at Wellesley, 
she was awarded a Wellesley fellowship for study abroad and went to Gottingen to 
at tend lectures by Klein and Hubert . Her recently widowed former professor at the 
University of South Dakota, Alexander Pell (1857-1921), had been corresponding 
with her for some time. In 1907 he came to Gottingen, and they were married. She 
returned with him to the United States but then went back to Gottingen to finish 
her doctorate. For reasons tha t are not clear, she did the work but did not receive 
the degree. Her family thought she had been pressured by her husband, who was 
suffering from the separation, to return to him. The only explanation she gave to 
the dean at Radcliffe for returning without the degree was tha t "in Gottingen I had 
some trouble with Professor Hubert and came back to America without a degree" 
(Grinstein and Campbell , 1982, p. 41). She emphasized tha t she had written her 
thesis without any help from Hubert , and so was able to submit it to the University 
of Chicago, where, under the supervision of another early American mathematician 
of distinction, Eliakim Hastings Moore (1862-1932), she was awarded the degree 
magna cum laude in 1909. 

Once again, a woman had obtained a Ph . D. in mathematics at the age of only 
26. Her adviser Moore sought positions for her at many universities near Chicago, 
where her husband was a professor at the Armour Insti tute of Technology. But 
that third-stage hurdle tha t has been mentioned several times before once again 
proved nearly insurmountable. As she wrote, 

I had hoped for a position in one of the good univ. like W i s e , 111. 
etc., but there is such an objection to women tha t they prefer a 
man even if he is inferior both in training and research. It seems 
tha t Professor Moore has also given up hope for he has inquired at 
some of the Eastern Girls' Colleges and Bryn Mawr is apparently 
the only one with a vacancy in Math. [Grinstein and Campbell, 
1982, p. 42] 

As it happened, she did not go to Bryn Mawr immediately. Her husband had 
a stroke that year, and she took over his teaching duties at the Armour Insti tute of 
Technology while also lecturing at the University of Chicago. She proved extremely 
competent at both duties. Then, from 1911 to 1918 she taught at Mount Holyoke 
College in Massachusetts before moving on to Bryn Mawr. When Charlotte Angas 
Scott retired in 1924, Anna Pell became head of the mathematics department at 
Bryn Mawr. Four years after the death of Alexander Pell in 1921, she married 
another widower, Arthur Leslie Wheeler (1871-1932, a distinguished classics scholar 
whose books are still being reprinted 70 years after his death) . Since Wheeler had 
just been appointed at Princeton at the time, Anna taught only part-t ime at Bryn 
Mawr for a few years. But when he died in 1932, she went back to full-time work at 
Bryn Mawr and presided over the invitation to Emmy Noether tha t brought tha t 
distinguished mathematician there. Her own work in linear algebra allowed her to 
supervise the theses of many students, and was so distinguished tha t in 1927 she 
was the first woman to be invited to give a Colloquium Lecture to the American 
Mathematical Society. 2 1 She remained at Bryn Mawr until her retirement in 1948, 
then continued to live in the area until her death in 1966. 

The second woman was Julia Bowman Robinson- in 1980! 
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5. T h e s i tuat ion t o d a y 

To bring the story of the progress of women in mathematics up to the present would 
require writing about people whose careers are still continuing. Even when people 
are willing to write about themselves, reporting on what they wrote is risky; there 
is a danger of putt ing the wrong emphasis on what they have said and giving an 
impression tha t they did not intend. For that reason we shall not discuss any more 
biographies, but consider only how the small window of opportuni ty available to 
the pioneering women mathematicians has been enlarged to a size comparable with 
that available to men, and ask what more needs to be done. For examples the 
reader is referred to the book of Henrion (1997), which contains interviews with a 
number of women and is aimed at overcoming persistent stereotypes about women 
in the profession of mathematics. 

Although a mathematical education was formally available t o women through-
out the twentieth century, social conditioning discouraged young girls from aiming 
at such a career. As a result, few of them ever even realized tha t they might 
have the talent to be mathematicians or scientists. Colleges of engineering and 
medicine were full of young men; colleges of education and nursing were full of 
young women. There was very little "osmosis" between these two "cells" until the 
women's movement began in earnest in the 1970s. Only when significant numbers 
of women sought admission to scientific careers did the difficulties experienced by 
the few women already in those careers come to public at tent ion. W h a t was re-
vealed was a wide variety of ways of discriminating—women not being admit ted 
to some of the universities where the best work was being done, being ranked a t a 
lower priority when applying for jobs, being asked personal questions about their 
families, offered lower salaries, being ignored in class, not being taken seriously in 
applications for graduate work, not: being guided and mentored properly so as to 
encourage them to seek advanced degrees, being asked to do menial administra-
tive work during probationary periods, and the like. Overcoming these problems 
required both antidiscrimination and affirmative-action legislation. It also involved 
patiently educating the public, men and women alike, in new ways of "conducting 
business." University administrators had to learn how to mentor young women 
faculty members to channel their work into areas likely to lead to tenure. The fac-
ulty members themselves had to learn to fight against the "good citizen" impulses 
that got them onto too many committees, into too much curriculum work, and the 
sacrifice of a great deal of time trying to be the best teacher possible, all at the 
expense of research. 2 2 

What now remains to be done? If we assume that the offices of affirmative 
action/equal opportunity at our major industries and universities are doing their 
job properly - and if they are not, legal redress is available for those with the 
courage to pursue it the main work remaining is educational. Most of all, both 
boys and girls in their early teens need to be shown how scientists actually spend 
their time, what their jobs consist of. Without tha t kind of information, they 
are likely to judge a profession by the difficulty of the courses they are taking 

2 2 This sentence was written from the point of view of what is in the best interest of a faculty 
member seeking tenure. The best interest of the institution and its students and the greater 
good of society as a whole may very well be advanced through working on committees, develop-
ing curricula, and being the best possible teacher; but unless the prevailing attitudes change at 
major universities, a probationary faculty member is not advised to pursue tenure through those 
activities. 
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in school. And nearly everyone, even a very bright student, finds mathematics 
difficult. Students need to be shown that a career in mathematics does not require 
super intelligence. W h a t students often imagine they must do—solve some difficult, 
long-open problem—is definitely optional, not a necessary par t of a mathematical 
career. This task is being addressed by mathematical organizations such as the 
Mathematical Association of America and the American Mathematical Society, and 
by various programs supported by the Department of Education and the National 
Science Foundation. 

A secondary task is to root out the remaining stereotypes from professional 
mathematicians themselves. The women interviewed by Henrion for her book 
[1997) pointed out a number of practices within the profession that "create a 
'chilly climate' for women both in academia in general and in mathematics in par-
ticular." Henrion has quite astutely pointed out tha t the mathematical community, 
as a community, has its own set of expectations about how a person will work, and 
those expectations were set by men. How those expectations may change (or may 
not) as more and more women take on significant roles in the professional organi-
zations is a development tha t will be interesting to observe in the future. And as 
the image of a set of successive obstacles that we have used above to interpret the 
lives of the early women mathematicians shows, the further a woman progresses, 
the higher the "hurdles" tend to be. Henrion [1997, p. xxxi) expressed the mat ter 
somewhat differently: "[WJomen are even further from equity the farther along in 
the pipeline we go." Making professional activities gender neutral is the primary 
challenge for the future. 

Q u e s t i o n s and p r o b l e m s 

4 . 1 . In the late fourth and early fifth centuries the city of Alexandria, where Hy-
pat ia lived, was divided into Christian, Jewish, and pagan cultures. Is it merely a 
random event that the only woman mathematician of the t ime in this city with a 
long history of scholarship happened to come from the pagan culture? 

4 .2 . Compare the careers of Charlotte Angas Scott and Sof'ya Kovalevskaya. In 
what aspects were they similar? Wha t significant differences were there? Were 
these differences due to the continental circles in which Kovalevskaya moved com-
pared to the Anglo-American milieu of Scott's career? Or were they due to indi-
vidual differences between the two women? 

4 .3 . Choose two women mathematicians, either from among those discussed in 
this chapter or by going to a suitable website. Read brief biographical sketches 
of them. Then try to match each woman with a comparable male mathematician 
from the same era and country. Compare their motives for studying mathematics 
if any motives are given, the kind of education they received, the journals where 
they published their work, and the kind of academic positions they occupied. 

4 .4 . How do you account for the fact tha t a considerable percentage (compared to 
their percentage of the general population) of the women studying higher mathe-
matics in the United States during the 1930s were Roman Catholic n u n s ? 2 3 

2 3 Some of these nuns produced mathematical research of high quality, for example, Sister Mary 
Celine Fasenmyer (1906-1996). 
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4.5. What were the advantages and disadvantages of marriage for a woman seeking 
an academic career before the twentieth century? How much of this depended on 
the particular choice of a husband at each stage of the career? The cases of Mary 
Somerville, Sof'ya Kovalevskaya, and Grace Chisholm Young will be illuminating, 
but it will be useful to seek more detailed sources than the narratives above. 

4.6. How big a part did chance play in the careers of the early women mathemat i -
cians? (The word chance is used advisedly, rather than luck, since the opportunities 
that came for Sof'ya Kovalevskaya and Anna Johnson Pell Wheeler were the result 
of tragic misfortunes to their husbands.) 

4.7. How important is (or was) encouragement from family and friends in the 
decision to s tudy science? How important is it to have a mentor, an established 
professional in the same field, to help orient early career decisions? How important 
is it for a young woman to have an older woman as a role model? Try to answer these 
questions along a scale from "not at all important" through "somewhat important" 
and "very important" to "essential." Use the examples of the women whose careers 
are sketched above to support your rankings. 

4 .8 . Why were most of the women who received the first doctoral degrees in math-
ematics at German universities foreigners? Why were there no Germans among 
them? In his lectures on the development of nineteenth-century mathemat ics (1926, 
Vol. 1, p. 284), Klein mentions that a 17-year-old woman named Dorothea Schlozer 
(apparently German, to judge by the name) had received a doctorate in economics 
at Gottingen a full century earlier. 

4.9. How strong are the "facts" tha t Loria adduces in his argument against admit-
ting women to universities? Were all the women discussed here encouraged by their 
families when they were young? Is it really t rue that it is impossible to "fix with 
precision" the original contributions of Sophie Germain and Sof'ya Kovalevskaya? 
You may wish to consult biographies of these women in which their correspondence 
is discussed. Would collaboration with other mathematic ians make it impossible 
to "fix with precision" the work of any male mathematicians? Consider also the 
case of Charlotte Angas Scott and others. Is it t rue tha t they were exhausted after 
finishing their education? 

Next, consider what we may call the "honor student" fallacy. Universities select 
the top students in high school classes for admission, so tha t a student who excelled 
the other students in high school might be able a t best to equal the other students 
at a university. Further selections for graduate school, then for hiring a t universities 
of various levels of prestige, then for academic honors, provide layer after layer of 
filtering. Except for an extremely tiny elite, those who were at the top at one stage 
find themselves in the middle at the next and eventually reach (what is ideally) a 
level commensurate with their talent. W h a t conclusions could be justified in regard 
to any gender link in this universal process, based on a sample of fewer than five 
women? And how can Loria be sure he knows their proper level when all the women 
up to the t ime of writing were systematically locked out of the best opportunit ies 
for professional advancement? Look a t the twentieth century and see what becomes 
of Loria's argument that women never reach the top. 

Finally, examine Loria's logic in the light of the cold facts of society: A woman 
who wished to have a career in mathematics would naturally be well advised to find 
a mentor with a well-established reputation, as Charlot te Angas Scott and Sof'ya 
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Kovalevskaya did. A woman who did not do that would have no chance of being 
cited by Loria as an example, since she would never have been heard of. Is this 
argument not a classical example of catch-22? 

4.10 . Here is a policy question to consider. The primary undergraduate compe-
tition for mathematics majors is the Pu tnam Examination, administered the first 
weekend in December each year by the Mathematical Association of America. In 
addition to its rankings for the top teams and the top individuals, this examina-
tion also provides, for women who choose to enter, a prize for the highest-ranking 
woman. (The people grading the examinations do not know the identities of the 
entrants, and a woman can enter this competition without identifying herself to the 
graders.) Is this policy an important affirmative-action step to encourage talented 
young women in mathematical careers, or does it "send the wrong message," imply-
ing tha t women cannot compete with men on an equal basis in mathematics? If you 
consider it a good thing, how long should it be continued? Forever? If not, what 
criterion should be used to determine when to discontinue the separate category? 
Bear in mind tha t the number of women taking the Pu tnam Examination is still 
considerably smaller than the number of men. 

4 . 1 1 . Continuing the topic of the Question 4.10, what criterion should be used to 
determine when affirmative action policies designed to overcome the effects of past 
discrimination against women will have achieved their aim? For example, are these 
policies to be continued until 50% of all mathematics professors are women within 
the universities of each ranking? (The American Mathematical Society divides 
institutions into different rankings according to the degrees they grant; there is 
also a less formal but still effective ranking in terms of the prestige of institutions.) 
W h a t goal is being pursued: tha t each man and each woman should have equal 
access to the profession and equal opportunity for advancement in it, or that equal 
numbers of men and women will choose the profession and achieve advancement? 
Or is the goal different from both of these? If the goal is the first of these, how will 
we know when it has been achieved? 
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Numbers are the first association in the minds of most people when they hear 
the word mathematics. The word arithmetic comes into English from the Greek 
word arithmos, meaning number. Wha t is nowadays called ar i thmet ic—that is, 
calculation—had a different name among the Greek writers of ancient times: logis-
tike, the source of our modern word logistics. In the comedy The Acharnians by 
Aristophanes, the hero Dicaeopolis reflects that , arriving early for meetings of the 
Athenian assembly, "aporo, grapho, paratillomai, logizomai" ("I don ' t know what 
to do with myself; I doodle, pull my hair, and calculate"). 

The different levels of sophistication in the use and study of numbers provide a 
convenient division into chapters for the present part of the book. We distinguish 
three different stages in the advancement of human knowledge about numbers: 
(1) the elementary stage, in which a limited set of integers and fractions is used 
for counting and measuring: (2) the stage of calculation, in which the common 
operations of addition, subtraction, multiplication, and division are introduced; 
and (3) the theoretical stage, in which numbers themselves become an object of 
interest, different kinds of numbers are distinguished, and new number systems are 
invented. 

The first stage forms the subject matter of Chapter 5. Even when dealing 
with immediate problems of trade, mere counting is probably not quite sufficient 
numeracy for practical life; some way of comparing numbers in terms of size is 
needed. And when administering a more populous society, planning large public 
works projects, military campaigns, and the like, sophisticated ways of calculating 
are essential. In Chapter G we discuss the second stage, the methods of calculating 
used in different cultures. 

In Chapter 7 we examine the third stage, number theory. This theory be-
gins with the mathematicians of ancient Greece, India, and China. We look at 
the unique achievements of each civilization: prime, composite, tr iangular, square, 
and pentagonal numbers among the Pythagoreans, combinatorics and congruences 
among the Chinese and Hindus. 

In Chapter 8 we discuss number systems and number theory in the modern 
world. Here we see how algebra led to the concept of irrational (algebraic) num-
bers, and the geometric representation of such numbers brought along still more 
(transcendental) numbers. When combined with geometry and calculus, this new 
algebraic view of numbers led to the theory of complex variables, which in turn 
made it possible to answer some very delicate questions on the relative density of 
prime numbers (the famous "prime number theorem"). The continuing develop-
ment of these connections, as well as connections with the theory of trigonometric 
series, has made it possible to settle some famous conjectures: the Wiles-Taylor 
proof of Fermat 's last theorem and a partial proof by I. M. Vinogradov of the famous 
Goldbach conjecture, for example. 
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C o u n t i n g 

Counting could conceivably occur without number words. Wha t is required is 
merely a matching of the objects in two sets. The legendary American gunslinger, 
putt ing a notch in the handle of his gun for every person he has killed, is an example 
of such counting. A vivid example is cited by Closs (1986, p . 16) as a folk tale of the 
Copper Eskimo. In this story, a hunter who has killed a wolf argues with another 
hunter who has killed a caribou as to which animal has more hair. To decide the 
question, they pull out the hairs one at a time and pair them off. This mode of 
thought has become very familiar to mathematics students over the past century 
because of the rise of set theory in the undergraduate curriculum. 

1. N u m b e r words 

Every human language tha t we know about has words for numbers. In the case of 
languages whose long history is known—English, for example—the number words 
seem to be of such ancient origin that they have no obvious relation to the non-
numerical words in the language. Some at tempts have been made to find clues as 
to the origin of number words and number concepts in the grammar of various lan-
guages, but very few reliable conclusions have been reached. The guesses involved 
are interesting, however, and we shall look at a few of them below, taken mostly 
from the books of Menninger (1969) and Gow (1884)-

To begin with modern English, when a person says, "I know a number of 
ways to prove the Pythagorean theorem," the listener will interpret the phrase "a 
number of" to mean "three or more." The word number here is a synonym for the 
fancier word multitude and is used to refer to any set of things having three or more 
members. If the speaker knew only two ways to prove the Pythagorean theorem, 
the word number would almost certainly be replaced by couple. This last word is 
one of the few collective words in English with a definite numerical meaning. It 
is used as a synonym for two when the two objects mentioned are related to each 
other in some way, in phrases like "I have a couple of errands to run downtown." 
The connection with the number two is not quite exact here, since in very informal 
speech the word couple is often stretched to mean simply a small number. From 
such considerations we might form the hypothesis tha t one and two are instinctive 
concepts, and that numbers as a deliberate, conscious creation of the human mind 
begin with three. Support for this idea comes from the reflection tha t English has 
special words for ordinal (second) and partitive (half) concepts connected with the 
number two and a special word (both) to apply to the whole of a set of two objects, 
while the ordinal and part i t ive concepts merge for numbers three and higher (third, 
one-third, and so on) and the same word (all) is used to denote the whole of any 
set having more than two members. Of course, what is t rue of English does not 
always apply to other languages. 
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Ancient Greek and Sanskrit, as well as modern English and other European 
languages, share a great many root words and morphological features. In a book 
on Greek mathematics (1884) the British mathematician James Gow (1854 1923) 
of Trinity College, Cambridge speculated on the possibility of using comparative 
philology to discover the history of mathematical terms. He noted in particular that 
the words for one, two, three, and four are declinable in Greek, but not the words 
for five and above. Tha t fact suggested to him tha t numbers above four are an 
artificial creation. (It also dovetails neatly with the observations of Karen Fuson, 
discussed in Chapter 1, on the counting abilities of children.) Gow noted tha t 
in Slavonic, which is a European language, all numerals are declined as feminine 
singular nouns (those ending in 5 or above still are, in modern Russian), but he 
regarded this usage as later and hence not relevant to his inquiry. He also noted 
that all numerals are declined in Sanskrit, but thought it an important difference 
that no gender could be assigned to them. 

In a comprehensive study of numbers and counting (1969) the mathematician 
Karl Menninger (1898-1963) conjectured that the words for one and two may be 
connected with personal and demonstrative pronouns. In favor of Menninger's con-
jecture, we note tha t in formal writing in English, and sometimes also in formal 
speaking, the word one is used to mean an unspecified person. This English us-
age probably derives from similar usage of the special third-person pronoun on in 
French. Speaking of French, there is a suggestive similarity between this pronoun 
and the word (un) for one in that language. The Russian third-person pronouns 
(on, ona, ono in the three genders) are the short forms of the archaic demonstrative 
pronoun onyi, onaya, onoe (meaning that one), and the word for the number one 
is odin, odna, odno. 

Menninger also suggested that the word two, or a t least the word dual, may 
be related to the archaic second-person singular pronoun thou (du, still used in 
Menninger's native language, which is German). Menninger noted tha t the concept 
of two is closely related to the concept of "other." Consider, for example, the 
following sentences: 

This is my favorite style of gloves. I have a second pair in my closet. 

This is my favorite style of gloves. I have another pair in my closet. 

Menninger suggested a connection between three and through, based on other lan-
guages, such as the Latin tres and trans. Despite these interesting connections, 
Menninger emphasized that the words for cardinal numbers have left no definite 
traces of their origin in the modern Indo-European languages. All the connections 
mentioned above could be merely coincidental. On the other hand, the ordinal num-
ber words first and second have a more obvious connection with non-mathematical 
language. The word first is an evolved form of fore-est (foremost), meaning the one 
farthest forward. The word second comes from the Latin word sequor (I follow). 

In cultures where mathematics and counting are developed less elaborately, 
number words sometimes retain a direct relation with physical objects exemplifying 
the numbers. Nearly always, the words for numbers are also used for body parts 
in the corresponding number, especially fingers. In English also, we find the word 
digit used to describe both a finger or toe and the special kinds of numbers tha t 
occur in representations of the positive integers in terms of a base. 

Are there languages in which body parts s tand for cardinal numbers? Could 
the number two be the word for eyes, for example? Gow (1884) cited a number 
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of examples to show tha t in many languages the word for five also means hand, 
and tha t words for eight, nine, and ten also designate specific fingers of the hand 
in some languages. A survey of ways of counting around the world provides some 
evidence for Gow's thesis. The Bororo of Mato Grosso, for example (Closs, 1986, 
p. 23), use a phrase for the number five that translates literally "as many of them 
as my hand complete." In that same language the number seven is "my hand and 
another with a partner," 10 is "my fingers all together in front," and 15 is "now 
my foot is finished." 

2. B a s e s for c o u n t i n g 

Children have to be taught to count before they can talk about groups of more 
than four things. Beyond certain sizes, it becomes impossible for anyone to tell 
at a glance how many objects are present. Most people, for example, can say 
immediately how many letters are in a word of eight letters or fewer, but have to 
count for longer words. When the limit of immediate perception is reached, human 
ingenuity goes to work and always arrives at the idea of grouping the objects to 
be counted into sets of some definite size, then counting the number of sets. Thus 
arises the notion of a base for counting. It is well known and seems completely 
natural tha t in most cases this base is five or ten, the normal number of fingers on 
one or two hands. 

2 . 1 . D e c i m a l s y s t e m s . Decimal systems arose spontaneously in ancient Egypt, 
India, China, and elsewhere. The choice of 10 as a base is not itself a sign of superior 
wisdom. Only when combined with an efficient notation does the usefulness of a 
base make itself known. A place-value system greatly simplifies calculation, which 
is just as difficult in base 10 as in any other base when done without a place-value 
system. 

The modern decimal system. Modern American counting—and increasingly also, 
British counting—has special words for thousand, million, billion, 1 then trillion 
(a thousand billions), quadrillion, quintillion, and so forth. Because these names 
change with every third decimal place, we are effectively using 1000 as a base for 
counting large sets. T h a t fact shows through in the use of a comma (or period, in 
Europe) to separate each group of three digits from its predecessor. The largest of 
these units tha t anyone is likely to encounter in newspapers is the trillion, since it 
is the most convenient unit for discussing the national budget or the national debt 
in dollars. The Greek prefixes kilo- (thousand), mega- (million), giga- (billion), and 
tera- (trillion) are used to discuss the memory cells in computers, and the march 
of technology has made the first of these essentially negligible. The prefixes milli-
(one-thousandth), micro- (one-millionth), and nano- (one-billionth) for reciprocals 
are used in discussing computing time. These are the units needed nowadays, and 
those tha t have names at present provide a comfortable margin around the objects 
to which they will be applied, so that no new units will need to be invented in the 
foreseeable future. 

1 A billion is a thousand millions in American and increasingly in British usage, where it originally 
meant a million millions. 
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Named powers of 10. The powers of 10 that have a name, such as hundred, thou-
sand, and so on, vary from one society to another. Ancient Greek and modern 
Japanese contain special words for 10 thousand: myrias in Greek, man in Japan-
ese. With this unit one million becomes "100 myriads" in Greek or hyakuman in 
Japanese (hyaku means 100). In these systems it would make more sense to insert 
commas every four places, rather than every three, to make reading easier. The 
ancient Hindus gave special names to numbers tha t one would think go beyond 
any practical use. One early poem, the Valmiki Ramayana, from about 500 BCE, 
explains the numeration system in the course of recounting the size of an army. 
The description uses special words for 10 7 , ÉÏ 1 2 , 1 0 1 7 , and other denominations, all 
the way up to 1 0 5 5 . 

2.2. N o n d e c i m a l s y s t e m s . The systems still used in the United States—the last 
bastion of resistance to the metric system—show abundant evidence that people 
once counted by twos, threes, fours, sixes, and eights. In the United States, eggs 
and pencils, for example, are sold by the dozen or the gross. In Europe, eggs are 
packed in cartons of 10. Until recently, stock averages were quoted in eighths rather 
than tenths. Measures of length, area, and weight show other groupings. Consider 
the following words: fathom (6 feet), foot (12 inches), pound (16 ounces), yard (3 
feet), league (3 miles), furlong (1/8 of a mile), dram (1 /8 or 1/16 of an ounce, 
depending on the context), karat (1/24, used as a pure number to indicate the 
proportion of gold in an al loy), 2 peck (1/4 of a bushel), gallon (1 /2 peck), pint 
(1/8 of a gallon), and teaspoon (1 /3 of a tablespoon). 

Even in science there remain some vestiges of nondecimal systems of measure-
ment, inherited from the ancient Middle East. In the measurement of both angles 
and time, minutes and seconds represent successive divisions by 60. A day is divided 
into 24 hours, each of which is divided into 60 minutes, each of which is divided into 
60 seconds. At that point, our division of t ime becomes decimal; we measure races 
in tenths and hundredths of a second. A similar renunciation of consistency came 
in the measurement of angles as soon as hand-held calculators became available. 
Before these calculators came into use, students (including the present author) were 
forced to learn how to interpolate trigonometric tables in minutes (one-sixtieth of 
a degree) and seconds (one-sixtieth of a minute). In physical measurements, as 
opposed to mathematical theory, we still divide circles into 360 equal degrees. But 
our hand-held calculators have banished minutes and seconds. They divide degrees 
decimally and of course make interpolation an obsolete skill. Since ð is irrational, 
it seems foolish to adhere to any rational fraction of a circle as a s tandard unit; 
hand-held calculators are perfectly content to use the natural (radian) measure, 
and we could eliminate a useless but ton by abandoning the use of degrees entirely. 
Tha t reform, however, is likely to require even more t ime than the adoption of the 
metric sys tem. 3 

2 The word is a variant of carat, which also means 200 milligrams when applied to the size of a 
diamond. 
3 By abandoning another now-obsolete decimal system—the Briggsian logarithms—we could elim-
inate two buttons on the calculators. The base 10 was useful in logarithms only because it allowed 
the tables to omit the integer part of the logarithm. Since no one uses tables of logarithms any 
more, and the calculators don't care how messy a computation is, there is really no reason to 
do logarithms in any base except the natural one, the number e, or perhaps base 2 (in number 
theory). Again, don't expect this reform to be achieved in the near future. 
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Most peculiar of all in the English system is the common land measure, the 
acre, which is an area of 43,560 square feet. 4 Tha t means that a square 1-acre 
plot of land is y/43560 = 66y/Td « 208.710 feet on a side. The unit turns out to be 
convenient, in tha t there are exactly 640 acres in a square mile (known as a section), 
which can thus be quartered into 160-acre (quarter-section) plots, a convenient size 
for a farm in the American Middle West during the nineteenth century. At tha t 
t ime a larger unit of 36 sections (an area 6 miles by 6 miles) was called a township. 
There would thus be 144 farms in a typical township. 

These examples lead to an interesting inference about the origins of practical 
mathematics. It seems likely tha t numbers were not developed as an abstract tool 
and then applied in particular situations. If such were the case, we would expect 
the same base to be used in all forms of measurement. But the distillation of a 
preferred base, usually 10, to be applied in all measurements, took thousands of 
years to arrive. Even today it is resisted fiercely in the United States, which was 
ironically one of the earliest countries to use a decimal system of coinage. The 
grouping of numbers seems to have evolved in a manner specific to each particular 
application, just as the English language once had specific collective nouns to refer 
to different groups of things: a blush of boys, a bevy of girls, a herd of cattle, a 
flock of sheep, a gaggle of geese, a school of fish, and others. 

Bases used in other cultures. A nondecimal system reported (1937) by the Amer-
ican mathematicians David Eugene Smith (1860-1944) and Jekuthiel Ginsburg 
(1889-1957) as having been used by the Andaman of Australia illustrates how 
one can count up to certain limits in a purely binary system. The counting up to 
10, translated into English, goes as follows: "One two, another one two, another 
one two, another one two, another one two. Tha t ' s all." In saying this last phrase, 
the speaker would bring the two hands together. This binary counting appears to 
be very inefficient from a human point of view, but it is the system that underlies 
the functioning of computers, since a switch has only two positions. The binary 
digits or bits, a term tha t seems to be due to the American mathematician Claude 
Shannon (1916-2001), are generally grouped into larger sets for processing. 

Although bases smaller than 10 are used for various purposes, some societies 
have used larger bases. Even in English, the word score for 20 (known to most 
Americans only from the first sentence of Lincoln's Gettysburg Address) does oc-
cur. In French, counting between 60 and 100 is by 20s. Thus, 78 is soixante dix-huit 
(sixty-eighteen) and 97 is quatre-vingt dix-sept (four-twenty seventeen). Menninger 
describes a purely vigesimal (base 20) system used by the Ainu of Sakhalin. Un-
derlying this system is a base 5 system and a base 10 system. Counting begins with 
shi-ne (begin-to-be = 1), and progresses through such numbers as aschick-ne (hand 
— 5), shine-pesan (one away from [10] = 9), wan (both sides = both hands = 10), to 
hot-ne (whole- [person]-ßï-be = 20). In this system 100 is ashikne hotne or 5 twen-
ties; 1000, the largest number used, is ashikne shine wan hotne or 5 ten-twenties. 
There are no special words for 30, 50, 70, or 90, which are expressed in terms of 
the basic 20-unit. For example, 90 is wan e ashikne hotne (10 from 5 twenties). 
Counting by subtraction probably seems novel to most people, but it does occur in 

4 The word acre is related to agriculture and comes from the Latin ager or Greek agros, both 
meaning field. 
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Roman numerals (IV — 5 - 1). and we use subtraction to tell t ime in expressions 
such as ten minutes to four and quarter to five? 

3 . C o u n t i n g a r o u n d t h e world 

We now examine the ways used to count in a selected set of cultures in which 
mathematics eventually developed to the point of being written down. 

3 . 1 . E g y p t . In Egypt the numbers appearing in hieroglyphics ( the oldest writing) 
are represented as vertical strokes (|) for each individual digit, up to 9; then 10 is 
written as Ð, 20 as Ð Ð , and so on. To represent 100 the Egyptians used a symbol 
resembling a coil of rope. Such a system requires new symbols to be invented for 
higher and higher groupings, as larger and larger numbers become necessary. As 
the accompanying photograph shows, the Egyptians had hieroglyphic symbols for 
1000 (a lotus blossom), 10,000 (a crooked thumb) , 100,000 (a tu rbot fish), and 
1,000,000 (said to be the god of the air). With this system of recording numbers, 
no symbol for zero was needed, nor was the order of digits of any importance, 
since, for example, 111 Ð Ð and Ð Ð 11 j both mean 23. The disadvantage of the 
notation is tha t the symbol for each power of 10 must be written a number of 
times equal to the digit that we would put in its place. When hieroglyphics were 
invented, the Egyptians had apparently not realized that it would be useful to have 
names for the numbers 1 through 9, and then to name the powers of 10. Later on, 
in the hieratic and demotic scripts that replaced hieroglyphics, they had special 
symbols for 1 through 9, 10 through 90, 100 through 900, and so on, a system that 
was reproduced in the Greek numeration with Greek letters replacing the hieratic 
symbols. 

3 .2 . M e s o p o t a m i a . As the examples of angle and t ime measurement show, the 
successive divisions or regroupings need not have the same number of elements 
at every stage. The sexagesimal system appears to have been superimposed on a 
decimal system. In the cuneiform tablets in which these numbers are written the 
numbers 1 through 9 are represented by a corresponding number of wedge-shaped 
vertical strokes, and 10 is represented by a new symbol, a hook-shaped mark tha t 
resembles a boomerang (Fig. 1). So far we seem to have a decimal system of 
representation, like the Egyptian hieroglyphics. However, the next grouping is not 
ten groups of 10, but rather six groups of 10. Even more strikingly, the symbol for 
the next higher group is again a vertical stroke. Logically, this system is equivalent 
to a base-60 place-value system with a floating "decimal" (sexagesimal) point tha t 
the reader or writer had to keep track of mentally. Within each unit (sexagesimal 
rank) of this system there is a truncated decimal system tha t is not place-value, 
since the ones and tens arc distinguished by different symbols rather than physical 
location. The number that we write as 85.25, for example, could be transcribed 
into this notation as 1,25; 15, meaning 1 · 60 + 25 • 1 + 15 • ^ j . 

This place-value sexagesimal system goes back some 4000 years in the Middle 
East. However, in its original form it lacked one feature tha t we regard as essential 
today, a symbol for an empty place. The later Greek writers, such as Ptolemy in 

5 Technology, however, is rapidly removing this last, vestige of the old way of counting from 
everyday life. Circular clock faces have been largely replaced by linear digital displays, and ten 
minutes to four has become 3:50. This process began long ago when railroads first imposed 
standard time in place of mean solar time and brought about the first 24-hour clocks. 
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10 1 10 2 10 3 10 4 10 5 

Powers of 10 from 10° to 10 6 in hieroglyphics. 

1 10 100 

1 1 
2 i t 

3 (tt 

4 — 
5 1 
6 X lit 

7 ** > 
8 

JUL 
J I M 

9 Ê 3 
Hieratic symbols, arranged as a multiplication table. 
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f. I 
ô 

F I G U R E 1. The cuneiform number 45. 

the second century CE, used the sexagesimal notation with a circle to denote an 
empty place. 

3.3 . India. The modern system of numeration, in which 10 symbols are used and 
the value of a symbol depends only on its physical location relative to the other 
symbols in the representation of a number, came to the modern world from India 
by way of the medieval Muslim civilization. The changes tha t these symbols have 
undergone in their migration from ancient India to the modern world are shown in 
Fig. 2. The idea of using a symbol for an empty place was the final capstone on 
the creation of a system of counting and calculation that is in all essential aspects 
the one still in use. This step must have been taken well over 1500 years ago in 
India. There is some evidence, not conclusive, tha t symbols for an empty place 
were used earlier, but no such symbol occurs in the work of Arbyabhata. On the 
other hand, such a symbol, called in Sanskrit sunya (empty), occurs in the work of 
Brahmagupta a century after Arybhata. 

3.4. China . The idea of having nine digits combined with names for the powers 
of 10 also occurred to the Chinese, who provided names for powers of 10 up to 
100,000,000. The Chinese system of numbering is described in the Sun Zi Suan 
Jing. A certain redundancy is built into the Chinese system. To understand this 
redundancy, consider that in English we could write out the number 3875 in words 
as three thousand eight hundred seventy-five. Since Chinese uses symbols rather 
than letters for words, the distinction between a written number such as "seven" 
and the corresponding numeral 7 does not exist in Chinese. But in writing their 
numbers the Chinese did not use physical location as the only indication of the 
value of a digit. Rather, that value was written out in full, just as here. To convey 
the idea in English, we might write 3875 as 3 thousands 8 hundreds 7 tens and 5. 
Because of this way of writing, there is no need for a zero symbol t o hold an empty 
place. For example, 1804 would simply be 1 thousand 8 hundreds and 4. Large 
numbers were handled very efficiently, with a special name for 10,000 (wan). Its 
square [wan wan, tha t is, 100,000,000 ( = 10 8)] was called yi. Thereafter the 
Chinese had special names for each power of 10 8 . Thus, 1 0 1 6 was zhao, 1 0 2 4 was 
jing, and so on, up to 1 0 8 0 (zai), which was surely large enough to meet any needs 
of commerce or science until the twentieth century. 6 In t ha t sense 10 8 amounted 
to a second base for arithmetic in Chinese usage. 

6 An estimate ascribed to Sir Arthur Eddington (1882-1944) of the number of protons in the 
universe put the number at 136 · 2 2 5 6 , which is approximately 1.575 • 10 7 9 . 
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_ = = * h U 7 S ? 

Brahmi 

ι ? 4 t Μ 

Indian (Gwalior) 

Sanskrlt-Devanagari (Indian) 

ß r* y 

Wast Arabic (Gobar) East Arabic 

º 

11th Century (Apices) 

, æ i a. (, e « \ 8 9 · 1 * $ 4 - ß 7 $ 9 · 

15th Century 16th Century (Diirer) 

F I G U R E 2. Evolution of the Hindu-Arabic numerals from India to 
modern Europe. ©Vandenhoeck & Ruprecht, from the book by 
Karl Menninger, Zahlwort und Ziffer, 3rd ed., Gottingen, 1979. 

Some later Chinese numbering seems to reflect contact with India. Buddhism 
entered China during the Han dynasty (202 BCE-220 CE) , and Buddhist monks 
had a fondness for large numbers. Unmistakable evidence of influence from India 
can be found in the Suan Shu Chimeng by Zhu Shijie, who introduced names for 
very large powers of 10, including the term "sand of the Ganges" for 1 0 9 6 . 

3 .5 . G r e e c e and R o m e . You are familiar with Roman numerals, since books still 
use them to number pages in the front matter , and some clock faces still show the 
hours in Roman numerals. Although these numerals were adequate for counting 
and recording, you can well imagine that they were rather inefficient for any kind of 
calculation. Adding, say MDCLIX to CCCIV, would take noticeably longer than 
adding 1659 to 304, and the idea of multiplying or dividing these two numbers 
seems almost too horrible to contemplate. 7 The Greek numeral system was hardly 
better as far as calculation is concerned. The 24-letter Greek alphabet used today, 
together with 3 older letters, provided symbols for 1 , . . . , 9, 1 0 , . . . , 90, 100 , . . . , 900, 
essentially the system used by the Egyptians. These symbols are shown in Fig. 3. 
The 3 older letters were Ã (digamma) for 6 (now usually writ ten as the letter sigma 
in the form ò tha t it assumes at the end of a word) ,ö (qoppa) for 90, and \ (sampi) 
for 900. When letters were used as numbers, they were usually given a prime, so 

7 Nevertheless, the procedure for doing so can be learned in a fairly short time. Detlefsen and 
co-authors (1975) analyzed the procedure and compared it to a "paper-and-pencil abacus." 
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1 2 3 4 5 6 7 8 9 

á ' â' V <5' å' ò' C V' 0' 

10 20 30 40 50 60 70 80 90 

é' X? Á' ì' í' î' ï' ôô' 9 ' 
100 200 300 400 500 600 700 800 900 

Ñ' ô' í' ÷' ù' 

F I G U R E 3. The ancient Greek numbering system 

that the number 4 would be represented by the fourth letter of the Greek alphabet 
(ä) and written ä'. When they reached 1000 (khilias), the Greeks continued with 
numerical prefixes such as tetrakiskhilioi for 4000 or by prefixing a subscripted 
prime to indicate tha t the letter stood for thousands. Thus, >ä' stood for 4000, 
and the number 5327 would be written >å'ô'ê'æ'. The largest independently named 
number in the ancient Greek language was 10,000, called myrias. This word is the 
source of the English word myriad and is picturesquely derived from the word for 
an ant (myrmex). Just how large 10,000 seemed to the ancient Greeks can be seen 
from the related adjective myrios, meaning countless. 

The Sand-reckoner of Archimedes. The Egyptian-Greek system has the disadvan-
tage that it requires nine new names and symbols each t ime a higher power of 10 
is needed, and the Roman system is even worse in this regard. One would ex-
pect that mathematicians having the talent t ha t the Greeks obviously had would 
realize tha t a better system was needed. In fact, Archimedes produced a system 
of numbering that was capable of expressing arbitrarily large numbers. He wrote 
this method down in a work called the Psammites (Sand-reckoner, from psammos, 
meaning sand). 

The problem presented as the motivation for the Psammites was a childlike 
question: How many grains of sand are there? Archimedes noted tha t some people 
thought the number was infinite, while others thought it finite but did not believe 
there was a number large enough to express it. Tha t the Greeks had difficulty 
imagining such a number is a reflection of the system of naming numbers tha t they 
used. To put the matter succinctly, they did not yet have an awareness of the 
immense potential tha t lies in the operation of exponentiation. The solution given 
by Archimedes for the sand problem is one way of remedying this deficiency. 

Archimedes saw that solution of the problem required a way of "naming" ar-
bitrarily large numbers. He naturally started with the largest available unit , the 
myriad (10,000), and proceeded from there by multiplication and a sort of induc-
tion. He defined the first order of numbers to be all the numbers up to a myriad of 
myriads (100,000,000), which was the largest number he could make by using the 
available counting categories to count themselves. The second order would then 
consist of the numbers from that point on up to a myriad of myriads of first-order 
numbers, tha t is, all numbers up to what we would call ( lO 8 ) — 1 0 1 6 . The third 
order would then consist of all numbers beyond the second order up to a myriad of 
myriads of second-order numbers (10 2 4 ) . He saw tha t this process could be contin-
ued up to an order equal to a myriad of myriads, tha t is, to the number ( 1 0 8 ) 1 0 . 
This is a gargantuan number, a 1 followed by 800 million zeros, surely larger than 
any number science has ever needed or will ever need. But Archimedes realized 
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F I G U R E 4. Maya numerals 

the immensity of infinity. He saw that once the process just described had been 
completed, he could label the numbers tha t were named up to tha t point the first 
period. The mind feels carried to dizzying heights by such a process. Archimedes 
did not stop until he reached a number tha t we would represent as a 1 followed 
by 80 quadrillion zeros! And of course, there is not the slightest reason to suspect 
tha t Archimedes thought the creation of integers needed to stop there. It must stop 
somewhere, of course. 

By applying reasonable and generous estimates of the size of the universe as it 
was known to him, Archimedes showed that the number of grains of sand needed 
to fill it up could not go beyond the 1000 sixth-order units (1000 units into the 
seventh order, or 1 0 5 1 in our terms). Allowing an assumption of an even larger 
universe, as imagined by the astronomer Aristarchus, he showed that it could not 
hold more than 1 0 6 3 grains of sand. 

3.6 . T h e M a y a . Although geographically far removed from Egypt, the Maya cul-
ture tha t existed in wha t is now southern Mexico and Central America from 300 
BCE to 1500 CE shows some intriguing resemblances to tha t of ancient Egypt, 
especially in the building of pyramidal structures and in a hieroglyphic type of 
writing. On the other hand, the Maya system of counting resembles more the 
Mesopotamian sexagesimal system, except that it is vigesimal (base 20). As with 
the Mesopotamian system, only two symbols are needed to write all the numbers 
up to the base: a dot for ones and a horizontal line for fives. Thus the smaller base 
on which the vigesimal system is built is five in the case of the Maya, whereas it 
was 10 in the Mesopotamian system. The Maya numerals illustrate the principle 
that higher-level groupings need not always have the same number of members as 
the lower. As Fig. 4 shows, four groups of five are consolidated as a single unit of 
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20, and there is a cowrie-shell figure standing for zero. The second vigesimal digit 
in a Maya number should normally represent units of 20 · 20 = 400. However, in the 
Haab calendar, discussed below, it represents 360. The reason probably comes from 
the objects being counted, namely days. Even today a "business year" is 360 days 
(twelve 30-day months), and this cycle was also important to the Maya. Beyond 
this point the unit for each place value is 20 t imes the value of its predecessor. 

4. W h a t was c o u n t e d ? 

People have counted an endless list of things since t ime immemorial . But if we were 
to name three items whose count was of most importance, these would be days, 
years, and new moons. One of the earliest uses of both ar i thmetic and geometry 
was in the construction of reliable calendars. Calendars have a practical economic 
value in organizing the activities of nomadic and agricultural peoples; this value 
is in addition to the social value associated with the scheduling of religious rites. 
For these reasons, calendars have been regarded as both sacred lore and applied 
science. At the base of any calendar must lie many years of record keeping, simply 
counting the days between full moons and solstices. Only after a sufficient da ta 
base has been collected can the computations needed to chart the days, weeks, 
months, and years be carried out. We know that such observations have been made 
for a long time, since the prominent lines of sight at many megalithic structures 
such as Stonehenge mark the summer and winter solstices. It does not require very 
acute observation to notice that the sun rises and sets a t points farther and farther 
north for about 182 or 183 days, then begins to move south for the next 182 or 183 
days. Once that observation was made, setting up posts to keep track of the exact 
location of sunrise and sunset would not have taken very long. This progression 
of the sun could also be correlated with the s tar pat terns (constellations) tha t rise 
at sunset, marking the cycle we call a tropical or sidereal year. These two years 
actually differ by about 20 minutes, but obviously it would require a long t ime for 
that discrepancy to be noticed. 

4 .1 . Calendars . The first broad division in calendars is between what we may 
call (for purposes of the present discussion only) linear and cyclic calendars. In a 
linear calendar the basic unit is the day, and days are simply numbered (positively 
or negatively) from some arbitrary day to which the number zero or 1 is assigned. 
Such calendars are highly artificial and used mostly for scientific purposes. For 
civil use, calendars at tempt to repeat cycles after a month or a year or both. In 
traditional calendars, years were counted within the reign of a particular ruler and 
began with 1 as each new ruler came to power, but in the Gregorian calendar the 
year number does not cycle. Days and months, however, do cycle; they have their 
names and numbers repeated at fixed intervals. Cyclic calendars may be classified 
as solar, lunar, and lunisolar. 

Ancient Egypt. The Egyptians observed the world about them with considerable 
accuracy, as the precise north-south orientation of some of the pyramids shows. 
Anyone who observes the sky for any extended period of t ime cannot help noticing 
the bright blue-green star Sirius, which is overhead at midnight during winter in 
the northern hemisphere. According to Montet (1974), it w a s recorded on the 
outside wall of the Temple of Ramesses III a t Medinet Habu tha t the first day 
of the Egyptian year was to be the day on which Sirius and the Sun rose at the 
same time. To the Egyptians Sirius was the goddess Sopdit, and they had a special 
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reason for noticing it. Like all stars, Sirius gains about four minutes per day on the 
Sun, rising a little earlier each night until finally it rises just as the Sun is setting. 
Then for a while it cannot be seen when rising, since the Sun is still up, but it 
can be seen setting, since the Sun will have gone down before it sets. It goes on 
setting earlier and earlier until finally it sets just after the Sun. At that point it 
is too close to the Sun to be seen for about two months. Then it reappears in the 
sky, rising just before the Sun in the early dawn. It was during these days that 
the Nile began its annual flood in ancient t imes 8 Thus the heliacal rising of Sirius 
(simultaneous with the Sun) signaled the approach of the annual Nile flood. The 
Egyptians therefore had a very good basis for an accurate solar calendar, using the 
heliacal rising of Sirius as the marker of the year. 

The Egyptians seem originally to have used a lunar calendar with 12 lunar 
cycles per year. However, such a calendar is seriously out of synchronicity with the 
Sun, by about 11 or 12 days per year, so that it was necessary to add an extra 
"intercalary" month every two or three years. All lunar calendars must do this, or 
else wander through the agricultural year. However, a t an early date the Egyptians 
cut their months loose from the Moon and simply defined a month to consist of 30 
days. Their calendar was thus a "civil" calendar, neither strictly lunar nor strictly 
solar. Each month was divided into three 10-day "weeks" and the entire system 
was kept from wandering from the Sun too quickly by adding five extra days at 
the end of the year, regarded as the birthdays of the gods Osiris, Horus, Seth, Isis, 
and Nephthys. This calendar is still short by about £ day per year, so tha t in 
1456 years it would wander through an entire cycle of seasons. The discrepancy 
between the calendar and the Sun accumulated slowly enough to be adjusted for, 
so tha t no serious problems arose. In fact, this wandering has been convenient for 
historians, since the heliacal rising of Sirius was recorded. It was on the first day of 
the Egyptian year in 2773 BCE, 1317 BCE, and 139 CE. Hence a document tha t 
says the heliacal rising occurred on the sixteenth day of the fourth month of the 
second season of the seventh year of the reign of Senusret III makes it possible to 
s tate that Senusret III began his reign in 1878 BCE (Clayton, 1994, PP- 12-13). 
On the other hand, some authorities claim tha t the calendar was adjusted by the 
addition of intercalary days from time to time to keep it from wandering too far. 
When the Greeks came to Egypt, they used the name Sothis to refer to Sopdit. 
Consequently, the period of 1456 years is known as the Sothic cycle. 

The Julian calendar. In a solar calendar, the primary period of t ime being tracked 
is the solar year, which we now know to be 365.2422 mean solar days long. Taking 
365.25 days as an approximation to this period, the Julian calendar (a solar calen-
dar) makes an ordinary year 365 days long and apportions it out among the months, 
with January, March, May, July, August, October, and December each getting 31 
days, while April, June, September, and November each get 30 days and February 
gets 28 days. For historiographical purposes this calendar has been projected back 
to the t ime before it was actually created. In that context it is called the proleptic 
Julian calendar. In a solar calendar the month is not logically necessary, and the 
months have only an approximate relation to the phases of the Moon. 

The floods no longer occur since the Aswan Dam was built in the 1950s. 
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The Gregorian calendar. A modification of the Julian calendar was introduced in 
1582 on the recommendation of Pope Gregory XIII. The Gregorian correction re-
moved the extra day from years divisible by 100, but restored it for years divisible 
by 400. A 400-year period on the Gregorian calendar thus contains 303 years of 
365 days and 97 leap years of 366 days, for a total of 146,097 days. It would be 
perfectly accurate if the year were of the following length: 

3 6 5 + Ú " ú(5ï + 4ûä = 3 6 5 2 4 2 5 d a y s ' 

Since this figure is slightly too large, there are still too many leap years in the 
Gregorian calendar, and a discrepancy of one day accumulates in about 3300 years. 

The Muslim calendar. The prophet Muhammed decreed tha t his followers should 
regulate their lives by a purely lunar calendar. In a lunar calendar the months 
are in close synchrony with the phases of the Moon, while the years need not have 
any close relationship to the seasons or the position of the Sun among the stars. 
The Muslim calendar, taking as its epoch the da te of the Hijra (July 15, 622 CE), 
consists of 12-month years in which the odd-numbered months have 30 days and 
even-numbered months 29 days, except tha t the final month has 30 days in a leap 
year. Thus, the year is 354 or 355 days long, and as a result, the years wander 
through the tropical year. 

The Hebrew calendar. More common than purely lunar calendars arc lunisolar cal-
endars, in which the months are kept in synchrony with the phases of the Moon and 
extra months are inserted from time to time to keep the years in synchrony with 
the Sun. These calendars lead to a need for calculation and therefore take us right 
up to the development of arithmetic. Several such calendars have been used since 
ancient times and continue to be used today in Israel, China, and elsewhere. It 
must have required many centuries of record keeping for the approximate equation 
"19 solar years = 235 lunar montlis" to be recognized. Since 235 = 12 • 12 + 7 · 13, 
the addition of the extra month 7 times in 19 years will keep both years and months 
in balance, with an error of only about 2 hours in each 19-year cycle, or one day in 
220 years. 

The Julian day calendar. An example of what we have called a linear calendar is 
the Julian day calendar, which is to be distinguished from the Julian calendar. 
The Julian day calendar was invented by Joseph Justus Scaliger (1540 1609) and 
apparently named in honor of his father Julius Caesar Scaliger (1484-1558). It was 
advocated by the British astronomer John Frederick William Herschel (1792-1871). 
In this calendar each day is counted start ing from what would be the date January 
1, 4713 BCE on the Julian calendar. Thus the day on which the first draft of 
this paragraph was written (August 9, 2002, which is July 27, 2002 on the Julian 
calendar) was Julian day 2,452,496. 

The Maya calendar. The most unusual calendar of all was kept by the Maya. The 
three Maya calendars account for a number of phenomena of astronomical and 
agricultural importance. As discussed above, numbers were writ ten in a place-
value system in which each unit is 20 times the next smaller unit, except tha t when 
days were being counted, the third-place unit, instead of being 20 · 20 = 400, was 
20-18 = 360. This apparent inconsistency was probably because there are 360 days 
in the "regular" part of the 365-day Maya calendar known as the Haab, and the 
other 5 days were apparently regarded as unlucky (and so, best not included in the 
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count). This Haab calendar is another point of resemblance between the Maya and 
Egyptian civilizations. 

Counting by 20 also helps to explain the rather mysterious grouping of days in a 
second, 260-day calendar, known as the Tzolkin, which is said to be from the words 
tzol, meaning to put in order, and kin, meaning day. One conjecture to account for 
this calendar is tha t the Maya gave a 20-day period to each of 13 gods tha t they 
worshipped. A modification of this conjecture is tha t the Maya formed from two 
different groups, one naming its days after 13 gods, the other after 20 gods, and 
that the Tzolkin made mutual comprehension easier. A second conjecture is that 
260 days is approximately the growing period for maize from the time of planting 
to harvesting. Still a third conjecture is based on the fact that 260 days is the 
length of t ime each year in which the Sun culminates south of the zenith at a 
latitude of 15° Í, where the southern portion of the Maya territory was located. 
This last explanation, however, seems inconsistent with the obvious fact tha t the 
Sun then culminates nor th of the zenith for the next 105 days, yet the calendar 
begins another 260-day cycle immediately. The two cycles coincide after 52 Haab 
years, a period called the Calendar Round. 

An important aspect of Maya astronomy was a close observation of Venus. The 
Maya established tha t the synodic period of Venus (the t ime between two successive 
conjunctions with the Sun when Venus is moving from the evening to the morning 
sky) is 584 days. By coincidence, 65 synodic periods of Venus equal two Calendar 
Rounds (37,960 days), so that the Maya calendar bears a particularly close relation 
to this planet. 

The third Maya calendar, the Long Count, resembles the Julian day calendar, 
in tha t it counts the days since its epoch, believed to be August 12, 3113 BCE on 
the proleptic Julian calendar. This date is not certain; it is based on the dates given 
in Maya inscriptions, which are presumed to be historical. Most of these dates are 
five-digit numbers s tar t ing with 9. Since 9.0.0.0.0 = 9 • 2 0 2 • 18 • 20 = 1,296,000 
days, t ha t is, approximately 3548 years and 4 months, and this date is associated 
with events believed to have occurred in 436 CE, one arrives at the stated epoch. 
Even though the Long Count does not explicitly mention months or years and 
counts only days, the Mayan place-value notation for numbers makes it possible 
to convert any date immediately to years, months, and days since the beginning. 
The digits excluding the final two represent the vigesimal (base 20) notation for 
a multiple of 360, while the next-to-last represents a multiple of 20, and the final 
digit is the number of units. Thus the Long Count date of December 31, 2000, 
which is 1,867,664, would be written in Maya notation with the vigesimal digits 
separated by commas as 12, 19, 7, 17, 4. It therefore represents 5187 Haab years 
of 360 days each (5187 = 12 · 20 2 + 19 • 20 + 7), plus 17 Tzolkin months of 20 days 
each, plus 4 days (1,867,664 = 5187 · 360 + 17 · 20 + 4). The Long Count may 
not be a "perpetual" day calendar. Tha t is, it may be cyclic rather than what we 
have called linear. Some scholars believe that it cycles back to zero when the first 
of the five vigesimal digits reaches 13. Since 13.0.0.0.0 = 1,872,000 days, or about 
5125 years, the Long Count should have recycled around 1992 on the Gregorian 
calendar. 

4 .2 . W e e k s . The seven-day week was laid down as a basic human labor cycle in 
the Book of Genesis. If we look for human origins of this time period, we might 
associate it with the waxing and waning of the Moon, since one week is the time 
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required for the Moon to go halfway from full to new or vice versa. There is 
another, more plausible, astronomical connection, however, since there are exactly 
seven heavenly bodies visible to the unaided eye tha t move around among the fixed 
stars: the Sun, the Moon, and the five planets Mercury, Venus, Mars, Jupiter, and 
Saturn. These planets were also gods to many ancient peoples and gave their names 
to the weekdays in some of the Romance languages, such as French and Italian. In 
English the Norse gods serve the same purpose, with some identifications, such as 
Tiw (Tiu) with Mars, Odin (Wotan) with Mercury, Thor wi th Jupiter , and Frigga 
with Venus. Saturn was not translated; perhaps the Norse simply didn ' t have a 
god with his lugubrious reputation. This dual origin of the week, from Jewish law 
and from astrology, seems to have spread very widely throughout the world. It 
certainly reached India by the fifth century, and apparently even went as far as 
Japan. References to a seven-day week have been found in Japanese literature of 
1000 years ago. When referring to the Gregorian calendar, the Japanese also give 
the days of the week the names of the planets, in exactly the same order as in 
the French and Italian calendars, that is, Moon, Mars, Mercury, Jupiter, Venus, 
Saturn, and Sun. 

Colson (1926) gives a thorough discussion of what he calls the "planetary week" 
and explains the more plausible of two analyses for the particular order derived 
from a history of Rome written by Dion Cassius in the early third century. The 
natural ordering of the nonfixed heavenly bodies, from a geocentric point of view, 
is determined by the rapidity with which they move among the stars . The Moon is 
by far the fastest, moving about 13° per day, whereas the Sun moves only 1° per 
day. Mercury and Venus sometimes loop around the Sun, and hence move faster 
than the Sun. When these bodies are arranged from slowest to fastest in their 
movement across the sky, as seen from the earth, the order is: Saturn, Jupiter, 
Mars, Sun, Venus, Mercury, Moon. Taking every third one in cyclic order, start ing 
with the Sun, we get the arrangement Sun, Moon, Mars, Mercury, Jupiter, Venus, 
Saturn, which is the cyclic order of the days of the week. Dion Cassius explains 
this order as follows: The planets take turns keeping one-hour tours of guard duty, 
so to speak. In any such cyclic arrangement, the planet tha t was on duty during 
the fourth hour of each day will be on duty during the first hour of the next day. 
The days are named after the planet tha t is on watch a t sunrise. Since there are 
24 hours in the day and seven planets, you can see tha t number of the first hour 
of successive days will be 1, 25, 49, 73, 97, 121, and 145. Up to multiples of seven, 
these numbers are equal to 1, 4, 7, 3, 6, 2, 5 respectively, and t ha t is the cyclic 
order of our weekdays. 

In his Aryabhatiya the Hindu writer Arybhata I (476-550) uses the planetary 
names for the days of the week and explains the correlation in a manner consistent 
with the hypothesis of Dion Cassius. He writes: 

[C]ounting successively the fourth in the order of their swiftness they 
become the Lords of the days from sunrise. [Clark, 1930, p. 56] 

The hypothesis of Dion Cassius is plausible and has been widely accepted for 
centuries. More than 600 years ago the poet Geoffrey Chaucer wrote a treatise on 
the astrolabe (Chaucer, 1391) in which he said 

The firste houre inequal of every Saturday is to Saturne, and the 
seconde to Jupiter, the thirde to Mars, the fourthe to the sonne, 
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the fifte to Venus, the sixte to Mercurius, the seventhe to the mone. 
And then ageyn the 8 houre is to Saturne, the 9 is to Jupiter, the 10 
to Mars, the 11 to the sonne, the 12 to Venus. . . And in this manner 
succedith planete under planete fro Saturne unto the mone, and 
fro the mone up ageyn to Saturne. [Chaucer, 1391, Robinson, p . 
553] 

Chaucer made references to these hours in the Canterbury Tales.9 Thus, all 
this planetary lore and the seven-day week have their origin in the sexagesimal 
system of counting and the division of the day into 24 hours, which we know 
is characteristic of ancient Mesopotamia. But if the Mesopotamians had used a 
decimal system and divided their days into 10 hours, the days would still occur in 
the same order, since 10 and 24 are congruent modulo 7. 

Q u e s t i o n s and prob lems 

5 .1 . Find an example, different from those given in the text, in which English 
grammar makes a distinction between a set of two and a set of more than two 
objects. 

5.2 . Consider the following three-column list of number names in English and 
Russian. The first column contains the cardinal numbers (those used for counting), 
the second column the ordinal numbers (those used for ordering), and the third the 
fractional parts . Study and compare the three columns. The ordinal numbers and 
fractions and the numbers 1 and 2 are grammatically adjectives in Russian. They 
are given in the feminine form, since the fractions are always given that way in 
Russian, the noun dolya, meaning part or share, always being understood. If you 
know another language, prepare a similar table for that language, then describe 
your observations and inferences. Wha t does the table suggest about the origin of 
counting? 

E n g l i s h R u s s i a n 
one first whole odna pervaya tselaya 

two second half dve vtoraya polovina 

three third third tri t re t 'ya tret ' 
four fourth fourth chetyre chetvyortaya chetvert ' 

five fifth fifth pyat ' pyataya pyataya 
six sixth sixth shest' shestaya shestaya 

5 .3 . How do you account for the fact that the ancient Greeks used a system of 
counting and calculating tha t mirrored the notation found in Egypt, whereas in 
their astronomical measurements they borrowed the sexigesimal system of Mesopo-
tamia? Why were they apparently blind to the computational advantages of the 
place-value system used in Mesopotamia? 

5.4 . A tropical year is the t ime elapsed between successive south-to-north crossings 
of the celestial equator by the Sun. A sidereal year is the t ime elapsed between two 
successive conjunctions of the Sun with a given star; tha t is, it is the time required 
for the Sun to make a full circuit of the ecliptic pa th tha t it appears (from Earth) 
to follow among the stars each year. Because the celestial equator is rotating (one 

9 See the 1928 edition edited by John Matthews Manly, published by Henry Holt and Company, 
New York, especially the third part of the Knight's Tale, pp. 198-213. 
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revolution in 26,000 years) in the direction opposite to the Sun's motion along the 
ecliptic, a tropical year is about 20 minutes shorter than a sidereal year. Would you 
expect the flooding of the Nile to be synchronous with the tropical year or with the 
sidereal year? If the flooding is correlated with the tropical year, how long would 
it take for the heliacal rising of Sirius to be one day out of synchronicity with the 
Nile flood? If the two were synchronous 4000 years ago, how far apar t would they 
be now, and would the flood occur later or earlier than the heliacal rising of Sirius? 

5.5. How many Tzolkin cycles are there in a Calendar Round? 

5.6. The pat tern of leap-year days in the Gregorian calendar has a 400-year cycle. 
Do the days of the week also recycle after 400 years? 

5.7. (The. revised Julian calendar) The Gregorian calendar bears the name of the 
Pope who decreed tha t it should be used. It was therefore adopted early in many 
countries with a Catholic government, somewhat later in Anglican and Protestant 
countries. Countries that are largely Orthodox in faith resisted this reform until 
the year 1923, when a council suggested that century years should be leap years 
only when they leave a remainder of 2 or 6 when divided by 9. (This reform was not 
mandated, but was offered as a suggestion, pending universal agreement among all 
Christians on a date for Easter.) This modification would retain only two-ninths of 
the century years as leap years, instead of one-fourth, as in the Gregorian calendar. 
What is the average number of days in a year of this calendar? How does it compare 
with the actual length of a year? Is it more or less accurate than the Gregorian 
calendar? 

5.8. In constructing a calendar, we encounter the problem of measuring time. 
Measuring space is a comparatively straightforward task, based on the notion of 
congruent lengths. One can use a stick or a knotted rope stretched t au t as a 
standard length and compare lengths or areas using it. Two lengths are congruent 
if each bears the same ratio to the standard length. In many cases one can move the 
objects around and bring them into coincidence. But what is meant by congruent 
time intervals? In what sense is the interval of t ime from 10:15 to 10:23 congruent 
to the t ime interval from 2:41 to 2:49? 

5.9. It seems clear that the decimal place-value system of writing integers is po-
tentially infinite; tha t is there is no limit on the size of number t ha t can be written 
in this system. But in practical terms, there is always a largest number for which 
a name exists. In ordinary language, we can talk about trillions, quadrillions, 
quintillions, sextillions, septillions, octillions, and so on. But somewhere before 
the number 1 0 6 0 is reached, most people (except Latin scholars) will run out of 
names. Some decades ago, a nephew of the American mathemat ic ian Edward Kas-
ner (1878-1955) coined the name googol for the number 1 0 1 0 0 , and later the name 
googolplex for 1 0 1 0 . This seems to be the largest number for which a name exists 
in English. Does there exist a positive integer for which no name could possibly 
be found, not merely an integer larger than all the integers tha t have been or will 
have been named before the human race becomes extinct? Give a logical argument 
in support of your answer. (And, while you arc a t it, consider what is meant by 
saying tha t an integer "exists.") 
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C a l c u l a t i o n 

In the present chapter we are going to look at processes tha t the modern calcula-
tor has rendered obsolescent, that is, the basic operations of arithmetic: addition, 
subtraction, multiplication, division, and the extraction of (square) roots. The 
word obsolescent is used instead of the more emphatic obsolete because these pro-
cesses are still being taught to children in schools. But the skill tha t children are 
acquiring becomes weaker with every passing year. In fact, it has been at least 
30 years since high-school students were actually taught to extract a square root. 
Even then, it was easier to consult a table of square roots than to carry out the 
error-prone, complicated operation of finding the root. Of course, what has caused 
these skills to fall out of use is the ready availability of hand-held calculators. This 
latest technological marvel is a direct continuation of earlier technology to ease 
the burden of concentration required in doing arithmetic, start ing with counting 
rods and counting boards, then moving on through the abacus and the slide rule. 
The need to calculate has been a motivating force behind the development of me-
chanical methods of computat ion, and thus an important par t of the history of 
mathematics. In this chapter we look first at the earliest methods developed for 
calculating, concentrating on multiplication and division (or, in the case of Egypt, 
processes equivalent to these) and the extraction of roots. We shall also look at 
three important motives for calculating: (1) commercial transactions involving la-
bor, construction, and trade; (2) geometric problems of area and volume involving 
surveying and engineering; and (3) regulation of the calendar, especially finding 
important dates such as Easter. 

1. E g y p t 

The richest source of information on Egyptian methods of calculation is the Ahmose 
(Rhind) Papyrus described in Chapter 2. After the descriptive title, the papyrus 
begins with the table of numbers shown in Fig. 1 below. In the modern world, we 
think of arithmetic as consisting of the four operations of addition, subtraction, 
multiplication, and division performed on whole numbers and fractions. We learn 
the rules for carrying out these operations in childhood and do them automatically, 
without at tempting to prove tha t they are correct. The situation was different for 
the Egyptian. To the Egyptian, it seems, the fundamental operations were addition 
and doubling, and these operations were performed on whole numbers and parts. 
We need to discuss both the operations and the objects on which they were carried 
out. 

Let us consider first the absence of multiplication and division as we know 
them. The tables you looked at in Problem 5.2 should have convinced you tha t 
there is something special about the number 2. We don' t normally say "one-twoth" 

129 

The History of Mathematics: A Brief Course, Second Edition 
by Roger Cooke 

Copyright © 2005 John Wiley & Sons, Inc. 



130 6. C A L C U L A T I O N 

for the result of dividing something in two parts. This linguistic peculiarity sug-
gests that doubling is psychologically different from applying the general concept 
of multiplying in the special case when the multiplier is 2. 

Next consider the absence of what we would call fractions. The closest Egyptian 
equivalent to a fraction is what we called a part. For example, what we refer 
to nowadays as the fraction j would be referred to as "the seventh part ." This 
language conveys the image of a thing divided into seven equal par ts arranged in 
a row and the seventh (and last) one being chosen. For tha t reason, according to 
van der Waerden (1963), there can be only one seventh par t , namely the last one; 
there would be no way of expressing what we call the fraction | . An exception was 
the fraction tha t we call | , which occurs constantly in the Ahmose Papyrus. There 
was a special symbol meaning "the two parts" out of three. In general, however, 
the Egyptians used only parts, which in our way of thinking are unit fractions, tha t 
is, fractions whose numerator is 1. Our familiarity with fractions in general makes 
it difficult to see what the fuss is about when the author asks what must be added 
to the two par ts and the fifteenth part in order t o make a whole (Problem 21 of 
the papyrus). If this problem is stated in modern notation, it merely asks for the 
value of 1 — (-JTT + 3 ) , and of course, we get the answer immediately, expressing it 
as - p r . Both this process and the answer would have been foreign to the Egyptian, 
whose solution is described below. 

To understand the Egyptians, we shall try to imitate their way of writing down 
a problem. On the other hand, we would be at a great disadvantage if our desire 
for authenticity led us to try to solve the entire problem using their notation. The 
best compromise seems to be to use our symbols for the whole numbers and express 
a part by the corresponding whole number with a bar over it. Thus, the fifth part 
will be written 5, the thirteenth part by Ú 3 , and so on. For "the two parts" ( | ) we 
shall use a double bar, that is, 3. 

1.1. Mul t ip l i ca t ion and div is ion. Since the only operation other than addit ion 
and subtraction of integers (which are performed automatically without comment) 
is doubling, the problem that we would describe as "multiplying 11 by 19" would 
have been written out as follows: 

19 1 * 
38 2 * 
76 4 
152 8 * 

Result 209 11 

Inspection of this process shows its justification. The rows are kept strictly in 
proportion by doubling each time. The final result can be stated by comparing 
the first and last rows: 19 is to 1 as 209 is to 11. The rows in the right-hand 
column tha t must be added in order to obtain 11 are marked with an asterisk, and 
the corresponding entries in the left-hand column are then added to obtain 209. 
In this way any two positive integers can easily be multiplied. The only problem 
that arises is to decide how many rows to write down and which rows to mark 
with an asterisk. But that problem is easily solved. You stop creating rows when 
the next entry in the right-hand column would be bigger than the number you are 
multiplying by (in this case 11). You then mark your last row with an asterisk, 
subtract the entry in its right-hand column (8) from 11 (getting a remainder of 3), 



1. E G Y P T 131 

then move up and mark the next row whose right-hand column contains an entry 
not larger than this remainder (in this case the second row), subtract the entry in 
its right-hand column (2), from the previous remainder to get a smaller remainder 
(in this case 1), and so forth. 

We shall refer to this general process of doubling and adding as calculating. 
What we call division is carried out in the same way, by reversing the roles of the 
two columns. For example, what we would call the problem of dividing 873 by 97 
amounts to calculating with 97 so as to obtain 873. We can write it out as follows: 

* 97 1 
194 2 
388 4 

* 776 8 
873 9 Result. 

The process, including the rules for creating the rows and deciding which ones 
to mark with an asterisk, is exactly the same as in the case of multiplication, except 
that now it is the left-hand column that is used rather than the right-hand column. 
We create rows until the next entry in the left-hand column would be larger than 
873. We then mark the last row, subtract the entry in its left-hand column from 
873 to obtain the remainder of 97, then look for the next row above whose left-hand 
entry contains a number not larger than 97, mark tha t row, and so on. 

1.2. "Part s" . Obviously, the second use of the two-column system can lead to 
complications. While in the first problem we can always express any positive integer 
as a sum of powers of 2, the second problem is a different matter . We were just 
lucky that we happened to find multiples of 97 tha t add up to 873. If we hadn ' t 
found them, we would have had to deal with those parts tha t have already been 
discussed. For example, if the problem were "calculate with 12 so as to obtain 28," 
it might have been handled as follows: 

12 1 
* 24 2 

8 I 
* 4 3_ 

28 2 3 Result. 

Wha t is happening in this computation is the following. We stop creating rows 
after 24 because the next entry in the left-hand column (48) would be bigger than 
28. Subtracting 24 from 28, we find tha t we still need 4, yet no 4 is to be found. 
We therefore go back to the first row and multiply by | , getting the row containing 

8 and 3. Dividing by 2 again gets a 4 in the left-hand column. We then have the 
numbers we need to get 28, and the answer is expressed as 2 3. Quite often the 
first multiplication by a part involves the two-thirds part 3. The scribes probably 
began with this part instead of one-half for the same reason that a carpenter uses 
a plane before sandpaper: the work goes faster if you take bigger "bites." 

The par ts tha t are negative powers of 2 play a special role. When applied to 
a hekat of grain, they are referred to as the Horus-eye pa r t s . 1 Since 1/2 + 1/4 + 

1 According to Egyptian legend, the god Horus lost an eye in a fight with his uncle, and the eye 
was restored by the god Thoth. Each of these fractions was associated with a particular part of 
Horus' eye. 
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1/8 + 1/16 + 1/32 + 1/64 = 63/64, the scribes apparently saw tha t unity could 
be restored (approximately), as Horus' eye was restored, by using these parts . 
The fact tha t (in our terms) 63 occurs as a numerator, shows tha t division by 
3, 7, and 9 is facilitated by the use of the Horus-eye series. In particular, since 
1/7 = (1/7) · ((63/64) + 1/64) = 9/64 + 1/448 = 8/64 + 1/64 + 1/448, the seventh 
part could have been written as 8 64 448. In this way, the awkward seventh part 
gets replaced by the better-behaved Horus-eye fractions, plus a corrective term (in 
this case 448, which might well be negligible in practice. Five such replacements are 
implied, though not given in detail, in the Akhmim Wooden Table t . 2 As another 
example, since 64 = 4 - 1 3 + 8 + 4, we find that T3 becomes 16 Ú04 208. 

There are two more complications that arise in doing ar i thmetic the Egyptian 
way. The first complication is obvious. Since the procedure is based on doubling, 
but the double of a part may not be expressible as a part , how does one "calculate" 
with parts? It is easy to double, say, the twenty-sixth par t : T h e double of the 
twenty-sixth part is the thirteenth part. If we t ry t o double again, however, we are 
faced with the problem of doubling a part involving an odd number. The table at 
the beginning of the papyrus gives the answer: The double of the thirteenth part 
is the eighth part plus the fifty-second part plus the one hundred fourth par t . In 
our terms this tabular entry expresses the fact tha t 

I - I 4 - I 4 - - L 
13 8 ~ 52 T 1 0 4 ' 

Gillings (1972, p. 49) lists five precepts apparently followed by the compiler of 
this table in order to make it maximally efficient for use. The most important of 
these are the following three. One would like each double (1) to have as few terms 
as possible, (2) with each term as small as possible ( that is, the "denominators" 
as small as possible), and (3) with even "denominators" rather than odd ones. 
These principles have to be balanced against one another, and the table in Fig. 

1 represents the resulting compromise. However, Gillings' principles are purely 
negative ones, telling what not to do. The positive side of creating such a table 
is to find simple pat terns in the numbers. One pat tern t ha t occurs frequently is 
illustrated by the double of 5, and amounts to the identity 2 / p = l / ( ( p + l ) / 2 ) + 
l / (p (p + l ) / 2 ) . Another, illustrated by the double of 13, probably arises from the 
Horus-eye representation of the original part. 

Wi th this table, which gives the doubles of all par ts involving an odd number 
up to 101, calculations involving parts become feasible. There remains, however, 
one final complication before one can set out to solve problems. The calculation 
process described above requires subtraction a t each stage in order to find what 
is lacking in a given column. When the column already contains parts, this leads 
to the second complication: the problem of subtracting parts. (Adding par ts is no 
problem. The author merely writes them one after another. The sum is condensed 
if, for example, the author knows that the sum of 3 and 6 is 2.) This technique, 
which is harder than the simple procedures discussed above, is explained in the 
papyrus itself in Problems 21 to 23. As mentioned above, Problem 21 asks for the 
parts that must be added to the sum of 3 and 15 to obtain 1. T h e procedure used 
to solve this problem is as follows. Begin with the two par t s in the first row: 

2 See http://www.inathworld.com/AkhmimWoodenTablet.html. In a post to the history of mathe-
matics mailing list in December 2004 the author of that article, Milo Gardner, noted that recent 
analysis of this tablet has upset a long-held belief about the meaning of a certain term in these 
equations. 
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5 3 1 5 5 5 3 0 3 1 8 7 9 5 

7 4 2 8 5 7 3 8 1 1 4 

9 6 1 8 5 9 3 6 2 3 6 5 3 1 

1 1 6 6 6 6 1 40 2 4 4 4 8 8 6 1 0 

1 3 8 5 2 104 6 3 42 126 

1 5 1 0 3 0 6 5 3 9 1 9 5 

1 7 1 2 5 1 6 8 6 7 4 0 3 3 5 5 3 6 

1 9 1 2 7 6 1 1 4 6 9 46 1 3 8 

2 1 1 4 4 2 71 40 5 6 8 7 1 0 

2 3 1 2 2 7 6 7 3 60 2 1 9 2 9 2 3 6 5 

2 5 1 5 7 5 7 5 5 0 1 5 0 

2 7 1 8 5 4 7 7 44 3 0 8 

2 9 2 4 5 8 174 2 3 2 79 6 0 2 3 7 3 1 6 7 9 0 

3 1 2 0 124 1 5 5 8 1 5 4 162 

3 3 2 2 6 6 8 3 6 0 3 3 2 4 1 5 4 9 8 

3 5 3 0 4 2 8 5 5 1 2 5 5 

3 7 2 4 1 1 1 2 9 6 8 7 5 8 174 

3 9 2 6 7 8 8 9 6 0 3 5 6 5 3 4 8 9 0 

4 1 2 4 2 4 6 3 2 8 9 1 70 1 3 0 

4 3 4 2 8 6 129 301 9 3 6 2 1 8 6 

4 5 3 0 9 0 9 5 6 0 3 8 0 5 7 0 

4 7 3 0 141 4 7 0 9 7 5 6 6 7 9 776 

4 9 2 8 196 9 9 6 6 1 9 8 

5 1 3 4 102 101 101 2 0 2 3 0 3 6 0 6 

F I G U R E 1 . Doubles of unit fractions in the Ahmose Papyrus 

3 1 5 1. 

Now the problem is to see what must be added to the two terms on the left-hand 
side in order to obtain the right-hand side. Preserving proportions, the author 
multiplies the row by 15, getting 

1 0 1 1 5 

It is now clear that when the problem is "magnified" by a factor of 1 5 , we need 
to add 4 units. Therefore, the only remaining problem is, as we would put it, to 
divide 4 by 1 5 , or in language tha t may reflect better the thought process of the 
author, to "calculate with 1 5 so as to obtain 4 . " This operation is carried out in 
the usual way: 

1 5 1_ 

1 _ 1 5 _ 
2 1 0 _ 3 0 [from the table] 
4 5 Ú 5 Result. 

Thus, the parts tha t must be added to the sum of 3 and 1 5 in order to reach 1 
are 5 and 1 5 . This "subroutine," which is essential to make the system of computa-
tion work, was written in red ink in the manuscripts, as if the writers distinguished 
between computat ions made within the problem to find the answer and computa-
tions made in order to operate the system. Having learned how to complement 
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(subtract) parts , what are called hau (or aha) computat ions by the author, one can 
confidently attack any arithmetic problem whatsoever. Although there is no single 
way of doing these problems, specialists in this area have detected systematic pro-
cedures by which the table of doubles was generated and pat terns in the solution of 
problems tha t indicate, if not an algorithmic procedure, at least a certain habitual 
approach to such problems. 

Let us now consider how these principles are used to solve a problem from the 
papyrus. The one we pick is Problem 35, which, translated literally and mislead-
ingly, reads as follows: 

Go down I times 3. My third part is added to me. It is filled. Wha t 
is the quanti ty saying this? · 

To clarify: This problem asks for a number that yields 1 when it is tripled 
and the result is then increased by the third par t of the original number. In other 
words, "calculate with 3 3 so as to obtain 1." The solution is as follows: 

3 3 1 
10 3 [multiplied by 3] 
5 \2_ 
1 5 10 Result. 

1.3. Prac t i ca l problems . One obvious application of calculation in everyday life 
is in surveying, where one needs some numerical way of comparing the sizes of 
areas of different shapes. This application is discussed in Chapter 9. The papyrus 
also contains several problems that involve proportion in the guise of the slope of 
pyramids and the strength of beer. Both of these concepts involve what we think 
of as a ratio, and the technique of finding the fourth element in a proportion by 
the procedure once commonly taught to grade-school students and known as the 
Rule of Three. It is best explained by a sample question. If three bananas cost 69 
cents, what is the cost of five bananas? Here we have three numbers: 3, 69, and 
5. We need a fourth number tha t has the same ratio to 69 tha t 5 has to 3, or, 
equivalently, the same ratio to 5 that 69 has to 3 . The rule says tha t such a number 
is 69 ÷ 5 -ô- 3 = 105. Since the Egyptian procedure for multiplication was based 
on an implicit notion of proportion, such problems yield easily to the Egyptian 
techniques. We shall reserve the discussion of pyramid slope problems until we 
examine Egyptian geometry in Chapter 9. Several units of weight are mentioned 
in these problems, but the measurement we shall pay particular at tent ion to is a 
measure of the dilution of bread or beer. It is called a pesu and defined as the 
number of loaves of bread or jugs of beer obtained from one hekat of grain. A hekat 
was slightly larger than a gallon, 4.8 liters to be precise. Jus t how much beer or 
bread it would produce under various circumstances is a technical mat te r t ha t need 
not concern us. The thing we need to remember is tha t the number of loaves of 
bread or jugs of beer produced by a given amount of grain equals the pesu t imes 
the number of hekats of grain. A large pesu indicates weak beer or bread. In the 
problems in the Ahmose Papyrus the pesu of beer varies from 1 to 4, while tha t for 
bread varies from 5 to 45. 

Problem 71 tells of a jug of beer produced from half a hekat of grain (thus its 
pesu was 2). One-fourth of the beer is poured off and the jug is topped up with 
water. The problem asks for the new pesu. The author reasons tha t the eighth part 
of a hekat of grain was removed, leaving (in his terms) 4 8, tha t is, what we would 
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F I G U R E 2. The Shang numerals. 

call § of a hekat of grain. Since this amount of grain goes into one jug, it follows 
that the pesu of tha t beer is what we call the reciprocal of that number, namely 
2 3. The author gives this result immediately, apparently assuming that by now 
the reader will know how to "calculate with 4 8 until 1 is reached." The Rule of 
Three procedure is invoked in Problem 73, which asks how many loaves of 15-pesw 
bread are required to provide the same amount of grain as 100 loaves of 10-pesu 
bread. The answer is found by dividing 100 by 10, then multiplying by 15, which 
is precisely the Rule of Three. 

2. China 

In contrast to the Egyptians, who computed with ink on papyrus, the ancient Chi-
nese, s tart ing in the t ime of the Shang dynasty, used rods representing numerals to 
carry out computat ions. Chinese documents from the second century BCE men-
tion the use of counting rods, and a set of such rods from the first century BCE 
was discovered in 1970. The rods can be arranged to form the Shang numerals 
(Fig. 2) and thereby represent decimal digits. They were used in conjunction with 
a counting board, which is a board ruled into squares so tha t each column (or row, 
depending on the direction of writing) represents a particular item. In pure com-
putations, the successive rows in the board indexed powers of 10. These rods could 
be stacked to represent any digit from 1 to 9. Since they were placed on a board in 
rows and columns, the empty places are logically equivalent to a use of 0, but not 
psychologically equivalent. The use of a circle for zero in China is not found before 
the thirteenth century. On the other hand, according to Lam and Ang [1987, p . 
102), the concept of negative numbers (fu), represented by black rods instead of 
the usual red ones for positive numbers (cheng), was also present as early as the 
fourth century BCE. 

It is difficult to distinguish between, say, 22 (|| ||) and 4 (||||) if the rods are 
placed too close together. To avoid that difficulty, the Chinese rotated the rods in 
alternate rows through a right angle, in effect using a positional system based on 
100 rather than 10. Since this book is being published in a language that is read 
from left to right, then from top to bottom, we shall alternate columns rather than 
rows. In our exposition of the system the number 22 becomes = 11 and 4 remains 
| | | | . The Shang numerals are shown in Fig. 2, the top row being used to represent 
digits multiplied by an even power of 10 and the bot tom row digits multiplied by 
an odd power of 10. 

Addition and subtract ion with rods representing Shang numerals are obvious 
operations. Multiplication and division require somewhat more work, and those 
procedures are explained in the Sun Zi Suan Jing. 

Except tha t multiplication was carried out start ing with the largest denomi-
nations rather than the smallest, the procedure for multiplying digits and carrying 
resembles all other systems for multiplying. Using numerals in place of the rods, 
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we can illustrate the multiplication 324 · 29 as follows: 

3 2 4 3 2 4 3 2 4 2 4 2 4 
— > 6 — > 8 7 — > 8 7 — > 9 1 — • 

2 9 2 9 2 9 2 9 2 9 

2 4 4 4 4 
— > 9 2 8 — > 9 2 8 — > 9 3 6 — > 9 3 9 6 — > 9 3 9 6 

2 9 2 9 2 9 2 9 

The sequence of operations is very easy to understand from this illustration. 
First, the larger number is written on top (on the right in Chinese, of course, since 
the writing is vertical). The smaller number is written on the bot tom (actually on 
the left), with its units digit opposite the largest digit of the larger number. Then, 
working always from larger denominations to smaller, we multiply the digits one at 
a time and enter the products between the two numbers. Once a digit of the larger 
number has been multiplied by all the digits of the smaller one, it is "erased" (the 
rods are picked up), and the rods representing the smaller number are moved one 
place to the right (actually downward). At tha t point, the process repeats until all 
the digits have been multiplied. When that happens, the last digit of the larger 
number and all the digits of the smaller number are picked up, leaving only the 
product. 

Long division was carried out in a similar way. The part ial quotients were kept 
in the top row, and the remainder at each stage occupied the center row (with 
the same caveat as above, that rows are actually columns in Chinese writing). For 
example, to get the quotient 438 -f- 7, one proceeds as follows. 

6 6 6 2 
4 3 8 — > 4 3 8 — > 4 3 8 — > 1 8 — » 1 8 — • 4 

7 7 7 7 7 7 

The first step here is merely a statement of the problem. The procedure be-
gins with the second step, where the divisor (7) is moved to the extreme left, then 
moved rightward until a division is possible. Thereafter, one does simple divisions, 
replacing the dividend by the remainder at each stage. The original dividend can 
be thought of as the remainder of a fictitious "zeroth" division. Except for the "era-
sures" when the rods are picked up, the process looks very much like the algorithm 
taught to school children in the United States. The final display allows the answer 
to be read off: 438 -j- 7 = 621. It would be only a short step to replace this last 
common fraction by a decimal; all one would have to do is continue the algorithm 
as if there were zeros on the right of the dividend. However, no such procedure is 
described in the Sun Zi Suan Jing. Instead, the answer is expressed as an integer 
plus a proper fraction. 

2.1 . Fract ions a n d root s . The early Chinese way of handling fractions is much 
closer to our own ideas than tha t of the Egyptians. The Sun Zi Suan Jing gives 
a procedure for reducing fractions tha t is equivalent t o the familiar Euclidean al-
gorithm for finding the greatest common divisor of two integers. The rule is to 
subtract the smaller number from the larger until the difference is smaller than the 
originally smaller number. Then begin subtract ing the difference from the smaller 
number. Continue this procedure until two equal numbers are obtained. Tha t 
number can then be divided out of both numerator and denominator. 
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With this procedure for reducing fractions to lowest terms, a complete and 
simple theory of computat ion with fractions is feasible. Such a theory is given in the 
Sun Zi Suan Jing, including the standard procedure for converting a mixed number 
to an improper fraction and the procedures for adding, subtracting, multiplying, 
and dividing fractions. Thus, the Chinese had complete control over the system of 
rational numbers, including, as we shall see below, the negative rational numbers. 

At an early date the Chinese dealt with roots of integers, numbers like \ /355, 
which we now know to be irrational; and they found mixed numbers as approxima-
tions when the integer is not a perfect square. In the case of \ /355, the approxima-
tion would have been given as 1 8 | | . (The denominator is always twice the integer 
part, as a result of the particular algorithm used.) 

From arithmetic to algebra. Sooner or later, constantly solving problems of more 
and more complexity in order to find unknown quantities leads to the systematiza-
tion of ways of imagining operations performed on a "generic" number (unknown). 
When the point arises at which a name or a symbol for an unknown number is 
invented, so that expressions can be written representing the result of operations 
on the unknown number, we may take it tha t algebra has arisen. There is a kind of 
twilight zone between ari thmetic and algebra, in which certain problems are solved 
imaginatively without using symbols for unknowns, but later are seen to be easily 
solvable by the systematic methods of algebra. A good example is Problem 15 of 
Chapter 3 of the Sun Zi Suan Jing, which asks how many carts and how many 
people are involved, given tha t there are two empty carts (and all the others are 
full) when people are assigned three to a cart, but nine people have to walk if only 
two are placed in each cart . We would naturally make this a problem in two linear 
equations in two unknowns: If ÷ is the number of people and y the number of carts, 
then 

However, tha t would be using algebra, and Sun Zi does not quite do that in this 
case. His solution is as follows: 

Pu t down 2 carts, multiply by 3 to give 6, add 9, which is the 
number of persons who have to walk, to obtain 15 carts. To find 
the number of persons, multiply the number of carts by 2 and add 
9, which is the number of persons who have to walk. 

Probably the reasoning in the first sentence here is pictorial. Imagine each cart 
filled with three people. When loaded in this way, the carts would accomodate all 
the "real" people in the problem, plus six "fictitious" people, since we are given tha t 
two carts would be empty if the others each carried three people. Let us imagine 
then, tha t six of the carts contain two real people and one fictitious person, while 
the others contain three real people. Now imagine one person removed from each 
cart, preferably a fictitious person if possible. The number of people removed would 
obviously be equal to the number of carts. The six fictitious people would then be 
removed, along with the nine real people who have to walk when there are only two 
people in each cart. I t follows tha t there must be 15 carts. Finding the number of 
people is straightforward once the number of carts is known. 

÷ = 3 ( y - 2 ) 

÷ = 2y + 9 . 
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2.2. T h e Jiu Zhang Suanshu. This work is the most fundamental of the early 
Chinese mathematical classics. For the most part , it assumes tha t the methods 
of calculation explained in the Sun Zi Suan Jing are known and applies them to 
problems very similar to those discussed in the Ahmose Papyrus. In fact, Problems 
5, 7 ,10, and 15 from the first chapter reappear as the first four problems of Chapter 
2 of the Sun Zi Suan Jing. As its tit le implies, the book is divided into nine 
chapters. These nine chapters contain a total of 246 problems. The first eight of 
these chapters discuss calculation and problems tha t we would now solve using linear 
algebra. The last chapter is a study of right triangles. The first chapter, whose 
title is "Rectangular Fields," discusses how to express the areas of fields given their 
sides. Problem 1, for example, asks for the area of a rectangular field tha t is 15 
bu by 16 bu.3 The answer, we see immediately, is 240 "square bu." However, the 
Chinese original does not distinguish between linear and square uni ts . The answer 
is given as "1 mu.'" The Sun Zi Suan Jing explains tha t as a unit of length, 1 mu 
equals 240 bu. This ambiguity is puzzling, since a mu is both a length equal to 240 
bu and the area of a rectangle whose dimensions are 1 bu by 240 bu. It would seem 
more natural for us if 1 mu of area were represented by a square of side 1 mu. If 
these units were described consistently, a square of side 1 linear mu would have an 
area equal to 240 "areal". mu. Tha t there really is such a consistency appears in 
Problems 3 and 4, in which the sides are given in li. Since 1 li equals 300 bu ( that 
is, 1.25 mu), to convert the area into mu one must multiply the lengths of the sides 
in li, then multiply by 1.252 · 240 = 375. In fact, the instructions say to multiply 
by precisely that number. 

Rule of Three problems. Chapter 2 ("Millet and Rice") of the Jiu Zhang Suanshu 
contains problems very similar to the pesu problems from the Ahmose Papyrus. 
The proportions of millet and various kinds of rice and other grains are given 
as empirical da ta at the beginning of the chapter. If the Ahmose Papyrus were 
similarly organized into chapters, the chapter in it corresponding to this chapter 
would be called "Grain and Bread." Problems of the sort studied in this chapter 
occur frequently in all commercial transactions in all times. In the United States, 
for example, a concept analogous to pesu is the unit price (the number of dollars the 
merchant will obtain by selling 1 unit of the commodity in question). This number 
is frequently printed on the shelves of grocery stores to enable shoppers to compare 
the relative cost of purchasing different brands. Thus, the practicality of this kind 
of calculation is obvious. The 46 problems in Chapter 2, and also the 20 problems 
in Chapter 3 ("Proportional Distribution") of the Jiu Zhang Suanshu are of this 
type, including some extensions of the Rule of Three. For example, Problem 20 
of Chapter 3 asks for the interest due on a loan of 750 qian repaid after 9 days if 
a loan of 1000 qian earns 30 qian interest each month (a month being 30 days). 
The result is obtained by forming the product 750 qian t imes 30 qian times 9 days, 
then dividing by the product 1000 qian times 30 days, yielding 6 | qian. Here the 
product of the monthly interest on a loan of 1 qian and the number of days the loan 
is outstanding, divided by 30, forms the analog of the pesu for the loan, tha t is, the 
number of qian of interest produced by each qian loaned. Further illustrations are 
given in the problems at the end of the chapter. 

3 One bu is 600,000 hu, a hu being the diameter of a silk thread as it emerges from a silkworm. 
Estimates are that 1 hu is a little over 2 meters. 
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Chapter 6 ("Fair Transportat ion") is concerned with the very important prob-
lem of fair allocation of the burdens of citizenship. The Chinese idea of fairness, like 
that in many other places, including modern America, involves direct proportion. 
For example, Problem 1 considers a case of collecting taxes in a given location from 
four counties lying a t different distances from the collection center and having dif-
ferent numbers of households. To solve this problem a constant of proportionality 
is assigned to each county equal to the number of its households divided by its 
distance from the collection center. The amount of tax (in millet) each county is 
to provide is its constant divided by the sum of all the constants of proportionality 
and multiplied by the total amount of tax to be collected. The number of carts (of 
a total prescribed number) to be provided by each county is determined the same 
way. The da ta in the problem are as follows. 

C o u n t y N u m b e r of H o u s e h o l d s D i s t a n c e t o Col lec t ion Center 
A 10,000 8 days 

Â 9,500 10 days 
C 12,350 13 days 

D 12,200 20 days 

A total of 250,000 hu of millet were to be collected as tax, using 10,000 carts. 
The proportional parts for the four counties were therefore 1250, 950, 950, and 610, 
which the author reduced to 125, 95, 95, and 61. These numbers total 376. It 
therefore followed tha t county A should provide · 250,000 hu, tha t is, approx-
imately 83,111.7 hu of millet and ^ | · 10,000, or 3324 carts. The author rounded 
off the tax to three significant digits, giving it as 83,100 hu. 

Along with these administrative problems, the 28 problems of Chapter 6 also 
contain some problems tha t have acquired an established place in algebra texts 
throughout the world and will be continue to be worked by students as long as 
there are teachers to require it. For example, Problem 26 considers a pond used for 
irrigation and fed by pipes from five different sources. Given that these five canals, 
each "working" alone, can fill the pond in | , 1, 2^ , 3, and 5 days, the problem asks 
how long all five "working" together will require to fill it. The author realized tha t 
the secret is to add the rates at which the pipes "work" (the reciprocals of the times 
they require individually to fill the pond), then take the reciprocal of this sum, and 
this instruction is given. The answer is 1/(3 + 1 + 2 /5 + 1/3 + 1/5) = 15/74. 

3 . India 

We have noted a resemblance between the mathematics developed in ancient Egypt 
and tha t developed in ancient China. We should not be surprised at this resem-
blance, since these techniques arose in response to universal needs in commerce, 
industry, government, and society. They form a universal foundation for mathe-
matics tha t remained at the core of any practical education until very recent times. 
Only the widespread use of computers and computer graphics has, over the past 
two decades, made these skills obsolete, just as word processors have made it unim-
por tant to develop elegant handwriting. 

To avoid repetition, we simply note tha t much of the Hindu method of com-
puta t ion is similar to what is now done or what is discussed in other sections of 
this chapter. A few unusual aspects can be noted, however. Brahmagupta gives 
the s tandard rules for handling common fractions. However, his arithmetic con-
tains some original ways of looking at many things tha t we take for granted. For 
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example, to do a long division with remainder, say, ^ p , he would look for the next 
number after 22 that divides 750 evenly (25) and write 

7 5 0 _ 7 5 0 , (750\ 3 
22 ~ 2 5 ' V 2 5 I 2 2 ' 

that is, 

1 = 3 0 ( 1 + A) = 3 0 + i = 3 4 i 
Beyond these simple operations, he also codifies the methods of taking square and 
cube roots, and he states clearly the Rule of Three (Colebrooke, 1817, p. 283). 
Brahmagupta names the three terms the "argument," the "fruit," and the "requisi-
tion," and points out that the argument and the requisition must be the same kind 
of thing. The unknown number he calls the "produce," and he gives the rule tha t 
the produce is the requisition multiplied by the fruit and divided by the argument. 

4. M e s o p o t a m i a 

Cuneiform tablets from the site of Senkerch (also known as Larsa), kept in the 
British Museum, contain tables of products, reciprocals, squares, cubes, square 
roots, and cube roots of integers. It appears tha t the people who worked with 
mathematics in Mesopotamia learned by heart, just as we do, the products of all the 
small integers. Of course, for them a theoretical multiplication table would have to 
go as far as 59 ÷ 59, and the consequent strain on memory would be large. T h a t fact 
may account for the existence of so many written tables. Jus t as most of us learn, 
without being required to do so, that ^ = 0 . 3 3 3 3 . . . , the Mesopotamians wrote 
their fractions as sexagesimal fractions and came to recognize certain reciprocals, 
for example ^ = 0; 6,40. With a system based on 30 or 60, all numbers less than 10 
except 7 have terminating reciprocals. In order to get a terminat ing reciprocal for 7 
one would have to go to a system based on 210, which would be far too complicated. 

Even with base 60, multiplication can be quite cumbersome, and historians 
have conjectured that calculating devices such as an abacus might have been used, 
although none have been found. H0yrup (2002) has analyzed the situation by 
considering the errors in two problems on Old Babylonian cuneiform tablets and 
deduced tha t any such device would have had to be some kind of counting board, 
in which terms tha t were added could not be identified and subtracted again (like 
pebbles added to a pile). 

Not only are sexagesimal fractions handled easily in all the tablets, the concept 
of a square root occurs explicitly, and actual square roots are approximated by 
sexagesimal fractions, showing that the mathematicians of the t ime realized that 
they hadn ' t been able to make these square roots come out even. Whether they 
realized that the square root would never come out even is not clear. For example, 
text AO 6484 (the AO stands for Antiquites Orientales) from the Louvre in Paris 
contains the following problem on lines 19 and 20: 

The diagonal of a square is 10 Ells. How long is the side? [To find 
the answer] multiply 10 by 0;42,30. [The result is] 7;5. 

Now 0; 42, 30 is | § + = ^ = 0.7083, approximately. This is a very good 
approximation to l / \ / 2 « 0.7071, and the answer 7; 5 is, of course, 7 ^ = 7.083 = 
10 · 0.7083. It seems that the writer of this tablet knew that the ratio of the 
side of a square to its diagonal is approximately The approximation to \ /2 that 
arises from what is now called the Newton Raphson method, start ing from § as the 
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first approximation, turns up the number y | as the next approximation. Thus the 

fraction ^ | represents an approximation to = ^ - . The method of approximating 

square roots can be understood as an averaging procedure. In the present case, it 

works as follows. Since 1 is smaller than \ /2 and 2 is larger, let their average be 

the first approximation, that is, | . This number happens to be larger than v^2, 

but it is not necessary to know tha t fact to improve the approximation. Whether 

it errs by being too large or two small, the result of dividing 2 by this number 

will err in the other direction. Thus, since | is too large to be \ / 2 , the quotient 

3^2 = I is too small. The average of these two numbers will be closer to \ /2 than 

either number; 4 the second approximation to \/2 is then | ( | + | ) = Again, 

whether this number is too large or two small, the number 1 7

2

1 2

 = f f w ' l ' e r r m 

the opposite direction, so tha t we can average the two numbers again and continue 

this process as long as we like. Of course, we cannot know tha t this procedure was 

used to get the approximate square root unless we find a tablet tha t says so. 

The writers of these tablets realized tha t when numbers are combined by arith-
metic operations, it may be of interest to know how to recover the original da ta 
from the result. This realization is the first step toward attacking the problem of 
inverting binary operations. Although we now solve such problems by solving qua-
dratic equations, the Mesopotamian approach was more like the Chinese approach 
described above. Tha t is, certain arithmetic processes tha t could be pictured were 
carried out, but what we call an equation was not written explicitly. With every 
pair of numbers, say 13 and 27, they associated two other numbers: their average 
(13 + 27)/2 = 20 and their semidifference* (27 - 13)/2 = 7. The average and 
semidiffcrence can be calculated from the two numbers, and the original da ta can 
be calculated from the average and semidifference. The larger number (27) is the 
sum of the average and semidifference: 20 + 7 = 27, and the smaller number (13) 
is their difference: 20 - 7 = 13. The realization of this mutual connection makes it 
possible essentially to "change coordinates" from the number pair (a, b) to the pair 
((á + 6 ) / 2 , ( á - 6 ) / 2 ) . 

At some point lost to history some Mesopotamian mathematician came to 
realize that the product of two numbers is the difference of the squares of the average 
and semidifference: 27 • 13 = (20) 2 - 7 2 = 351 (or 5, 51 in Mesopotamian notation). 
This principle made it possible to recover two numbers knowing their sum and 
product or knowing their difference and product. For example, given that the sum 
is 10 and the product is 21 , we know that the average is 5 (half of the sum), hence 
tha t the square of the semidifference is 5 2 - 21 = 4. Therefore, the semidifference 
is 2, and the two numbers are 5 + 2 = 7 and 5 - 2 = 3. Similarly, knowing that the 
difference is 9 and the product is 52, we conclude tha t the semidifference is 4.5 and 
the square of the average is 52 + (4.5) 2 = 72.25. Hence the average is v/72.25 = 8.5. 

4 The error made by the average is half of the difference of the two errors. 
5 This word is coined because English contains no one-word description of this concept, which 
must otherwise be described as half of the difference of the two numbers. It is clear from the 
way in which the semidifference occurs constantly that the writers of these tablets automatically 
looked at this number along with the average when given two numbers as data. However, there 
seems to be no word in the Akkadian, Sumerian, and ideogram glossary given by Neugebauer to 
indicate that the writers of the clay tablets had a special word for these concepts. But at the very 
least, they were trained to calculate these numbers when dealing with this type of problem. In 
the translations given by Neugebauer the average and semidifference are obtained one step at a 
time, by first adding or subtracting the two numbers, then taking half of the result. 
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Therefore, the two numbers are 8.5 + 4.5 = 13 and 8 . 5 - 4 . 5 = 4. The two techniques 
just illustrated occur constantly in the cuneiform texts, and seem to be procedures 
familiar to everyone, requiring no explanation. 

5. T h e anc ient G r e e k s 

It is fairly obvious how to do addition and subtraction within the Greek system 
of numbering. Doing multiplication in modern notation, as you know, involves 
memorizing all products up to 9 • 9, and learning how to keep columns straight, 
plus carrying digits where necessary. With our place-value notat ion, we have little 
difficulty multiplying, say 23-42. For the ancient Greeks the corresponding problem 
of multiplying ê'ç' by ì' â' was more complicated. It would be necessary to find 
four products: ê' • ì', ê' • â', ç' • ì', and 7' • â' • The first of three of these require 
the one doing the calculation to keep in mind tha t ê' is 10 times â' and ì' is 10 
times ä'. 

These operations are easier for us, since we use the same nine digits in different 
contexts, keeping track of the numbers they represent by keeping the columns 
straight while multiplying. They were more difficult for the ancient Greeks, since 
going from 30 to 3 was not merely a mat ter of ignoring a zero; it involved a shift 
forward by 10 letters in the alphabet, from ë' to 7'. In addit ion to the carrying tha t 
we must do, the Greek calculator had to commit to memory 20 such alphabet shifts 
(10 by 10 letters, and 10 shifts by 20 letters), and, while computing, remember how 
many such shifts of each kind were performed, so as to know how many factors of 
10 were being "stored" during the calculation. 

The procedure is explained in the Synagoge of the third-century mathemat ic ian 
Pappus of Alexandria. The surviving portion of this work begins in the middle 
of Book 2, explaining how to multiply quickly numbers tha t are multiples of 10. 
Pappus illustrates the procedure by the following example, in which number names 
are translated into English but number symbols are transcribed directly from the 
original. (See Fig. 3 in Chapter 5 for the numerical values represented by these 
Greek letters.) 

Let the numbers be v', v', v', ì', ì', and ë'. Then the basic 
numbers will be å', å', å', ä', ä', and 7'· Their product will be 
éò'. Since there are ò' tens, and since ò' divided by four leaves a 
remainder of two, the product [of the six reduced numbers] will 
contain altogether one hundred myr iads . . . and these p' myriads 
multiplied by the <ò' units will make î' twofold [that is, "square"] 
myriads. 

When we translate the problem into our notation, it becomes trivial. We are 
trying to find the product 50 · 50 · 50 · 40 • 40 · 30. We have no trouble factoring out 
the six zeros and rewriting the problem a s 5 - 5 - 5 - 4 - 4 - 3 1 , 0 0 0 , 0 0 0 = 6000 · 10 6 = 
60 · (10,000) 2 . Converting from 40 to 4 is considerably easier than converting from 
ì' to ä'. Pappus divided the number of tens by 4, since he was counting in myriads 
(10 4 ) , and he expressed the answer as "myriadon î' diplon," tha t is, "of myriads 
60 twofold," or, in better English, "60 twofold myriads." To describe what we now 
call the square of a number, the ancient Greeks had to extend the normal meaning 
of the word diploos (double). A nonmathematical reader of Pappus ' Greek might 
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7 8 3 

4 

2 

5 

F I G U R E 3. Multiplication with Hindu-Arabic numerals. 

be inclined to think tha t the phrase myrias diploos meant 2 · 10,000 rather than 
ÉÏ,ÏÏÏ2. 

As you can see from this example, calculating (logistike) was not quite so trivial 
for the Greeks as for us. 

6. T h e Is lamic world 

It is well known that the numerals used all over the world today are an inheritance 
from both the Hindu and Arabic mathematicians of 1000 years ago. The Hindu 
idea of using nine symbols in a place-value system was known in what is now Iraq 
in the late seventh century, before that area became part of the Muslim Empire. 
In the late eighth century a scholar from India came to the court of Caliph al-
Mansur with a work on Hindu astronomy using these numerals, and this work was 
translated into Arabic. An Arabic treatise on these numbers, containing the first 
known discussion of decimal fractions, was written by al-Uqlidisi (ca. 920-ca. 980). 

Having inherited works from the t ime of Mesopotamia and also Greek and 
Hindu works tha t used the sexagesimal system in astronomy, the Muslim mathe-
maticians of a thousand years ago also used that system. The sexagesimal system 
did not yield immediately to its decimal rival, and the technique of place-value 
computation developed in parallel in the two systems. Ifrah (2000, pp. 539-555) 
gives a detailed description of the long resistance to the new system. The sexagesi-
mal system is mentioned in Arabic works of Abu'l-Wafa (940 988) and Kushar ben 
Laban (ca. 971 1029). It continued to appear in Arabic texts through the t ime of 
al-Kashi (1427), although the decimal system also occurs in the work of al-Kashi. 
In addition to the sexagesimal and decimal systems, the Muslim mathematicians 
used an elaborate system of finger reckoning. Some implementations of the deci-
mal system require crossing out or erasing in the process of computation, and tha t 
was considered a disadvantage. Nevertheless, the superiority of decimal notation in 
computation was recognized early. For example, al-Daffa (1973, pp. 56-57) men-
tions tha t there there are manuscripts still extant dat ing to the twelfth century, in 
which multiplication is performed by the very efficient method illustrated in Fig. 3 
for the multiplication 524 · 783 = 410,292. 

7. Europe 

The system of Roman numerals that now remains in countries settled by Europeans 
is confined to a few cases where numbers have only to be read, not computed with. 
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For computations these cumbersome numerals were supplanted centuries ago by 
the Hindu-Arabic place-value decimal system. Before tha t t ime, computat ions had 
been carried out using common fractions, although for geometric and astronomical 
computations, the sexagesimal system inherited from the Middle East was also 
used. It was through contacts with the Muslim culture t ha t Europeans became 
familiar with the decimal place-value system, and such mathematic ians as Gerbert 
of Aurillac encouraged the use of the new numbers in connection with the abacus. 
In the thirteenth century Leonardo of Pisa also helped to introduce this system 
of calculation into Europe, and in 1478 an ari thmetic was published in Treviso, 
Italy, explaining the use of Hindu-Arabic numerals and containing computations 
in the form shown in Fig. 3. In the sixteenth century many scholars, including 
Robert Recorde (1510-1558) in Britain and Adam Ries (1492-1559) in Germany, 
advocated the use of the Hindu-Arabic system and established it as a universal 
standard. 

The system was elegantly explained by the Flemish mathematic ian and engineer 
Simon Stevin (1548-1620) in his 1585 book De Thiende (Decimals). Stevin took 
only a few pages to explain, in essentially modern terms, how to add, subtract , 
multiply, and divide decimal numbers. He then showed the application of this 
method of computing in finding land areas and the volumes of wine vats. He wrote 
concisely, as he said, "because here we are writing for teachers, not students." His 
notation appears slightly odd, however, since he put a circled 0 where we now have 
the decimal point, and thereafter indicated the rank of each digit by a similarly 
encircled number. For example, he would write 13.4832 a s l 3 © 4 ® 8 © 3 © 2 @ . 
Here is his explanation of the problem of expressing 0.07 -ô- 0.00004: 

When the divisor is larger [has more digits] than the dividend, we 
adjoin to the dividend as many zeros as desired or necessary. For 
example, if 7 © is to be divided by 4 ( 5 ) , I place some 0s next 
to the 7, namely 7000. This number is then divided as above, as 
follows: 

? 1 

7 0 0 0 (1 7 5 0 ® 

ß i i t 
Hence the quotient is 1750© . [Gericke and Vogel, 1965, p. 19] 

Except for the location of the digits and the cross-out marks, this notation 
is essentially what is now done by school children in the United States. In other 
countries—Russia, for example—the divisor would be writ ten jus t to the right of 
the dividend and the quotient just below the divisor. 

Stevin also knew what to do if the division does not come out even. He pointed 
out that when 4 © is divided by 3 © , the result is an infinite succession of 3s 
and that the exact answer will never be reached. He commented, "In such a case, 
one may go as far as the particular case requires and neglect the excess. I t is 
certainly true that 13 © 3 © 3± © , or 13 © 3 © 3 © 3 ^ © , and so on are exactly 
equal to the required result, but our goal is to work only with whole numbers in 
this decimal computation, since we have in mind what occurs in human business, 
where [small par ts of small measures] are ignored." Here we have a clear case in 
which the existence of infinite decimal expansions is admit ted, without any hint 
of the possibility of irrational numbers. Stevin was an engineer, not a theoretical 
mathematician. His examples were confined to what is of practical value in business 
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and engineering, and he made no a t tempt to show how to calculate with an actually 
infinite decimal expansion. 

Stevin did, however, suggest a reform in trigonometry tha t was ignored until 
the advent of hand-held calculators, remarking that , "if we can trust our experience 
(with all due respect to Antiquity and thinking in terms of general usefulness), it 
is clear that the series of divisions by 10, not by 60, is the most efficient, a t least 
among those that are by nature possible." On those grounds, Stevin suggested tha t 
degrees be divided into decimal fractions rather than minutes and seconds. Modern 
hand-held calculators now display angles in exactly this way, despite the scornful 
remark of a twentieth-century mathematician that "it required four millennia to 
produce a system of angle measurement that is completely absurd." 

8. T h e value of calculat ion 

One cannot help noticing, alongside a few characteristics tha t are unique to a given 
culture, a large core of commonality in all this elementary mathematics. All of 
the treatises we have looked at pose problems of closely similar structure. This 
commonality is so great tha t any textbook of arithmetic published in the modern 
world up to very recent times is almost certain to repeat problems from the Jiu 
Zhang Suanshu or the Ahmose Papyrus or the Brahmasphutasiddhanta almost word 
for word. Thus, where Brahmagupta instructs the reader to "multiply the fruit 
and the requisition and divide by the argument in order to obtain the produce," 
Greenleaf (1876, p. 233) tells the reader to "find the required term by dividing the 
product of the second and third terms by the first." As far as clarity of exposition is 
concerned, one would have to give the edge to Brahmagupta. The number of ways 
of solving a mathematical problem is, after all, quite small; it is not surprising if 
two people in widely different circumstances come to the same conclusion. 

Of course, when looking a t the history of mathematics in the late nineteenth 
century, we tend to focus on the new research occurring at tha t t ime and overlook 
mere expositions of long-known mathematics such as one finds in the book of Green-
leaf. But what Greenleaf was expounding was a set of mathematical skills tha t had 
been useful for many centuries. Like the Jiu Zhang Suanshu and the Sun Zi Suan 
Jing, his book contains discussions of the relations of various units of measure to 
one another and a large number of examples, both realistic and fanciful, showing 
how to carry out all the elementary operations. His job, in fact, was harder than 
tha t of the earlier authors, since he had to explain the relation between common 
fractions and decimal fractions, exchange rates for different kinds of currency, and 
many principles of commercial and inheritance law. If we now tend to regard such 
books as being of secondary importance in the history of mathematics, that is only 
because such a high superstructure has been built on tha t foundation. When we 
read the classics from Egypt, India, China, and Mesopotamia, on the other hand, 
we are looking at the frontier of knowledge in their time. It is a t r ibute to the au-
thors of the treatises discussed in this chapter tha t they worked out and explained 
in clear terms a set of useful mathematical skills and bequeathed it to the world. 
For many centuries it could be said that the standard mathematical curriculum had 
a permanent value. Only in very recent years have the computational skills needed 
in commerce and law been superseded by the higher-level skills needed for deciding 
when and what to compute and how to interpret the results. 
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9. Mechanica l m e t h o d s of c o m p u t a t i o n 

Any study of the history of calculation must take account of the variety of com-
puting hardware that people have invented and the software algorithms tha t are 
developed from time to time. In ancient China the software (decimal place-value 
system) was so good that the hardware (counting rods, counting boards, and aba-
cus) worked with it very smoothly. The Greek and Roman system of writing num-
bers, however, was not a good representation of the decimal system, and the abacus 
was probably an essential tool of computation. When the graphical methods associ-
ated with Hindu-Arabic numerals were introduced into Europe, they were thought 
to be superior to the abacus. 

9.1 . Software: prosthaphaeresis and logar i thms . The graphic ari thmetic that 
had vanquished the counting board a few centuries earlier still had certain labori-
ous aspects connected with multiplication and division, which mathematic ians kept 
trying to simplify. Consider, for example, the two three-digit numbers 476 and 835. 
To add these numbers we must perform three simple additions, plus two more tha t 
result from "carrying," a total of eight simple additions. In general, a t most 3n - 1 
simple additions with ç — 1 carryings will be required to add two ra-digit numbers. 
Similarly, subtracting these numbers will require at most two borrowings, with con-
sequent modification of the digits borrowed from, and three simple subtractions. 
For an n-digit number that is at most ç simple subtractions and ç — 1 borrowings. 

On the other hand, to multiply two three-digit numbers will require nine simple 
multiplications followed by addition of the partial products, which will involve 
up to 10 more simple additions if carrying is involved. Thus we are looking at 
considerably more labor, with a number of additions and multiplications on the 
order of 2n2 if the two numbers each have ç digits. Not only is a greater amount of 
time and effort needed, the procedure is obviously more error-prone. On the other 
hand, in a practical application in which we are multiplying, say, two seven-digit 
numbers (which would involve more than 100 simple multiplications and additions), 
we seldom need all 14 or 15 digits of the result. If we could improve the speed of 
rhe operation at the expense of some precision, the trade-off would be worthwhile. 

Prosthapharesis. The increased accuracy of astronomical instruments, among other 
applications, led to a need to multiply numbers having a large number of digits. As 
just pointed out, the amount of labor involved in multiplying two numbers increases 
as the product of the numbers of digits, while the labor of adding increases according 
to the number of digits in the smaller number. Thus, multiplying two 15-digit 
numbers requires over 200 one-digit multiplications, while adding the two numbers 
requires only 15 such operations (not including carrying). It was the large number 
of digits in the table entries that caused the problem in the first place, but the key 
to the solution turned out to be in the structural properties of sines and cosines. 
The process was called prosthaphaeresis, from two Greek prefixes pros-, meaning 
toward, and apo-, meaning from., together with the root verb haird, meaning / seize 
or / take. Together these parts mean simply addition and subtraction. 

There are hints of this process in several sixteenth-century works, but we shall 
quote just one example. In his Trigonometria, first published in Heidelberg in 
1595, the theologian and mathematician Bartholomeus Pitiscus (1561-1613) posed 
the following problem: to solve the proportion in which the first term is the radius, 
while the second and third terms are sines, avoiding multiplication and division. 
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The problem here is to find the fourth proportional x, satisfying r : a = b : x, 
where r is the radius of the circle and a and b are two sines (half-chords) in the 

circle. We can see immediately that ÷ = ab/r, but as Pitiscus says, the idea is to 

avoid the multiplication and division, since in the trigonometric tables of the time 

a and b might easily have seven or eight digits each. 

The key to prosthaphaeresis is the well-known formula 

sin(a + â)+ sin[a - â) 
s m a c o s / 3 = . 

This formula is applied as follows: If you have to multiply two large numbers, regard 

one of them as the sine of an angle, the other as the cosine of a second angle. (Since 

Pitiscus had only tables of sines, he had to use the complement of the angle having 

the second number as a sine.) Add the angles and take the sine of their sum to 

obtain the first term; then subtract the angles and take the sine of their difference 

to obtain a second term. Finally, divide the sum of the two terms by 2 to obtain 

the product. To take a very simple example, suppose tha t we wish to multiply 

155 by 36. A table of trigonometric functions shows that sin 8° 55' = 0.15500 and 

cos68° 54' = 0.36000. Hence 

3 6 .155 = 1 0 5 s i n 7 7 ° 4 9 - + s in ( -59°59 ' ) = 97748 - 86588 = 

2 2 

In general, some significant figures will be lost in this kind of multiplication. 

For large numbers this procedure saves labor, since multiplying even two seven-digit 

numbers would tax the patience of most modern people. A further advantage is 

that prosthaphaeresis is less error-prone than multiplication. Its advantages were 

known to the Danish astronomer Tycho Brahe (1546-1601), who used it in the 

astronomical computat ions connected with the extremely precise observations he 

made at his observatory during the latter part of the sixteenth century. 

Logarithms. The problem of simplifying laborious multiplications, divisions, root 
extractions, and the like, was being attacked at the same time in another part 
of the world and from another point of view. The connection between geometric 
and arithmetic proportion had been noticed earlier by Chuquet, but the practical 
application of this fact had never been worked out. The Scottish laird John Napier, 
Baron of Murchiston (1550-1617), tried to clarify this connection and apply it. His 
work consisted of two parts, a theoretical part based on a continuous geometric 
model, and a computat ional part , involving a discrete (tabular) approximation of 
the continuous model. The computational part was published in 1614. However, 
Napier hesitated to publish his explanation of the theoretical foundation. Only 
in 1619, two years after his death, did his son publish the theoretical work under 
the title Mirifici logarithmorum canonis descriptio (A Description of the Marvelous 
Rule of Logarithms). The word logarithm means ratio number, and it was from the 
concept of ratios (geometric progressions) that Napier proceeded. 

To explain his ideas Napier used the concept of moving points. He imagined 
one point Ñ moving along a straight line from a point Ô toward a point S with 
decreasing velocity such tha t the ratio of the distances from the point Ñ to S at 
two different times depends only on the difference in the times. (Actually, he called 
the line ending a t S a sine and imagined it shrinking from its initial size TS, which 
he called the radius.) A second point is imagined as moving along a second line 
at a constant velocity equal to that with which the first point began. These two 
motions can be clarified by considering Fig. 4. 
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S 

ï a b c d 

F I G U R E 4. Geometric basis of logarithms. 

The first point sets out from Ô at the same time and with the same speed 
with which the second point sets out from o. The first point, however slows down, 
while the second point continues to move at constant speed. The figure shows the 
locations reached at various times by the two points: When the first point is at A, 
the second is at o; when the first point is at B, the second is at 6; and so on. The 
point moving with decreasing velocity requires a certain amount of t ime to move 
from Ô to A, the same amount of t ime to move from A to B, from Â to C, and 
from C to D. Consequently, TS : AS = AS : BS = BS : CS = CS : DS. 

The first point will never reach 5 , since it keeps slowing down, and its velocity 
at S would be zero. The second point will travel indefinitely far, given enough 
time. Because the points are in correspondence, the division relation tha t exists 
between two positions in the first case is mirrored by a subtractive relation in the 
corresponding positions in the second case. Thus, this diagram essentially changes 
division into subtraction and multiplication into addition. The top scale in Fig. 4 
resembles a slide rule, and this resemblance is not accidental: a slide rule is merely 
an analog computer that incorporates a table of logarithms. 

Napier's definition of the logarithm can be stated in the modern notat ion of 
functions by writing log(i45) = oa, log(Z?S) = ob, and so on; in other words, 
the logarithm increases as the "sine" decreases. These considerations contain the 
essential idea of logarithms. The quantity Napier defined is not the logarithm as 
we know it today. If points T, A, and Ñ correspond to points ï, a, and p , then 

op = oa log f c 

where k = AS/TS. 

Arithmetical implementation of the geometric model. The geometric model just 
discussed is theoretically perfect, but of course one cannot put the points on a line 
into a table of numbers. It is necessary to construct the table from a finite set of 
points; and these points, when converted into numbers, must be rounded off. Napier 
was very careful to analyze the maximum errors tha t could arise in constructing 
such a table. In terms of Fig. 4, he showed tha t oa, which is the logarithm of AS, 
satisfies 

TA<oa<TA(l + - ) . 

(These inequalities are simple to prove, since the point describing oa has a velocity 
larger than the velocity of the point describing Ô A but less than TS/AS t imes the 
velocity of tha t point.) Thus, the tabular value for the logarithm of AS can be 
taken as the average of the two extremes, t ha t is, TA[l + (TA/2AS)], and the 
relative error will be very small when Ô A is small. 

Napier's death at the age of 67 prevented him from making some improve-
ments in his system, which are sketched in an appendix to his treatise. These 

Ô A Â C D 
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improvements consist of scaling in such a way that the logarithm of 1 is 0 and the 
logarithm of 10 is 1. which is the basic idea of what we now call common logarithms. 
These further improvements to the theory of logarithms were made by Henry Briggs 
(1561-1630), who was in contact with Napier for the last two years of Napier's life 
and wrote a commentary on the appendix to Napier's treatise. As a consequence, 
logarithms to base 10 came to be known as Briggsian logarithms. 

9.2 . Hardware : s l ide rules a n d calculat ing mach ines . The fact that log-
ar i thms change multiplication into addition and that addition can be performed 
mechanically by sliding one ruler along another led to the development of rulers 
with the numbers arranged in proportion to their logarithms (slide rules). When 
one such scale is slid along a second, the numbers pair up in proportion to the 
distance slid, so that if 1 is opposite 5, then 3 will be opposite 15. Multiplication 
and division are then just as easy to do as addition and subtraction would be. The 
process is the same for both multiplication and division, as it was in the Egyptian 
graphical system, which was also based on proportion. Napier himself designed 
a system of rods for this purpose. A variant of this linear system was a system 
of sliding circles. Such a circular slide rule was described in a pamphlet entitled 
Grammelogia writ ten in 1630 by Richard Delamain (1600-1644), a mathematics 
teacher living in London. Delamain urged the use of this device on the grounds 
that it made it easy to compute compound interest. Two years later the English 
clergyman William Oughtred (1574-1660) produced a similar description of a more 
complex device. Oughtred's circles of proportion, as he called them, gave sines 
and tangents of angles in various ranges on eight different circles. Because of their 
portability, slide rules remained the calculating machine of choice for engineers for 
350 years, and improvements were still being made in them in the 1950s. Different 
types of slide rule even came to have different degrees of prestige, according to the 
number of different scales incorporated into them. 

Portions of the C, D, and CI scales of a slide rule. Adjacent 
numbers on the C and D scales are in proportion, so tha t 1 : 1.23 :: 
1.3 : 1.599 :: 1.9 : 2.337. Thus, the position shown here illustrates 
the multiplication 1.23 1.3 = 1.599, the division 1.722-M.4 = 1.23, 
and many other computations. Some visual error is inevitable. 
The CI (inverted) scale gives the reciprocals of the numbers on 
the C scale, so tha t division can be performed as multiplication, 
only using the CI scale instead of the C scale. Decimal points 
have to be provided by the user. 

Slide rule calculations are floating-point numbers with limited accuracy and 
necessary round-off error. When computing with integers, we often need an exact 
answer. To achieve t ha t result, adding machines and other digital devices have 
been developed over the centuries. An early design for such a device with a series 
of interlocking wheels can be found in the notebooks of Leonardo da Vinci (1452-
1519). Similar machines were designed by Blaise Pascal (1623 1662) and Gottfried 
Wilhelm Leibniz (1646-1716). Pascal's machine was a simple adding machine tha t 
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depended on turning a crank a certain number of times in order to find a sum. 
Leibniz used a variant of this machine with a removable set of wheels tha t would 
multiply, provided that the user kept count of the number of times the crank was 
turned. 

Machines designed to calculate for a specific purpose continued to be built for 
centuries, but all were doomed to be replaced by the general-purpose information 
processor tha t has spread like wildfire around the world in the past two decades. 
The first prefiguration of such a machine was Charles Babbage's difference engine, 
designed in the 1830s but built only partially many decades later. Although only one 
such machine seems to have been built, and only part of Babbage's more ambitious 
analytical engine was constructed, the idea of a general-purpose computer that 
could accept instructions and modify its operation in accordance with them was a 
brilliant innovation. Unfortunately, the full implementation of this idea could not 
be carried out by mechanical devices with moving parts . It needed the reliability of 
electronics, first thermionic valves (vacuum tubes) and then transistors, to produce 
the marvels of technology that we all use nowadays. Tha t technology was developed 
in Britain and the United States, greatly st imulated by the needs of code breaking 
during World War II. 

Meanwhile, fixed-purpose machines tha t could perform only a limited number 
of set arithmetic operations, continued to be built and improved upon. In the late 
days of World War II the "latest thing" in automated calculation was a machine 
with many fragile moving parts. 

Hand-held calculators, at first very limited, began to supplant the slide rule 
during the 1970s. They were easier to use, infinitely faster, and much more accu-
rate than slide rules, and they soon became much cheaper. The only disadvantage 
they had in comparison with slide rules was in durabil i ty. 6 A popular American 
textbook of college algebra published in 1980 weighed the advantages and disad-
vantages of slide rules, calculators, and tables of logarithms, and summed up for 
the jury in favor of using tables of logarithms, which had the cheapness of slide 
rules but more accuracy. Even that recently it was an extremely refined and ex-
pensive hand calculator that had more than a few dozen memory cells. I t was not 
possible to foresee the explosion of computing power tha t was to result from the 
development of methods of producing huge quantities of memory on tiny chips at 
extremely low prices. 

For several decades following World War II there were two types of calculat-
ing devices: Slide rules and cheap adding machines served the individual; more 
expensive calculators and the early gigantic computers such as ENIAC (Electronic 
Numerical Integrator And Computer) were used by large corporations. The over-
whelming penetration of modern computers into nearly every human activity, es-
pecially their use for word processing and graphics, is due to the vision of people 
such as Charles Babbage, who realized tha t they must be able to use Boolean logic 
in addition to their calculating capacity. 

Two mathematicians figure prominently in the development of this vision of 
the computer. One was Alan Turing (1912 1954), a British mathemat ic ian whose 
1937 paper "On computable numbers" contained the idea of a universal computer 

6 One might think that there would be no further market for slide rules. To the contrary, an entire 
website is devoted to buying and selling them. The webmaster points out to the site visitor that 
the computer on which the purchase is being made will be in a landfill 50 years hence, whereas 
the slide rule will be only well broken in. 
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Top: Leonardo da Vinci's design for an adding machine. Cen-
ter: model of the machine. Bottom: Pasca l s adding machine. 
Courtesy of IBM Corporate Images. 
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The future of calculation, as depicted in the April 17, 1944 issue 
of Newsweek. The potential of mechanical computing devices is 
limited by wear and tear on its moving parts . A slide rule suffers 
very little from such wear, but the more sophisticated adding ma-
chines of Pascal had to be designed with counterweights to delay 
the inevitable lopsidedness that results from wear. Courtesy of 
the Bodine Electric Company. Chicago. 

now known as a Turing machine. The crucial clement was programmability: Turing 
envisioned a tape filled with information tha t could be fed into the machine. As 
the machine read the information, it would modify its own internal state and then 
move ahead or back to an adjacent instruction. In this way, Turing went a step 
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further than Babbage had envisioned. Babbage's assistant Augusta Ada Lovelace 
(1815-1852) had written tha t Babbage's analytical engine could do only what it 
was told to do, but Turing believed that the difference between human intelligence 
and a computer was not so stark as that . He considered it possible that what 
appeared as human creativity might be the result of some information delivered at 
an earlier t ime, and tha t computers might mimic this apparent creativity. 

The other mathematician was John von Neumann (1903-1957), who was at 
Princeton in 1936 when Turing came there as a graduate s tudent . 7 Von Neumann 
became involved in the development of the computer while working as a consultant 
at the Aberdeen Proving Grounds in Maryland. There, in August 1944, he met Her-
man H. Goldstine (1913-2004), who told him about ENIAC. From our perspective, 
two generations on, ENIAC looks like the brontosaurus of computing technology. 
Here is a description of it from a website devoted to its history: 8 

When it was finished, the ENIAC filled an entire room, weighed 
thirty tons, and consumed two hundred kilowatts of power. It 
generated so much heat that it had to be placed in one of the 
few rooms at the University [of Pennsylvania] with a forced air 
cooling system. Vacuum tubes, over 19,000 of them, were the 
principal elements in the computer 's circuitry. It also had fifteen 
hundred relays and hundreds of thousands of resistors, capacitors, 
and inductors. All of this electronics was held in forty-two panels 
nine feet tall, two feet wide, and one foot thick. 

Despite its size, ENIAC had very little memory—only 1000 bits of RAM! More-
over the use of vacuum tubes (thermionic valves) meant frequent breakdowns—one 
every 8 minutes on the average, until the operators reduced the voltage and current 
to the minimum; after tha t , breakdowns occurred only once every two days on the 
average. Most seriously, it could not be programmed in the present-day sense of the 
word. It simply had to be set up for each particular computation. Von Neumann 
and the builders of ENIAC collaborated on the construction of EDVAC (Electronic 
Discrete Variable Automatic Computer) , which had the ability to read stored pro-
grams. Of course, those programs had to be written in machine language, a serious 
drawback for human interaction, but von Neumann's basic idea was sound. We 
have engineers to thank tha t the vacuum tube has been replaced by the transistor, 
tha t transistors can now be etched onto tiny computer chips, and tha t production 
methods have made it possible to produce for a very modest price the machines 
tha t everyone now uses with such ease. 

9 .3 . T h e effects of c o m p u t i n g power . A crystal ball can be very cloudy, even 
in relation to the eternal t ruths of mathematics. A book of mathematical tables 
and formulas (Burington, 1958) purchased by the author nearly half a century ago 
confidently assured its readers in a note from the publishers tha t 

the subject mat ter [of this book] is not ephemeral but everlasting— 
as true in the future as it has been in the past. By all means, retain 

7 According to Heppenheimer (1990), von Neumann offered Turing a position as his assistant, 
but Turing preferred to return to Cambridge. 
8 http: //ei. cs. vt. edu/~history/ENIAC. Richey. HTML. 
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this book for your own reference library. You will need it many 

times in years to come. 

Tha t book remains on the author 's shelf, unopened since about 1985. The 
publishers in their confidence had overlooked the fact tha t the eternal t ru ths of 
mathematics need not be reconstructed every t ime they are needed. Machines 
can store them and do the unimaginative computational work more efficiently and 
accurately than people can. 

One result of all this magnificent computer engineering is tha t mathematics 
education faces a dilemma. On the one hand, the skills involved in doing elemen-
tary arithmetic, algebra, and calculus are now as obsolete as the skill of writing a 
letter in longhand. Wha t is the point of teaching students how to solve quadratic 
equations, factor polynomials, carry out integration by parts , and solve differential 
equations when readily available programs such as Mathematica, Maple, Matlab, 
and others can produce the result in a split second with guaranteed accuracy? On 
the other hand, solving mathematical problems requires quant i ta t ive reasoning, and 
no one has yet found any way to teach quanti tat ive reasoning without assuming 
a familiarity with these basic skills. How can you teach what multiplication is 
without making students learn the multiplication table? How can you explain the 
theory of equations without making students solve a few equations? If mathematics 
education is to be in any way relevant to the lives of the students who are its clients, 
it must be able to explain in cogent terms the reason for the skills it asks them to 
undergo so much boredom to learn, or else find other skills to teach them. 

Q u e s t i o n s and p r o b l e m s 

6 . 1 . Double the hieroglyphic number ^ 

6.2. Multiply 27 times 42 the Egyptian way. 

6 .3 . (Stated in the Egyptian style.) Calculate with 13 so as to obtain 364. 

6.4. Problem 23 of the Ahmose Papyrus asks what parts must be added to the 
sum of 4, 8, 10, 30, and 45 to obtain 3. See if you can obtain the author ' s answer 
of 9 40, start ing with his technique of magnifying the first row by a factor of 45. 
Remember tha t | must be expressed as 2 8. 

6 .5 . Problem 24 of the Ahmose Papyrus asks for a number that yields 19 when its 
seventh par t is added to it, and concludes tha t one must perform on 7 the same 
operations tha t yield 19 when performed on 8. Now in Egyptian terms, 8 must be 
multiplied by 2 4 8 in order to obtain 19. Multiply this number by 7 to obtain 
the scribe's answer, 16 2 8. Then multiply tha t result by 7, add the product to the 
result itself, and verify that you do obtain 19, as required. 

6.6. Problem 33 of the Ahmose Papyrus asks for a quanti ty tha t yields 37 when 
increased by its two parts (two-thirds), its half, and its seventh par t . Try to get 
the author ' s answer: The quantity is 16 56 679 776. [Hint: Look in the table of 
doubles of parts for the double of 97. The scribe first tried the number 16 and 
found that the result of these operations applied to 16 fell short of 37 by the double 
of 42, which, as it happens, is exactly 1 3 2 7 times the double of 97.] 
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6.7. Verify tha t the solution to Problem 71 (2 3) is the correct pesu of the diluted 
beer discussed in the problem. 

6.8. Compare the pesu problems in the Ahmose Papyrus with the following prob-
lem, which might have been taken from almost any algebra book written in the past 
century: A radiator is filled with 16 quarts of a 10% alcohol solution. If it requires 
a 30% alcohol solution to protect the radiator from freezing when it is turned off, 
how much 95% solution must be added (after an equal amount of the 10% solution 
is drained off) to provide this protection? Think of the alcohol as the grain in beer 
and the liquid in the radiator as the beer. The liquid has a pesu of 10. What is the 
pesu tha t it needs to have, and what is the pesu of the liquid tha t is to be used to 
achieve this result? 

6.9. Verify tha t the solution 5 10 given above for Problem 35 is correct, tha t is, 
multiply this number by 3 and by 3 and verify that the sum of the two results is 1. 

6.10. Why do you suppose tha t the author of the Ahmose Papyrus did not choose 
to say that the double of the thirteenth part is the seventh par t plus the ninety-first 
part, that is, 

1 = 1 + 1? 
13 7 T 91 · 

Why is the relation 
13 8 T 52 T 104 

made the basis for the tabular entry instead? 

6 .11 . Generalizing Question 6.10, investigate the possibility of using the identity 

2 _ 1 1 

~Ñ~(Ø)+Ñ(Ø) 
to express the double of the reciprocal of an odd number ñ as a sum of two recipro-
cals. Which of the entries in the table of Fig. 1 can be obtained from this pat tern? 
Why was it not used to express —º 

6 .12 . Why not simply write 13 13 to stand for what we call ^ ? Wha t is the reason 
for using two or three other "parts" instead of these two obvious parts? 

6.13 . Could the ability to solve a problem such as Problem 35, discussed in Subsec-
tion 1.2 of this chapter, have been of any practical use? Try to think of a situation 
in which such a problem might arise. 

6.14. We would natural ly solve many of the problems in the Ahmose Papyrus using 
an equation. Would it be appropriate to say that the Egyptians solved equations, 
or tha t they did algebra? Wha t does the word algebra mean to you? How can you 
decide whether you are performing algebra or arithmetic? 

6.15. Why did the Egyptians usually begin the process of division by multiplying 

by 3 instead of the seemingly simpler 2? 

6 .16 . Early mathematicians must have been adept a t thinking in terms of expres-
sions. But considering the solutions to the riders-and-carts problem and the colorful 
language of Brahmagupta in relation to the Rule of Three, one might look at the 
situation from a different point of view. Perhaps these early mathematicians were 
good "dramatists ." In any algorithm the objects we now call variables amount to 
special "roles" played, with different numbers being assigned to "act" in those roles; 



156 6. CALCULATION 

an algorithm amounts to the drama that results when these roles are acted. Tha t 
is why it is so important that each part of the algorithm have its own name. The 
letters that we use for variables amount to names assigned to roles in the drama. 
A declaration of variables at the beginning of a program is analogous to the section 
that used to be titled "Dramatis Persona?" at the beginning of a play. 

Explain long division from this point of view, using the roles of dividend, divi-

sor, quotient, and remainder. 

6.17. Imitate the reasoning used in solving the problem of riders and carts above 
to solve Problem 17 of the Sun Zi Suan Jing. The problem asks how many guests 
were at a banquet if every two persons shared a bowl of rice, every three persons 
a bowl of soup, and every four persons a bowl of meat, leading to a total of 65 
bowls. Don' t use algebra, but try to explain the rather cryptic solution given by 
Sun Zi: Pu t down 65 bowls, multiply by 12 to obtain 780, and divide by 13 to get 
the answer. 

6.18. Compare the following loosely interpreted problems from the Jiu Zhang Suan-
shu and the Ahmose Papyrus. First, from the Jiu Zhang Suanshu: Five officials 
went hunting and killed five deer. Their ranks entitle them to shares in the pro-
portion 1 : 2 : 3 : 4 : 5 . What part of a deer does each receive? 

Second, from the Ahmose Papyrus (Problem 40): 100 loaves of bread are to 
be divided among five people (in arithmetic progression), in such a way tha t the 
amount received by the last two (together) is one-seventh of the amount received 
by the first three (together). How much bread does each person receive? 

6.19. Compare the interest problem (Problem 20 of Chapter 3) from the Jiu Zhang 
Suanshu discussed above, with the following problem, taken from the American 
textbook New Practical Arithmetic by Benjamin Greenleaf (1876): 

The interest on $200 for 4 months being $4, what will be the in-
terest on $590 for 1 year and 3 months? 

Are there any significant differences at all in the na ture of the two problems, written 
nearly 2000 years apar t? 

6.20. Problem 4 in Chapter 6 of the Jiu Zhang Suanshu involves what is called 
double false position. The problem reads as follows: A number of families contribute 
equal amounts to purchase a herd of cattle. If the contribution (the same for each 
family) were such tha t seven families contribute a total of 190 [units of money], 
there would be a deficit of 330 [units of money]; but if the contribution were such 
that nine families contribute 270 [units of money], there would be a surplus of 30 
[units of money]. Assuming tha t the families each contribute the correct amount, 
how much does the herd cost, and how many families are involved in the purchase? 
Explain the solution given by the author of the Jiu Zhang Suanshu, which goes 
as follows. P u t down the proposed values (assessment to each family, tha t is, 
and ™ = 30), and below each put down the corresponding surplus or deficit (a 
positive number in each case). Cross-multiply and add the products to form the 
shi (30 • ø + 330 · 2709 = º&Ì). Add the surplus and deficit to form the fa 

(330 + 30 = 360). Subtract the smaller of the proposed values from the larger, to 
get the difference (™ - = ø). Divide the shi by the difference to get the cost 
of the goods (̂ fjp = 3750); divide the fa by the difference to get the number of 
families = 126). 
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6 .21 . Compare the pond-filling problem (Problem 26 of Chapter 6) of the Jiu 
Zhang Suanshu (discussed above) with the following problem from Greenleaf (1876, 
p. 125): A cistern has three pipes; the first will fill it in 10 hours, the second in 15 
hours, and the third in 16 hours. What time will it take them all to fill it? Is there 
any real difference between the two problems? 

6.22 . The fair taxat ion problem from the Jiu Zhang Suanshu considered above 
treats distances and population with equal weight. Tha t is, if the population of one 
county is double tha t of another, but tha t county is twice as far from the collection 
center, the two counties will have exactly the same tax assessment in grain and 
carts. Will this impose an equal burden on the taxpayers of the two counties? Is 
there a direct proportionality between distance and population t ha t makes them 
interchangeable from the point of view of the taxpayers involved? Is the growing 
of extra grain to pay the tax fairly compensated by a shorter journey? 

6.23 . Perform the division ĵjp following the method used by Brahmagupta . 

6.24. Convert the sexagesimal number 5; 35, 10 to decimal form and the number 
314.7 to sexagesimal form. 

6.25. As mentioned in connection with the lunisolar calendar, 19 solar years equal 
almost exactly 235 lunar months. (The difference is only about two hours.) In the 
Julian calendar, which has a leap year every fourth year, there is a natural 28-year 
cycle of calendars. The 28 years contain exactly seven leap-year days, giving a 
total of exactly 1461 weeks. These facts conjoin to provide a natural 532-year cycle 
(532 = 2 8 - 1 9 ) of calendars incorporating the phases of the Moon. In particular, 
Easter, which is celebrated on the Sunday after the first full Moon of spring, has a 
532-year cycle (spoiled only by the two-hour discrepancy between 19 years and 235 
months). According to Simonov (1999), this 532-year cycle was known to Cyrus 
(Kirik) of Novgorod when he wrote his "Method by which one may determine the 
dates of all years" in the year 6644 from the creation of the world (1136 CE). 
Describe how you would create a table of dates of Easter tha t could, in principle, 
be used for all t ime, so tha t a user knowing the number of the current year could 
look in the table and determine the date of Easter for t ha t year. How many rows 
and how many columns should such a table have, and how would it be used? 

6.26. From 1901 through 2099 the Gregorian calendar behaves like the Julian 
calendar, with a leap year every four years. Hence the 19-year lunar cycle and 
28-year cycle of days interact in the same way during these two centuries. As 
an example, we calculate the date of Easter in the year 2039. The procedure 
is first to compute the remainder when 2039 is divided by 19. The result is 6 
(2039 = 19 ÷ 107 + 6). This number tells us where the year 2039 occurs in the 
19-year lunar cycle. In particular, by consulting the table below for year 6, we find 
tha t the first full Moon of spring in 2039 will occur on April 8. (Before people 
became familiar with the use of the number 0, it was customary to add 1 to this 
remainder, gett ing what is still known in prayer books as the golden number. Thus 
the golden number for the year 2039 is 7.) 

We next determine by consulting the appropriate calendar in the 28-year cycle 
which day of the week April 8 will be. In fact, it will be a Friday in 2039, so tha t 
Easter will fall on April 10 in tha t year. The dates of the first full Moon in spring 
for the years of the lunar cycle are as follows. The year numbers are computed as 
above, by taking the remainder when the Gregorian year number is divided by 19. 
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Year 0 1 2 3 4 5 6 

Full Moon Apr. 14 Apr. 3 Mar. 23 Apr. 11 Mar. 31 Apr. 18 Apr. 8 

Year 7 8 9 10 11 12 13 

Full Moon Mar. 28 Apr. 16 Apr. 5 Mar. 25 Apr. 13 Apr. 2 Mar. 22 

Year 14 15 16 17 18 

Full Moon Apr. 10 Mar. 30 Apr. 17 Apr. 7 Mar. 27 

Using this table, calculate the date of Easter for the years from 2040 through 
2045. You can easily compute the day of the week for each of these dates in a given 
year, starting from the fact tha t March 21 in the year 2000 was a Tuesday. [Note: 

If the first full Moon of spring falls on a Sunday, Easter is the following Sunday.] 

6.27. Prosthaphaeresis can be carried out using only a table of cosines by making 

use of the formula 

. cosfa + â) + cos(o! — â) 
cos a cos â — . 

2 

Multiply 3562 by 4713 using this formula and a table of cosines. (It is fair to use 

your calculator as a table of cosines; just don ' t use its ari thmetical capabilities.) 
6.28. Do the multiplication 742518 · 635942 with pencil and paper without using a 
hand calculator, and t ime yourself. Also count the number of simple multiplications 
you do. Then get a calculator tha t will display 12 digits and do the same problem on 
it to see what errors you made, if any. (The author carried out the 36 multiplications 
and 63 additions in just under 5 minutes, but had two digits wrong in the answer 
as a result of incorrect carrying.) 

Next, do the same problem using prosthaphaeresis. (Again, you may use your 
hand calculator as a trigonometric table.) How much accuracy can you obtain this 
way? With a five-place table of cosines, using interpolation, the author found the 
two angles to be 50.52° and 42.05°. The initial digits of the answer would thus 
be those of (cos(8.47°) + cos(92.57°))/2, yielding 47213 as the initial digits of the 
12-digit number. On the other hand, using a calculator tha t displays 14 digits, 
one finds the angles to be 50.510114088363° and 42.053645425939°. Tha t same 
calculator then returns all 12 digits of the correct answer as the numerical value of 
(cos(8.45646866242°) +cos(92.563759514302°))/2. Compared with the t ime to do 
the problem in full the time saved was not significant. 

Finally, do the problem using logarithms. Again, you may use your calculator 
to look up the logarithms, since a table is probably not readily available. 
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Ancient Number Theory 

The impossibility of gett ing square roots to come out even, in connection with appli-
cations of the Pythagorean theorem, may have caused mathematicians to speculate 
on the difference between numbers that have (rational) square roots and those that 
do not. We shall take this problem as the starting point for our discussion of num-
ber theory, and we shall see two responses to this problem: first, in the present 
chapter, to find out when indeterminate quadratic equations have rational solu-
tions; second, in Chapter 8, to create new numbers to play the role of square roots 
when no rational square root exists. 

1. P l i m p t o n 3 2 2 

Rational numbers satisfying a quadratic equation are at the heart of a cuneiform 
tablet from the period 1900-1600 BCE, number 322 of the Pl impton collection at 
Columbia University. The numbers on this tablet have intrigued many mathemat-
ically oriented people, leading to a wide variety of speculation as to the original 
purpose of the tablet. We are not offering any new conjectures as to that purpose 
here, only a discussion of some earlier ones. 

As you can see from the photograph on p. 160, there are a few chips missing, 
so that some of the cuneiform numbers in the tablet will need to be restored by 
plausible conjecture. Notice also that the column a t the right-hand edge contains 
the cuneiform numbers in the sequence 1, 2, 3, 4 , 7 , 8, 9, 10 ,11,12, 1 3 , . . . , 

Obviously, this column merely numbers the rows. The column second from 
the right consists of identical symbols that we shall ignore entirely. Pretending tha t 
this column is not present, if we transcribe only what we can see into our version 
of sexagesimal notation, denoting the chipped-off places with brackets ( [ . . . ] ) , we 
get the four-column table shown below. 

Before analyzing the mathematics of this table, we make one preliminary ob-
servation: Row 13 is anomalous, in that the third entry is smaller than the second 
entry. For the t ime being we shall ignore this row and see if we can figure out 
how to correct it. Since the long numbers in the first column must be the result 
of computation—it is unlikely that measurements could be carried out with such 
precision—we make the reasonable conjecture that the shorter numbers in the sec-
ond and third columns are data . As mentioned in Chapter 6, the Mesopotamian 
mathematicians routinely associated with any pair of numbers (a, b) two other num-
bers: their average (a + 6)/2 and their semidifference (b — a)/2. Let us compute 
these numbers for all the rows except rows 13 and 15, to see how they would 
have appeared to a mathematician of the time. We get the following 13 pairs of 
numbers, which we write in decimal notation: (144,25), (7444,4077), (5625,1024), 
(15625,2916), (81,16), (400,81), (2916,625), (1024,225), (655,114), (6561,1600), 
(60,15), (2304,625), (2500,729). 
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Plimpton 322. © Rare Book and Manuscript Library, Columbia 
University. 

W i d t h D i a g o n a l 
[...] 15 1,59 2,49 1 

[...] 58,14,50,6,15 56,7 3,12,1 2 
[...] 41,15,33,45 1,16,41 1,50,49 3 

[...] 29,32,52,16 3,31,49 5,9,1 4 

48,54,1,40 1,5 1,37 5 

47,6,41,40 5,19 8,1 6 

43,11,56,28,26,40 38,11 59,1 7 

41,33,59,3,45 13,19 20,49 8 

38,33,36,36 9,1 12,49 9 

35,10,2,28,27,24,26 1,22,41 2,16,1 10 

33,45 45 1,15 11 

29,21,54,2,15 27,59 48,49 12 

27, . . . ] ,3,45 7,12,1 4,49 13 

25,48,51,35,6,40 29,31 53,49 14 

23,13,46,40 [ · · • : 1 [•••] : • · • ] 

You will probably recognize a large number of perfect squares here. Indeed, all 
of these numbers, except for those corresponding to rows 2, 9, and 11 are perfect 
squares: 10 pairs of perfect squares out of thirteen! Tha t is too unusual to be a mere 
coincidence. A closer examination reveals that they are squares of numbers whose 
only prime factors are 2, 3, and 5. Now these are precisely the prime factors of the 
number 60, which the Mesopotamian mathematicians used as a base. Tha t means 
that the reciprocals of these numbers will have terminating sexagesimal expansions. 
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We should therefore keep in mind that the reciprocals of these numbers may play 
a role in the construction of the table. 

Notice also tha t these ten pairs are all relatively prime pairs. Let us now denote 
the square root of the average by ñ and the square root of the semidifferenee by 
q. Column 2 will then be ñ 2 - q 2 , and column 3 will be p2 + q2. Having identified 
the pairs (p, q) as important clues, we now ask which pairs of integers occur here 
and how they are arranged. The values of q, being smaller, are easily handled. The 
smallest q tha t occurs is 5 and the largest is 54, which also is the largest number less 
than 60 whose only prime factors are 2, 3, and 5. Thus, we could try constructing 
such a table for all values of q less than 60 having only those prime factors. But 
what about the values of p? Again, ignoring the rows for which we do not have 
a pair (p, q), we observe that the rows occur in decreasing order of p/q, s tart ing 
from 12/5 = 2.4 and decreasing to 50/27 = 1.85185185... . Let us then impose the 
following conditions on the numbers ñ and q: 

1. The integers ñ and q are relatively prime. 
2. The only prime factors of ñ and q are 2, 3, and 5. 
3. q < 60. 
4. 1.8 < p/q < 2.4 

Now, following an idea of Price (1964), we ask which possible (p, q) satisfy these 
four conditions. We find tha t every possible pair occurs with only five exceptions: 
(2,1) , (9,5), (15,8), (25,12), and (64,27). There are precisely five rows in the 
table—rows 2, 9, 11, 13, and 15—for which we did not find a pair of perfect squares. 
Convincing proof tha t we are on the right track appears when we arrange these pairs 
in decreasing order of the ratio p/q. We find that (2,1) belongs in row 11, (9,5) in 
row 15, (15,8) in row 13, (25,12) in row 9, and (64,27) in row 2, precisely the rows 
for which we did not previously have a pair p, q. The evidence is overwhelming 
tha t these rows were intended to be constructed using these pairs (p, q). When 
we replace the entries tha t we can read by the corresponding numbers p 2 - q2 in 
column 2 and p 2 + q2 in column 3, we find the following: 

In row 2, the entry 3,12,1 has to be replaced by 1,20,25, tha t is, 11521 becomes 
4825. The other entry in this row, 56,7, is correct. 

In row 9, the entry 9,1 needs to be replaced by 8,1, so here the writer simply 
inserted an extra unit character. 

In row 11, the entries 45 and 75 must be replaced by 3 and 5; that is, both 
are divided by 15. It has been remarked tha t if these numbers were interpreted as 
45 · 60 and 75 · 60, then in fact, one would get ñ = 60, q = 30, so that this row was 
not actually "out of step" with the others. But of course when tha t interpretation 
is made, ñ and q are no longer relatively prime, in contrast to all the other rows. 

In row 13 the entry 7,12,1 must be replaced by 2,41; tha t is, 25921 becomes 
161. In other words, the table entry is the square of what it should be. 

The illegible entries in row 15 now become 56 and 106. The first of these is 
consistent with what can be read on the tablet. The second appears to be 53, half 
of what it should be. 

The final task in determining the mathematical meaning of the tablet is to 
explain the numbers in the first column and interpolate the missing pieces of tha t 
column. Notice tha t the second and third columns in the table are labeled "width" 
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and "diagonal." Those labels tell us tha t we are dealing with dimensions of a 
rectangle here, and that we should be looking for its length. By the Pythagorean 

theorem, tha t length is \J(p2 + q2)2 - ( p 2 - q2)2 = \JAp2q2 = 2pq. Even with this 
auxiliary number, however, it requires some ingenuity to find a formula involving 
ñ and q t ha t fits the entries in the first column tha t can be read. If the numbers 
in the first column are interpreted as the sexagesimal representations of numbers 
between 0 and 1, those in rows 5 through 14—the rows tha t can be read—all fit 
the formula 1 

(p/q - Q/P 

\ 2 
Assuming this interpretation, since it works for the 10 entries we can read, we 

can fill in the missing digits in the first four and last rows. This involves adding 
two digits to the beginning of the first four rows, and it appears t ha t there is just 
the right amount of room in the chipped-off place to allow this to happen. The 
digits that occur in the bottom row are 23,13,46,40, and they are consistent with 
the parts tha t can be read from the tablet itself. 

The purpose of Plimpton 322: some conjectures. The structure of the tablet is no 
longer a mystery, unless one counts the tiny mystery of explaining the misprint in 
row 2, column 3. Its purpose, however, is not clear. W h a t information was the 
table intended to convey? Was it intended to be used as people once used tables 
of products, square roots, and logarithms, that is, to look up a number or pair of 
numbers? If so, which columns contained the input and which the output? One 
geometric problem tha t can be solved by use of this tablet is t ha t of multiplying 
a square by a given number, that is, given a square of side a, it is possible to find 
the side 6 of a square whose ratio to the first square is given in the first column. 
To do so, take a rope whose length equals the side a and divide it into the number 
of equal par ts given in the second column, then take a second rope with the same 
unit of length and total length equal to the number of units in the third column 
and use these two lengths to form a leg and the hypotenuse of a right triangle. The 
other leg will then be the side of a square having the given rat io t o the given square. 
The problem of shrinking or enlarging squares was considered in other cultures, but 
such an interpretation of Plimpton 322 has only the merit tha t there is no way of 
proving the tablet wasn't used in this way. There is no proof t ha t the tablet was 
ever put to this use. 

Friberg (1981) suggested that the purpose of the tablet was trigonometrical, 
that it was a table of squares of tangents. Columns 2 and 3 give one leg and the 
hypotenuse of 15 triangles with angles intermediate between those of the s tandard 
45-45-90 and 30-60-90 triangles. Wha t is very intriguing is tha t the table contains 
all possible triangles whose shapes are between these two and whose legs have 
lengths tha t are multiples of a standard unit by numbers having only 2, 3, and 5 

1 In some discussions of Plimpton 322 the claim is made that a sexagesimal 1 should be placed 
before each of the numbers in the first column. Although the tablet is clearly broken off on the 
left, it does not appear from pictures of the tablet—the author has never seen it "live"—that 
there were any such digits there before. Neugebauer (1952, p. 37) claims that parts of the initial 
1 remain from line 4 on "as is clearly seen from the photograph" and that the initial 1 in line 
14 is completely preserved. When that assumption is made, however, the only change in the 
interpretation is a trivial one: The negative sign in the formula must be changed to a positive 
sign, and what we are interpreting as a column of squares of tangents becomes a column of squares 
of secants, since tan 2 è + 1 = sec 2 È. 
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as factors. Of all right triangles, the 45-45-90 and the 30-60-90 are the two tha t 
play the most important role in all kinds of geometric applications; plastic models 
of them were once used as templates in mechanical drawing, and such models are 
still sold. It is easy to imagine that a larger selection of triangle shapes might have 
been useful in the past , before modern drafting instruments and computer-aided 
design. Using this table, one could build 15 model triangles with angles varying 
in increments of approximately 1°. One can imagine such models being built and 
the engineer of 4000 years ago reaching for a "number 7 triangle" when a slope of 
574/675 = .8504 was needed. However, this scenario still lacks plausibility. Even 
if we assume tha t the engineer kept the tablet around as a reference when it was 
necessary to know the slope, the tablet stores the square of the slope in column 1. 
It is difficult to imagine any engineering application for tha t number. 

Having failed to find a geometric explanation of the tablet, we now explore 
possible associations of the tablet with Diophantine equations, tha t is, equations 
whose solutions are to be rational numbers, in this case numbers whose numerators 
and denominators are products of only the first three prime numbers. The left-hand 
column contains numbers tha t are perfect squares and remain perfect squares when 
1 is added to them. In other words, it gives u2 for solutions to the Diophantine 
equation u 2 + 1 = v2. This equation was much studied in other cultures, as we shall 
see below. If the purpose of the table were to generate solutions of this equation, 
there would of course be no reason to give v2, since it could be obtained by placing 
a 1 before the entry in the first column. The use of the table would then be as 
follows: Square the entry in column 3, square the entry in column 2, then divide 
each by the difference of these squares. The results of these two divisions are v2 

and u2 respectively. In particular, u 2 is in column 1. The numbers ñ and q tha t 
generate the two columns can be arbitrary, but in order to get a sexagesimally 
terminating entry in the first column, the difference (p2 + q2)2 - (p2 - q2)2 — Ap2q2 

should have only 2, 3, and 5 as prime factors, and hence ñ and q also should have 
only these factors. Against this interpretation there lies the objection that ñ and 
q are concealed from the casual reader of the tablet. If the purpose of the tablet 
was to show how to generate u and õ or u2 and v2 = u2 + 1, some explanation 
should have been given as to how columns 2 and 3 were generated. But of course, 
the possibility exists tha t such an explanation was present originally. After all, it 
is apparent tha t the tablet is broken on the left-hand side. Perhaps it originally 
contained more columns of figures that might shed light on the entire tablet if we 
only had them. Here we enter upon immense possibilities, since the "vanished" 
portion of the tablet could have contained a huge variety of entries. To bring this 
open-ended discussion to a close, we look at what some experts in the area have to 
say. 

In work tha t was apparently never published (see Buck, 1980, p. 344), D.L. 
Voils pointed out tha t tablets amounting to "teacher's manuals" have been found 
in which the following problem is set: Find a number that yields a given number 
when its reciprocal is subtracted. In modern terms this problem requires solving the 
equation 

χ = d, 

χ 
where d is the given number. Obviously, if you were a teacher setting such a 
problem for a student, you would want the solution χ to be such that both χ and 
1/x have terminat ing sexagesimal digits. So, if the solution is to be χ = p/q, we 
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already see why we need both ñ and q to be products of 2, 3, and 5. This problem 
amounts to the quadratic equation .r 2 — dx — 1 = 0 , and its unique positive solution 
is χ = d/2 + y / l + (d/2)2. Column 1 of the tablet, which contains (d/2)2 then 
appears as part of the solution process. It is necessary to take its square root 
and also the square root \Ë + d2/4 in order to find the solution χ = p/q. This 
explanation seems to fit very well with the tablet . One could assume tha t the first 
column gives values of d that a teacher could use to set such a problem with the 
assurance tha t the pupil would get terminating sexagesimal expansions for both χ 
and 1/x. On the other hand, it does not fully explain why the tablet gives the 
numbers p2 — q2 and p2 + q2, rather than simply ñ and q, in subsequent columns. 
Doing our best for this theory, we note tha t columns 2 and 3 contain respectively 
the numerators of χ — 1/x and ,r + l/x, and tha t their common denominator is 
the square root of the difference of the squares of these two numerators. Against 
that explanation is the fact that the Mesopotamians did not work with common 
fractions. The concepts of numerator and denominator to them would have been 
the concepts of dividend and divisor, and the final sexagesimal quotient would not 
display these numbers. The recipe for getting from columns 2 and 3 to column 

1 would be first to square each of these columns, then find the reciprocal of the 
difference of the squares as a sexagesimal expansion, and finally, multiply the last 
result by the square in column 2. 

In the course of a plea that historians look at Mesopotamian mathematics in 
its own terms rather than simply in relation to what came after, Robson (2001) 
examined several theories about the purpose of the tablet and gave some imagina-
tive scenarios as to what may be in the lost portion of the tablet . Her conclusion, 
the only one justified by the present s tate of knowledge is t ha t " the Mystery of the 
Cuneiform Tablet has not yet been fully solved." 2 

And we have not claimed to solve it here. Pl impton 322 is a fascinating object 
of contemplation and serves as a possible example of an early interest in what we 
now call quadratic Diophantine equations. Without assuming tha t there is some 
continuous history between Plimpton 322 and modern number theory, we can still 
take quadratic Diophantine equations as a convenient s tar t ing point for discussing 
the history of number theory, 

2. Anc ien t Greek n u m b e r t h e o r y 

Our knowledge of Pythagorean number theory is based on several sources, of which 
two important ones are Books 7-9 of Euclid's Elements and a treatise on ari thmetic 
by the neo-Pythagorean Nicomachus of Gerasa, who lived about 100 CE. Just as 
the Sun Zi Suan Jing preserves more of ancient Chinese ar i thmetic than the earlier 
Jiu Zhang Suamhu, it happens that the treatise of Nicomachus preserves more 
of Pythagorean lore than the earlier work of Euclid. For that reason, we discuss 
Nicomachus first. 

The Pythagoreans knew how to find the greatest common divisor of two num-
bers. A very efficient procedure for doing so is described in Chapter 13 of Book 1 
of Nicomachus' Arithmetica and in Proposition 2 of Book 7 of Euclid's Elements. 
This procedure, now known as the Euclidean algorithm, is what the Chinese called 
the mutual-subtraction procedure. Nicomachus applies it only to integers, any two 

2 In a posting at a mathematics history website, Robson noted that reciprocal pairs and cut-and-
paste geometry seem to be the most plausible motives for the tablet. 
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of which naturally have 1 as a common divisor. Euclid, on the other hand, does not 
confine it to integers, but states the procedure for "magnitudes," which may lack 
a common measure. It is significant tha t the procedure terminates if and only if 
there is a common measure, and Euclid makes use of tha t fact in discussing incom-
mensurables. The algorithm was certainly invented long before the t ime of Euclid, 
however. Zverkina (2000) believes that this procedure could not have arisen intu-
itively, but must have come about as the result of solving specific problems, most 
likely the problem of reducing ratios by canceling a common divisor. It is used for 
that purpose in Chinese mathematics. W h a t follows is a description of the general 
procedure. 

For definiteness, we shall imagine tha t the two quantities whose greatest com-
mon measure is to be found are two lengths, say a and b. Suppose that a is longer 
than b. (If the two are equal, their common value is also their greatest common 
divisor.) The general procedure is to keep subtracting the smaller quantity from 
the larger until the remainder is equal to the smaller quanti ty or smaller than it. It 
is not difficult to show tha t the smaller quantity and the remainder have the same 
common measures as the smaller quantity and the larger. Hence one can start over 
with the smaller quanti ty and the remainder, which is no more than half of the 
larger quantity. Either this process terminates with an equal pair, or it continues 
and the pairs become arbitrarily small. 

An example will make the procedure clear. Let us find the greatest common 
measure (divisor) of 26173996849 and 180569389. A common measure does exist: 
the integer 1. Since the repeated subtraction process amounts to division with 
remainder, we do it this way: 26173996849-r 180569389 is 144 with a remainder of 
172004833. We then divide 180569389 by 172004833, getting a quotient of 1 and 
a remainder of 8564556. Next we divide 172004833 by 8564556, getting a quotient 
of 20 and a remainder of 713713. We then divide 8564556 by 713713 and get a 
quotient of 12 with no remainder, so tha t the greatest common divisor is 713713. 

This computat ion can be arranged as follows: 

12 20 1 144 
713713)8564556)172004833)180569389)26173996849 

8564556 171291120 172004833 26001992016 
0 713713 8564556 172004833 

2 . 1 . T h e Arithmetica o f N i c o m a c h u s . In his first book Nicomachus makes the 
elementary distinction between odd and even numbers. Having made this distinc-
tion, he proceeds to refine it, distinguishing between even numbers divisible by 4 
(evenly even) and those t ha t are not (doubles of odd numbers). He goes on to 
classify odd numbers in a similar way, coming thereby to the concept of prime and 
composite numbers. Nicomachus also introduces what we now call pairs of relatively 
prime numbers. These are pairs of numbers that have no common prime divisor 
and hence no common divisor except 1. The notion of a relational property was 
difficult for Greek philosophers, and Nicomachus expresses the concept of relatively 
prime numbers in a confused manner, referring to three species of odd numbers: 
the prime and incomposite, the secondary and composite, and "the variety which, 
in itself is secondary and composite, but relatively is prime and incomposite." This 
way of writing seems to imply that there are three kinds of integers, prime and 
incomposite, secondary and composite, and a third kind midway between the other 
two. It also seems to imply tha t one can look at an individual integer and classify it 
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into exactly one of these three classes. Such is not the case, however. The property 
of primeness is a property of a number alone. The property of being relatively 
prime is a property of a pair of numbers. On the other hand, the property of being 
relatively prime to a given number is a property of a number alone. Nicomachus 
explains the property in a rather wordy fashion in Chapter 13 of Book 1, where he 
gives a method of identifying prime numbers t ha t has become famous as the sieve 
of Eratosthenes. 

Nicomachus attr ibutes this method to Eratosthenes. To use it, s tar t with a list 
of all the odd numbers from 3 on, that is, 

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 , 33, 35, 3 7 , . . . . 

From this list, remove every third number after 3, tha t is, remove 9, 15, 21 , 27, 
3 3 , . . . . These numbers are multiples of 3 and hence not prime. The reduced list 
is then 

3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41 , 43, 47, 4 9 , . . . . 

From this list, remove all multiples of 5 larger t h a n 5. T h e first non-prime in the 
new list is 49 = 7 · 7. In this way, you can generate in short order a complete list 
of primes up to the square of the first prime whose multiples were not removed. 
Thus, after removing the multiples of 7, we have the list 

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 , 43, 47, 53, 59, 6 1 . . . . 

The first non-prime in this list would be 11 • 11 = 121. 

Nicomachus' point of view on this sieve was different from ours. Where we 
think of the factors of, say 60, as being 2, 2, 3, and 5, Nicomachus thought of the 
quotients by these numbers and products of them as the parts of a number. Thus, 
in his language 60 has the parts 30 (half of 60), 20 (one-third of 60), 15 (one-fourth 
of 60), 12 (one-fifth of 60), 10 (one-sixth of 60), 6 (one-tenth) of 60, 5 (one-twelfth 
of 60), 4 (one-fifteenth of 60), 3 (one-twentieth of 60), 2 (one-thirtieth of 60) and 
1 (one-sixtieth of 60). If these parts are added, the sum is 108, much larger than 
60. Nicomachus called such a number superabundant and compared it to an animal 
having too many limbs. On the other hand, 14 is larger than the sum of its parts. 
Indeed, it has only the parts 7, 2, and 1, which total 10. Nicomachus called 14 a 
deficient number and compared it to an animal with missing limbs like the one-eyed 
Cyclops of the Odyssey. A number that is exactly equal to the sum of its parts , 
such a s 6 = l + 2 + 3, he called a perfect number. He gave a method of finding 
perfect numbers, which remains to this day the only way known to generate such 
numbers, although it has not been proved tha t there are no other such numbers. 
This procedure is also stated by Euclid: / / the sum of the numbers 1, 2, 4 , . . . , 2 n _ 1 

is prime, then this sum multiplied by the last term will be perfect. The modern 
statement of this fact is given in the exercises below. To see the recipe at work, 
start with 1, then double and add: 1 + 2 = 3. Since 3 is prime, multiply it by the 
last term, tha t is, 2. The result is 6, a perfect number. Continuing, 1 + 2 + 4 = 7, 
which is prime. Multiplying 7 by 4 yields 28, the next perfect number. Then, 
1 + 2 + 4 + 8 + 16 = 31, which is prime. Hence 31 - 16 = 496 is a perfect number. 
The next such number is 8128 = 64(1 + 2 + 4 + 8 + 16 + 32 + 64). In this way, 
Nicomachus was able to generate the first four perfect numbers. He seems to hint 
at a conjecture, but draws back from stating it explicitly: 



2. ANCIENT GREEK NUMBER THEORY 167 

When these have been discovered, 6 among the units and 28 in 
the tens, you must do the same to fashion the n ex t . . . the result is 
496, in the hundreds; and then comes 8,128 in the thousands, and 
so on, as far as it is convenient for one to follow [D'ooge, 1926, p. 
211]. 3 

This quotation seems to imply tha t Nicomachus expected to find one perfect number 
Nk having k digits. Actually, the fifth perfect number is 33,550,336, so we have 
jumped from four digits to eight here. The sixth is 8,589,869,056 (10 digits) and 
the seventh is 137,438,691,328 (12 digits), so that there is no regularity about the 
distribution of perfect numbers. Thus, Nicomachus was wise to refrain from making 
conjectures too explicitly. According to Dickson (1919, p. 8), later mathematicians, 
including Cardano, were less restrained, and this incorrect conjecture has been 
stated more than once. 

For a topic tha t is devoid of applications, perfect numbers have attracted a 
great deal of at tention from mathematicians. Dickson (1919) lists well over 100 
mathematical papers devoted to this topic over the past few centuries. From the 
point of view of pure number theory, the main questions about them are the follow-
ing: (1) Is there an odd perfect number? 4 (2) Are all even perfect numbers given 
by the procedure described by Nicomachus? 5 (3) Which numbers of the form 2" - 1 
are prime? These are called Mersenne primes, after Marin Mersenne (1588-1648), 
who, according to Dickson (1919, pp. 12-13), first noted their importance, precisely 
in connection with perfect numbers. Obviously, ç must itself be prime if 2 n — 1 is 
to be prime, but this condition is not sufficient, since 2 1 1 - 1 = 23 · 89. The set 
of known prime numbers is surprisingly small, considering tha t there are infinitely 
many to choose from, and the new ones being found tend to be Mersenne primes, 
mostly because that is where people are looking for them. The largest currently 
known prime (as of June 2004) is 2 2 4 0 3 6 5 8 3 - 1, only the forty-first Mersenne prime 
known. 6 It was found on May 15, 2004 by the GIMPS (Great Internet Mersenne 
Prime Search) project, which links over 200,000 computers via the Internet and 
runs prime-searching software in the background of each while their owners are 
busy with their own work. This prime has 7,235,733 decimal digits. The fortieth 
Mersenne prime, 2 2 0 9 9 6 0 1 1 - 1, was found on November 17, 2003; it has 6,320,430 
decimal digits. In contrast, the largest known non-Mersenne prime is 3 • 2 3 0 3 0 9 3 -f-1, 
found by Jeff Young in 1998. 7 It is rather tiny in comparison with the last few 
Mersenne primes discovered, having "only" 91,241 decimal digits. 

Beginning in Chapter 6 of Book 2, Nicomachus studies figurate numbers: polyg-
onal numbers through heptagonal numbers, and then polyhedral numbers. These 
numbers are connected with geometry, with an identification of the number 1 with 
a geometric point. To motivate this discussion Nicomachus speculated tha t the 

3 D'ooge illustrates the procedure in a footnote, but states erroneously that 8191 is not a prime. 
4 The answer is unknown at present. 
5 The answer is yes. The result is amazingly easy to prove, but no one seems to have noticed it 
until a posthumous paper of Leonhard Euler gave a proof. Victor-Amedee Lebesgue (1791-1875) 
published a short proof in 1844. 
6 The reader will correctly infer from previous footnotes that exactly 41 perfect numbers are now 
known. 
7 See his article "Large primes and Fermat factors" in Mathematics of Computation, 67 (1998), 
1735-1738, which gives a method of finding probable primes of the form k · 2 n + 1. 
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simplest way to denote any integer would be repeating a symbol for 1 an appropri-
ate number of times. Thus, he said, the number 5 could be denoted aaaact. This 
train of thought, if followed consistently, would lead back to a notat ion even more 
primitive than the hieroglyphic notation for numbers, since it would use only the 
symbol for units and discard the symbols for higher powers of 10. The Egyptians 
had gone beyond this principle in their hieratic notat ion, and the s tandard Greek 
notation was essentially a translation of the hieratic into the Greek alphabet. You 
can easily see where this speculation leads. The outcome is shown in Fig. 1, which 
illustrates triangular, square, pentagonal, and hexagonal numbers but using dots 
instead of the letter a . Observe that the figures are not associated with regular 
polygons except in the case of triangles and squares. The geometry alone makes it 
clear that a square number is the sum of the corresponding tr iangular number and 
its predecessor. Similarly, a pentagonal number is the sum of the corresponding 
square number and the preceding triangular number, a hexagonal number is the 
sum of the corresponding pentagonal number and the preceding triangular number, 
and so forth. This is the point at which modern mathematics par ts company with 
Nicomachus, Proclus, and other philosophers who push analogies further than the 
facts will allow. As Nicomachus states at the beginning of Chapter 7: 

The point, then, is the beginning of dimension, but not itself a 
dimension, and likewise the beginning of a line, but not itself a 
line; the line is the beginning of surface, but not surface; and the 
beginning of the two-dimensional, but not itself extended in two 
dimensions. . . Exactly the same in numbers, unity is the beginning 
of all number that advances unit by unit in one direction; linear 
number is the beginning of plane number, which spreads out like 
a plane in one more dimension. [D'ooge, 1926, p . 239] 

This mystical mathematics was transmit ted to Medieval Europe by Boethius. 
It is the same kind of analogical thinking found in Plato 's Timaeus, where it is 
imagined tha t atoms of fire are tetrahedra, a toms of earth are cubes, and so forth. 
Since the Middle Ages, this topic has been of less interest to mathematicians. The 
phrase of less interest—rather than of no interest—is used advisedly here: There 
are a few theorems about figurate numbers in modern number theory, and they have 
some connections with analysis as well. For example, a formula of Euler asserts that 

oo oo 

J ] ( l - X f c ) = £ ( - l ) "*"* 3 "" 1 ) / 2 . 

fc=l n = - o o 

Here the exponents on the right-hand side range over the pentagonal numbers for 
ç positive. By making this formula the definition of the n t h pentagonal number for 
negative n, we thereby gain an interesting formula tha t can be stated in terms of 
figurate numbers. Carl Gustav Jacobi (1804-1851) was pleased to offer a proof of 
this theorem as evidence of the usefulness of elliptic function theory. Even today, 
these numbers crop up in occasional articles in graph theory and elsewhere. 

2.2. Eucl id ' s n u m b e r theory. Euclid devotes his three books on number theory 
to divisibility theory, spending most of the t ime on proportions among integers and 
on prime and composite numbers. Only at the end of Book 9 does he prove a theo-
rem of a different sort, giving the method of searching for perfect numbers described 
above. It is interesting that Euclid does not mention figurate numbers. Although 
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F I G U R E 1. Figurate numbers. Top row: triangular numbers Tn — 
n(n + l ) / 2 . Second row: square numbers Sn — n2. Third row: 
pentagonal numbers Pn = n(3n - l ) / 2 . Bottom row: hexagonal 
numbers Hn = n(2n — 1). 

the Pythagorean and Platonic sources of Euclid's treatise are obvious, Euclid ap-
pears to the modern eye to be much more a mathematician than Pythagoras or 
Plato, much less addicted to flights of fanciful speculation on the nature of the 
universe. In fact, he never mentions the universe at all and suggests no practical 
applications of the theorems in his Elements. 

Book 7 develops proportion for positive integers as par t of a general discussion 
of how to reduce a ratio to lowest terms. The notion of relatively prime numbers is 
introduced, and the elementary theory of divisibility is developed as far as finding 
least common multiples and greatest common factors. Book 8 resumes the sub-
ject of proportion and extends it to squares and cubes of integers, including the 
interesting theorem tha t the mean proportional of two square integers is an integer 
(Proposition 11), and between any two cubes there are two such mean proportionals 
(Proposition 12): for example, 25 : 40 :: 40 : 64, and 27 : 45 :: 45 : 75 :: 75 : 125. 
Book 9 continues this topic; it also contains the famous theorem that there are 
infinitely many primes (Proposition 20) and ends by giving the only known method 
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of constructing perfect numbers (Proposition 36), quoted above. No perfect num-
ber has yet been found that is not generated by this procedure, al though no proof 
exists that all perfect numbers are of this form. Any exception would have to be 
an odd number, since it is known (see Problem 7.8) that all even perfect numbers 
are of this form. 

From the modern point of view, Euclid's number theory is missing an explicit 
statement of the fundamental theorem of arithmetic. This theorem, which asserts 
that every positive integer can be written in only one way as a product of prime 
numbers, can easily be deduced from Book 7, Proposition 24: / / two numbers are 
relatively prime to a third, their product is also relatively prime to it. However, 
modern historians (Knorr, 1976) have pointed out tha t Euclid doesn' t actually 
prove the fundamental theorem. 

2.3 . T h e Arithmetica o f D i o p h a n t u s . Two works of Diophantus have survived 
in part , a treatise on polygonal numbers and the work for which he is best known, 
the Arithmetica. Like many other ancient works, these two works of Diophantus 
survived because of the efforts of a ninth-century Byzantine mathematician named 
Leon, who organized a major effort to copy and preserve these works. There is 
little record of the influence the works of Diophantus may have exerted before this 
time. 

According to the introduction to the Arithmetica, this work consisted originally 
of 13 books, but until recently only six were known to have survived; it was assumed 
that these were the first six books, on which Hypatia wrote a commentary. However, 
more books were recently found in an Arabic manuscript tha t the experts say is 
a translation made very early probably in the ninth century. Sesiano (1982) 
stated that these books are in fact the books numbered 4 to 7, and tha t the books 
previously numbered 4 to 6 must come after them. 

Diophantus begins with a small number of determinate problems tha t illustrate 
how to think algebraically, in terms of expressions involving a variable. Since these 
problems belong properly to algebra, they are discussed in Chapter 14. Indeter-
minate problems, which are number theory because the solutions are required to 
be rational numbers (the only kind recognized by Diophantus), begin in Book 2. 
A famous example of this type is Problem 8 of Book 2, to separate a given square 
number into two squares. Diophantus illustrates this problem using the number 16 
as an example. His method of solving this problem is to express the two numbers 
in terms of a single unknown, which we shall denote ò, in such a way tha t one of 
the conditions is satisfied automatically. Thus, letting one of the two squares be 
ò 2 , which Diophantus wrote as Äõ (as explained in Chapter 14), he noted tha t the 
other will automatically be 16 - ò 2 . To get a determinate equation for ò, he assumes 
that the other number to be squared is 4 less than an unspecified multiple of ς. The 
number 4 is chosen because it is the square root of 16. In our terms, it leads to a 
quadratic equation one of whose roots is zero, so tha t the other root can be found by 
solving a linear equation. As we would write it, assuming tha t 16 — ò 2 = (fee — 4 ) 2 , 
wc find tha t (k2 + 1)ς2 = 8kς, and—cancelling ς, since Diophantus does not operate 
with 0 we get ς = 8k/(k2 + 1). This formula generates a whole infinite family of 
solutions of the equation that we would call x2 + y2 = 16 via the identity 
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You may be asking why it was necessary to use a square number (16) here. Why 
not separate any positive rational number, say 5, into a sum of two squares? If 
you look carefully a t the solution, you will see that Diophantus had to make the 
constant term drop out of the quadratic equation, and that could only be done by 
introducing the square root of the given number. 

Diophantus ' procedure is slightly less general than what we have just shown, 
although his illustrations show that he knows the general procedure and could 
generate other solutions. In his illustration he assumes that the other square is 
(2ò - 4 ) 2 . Since this number must be 16 - ò 2 , he finds that 4 ò 2 - 16ò + 1 6 = 16 - ò 2 , 
so tha t ò = ø. It is clear tha t this procedure can be applied very generally, showing 
an infinite number of ways of dividing a given square into two other squares. 

At first sight it appears tha t number theory really is not involved in this prob-
lem, tha t it is a mat ter of pure algebra. However, the topic of the problem naturally 
leads to other questions tha t definitely do involve number theory, tha t is, the the-
ory of divisibility of integers. The most obvious one is the problem of finding all 
possible representations of a positive rational number as the sum of the squares of 
two rational numbers. One could then generalize and ask how many ways a given 
rational number can be represented as the sum of the cubes or fourth powers, and 
so forth, of two rational numbers. Those of a more Pythagorean bent might ask 
how many ways a number can be represented as a sum of triangular, pentagonal, 
or hexagonal numbers. In fact, all of these questions have been asked, starting in 
the seventeenth century. 

The problem just solved achieved lasting fame when Fermat, who was studying 
the Arithmetica, remarked that the analogous problem for cubes and higher powers 
had no solutions; tha t is, one cannot find positive integers x, y, and æ satisfying 
x3 + y 3 = z 3 or x4 + y4 = z4, or, in general xn +yn = zn with ç > 2. Fermat stated 
that he had found a proof of this fact, but unfortunately did not have room to write 
it in the margin of the book. Fermat never published any general proof of this fact, 
although the special case ç = 4 is a consequence of a method of proof developed by 
Fermat, known as the method of infinite descent. The problem became generally 
known after 1670, when Fermat 's son published an edition of Diophantus' work 
along with Fermat 's notes. It was a tantalizing problem because of its comprehen-
sibility. Anyone with a high-school education in mathematics can understand the 
statement of the problem, and probably the majority of mathematicians dreamed 
of solving it when they were young. Despite the efforts of hundreds of amateurs 
and prizes offered for the solution, no correct proof was found for more than 350 
years. On June 23, 1993, the British mathematician Andrew Wiles announced at 
a conference held at Cambridge University that he had succeeded in proving a cer-
tain conjecture in algebraic geometry known as the Shimura-Taniyama conjecture, 
from which Fermat 's conjecture is known to follow. This was the first claim of a 
proof by a reputable mathematician using a technique that is known to be feasible, 
and the result was tentatively endorsed by other mathematicians of high reputa-
tion. After several months of checking, some doubts arose. Wiles had claimed in 
his announcement tha t certain techniques involving what are called Euler systems 
could be extended in a particular way, and this extension proved to be doubtful. In 
collaboration with another British mathematician, Richard Taylor, Wiles eventu-
ally found an alternative approach that simplified the proof considerably, and there 
is now no doubt among the experts in number theory that the problem has been 
solved. 
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To give another illustration of the same method, we consider the problem fol-
lowing the one just discussed, that is, Problem 9 of Book II: to separate a given 

number that is the sum of two squares into two other squares. (That is, given one 
representation of a number as a sum of two squares, find a new representation of 
the same type.) Diophantus shows how to do this using the example 13 = 2 2 + 3 2 . 
He lets one of the two squares be (ς + 2 ) 2 and the other (2ò - 3 ) 2 , resulting in the 
equation 5ò 2 - 8ò = 0. Thus, ò = §, and indeed ( ^ ) 2 + ( ± ) 2 = 13. It is easy 
to see here that Diophantus is deliberately choosing a form for the solution that 
will cause the constant term to drop out. This amounts to a general method, used 
throughout the first two books, and based on the proportion 

(a+Y): X = X :(a-Y) 

for solving the equation X2 + Y2 = a2. 

The method Diophantus used to solve such problems in his first two books was 
conjectured by Maximus Planudes (1255 1305) and has recently been explained in 
simple language by Christianidis (1998). 

Some of Diophantus' indeterminate problems reach a high degree of complexity. 
For example, Problem 19 of Book 3 asks for four numbers such t ha t if any of the 
numbers is added to or subtracted from the square of the sum of the numbers, the 
result is a square number. Diophantus gives the solutions as 

17,136,600 12,675,000 15,615,600 8,517,600 

163,021,824' 163,021,824" 163,021,824' 163,021,824" 

3 . China 

Although figurate numbers were not a topic of interest to early Chinese mathe-
maticians, there was always in China a great interest in the use of numbers for 
divination. According to Li and Du (1987, pp. 95-97), the magic square 

4 9 2 

3 5 7 
8 1 6 

appears in the treatise Shushu Jiyi (Memoir on Some Traditions of the Mathe-
matical Art) by the sixth-century mathematician Zhen Luan. In this figure each 
row, column, and diagonal totals 15. In the early tenth century, during the Song 
Dynasty, a connection was made between this magic square and a figure called the 
Luo-chu-shu (book that came out of the River Lo) found in the famous classic work 
J Ching, which was mentioned in connection with divination in Chapter 1. The 
/ Ching states that a tortoise crawled out of the River Lo and delivered to the 
Emperor Yu the diagram in Fig. 2. Because of this connection, the diagram came 
to be called the Luo-shu (Luo book). Notice tha t the purely numerical aspects of 
the magic square are enhanced by representing the even (female, ying) numbers 
as solid disks and the odd (male, yang) numbers as open circles. Like so much of 
number theory, the theory of magic squares has continued to a t t rac t at tention from 
specialists, all the while remaining essentially devoid of any applications. In this 
particular case, the interest has come from specialists in combinatorics, for whom 
magic squares and Latin squares form a topic of continuing research. 

Another example of the use of numbers for divination comes from the last 
problem (Problem 36 of Chapter 3) of the Sun Zi Suan Jing. The da ta for the 
problem are very simple. A woman, aged 29, is pregnant. The period of human 
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F I G U R E 2. The Luo-shu. 

gestation is nine months. The problem is to determine the gender of the unborn 
child. In what is apparently an echo of the / Ching method of divination, the 
author begins with 49 (the number of yarrow stalks remaining after the first one 
has been laid down to begin the divination process). He then says to add the 
number of months of gestation, then subtract the woman's age. From the remainder 
(difference?) one is then to subtract succesively 1 (heaven), 2 (Earth) , 3 (man), 4 
(seasons), 5 (phases), 6 (musical tones), 7 (stars in the Dipper), 8 (wind directions), 
and 9 (provinces of China under the Emperor Yu) and then use the final difference 
to determine the gender. 8 

The nature of divisibility for integers is also studied in Chinese treatises, in 
particular in the Sun Zi Suan Jing, which contains the essence of the result still 
known today as the Chinese remainder theorem. It was mentioned above tha t 
in general the Sun Zi Suan Jing is more elementary than the earlier Jiu Zhang 
Suanshu, but this bit of number theory is introduced for the first t ime in the Sun 
Zi Suan Jing. The problem asks for a number that leaves a remainder of 2 when 
divided by 3, a remainder of 3 when divided by 5, and a remainder of 2 when 
divided by 7. As in the case of Diophantus, the problem appears to be algebra, but 
it also involves the notion of divisibility with specified remainders. The assertion 

8 Although no explanation is given in the translation by Lam and Ang (1992, p. 182), and no 
value is given for the final difference in this problem, the child is said by the author to be male. 
Perhaps the subtracting of successive integers was meant to continue only until the number left 
was smaller than the next number to be subtracted. In the present case, that number would be 
1, resulting after 7 was subtracted. This interpretation seems to make sense; otherwise, the result 
of the procedure would be determined entirely by the parity of the woman's age. 
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that any number of such congruences can be solved simultaneously if the divisors 
are all pairwise relatively prime is the content of what we know now as the Chinese 
remainder theorem. According to Dickson, (1920, p. 57) this name arose when the 
mathematically astute British missionary Alexander Wylie (1815-1887) wrote an 
article on it in the English-language newspaper North China Herald in 1852. By 
that time the result was already known in Europe, having been discovered by Gauss 
and published in his Disquisitiones arithmetics (Art. 36) in 1836. 

Sun Zi's answer to this problem shows tha t he knew a general method of pro-
ceeding. He says, "Since the remainder on division by 3 is 2, take 140. The 
remainder on division by 5 is 3, so take 63. T h e remainder on division by 7 is 2, 
so take 30. Add these numbers, getting 233. From this subtract 210, getting the 
answer as 23." 

It is just possible that the reader may not discern the underlying reasoning here, 
and so a bit of explanation may help. Sun Zi reasons that all multiples of 35 = 7 • 5 
will leave a remainder of zero when divided by 5 or 7. He therefore took a multiple 
of 35, 140 = 3 5 - 4 , tha t leaves a remainder of 2 when divided by 3. One may well 
ask why he didn ' t simply take 35 itself, since it also leaves a remainder of 2 when 
divided by 3. The seemingly clumsy use of 140 instead reveals still more of Sun 
Zi's thought processes. He must have looked first for a multiple of 35 tha t leaves 
a remainder of 1 when divided by 3, found it to be 70, then multiplied it by 2 . 9 

Similarly, 63 is the smallest multiple of 21 = 7 · 3 tha t leaves a remainder of 3 when 
divided by 5, and 30 is the smallest multiple of 15 = 3-5 tha t leaves a remainder of 2 
when divided by 7. Adding all three numbers, we get the number 233, which leaves 
the desired remainders on all three divisions. Sun Zi also knew tha t any multiple of 
105 = 3 - 5 - 7 could be added or subtracted without affecting any of the remainders. 
Hence subtracting 210 produced the smallest possible solution. It is obvious from 
this explanation that Sun Zi's method is perfectly general and can be used to find 
all possible solutions to such problems. What is concealed in his exposition is the 
general hypothesis that the divisors must be pairwise relatively prime. Sun Zi does 
not discuss this concept, but obviously he must have encountered cases where such 
problems cannot be solved. Almost certainly he would have traced the difficulty 
back to the existence of common factors among the divisors. 

The importance of this kind of problem to the Chinese was not merely the-
oretical. Given that the ratio of a month—the t ime between two successive full 
moons—to a year is 19:235, questions involving calendars lead very often to find-
ing numbers that leave a given remainder when divided by 19 and another given 
remainder when divided by 235. For example, suppose we know tha t the moon was 
full on June 1, 1996. Wha t is the next year on which it will be full on June 4? (See 
Problem 7.10.) 

The secret of solving problems of this sort is the Euclidean algorithm. This 
algorithm was known in China from the first century C E (see Shen, 1988) and 
used to solve a variety of problems, including the conversion of a long decimal 
expansion into a common fraction approximation with a small denominator (see 
Problem 7.12). 

9 We can assume that Sun Zi found 70 by trial and error. The appropriate multiple would not be 
so easy if the divisors involved had seven digits each. A method for handling such harder cases 
was discovered by the Hindus and is discussed below. 
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4. I n d i a 

The Sulva Sutras contain rules for finding Pythagorean triples of integers, such as 
(3 ,4 ,5) , (5,12,13), (8 ,15,17) , and (12,35,37). It is not certain what practical use 
these arithmetic rules had. They may have been motivated by religious ritual. A 
Hindu home was required to have three fires burning at three different altars. The 
three altars were to be of different shapes, but all three were to have the same area. 
These conditions led to certain "Diophantine" problems, a particular case of which 
is the generation of Pythagorean triples, so as to make one square integer equal to 
the sum of two others. 

One class of mathematical problems associated with altar building involves an 
altar of prescribed area in layers. In one problem from the Bodhayana Sutra the 
altar is to have five layers of bricks, each layer containing 21 bricks. Now one cannot 
simply divide a pile of 105 identical bricks into five layers and pile them up. Such 
a structure would not be stable. It is necessary to stagger the edges of the bricks. 
So tha t the outside of the altar will not be jagged, it is necessary to have at least 
two different sizes of bricks. The problem is to decide how many different sizes of 
bricks will be needed and how to arrange them. Assuming an area of one square 
unit (actually, the unit is 1 square vyayam, about 7 square meters), the author 
suggests using three kinds of square bricks, of areas ^ , ^ , and § square unit. The 
first, third, and fifth layers are to have nine of the first kind and 12 of the second. 
The second and fourth layers get 16 of the first kind and five of the third. 

4 . 1 . Varahamihira 's mys t i ca l square . According to Hayashi (1987), around 
the year 550 the mathematician Varahamihira wrote the Brhatsamhita, a large book 
devoted mainly to divination. However, Chapter 76 also discusses the mixing of 
perfumes from 16 substances, grouped in fours and mixed according to proportions 
given by the rows of the following square array: 

2 3 5 8 

5 8 2 3 
4 1 7 6 

7 6 4 1 

Thus, the mysticism surrounding these squares penetrated even practical aspects of 
life. Hayashi notes tha t the Sanskrit word for the square itself, kacchaputa, means 
a box with compartments, but originally meant a tortoise shell. The resemblance 
to the Luo Shu is probably a coincidence. 

4 .2 . A r y a b h a t a I . In verses 32 and 33 of the Aryabhatiya we find a method 
of solving problems related to the problem of Sun Zi that leads to the Chinese 
remainder theorem. However, the context of the method and the description leave 
much to be desired in terms of clarity. It would have helped if Aryabhata had 
included specific examples. Such examples were provided by later commentators, 
and the process was described more clearly by Brahmagupta . 

4 . 3 . B r a h m a g u p t a . A century after Aryabhata, Brahmagupta called the method 
the kuttaka (pulverizer). We shall exclude certain complications in Brahmagupta 's 
presentation and present the method as simply as possible. The kuttaka provides the 
following visual implementation of an algorithm for solving the equation ax = by+c, 
with b > a > 0 and a and b relatively prime. As an example, we shall find all 
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solutions of the equation Ax = 23?/+ 5. First, we carry out the Euclidean algorithm 
until 1 appears as a remainder: 

We then write the quotients (5 and 1 in this case) from the Euclidean algorithm 
in a column, and beneath them we write the additive term c if the number of 
quotients is even (in this case, two), otherwise - c . At the bo t tom of the column 
we write a 0. This zero is inserted so tha t the same transformation rule applies at 
the beginning as in all other steps of the algorithm. We then reduce the number 
of rows successively by operating on the bot tom three rows at each stage. The 
second-from-last row is replaced by its product with the next-to-last row plus the 
last row; the next-to-last row is simply copied, and the last row is discarded. Thus 
to solve this system the kuttaka method amounts to the transformations 

This column now gives χ and y, and indeed, 4-30 = 23-5+5. Diophantus showed how 
to find a particular solution of such a congruence. Brahmagupta , however, found 
all the solutions. He took the solutions χ and y obtained by the kuttaka method, 
which were generally quite large numbers, divided χ by b and y by a, replaced them 
by the remainders, and gave the general χ and y as a pair of ar i thmetic sequences 
with differences b and a, respectively. In the present case, the general solution is 
χ = 30 + 23fc, y = 5 + 4k. The smallest positive solution χ = 7, y = 1, is obtained 
by taking k = — 1. 

Brahmagupta 's rule for finding the solutions is more complicated than the 
discussion just given, since he does not assume tha t the numbers á and b are 
relatively prime. However, the greater generality is only apparent . If the greatest 
common divisor of á and 6 is not a factor of c, the problem has no solution; if it is 
a factor of c, it can be divided out of the problem. 

Brahmagupta also considers such equations with negative d a t a and is not in 
the least troubled by this complication. It seems clear tha t the name pulverizer 
was applied because the original da ta are repeatedly broken down by the Euclidean 
algorithm (they are "pulverized"). 

Astronomical applications. It was mentioned above tha t this kind of remainder 
arithmetic, which we now call the theory of linear congruences, has applications to 
the calendar. Brahmagupta proposed the problem of finding the (integer) number 
of elapsed days when Jupiter is 22°, 30' into the sign of A r i e s 1 0 (Colebrooke, 1817, 

p. 334). Brahmagupta converted the 22°, 30' into 1350'. He had earlier taken the 
sidereal period of Saturn to be 30 years and to be a common multiple of all cycles. 

1 0 Obviously, Jupiter will pass this point once in each revolution, but it will reach exactly this 
point at the expiration of an exact number of days (no fractional hours or minutes) only once in 
a yuga, which is a common period for all the heavenly bodies. Brahmagupta took 30 years as a 
yuga, but his method is general and will yield better results if a more accurate yuga is provided by 
observation. He says that the value of 30 years is given for a yuga only to make the computation 
easier. 

23 13 = 5 - 4 + 3 , 

4 = 1 - 3 + 1 . 

5 
1 
5 
0 
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On that basis Jupiter was given (inaccurately) a sidereal period of 10 years. Again 
inaccurately, using a year of 3651 days, we find tha t Jupiter undergoes three cycles 
in 10,960 days. Thus , in one day, Jupiter moves 3/10960 of a revolution. Since 
there are 360 · 60 = 21600 minutes in a revolution, we find tha t each day Jupiter 
moves 64800/10960 = 810/137 minutes. The problem, then, is to solve 810÷/137 = 
21 ,600y+1350 or dividing out the common factor of 270, 3x = 137 · (80y + 5); tha t 
is, 3a; = 10,960y + 685. Here χ will be the number of days elapsed in the cycle and 
y the number of revolutions that Jupiter will have made. The Euclidean algorithm 
yields 10960 = 3 · 3653 + 1, so that we have 

3 ^ 3

C -2502305 
- 6 8 5 —> . 

o ~ 6 8 5 

Tha t is, χ = -2502305 + 10960* and y = - 6 8 5 + 3i. The smallest positive solution 
occurs when t = 229: χ = 7535, y = 2, which is Brahmagupta ' s answer. 

Brahmagupta illustrated the formulas for right triangles by creating Pythago-
rean triples. In Chapter 12 of the Brahmasphutasiddhanta (Colebrooke, 1817, p. 
306) he gives the rule tha t "the sum of the squares of two unlike quantities are 
the sides of an isosceles triangle; twice the product of the same two quantities is 
the perpendicular; and twice the difference of their square is the base." This rule 
amounts to the formula ( a 2 + 6 2 ) 2 = (2ab) 2 + (a 2 - b2)2, but it is stated as if the 
right triangle has been doubled by gluing another copy to the side of length a2 — b2, 
thereby producing an isosceles triangle. The relation stated is a purely geometric 
relation, showing (in our terms) that the sides and alt i tude of an isosceles triangle 
of any shape can be generated by choosing the two lengths a and b suitably. 

Brahmagupta also considered generalizations of the problem of Pythagorean 
triples to a more general equation cal led 1 1 Pell's equation and written y2—Dx2 = 1. 
He gives a recipe for generating a new equation of this form and its solutions from 
a given solution. The recipe proceeds by starting with two rows of three entries, 
which we shall illustrate for the case D = 8, which has the solution χ = 1, y = 3. 
We write 

1 3 1 
1 3 1' 

The first column contains x, called the lesser solution, the second contains y, called 
the greater solution, and the third column contains the additive term 1. From these 
two rows a new row is created whose first entry is the sum of the cross-multiplied 
first two columns, tha t is 1-3+3-1 = 6. The second entry is the product of the second 
entries plus 8 times the product of the first entries, tha t is 3 - 3 + 8 - 1 - 1 = 17, and 
the third row is the product of the third entries. Hence we get a new row 6 17 1, 
and indeed 8 • 6 2 + 1 = 289 = 17 2 . In our terms, this says that if 8a;2 + 1 = y2 and 
8 u 2 + 1 = v2, then 8(xv + yu)2 + 1 = (8a;ii + yv)2. More generally, Brahmagupta 's 
rule says tha t if ax2 + d = y2 and au2 + c = í2, then 

(1) a(xv + yu)2 + cd = (axu + yv)2. 

1 1 Erroneously so-called, according to Dickson (1920, p. 341), who asserts that Fermat had studied 
the equation earlier than John Pell (1611-1685). However, the website at St. Andrew's University 
gives evidence that Euler's attribution of this equation to Pell was accurate. In any case, everybody 
agrees that the solutions of the equation were worked out by Lagrange, not Pell. 
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Although it is trivial to verify that this rule is correct using modern algebraic 
notation, one would like to know how it was discovered. 1 2 Although the route 
by which this discovery was made is not known, the motivation for studying the 
equation can be plausibly ascribed to a desire to approximate irrational square 
roots with rational numbers. Brahmagupta 's rule with c = d — 1 gives a way of 
generating larger and larger solutions of the same Diophantine equation ax2 + 1 = 
y2. If you have two solutions (x, y) and (u, v) of this equation, which need not be 
different, then you have two approximations y/x and õ/u for y/a whose squares are 
respectively 1/x2 and 1/u2 larger than a. The new solution generated will have 
a square tha t is only l/(xv + yu)2 larger than a. This aspect of the problem of 
Pell's equation turns out to have a close connection with its complete solution in 
the eighteenth century. 

4.4. Bhaskara II. In his treatise Vija Ganita (Algebra), Bhaskara states the rule 
for kuttaka more clearly than either Aryabhata or Brahmagupta had done and 
illustrates it with specific cases. For example, in Chapter 2 (Colebrooke, 1817, p. 
162) he asks, "What is that multiplier which, when it is multiplied by 221 and 65 is 
added to the product, yields a multiple of 195?" In other words, solve the equation 
195a; = 221y + 65. Dividing out 13, which is a common factor, reduces this equation 
to 15a: = 17y+ 5. The kuttaka, whose steps are shown explicitly, yields as a solution 
χ = 40, y = 35. 

In his writing on algebra, Bhaskara considered many Diophantine equations. 
For example, in Section 4 of Chapter 3 of the Lilavati (Colebrooke, 1817, p. 27), 
he posed the problem of finding pairs of (rational) numbers such tha t the sum and 
difference of their squares are each 1 larger than a square. It would be interesting 
to know how he found the answer to this difficult problem. All he says is tha t 
the smaller number should be obtained by star t ing with any number, squaring, 
multiplying by 8, subtracting 1, then dividing by 2 and by the original number. 
The larger number is then obtained by squaring the smaller one, dividing by 2, and 
adding 1. In our terms, these recipes say that if u is any rational number, then 

(* ' - " • K.)'± ( « - £ ) ' -
is the square of a rational number. The reader can easily verify t ha t it is (8it 2 — 

l / ( 8 u 2 ) ) 2 when the positive sign is chosen and (%u2 — 2+ g^a) 2 when the negative 
sign is taken. 

Chapter 4 of the Vija Ganita contains many algebraic problems involved with 
solving triangles, interspersed with some pure Diophantine equations. One of the 
most remarkable (Colebrooke, 1817, p. 200) is the problem of finding four unequal 
(rational) numbers whose sum equals the sum of their squares or the sum of the 
cubes of which equals the sum of their squares. In the first case he gives | , | , | , 
| . In the second case he gives -^, -^, -^, In bo th cases the numbers are in the 
proportion 1 : 2 : 3 : 4 . These three extra conditions (three ratios of numbers) were 
deliberately added by Bhaskara so that the problem would become a determinate 
one. 

The characteristic that makes problems like the preceding one easy is tha t 
the requirement imposed on the four numbers amounts to a single equation with 

1 2 Wei\{1984, pp. 17, 83, 204) refers to Eq. land the more general relation (x2+Ny2)(z2+Nt2) = 
(xz ± Nyt)2 + N(xt + yz)2 as "Brahmagupta's identity" (his quotation marks). 
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more than one unknown. But Bhaskara also asks harder questions. For example 

(Colebrooke, 1817, p . 202): Find two (rational) numbers such that the sum of 

the cubes is a square and the sum of the squares is a cube. Bhaskara manages 

to find a solution using the trick of assigning the ratio a of the two numbers. . 

It is necessary for the technique that this ratio satisfy 1 4- a 3 = b2. Bhaskara 

chooses á = 2, b = 3 . 1 3 The smaller number is then chosen to be of the form 

(1 + a2)w3 for some number w. The sum of the squares will then be (1 + á 2 ) 2 é õ 6 + 

á 2 (1 + o?)2w6 - (1 + a2)3w6 = ((1 + a2)w2)3, and the sum of their cubes will be 

(1 + a2)3w9 + a 3 ( l + a2)3w9 = (1 + a2)3b2w9 = 6 2 ( (1 + a2)w3)3. Hence, if w is 

chosen so that (1 + a2)w is a square, this will be a perfect square. The simplest 

choice obviously is w = 1 + a2. In Bhaskara's example, tha t choice gives the pair 

625 and 1250. 

5. T h e M u s l i m s 

The Muslims continued the work of Diophantus in number theory. Abu-Kamil 
(ca. 850-ca. 930) wrote a book on "indeterminate problems" in which he studied 
quadratic Diophantine equations and systems of such equations in two variables. 
The first 38 problems tha t he studied are arranged in a very strict ordering of 
coefficients, exponents, and signs, making it a very systematic exposition of these 
equations. Later scholars noted the astonishing fact tha t the first 25 of these 
equations are what are now known as algebraic curves of genus 0, while the last 
13 are of genus 1, even though the concept of genus of an algebraic curve is a 
nineteenth-century invention (Baigozhina, 1995). 

Muslim mathematicians also went beyond what is in Euclid and Nicomachus, 
generalizing perfect numbers. In a number of articles, Rashed (see, for example, 
1989) points out tha t a large amount of theory of abundant , deficient, and perfect 
numbers was assembled in the ninth century by Thabi t ibn-Qurra and others, and 
that ibn al-Haytham (965-1040) was the first to s ta te and a t tempt to prove tha t 
Euclid's formula gives all the even perfect numbers. Thabi t ibn Qurra made an in-
teresting contribution to the theory of amicable numbers. A pair of numbers is said 
to be amicable if each is the sum of the proper divisors of the other. The smallest 
such pair of numbers is 220 and 284. Although these numbers are not discussed 
by Euclid or Nicomachus, the commentator Iamblichus (see Dickson, 1919, p. 38) 
ascribed this notion to Pythagoras, who is reported as saying, "A friend is another 
self." This definition of a friend is given by Aristotle in his Nicomachean Ethics 
(Bekker 1170b, line 7). 

We mentioned above the standard way of generating perfect numbers, namely 
the Euclidean formula 2 n _ 1 ( 2 n - 1), whenever 2" - 1 is a prime. Thabi t ibn-Qurra 
found a similar way of generating pairs of amicable numbers. His formula is 

2"(3 · 2 n - 1)(3 · 2 n _ 1 - 1) and 2 n ( 9 · 2 2 n _ 1 - 1), 

whenever 3 • 2 n - 1, 3 · 2 n _ 1 - 1, and 9 • 2 2 " - 1 - 1 are all prime. The case ç = 2 
gives the pair 220 and 284. Whatever one may think about the impracticality 
of amicable numbers, there is no denying that Thabi t ' s discovery indicates very 

1 3 It was conjectured in 1844 by the Belgian mathematician Eugene Charles Catalan (1814-1894) 
that the only nonzero solutions to the Diophantine equation p m — qn = 1 are g = 2 = ç, ñ = 3 — n. 
This conjecture was proved in 2002 by Predhu Mihailescu, a young mathematician at the Institute 
for Scientific Computing in Zurich. Lucky Bhaskara! He found the only possible solution. 
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profound insight into the divisibility properties of numbers. It is very difficult to 
imagine how he could have discovered this result. A conjecture, which cannot be 
summarized in a few lines, can be found in the article by Brentjes and Hogendijk 
{1989). 

I t is not clear how many new cases can be generated from this formula, but 
there definitely are some. For example, when ç = 4, we obtain the amicable pair 
17,296 = 1 6 - 2 3 - 4 7 and 18,416 = 16 • 1151. Hogendijk (1985) gives Thabi t ibn-
Qurra 's proof of his criterion for amicable numbers and points out tha t the case 
ç = 7 generates the pair 9,363,584 and 9,437,056, which first appeared in Arabic 
texts of the fourteenth century. 

Unlike some other number-theory problems such as the Chinese remainder the-
orem, which arose in a genuinely practical context, the theory of amicable numbers 
is an offshoot of the theory of perfect numbers, which was already a completely 
"useless" topic from the beginning. It did not seem useless to the people who 
developed it, however. According to M. Cantor (1880, p . 631) the tenth-century 
mystic al-Majriti recommended as a love potion writing the numbers on two sheets 
of paper and eating the number 284, while causing the beloved to eat the num-
ber 220. He claimed to have verified the effectiveness of this charm by personal 
experience! Dickson (1919, p. 39) mentions the Jewish scholar Abraham Azulai 
(1570-1643), who described a work purportedly by the ninth-century commentator 
Rau Nachshon, in which the gift of 220 sheep and 220 goats tha t Jacob sent to his 
brother Esau as a peace offering (Genesis 32:14) is connected with the concept of 
amicable numbers . 1 4 In any case, although their theory seems more complicated, 
amicable numbers are easier to find than perfect numbers. Euler alone found 62 
pairs of them (see Erdos and Dudley, 1983). 

Another advance on the Greeks can be found in the work of Kamal al-Din 
al-Farisi, a Persian mathematician who died around 1320. According to Agargun 
and Fletcher (1994), he wrote the treatise Memorandum for Friends Explaining the 
Proof of Amicability, whose purpose was to give a new proof of Thab i t ibn-Qurra 's 
theorem. Proposition 1 in this work asserts the existence (but not uniqueness) of 
a prime decomposition for every number. Propositions 4 and 5 assert t ha t this 
decomposition is unique, that two distinct products of primes cannot be equal. 

6. J a p a n 

In 1627 Yoshida Koyu wrote a textbook of ari thmetic called the Jinko-ki (Treatise 
on Large and Small Numbers). This book contained a s tatement of what is known 
in modern mathematics as the Josephus problem. The Japanese version of the 
problem involves a family of 30 children choosing one of the children to inherit the 
parents ' property. The children are arranged in a circle and count off by tens; the 
unlucky children who get the number 10 are eliminated; t h a t is, numbers 10, 20, 
and 30 drop out. The remaining 27 children then count off again. The children 
originally numbered 11 and 22 will be eliminated in this round, and when the second 
round of numbering is complete, the child who was first will have the number 8. 
Hence the children originally numbered 3, 15, and 27 will be eliminated on the next 

1 4 The peace offering was necessary because Jacob had tricked Esau out of his inheritance. But if 
the gift was symbolic and associated with amicable numbers, the story seems to imply that Esau 
was obligated to give Jacob 284 sheep and 284 goats. Perhaps there was an ulterior motive in the 
gift! 
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round, and the first child will s tart the following round as number 3. The problem 
is to see which child will be the last one remaining. Obviously, solving this problem 
in advance could be very profitable, as the original Josephus story indicates . 1 5 The 
Japanese problem is made more interesting and more complicated by considering 
that half of the children belong to the couple and half are the husband's children 
by a former marriage. The wife naturally wishes one of her own children to inherit, 
and she persuades the husband to count in different ways on different rounds. The 
problem was reprinted by several later Japanese mathematicians. 

The eighteenth-century mathematician Matsunaga Ryohitsu (1718-1749) dis-
cussed a variety of equations similar to the Pell equation and representations of 
numbers in general as sums and differences of powers. For example, his recipe for 
solving the equation x3 — y3 = z4 was to take æ — ôç3 —ç3, then let χ = mz, y = nz. 
But he also tackled some much more sophisticated problems, such as the problem 
of representing a given integer k as a sum of two squares and finding an integer 
that is simultaneously of the forms y2 + 69j/i + 1 5 and y\ + 72y2 + 7. Matsunaga 
gave the solution as 11,707, obtained by taking y\ = 79, yi — 78. 

7. Medieval E u r o p e 

In his Liber quadratorum (Book of Squares) Leonardo of Pisa (Fibonacci, 1170-
1250) speculated on the difference between square and nonsquare numbers. In the 
prologue, addressed to the Emperor Frederick II, Leonardo says that he had been 
inspired to write the book because a certain John of Palermo, whom he had met 
at Frederick's court, had challenged him to find a square number such that if 5 is 
added to it or subtracted from it, the result is again a square. This question inspired 
him to reflect on the difference between square and nonsquare numbers. He then 
notes his pleasure on learning that Frederick had actually read one of his previous 
books and uses that fact as justification for writing on the challenge problem. 

The Liber quadratorum is written in the spirit of Diophantus and shows a keen 
appreciation of the conditions under which a rational number is a square. Indeed, 
the ninth of its 24 propositions is a problem of Diophantus: Given a nonsquare 
number that is the sum of two squares, find a second pair of squares having this 
number as their sum. As mentioned above, this problem is Problem 9 of Book 2 of 
Diophantus. 

The securest basis of Leonardo's fame is a single problem from his Liber abaci, 
written in 1202: 

How many pairs of rabbits can be bred from one pair in one year 
given that each pair begins to breed in the second month after its 
birth, producing one new pair per month? 

1 5 Josephus tells us that, faced with capture by the Romans after the fall of Jotapata, he and 
his Jewish comrades decided to commit mass suicide rather than surrender. Later commentators 
claimed that they stood in a circle and counted by threes, agreeing that every third soldier would 
be killed by the person on his left. The last one standing was duty bound to fall on his sword. 
According to this folk legend, Josephus immediately computed where he should position himself 
in order to be that last person, but decided to surrender instead of carrying out the bargain. 
Josephus himself, however, writes in The Jewish Wars, Book 111, Chapter 8 that the order of 
execution was determined by drawing lots and that he and his best friend survived either by 
chance or by divine intervention in these lots. The mathematical problem we are discussing is also 
said to have been invented by Abraham ben Meir ibn Ezra (1092-1167), better known as Rabbi 
Ben Ezra, one of many Jewish scholars who flourished in the Caliphate of Cordoba. 
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By brute-force enumeration of cases, the author concludes tha t there will be 
377 pairs, and "in this way you can do it for the case of infinite numbers of months." 

The sequence generated here (1, 1, 2, 3, 5, 8 , . . . ) , in which each term after 
the second is the sum of its two predecessors, has been known as the Fibonacci 
sequence ever since the Liber abaci was first printed in the nineteenth century. The 
Fibonacci sequence has been an inexhaustible source of identities. Many curious 
representations of its terms have been obtained, and there is a mathematical journal, 
the Fibonacci Quarterly, named in its honor and devoted to its lore. The Fibonacci 
sequence has been a rich source of interesting pure mathematics , but it has also had 
some illuminating practical applications, one of which is discussed in Problems 2.4-
2.6. 

Q u e s t i o n s a n d p r o b l e m s 

7.1 . Compute the sexagesimal representation of the number 

for the following pairs of integers (p,q): (12,5), (64,27), (75,32), (125,54), and 
(9,5). Then correct column 1 of Plimpton 322 accordingly. 

7.2. On the surface the Euclidean algorithm looks easy to use, and indeed it is 
easy to use when applied to integers. The difficulty arises when it is applied to 
continuous objects (lengths, areas, volumes, weights). In order to execute a loop 
of this algorithm, you must be able to decide which element of the pair (a, b) is 
larger. But all judgments as to relative size run into the same difficulty tha t we 
encounter with calibrated measuring instruments: limited precision. There is a 
point at which one simply cannot say with certainty tha t the two quantities are 
either equal or unequal. Docs this limitation have any practical significance? Wha t 
is its theoretical significance? Show how it could give a wrong value for the greatest 
common measure even when the greatest common measure exists. How could it 
ever show tha t two quantities have no common measure? 

7.3. The remainders in the Euclidean algorithm play an essential role in finding the 
greatest common divisor. The greatest common divisor of 488 and 24 is 8, so tha t 
the fraction 24/488 can be reduced to 3 /61 . The Euclidean algorithm generates 
two quotients, 20 and 3 (in order of generation). Wha t is their relation to the two 
numbers? Observe the relation 

1 _ 3^ 

If you find the greatest common divisor of 23 and 56 (which is 1) this way, you will 
generate the quotients 2, 2, 3, 3. Verify tha t 

23 _ 1 

2 + - l 

- 3 -
This expression is called the continued fraction representation representation of 
23/56. Formulate a general rule for finding the continued fraction representation 
of a proper fraction. 
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7.4. Draw dot figures for the first five heptagonal and octagonal numbers. Wha t 
kind of figure would you need for nonagonal numbers? 

7.5. Prove the formulas given in the caption of Fig. 1 for Tn, Sn, P n , and Hn. Then 
prove that Sn = Tn + T n . u Pn = Sn + T „ _ x = Tn + 2T„_i , Hn = Pn + Tn.1 = 
Tn + 3Ô ç _÷. If Pk,n is the n t h fc-gonal number, give a general formula for Pk<n in 
terms of k and n. 

7.6. Prove tha t the Pythagorean procedure always produces a perfect number. 
Tha t is, if ñ = 2n — 1 is prime, then TV = 2 n _ 1 p is perfect. This theorem is not 
difficult to prove nowadays, since the "parts" (proper divisors) of TV are easy to list 
and sum. 

7.7. Let Nn be the n t h perfect number, so that N\ = 6, TV2 = 28, TV3 = 496, 
N4 = 8128. Assuming tha t all perfect numbers are given by the Pythagorean 
formula, that is, they are of the form 2 " ~ 1 ( 2 " - 1) when 2" - 1 is a prime, prove 
tha t /V„+i > 16iVn if ç > 1. Conclude that there cannot be more than one fc-digit 
perfect number for each k. 

7.8. (V. A. Lebesgue's proof of Eider's theorem on even perfect numbers) Suppose 
tha t the perfect number TV has the prime factorization TV = 2 Q p ^ 1 · · · ñ £ \ where 
p i , . . . ,Pk are distinct odd primes and a, n\,..., n*, are nonnegative integers. Since 
Í is perfect, the sum of all its divisors is 2N. This means tha t 

2 Ù + 1 Ñ Ã · ' - P ? = (1 + 2 + · · · + 2°)(1 +pi + ••• +pT)-• "(1 + Pk + • • - + pn

k

k) 

= ( 2 á + ' - i ) ( i + p 1 + . . . + p » - ) . . . ( i + p f c + . . . + P2*). 

Rewrite this equation as follows: 

( 2 Q + 1 - i ) P r ••·ÑÃ+ÑÉ 1 · · ·ÑÃ = 
= ( 2 ° + ] - À ) ( À + ñ 1 + . . . + ñ » · ) . . . ( À + ñ < ! + . . . + ñ ^ ) , 

Ñ Ã - Ñ Ã + ^ + Ã ^ = 0 + Ñ É + · · · + Ñ ? , ) · · · ( É + Ñ * + · - · + Ñ ^ ) · 

Since the second term on the left must be an integer, it follows that 2 á + 1 — 1 
must divide p " 1 · • ·ñ£*. This is not a significant statement if a = 0 (TV is an odd 
number). But if TV is even, so tha t a > 0, it implies tha t 2 ° + 1 - 1 = ñøé · ·-p™k 

for integers m\ < n\,..., ôç* < ç*,, not all zero. Thus, the left-hand side consists 
of the two distinct terms p " 1 · • • p £ k + p\x · · • pr

k

k. It follows tha t the right-hand side 
must also be equal to this sum. Now it is obvious that the right-hand side contains 
these two terms. T h a t means the sum of the remaining terms on the right-hand 
side must be zero. But since the coefficients of all these terms are positive, there 
con be only two terms on the right. Since the right-hand side obviously contains 
(nj + l)(n2 + 1) · · • (nk + 1) terms, we get the equation 

2 = ( n 1 + l ) ( n 2 + l ) - - - ( n f c + l ) . 

Deduce from this equation tha t TV must be of the form 2 n _ 1 ( 2 " - 1 ) and that 2 n - 1 
is prime. 

7.9. Generalize Diophantus ' solution to the problem of finding a second represen-
tation of a number as the sum of two squares, using his example of 13 = 2 2 + 3 2 

and letting one of the numbers be (ò + 3 ) 2 and the other (Á;ò - 2 ) 2 . 
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7.10. Take as a unit of time Ô = ^ of a year, about 37 hours, 18 minutes, say a 
day and a half in close approximation. Then one average lunar month is Ì = 19T, 
and one average solar year is Õ — 235T. Given tha t the Moon was full on June 1, 
1996, what is the next year in which it will be full on June 4? Observe tha t June 
4 in whatever year that is will be 3 days (2Ã) plus an integer number of years. We 
are seeking integer numbers of months (x) and years (y), counting from June 1, 
1996, such tha t Mx = Yy + 2T, that is (canceling T) , 19x = 235j/ + 2. Use the 
kuttaka to solve this problem and check your answer against an almanac. If you 
use this technique to answer this kind of question, you will get the correct answer 
most of the time. When the answer is wrong, it will be found tha t the full moon 
in the predicted year is a day earlier or a day later than the prescribed date. The 
occasional discrepancies occur because (1) the relation Ì = 19T is not precise, (2) 
full moons occur at different times of day, and (3) the greatest-integer function is 
not continuous. 

7.11 . Use Bhaskara's method to find two integers such tha t the square of their sum 
plus the cube of their sum equals twice the sum of their cubes. (This is a problem 
from Chapter 7 of the Vija Ganita.) 

7.12. The Chinese mutual-subtraction algorithm (the Euclidean algorithm) can 
be used to convert a decimal expansion to a common fraction and to provide ap-
proximations to it with small denominators. Consider, for example, the number 
e « 2.71828. By the Euclidean algorithm, wc get 

271,828 = 2- 100,000 + 71,828 

100,000 1 · 7 1 , 8 2 8 + 2 8 , 1 7 2 

71,828 = 2 · 2 8 , 1 7 2 + 15,484 

28,172 1 · 1 5 , 4 8 4 + 12,688 

15,484 = 1 · 1 2 , 6 8 8 + 2 , 7 9 6 

12,688 = 4- 2 , 7 9 6 + 1,504 

2,796 = 1 • 1 ,504+ 1,292 

1,504 1 • 1,292 + 212 

1,292 â- 212 + 20 

212 = ßï • 2 0 + 1 2 

20 = 1 • 12 + 8 

12 = 2 • 8 + 4 

8 = 2- 4 

Thus the greatest common divisor of 271,828 and 100,000 is 4, and if it is divided 
out of all of these equations, the quotients remain the same. We can thus write 
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The first few partial fractions here give 

1 

Ú 

1 + 

2 + T = 3 , 

1 2 8 

2 + — Ã = 2 3 = 3 = 2 - 6 6 6 -

2 

1 _ ~ 4 
2 + L— = ^ = 2 . 7 5 , 

1 + 

1 5 19 
2 + = = 2 - = — = 2.714285712485. 

1 7 7 1 + 
2 + 

1 

1 23 87 
2 + i = 2 + — = — = 2.71875, 

1 + 
32 32 

2 + 

1 + ^ 

so that the approximations get bet ter and better. Do the same with ð ss 3.14159265, 
and calculate the first five approximate fractions. Do you recognize any of these? 

7.13. Can the pair of amicable numbers 1184 and 1210 be constructed from Thabi t 
ibn-Qurra's formula? 

7.14. Solve the generalized problem stated by Matsunaga of finding an integer Í 
tha t is simultaneously of the form x2 + a\X + bi and y2 + 0,2V + 62- To do this, show 
that it is always possible to factor the number (a2 + 4&i) — (a2 + 4i>2) as a product 
mn, where m and ç are either both even or both odd, and that the solution is 
found by taking χ = - á ÷ ) , y = ±(!ø- - á 2 ) . 

7.15. Leonardo's solution to the problem of finding a second pair of squares having 
a given sum is explained in general terms, then illustrated with a special case. He 
considers the case 4 2 + 5 2 = 41 . He first finds two numbers (3 and 4) for which the 
sum of the squares is a square. He then forms the product of 41 and the sum of 
the squares of the lat ter pair, obtaining 25 · 41 = 1025. Then he finds two squares 
whose sum equals this number: 3 1 2 and 8 2 or 32 2 and l 2 . He thus obtains the 
results (f)2 + ( | ) 2 = 41 and ( f ) 2 + ( | ) 2 = 4 1 . Following this method, find 
another pair of rational numbers whose sum is 41. Why does the method work? 

7.16. If the general term of the Fibonacci sequence is a„ , show tha t an < an+i < 
2 a n , so tha t the ratio ( À ç + é / á „ always lies between 1 and 2. Assuming that this 
ratio has a limit, what is tha t limit? 

7.17. Suppose that the pairs of rabbits begin to breed in the first month after they 
are born, but die after the second month (having produced two more pairs). Wha t 
sequence of numbers results? 

7.18. Prove tha t if ,x, y, and æ are relatively prime integers such that x2 + y 2 = z2, 
with χ and æ odd and y even, there exist integers u and í such tha t χ = u2 - õ2, 
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y = 2uv, and æ = u2 + v2. [Hint: Start from the fact tha t x2 = (z — y)(z + y), so 
that æ - y = a2 and æ + y = b2 for some a and 6.] 
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Numbers and Number Theory in Modern 
Mathematics 

Beginning with the work of Fermat in the seventeenth century, number theory has 
become ever more esoteric and theoretical, developing connections with algebra and 
analysis tha t lie very deep and require many years of study to master. Obviously, 
we cannot explain in any satisfactory detail what has happened in this area in 
recent years. For tha t reason, we shall carry the story forward only as far as the 
beginning of the twentieth century. 

A second topic tha t we must discuss before leaving the subject of numbers is 
the variety of invented number systems, starting with the natural positive integers. 
The number zero, negative numbers, and rational numbers do not require a long 
explanation, but we need to focus in more detail on real and complex numbers and 
the cardinal and ordinal ari thmetic that came along with set theory. 

Finally, mere counting turns out to be very difficult in some cases; for example, 
given twelve points on a circle, each pair of which is joined by a chord, into how 
many regions will these chords divide the circle if no three chords intersect in a 
common point? To solve such problems, sophisticated methods of counting have 
been developed, leading to the modern subject of combinatorics. A survey of its 
history concludes our s tudy of numbers. 

1. M o d e r n n u m b e r t h e o r y 

We are forced to leave out many important results in our survey of modern number 
theory. Dickson's summary of the major results (1919, 1920, 1923) occupies 1600 
pages, and an enormous amount of work has been added since it was published. 
Obviously, the present discussion is going to be confined to a few of the most 
significant authors and results. 

1.1. Fermat . Pierre de Fermat (1603-1665) was a lawyer in Toulouse whose avid 
interest in mathematics led him to create, in his spare time, some analytic geometry, 
calculus, and modern number theory. According to one source book (Smith, 1929, 
p. 214), he was "the first to assert tha t the equation x2 — Dy2 = 1 has infinitely 
many solutions in integers." As we have seen, given that it has one solution in 
integers, Brahmagupta knew 900 years before Fermat tha t it must have infinitely 
many, since he knew how to create new solutions from old ones. It was mentioned 
above tha t Fermat wrote in the margin of his copy of Diophantus tha t the sum of 
two positive rational cubes could not be a rational cube, and so on (Fermat 's last 
theorem). Although Fermat never communicated his claimed proof of this fact, 
he was one of the first to make use of a method of proof—the method of infinite 
descent—by which many facts in number theory can be proved, including the case 
of fourth powers in Fermat ' s last theorem. A proof of the case of fourth powers 
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See the website http://www.euler2007.com/. 

was given by Euler in 1738. Actually, the proof shows that there can be no positive 

integers x, y, æ such that x4 + y4 = z2. 

Another area of number theory pioneered by Fermat arises natural ly from con-
sideration of quadratic Diophantine equations. The question is: "In how many 
ways can an integer be represented as a sum of two squares?" A number of the 
form in+ 3 cannot be the sum of two squares. This is an easy result, since when a 
square is divided by 4 the remainder is either 0 or 1, and it is impossible to write 3 
as the sum of two numbers, each of which is either 0 or 1. But Fermat proved the 
much more difficult result that a prime number of the form 4n + 1 can be written 
as the sum of two squares in exactly one way. Thus , 73 = 8 2 + 3 2 , for example. 

The work of Fermat in number theory was continued by many mathematicians 
in the eighteenth century. We shall discuss very briefly the lives and work of three 
of them. 

1.2. Euler . The Swiss mathematician Leonhard Euler (1707-1783) was one of the 
most profound and prolific mathematical writers who ever lived, despite having lost 
the sight of one eye early in life and the other later on. His complete works have 
only recently been assembled in good order. In 1983, the two hundredth anniver-
sary of his death, many memorial volumes were dedicated to him, including an 
entire issue (45, No. 5) of Mathematics Magazine. An even larger celebration is 
planned for 2007, the three hundredth anniversary of his b i r th . 1 He spent most 
of the years from 1726 to 1741 and from 1766 until his death in St . Petersburg, 
Russia, where he was one of the first members of the Russian Academy of Sciences, 
founded by Tsar Peter I (1672-1725) just before his death. From 1741 to 1766 he 
was in Berlin, at the Prussian Academy of Sciences of Frederick II (1712-1788). 
The exact date at which he made many of his great discoveries is sometimes diffi-
cult to establish, and different dates are sometimes given in the literature. Euler 's 
contributions to the development of calculus, differential equations, algebra, geom-
etry, and mathematical physics are enormous. The following paragraphs describe 
some of his better-known results in number theory. 

Fermat primes. Fermat had conjectured tha t the number F„ = 2^2"^ + 1 is always 
a prime. This statement is true for ç = 0 , 1 , 2 , 3 , 4 , as the reader can easily check. 
For ç = 5 this number is 4,294,967,297, and to prove tha t it is prime using the 
sieve of Eratosthenes, one must a t tempt to divide it by every prime less than 
Fi = 65,537. In 1732 Euler found that this fifth Fermat number is divisible by 
641. No Fermat number beyond F4 has ever been shown to be prime, and well 
over 200 are now known to be composite, including F2478782, discovered by John 
Cosgrave and others at St. Patrick's College, Dublin, on October 10, 2003. The 
smallest Fermat number not definitely known to be either prime or composite is 
F33. The problem of Fermat primes is almost, but not quite, an idle question, tha t 
is, one without connections to anything else in mathematics . The connection in 
this case is tha t the regular polygons tha t have an odd number of sides and can 
be constructed with straightedge and compass are precisely those whose number 
of sides is a product of Fermat primes. Thus, until such t ime as another Fermat 
number is proved to be prime, the only Euclidean-constructible regular polygons 
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with an odd number of sides will be those whose number of sides is a product of 
distinct numbers from the following short list: 3, 5, 17, 257, 65,537. 2 

Fermat's last theorem: the cases ç = 4 and ç = 3 . We pointed out above that 
Fermat 's method of infinite descent can be used to prove Fermat 's last theorem 
for ç = 4, as shown by Euler in 1738. In a textbook of algebra published in 1770 
(see Struik, 1986, pp . 36-40), Euler also gave a proof of the impossibility for the 
case ç = 3, which is much more difficult. In 1772 Euler proved that every positive 
integer is the sum of at most four square integers and conjectured that no sum 
of fewer than ç n t h powers could be an n t h power, a conjecture tha t was finally 
refuted for ç — 5 in 1966. 3 

Fermat's little theorem.. A second assertion of Fermat, which Euler proved in 1736 
(see Struik, 1986, p. 35), is known as Fermat's little theorem. It asserts that if ñ is a 
prime number that does not divide a number a, then ñ does divide ad - 1 for some 
positive integer d; moreover, the smallest d for which this statement is true divides 
ñ — 1. In particular, ñ divides á ñ _ 1 - 1. Fermat 's discovery of this theorem has 
an interesting history (Fletcher, 1989). Through Mersenne Fermat had received a 
challenge in 1640 from Bernard Frenicle de Bessy (ca. 1612-1675) to find the first 
perfect number having a t least 20 digits. It was known that 2 3 0 ( 2 3 1 - 1) was a 
perfect number having 19 digi ts . 4 Fermat did not succed in doing this; but after 
studying the problem, he noted that if ç is composite, then 2" — 1 is also and 
tha t if ç is a prime, then 2" — 2 is divisible by 2n, that is, ç divides 2 n _ 1 — 1. 
Moreover, he said, all other prime divisors of 2" — 2 leave a remainder of 1 when 
divided by 2n. These theorems, in Fermat 's view, were the secret of discovering 
perfect numbers, and he asserted that there were none having 20 or 21 digits. In a 
letter to Frenicle in October 1640, Fermat stated his "little" theorem—so called to 
distinguish it from his greater, "last" theorem. It is by no means a "little" result. 
Euler extended this result and showed tha t m divides a ( a * ( m ' — 1), where <f>(m) is 
the number of positive integers less than m and relatively prime to m (now called 
Euler's ö-function). T h a t function provides the theoretical basis for constructing 
the R S A 5 codes tha t are an essential part of communications security. Thus, the 
completely "useless" topic of perfect numbers actually inspired a number-theoretic 
result of great practical value. 

Residues modulo a prime. Euler defined an integer ç to be a ë-power residue with 
respect to ("modulo," as we now say, using Euler's Latin term) a prime ñ if there 
is an integer a such tha t ñ divides á ë — ç . This concept has proved to be a rich 
source of investigation in number theory. In particular, the case ë = 2 (quadratic 
residues) has led to some deep theorems. In works published in 1751 and 1783, 

2 Heinrich Wefelscheid informs me that one Johann Hermes (1846-1912), a student in Konigsberg 
from 1866 to 1870, actually attempted to work out the case 65,537 and published his method 
in the Gottinger Nachrichten in 1894. The Australian mathematician Joan Taylor has used a 
computer to complete Hermes' project and found that the algebraic expression for cos(2w/65537) 
occupies 12.5 megabytes and contains an integer of 19,717 digits. 
3 In connection with this result, we note that Fermat had stated a positive conjecture: Every 
positive integer is the sum of at most ç n-gonal numbers, that is, three triangular numbers, four 
squares, five pentagonal numbers, and so on. This result was first proved for the general case by 
Augustin-Louis Cauchy (1789-1856) in 1813. 
4 Specifically, it is 2,305,843,008,139,952,128. 
5 Invented in 1977 and named from the initials of its three inventors, Ronald L. Rivest, Adi 
Shamir, and Leonard Adleman. 
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Euler conjectured what we now know as the law of quadratic reciprocity: Given 
two primes ñ and q both of which equal 3 modulo 4, exactly one of them is a 
quadratic residue modulo the other. In all other cases, either each is a quadratic 
residue modulo the other or neither is. For example, 1 1 Î 2 2 Î 5 2 mod 7, but the 
quadratic residues modulo 11 are 0, 1, 4, 3 ( Î 5 2 = 6 2 mod 11), 5 ( = 4 2 Î 7 2 

mod 11), and 9; 7 is not among them. Tha t is because both 7 and 11 are equal to 
3 modulo 4. On the other hand, since 5 equals 1 modulo 4, we find tha t 11 Î l 2 

mod 5 and 5 = 72 mod 11; similarly, neither 5 nor 7 is a quadrat ic residue modulo 
the other. The fact that Euler did not succeed in proving the law of quadratic 
reciprocity shows how difficult a result it is. 

The Goldbach conjecture. A problem of number theory whose fame is second only 
to the Fermat conjecture is a conjecture of Christian Goldbach (1690-1764), who 
wrote to Euler in 1742 tha t every integer seemed to be a sum of a t most three 
prime integers (Struik, 1986, pp . 47-49). Euler wrote back tha t he believed, but 
was unable to prove, the stronger proposition tha t every even integer larger than 
4 is the sum of two odd primes—in other words, t ha t one of the three primes 
conjectured by Goldbach can be chosen arbitrarily. Euler 's s ta tement is known 
as the Goldbach conjecture. In 1937 the Russian mathematic ian Ivan Matveevich 
Vinogradov (1891-1983) proved that every sufficiently large odd integer is the sum 
of at most three primes. 

1.3. Lagrange . The generation after Euler produced the I tal ian-French mathe-
matician Joseph-Louis Lagrange (1736-1813). His name gives the impression tha t 
he was French, and indeed his ancestry was French and he wrote in French; but 
then so did many others, as French was literally the "lingua franca," the common 
language of much scientific correspondence during the eighteenth and nineteenth 
centuries. Lagrange was born in Turin, however, and lived there for the first 30 
years of his life, signing his first name as "Luigi" on his first mathematical paper 
in 1754. When the French Revolution came, he narrowly escaped arrest as a for-
eigner; and we have the word of Jean-Joseph Fourier, who heard him lecture, tha t 
he spoke French with a noticeable Italian accent. Thus it appears t ha t the Italians 
are correct in claiming him as one of their own, even though his most prominent 
works were published in France and he was a member of the Paris Academy of 
Sciences for the latter part of his life. 

Lagrange's early work impressed Euler, then in Berlin, very favorably, and 
at tempts were made to bring him to Berlin. But the introverted Lagrange seems 
to have been intimidated by Euler's power as a mathemat ic ian and refused all such 
offers until Euler went back to St. Petersburg in 1766. He then came to Berlin and 
remained there until the death of Frederick II in 1788, at which point he accepted 
a position at the Paris Academy of Sciences, where he spent the last 15 years of 
his life. Lagrange did important work in algebra and mechanics t ha t is discussed 
in later chapters. At this point we note only some of his number-theoretic results. 

The Pell equation. Shortly after arriving in Berlin in 1766, Lagrange gave a defini-
tive discussion of the solutions of the Pell equation x2 = Dy2 ± 1, using the theory 
of continued fractions. In the course of this work he proved the important fact 
tha t any irrational number satisfying a quadratic equation with integer coefficients 
has a periodic continued fraction expansion. The converse of tha t s tatement is also 
true, and it turns out that the continued-fraction expansion of y/D can be used to 
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construct all solutions of the Pell equation Dx2 ± 1 = y2 (see Scharlau and Opolka, 
1985, pp. 45-56). 

The four-squares theorem. In 1770 Lagrange gave a proof tha t every integer is the 
sum of at most four square integers (which Euler also proved a year or so later). 

"Wilson's theorem". In 1771 Lagrange proved tha t an integer ç is prime if and 
only if ç divides (n - 1)! + 1. Thus 5 is prime because 4! + 1 = 25, but 6 is not 
prime because it does not divide 5! 4-1 = 121. This theorem was attributed to John 
Wilson (1741-1793) by the Cambridge professor Edward Waring (1736-1798), who 
was apparently unaware tha t it was first stated by al-Haytham (965-1040). No 
proof of it can be found in the work of Wilson, who left mathematics to become a 
lawyer. 

Quadratic binary forms. The study of quadratic Diophantine equations involves 
expressions of the form ax2 + bxy + cy2. The integers tha t can be represented in 
this way for given values of a, b, and c were the subject of two memoirs by Lagrange, 
amounting to nearly 100 pages of work, during the years 1775-1777. 

1.4. L e g e n d r e . The volume of work on number theory increased greatly in the 
last half of the eighteenth century, and the first treatises devoted specifically to tha t 
subject appeared. One of the prominent figures in this development was Adrien-
Marie Legendre (1752-1833). Like all other mathematicians of the time, Legendre 
worked in many areas of mathematics, including calculus (elliptic functions) and 
mechanics. He also worked in number theory and produced several profound results 
there in an early textbook of the subject, which went through three editions before 
his death. 

In 1785 he published the paper "Recherches d'analyse indeterminee," in which 
he proved the elegant result t ha t there are integers x, y, æ satisfying an equation 
ax2 + by2 + cz2 = 0 wi th a, b, c not all of the same sign if and only if the products 
—ab, —be, and - c o are quadratic residues modulo |c | , \a\, and |6| respectively. He 
also stated the law of quadrat ic reciprocity, which Euler had been unable to prove, 
and gave a flawed proof of it. He invented the still-used Legendre symbol (2) whose 
value is 1 if ñ is a quadratic residue modulo q and —1 if not. The law of quadratic 
reciprocity can then be elegantly stated as ( | ) (^) = ( - 1 ) û ^ 1 • This proof was 
improved in his treatise Theorie des nombres, published in 1798, with a subsequent 
edition in 1808 and a thi rd in 1830. He also conjectured, but did not prove, that any 
arithmetic sequence in which the constant difference is relatively prime to the first 
term will contain infinitely many primes. In fact, it was this unproved assumption 
tha t invalidated his proof of quadratic reciprocity (see Weil, 1984, PP- 329-330). 
He quoted Fermat 's conjecture tha t every number is the sum of a t most ç n-gonal 
numbers, noting with regret tha t either Fermat never completed the treatise he 
intended to write or t h a t his executors never found the manuscript. Legendre gave 
a proof of this fact for all numbers larger than 50n - 79. Further continuing the 
work of Fermat, Euler, and Lagrange, Legendre discovered some important facts in 
the theory of quadrat ic forms. 

His most original contribution to number theory, however, lay in a different 
direction entirely. Since no general law had been found for describing the n th 
prime number or even producing a polynomial whose values are all prime numbers, 
Legendre's a t t empt t o est imate the number of primes among the first ç integers, 
published in the second (1808) edition of Theorie des nombres, was an important 
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Street in Gottingen named after Gauss. 

The 1801 work Disquisitiones arithmeticae became a classical work on the prop-
erties of integers. One the earliest discoveries t ha t Gauss made, when he was still a 
teenager, was a proof of the law of quadratic reciprocity. This proof was published 
in the Disquisitiones, and over the next two decades he found seven more proofs of 
this fundamental fact. The Disquisitiones also contain a proof of the fundamental 
theorem of arithmetic and a construction of the regular 17-sided polygon, which is 
possible because 17 is a Fermat prime. 

A considerable portion of the Disquisitiones is devoted to quadrat ic binary 
forms, in an elegant and sophisticated t reatment tha t contemporaries found difficult 
to understand. As Weil says (1984, p. 354), 

No doubt the Gaussian theory. . . is far more elaborate [than Le-
gendre's treatment of the subject]; so much so, indeed, tha t it 
remained a stumbling-block for all readers of the Disquisitiones 

step forward. Legendre's estimate for this number, which is now denoted ð(ç) (ð 
for prime, of course), was 

ç ç / 1.08366 1.083662 ë 

~ logn - 1.08366 ~ logn. ^ + l ogn log 2 ç " ) ' 

Here the logarithm is understood as the natural logarithm, what calculus books 
7r(n) 

usually denote Inn . In particular, the ratio —— tends to 1 as ç tends to 
n / logn 

infinity. Legendre did not have a proof of this result, but merely conjecturing it 
was an important advance in the understanding of primes. 

Legendre also worked on the classification of real numbers; his contributions to 
this area are described below. 

Number theory blossomed in the nineteenth century due to the at tention of 
many brilliant mathematicians. Again, we have space to discuss only a few of the 
major figures. 

1.5. G a u s s . Carl Friedrich Wilhelm Gauss (1777-1855), one of the giants of mod-
ern mathematics, lived his entire life in Germany. He studied at the University of 
Gottingen from 1795 to 1798 and received a doctoral degree in 1799 from the Uni-
versity of Helmstedt. Thereafter most of his life was spent in and around Gottingen, 
where he did profound work in several areas of bo th pure and applied mathemat-
ics. In particular, he worked in astronomy, geodesy, and electromagnetic theory, 
producing fundamental results on the use of observational d a t a (least squares), 
mapping (Gaussian curvature), and applied electromagnetism (the telegraph). But 
his results in pure number theory are among the deepest ever produced. Here we 
look at just a few of them. 
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until Dirichlet restored its simplicity by going back very nearly to 
Legendre's original construction. 

In a t tempt ing to extend the law of quadratic reciprocity to higher powers, 
Gauss was led to consider what are now called the Gaussian integers, t ha t is, 
complex numbers of the form m + ç í'—ú· Gauss showed tha t the concepts of prime 
and composite number make sense in this context just as in the ordinary integers 
and t h a t every such number has a unique representation (up to multiplication by 
the units ± 1 and ±\f—T) as a product of irreducible factors. Notice that no prime 
integer of the form An + 1 can be "prime" in this context, since it is a sum of two 
squares: in + 1 = p2 + q2 = (p + q\/—l)(p — qy/—\). The generalization of the 
notion of prime number to the Gaussian integers is an early example of the endless 
generalization and abstraction tha t characterizes modern mathematics. 

Gauss also gave an estimate of the number of primes not larger than x, in the 
form of the integral 

Here, as above, the logarithm means the natural logarithm. He did not, however, 
prove tha t this approximation is asymptotically good, t ha t is, t ha t 7r(:r;)/Li (.x) 
tends to 1 as ÷ tends to infinity. Tha t is the content of the prime number theorem. 

1.6. D ir i ch le t . The works of Gauss on number theory were read by another bright 
star of nineteenth-century mathematics, Johann Peter Gustav Lejeune-Dirichlet 
(1805-1859), who contributed several gems to this difficult area. He was of Belgian 
ancestry (hence his French-sounding name, even though he was a German). He was 
born in the city of Duren, which lies between Aachen (Aix) and Koln (Cologne), 
but went to Paris to s tudy a t the age of 16. At the age of 20 he proved the case 
ç = 5 of Fermat 's last theorem. (Legendre, who was the referee for Dirichlet's 
paper, contributed his own proof of one subcase of this case.) Tha t same year he 
returned to Germany and took up a position at the University of Breslau. In 1828 
he went to Berlin and was the first star in a bright galaxy of Berlin mathematicians. 
In 1831 he was elected to the Berlin Academy of Sciences. Tha t year he married 
Rebekah Mendelssohn, sister of the composers Felix and Fanny Mendelssohn. In 
1855, dissatisfied with the heavy teaching loads in Berlin, he moved to Gottingen as 
the successor of Gauss, who had died tha t year. In 1858 he suffered a heart attack 
and the death of his wife, and in 1859 he himself succumbed to heart disease. 

Although Dirichlet also worked in the theory of Fourier series and analytic 
function theory, having given the first rigorous discussion of the convergence of a 
Fourier series in 1829 and the modern definition of a function in 1837, we are at 
the moment concerned with his contributions to number theory. One of these is his 
1837 theorem, already mentioned, tha t each arithmetic sequence in which the first 
term and the common difference are relatively prime contains an infinite number 
of primes. To prove this result, he introduced what is now called the Dirichlet 
character χ(ç) = ( - 1 ) * if ç = 2k + 1, χ(ç) = 0 if ç is even, along with the 
Dirichlet series 

This work brought number theory and analysis together in the subject now 
called analytic number theory. According to Weil (1984, PP- 252-256), the two 

n = l 
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subjects had been drawing closer together ever since Euler began his study of 
elliptic functions. Elliptic functions have played a prominent role in number theory 
since 1830. Carl Gustav Jacob Jacobi (1804-1851), whose work is discussed in 
Chapter 17, published a treatise on elliptic functions in 1829 in which he used these 
functions to derive a formula equivalent to 

(1) Ó = l + 8 ^ ^ - l ) ? 2 f c - I + 24^E C T ( 2 ^ 1 )^ ( 2 f c " 1 ) ' 
\ n = - o o J fc = l fc=lj = l 

where ó(ô) is the sum of the divisors of r. For r > 0, it is obvious tha t the 
coefficient of qr on the left is 16 times the number of ways in which r can be 
represented as the sum of four ordered nonzero squares, plus 32 times the number 
of such representations as a sum of three squares, plus 24 times the number of 
representations as a sum of two squares, plus 8 if the number happens to be a 
square. The coefficient of qr on the right is either eight or 24 times the sum of the 
divisors of the largest odd number that divides r . Since tha t sum is always positive, 
the four-square theorem is a consequence, but much additional information is added 
on the number of such representations. 

The study of Dirichlet series, in particular the simplest one of all, which defines 
what is now called the Riemann zeta function 

oo 

* • — ' Ôë ' 
n = l 

(one of several zeta functions named after distinguished mathematicians) , turned 
out to be important in both complex analysis and number theory. The zeta function 
was introduced, though not under that name, by Euler, who gave the formula 

<2> t ± - Ð ( É - £ ' 

n = l ñ prime x 

The fact tha t the terms in the sum are indexed by all positive integers while the 
factors in the product are indexed by the prime numbers accounts for the deep 
connections of this function with number theory. Its values a t the even integers can 
be computed in terms of the Bernoulli numbers . 6 In fact, the Bernoulli numbers 
were originally introduced this way. Nowadays, the n th Bernoulli number Bn is 
defined to be n! times the coefficient of xn in the Maclaurin series of x/(ex — 1). 

1.7. R i e m a n n . Another giant of nineteenth-century mathematics was Georg Bern-
hard Riemann (1826-1866), who despite his brief life managed to make major con-
tributions to real and complex analysis, geometry, algebraic topology, and mathe-
matical physics. He was inspired by Legendre's work on number theory and studied 
under Gauss at Gottingen, where he also became a professor, Dirichlet's successor 
after 1859. Because of his frail health (he succumbed to tuberculosis at the age 
of 40), he spent considerable t ime in Italy, where he made the acquaintance of the 
productive school of Italian geometers, including Enrico Betti (1823-1892). His 
greatest contribution to number theory was to a t t empt a rigorous est imate of ð(ç) . 
For this purpose he studied the zeta function introduced above and made the fa-
mous conjecture that except for its obvious zeros a t the even negative integers, all 

6 The Bernoulli numbers were the object of the first computer program written for the Babbage 
analytical engine. 
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other zeros have real par t equal to 5. This Riemann hypothesis forms one of the 
still-outstanding unsolved problems of modern mathematics, standing alongside the 
Goldbach conjecture and a famous conjecture in topology due to Henri Poincare 
(1854 -1912).7 The first two were mentioned by Hubert in his address at the 1900 
International Congress of Mathematicians in Paris. Hubert gave the Riemann hy-
pothesis as the eighth of his list of 23 unsolved problems and suggested that solving 
it would also solve the Goldbach conjecture. Despite a great many partial results, 
the complete problem remains open a century later. A summary of the work on 
this problem through the mid-twentieth century can be found in the book by Ed-
wards (1974)- The zeros of æ(æ) are now being computed at a furious rate by the 
ZetaGrid project, an Internet-based distributed program linking tens of thousands 
of computers, similar to the GIMPS mentioned above (see w w w . z e t a g r i d . n e t ) . 

Poster of Riemann a t the Mathematisches Insti tut and street 
named after him in Gottingen. 

1.8. F e r m a t ' s last t h e o r e m . Work on Fermat's most famous conjecture contin-
ued in the nineteenth century. In 1847 Gabriel Lame (1795-1870), published a 
paper in which he claimed to have proved the result. Unfortunately, he assumed 

7 This conjecture may now have been solved (see Section 4 of Chapter 12). 
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that complex numbers of the form an + á\è + • • • + áç-éè
ç~é, where èç = 1 and 

á õ , . . -, a „_ i are integers, can be factored uniquely, just like ordinary integers. Ernst 
Eduard Kummer (1810-1893) had noticed some 10 years earlier tha t such is not 
the case. This was just one of the many ways in which the objects studied by 
mathematicians became increasingly abstract, and the old objects of numbers and 
space became merely special cases of the general objects about which theorems are 
proved. Kummer was the first to make general progress toward a proof of Fermat 's 
last theorem. The conjecture tha t xp + yp — zp has no solutions in positive integers 
x, y, and æ when ñ is an odd prime had been proved only for the cases ñ = 3, 5, 
and 7 until Kummer showed that it was true for a class of primes called regular 
primes, which included all the primes less than 100 except 37, 59, and 67. This 
step effectively closed off the possibility tha t Fermat might be proved wrong by 
calculating a counterexample. 

1.9. T h e p r i m e n u m b e r t h e o r e m . A good est imate of the number of primes less 
than or equal to a given integer Í is given by N/(\og TV). This est imate follows from 
the unproved estimate of Gauss given above. The estimate suggested by Legendre, 
N/(AlogN + B) with A = 1, Β = -1 .08366, turns out t o be correct only in 
its first term. This fact was realized by Dirichlet, but only after he had writ ten 
approvingly of the estimate in print. (He corrected himself in a marginal note 
on a copy of his paper given to Gauss.) Dirichlet suggested X^= 2 (V0°S^)) 8 5 a 

better approximation. This problem was also studied by the Russian mathematician 
Pafnutii L'vovich Chebyshev (1821-1894). 8 In 1851 Chebyshev proved tha t if 
a > 0 is any positive number (no mat ter how small) and m is any positive number 
(no mat ter how large), the inequality 

. fn dx an 
ð ( ç ) > / 2 ^Ã÷-ß^-ç 

holds for infinitely many positive integers n, as does the inequality 

. . fn dx an 

J 2 log ÷ log ç 

This result suggests that ð(ç) ~ [n / ( lnn) ] , but it would be desirable to know if 
there is a constant A such that 

/ í An 
7r(n = + åç, 

logn 
where åç is of smaller order than ð(ç) . It would also be good to know the ra te at 
which åç/ð(ç) tends to zero. Chebyshev's estimates imply tha t if A exists, it must 
be equal to 1, and as a result, Legendre's approximation cannot be valid beyond 
the first term. Chebyshev was able to show tha t 

0.92129 < < 1.10555. 
logn 

Chebyshev mentions only Legendre in his memoir on this subject and shows that 
his estimates refute Legendre's conjecture. He makes no mention of Gauss, whose 
integral Li (x) appears in his argument. Similarly, Riemann makes no mention of 

8 In Russian this name is pronounced "Cheb-wee-SHAWF," approximately. However, because 
he wrote so often in French, where he signed his name as "Tchebycheff," it is usually prounced 
"CHEB-ee-shev" in the West. 
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Chebyshev in his 1859 paper on ð(χ), even though he was in close contact with 
Dirichlet, and Chebyshev's paper had been published in a French journal. 

The full proof of the prime number theorem turned out to involve the use 
of complex analysis. As mentioned above, Riemann had studied the zeros of the 
Riemann zeta function. This function was also studied by two long-lived twentieth-
century mathematicians, the Belgian Charles de la Vallee Poussin (1866-1962) and 
the Frenchman Jacques Hadamard (1865-1963), who showed independently of each 
other (Hadamard, 1896; Vallee Poussin, 1896) tha t the Riemann zeta function has 
no zeros with real part equal to l . 9 Vallee Poussin showed later (1899) tha t 

where for some á > 0 the error term en is bounded by a multiple of ne~avlogn. 

Number theory did not slow down or stop after the proof of the prime num-
ber theorem. On the contrary, it exploded into a huge number of subfields, each 
producing a prodigious amount of new knowledge year by year. However, we must 
stop writing on this subject sometime and move on to other topics, and so we shall 
close our account of number theory at this point. 

To the ancient mathematicians in the Middle East and Europe, numbers meant 
positive integers or ratios of them, in other words, what we call rational numbers. 
In India and China negative numbers were recognized, and 0 was recognized as a 
number in its own right, as opposed to merely an absence of numbers, at a very 
early stage. Those numbers reached Europe only a brief while before algebra led 
to the consideration of imaginary numbers. In this section we explore the gradual 
expansion of the concept of a number to include not only negative and imaginary 
numbers, which at least had the merit of being understandable in finite terms, but 
also irrational roots of equations and transcendental real numbers such as ð and 
e, and the infinite cardinal and ordinal numbers mathematicians routinely speak 
about today. It is a story of the gradual enlargement of the human imagination 
and the clarification of vague, intuitive ideas. 

2 .1 . N e g a t i v e n u m b e r s and zero. It was mentioned in Chapter 7 that place-
value systems of writing numbers were invented in Mesopotamia, India, China, and 
Mesoamerica. Wha t is known about the Maya system has already been described 
in Chapter 5. We do not know how or even if they performed multiplication or 
division or how they worked with fractions. Thus, for this case all we know is tha t 
they had a place-value system and that it included a zero to occupy empty places. 
The Mesopotamian system was sexagesimal and had no zero for at least the first 
1000 years of its existence. The other three systems were decimal, and they too 
were rather late in acquiring the zero. Strange though it may seem to one who has 
a modern education, in India and China negative numbers seem to have been used 
before zero was invented. 

9 The fact that æ(æ) has no zeros with real part equal to 1 is an elementary theorem (see Ivic, 1985, 
pp. 7 8). That does not make the prime number theorem trivial, however, since the equivalence 
between this result and the prime number theorem is very difficult to prove. A discussion of the 
reasons why the two are equivalent was given by Norbert Wiener; see his paper "Some prime-
number consequences of the Ikehara theorem," in his Collected Works, Vol. 2, pp. 254-257. 

2. N u m b e r s y s t e m s 
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China. Chinese counting rods were red or black according as the numbers repre-
sented were positive or negative, yet no zero occurs, since obviously it would be 
absurd to have a rod representing no rods a t all. A Chinese work on astronomy and 
the calendar written in the late second century CE (Li and Du, 1987, p. 49) gives 
rules for adding and subtracting "strong" (positive) and "weak" (negative): When 
adding, like signs add and opposite signs subtract; when subtracting, like signs 
subtract and opposite signs add. The same kinds of rules are given in Chapter 8 
("Rectangular Tabulation") of the Jiu Zhang Suanshu. Yet it was a full thousand 
years after tha t t ime when the rules for multiplying and dividing signed numbers 
first appeared in the Suanshu Chimeng of 1303. When one is using a counting 
board or an abacus, no symbol for zero is needed, since it is visually apparent tha t 
a given square has no numbers written in it or t h a t the beads on a string are in 
their "empty" position. The first known occurrence of the symbol 0 for zero occurs 
in a work dat ing to the year 1247. 

India. Around the year 500, Aryabhata I, used a place-value decimal system with-
out zero. A century later Brahmagupta introduced zero in connection with the 
kuttaka method described above. Although he used the word sunya (empty) for 
this concept and it really does denote an empty place in tha t method, the idea 
that the algorithm χ >—> ax + b can be executed as χ ·—> ax when no b is present 
suggests the use of a neutral element for addition, and t ha t is wha t the zero is. 
Brahmagupta gave complete rules for addition, subtraction, multiplication, and 
division of both positive and negative quantities and zero. As we know, division 
by zero must be considered separately and either rejected or given some special 
meaning. Brahmagupta (Colebrooke, 1817, pp. 339-340) showed some puzzlement 
about this, and he wrote: 

Cipher, divided by cipher, is nought. Positive, divided by neg-
ative, is negative. Negative, divided by affirmative, is negative. 
Positive or negative, divided by cipher, is a fraction with [cipher] 
for denominator, or cipher divided by negative or affirmative [is a 
fraction with the latter for denominator]. 

The word cipher here translates the Sanskrit sunya or kha, both meaning empty 
space. The last rule given here is not a happy effort a t a definition; it is rather 
like saying tha t a ja r contains its contents. Not much new information is conveyed 
by the sentence. But the obscurity is natural due to the complete absence of any 
human experience with situations corresponding to division by zero. Five hundred 
years later Bhaskara was still having trouble wi th this concept (Colebrooke, 1817, 
p. 19): 

A definite quantity divided by cipher is the submultiple of nought 
[that is, a fraction with zero for its denominator, jus t as Brah-
magup ta had said]. The product of cipher is nought: but it must 
be retained as a multiple of cipher, if any further operation impend. 
Cipher having become a multiplier, should nought afterwards be-
come a divisor, the definite quantity must be understood to be 
unchanged. 

Although these principles might be more clearly stated, it seems tha t Bhaskara 
may have in mind here some operations similar to those tha t occur in limiting 
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operations, for example, considering the appropriate value of a fraction such as 
(5x 2 + Ax)/(3x2 — 2x) when χ becomes zero. One can formally cancel the χ without 
thinking about whether or not it is zero. After cancellation, setting χ = 0 gives the 
fraction the value —2. Bhaskara is explicit in saying that zero added to any number 
leaves tha t number unchanged. Hence for him it is more than a mere placeholder; 
arithmetic operations can be performed with it. The use of an empty circle or a 
circle with its center marked as a symbol for zero seems to be culturally invariant, 
since it appears in inscriptions in India from the ninth century, in Greek documents 
from the second century, and in Chinese documents from the thir teenth century. 

Islamic number systems. The transmission of Hindu treatises t o Baghdad led ulti-
mately to the t r iumph of the numerals used today. According to al-Daffa (1973, 
p. 51) the Sanskrit words for an empty place were translated as the Arabic word 
sifr, which became the English words cipher and zero and their cognates in other 
European languages. Al-Daffa also points out. that the earliest record of the symbol 
for zero in India comes from an inscription at Gwalior dating to 876, and that there 
is a document in Arabic dating from 873 in which this symbol occurs. 

2.2. Irrat ional and imag inary n u m b e r s . In a peculiar way, the absence of a 
place-value system of writing numbers may have stimulated the creation of math-
ematics in ancient Greece in the case of irrational numbers. Place-value notation 
provides approximate square roots in practical form, even when the expansion does 
not t e rmina t e . 1 0 A cuneiform tablet from Iraq (Yale Babylonian Collection 7289) 
shows a square with its diagonals drawn and the sexagesimal number 1;24,51,10, 
which gives the length of the diagonal of a square of side 1 to great precision. But 
in all the Chinese, Mesopotamian, Egypt ian , 1 1 and Hindu texts there is nothing 
tha t can be considered a theoretical discussion of "numbers" whose expansions do 
not terminate. 

The word numbers is placed in inverted commas here because the meaning of 
the square root of 2 is not easy to define. It is very easy to go around in circles 
making the definition. The difficulty came in a clash of geometry and arithmetic, 
the two fundamental modes of mathematical thinking. From the arithmetical point 
of view the problem is minimal. If numbers must be what we now call positive 
rational numbers, then some of them are squares and some are not, just as some 
integers are triangular, square, pentagonal, and so forth, while others are not. No 
one would be disturbed by this fact; and since the Greeks had no place-value system 
to suggest an infinite process leading to an exact square root, they might not have 
speculated deeply on the implications of this arithmetical distinction in geometry. 
But in fact, they did speculate on both the numerical and geometric aspects of the 
problem, as we shall now see. We begin with the arithmetical problem. 

The arithmetical origin of irrationals: nonsquare rational numbers. In Plato 's dia-
logue Theatetus, the t i t le character reports that a certain Theodorus proved tha t 
the integers 2, 3, 5, and so on, up to 17 have no (rational) square roots, except of 
course the obvious integers 1, 4, and 9; and he says tha t for some reason, Theodorus 
stopped at t ha t point. On tha t basis the students decided to classify numbers as 

1 0 In the case of Chinese mathematics the end of a nonterminating square root was given as a 
common fraction, and Simon Stevin likewise terminated infinite decimals with common fractions. 
1 1 Square roots, called corners, are rarely encountered in the Egyptian papyri, and Gillings (1972, 
p. 214) suggests that they were found from tables of squares. 
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equilateral and oblong. The former class consists of the squares of rational numbers, 
for example ø, and the latter are all other positive rational numbers, such as | . 

One cannot help wondering why Theodorus stopped a t 17 after proving tha t 
the numbers 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, and 15 have no square roots. The 
implication is tha t Theodorus "got stuck" trying to prove this fact for a square of 
area 17. W h a t might have caused him to get stuck? Most assuredly the square root 
of 17 is irrational, and the proof commonly given nowadays to show the irrationality 
of \ / 3 , for example, based on the unique prime factorization of integers, works just 
as well for 17 as for any other number. If Theodorus had our proof, he wouldn' t 
have been stuck doing 17, and he wouldn't have bothered to do so many special 
cases, since the proofs are all the same. Therefore, we must assume tha t he was 
using some other method. 

An ingenious conjecture as to Theodorus ' method was provided by Knorr 
(1945-1997) (1975). Knorr suggests tha t the proof was based on the elementary 
distinction between even and odd. To see how such a proof works, suppose tha t 7 
is an equilateral number in the sense mentioned by Theatetus . Then there must 
exist two integers such that the square of the first is seven times the square of the 
second. We can assume that both integers are odd, since if both are even, we can 
divide them both by 2, and it is impossible for one of them to be odd and the other 
even. For the fact tha t the square of one of them equals seven times the square of 
the other would imply that an odd integer equals an even integer if this were the 
case. But it is well known tha t the square of an odd integer is always 1 larger than 
a multiple of 8. The supposition that the one square is seven times the other then 
implies tha t an integer 1 larger than a multiple of 8 equals an integer 7 larger than 
a multiple of 8, which is clearly impossible. 

This same argument shows tha t none of the odd numbers 3, 5, 7, 11, 13, and 
15 can be the square of a rational number. Wi th a slight modification it can also 
be made to show tha t none of the numbers 2, 6, 8, 10, 12, and 14 is the square of a 
rational number, although no argument is needed in the case of 8 and 12, since it is 
already known tha t \/2 and \ / 3 are irrational. Notice tha t the argument fails, as it 
must, for 9: A number 9 larger than a multiple of 8 is also 1 larger than a multiple 
of 8. However, it also breaks down for 17 and for the same reason: A number 17 
larger than a multiple of 8 is also 1 larger than a multiple of 8. Thus, even though 
it is true tha t 17 is not the square of a rational number, the argument just given, 
based on what we would call arithmetic modulo 8, cannot be used to prove this 
fact. In this way the conjectured method of proof would explain why Theodorus 
got stuck a t 17. 

The Greeks thus found not only tha t there was no integer whose square is, say, 
11 (which is a simple matter of ruling out the few possible candidates), but also 
that there was not even any rational number having this property; tha t is, 11 is 
not the square of anything they recognized as a number. 

The geometric origin of irrationals: incommensurable magnitudes. A second, "geo-
metric" theory of the origin of irrational numbers comes from geometry and seems 
less plausible. If we apply the Euclidean algorithm to the side and diagonal of 
the regular pentagon in Fig. 1, we find tha t the pair AD and CD get replaced by 
lines equal to CD and CF, which are the diagonal and side of a smaller penta-
gon. Thus, no mat ter how many times we apply the procedure of the Euclidean 
algorithm, the result will always be a pair consisting of the side and diagonal of a 
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Side é—é—é—é—é 

Diagonal é—é—é—é—é—é—i— 

Side é é é é é é 

Diagonal é—é—é—é—\—é—é—é—é 

FIGURE 1. Diagonal and side of a regular pentagon. If a unit is 
chosen that divides the side into equal parts, it cannot divide the 
diagonal into equal parts , and vice versa. 

pentagon. Therefore, in this case the Euclidean algorithm will never produce an 
equal pair of lines. We know, however, tha t it must produce an equal pair if a 
common measure exists. We conclude that no common measure can exist for the 

side and diagonal of a pentagon. 

The argument jus t presented was originally given by von Fritz (1945). Knorr 
(1975, pp. 22-36) argues against this approach, however, pointing out tha t the 
simple arithmetic relation d2 = 2 s 2 satisfied by the diagonal and side of a square 
can be used in several ways to show that d and s could not both be integers, no 
mat ter what length is chosen as unit. Knorr prefers a reconstruction closer to 
the argument given in Pla to 's Meno, in which the problem of doubling a square is 
discussed. 1 2 Knorr points out that when discussing irrationals, Plato and Aristotle 
always invoke the side and diagonal of a square, never the pentagon or the related 
problem of dividing a line in mean and extreme ratio, which they certainly knew 
about. 

Whatever the argument used, the Greeks discovered the existence of incom-
mensurable pairs of line segments before the time of Pla to . For Pythagorean meta-
physics this discovery was disturbing: Number, it seems, is not adequate to explain 
all of nature. A legend arose that the Pythagoreans a t tempted to keep secret the 
discovery of this p a r a d o x . 1 3 However, scholars believe tha t the discovery of in-
commensurables came near the end of the fifth century BCE, when the original 
Pythagorean group was already defunct. 

1 2 In Chapter 9 we invoke the same passage to speculate on the origin of the Pythagorean theorem. 
1 3 The legend probably arose from a passage in Chapter 18, Section 88 of the Life of Pythagoras 
by Iamblichus. Iamblichus says that a certain Hippasus perished at sea, a punishment for his 
impiety because he published "the sphere of the 12 pentagons" (probably the radius of the sphere 
circumscribed about a dodecahedron), talcing credit as if he had discovered it, when actually 
everything was a discovery of That Man (Pythagoras, who was too august a personage to be 
called by name). Apparently, new knowledge was to be kept in-house as a secret of the initiated 
and attributed in a mystical sense to Pythagoras. 

A 
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The existence of incommensurables throws doubt on certain oversimplified 
proofs of geometric proportion, and this question is discussed in detail in Chap-
ter 10. At present we are concerned with its effect on the concept of a number. At 
the beginning, one would have to say that the effect was almost nil. Geometry and 
arithmetic were separate subjects in the Greek tradition. But when algebra arose 
and the Persian mathematician Omar Khayyam (1050-1130) discovered that some 
cubic equations tha t could not be solved arithmetically had geometric solutions, 
the idea of a real number as a ratio of lines began to take shape. 

The idea of using a line to stand for a number, the numbers being regarded 
as the length of the line, is very familiar to us and has its origin in the work of 
the ancient Greeks and medieval Muslim mathematicians. In Europe this idea re-
ceived some development in the work of the fourteenth-century Bishop of Lisieux, 
Nicole d'Oresme, whose graphical representation of relationships was a forerun-
ner of our modern analytic geometry. Oresme was familiar with the concept of 
incommensurable lines, a subject that was missing from earlier medieval work in 
geometry, and he was careful to keep the distinction between commensurable and 
incommensurable clear. Indeed, Oresme was even more advanced than the average 
twentieth-century person, in that he recognized a logical difficulty in talking about 
a power of, say, \ tha t equals | , whereas modern students are taught how to use 
the rules of exponents, but not encouraged to ask what is meant by expressions 

such as \ /2 . 
A great advance came in the seventeenth century, when analytic geometry as 

we know it today was invented by Descartes and Fermat. Fermat ' s work seems 
somewhat closer to what we know, in the sense t ha t he used a pair of mutually 
perpendicular axes; on the other hand, he believed tha t only dimensionally equiv-
alent expressions could be added. This is the restriction tha t led Omar Khayyam 
to write a cubic equation in the form equivalent to x2 + ax2 + b2x = b2c, in which 
each term is of degree 3. In his Geometrie, Descartes showed how to avoid this 
complication. The difficulty lay in the geometric representation of the operation 
of multiplication. Because ratios of lines were not always numbers, Euclid did not 
make the association of a line with a number called its length. The product of 
two numbers is a number, but Euclid did not speak of the product of two lines. 
He spoke instead of the rectangle on the two lines. Tha t was the tradit ion Omar 
Khayyam was following. Stimulated by algebra, however, and the application of 
geometry to it, Descartes looked a t the product of two lengths in a different way. 
As pure numbers, the product ab is simply the fourth proportional to 1 : a : b. 
That is, ab : b :: a : 1. He therefore fixed an arbitrary line tha t he called / to 
represent the number 1 and represented ab as the line tha t satisfied the proportion 
ab : b :: a: I, when á and b were lines representing two given numbers. 

The notion of a real number had at last arisen, not as most people think of it 
today—an infinite decimal expansion—but as a rat io of line segments. Only a few 
decades later Newton defined a (real) number to be "the rat io of one magnitude 
to another magnitude of the same kind, arbitrarily taken as a unit." Newton 
classified numbers as integers, fractions, and surds (Whiteside, 1967, Vol. 2, p. 
7). Even with this amount of clarity introduced, however, mathematic ians were 
inclined to gloss over certain difficulties. For example, there is an ari thmetic rule 
according to which %/ab = y/a\/b. Even with Descartes' geometric interpretation 
of these results, it is not obvious how this rule is to be proved. The use of the 
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decimal system, with its easy approximations to irrational numbers, soothed the 
consciences of mathematicians and gave them the confidence to proceed with their 
development of the calculus. No one even seemed very concerned about the absence 
of any good geometric construction of cube roots and higher roots of real numbers. 
The real line answered the needs of algebra in that it gave a representation of any 
real root there might be of any algebraic equation with real numbers as coefficients. 
It was some time before anyone realized that geometry still had resources that even 
algebra did not encompass and would lead to numbers for which pure algebra had 
no use. 

Those resources included the continuity of the geometric line, which turned out 
to be exactly what was needed for the limiting processes of calculus. It was this 
property tha t made it sensible for Euler to talk about the number that we now call 
e, tha t is, 

The intuitive notion of continuity assured mathematicians tha t there were points on 
the line, and hence infinite decimal expansions, tha t must represent these numbers, 
even though no one would ever know the full expansions. The geometry of the line 
provided a geometric representation of real numbers and made it possible to reason 
about them without having to worry about the decimal expansion. 

The continuity of the line brought the realization tha t the real numbers had 
more to offer than merely convenient representations of the solutions of equations. 
They could even represent some numbers such as e and 7 tha t had not been found 
to be solutions of any equations. The line was richer than it needed to be for algebra 
alone. The concept of a real number had allowed arithmetic to penetrate into parts 
of geometry where even algebra could not go. The sides and diagonals of regular 
figures such as squares, cubes, pentagons, pyramids, and the like all had ratios 
that could be represented as the solutions of equations, and hence are algebraic. 
For example, the diagonal D and side S of a pentagon satisfy D2 = S(D + S). 
For a square the relationship is D2 = 2S2, and for a cube it is D2 — 3 S 2 . But 
what about the number we now call ð, the ratio of the circumference C of a circle 
to its diameter D? In the seventeenth century Leibniz noted that any line that 
could be constructed using Euclidean methods (straightedge and compass) would 
have a length that satisfied some equation with rational coefficients. In a number 
of letters and papers written during the 1670s, Leibniz was the first to contrast 
what is algebraic (involving polynomials with rational coefficients) with objects 
tha t he called analytic or transcendental and the first to suggest tha t ð might be 
transcendental. In the preface to his pamphlet De quadratura arithmetica circuit 
(On the Arithmetical Quadrature of the Circle), he wrote: 

A complete quadrature would be one that is both analytic and 
linear; that is, it would be constructed by the use of curves whose 
equations are of [finite] degrees. The brilliant Gregory [James Gre-
gory, 1638 1675], in his book On the Exact Quadrature of the Cir-
cle, has claimed that this is impossible, but, unless I am mistaken, 

n = 0 

and the other Euler constant 
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has given no proof. I still do not see what prevents the circumfer-
ence itself, or some particular part of it, from being measured [that 
is, being commensurable with the radius], a part whose arc has a 
ratio to its sine [half-chord] that can be expressed by an equation 
of finite degree. But to express the rat io of the arc to the sine 
in general by an equation of finite degree is impossible, as I shall 
prove in this little work. [Gerhardt, 1971, Vol. 5, p . 97] 

No representation of ð as the root of a polynomial with rational coefficients was 
ever found. This ratio had a long history of numerical approximations from all over 
the world, but no one ever found any nonidentical equation satisfied by C and D. 
The fact tha t ð is transcendental was first proved in 1881 by Ferdinand Lindemann 
(1852-1939). The complete set of real numbers thus consists of the positive and 
negative rational numbers, all real roots of equations with integer coefficients (the 
algebraic numbers), and the transcendental numbers. All transcendental numbers 
and some algebraic numbers are irrational. Examples of transcendental numbers 
are rather difficult to produce. The first number to be proved transcendental was 
the base of natural logarithms e, and this proof was achieved only in 1873, by the 
French mathematician Charles Hermite (1822-1901). It is still not known whether 
the Euler constant 7 ~ 0.57712 is even irrational. 

The arithmetization of the real numbers. Not until the nineteenth century, when 
mathematicians took a retrospective look at the magnificent edifice of calculus tha t 
they had created and tried to give it the same degree of logical rigor possessed 
by algebra and Euclidean geometry, were a t t empts made to define real numbers 
arithmetically, without mentioning ratios of lines. One such definition by Richard 
Dedekind (1831-1916), a professor at the Zurich Polytechnikum, was inspired by a 
desire for rigor when he began lecturing to students in 1858. He found the rigor he 
sought without much difficulty, but did not bother to publish what he regarded as 
mere common sense until 1872, when he wished to publish something in honor of 
his father. In his book Stetigkeit und irrationale Zahlen (Continuity and Irrational 
Numbers) he referred to Newton's definition of a real number: 

. . . the way in which the irrational numbers are usually introduced 
is based directly upon the conception of extensive magnitudes— 
which itself is nowhere carefully defined—and explains number as 
the result of measuring such a magnitude by another of the same 
kind. Instead of this I demand tha t ari thmetic shall be developed 
out of itself. 

As Dedekind saw the matter , it was really the totality of rational numbers 
that defined a ratio of continuous magnitudes. Although one might not be able to 
say that two continuous quantities a and b had a ratio equal to, or defined by, a 
ratio m : ç of two integers, an inequality such as m a < nb could be interpreted 
as saying tha t the real number a : b (whatever it was) was less than the rational 
number n/m. Thus a positive real number could be defined as a way of dividing the 
positive rational numbers into two classes, those tha t were larger than the number 
and those tha t were equal to it or smaller, and every member of the first class was 
larger than every member of the second class. But , so reasoned Dedekind, once 
the positive rational numbers have been part i t ioned in this way, the two classes 
themselves can be regarded as the number. They are a well-defined object, and one 



2. NUMBER SYSTEMS 205 

can define ari thmetic operations on such classes so that the resulting system has 

all the properties we want the real numbers to have, especially the essential one 

for calculus: continuity. Dedekind claimed that in this way he was able to prove 

rigorously for the first t ime tha t y/2</3 = ÷ / ä . 1 4 

The practical-minded reader who is content to use approximations will probably 

be getting somewhat impatient with the discussion at this point and asking if it 

was really necessary to go to so much trouble to satisfy a pedantic desire for rigor. 

Such a reader will be in good company. Many prominent mathematicians of the 

t ime asked precisely tha t question. One of them was Rudolf Lipschitz (1832-1903). 

Lipschitz didn ' t see what the fuss was about, and he objected to Dedekind's claims 

of originality (Scharlau, 1986, p. 58). In 1876 he wrote to Dedekind: 

I do not deny the validity of your definition, but I am nevertheless 

of the opinion tha t it differs only in form, not in substance, from 

what was done by the ancients. I can only say that I consider 

the definition given by Euclid. . . to be just as satisfactory as your 

definition. For that reason, I wish you would drop the claim that 

such propositions as y/2\/3 = \ /6 have never been proved. I think 

the French readers especially will share my conviction tha t Euclid's 

book provided necessary and sufficient grounds for proving these 

things. 

Dedekind refused to back down. He replied (Scharlau, 1986, pp. 64-65): 

I have never imagined that my concept of the irrational numbers 

has any particular merit; otherwise I should not have kept it to my-

self for nearly fourteen years. Quite the reverse, I have always been 

convinced tha t any well-educated mathematician who seriously set 

himself the task of developing this subject rigorously would be 

bound to succeed. . . Do you really believe that such a proof can 

be found in any book? I have searched through a large collec-

tion of works from many countries on this point, and what does 

one find? Nothing but the crudest circular reasoning, to the effect 

that */a\/b = \/ab because (\/ay/b) = (y/a) (\/b) = ab; not 

the slightest explanation of how to multiply two irrational num-

bers. The proposition (mn)2 = m2n2, which is proved for rational 

numbers, is used unthinkingly for irrational numbers. Is it not 

scandalous tha t the teaching of mathematics in schools is regarded 

as a particularly good means to develop the power of reasoning, 

while no other discipline (for example, grammar) would tolerate 

such gross offenses against logic for a minute? If one is to proceed 

scientifically, or cannot do so for lack of t ime, one should at least 

honestly tell the pupil to believe a proposition on the word of the 

teacher, which the students are willing to do anyway. Tha t is bet-

ter than destroying the pure, noble instinct for correct proofs by 

giving spurious ones. 

1 4 In his paper (1992) David Fowler (1937-2004) investigated a number of approaches to the 
arithmetization of the real numbers and showed how the specific equation \/5\/3 = VG could have 
been proved geometrically, and also how difficult this proof would have been using many other 
natural approaches. 
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Mathematicians have accepted the need for Dedekind's rigor in the teaching of 
mathematics majors, although the idea of defining real numbers as part i t ions of the 
rational numbers (Dedekind cuts) is no longer the most popular approach to that 
rigor. More often, students are now given a set of axioms for the real numbers and 
asked to accept on faith that those axioms are consistent and tha t they characterize 
a set that has the properties of a geometric line. Only a few books a t t empt to start 
with the rational numbers and construct the real numbers. Those tha t do tend to 
follow an alternative approach, defining a real number to be a sequence of rational 
numbers (more precisely, an equivalence class of such sequences, one of which is the 
sequence of successive decimal approximations to the number) . 

2.3 . Imaginary and c o m p l e x n u m b e r s . Although imaginary numbers seem 
more abstract to moderns than irrational numbers, tha t is because their physical 
interpretation is more remote from everyday experience. One interpretation of i — 

for example, is as a rotation through a right angle (the effect of multiplying by 
i in the complex plane). We have an intuitive concept of the length of a line segment 
and decimal approximations to describe that length as a number; tha t is what gives 
us confidence that irrational numbers really are numbers. But it is difficult to think 
of a rotation as a number. On the other hand, the rules for multiplying complex 
numbers—at least those whose real and imaginary parts are rat ional—are much 
simpler and easier to understand than the definition just given for irrationals. In 
fact, complex numbers were understood before real numbers were properly defined; 
mathematicians began trying to make sense of them as soon as there was a clear 
need to do so. That need came not, as one might expect, from trying to solve 
quadratic equations such as x2 — 2x + 2 = 0. where the quadrat ic formula produces 
.r = — 1 ± y/—T. It was possible in this case simply to say that the equation had 
no solution. On the other hand, as discussed in Chapter 14, the sixteenth-century 
Italian mathematicians succeeded in giving an ari thmetic solution of the general 
cubic equation. However, the algorithm for finding the solution had the peculiar 
property tha t it involved taking the square root of a negative number precisely 
when there were three real solutions. Looking at their algorithm as a formula, one 
would find tha t the solution of the equation x 3 — 7x + 6 = 0 is 

We cannot say that the equation has no roots, since it obviously has 1, 2, and —3 
as roots. Thus the challenge arose: Make sense of this formula. Make it say " 1 , 2, 
and —3." 

This challenge was taken up by Rafael Bombelli (1526- 1572), an engineer in 
the service of an Italian nobleman. Bombelli was the author of a treatise on algebra 
which he wrote in 1560, but which was not published until 1572. In tha t treatise 
he invented the name "plus of minus" to denote a square root of —1 and "minus of 
minus" for its negative. He did not think of these two concepts as different numbers, 
but rather as the same number being added in the first case and subtracted in the 
second. Wha t is most important is that he realized what rules must apply to them 
in computation: plus of minus times plus of minus makes minus and minus of minus 
times minus of minus makes minus, while plus of minus times minus of minus makes 
plus. Bombelli had no systematic way of taking the cube root of a complex number. 
In considering the equation x3 = 15x + 4, he found by applying the formula that 
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x = \J"1 + \/—121+ \V2 - \ /—121. In this case, however, Bombelli was able to work 
backward, since he knew in advance that one root is 4; the problem was to make 
the formula say "4." Bombelli had the idea that the two cube roots must consist 
of real numbers together with his "plus of minus" or "minus of minus." Since the 
imaginary parts in the sum of the two cube roots must cancel out and the real par ts 
must add up to 4, it seems obvious that the real parts of the cube roots must be 2. 
In our terms, the cube roots must be 2 ± ß ÷ / - ú for some t. Then since the cube 
of the cube roots must be 2 ± l lv^-T (what Bombelli called 2 plus 11 times "plus 
of minus"), it is clear tha t the cube roots must be 2 plus "plus of minus" and 2 
minus "plus of minus," tha t is, 2 ± ÷/^Ô. As a way of solving the equation, this 
reasoning is circular, but it does allow the formula for solving the cubic equation 
to make sense. 

In an a t tempt to make these numbers more familiar, the English mathematician 
John Wallis (1616-1703) pointed out tha t while no positive or negative number 
could have a negative square, nevertheless it is also true tha t no physical quanti ty 
can be negative, tha t is, less than nothing. Yet negative numbers were accepted 
and interpreted as retreats when the numbers measure advances along a line. Wallis 
thought tha t what was allowed in lines might also apply to planes, pointing out 
that if 30 acres are reclaimed from the sea, and 40 acres are flooded, the net amount 
"gained" from the sea would be - 1 0 acres. Although he did not say so, it appears 
tha t he regarded this real loss of 10 acres as an imaginary gain of a square of land 
\ / - 435600 = ÈÈÏ÷/^Ô feet on a side. 

Wha t he did say in his 1673 treatise on algebra was tha t one could represent 
yj—bc as the mean proportional between —b and c. The mean proportional is 
easily found for two positive line segments ä and c. Simply lay them end to end, 
use the union as the diameter of a circle, and draw the half-chord perpendicular 
to that diameter at the point where the two segments meet. Tha t half-chord is 
the mean proportional. When one of the numbers (—6) was regarded as negative, 
Wallis regarded the negative quantity as an oppositely directed line segment. He 
then modified the construction of the mean proportional between the two segments. 
When two oppositely directed line segments are joined end to end, one end of the 
shorter segment lies between the point where the two segments meet and the other 
end of the longer segment, so tha t the point where the segments meet lies outside 

the circle passing through the other two endpoints. Wallis interpreted the mean 
proportional as the tangent to the circle from the point where the two segments 
meet. Thus, whereas the mean proportional between two positive quantities is 
represented as a sine, tha t between a positive and negative quanti ty is represented 
as a tangent. 

Wallis applied this procedure in an "imaginary" construction problem. First he 
stated the following "real" problem. Given a triangle having side AP of length 20, 
side PB of length 15, and alt i tude PC of length 12, find the length of side AB, taken 
as base in Fig. 2. Wallis pointed out that two solutions were possible. Using the 
foot of the al t i tude as the reference point C and applying the Pythagorean theorem 
twice, he found tha t the possible lengths of AB were 16 ± 9 , tha t is, 7 and 25. This 
construction is a well-known method of solving quadratic equations geometrically, 
given earlier by Descartes. It always works when the roots are real, whether positive 
or negative. He then proposed reversing the data, in effect considering an impossible 
triangle having side AP of length 20, side PB of length 12, and alt i tude PC of 
length 15. Although the algebraic problem has no real solution, a fact verified by 
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F I G U R E 2. Wallis' geometric solution of quadrat ic equation with 

real roots (left) and complex roots (right). 

the geometric figure (Fig. 2), one could certainly draw the two line segments AB. 
These line segments could therefore be interpreted as the numerical solutions of the 
equation, representing a triangle with one side having imaginary length. 

The rules given by Bombelli made imaginary and complex numbers accessible, 
and they turned out to be very convenient in many formulas. Euler made free use 
of them, studying power series in which the variables were allowed to be complex 
numbers and deriving a famous formula 

g U i / ^ T _ c o s v _|_ y/^is\nv. 

Euler derived this result in a paper on ballistics written around 1727 (see Smith, 
1929, pp. 95 98), just after he moved to Russia. But he had no thought of repre-
senting 8 5 w e n o w do, on a line perpendicular to the real axis. 

Wallis' work had given the first indication t ha t complex numbers would have to 
be interpreted as line segments in a plane, a discovery made again a century later 
by the Norwegian surveyor Caspar Wessel (1745 1818). The only mathematical 
paper he ever wrote was delivered to the Royal Academy in Copenhagen, Denmark 
in 1797, but he had been in possession of the results for about a decade a t tha t 
time. In tha t paper (Smith, 1929, pp. 55-66), he explained how to multiply lines in 
a plane by multiplying their lengths and adding the angles they make with a given 
reference line, on which a length is chosen to represent + 1 : 

Let + 1 designate the positive rectilinear unit and +e a certain 
other unit perpendicular to the positive unit and having the same 
origin; the direction angle of + 1 will be equal to 0°, tha t of - 1 to 
180°, tha t of +€ to 90°, and tha t of - e to - 9 0 ° or 270°. By the rule 
tha t the direction angle of the product shall equal the sum of the 
angles of the factors, we have: (+1) (+1) = + 1 ; (+1)(—1) = - 1 ; 
( - 1 ) ( - 1 ) = + 1 ; ( + l ) ( + c ) - +e; ( + l ) ( - e ) = - c ; ( - l ) ( + e ) = - e ; 
( - l ) ( - € ) = +e; (+e)(+e) = - 1 ; ( + £ ) ( - c ) = + 1 ; ( - e ) ( - « ) = - 1 . 
From this it is seen that e is equal to í / ~ À · [Smith, 1929, p. 60] 

Wessel noticed the connection of these rules with the addit ion and subtraction 
formulas for sign and cosine and gave the formula (cos χ + e sin x)(cos y + e sin y) = 
cos(x + y) + esin(x + y). On tha t basis he was able to reduce the extraction of 
the n t h root of a complex number to extracting the same root for a positive real 
number and dividing the polar angle by n. 
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The reaction of the mathematical community to this simple but profound idea 
was less than overwhelming. Wessel's work was forgotten for a full century. In 
the meantime another mathematician by avocation, the French accountant Jean 
Argand (1768 1822), published the small book Essai sur une maniere de representer 
les quantites imaginaires dans les constructions geometriques at his own expense 
in 1806, modestly omit t ing to name himself as its author, in which he advocated 
essentially the same idea, thinking, as Wallis had done, of an imaginary number as 
the mean proportional between a positive number and a negative number. Through 
a complicated series of events this book and its author gradually became known 
in the mathematical community. There was, however, resistance to the idea of 
interpreting complex numbers geometrically, since they had arisen in algebra. But 
geometry was essential to the algebra of complex numbers, as shown by the fact 
that a proof of the fundamental theorem of algebra by Gauss in 1799 is based on 
the idea of intersecting curves in a plane. The lemmas that Gauss used for the 
proof had been proved earlier by Euler using the algebra of imaginary numbers, 
but Gauss gave a new proof using only real numbers, precisely to avoid invoking 
any properties of imaginary numbers. 

Even though he avoided the algebra of imaginary numbers, Gauss still needed 
the continuity properties of real numbers, which, as we just saw, were not fully 
arithmetized until many years l a te r . 1 5 Continuity was a geometric property not 
explicitly found in Euclid, but Gauss expressed the opinion tha t continuity could 
be arithmetized. In giving a fifth proof of this theorem half a century later, he 
made full use of complex numbers. In fact, the complex plane is sometimes called 
the Gaussian plane. 

2.4 . Inf inite n u m b e r s . The problem of infinity has occupied mathematicians for 
a very long time. Neither arithmetic nor geometry can place any prcassigned limit 
on the sizes of objects. An integer can be as large as we like, and a line can 
be bisected as many times as we like. These are potential infinities and potential 
infinitesimals. Geometry can lead to the concept of an actual infinity and an actual 
infinitesimal. A line, plane, or solid is an infinite set of points; and in a sense a point 
is an infinitesimal (infinitely short) line, a line is an infinitesimal (infinitely narrow) 
plane, and a plane is an infinitesimal (infinitely thin) solid. These notions of the 
infinite and the infinitesimal present a logical problem for beings whose experience 
extends over only a finite amount of space, whose senses cannot resolve impressions 
below a certain threshold, and whose reasoning is presented using a finite set of 
words. The difficulties of dividing by zero and the problem of incommensurables, 
mentioned above, are two manifestations of this difficulty. We shall see others in 
later chapters. 

The infinite in Hindu mathematics. Early Hindu mathematics had a prominent 
metaphysical component tha t manifested itself in the handling of the infinite. 
The Hindus accepted an actual infinity and classified different kinds of infinities. 
This part of Hindu mathematics is particularly noticeable with the Jainas. They 
classified numbers as enumerable, unenumerable, and infinite, and space as one-
dimensional, two-dimensional, three-dimensional, and infinitely infinite. Further, 
they seem to have given a classification of infinite numbers remarkably similar to 

1 5 The Czech scholar Bernard Bolzano (1781-1848) showed how to approach the idea of con-
tinuity analytically in an 1817 paper. One could argue that his work anticipated Dedekind's 
arithmetization of real numbers. 
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the modern theory of infinite ordinals. The idea is to progress through the finite 
numbers 2 , 3 , 4 , . . . until the "first unenumerable" number is reached. This number 
corresponds to what is now called ù, the first infinite ordinal number. Then, ex-
actly as in modern set theory, one can consider the unenumerable numbers ù + 1, 
ù + 2 , . . . , ù2, and so on. We do not have enough specifics t o say any more, but 
there is a very strong temptation to say that the Ja ina classification of enumerable, 
unenumerable, infinite corresponds to our modern classification of finite, countably 
infinite, and uncountably infinite, but of course it is only a coincidental prefigura-
tion. 

Infinite ordinals and cardinals. A fuller account of the creation of the theory of 
cardinal and ordinal numbers in connection with set theory is given in Chapter 19. 
At this point, we merely note that these theories were created along with set the-
ory in the late nineteenth century through the work of several mathematicians, 
most prominently Georg Cantor (1854-1918). The relation between cardinal and 
ordinal numbers is an important one tha t has led to a large amount of research. 
Briefly, ordinal numbers arise from continuing the ordinary series of natural num-
bers "past infinity." Cardinal numbers arise from comparing two sets by matching 
their elements in a one-to-one manner. 

3 . C o m b i n a t o r i c s 

From earliest times mathematicians have been concerned with counting things and 
with space, tha t is, with the arrangement of objects of interest. Counting arrange-
ments of things became a separate area of study within mathematics . We now call 
this area combinatorics, and it has ramified to include a number of distinct areas 
of interest, such as formulas for summation of powers, graph theory, magic squares, 
Latin squares, Room squares, and others. We have seen already t ha t magic squares 
were used in divination, and there is a very prominent connection between this area 
and some varieties of mystical thinking. It may be coincidental tha t the elementary 
parts of probability theory, the parts tha t students find most frustrating, involve 
these sophisticated methods of counting. Probability is the mathematizat ion of 
possible outcomes of events, exactly the mat ters tha t are of interest to people who 
consult oracles. These hypothetical happenings are usually too many to list, and 
some systematic way of counting them is needed. 

3.1 . S u m m a t i o n rules . The earliest example of a summat ion problem comes 
from the Ahmose Papyrus. Problem 79 describes seven houses in which there are 
seven cats, each of which had eaten seven mice, each of which had eaten seven seeds, 
each of which would have produced seven hekats of grain if sown. The author asks 
for the total , that is, for the sum 7 + 7 2 + 7 3 + 7 4 + 7 5 , and gives the answer 
correctly as 19,607. The same summation with a different i l lustration is found in 
Fibonacci's Liber abaci of 1202. In this example we encounter the summation of a 
finite geometric progression. 

A similar example is Problem 34 of Chapter 3 of the Sun Zi Suan Jing, which 
tells of 9 hillsides, on each of which 9 trees are growing, with 9 branches on each 
tree, 9 bird's nests on each branch, and 9 birds in each nest. Each bird has 9 young, 
each young bird has 9 feathers, and each feather has 9 colors. The problem asks 
for the total number of each kind of object and gives the answer: 81 trees, 729 
branches, 6561 nests, 59,049 birds, 531,441 young birds, 4,782,969 feathers, and 
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43,046,721 colors. It does not ask for the sum of this series, which indeed is an 
absurd operation, given that the objects are of different kinds. 

Hindu mathematicians gave rules for summing geometric progressions and also 
the terms of ari thmetic progressions and their squares. In Section 3 of Chapter 12 of 
the Brahmasphutasiddhanta (Colebrooke, 1817, pp. 290-295), Brahmagupta gives 
four rules for dealing with arithmetic progressions. The first rule gives the sum 
of an arithmetic progression as its average value (half the sum of its first and last 
terms) times its period, which is the number of terms in the progression. We would 
write this rule as the formula 

Ó é , , .A / , ,,a + {a + nd) . n ( n + 1) 

(a + kd) = (n + 1) ~ = (n + l)a + d-±——- . 

fc=o 2 2 

For the case á = 0 and d = 1, this formula gives the familiar rule 

fc=i 2 

and Brahmagupta then says tha t the sum of the squares will be this number mul-
tiplied by twice the period added to 1 and divided by 3; in other words 

ç 

Ó* 
fc=l 

2 n (n + l ) ( 2 n + 1 ) 

For visual proofs of these results Brahmagupta recommended using piles of balls or 
cubes. 

These same rules were given in Chapter 5 of Bhaskara 's Lilavati (Colebrooke, 
1817, pp . 51-57). Bhaskara goes a step further, saying, "The sum of the cubes of 
the numbers one, and so forth, is pronounced by the ancients equal to the square 
of the addition." This also is the correct rule that we write as 

k=l \ fc=l / v 

Bhaskara also gives the general rule for the sum of a geometric progression of ç + 1 
terms (a,ar,ar2,... ,arn) in terms that amount to a ( r " + 1 —l)/(r—1). He illustrates 
this rule with several examples, finding tha t 2 + 6 + 18 + 54 + 162 + 486 + 1456 = 
2 ( 3 7 - l ) / 2 = 3 7 - 1 = 2186. 

About a century later than Bhaskara, Fibonacci's Liber quadratorum gives the 
same rule for the sum of the squares (Proposition 10): "If beginning with the unity, 
a number of consecutive numbers, both even and odd numbers, are taken in order, 
then the triple product of the last number and the number following it and the sum 
of the two is equal to six times the sum of the squares of all the numbers, namely 
from the unity to the last." 

Proposition 11 gives a more elaborate summation rule, which we can express 
simply as 

(2n + l ) (2n + 3)(4n + 4) = 1 2 ( l 2 + 3 2 + 5 2 + · • • + (2n + l ) 2 ) 



212 8. NUMBERS AND NUMBER THEORY IN MODERN MATHEMATICS 

1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

1 6 15 20 15 6 1 

1 7 21 35 35 21 7 1 

FIGURE 3. The Meru Prastara. 

Permutations and combinations. The metaphysics of the Jainas, based on a clas-
sification of sentient beings according to the number of senses possessed, led them 
to a mathematical topic related to number theory. They called it vikalpa, and we 
know it as the basic part of combinatorics. 

A typical question might be: "How many groups of three can be formed from 
a collection of five objects?" We know the answer, as did the early Ja ina mathe-
maticians. In the Bhagabati Sutra, written about 300 BCE, the author asks how 
many philosophical systems can be formed by taking a certain number of doctrines 
from a given list of basic doctrines. After giving the answers for 2, 3, 4, and so on, 
the author says that enumerable, unenumerable, and infinite numbers of things can 
be discussed, and "as the number of combinations are formed, all of them must be 
worked out." 

The general process for computing combinatorial coefficients was known to the 
Hindus at an early date. Combinatorial questions seemed to arise everywhere for 
the Hindus, not only in the examples just given but also in a work on medicine 
dating from the sixth century BCE (Biggs, 1979, p. 114) tha t poses the problem of 
the number of different flavors that can be made by choosing subsets of six basic 
flavors (bitter, sour, salty, astringent, sweet, hot) . The author gives the answer as 
6 + 1 5 + 20 + 15 + 6 + 1 , that is, 63. We recognize here the combinatorial coefficients 
that give the subsets of various sizes tha t can be formed from six elements. The 
author did not count the possibility of no flavor at all. 

Combinatorics also arose in the study of Sanskrit in the third century BCE 
when the writer Pingala gave a rule for finding the number of different words 
that could be formed from a given number of letters. This rule was written very 
obscurely, but a commentator named Halayudha, who is believed to have lived in 
the tenth century CE (Needham, 1959, p. 37), explained it as follows. First draw a 
square. Below it and starting from the middle of the lower side, draw two squares. 
Then draw three squares below these, and so on. Write the number 1 in the middle 
of the top square and inside the first and last squares of each row. Inside every 
other square the number to be written is the sum of the numbers in the two squares 
above it and overlapping it. 
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This array of numbers, which is known as Pascal's triangle because of a treatise 
on it written by Pascal in the seventeenth century, was studied four centuries before 
Pascal by Jordanus Nemorarius, who developed many of its properties (Hughes, 
1989). Pascal 's triangle also occurs in Chinese manuscripts some four centuries 
before Pascal 's treatise. In China the inspiration for the study of this diagram 
arose in connection with the extraction of cube roots and higher roots. The diagram 
appears in the Xiangjie Jiuzhang Suan Fa (Detailed Analysis of the Mathematical 
Methods in the Nine Chapters) of Yang Hui, written in 1261 (Li and Du, 1987, 
p. 122). But in India we find it 300 years before it was published in China and 
700 years before Pascal. Moreover it purports to be only a clarification of a rule 
invented 1200 years ear l ier! 1 6 Its Sanskrit name is Meru Prastara (see Fig. 3), 
which means the staircase of Mount Meru.17 

According to Singh (1985), Pingala 's work on poetry also leads to another 
interesting combinatorial topic, recognized as such by the Hindu mathematicians. 
We treated this topic above as number theory, but it will bear repeating as com-
binatorics. To simplify the explanation as much as possible, suppose that a line of 
poetry is to be written using short beats and long ones, a long one being equivalent 
to two short ones. If a line contains ç beats, how many arrangements are possible. 
Just to get started, we see tha t there is obviously one line of one beat (short), two 
lines of two beats (two short or one long), three lines of three beats (short-long, 
long-short, short-short-short), and five lines of four beats (long-long, short-short-
long, short-long-short, long-short-short, short-short-short-short). Since a line with 
ç + 1 beats must begin with either a short or a long beat, we observe that those 
beginning with a short beat are in one-to-one correspondence with the lines of ç 
beats , all of which can be obtained by removing the initial short beat, while those 
beginning with a long beat are in a similar correspondence with lines of ç — 1 beats. 
It follows tha t the number of lines with n + l beats is the sum of the numbers with 
ç — 1 and n. Once again we generate the Fibonacci sequence. 

Bhaskara II knew the rules for combinatorial coefficients very well. In Chapter 4 
of the Lilavati (Colebrooke, 1817, pp. 49-50), he gives an example of hexameter 
and asks how many possible combinations of long and short syllables are possible. 
He prescribes setting the numbers from 1 to 6 down "in direct and inverse order," 
tha t is, setting down the 2 x 6 matrix 

6 5 4 3 2 1 
1 2 3 4 5 6 ' 

From this array, by forming the products from the left and dividing, he finds the 
number of verses with different numbers of short syllables from 1 to 5 as 

6 „ 6 - 5 6 - 5 - 4 n n 6 - 5 - 4 - 3 i r 6 - 5 - 4 - 3 - 2 „ 
- = 6 , = 15 , = 20 , = 15 , = 6 . 
1 ' 1 - 2 ' 1 - 2 - 3 1 - 2 - 3 - 4 1 - 2 - 3 - 4 - 5 

1 6 That claim cannot be verified, however. Evidence indicates that knowledge of the combinatorial 
coefficients arose in India around the time of Aryabhata I, in the sixth century (Biggs, 1979, p. 
115). 
1 7 In Hindu mythology Mount Meru plays a role similar to that of Mount Olympus in Greek 
mythology. One Sanskrit dictionary gives this mathematical meaning of Meru Prastara as a 
separate entry. The word prastara apparently has some relation to the notion of expansion as 
used in connection with the binomial theorem. 
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Bhaskara recognized that there was one more possibility, six short syllables, but 
did not mention the possibility of no short syllables. The convention tha t an empty 
product equals 1 was not part of his experience. 

Magic squares and Latin squares. In 1274 (see Li and Du, 1987, p . 166) Yang Hui 
wrote Xugu Zhaiqi Suanfa (Continuation of Ancient Mathematical Methods for 
Elucidating the Strange [Properties of Numbers]), in which he listed magic squares 
of order up to 10. According to Biggs (1979, p. 121), there is evidence tha t the topic 
of magic squares had reached a high degree of development in China before this time 
and that Yang Hui was merely listing ancient results that were not a topic of current 
research, since he seems to have no concept of a general rule for constructing magic 
squares. Magic-square-type figures were a source of fascination in Korea, and they 
also seem to have spread west from China. Whether from China or as an indigenous 
product, magic squares of order up to 6 appear in the Muslim world around the 
year 990 (Biggs, 1979, p. 119) and squares of order up to 9 are mentioned. Rules 
for constructing such squares were given by the Muslim scholar al-Buni (d. 1225). 
From the Muslim world, they entered Europe around the year 1315 in the works of 
the Greek scholar named Manuel Moschopoulos, who was claimed as a student by 
Maximus Planudes, who was mentioned in Chapter 2. They exerted a fascination 
on European scholars also, and the artist Albrecht Diirer incorporated a 4 ÷ 4 magic 
square in his famous engraving Melencolia, with the year of its composition (1514) 
in the bot tom row. The most fascinating thing about them is their sheer number. 
Difficult as they are to construct, there are nevertheless 880 distinct 4 x 4 magic 
squares. 

Magic squares occur profusely throughout Indian, Chinese, and Japanese math-
ematics, alongside more elaborate numerical figures such as magic circles and magic 
hexagons. A variant of the idea of a magic square is tha t of a Latin square, an ç ÷ ç 
array in which each of ç letters appears once in each row and once in each column. 
It is easy to construct such a square by writing the letters down in order along the 
first row and then cyclically permuting them by one step in each subsequent row. 
To make the problem harder, mathematicians beginning with Euler in 1781 have 
sought pairs of orthogonal Latin squares: tha t is, two Lat in squares that can be 
superimposed in such a way tha t each of the n 2 possible ordered pairs of letters 
occurs exactly once. An example, given by Biggs (1979, p . 123), with one of the 
squares using Greek letters for additional clarity, is 

Modern combinatorics. The usefulness of combinatorics in elementary probability 
has already been noted. It is an interesting exercise to compute, for example, the 
probability of a particular poker hand, say a full house, and see why the rules of 
the game make three of a kind a better hand (because less likely) t han two pairs. 

The strongest impetus to combinatorial studies in Europe, however, came from 
Gottfried Wilhelm Leibniz (1646-1716), who is best remembered for his brilliant 
discoveries in the calculus. He was also a profound philosopher and a diplomat 
with a deep interest in Oriental cultures. Many fundamental results are found in 
his De arte combinatoria, published in 1666. In this work Leibniz gave tables of 

Act 

C5 

DP 

Βâ 
Αä 
D-y 
Ca 

Da 
Αâ 
Βä 

àä 
Ïâ 
Βá 
Αç 
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Albrecht Diirer's Melencolia, containing a magic square show-
ing the date of composition as 1514. © Corbis Images (No. 
BE005826). 

the number of permutat ions of ç objects. There arc many very curious aspects 
of this work. Although written mostly in Latin, it is rather polyglot. Leibniz 
occasionally breaks into Greek or German, and the tables are labeled with Hebrew 
letters. For permutat ions Leibniz used the word Humerus to denote the size of 
the set from which objects are chosen, and exponent (literally, placing out) for the 



216 8. NUMBERS AND NUMBER THEORY IN MODERN MATHEMATICS 

number of objects chosen. The total number of permutat ions of a number of objects 
he called its variationes, and for the number of combinations of a set of objects 
taken, say, four at a time, he wrote confaatio, an abbreviation for conquattuornatio. 
The case of two objects taken at a time provides the modern word combination. 
These combinations, now called binomial coefficients, were referred to generically as 
complexiones. The first problem posed by Leibniz was: Given the numerus and the 
exponent, find the complexiones. In other words, given ç and fc, find the number 
of combinations of ç things taken k at a time. 

Like the Hindu mathematicians, Leibniz applied combinatorics to poetry and 
music. He considered the hexameter lines possible with the Guido scale ut, re, mi, 
fa, sol, la, finding a total of 187,920. 1 8 

De arte combinatoria contains 12 sophisticated counting problems and a num-
ber of exotic applications of the counting techniques. It appears tha t Leibniz in-
tended these techniques to be a source by which all possible propositions about 
the world could be generated. Then, combined with a good logic checker, this 
technique would provide the key to all knowledge. His intent was philosophical as 
well as mathematical , as evidenced by his claimed mathematical proof of the exis-
tence of God at the beginning of the work. Thus once again, this particular area 
of mathematics seems to be linked, more than other kinds of mathematics , with 
mysticism. The frontispiece of De arte combinatoria shows a mystical arrangement 
of the opposite pairs wet/dry, cold/hot, with the four elements of earth, air, fire, 
and water as cardinal points. This figure resembles an elaborate version of the fa-
mous ying/yang symbol from Chinese philosophy and it also recalls the proposition 
generator of the mystic theologian Ramon Lull (1232-1316), which consisted of a 
series of nested circles with words inscribed on them. When rotated independently, 
they would generate sentences. Leibniz was familiar with Lull 's work, but was not 
a proponent of it. 

The seeds planted by Leibniz in De arte combinatoria sprouted and grew dur-
ing the nineteenth century, as problems from algebra, probability, and topology 
required sophisticated techniques of counting. One of the pioneers was the British 
clergyman Thomas Kirkman (1806-1895). The first combinatorial problem he 
worked on was posed in the Lady's and Gentleman's Diary in 1844: Determine 
the maximum number of distinct sets of ñ symboh that can be formed from a set 
of ç symbols subject to the restriction that no combination of q symboh can be 
repeated in different sets. Kirkman himself posed a related problem in the same 
journal five years later: Fifteen young ladies in a school walk out three abreast for 
7 days in succession; it is required to arrange them daily so that no two shall walk 
twice abreast. This problem is an early example of a problem in combinatorial de-
sign. The problem of constructing a Latin square is another example. This kind of 
combinatorial design has a practical application in the scheduling of athletic tour-
naments, and in fact colleagues of the author specializing in combinatorial design 
procured a contract to design the schedule for the short-lived XFL Football League 
in 2001. 

We shall terminate our discussion of combinatorics with these nineteenth-
century results. We note in parting that it remains an area with a plenitude of 
unsolved problems whose statement can be understood without long preparation. 

1 8 The first five of these tones are the first syllables of a medieval Latin chant on ascending tones. 
The replacement of ut by the modern do came later. 
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Frontispiece of De arte combinatoria, from Vol. 5, p . 7 of the 
collected works of Leibniz. @ Georg 01ms Verlag, Hildesheim. 

It was for tha t reason tha t combinatorial problems were used as the mathematical 
background of the film Good Will Hunting. 

Q u e s t i o n s and p r o b l e m s 

8 .1 . We know a mathematical algorithm for computing as many decimal digits of 
y/2 as we have time for, and \ /2 has a precise representation in Euclidean geometry 
as the ratio of the diagonal of a square to its side. It is a provable theorem of Eu-
clidean geometry tha t t ha t rat io is the same for all squares, so that two observers 
using different squares should get the same result. To the extent that physical 
space really is Euclidean, this definition makes it possible to determine \/2 empir-
ically by measuring the sides and diagonals of physical squares. In that sense, we 
could theoretically determine \ /2 with arbitrarily prescribed precision by physical 
measurements. In particular, it makes perfectly good sense to ask what the 50th 
decimal digit of \f2 is—it happens to be 4, but rounds up to 5—and we could try 
to get instruments precise enough to yield this result from measurement. 



218 8. NUMBERS AND NUMBER THEORY IN MODERN MATHEMATICS 

Consider, in contrast, the case of a physical constant, say the universal gravita-
tional constant, usually denoted Go, which occurs in Newton's law of gravitation: 

Here F is the force each of two bodies exerts on the other, Ì and m are the 
masses of the two bodies, and r is the distance between their centers of gravity. 
The accepted value of Go, given as upper and lower assured limits, is 6.674215 ± 
0.000092 Í · m 2 / k g 2 , although some recent measurements have cast doubt on this 
value. From a mathematical point of view, Go is determined by the equation 

Fr2 

Mm 

and its value is found—as Cavendish actually did—by put t ing two known masses Ì 
and m at a known distance r from each other and measuring the force each exerts 
on the other. The assertion tha t the ratio Fr2/Mm is t he same for all masses 
and all distances is precisely the content of Newton's law of gravity, so tha t two 
experimenters using different masses and different distances should get the same 
result. But Newton's law of gravity is not deducible from axioms; it is, rather, an 
empirical hypothesis, to be judged by its explanatory power and its consistency with 
observation. What should we conclude if two experimenters do not get the same 
result for the value of Go? Did one of them do something wrong, or is Newton's law 
not applicable in all cases? Does it even make sense to ask what the 50th decimal 
digit of Go is? 

8.2. You can represent y/ab geometrically by put t ing a line of length b end-to-end 
with a line of length a, drawing a circle having this new line as diameter, and then 
drawing the perpendicular to the circle from the point where the two lines meet. 
To get \fa and \fb, you would have to use Descartes' unit length / as one of the 
factors. Is it possible to prove by use of this construction t ha t \fabl = ,/aVb? Was 
Dedekind justified in claiming tha t this identity had never been proved? 

8.3. Try to give a definition of real numbers—perhaps using decimal expansions— 
that will enable you to say what the numbers y/2, Ë/ÚÚ, and \ /6 are, and how 
they can be added and multiplied. Does your definition enable you to prove tha t 
y/2y/l = \ /6? 

8.4. Use the method of infinite descent to prove tha t \ / 3 is 'irrational. [Hint: 
Assuming tha t m 2 = 3 n 2 , where m and ç are positive integers having no common 
factor, tha t is, they are as small as possible, verify tha t (m - 3 n ) 2 = 3(m — n ) 2 . 
Note tha t m < 2n and hence m-n < n, contradicting the minimali ty of the original 
m and n.] 

8.5. Show tha t s/3 is irrational by assuming t ha t m3 = 3 n 3 with m and ç positive 
integers having no common factor. [Hint: Show tha t (m — n)(m2 +mn + n2) = 2 n 3 . 
Hence, if ñ is a prime factor of n, then ñ divides either m — ç or m2 + mn + n2. In 
either case ñ must divide m. Since m and ç have no common factor, it follows tha t 
ç = 1.] 

8.6. Suppose tha t x, y, and æ are positive integers, no two of which have a common 
factor, none of which is divisible by 3, and such tha t x3 + y3 = z3. Show tha t there 
exist integers p, q, and r such tha t æ — χ = ñ 3 , æ — y = q3, and χ + y — r3. Then, 
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letting m = r 3 - ( p 3 + q3) and ç = 2pqr, verify from the original equation that 
m3 = 3 n 3 , which by Problem 8.5 is impossible if m and ç are nonzero. Hence 
ç = 0, which means tha t ñ = 0 or q = 0 or r = 0, tha t is, a t least one of χ and y 
equals 0. Conclude tha t no such positive integers x, y, and æ can exist. 

8.7. Verify tha t 
2 7 5 + 8 4 5 + 110 5 + 133 5 = 144 5 . 

[See L. J. Lander and T. R. Parkin, "Counterexample to Euler 's conjecture on sums 

of like powers," Bulletin of the American Mathematical Society, 72 (1966), p. 1079. 

Smaller counterexamples to this conjecture have been discovered more recently.] 

8.8. Prove Fermat 's little theorem by induction on a. [Hint: The theorem can be 
restated as the assertion tha t ñ divides ap — a for every positive integer a. Use the 
binomial theorem to show that (á + 1 ) ñ - ( á + 1 ) = ôçñ + ap - a for some integer 
m.} 

8.9. Verify the law of quadrat ic reciprocity for the primes 17 and 23 and for 67 
and 71. 

8.10. Show tha t the factorization of numbers of the form m + n \ / ^ 3 is not unique 
by finding two different factorizations of 4. Is factorization unique for numbers of 
the form m + n \ / - 2 ? 

8 .11 . Prove tha t the number of primes less than or equal to JV is at least log 2(iV/3), 

by proceeding as follows. Let p\,... , p n be the prime numbers among 1,.. .,N, and 

let È(Í) be the number of square-free integers among 1 , . . . , JV, tha t is, the integers 

not divisible by any square number. We then have the following relation, since it 

is known that ÓÃ=é(1/^2) = 7 1 - 2 / 6 -
ç 

È(Í) > Í-Ó 
fc=l 

(Here the square brackets denote the greatest-integer function.) Now a square-free 
integer k between 1 and Í is of the form k = p j 1 · · · p£", where each e, is either 0 or 
1. Hence È(Í) < 2 n , and so ç > log 2(iV/3). This interesting bit of mathematical 
trivia is due to the Russian-American mathematician Joseph Perott (1854-1924). 

ÉïåßÔº Ϊ7Ã(ÔÉ) 
8.12 . Assuming that lim exists, use Chebyshev's estimates to show 

ç—>oo ç 
tha t this limit must be 1 and hence that Legendre's estimate cannot be valid beyond 
the first term. 
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P l a t e 1. Top I ï bo t tom: Problems 49 54 of I he Alnnosc Papyrus. © The British 
Museum. 

P l a t e 2 . (Overleaf): Saiujak '•u on display at the Suguwara. Shrine in Mio Prefecture. 
1854. Courtesy of Mr. Hidetoshi Fukagawa. 
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P l a t e 3 . Folio 47 of the Dresden Codex. © Saclisische Landosbibliothek. Dresden. 

P l a t e 4 . A brunch of a flowering <-fuha]i])lo tree, illustrating the Fibonacci/golden 
ratio pat tern of twig growth. 
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P l a t e 5. Florence Nightingale's "balwing" or ••coxcomb" diagram, forerunner of 
the modern pie chart. Unlike the modern pie chart, the sectors here do not. represent 
percent ages. Rather, thoy give the monthly death tolls from wounds and disease 
during the Crimean War of 1854 1855. Nowadays, such da ta would be presented 
as a line graph. 
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P l a t e 6. A page of the Archimedes Palimpsest. © Christie's linages Incorporated 
2005. 
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P l a t e 7. Egyptian field measurers: a wall painting from 1 lit* tomb of Mcima. Scribe 
of the Fields, around 1100 ÉÊ¸. © Coibis Images (No. WF()()4i:$r>). 
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P l a t e 8. HeronstTurrioii of one of Ptolemy's maps of the world. © The Vatican 
Library (Urb. gr. 82. ff. (i()v (ilr). 
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P l a t e 9. Port rail. ol'Liica Pacioli in 1495 working with a text of Euclid's Elements. 
by Jacopo do Barbari (1440 1515). It is not certain wlio the young man bohiiul 
him is. hut it may be Albiccht Diircr. (?) Corbis linages (No. CS002808). 
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Geometry is a way of organizing our perception of shape. As in ari thmetic, we can 
distinguish levels of sophistication in the development of geometry. The first level 
is tha t of measurement: comparing the sizes of objects having different shapes. 
Measurement is arithmetic applied to space, beginning with figures having flat sides 
or faces. The second level is the study of the proportions among the par ts of 
geometric figures, such as triangles, squares, rectangles, and circles. A good marker 
for the beginning of this stage of development is the Pythagorean relation for right 
triangles. 

Although regular polygons and polyhedra can be measured using simple dissec-
tion techniques, algebra is needed to measure more complicated figures, such as the 
portion of a disk remaining after three other disks, all tangent to one another and 
to the original disk and whose radii are in given ratios, are removed from it. One of 
the uses of geometry in many ancient treatises is as a source of interesting equations 
to be solved. Although the problems are posed as problems in measurement, the 
shapes being measured are so unusual tha t it is hard to think of them as a motive. 
The suspicion begins to arise that the author 's real purpose was to exhibit some 
algebra. 

The Pythagoreans, Plato, and Aristotle gave geometry a unique philosophical 
grounding tha t turned it out of the path it would probably have followed otherwise. 
Their insistence on a logical development based on a system of axioms made ex-
plicit many assumptions—especially the parallel postulate—that otherwise might 
not have been noticed. As a result, there is a marked difference between the math-
ematical practitioners who learned geometry from Euclid ( the medieval Muslims 
and renaissance Europeans) and those who learned it from a different tradition. 

At its highest level, elementary geometry employs algebra and the infinite pro-
cesses of calculus in order to find the areas and volumes of ever more complicated 
curvilinear figures. Like arithmetic, geometry has given rise to many specialties, 
such as projective, analytic, and differential geometry. As more and more general 
properties of space became mathematized, geometry generated the subject known 
as topology, from Greek roots meaning theory of position. 

In the four chapters that constitute the present part of our history, we shall 
look a t all these aspects of geometry. In Chapter 9 we study the way space was 
measured in a number of civilizations. Chapters 10 and 11 form a unit devoted 
to the most influential form of elementary geometry, the Euclidean geometry tha t 
arose in the Hellenistic civilization. Chapter 12 contains a survey of the variety of 
forms of geometry tha t have arisen over the past three centuries. 
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Measurement 

The word geometry comes from the Greek words ge, meaning earth, and metrein, 
meaning measure. It seems that all human societies have had to measure fields 
for agriculture or compute the amount of work involved in excavating a building 
site. Tha t there is a basic similarity in approaches to these problems is attested 
by the presence of words for circles, rectangles, squares, and triangles in every 
language. Geometric intuition seems to be innate to human beings. Many different 
societies independently discovered the Pythagorean theorem, for example. These 
external similarities conceal certain differences in outlook, however. For example, 
we are taught to think of a line as having no thickness. But did the Hindus, 
Egyptians, and others think of it that way? The word line comes from the Greek 
linon (Latin linea) meaning string; the physical object (a stretched string) on which 
the abstraction is based is clear. Early Hindu work on geometry also uses Sanskrit 
words for ropes and cords. It is very likely that ancient engineers thought of a line 
as a physical object: a rope, stretched taut . The quanti ty of rope was given as a 
number (length). Geometry a t this stage of development was a mat ter of relating 
lengths to other quantit ies of geometric interest, such as areas, slopes, and volumes. 
It was an application of arithmetic and useful in planning public works projects, 
for example, since it provided an estimate of the size of a job and hence the number 
of workers and the amount of materials and time required to excavate and build a 
structure. It also proved useful in surveying, since geometric relationships could be 
used to compute inacessible distances from accessible ones. The fact that similar 
triangles are the basic tool in this science has caused it to be named trigonometry. 
The elementary rules for measuring regular geometric figures persist in treatises 
for many centuries. Nearly always the author begins by describing the standard 
units of length, area, volume, and weight, then presents a variety of procedures 
tha t have a great resemblance to the procedures described in all other treatises of 
the same kind. This geometry, though elementary, should not be thought of as 
primitive. Textbooks of "practical mathematics" containing exactly this material 
are still being written and published today. 

Although geometry looks very much the same across cultures, there is one 
place where we must exercise a little care in order to understand it from the point 
of view of the people we are studying. Textbooks often give approximate values of 
the number ð allegedly used in different cultures without being clear about which 
constant they mean. When calculating the circumference C of a circle in terms of 
its diameter, we use the formula C = ðÜ. When calculating the area of a circle 
(disk) in terms of its radius, we use the familiar formula A — ð í 2 . When calculating 
the area of a sphere in terms of its radius, we use A = 4nr2, and for the volume, the 
formula V — f ðô· 3 . There are really four different values of ð here, depending on 
the dimension and flatness or curvature. The first formula reflects the fact tha t the 
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circumference of a circle is proportional to its diameter. T h a t is, given two circles 
with circumferences C, and diameters Di, i = 1,2, we have C\jCi = D\jO<i. We 
shall call the ratio C/Z) the one-dimensional ð . The second formula implies that 
if Ä é and Ä 2 are the areas of disks of radius r j and r-é and S\ and S2 are the 
areas of squares of sides r\ and Ã2, then Ä é / Ä 2 = S\ISi. We shall call the ratio 
Ä / 5 the two-dimensional ð, and similarly for volumes. We won' t need the ð tha t 
occurs in the formula for the area of a sphere, since everybody seemed to relate 
that one to one of the others. Thus, we are dealing with several direct proportions 
with different constants of proportionality. It is not obvious tha t these constants for 
different dimensions have any simple relationship to one another. T h a t fact requires 
some digging in geometry to discover. Without the abstract concept of a constant 
of proportionality, when a mathematician is seeking only numerical approximations 
that accord with observation, there is no reason to suspect any connection between 
these constants in different dimensions. To be sure, only a small amount of intuition 
is required to establish the connection, as shown in Problems 9.13 and 9.20, but in 
any discussion of supposed approximations to ð used in different cultures, we need 
to keep in mind the dimension of the object being studied: Was it a circle, a disk, 
a cone, a cylinder, a sphere, or a ball? 

1. E g y p t 

Foreigners have been interested in the geometry of the Egyptians for a very long 
time. In Section 109 of Book 2 of his History, the Greek historian Herodotus writes 
that King Sesostris 1 dug a multitude of canals to carry water to the arid parts of 
Egypt. He goes on to connect this Egyptian engineering with Greek geometry: 

It was also said that this king distributed the land to all the Egyp-
tians, giving an equal quadrilateral farm to each, and tha t he got 
his revenue from this, establishing a t ax to be paid for it. If the 
river carried off part of someone's farm, tha t person would come 
and let him know what had happened. He would send surveyors 
to remeasure and determine the amount by which the land had 
decreased, so that the person would pay less tax in proportion to 
the loss. It seems likely to me tha t it was from this source tha t 
geometry was found to have come into Greece. For the Greeks 
learned of the sundial and the twelve par ts of the day from the 
Babylonians. 

The main work of Egyptian surveyors was measuring fields. Tha t job cor-
responds well to the Latin word agrimensor, which means surveyor. Our word 
surveyor comes through French, but has its origin in the Latin supervideo, meaning 
I oversee. The equivalent word in Greek was used by Herodotus in the passage 
above. He said that the king would send episkepsomenous kai anametresontas, lit-
erally overseeing and remeasuring men. The process of measuring a field is shown 
in a painting from the tomb of an Egyptian noble named Menna at Sheikh Abd 
el-Qurna in Thebes (Plate 7). Menna bore the title Scribe of the Fields of the 
Lord of the Two Lands during the eighteenth dynasty, probably in the reign of 
Amenhotep III or Thutmose IV, around 1400 BCE. His job was probably tha t of 

1 There were several pharaohs with this name. Some authorities believe that the one mentioned 
by Herodotus was actually Ramses II, who ruled from 1279 to 1212 BCE. 
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a steward, to oversee planting and harvest. As the painting shows, the instrument 
used to measure distance was a rope tha t could be pulled tau t . Tha t measuring 
instrument has given rise to another name often used to refer to these surveyors: 
harpedonaptai, from the words harpedone, meaning rope, and haptein, meaning at-
tach. The philosopher Democritus (d. 357 BCE) boasted, "In demonstration no 
one ever surpassed me, not even those of the Egyptians called harpedonaptai."2 

The geometric problems considered in the Egyptian papyri all involve mea-
surement. These problems show considerable insight into the properties of simple 
geometric figures such as the circle, the triangle, the rectangle, and the pyramid; 
and they rise to a rather high level of sophistication in computing the area of a hemi-
sphere. Those involving flat boundaries (polygons and pyramids) are correct from 
the point of view of Euclidean geometry, while those involving curved boundaries 
(disks and spheres) are correct up to the constant of proportionality chosen. 

1.1. A r e a s . Since the areas of rectangles and triangles are easy to compute, it 
is understandable t ha t very little attention is given to these problems. Only four 
problems in the Ahmose Papyrus touch on these questions: Problems 6, 49, 51, 
and 52 (see Plate 1). 

Rectangles, triangles, and trapezoids. Problem 49 involves computing the area of a 
rectangle tha t has dimensions 1 khet by 10 khets. This in itself would be a trivial 
problem, except tha t areas are to be expressed in square cubits rather than square 
khets. Since a khet is 100 cubits, the answer is given correctly as 100,000 square 
cubits. Problem 51 is a mat ter of finding the area of a triangle, and it is illustrated 
by a figure (see Plate 1) showing the triangle. The area is found by multiplying 
half of the base by the height. In Problem 52, this technique is generalized to a 
trapezoid, and half of the sum of the upper and lower bases is multiplied by the 
height. 

Of all these problems, the most interesting is Problem 6, which involves a twist 
t ha t makes it equivalent t o a quadratic equation. A rectangle is given having area 
12 cubit strips; tha t is, it is equal to an area 1 cubit by 12 cubits, though not of the 
same shape. The problem is to find its dimensions given t ha t the width is three-
fourths of the length (2 4 in the notation of the papyrus). The first problem is to 
"calculate with 2 4, until 1 is reached," tha t is, in our language, dividing 1 by 2 4. 
The result is 1 3. Then 12 is multiplied by 1 3, yielding 16, after which the scribe 
takes the corner (square root) of 16—unfortunately, without saying how—getting 
4 as the length. This is a very nice example of thinking in terms of expressions. 
The scribe seems to have in mind a picture of the length being multiplied by three-
fourths of the length, and the result being 12. Then the length squared has to be 
found by multiplying by what we would call the reciprocal of its coefficient, after 
which the length is found by taking the square root. 

Slopes. The beginnings of trigonometry can be seen in Problems 56-60 of the pa-
pyrus, which involve the slope of the sides of pyramids and other figures. There 
is a unit of slope analogous to the pesu t ha t we saw in Chapter 5 in the problems 
involving strength of bread and beer. The unit of slope is the seked, defined as 
the number of palms of horizontal displacement associated with a vertical displace-
ment of 1 royal cubit. One royal cubit was 7 palms. Because of the relative sizes of 

2 Quoted by the second-century theologian Clement of Alexandria, in his Miscellanies, Book 1, 
Chapter 15. 
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horizontal and vertical displacements, it makes sense to use a larger unit of length 
for vertical distances than is used for horizontal distances, even at the expense of 
introducing an extra factor into computations of slope. In our terms the seked is 
seven times the tangent of the angle that the sloping side makes with the vertical. 
In some of the problems the seked is given in such a way tha t the factor of 7 drops 
out. Notice tha t if you were ordering a stone from the quarry, the seked would 
tell the stonecutter immediately where to cut. One would mark a point one cubit 
(distance from fingertip to elbow) from the corner in one direction and a point a t a 
number of palms equal to the seked in the perpendicular direction, and then simply 
cut between the two points marked. 

In Problem 57 a pyramid with a seked of 5 4 and a base of 140 cubits is given. 
The problem is to find its height. The seked given here (f of 7) is exactly that 
of one of the actual pyramids, the pyramid of Khafre, who reigned from 2558 to 
2532 BCE. It appears that stones were mass-produced in several s tandard shapes 
with a seked that could be increased in intervals of one-fourth. Pyramid builders 
and designers could thereby refer to a s tandard brick shape, just as architects and 
contractors since the time of ancient Rome have been able to specify a s tandard 
diameter for a water pipe. Problem 58 gives the dimensions of the same pyramid 
and asks for its seked, apparently just to reinforce the reader's grasp of the relation 
between seked and dimension. 

The circle. Five of the problems in the Ahmose Papyrus (41-43, 48, and 50) involve 
calculating the area of a circle. The answers given are approximations, but would 
be precise if the value 64/81 used in the papyrus where we would use ð / 4 were 
exact. The author makes no distinction between the two. When physical objects 
such as grain silos are built, the parts used to build them have to be measured. 
In addition, the structures and their contents have a commercial, monetary value. 
Some number has to be used to express tha t value. It would therefore not be 
absurd -a l though it would probably be unnecessary—for a legislature to pass a bill 
prescribing a numerical value to be used for ð . 3 Similarly, the claim often made 
that the "biblical" value of ð is 3, based on the description of a vat 10 cubits from 
brim to brim girdled by a line of 30 cubits (1 Kings 7:23) is pure pedantry. It 
assumes more precision than is necessary in the context. The author may have 
been giving measurements only to the nearest 10 cubits, not an unreasonable thing 
to do in a literary description. 4 

3 However, in the most notorious case where such a bill was nearly passed—House Bill 246 of 
the 1897 Indiana legislature—it was absurd. The bill was written by a physician and amateur 
mathematician named Edwin J. Goodwin. Goodwin had copyrighted what he thought was a 
quadrature of the circle. He offered to allow textbooks sold in Indiana to use his proof royalty-free 
provided that the Indiana House would pass this bill, whose text mostly glorified his own genius. 
Some of the mathematical statements the legislature was requested to enact were pure gibberish. 
For example, "a circular area is to the square on a line equal to the quadrant of the circumference, 
as the area of an equilateral rectangle is to the square on one side." The one clear statement is 
that "the ratio of the chord and arc of ninety degrees... is as seven to eight." That statement 

implies that ð = 16\/2/7 w 3.232488 The square root in this expression did not trouble Dr. 
Goodwin, who declared that <J2 = 10/7. At this point, one might have taken his value of ôô to be 
160/49 = 3.265306122.... But, in a rare and uncalled-for manifestation of consistency, since he 
"knew" that 100/49 = (10/7) 2 = 2, Goodwin declared this fraction equal to 16/5 = 3.2. The bill 
was stopped at the last minute by lobbying from a member of the Indiana Academy of Sciences 
and was tabled without action. 
4 However, like everything in the Bible, this passage has been subject to exhaustive and repeated 
analysis. For a summary of the conclusions reached in the Talmud, see Tsaban and Garber (1998). 
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FIGURE 1. Conjectured explanations of the Egyptian squaring of 
the circle. 

Ahmose takes the area of a circle to be the area of the square whose side is 
obtained by removing the ninth part of the diameter. In our language the area is the 
square on eight-ninths of the diameter, tha t is, it is the square on ø of the radius. 
In our language, not t ha t of Egypt, this gives a value of ð for area problems equal to 
^jj*. Please remember, however, tha t the Egyptians had no concept of the number 
ð . The constant of proportionality that they always worked with represents what 
we would call ð / 4 . There have been various conjectures as to how the Egyptians 
might have arrived a t this result. One such conjecture given by Robins and Shute 
(1987, p . 45) involves a square of side 8. If a circle is drawn through the points 
2 units from each corner, it is visually clear tha t the four fillets at the corners, at 
which the square is outside the circle, are nearly the same size as the four segments 
of the circle outside the square; hence this circle and this square may be considered 
equal in area. Now the diameter of this circle can be obtained by connecting one of 
the points of intersection to the opposite point, as shown on the left-hand diagram 
in Fig. 1, and measurement will show tha t this line is very nearly 9 units in length 
(it is actually y/80 in length). A second theory due to K. Vogel (see Gillings, 
1972, pp . 143-144) is based on the fact that the circle inscribed in a square of side 
nine is roughly equal to the unshaded region in the right-hand diagram in Fig. 1. 
This area is g of 81 , tha t is, 63. A square of equal size would therefore have side 
\ /63 ~ 7.937 « 8. In favor of Vogel's conjecture is the fact t ha t a figure very similar 
to this diagram accompanies Problem 48 of the papyrus. A detailed discussion of 
various conjectures, giving connections with traditional African crafts, was given 
by Gerdes (1985). 

The Pythagorean theorem. Inevitably in the discussion of ancient cultures, the ques-
tion of the role played by the Pythagorean theorem is of interest. Did the ancient 
Egyptians know this theorem? It has been reported in numerous textbooks, pop-
ular articles, and educational videos tha t the Egyptians laid out right angles by 
stretching a rope with 12 equal intervals knotted on it so as to form a 3-4-5 right 
triangle. W h a t is the evidence for this assertion? First, the Egyptians did lay 
out very accurate right angles. Also, as mentioned above, it is known that their 
surveyors used ropes as measuring instruments and were referred to as rope-fixers 
(see Plate 7). T h a t is the evidence tha t was cited by the person who originally 
made the conjecture, the historian Moritz Cantor (1829-1920) in the first volume 
of his history of mathematics , published in 1882. The case can be made stronger, 
however. In his essay Isis and Osiris Plutarch says the following. 
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It has been imagined that the Egyptians regarded one triangle 
above all others, likening it to the nature of the universe. And in his 
Republic P la to seems to have used it in arranging marriages. This 
triangle has 3 on the vertical side, 4 on the base, and a hypotenuse 
of 5, equal in square to the other two sides. It is to be imagined 
then that it was constituted of the masculine on the vertical side, 
and the feminine on the base; also, Osiris as the progenitor, Isis as 
the receptacle, and Horus as the offspring. For 3 is the first odd 
number and is a perfect number; the 4 is a square formed from an 
even number of dyads; and the 5 is regarded as derived in one way 
from the father and another way from the mother, being made up 
of the triad and the dyad. 

Still further, Berlin Papyrus 6619 contains a problem in which one square equals 
the sum of two others. It is hard to imagine anyone being interested in such 
conditions without knowing the Pythagorean theorem. Against the conjecture, 
we could note that the earliest Egyptian text tha t mentions a right triangle and 
finds the length of all its sides using the Pythagorean theorem dates from about 
300 BCE, and by tha t time the presence of Greek mathematics in Alexandria was 
already established. None of the older papyri mention or use by implication the 
Pythagorean theorem. 

On balance, one would guess that the Egyptians did know the Pythagorean 
theorem. However, there is no evidence tha t they used it to construct right angles, 
as Cantor conjectured. There are much simpler ways of doing tha t (even involving 
the stretching of ropes), which the Egyptians must have known. Given tha t the 
evidence for this conjecture is so meager, why is it so often reported as fact? Simply 
because it has been repeated frequently since it was originally made. We know 
precisely the source of the conjecture, but that knowledge does not seem to reach 
the many people who report it as fact. 5 

Spheres or cylinders? Problem 10 of the Moscow Papyrus has been subject to 
various interpretations. It asks for the area of a curved surface that is either half of 
a cylinder or a hemisphere. In either case it is worth noting t ha t the area is obtained 
by multiplying the length of a semicircle by another length in order to obtain the 
area. Finding the area of a hemisphere is an extremely difficult problem. Intuitive 
techniques tha t work on flat or ruled surfaces break down, as shown in Problem 9.20. 
If the Egyptians did compute this area, no one has given any reasonable conjecture 
as to how they did so. The difficulty of this problem was given as one reason for 
interpreting the figure as half of a cylinder. Yet the plain language of the problem 
implies that the surface is a hemisphere. The problem was translated into German 
by the Russian scholar V. V. Struve (1889-1965); the following is a translation from 
the German: 

The way of calculating a basket, if you are given a basket with an 
opening of 4 2. 0 , tell me its surface! 

5 This point was made very forcefully by van der Waerden (1963, p. 6). In his later book, 
Geometry and Algebra in Ancient Civilizations, van der Waerden claimed that integer-sided right 
triangles, which seem to imply knowledge of the Pythagorean theorem, are ubiquitous in the oldest 
megalithic structures. Thus, he seems to imply that the Egyptians knew the theorem, but didn't 
use it as Cantor suggested. 
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Calculate 9 of 9, since the basket is half of an egg. The result 
is 1. Calculate what is left as 8. Calculate 9 of 8. The result is 3 6 
18. Calculate what is left of this 8 after this 3 6 18 is taken away. 
The result is 7 9. Calculate 4 2 times with 7 9. The result is 32. 
Behold, this is the surface. You have found it correctly. 

If we interpret the basket as being a hemisphere, the scribe has first doubled 
the diameter of the opening from 4 2 to 9 "because the basket is half of an egg." 
(If it had been the whole egg, the diameter would have been quadrupled.) The 
procedure used for finding the area here is equivalent to the formula 2d • | • | · d. 

Taking ( | ) 2 as representing ð / 4 , we find it equal to (nd?)/2, or 2 ð Ã 2 , which is 
indeed the area of a hemisphere of radius r . 

This value is also the lateral area of half of a cylinder of height d and base 
diameter d. If the basket is interpreted as half of a cylinder, the opening would 
be square and the number 4 2 would be the side of the square. T h a t would mean 
also that the "Egyptian ð" (ð /4 = 64/81), used for area problems was also being 
applied to the ratio of the circumference to the diameter. The numerical answer is 
consistent with this interpretation, but it does seem strange that only the lateral 
surface of the cylinder was given. Tha t would indicate tha t the basket was open 
a t the sides. It would be strange to describe such a basket as "half of an egg." 
The main reason given by van der Waerden (1963, pp. 33-34) for preferring this 
interpretation is an apparent inaccuracy in Struve's s tatement of the problem. Van 
der Waerden quotes Ô. E. Peet, who says that the number 4 2 occurs twice in the 
statement of the problem, as the opening of the top of the basket and also as its 
depth. This interpretation, however, leads to further difficulties. If the surface 
is indeed half of a cylinder of base diameter 4 2, its depth is not 4 2; it is 2 4. 
Van der Waerden also mentions a conjecture of Neugebauer, tha t this surface was 
intended to be a domelike structure of a sort seen in some Egyptian paintings, 
resembling very much the small end of an egg. T h a t interpretation restores the 
idea that this problem was the computation of the area of a nonruled surface, and 
the approximation just happens to be the area of a hemisphere. 

1.2. V o l u m e s . One of the most remarkable achievements of the Egyptians is the 
discovery of accurate ways of computing volumes. As in the case of surface areas, 
the most remarkable result is found in the Moscow, not the Ahmose, Papyrus. In 
Problem 41 of the Ahmose Papyrus we find the correct procedure used for finding 
the volume of a cylindrical silo, that is, the area of the circular base is multiplied 
by the height. To make the numbers easy, the diameter of the base is given as 9 
cubits, as in Problems 48 and 50, so tha t the area is 64 square cubits. The height is 
10 cubits, giving a volume of 640 cubic cubits. However, the s tandard unit of grain 
volume was a khar, which is two-thirds of a cubic cubit, resulting in a volume of 960 
khar. In a further twist, to get a smaller answer, the scribe divides this number by 
20, getting 48 "hundreds of quadruple hekats." (A khar was 20 hekats.) Problem 42 
is the same problem, only with a base of diameter 10 cubits. Apparently, once the 
reader has the rule well in hand, it is time to test the limits by making the da ta 
more cumbersome. The answer is computed to be 1185 6 54 khar, again expressed 
in hundreds of quadruple hekats. Problems 44-46 calculate the volume of prisms 
on a rectangular base by the same procedure. 
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Given tha t pyramids are so common in Egypt, it is surprising tha t the Ahmose 
Papyrus does not discuss the volume of a pyramid. However, Problem 14 from the 
Moscow Papyrus asks for the volume of the frustum of a square pyramid given that 
the side of the lower base is 4, the side of the upper base is 2, and the height is 6. 
The author gives the correct recipe: Add the areas of the two bases to the area of 
the rectangle whose sides are the sides of the bases, tha t is, 2 · 2 + 4 · 4 + 2 · 4, then 
multiply by one-third of the height, getting the correct answer, 56. This technique 
could not have been arrived at through experience. Some geometric principle must 
be involved, since the writer knew that the sides of the bases, which are parallel 
lines, need to be multiplied. Normally, the lengths of two lines are multiplied only 
when they are perpendicular to each other, so tha t the product represents the area 
of a rectangle. Gillings (1972, pp. 190-193) suggests a possible route. Robins 
and Shute (1987, pp. 48 49) suggest that the result may have been obtained by 
completing the frustum to a full pyramid, and then subtracting the volume of the 
smaller pyramid from the larger. In either case, the power of visualization involved 
in seeing that the relation is the correct one is remarkable. 

Like the surface area problem from the Moscow Papyrus just discussed, this 
problem reflects a level of geometric insight t ha t must have required some accu-
mulation of observations built up over time. It is very easy to see that if a right 
pyramid with a square base is sliced in half by a plane through its vertex and a 
pair of diagonally opposite vertices of the base, the base is bisected along with the 
pyramid. Thus, a tetrahedron whose base is half of a square has volume exactly 
half tha t of the pyramid of the same height having the whole square as a base. 

It is also easy to visualize how a cube can be cut into two wedges, as in the top 
row of Fig. 2. Each of these wedges can then be cut into a pyramid on a face of the 
cube plus an extra tetrahedron, as in the bot tom row. The tetrahedron P'Q'R'S' 
has a base that is half of the square base of the pyramid PQRST, and hence has 
half of its volume. It follows that the volume of the tetrahedron is one-sixth that 
of the cube, and so the pyramid PQRST is one-third of the volume. A "mixed" 
strategy is also possible, involving weighing of the parts. The two te t rahedra would, 
in theory, balance one of the square pyramids. This model could be sawn out of 
stone or wood. From that special case one might generalize the vital clue tha t the 
volume of a pyramid is one-third the area of the base times the alt i tude. 

Once the principle is established that a pyramid equals a prism on the same 
base with one-third the height, it is not difficult to chop a frustum of a pyramid into 
the three pieces described in the Moscow Papyrus. Referring to Fig. 3, which shows 
a frustum with bot tom base a square of side á and upper base a square of side b 
with b < a, we can cut off the four corners and replace them by four rectangular 
solids with square base of side (a - b)/2 and height h/3. These four fit together to 
make a single solid with square base of side a - b and height h/3. One opposite pair 
of the four sloping faces that remain after the corners are removed can be cut off, 
turned upside down, and laid against the other two sloping faces so as t o make a 
single slab with a rectangular base that is ï ÷ b and has height h. The top one-third 
of this slab can then be cut off and laid aside. It has volume (h/3)ab. The top 
half of what remains can then be cut off, and a square prism of side b and height 
h/3 cut off from it. If that square prism is laid aside (it has volume ( / i /3)6 2 ) , the 
remaining piece, which is (a - b) χ b ÷ (h/3), will fill out the other corner of the 
bot tom layer, resulting in a square prism of volume (h/3)a2. Thus, we obtain the 
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F I G U R E 2. Dissection of a cube into two square pyramids and two tetrahdra. 

three pieces t ha t the scribe added to get the volume of the frustum in a way t ha t 
is not terribly implausible. 

It goes without saying that the last few paragraphs and Figs. 2 and 3 are 
conjectures, not facts of history. We do not know how the Egyptians discovered 
that the volume of a pyramid is one-third the volume of a prism of the same base and 
height or how they found the volume of a frustum. The little story just presented 
is merely one possible scenario. 

2. M e s o p o t a m i a 

Mesopotamian geometry, like its Egyptian counterpart, was regarded more as an 
application of mathematics than as mathematics proper. The primary emphasis 
was on areas and volumes. However, the Mesopotamian tablets suggest a very 
strong algebraic component. Many of the problems that are posed in geometric 
garb have no apparent practical application but are very good exercises in algebra. 
For example, British Museum tablet 13901 contains the following problem: Given 
two squares such that the side of one is two-thirds that of the other plus 5 GAR 
and whose total area is 25,25 square GAR, what are the sides of the squares? 
Where in real life would one encounter such a problem? The tablet itself gives 
no practical context, and we conclude tha t this apparently geometric problem is 
really a problem in algebraic manipulation of expressions. As Neugebauer states 
(1952, p . 41), "It is easy to show tha t geometrical concepts play a very secondary 
part in Babylonian algebra, however extensively a geometrical terminology may be 
used." Both Neugebauer and van der Waerden (1963, p . 72) point out tha t the 
cuneiform tablets contain operations tha t are geometrically absurd, such as adding 
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FIGURE 3. Dissection of a frustum of a pyramid. 

a length to an area or multiplying two areas. For that reason, our discussion of 
such problems is postponed to Chapter 13. 

2.1 . T h e P y t h a g o r e a n t h e o r e m . In contrast to the case of Egypt , there is clear 
proof that the Mesopotamians knew the Pythagorean theorem in full generality at 
least 1000 years before Pythagoras. They were thus already on the road to finding 
more abstract properties of geometric figures than mere size. Of course, this theo-
rem was known at an early date in India and China, so that one cannot say certainly 
where the earliest discovery was and whether the appearance of this theorem in dif-
ferent localities was the result of independent discovery or transmission. But as far 
as present knowledge goes, the earliest examples of the use of the "Pythagorean" 
principle tha t the square on the hypotenuse of a right triangle equals the sum of 
the squares on the other two legs occur in the cuneiform tablets . Specifically, the 
old Babylonian text known as BM 85 196 contains a problem tha t has appeared in 
algebra books for centuries. We give it below as Problem 9.4. In this problem we 
are dealing with a right triangle of hypotenuse 30 with one leg equal to 30 —6 = 24. 
Obviously, this is the famous 3-4-5 right triangle with all sides multiplied by 6. 
Obviously also, the interest in this theorem was more numerical than geometric. 
How often, after all, are we called upon to solve problems of this type in everyday 
life? 

How might the Pythagorean theorem have been discovered? The following 
hypothesis was presented by Allman (1889, pp . 35-37), who cited a work (1870) 
by Carl Anton Bretschneider (1808-1878). Allman thought this dissection was due 
to the Egyptians, since, he said, it was done in their style. If he was right, the 
Egyptians did indeed discover the theorem. 

Suppose that you find it necessary to construct a square twice as large as a 
given square. How would you go about doing so? (This is a problem the Platonic 
Socrates poses in the dialogue Meno.) You might double the side of the square, but 
you would soon realize that doing so actually quadruples the size of the square. If 
you drew out the quadrupled square and contemplated it for a while, you might be 
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led to join the midpoints of its sides in order, tha t is, to draw the diagonals of the 
four copies of the original square. Since these diagonals cut the four squares in half, 
they will enclose a square twice as big as the original one (Fig. 4). It is quite likely 
tha t someone, either for practical purposes or just for fun, discovered this way of 
doubling a square. If so, someone playing with the figure might have considered 
the result of joining in order the points at a given distance from the corners of a 
square instead of joining the midpoints of the sides. Doing so creates a square in 
the center of the larger square surrounded by four copies of a right triangle whose 
hypotenuse equals the side of the center square (Fig. 4); it also creates the two 
squares on the legs of tha t right triangle and two rectangles tha t together are equal 
in area to four copies of the triangle. (In Fig. 4 one of these rectangles is divided 
into two equal parts by its diagonal, which is the hypotenuse of the right triangle.) 
Hence the larger square consists of four copies of the right triangle plus the center 
square. It also consists of four copies of the right triangle plus the squares on the 
two legs of the right triangle. The inevitable conclusion is tha t the square on the 
hypotenuse of any right triangle equals the sum of the squares on the legs. This is 
the Pythagorean theorem, and it is used in many places in the cuneiform texts. 

2 .2 . P l a n e figures. Some cuneiform tablets give the area of a circle of unit radius, 
which we have called the two-dimensional ð, as 3. On the other hand (Neugebauer, 
1952, p. 46), the one-dimensional ð was known to slightly more accuracy. On a 
tablet excavated at Susa in 1936, it was stated that the perimeter of a regular 
hexagon, which is three times its diameter, is 0;57,36 times the circumference of 
the circumscribed circle. T h a t makes the circumference of a circle of unit diameter 
equal to 

_ 1 _ = M = 3 . 1 2 5 . 
0; 57,36 8 

Tha t the Mesopotamian mathematicians recognized the relation between the 
area and the circumference of a circle is shown by two tablets from the Yale Baby-
lonian Collection (YBC 7302 and YBC 11120, see Robson, 2001, p. 180). The first 
contains a circle with the numbers 3 and 9 on the outside and 45 on the inside. 
These numbers fit perfectly the formula A = <7 2 /(4ð), given that the scribe was 
using ð = 3. Assuming tha t the 3 represents the circumference, 9 its square and 
45 the quotient, we find 9/ (4 · 3) = 3/4 = 0;45. Confirmation of this hypothesis 
comes from the other tablet, which contains 1;30 outside and 11; 15 inside, since 
(1; 30 2 ) / (4 · 3) = (2; 15)/12 = 135/12 = 11.25 = 11; 15. 
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The strongest area of Mesopotamian science tha t has been preserved is as-
tronomy, and it is here that geometry becomes most useful. The measurement of 
angles—arcs of circles—is essential to observation of the Sun, Moon, stars, and 
planets, since to the human eye they all appear to be attached to a large sphere 
rotating overhead. The division of the circle into 360 degrees is one convention that 
came from Mesopotamia, was embraced by the Greeks, and became an essential 
part of applied geometry down to the present day. The reason for the number 360 is 
the base-60 computational system used in Mesopotamia. The astronomers divided 
all circles into 360 or 720 equal parts and the radius into 60 equal parts. In that 
way, a unit of length along the radius was approximately equal to a unit of length 
on the circle. 

2.3. V o l u m e s . The cuneiform tablets contain computat ions of some of the same 
volumes as the Egyptian papyri. For example, the volume of a frustum of a square 
pyramid is computed in an old Babylonian tablet (British Museum 85 194). This 
volume is computed correctly in the Moscow Papyrus, but the Mesopotamian scribe 
seems to have generalized incorrectly from the case of a trapezoid and reasoned tha t 
the volume is the height times the average area of the upper and lower faces. This 
rule overestimates the volume by twice the volume of the four corners cut out in 
Fig. 3. There is, however, some disagreement as to the correct translation of the 
tablet in question. Neugebauer (1935, Vol. 1, p . 187) claimed tha t the computation 
was based on an algebraic formula that is geometrically correct. The square bases 
are given as having sides 10 and 7 respectively, and the height is given as 18. The 
incorrect rule wc are assuming would give a volume of 1341, which is 22,21 in 
sexagesimal notation; but the actual text reads 22,30. The discrepancy could be 
a simple misprint, with three ten-symbols carelessly writ ten for two ten-symbols 
and a one-symbol. The computation used is not entirely clear. The scribe first 
took the average base side (10 + 7)/2 and squared it to get 1,12;15 in sexagesimal 
notation (72.25). At this point there is apparently some obscurity in the tablet 
itself. Neugebauer interpreted the next number as 0;45, which he assumed was 
calculated as one-third of the square of (10 — 7) /2 . The sum of these two numbers 
is 1,13, which, multiplied by 18, yields 21,54 ( that is, 1314), which is the correct 
result. But it is difficult to see how this number could have been recorded incorrectly 
as 22,30. If the number that Neugebauer interprets as 0;45 is actually 2;15 (which 
is a stretch - three ten-symbols would have to become two one-symbols), it would 
be exactly the square of (10 - 7 ) /2 , and it would yield the same incorrect formula 
as the assumption tha t the average of the areas of the two bases was being taken. 
In any case, the same procedure is used to compute the volume of the frustum of a 
cone (Neugebauer, 1935, p. 176), and in that case it definitely is the incorrect rule 
stated here, taking the average of the two bases and multiplying by the height. 

3 . C h i n a 

Three early Chinese documents contain a considerable amount of geometry, always 
connected with the computation of areas and volumes. We shall discuss the geom-
etry in them in chronological order, omit t ing the parts tha t repeat procedures we 
have already discussed in connection with Egyptian geometry. 

3 . 1 . T h e Zhou Bi Suan Jing. As mentioned in Chapter 2, the earliest Chinese 
mathematical document still in existence, the Zhou Bi Suan Jing, is concerned 
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FIGURE 5. Chinese illustration of the Pythagorean theorem. 

with astronomy and the applications of mathematics to the study of the heavens. 
The title refers to the use of the sundial or gnomon in astronomy. This is the 
physical model tha t led the Chinese to discover the Pythagorean theorem. Here is 
a paraphrase of the discussion: 

Cut a rectangle whose width is 3 units and whose length is 4 (units) 
along its diagonal. After drawing a square on this diagonal, cover it 
with half-rectangles identical to the piece of the original rectangle 
that lies outside the square, so as to form a square of side 7. [See 
Fig. 5.] Then the four outer half-rectangles, each of width 3 and 
length 4 equal two of the original rectangle, and hence have area 
24. When this amount is subtracted from the square of area 49, 
the difference, which is the area of the square on the diagonal, is 
seen to be 25. The length of the diagonal is therefore 25. 

Although the proof is given only for the easily computable case of the 3 -4-5 
right triangle, it is obvious tha t the geometric method is perfectly general, lacking 
only abstract symbols for unspecified numbers. In our terms, the author has proved 
tha t the length of the diagonal of a rectangle whose width is a and whose length is 
b is the square root of (a + b)2 — 2ab. Note that this form of the theorem is not the 
" a 2 + b2 = c 2 " tha t we are familiar with. 

The Zhou Bi Suan Jing contains three diagrams accompanying the discussion of 
the Pythagorean theorem. According to Cullen (1996, p. 69), one of these diagrams 
was apparently added in the third century by the commentator Zhao Shuang. This 
diagram is shown in Fig. 5 for the special case of a 3 4-5 triangle. The other 
two were probably added by later commentators in an a t tempt to elucidate Zhao 
Shuang's commentary. 

According to Li and Du (1987, p. 29), the vertical bar on a sundial was called 
gu in Chinese, and its shadow on the sundial was called gou; for tha t reason the 
Pythagorean theorem was known as the gougu theorem. Cullen (1996, p. 77) says 
tha t gu means thigh and gou means hook. All authorities agree that the hypotenuse 
was called xian (bowstring). The Zhou Bi Suan Jing says that the Emperor Yu 
was able to bring order into the realm because he knew how to use this theorem to 
compute distances. Zhao Shuang credited the Emperor Yu with saving his people 
from floods and other great calamities, saying that in order to do so he had to 
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survey the shapes of mountains and rivers. Apparently the Emperor had drainage 

canals dug to channel floods out of the valleys and into the Yangtze and Yellow 

Rivers. 
The third-century commentary on the Zhou Bi Suan Jing by Zhao Shuang 

explains a method of surveying tha t was common in China, India, and the Mus-
lim world for centuries. The method is illustrated in Fig. 6, which assumes that 
the height Ç of an inacessible object is to be determined. To determine H, it is 
necessary to put two poles of a known height h vertically into the ground in line 
with the object at a known distance D apart . The height h and the distance D are 
theoretically arbitrary, but the larger they are, the more accurate the results will 
be. After the poles are set up, the lengths of the shadows they would cast if the 
Sun were at the inacessible object are measured as si and S2- Thus the lengths s\, 
S2, h, and D are all known. A little trigonometry and algebra will show tha t 

11 — ft, r · 
«2 - Si 

We have given the result as a formula, but as a set of instructions it is very easy to 
state in words: The required height is found by multiplying the height of the poles 
by the distance between them, dividing by the difference of the shadow lengths, and 
adding the height of the poles. 

This method was expounded in more detail in a commentary on the Jiu Zhang 
Suanshu written by Liu Hui in 263 CE. This commentary, along with the rest of the 
material on right triangles in the Jiu Zhang Suanshu eventually became a separate 
treatise, the Hai Dao Suan Jing (Sea Island Mathematical Manual, see Ang and 
Swetz, 1986). Liu Hui mentioned that this method of surveying could be found 
in the Zhou Bi Suan Jing and called it the double difference method (chong cha). 
The name apparently arises because the difference Ç — h is obtained by dividing 
Dh by the difference S 2 - s\. 

We have described the lengths si and S2 as shadow lengths here because that 
is the problem used by Zhao Shuang to illustrate the method of surveying. He 
a t tempts to calculate the height of the Sun, given that at the summer solstice a 
stake 8 chi high casts a shadow 6 chi long and that the shadow length decreases 
by 1 fen for every 100 li tha t the stake is moved south, casting no shadow at 
all when moved 60,000 li to the south. This model assumes a flat Ear th , under 
which the shadow length is proportional to the distance from the pole to the foot 
of the perpendicular from the Sun to the plane of the Ear th . Even granting this 
assumption, as we know, the Sun is so distant from the Ea r th tha t no lengthening 
or shortening of shadows would be observed. To any observable precision the Sun's 
rays are parallel at all points on the Ear th ' s surface. The small change in shadow 
length that we observe is due entirely to the curvature of the Ear th . But let us 
continue, accepting Zhao Shuang's assumptions. 

The da ta here are D = 1000 li, S2 - «i = 1 fen, h = 8 chi. One chi is about 
25 centimeters, one fen is about 2.5 cm, and one li is 1800 chi, t ha t is, about 450 
meters. Because the pole height h is obviously insignificant in comparison with the 
height of the Sun, we can neglect the first term in the formula we gave above, and 
write 

S2 - S\ 
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FIGURE 6. The double-difference method of surveying. 

When we insert the appropriate values, we find, as did Zhao Shuang, that the Sun 
is 80,000 li high, about 36,000 kilometers. Later Chinese commentators recognized 
that this figure was inaccurate, and in the eighth century an expedition to survey 
accurately a nor th-south line found the actual lengthening of the shadow to be 
4 fen per thousand li. Notice that there seem to be two methods of computing 
the height here. In the method just discussed, the fact tha t the Sun is directly 
overhead at a distance of 60,000 li to the south is irrelevant to the computation. If 
it is taken into account, one can immediately use the similar triangles to infer the 
height of 80,000 li. This fact suggests that the original text was modified by later 
commentators, but tha t not all the parts that became irrelevant as a result of the 
modifications were removed. 

3.2 . T h e Jiu Zhang Suanshu. The Jiu Zhang Suanshu contains all the standard 
formulas for the areas of squares, rectangles, triangles, and trapezoids, and also the 
recognition of a relation between the circumference and the area of a circle, which 
we could interpret as a connection between the one-dimensional ð and the two-
dimensional ð. The geometric formulas given in this treatise are more extensive 
than those of the Ahmose Papyrus; for example, there are approximate formulas 
for the volume of segment of a sphere and the area of a segment of a circle. It is 
perhaps not fair to compare the two documents, since the Ahmose Papyrus was 
written nearly two millennia earlier, and the Jiu Zhang Suan Shu was intended to 
cover all the mathematics known at the time. The implied value of one-dimensional 
ð, however, is ð = 3. It is surprising to find this value so late, since it is known 
that the value 3.15147 had been obtained in China by the first century. According 
to Li and Du (1987, p . 68), Liu Hui refined it to 3.14 + 64/62500 = 3.141024 by 



248 9. MEASUREMENT 

approximating the area of a 192-sided polygon. 6 Tha t is, he s tar ted with a hexagon 
and doubled the number of sides five times. However, since the area of the polygon 
with twice the number of sides is the radius of the circumscribed circle times the 
perimeter of the original polygon, it was only necessary to find the perimeter of a 
96-sided polygon and multiply by the radius. 

Problems 31 and 32 ask for the area of a circular field of a given diameter and 
circumference. 7 The method is to multiply half of the circumference by half of the 
diameter, which is exactly right in terms of Euclidean geometry; equivalently, the 
reader is told that one may multiply the two quantit ies and divide by 4. However, 
in the actual da ta for problems the diameter given is exactly one-third of the given 
circumference; in other words, the value assumed for one-dimensional ð is 3. The 
assumption of that value leads to two other procedures for calculating the area: 
squaring the diameter, then multiplying by 3 and dividing by 4, or squaring the 
circumference and dividing by 12. An elaboration of this problem occurs in Prob-
lems 37 and 38, in which the area of an annulus (the region outside the smaller of 
two concentric circles and inside the larger) is given in terms of its width and the 
circumferences of the two circles. 

The authors knew also how to find the volume of a pyramid. Problem 15 of 
Chapter 5 asks for the volume of a pyramid whose base is a rectangle 5 chi by 
7 chi and whose height is 8 chi. The answer is given as 9 3 ^ (cubic) chi. For a 
frustum of a pyramid having rectangular bases the recipe is to add twice the length 
of the upper base to the lower base and multiply by the width of the upper base to 
get one term. A second term is obtained symmetrically as twice the length of the 
lower base plus the length of the upper base, multiplied by the width of the lower 
base. These two terms are then added and multiplied by the height, after which 
one divides by 6. If the bases are a ÷ b and c x d (the sides of length a and c being 
parallel) and the height is h, this yields what we would write (correctly) as 

V = ^U2a + c)b+(2c + a)d]. 
6 

Notice tha t this result is more general than the formula in the Moscow Papyrus, 
which is given for a frustum with square bases. 

The Pythagorean theorem. The last of the nine chapters of the Jiu Zhang Suanshu 
contains 24 problems on the gougu theorem. After a few "warm-up" problems 
in which two of the three sides of a right triangle are given and the third is to 
be computed, the problems become more complicated. Problem 11, for example, 
gives a rectangular door whose height exceeds its width by 6 chi, 8 cun and has a 
diagonal of 1 zhang. One zhang is 10 chi and 1 chi is 10 cun (apparently a variant 
rendering of fen). The recipe given is correct: Take half the difference of the height 
and width, square it, double, subtract from the square of the diagonal, then take 
the square root of half of the result. Tha t process yields the average of the height 
and width, and given their semidifference of 3 chi, 4 cun, one can easily get both 
the width and the height. 

3.3 . T h e Sun Zi Suan Jing. The Sun Zi Suan Jing contains a few problems in 
measurement that are unusual enough to merit some discussion. An inverse area 

6 Lam and Ang (1986) give the value as 3.14 + 169/625 = 3.142704. 
7 All references to problem numbers and nomenclature in this section are based on the article of 
Lam (1994). 
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FIGURE 7. The double square umbrella. 

problem occurs in Problem 20, in which a circle is said to have area 35,000 square 

bu, and its circumference is required. Since the area is taken as one-twelfth of the 

square of the circumference, the author multiplies by 12, then takes the square root, 

gett ing 648if§6 bu. 

3 .4 . Liu Hui . Chinese mathematics was greatly enriched from the third through 
the sixth centuries by a series of brilliant geometers, whose achievements deserve 
to be remembered alongside those of Euclid, Archimedes, and Apollonius. We have 
space to discuss only three of these, beginning with the third-century mathematician 
Liu Hui (ca. 220-ca. 280). Liu Hui had a remarkable ability to visualize figures 
in three dimensions. In his commentary on the Jiu Zhang Suanshu he asserted 
tha t the circumference of a circle of diameter 100 is 314. In solid geometry he 
provided dissections of many geometric figures into pieces tha t could be reassembled 
to demonstrate their relative sizes beyond any doubt. As a result, real confidence 
could be placed in the measurement formulas that he provided. He gave correct 
procedures, based on such dissections, for finding the volumes enclosed by many 
different kinds of polyhedra. But his greatest achievement is his work on the volume 
of the sphere. 

The Jiu Zhang Suanshu made what appears to be a very reasonable claim: 
tha t the ratio of the volume enclosed by a sphere to the volume enclosed by the 
circumscribed cylinder can be obtained by slicing the sphere and cylinder along the 
axis of the cylinder and taking the ratio of the area enclosed by the circular cross 
section of the sphere to the area enclosed by the square cross section of the cylinder. 
In other words, it would seem tha t the ratio is ð : 4. This conjecture seems plausible, 
since every such section produces exactly the same figure. It fails, however because 
of what is called Pappus' principle: The volume of a solid of revolution equals 
the area revolved about the axis times the distance traveled by the centroid of the 
area. The half of the square tha t is being revolved to generate the cylinder has a 
centroid tha t is farther away from the axis than the centroid of the semicircle inside 
it whose revolution produces the sphere; hence when the two areas are multiplied 
by the two distances, their ratios get changed. When a circle inscribed in a square 
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is rotated, the ratio of the volumes generated is 2 : 3 , while tha t of the original 
areas is ð : 4. Liu Hui noticed that the sections of the figure parallel to the base 
of the cylinder do not all have the same ratios. The sections of the cylinder are 
all disks of the same size, while the sections of the sphere shrink as the section 
moves from the equator to the poles. He also formed a solid by intersecting two 
cylinders circumscribed about the sphere whose axes are at right angles to each 
other, thus producing a figure he called a double square umbrella, which is now 
known as a bicylinder or Steinmetz solid (see Hogendijk, 2002). A representation 
of the double square umbrella, generated using Mathematica graphics, is shown in 
Fig. 7. Its volume does have the same ratio to the sphere that the square has to 
its inscribed circle, that is, 4 : ð. This proportionality between the double square 
umbrella and the sphere is easy to see intuitively, since every horizontal slice of this 
figure by a plane parallel to the plane of the axes of the two circumscribed cylinders 
intersects the double square umbrella in a square and intersects the sphere in the 
circle inscribed in tha t square. Liu Hui inferred tha t the volume enclosed by the 
double umbrella would have this ratio to the volume enclosed by the sphere. This 
inference is correct and is an example of what is called Cavalieri's principle: Two 

solids such that the section of one by each horizontal plane bears a fixed ratio to 

the section of the other by the same plane have volumes in that same ratio. This 
principle had been used by Archimedes five centuries earlier, and in the introduction 
to his Method, Archimedes uses this very example, and asserts tha t the volume of 
the intersection of the two cylinders is two-thirds of the volume of the cube in 
which they are inscribed. 8 But Liu Hui's use of it (see Lam and Shen, 1985) 

was obviously independent of Archimedes. It amounts to a limiting case of the 
dissections he did so well. The solid is cut into infinitely thin slices, each of which 
is then dissected and reassembled as the corresponding section of a different solid. 
This realization was a major step toward an accurate measurement of the volume 
of a sphere. Unfortunately, it was not granted to Liu Hui to complete the journey. 
He maintained a consistent agnosticism on the problem of computing the volume 
of a sphere, saying, "Not daring to guess, I wait for a capable man to solve it." 

3 .5 . Zu C h o n g z h i . That "capable man" required a few centuries to appear, and 
he turned out to be two men. "He" was Zu Chongzhi (429-500) and his son Zu Geng 
(450 520). Zu Chongzhi was a very capable geometer and astronomer who said that 
if the diameter of a circle is 1, then the circumference lies between 3.1415926 and 
3.1415927. From these bounds, probably using the Chinese version of the Euclidean 
algorithm, the method of mutual subtraction (see Problem 7.12), he stated tha t the 
circumference of a circle of diameter 7 is (approximately) 22 and tha t of a circle 
of diameter 113 is (approximately) 355 . 9 These estimates are very good, far too 
good to be the result of any inspired or hopeful guess. Of course, we don ' t have to 
imagine tha t Zu Chongzhi actually drew the polygons. I t suffices t o know how to 
compute the perimeter, and tha t is a simple recursive process: If sn is the length 
of the side of a polygon of ç sides inscribed in a circle of unit radius, then 

s2

2n = 2 - y / 4 ^ n . 

8 Hogendijk (2002) argues that Archimedes also knew the surface area of the bicylinder. 
9 The approximation ð ~ ø was given earlier by He Chengtian (370-447), and of course much 
earlier by Archimedes. A more sophisticated approach by Zhao Youqin (b. 1271) that gives | | | 
was discussed by Volkov (1997). 
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F I G U R E 8. Sections of the cube, double square umbrella, and 
sphere at height h. 

Hence each doubling of the number of sides makes it necessary to compute a square 
root, and the approximation of these square roots must be carried out to many 
decimal places in order to get enough guard digits to keep the errors from accumu-
lating when you multiply this length by the number of sides. In principle, however, 
given enough patience, one could compute any number of digits of ð this way. 

One of Zu Chongzhi 's outstanding achievements, in collaboration with his son, 
was finding the volume enclosed by Liu Hui's double square umbrella. As Fu (1991) 
points out, this volume was not approachable by the direct method of dissection and 
recombination that Liu Hui had used so successfully. 1 0 An indirect approach was 
needed. The trick turned out to be to enclose the double square umbrella in a cube 
and look at the volume inside the cube and outside the double square umbrella. 
Suppose that the sphere has radius a. The double square umbrella can then be 
enclosed in a cube of side 2a. Consider a horizontal section of the enclosing cube at 
height h above the middle plane of that cube. In the double umbrella this section 
is a square of side 2\/a2 — h2 and area 4(á 2 - / i 2 ) , as shown in Fig. 8. Therefore 
the area outside the double umbrella and inside the cube is 4h2. 

It was no small achievement to look at the region in question. It was an 
even keener insight on the part of the family Zu to realize tha t this cross-sectional 
area is equal to the area of the cross section of an upside-down pyramid with a 
square base of side 2a and height a. Hence the volume of the portion of the cube 
outside the double umbrella in the upper half of the cube equals the volume of a 
pyramid with square base 2a and height a. But thanks to earlier work contained 
in Liu Hui's commentaries on the Jiu Zhang Suanshu, Zu Chongzhi knew tha t this 
volume was ( 4 a 3 ) / 3 . It therefore follows, after doubling to include the portion 
below the middle plane, tha t the region inside the cube but outside the double 
umbrella has volume ( 8 a 3 ) / 3 , and hence that the double umbrella itself has volume 
8 a 3 - ( 8 a 3 ) / 3 = ( 1 6 a 3 ) / 3 . 

Since, as Liu Hui had shown, the volume of the sphere is ð / 4 times the volume 
of the double square umbrella, it follows that the sphere has volume (ð/4) • (16á 3 ) /3 , 
or ( 4 ð á 3 ) / 3 . 

1 0 Lam and Shen (1985, p. 223), however, say that Liu Hui did consider the idea of setting the 
double umbrella inside the cube and trying to find the volume between the two. Of course, that 
volume also is not accessible through direct, finite dissection. 
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4. J a p a n 

The Wasanists mentioned in Chapter 3, whose work extended from 1600 to 1850, 
inherited a foundation of mathematics established by the great Chinese mathemati-
cians, such as Liu Hui, Zu Chongzhi, and Yang Hui. They had no need to work 
out procedures for computing the areas and volumes of simple figures. The only 
problems in elementary measurement of figures t ha t had not been solved were those 
involving circles and spheres, connected, as we know, with the value of ð in various 
dimensions. Nevertheless, during this t ime there was a strong tradit ion of geometric 
challenge problems. It has already been mentioned that religious shrines in Japan 
were frequently decorated with the solutions of such problems (see Plate 2). The 
geometric problems that were solved usually involved combinations of simple figures 
whose areas or volumes were known but which were arranged in such a way tha t 
finding their parts became an intricate problem in algebra. The word algebra needs 
to be emphasized here. The challenge in these problems was only incidentally geo-
metric; it was largely algebraic, as the book of Fukagawa and Pedoe (1989) shows 
very convincingly. New geometry arose in Japan near the end of the seventeenth 
century, with better approximations to ð and the solution of problems involving 
the rectification of arcs and the computation of the volume and area of a sphere by 
methods using infinite series and sums that approximate integrals. 

We begin by mentioning a few of the challenge problems without giving their 
solutions, since they are really problems in algebra. Afterward we shall briefly 
discuss the infinitesimal methods used to solve the problems of measuring arcs, 
areas, and volumes in spheres. 

4 .1 . T h e cha l l enge prob lems . In 1627 Yoshida Koyu wrote the Jinko-ki (Trea-
tise on Large and Small Numbers), concluding it with a list of challenge questions, 
and thereby stimulated a great deal of further work. Here are some of the questions: 

1. There is a log of precious wood 18 feet long whose bases are 5 feet and 
2^ feet in circumference. Into what lengths should it be cut to trisect the 
volume? 

2. There have been excavated 560 measures of earth, which are to be used for 
the base of a building. The base is to be 3 measures square and 9 measures 
high. Required, the size of the upper base. 

3. There is a mound of earth in the shape of a frustum of a circular cone. 
The circumferences of the bases are 40 measures and 120 measures and the 
mound is 6 measures high. If 1200 measures of earth are taken evenly off 
the top, what will be the height? 

4. A circular piece of land 100 [linear] measures in diameter is to be divided 
among three persons so tha t they shall receive 2900, 2500, and 2500 [square] 
measures respectively. Required, the lengths of the chords and the alti tudes 
of the segments. 

These problems were solved in a later treatise, which in turn posed new math-
ematical problems to be solved; this was the beginning of a t radit ion of posing and 
solving problems tha t lasted for 150 years. Seki Kowa solved a geometric problem 
that would challenge even the best algebraist today. It was the fourteenth in a 
list of challenge problems posed by Sawaguchi Kazuyuki: There is a quadrilateral 
whose sides and diagonals are u, v, w, x, y, and æ [as shown in Fig. 9]. 
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F I G U R E 9. Sawaguchi Kazuyuki's quadrilateral problem. 

It is given that 

z3 - u 3 = 271 

u3 - v3 = 217 

v 3 - y 3 = 60.8 

y3 -w3 = 326.2 

w 3 - x 3 = 6 1 . 

Required, to find the values of u, v, w, x, y, z. 
The fact tha t the six quantities are the sides and diagonals of a quadrilateral 

provides one equation tha t they must satisfy, namely: 

u4w2 + x2(v4 +w2y2- v2(w2 ~x2 + y2)) - (y2(w2 + x2 -y2) + v2(-w2 + x2 + y2))z2 

+ y2z4 - u2(v2(w2 + x2 - y2) + w2(~w2 + x2 + y2) + (w2 - x2 + y2)z2) = 0 . 

This equation, together with the five given conditions, provides a complete set 
of equations for the six quantities. However, Seki K6wa's explanation, which is only 
a sketch, does not mention this sixth equation, so it may be t ha t what he solved 
was the indeterminate problem given by the other five equations. That , however, 
would be rather strange, since then the quadrilateral would play no role whatsoever 
in the problem. His solution is discussed in Sect. 3 of Chapter 14. Whatever the 
case, it is known that such equations were solved numerically by the Chinese using 
a counting board. Here once again it is very clear tha t the motive for the problem is 
algebraic, even though it does amount to a nontrivial investigation of the relations 
among the parts of a quadrilateral. 

4 .2 . B e g i n n i n g s of t h e ca lculus in Japan . By the end of the seventeenth cen-
tury the wasanists were beginning to use techniques that resemble the infinitesimal 
methods being used in Europe about this time. Of course, in one sense Zu Chongzhi 
had used some principles of calculus 1000 years earlier in his application of Cava-
lieri's principle to find the volume of a sphere. The intuitive basis of the principle is 
tha t equals added to equals yield equal sums, and a solid can be thought of as the 
sum of its horizontal sections. It isn't really, of course. No finite sum of areas and 
no limit of such a sum can ever have positive volume. Students in calculus courses 
learn to compute volumes using approximating sums that are very thin prisms, but 
not infinitely thin. 
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In Japan these techniques were first applied in the area called yenri (circle 
t heo ry ) , 1 1 a topic tha t had been studied extensively in China. The idea of ap-
proximating by shells or disks can be seen in the 1684 edition of the Ketsugi-shd 
(Combination Book), first published in 1660 by Isomura Kit toku. 

Isomura Kittoku explained the method as follows (Mikami, 1913, p. 204): 

If we cut a sphere of diameter 1 foot into 10,000 slices, the thickness 
of each slice is 0.001 feet, which will be something like tha t of a very 
thin paper. Finding in this way the volume of each of them, we 
sum up the results, 10,000 in number, when we get 532.6 measures 
[that is, a volume of 0.5326 cubic foot]. Besides, it is t rue, there 
are small incommensurable parts, which are neglected. 

The technique of obtaining extraordinary precision and using it to perform 
numerical experiments which provide the basis for general assertions also appears 
in some remarkable infinite series at t r ibuted to Takebe Kenko, as we shall see below. 
Takebe Kenko's method of squaring the circle was based on a relation, which he 
apparently discovered in 1722, between the square of half of an arc, the height h 
of the a r c , 1 2 and the diameter d of the circle. Here is his own description of this 
discovery, as explained by Smith and Mikami (1914, pp. 147-149). He began with 
height h = 0.000001 = 10~ 6 and d = 10, finding the square of the arc geometrically 
with accuracy to 53 decimal places. 

The value of the square of this arc is 

0.00001 00000 00333 33335 11111 12253 96833 52381 01394 90188 203+. 

Isomura Kittoku's method of computing the volume of a sphere. 
© Stock Montage, Inc. 

According to Smith and Mikami (1914, P- 148), t he value given by Takebe Kenko 
was 

1 1 The symbol for circle here (yen) is also the symbol for the Japanese unit of currency; it is 
actually pronounced "en." 
1 2 This height is called the sagitta (arrow) by lens grinders, a name first bestowed on it in India. 
It is now called the versed sine in mathematics. 
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0.00000 00000 33333 35111 11225 39690 66667 28234 77694 79595 875+. 
But this value does not fit with the procedure followed by Takebe Kenko; it does 
not even yield the correct first approximation. The figure given by Smith and 
Mikami appears to represent the value obtained by Takebe Kenko after the first 
approximation was subtracted, but with the result multiplied by the square of the 
d iamete r . 1 3 In appreciating Takebe Kenko's method, the first problem to be solved 
is the source of this extremely accurate measurement of the circle. According to 
Smith and Mikami (1914, p . 148), Takebe Kenko said tha t the computation was 
given in two other works, both of which are now lost, leaving us to make our own 
conjectures. The first clue that strikes us in this connection is the seemingly strange 
choice of the square of the arc rather than the arc itself. Why would it be easier to 
compute the square of the arc than the arc itself? An answer readily comes to mind: 
The arc is approximated by its chord, and the chord is one side of a convenient right 
triangle. In fact, the chord is the mean proportional between the diameter of the 
circle and the height of the arc, so that in this case it is y/dh = \ / l 0 _ 5 . When we 
square it, we get just dh = 10~ 5 , which acts as Takebe Kenko's first approximation. 
T h a t result suggests t ha t the length of the arc was reached by repeatedly bisecting 
the arc, taking the chord as an approximation. This hypothesis gains plausibility, 
since it is known tha t this technique had been used earlier to approximate ð . Since 
a 2 = 4 ( a / 2 ) 2 , it was only necessary to find the square of half the arc, then multiply 
by 4. The rat io of the chord to the diameter is even easier to handle, especially since 
Takebe Kenko has taken the diameter to be 10. If ÷ is the square of this ratio for a 
given chord, the square of rat io for the chord of half of the arc is ( l - v^l - x)/2. In 
other words, the iterative process χ >-* ( l — y/l — z ) / 2 makes the bisection easy. If 
we were dealing with the arc instead of its square, each step in that process would 
involve two square roots instead of one. Even as it is, Takebe Kenko must have 
been a calculating genius to iterate this process enough times to get 53 decimal 
places of accuracy without making any errors. The result of 50 applications yields 
a rat io which, multiplied by 100 • 4 5 0 , is 

0.00001 00000 00333 33335 11111 12253 96833 52381 01131 94822 94294 362+. 

This number of iterations gives 38 decimal places of accuracy. Even with this plau-
sible method of procedure, it still strains credibility that Takebe Kenko achieved 
the claimed precision. However, let us pass on to the rest of his method. 

After the first approximation hd is subtracted, the new error is 1 0 ~ 1 2 t imes 
0.3333333. . . , which suggests tha t the next correction should be 1 0 ~ 1 2 / 3 . But this 
is exactly / i 2 / 3 , in other words h/(3d) t imes the first term. When it is subtracted 
from the previously corrected value, the new error is 

1 0 - 1 9 · 0.17777 77892 06350 01904 76806 15685 4870 + . 

The long string of 7's here suggests that this number is 1 0 ~ 1 9 times + ^ = 

|jj = which is (8/i)/(15d) times the previous correction. By continuing for a few 

more terms, Takebe Kenko was able to observe a pat tern: The corrections are ob-

tained by multiplying successively by / i / (3d), (8ft)/(15d), (9h)/(Ud), (32/i)/(45d), 

(25h)/(33d),... . Some sensitivity to the factorization of integers is necessary to 

1 3 Even so, there is one 3 missing at the beginning and, after it is restored, the accuracy is "only" 
33 decimal places. That precision, however, would have been all that Takebe Kenko needed to 
compute the four corrections he claimed to have computed. 
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see the recursive operation: multiplication by (h/d)\2n2/(n + l ) (2n + 1)]. Put t ing 
these corrections together as an infinite series leads to the expression 

when the full arc has length a. 
In using this numerical approach. Takebe Kenko had reached his conclusion 

inductively. This induction was based on a faith (which turns out to be justified) 
that the coefficients of the power series are rational numbers tha t satisfy a fairly 
simple recursive formula. As you know, the power series for the sine, cosine, expo-
nential, and logarithm have this happy property, but the series for the tangent, for 
example, does not. 

This series solves the problem of rectification of the circle and hence all problems 
that depend on knowing the value of ð. In modern terms the series given by Takebe 
Kenko represents the function 

Takebe Kenko's discovery of this result in 1722 falls between the discovery of the 
power scries for the arcsine function by Newton in 1676 and its publication by Euler 

Was European calculus transmitted to Japan in the seventeenth century? The meth-
ods used by Isomura Kittoku to compute the volume and surface area of a sphere 
and by Takebe Kenko to compute the square of a half-arc in terms of the versed sine 
of the arc are a t the heart of calculus. Smith and Mikami (1914, pp . 148-155) argue 
that some transmission from Europe at this t ime is plausible in the case of Takebe 
Kenko. They note that there was some contact, al though very limited, between 
Japanese and European scholars, even during the period of "closure," and tha t a 
Jesuit missionary in China named Pierre Jar toux (1668-1721) communicated some 
of the latest European discoveries to his Chinese hosts. After noting tha t "there is 
no evidence that Seki or his school borrowed their methods from the West" (1914, 
p. 142), they argue as follows (1914, p. 155): 

Here then is a scholar, Jartoux, in correspondence with Leibnitz 
[sic], giving a series not difficult of deduction by the calculus, which 
series Takebe uses and which is the essence of the yenri, but which 
Takebe has difficulty in explaining.. . [I]t seems a reasonable con-
jecture that Western learning was responsible for [Jartoux'] work, 
tha t he was responsible for Takebe's series, and t ha t Takebe ex-
plained the series as best he could. 

Probably the question of Western influence on Japanese mathematics cannot 
be decided. However, in allowing for the possibility of communication from West 
to East, we must not neglect the possibility of some transmission in the opposite 
direction, in addition to what was transmitted from the Muslims and Hindus earlier. 
Leibniz, in particular, was fascinated with oriental cultures, and at least two of 
his results, one of them a simple observation on determinants and the other a 
more extensive development of combinatorics, were known earlier in India and 
Japan. It should also be noted that in contrast to the Chinese mathematicians, 

in 1737. 
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F I G U R E 10. Rounding a square. 

the practitioners of wasan were not immediately at tracted to Euclid when his work 
arrived in Japan in the nineteenth century. According to Mura ta [1994, P- 109), 
having seen Chinese translations of Euclid, they were repelled by the great amount 
of fuss required to derive elementary facts. They may have taken just the ideas 
tha t appealed to them out of the information reaching them through contacts with 
the Chinese. 

5. Ind ia 

The Sulva Sutras contain many transformation-of-area constructions such as are 
later found in Euclid. In particular, the Pythagorean theorem, and constructions 
for finding the side of a square equal to a rectangle, or the sum or difference of two 
other squares are given. This construction resembles the one found in Proposition 5 
of Book 2 of Euclid rather than Euclid's construction of the mean proportional in 
Book 6, both of which are discussed in Chapter 10. The Pythagorean theorem is 
not given a name, but is stated as the fact that "the diagonal of a rectangle pro-
duces both [areas] which its length and breadth produce separately." Among other 
transformation of area problems the Hindus considered in particular the problem 
of squaring the circle. The Bodhayana Sutra states the converse problem of con-
structing a circle equal to a given square. The construction is shown in Fig. 10, 
where LP = \LE. 

In terms that we can appreciate, this construction gives a value for two-dimen-
sional ð of 18(3 - 2 \ /2) , which is about 3.088. 

5 .1 . A r y a b h a t a I. Chapter 2 of Aryabhata 's Aryabhatiya (Clark, 1930, pp. 2 1 -
50) is called Ganitapada (Mathematics). In Stanza 6 of this chapter Aryabhata 
gives the correct rule for area of a triangle, but declares that the volume of a 
tetrahedron is half the product of the height and the area of the base. He says in 
Stanza 7 tha t the area of a circle is half the diameter times half the circumference, 
which is correct, and shows tha t he knew that one- and two-dimensional ð were 
the same number. But he goes on to say that the volume of a sphere is the area 
of a great circle times its own square root. This would be correct only if three-
dimensional ð equaled ø, very far from the truth! Yet Aryabhata knew a very 
good approximation to one-dimensional ð. In Stanza 10 he writes: 

Add 4 to 100, multiply by 8, and add 62,000. The result is approxi-
mately the circumference of a circle of which the diameter is 20,000. 



FIGURE 11 . The Hindu variant of the double-difference method of surveying. 

This procedure gives a value of one-dimensional ð equal to 3.1416, which is quite 
accurate indeed. It exceeds the true value by less than 0.01%. 

Aryabhata also knows about the double-difference method of surveying tha t we 
discussed above. Whether this knowledge is a case of transmission or independent 
discovery is not clear. The rule given is slightly different from the discussion that 
accompanies Fig. 6 and is illustrated by Fig. 11. 

The distance between the ends of the two shadows multiplied by 
the length of the shadow and divided by the difference in length of 
the two shadows give the koti. The koti multiplied by the length 
of the gnomon and divided by the length of the shadow gives the 
length of the bhuja. [Clark, 1930, p . 32] 

Trigonometry. The inclusion of this variant of the double-difference method of sur-
veying in the Aryabhatiya presents us with a small puzzle. As a method of sur-
veying, it is not efficient. It would seem to make more sense to measure angles 
rather than using only right angles and measuring many more lines. But angles are 
really not involved here. It is possible to have a clear picture of two mutually per-
pendicular lines without thinking "right angle." The notion of angles in general as 
a species of mathematical objects—the figures formed by intersecting lines, which 
can be measured, added, and subtracted—appears to be a Greek innovation in the 
sixth and fifth centuries BCE, and it seems to occur only in plane geometry. Its 
origins may be in stonemasonry and carpentry, where regular polygons have to be 
fitted together. Astronomy probably also made some contribution. 

The earliest form of trigonometry that we can recognize was a table of corre-
spondences between arcs and their chords. We know exactly how such a table was 
originally constructed, since an explanation can be found in Ptolemy's treatise on 
astronomy, written around 150 CE. 
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F I G U R E 12. For a quadrilateral inscribed in a circle, the product 
of the diagonals equals the sum of the products of the two pairs of 
opposite sides. 

To construct his table of chords, Ptolemy had to make use of some subtle 
geometry developed earlier: in particular, the fact tha t for a quadrilateral inscribed 
in a circle the product of the diagonals is the sum of the products of the two pairs of 
opposite s ides . 1 4 Ptolemy proved this result by drawing AE (see Fig. 12) so tha t 
ÄΒΑΕ = ZD AC, thus obtaining two pairs of similar triangles: ABAE ~ ACAD 
and AADE ~ AACB. (Angles ABD and ACD are equal, both being inscribed in 

the same arc AD; and similarly Æ AC Β — ZADB.) Ptolemy used this relation to 
compute the chord of the difference of two arcs and the chord of half an arc. 

Since Ptolemy knew the construction of the regular dodecagon and the regular 
decagon, he was easily able to compute the chords of 36° and 30°, expressed in 
units of one-sixtieth of the radius. His difference theorem then gave the chord of 
6°. Then by repeated bisection he got the chord of 3°, then 1° 30', and finally, 45' . 
Using these two values and certain inequalities, he was able to set upper and lower 
bounds on the chord of 1° with sufficient precision for his purposes. He then set 
out a table with 360 entries, giving the chords of arcs at half-degree increments up 
to 180°. 

Although this table fulfilled its purpose in astronomy, the chord is a cumber-
some tool to use in studying plane geometry. For example, it was well known that 
in any triangle, the angle opposite the larger of two sides will be larger than the an-
gle opposite the smaller side. But what is the exact, quantitative relation between 
the two sides and the two angles? The ratio of the sides has no simple relationship 
to the ratio of the angles or to the chords of those angles. There is, however, a 
very simple relation between the sides and the chords of twice the opposite angles, 
tha t is, the chords these angles cut off on the circumscribed circle. One might have 
thought tha t the constant comparison of a chord with the diameter would have 
inspired someone to associate the arc with the angle inscribed in it rather than the 
central angle it subtends. After all, a side of any triangle is the chord of a central 
angle in the circumscribed circle equal to the double of the opposite angle. Hindu 
astronomers discovered tha t trigonometry is simpler if you express the relations 
between circular arcs and chords in terms of half-chords, what are now called sines. 

1 4 When the quadrilateral is a rectangle, this fact is the form of the Pythagorean theorem given 
in the Sulva Sutras. Gow (1884, P- 194) describes this result as "now appended to Euclid VI." 



F I G U R E 13. The "bowstring" diagram. The sine of the arc AR is 
the line AB. 

In Fig. 13 the arc AR can be measured by either line AB or AR. Ptolemy chose 
AR and was led to the complications already mentioned. The Hindus preferred 
AB, which is succinctly described as half the chord of twice the arc. We mentioned 
above that the Chinese word (xian) for the hypotenuse of a right triangle means 
bowstring. The Hindus used the Sanskrit term for a bowstring (jya or jiva) to mean 
the sine. The reason for the colorful language is obvious from the figure. 

To all appearances, then, trigonometry began to assume its modern form among 
the Hindus some 1500 years ago. A few reservations are needed, however. First, for 
the Hindu mathematicians the sine was not, as it is to us, a ratio. It was a length, 
and that physical dimension had to be taken into account in all computations. 
Second, the only Hindu concept corresponding approximately to our trigonometric 
functions was the sine. The tangent, secant, cosine, cotangent, and cosecant were 
not used. Third, the use of trigonometry was restricted to astronomy. Surveying, 
which is the other natural place to use trigonometry, did not depend on angle 
measurement. 

Aryabhata used the sine function developed in the Surya Siddhanta, giving a 
table for computing its values at intervals of 225' (3° 45') of arc from 0° to 90° 
degrees and expressing these values in units of 1' of arc, rounded to the nearest 
integer, so tha t the sine of 90° is 3438 = 360 · 60 • ð. This interval suggests tha t the 
tables were computed independently of Ptolemy's work. If the Hindu astronomers 
had read Ptolemy, their tables of sines could easily have been constructed from his 
table of chords, and with more precision than is actually found. Almost certainly, 
this interval was reached by starting with an angle of 30°, whose sine was known to 
be half of the radius, then applying the formula for a half-angle to get successively 
15°, 7° 30', and finally 3° 45' . Arybhata 's table is actually a list of the differences 
of 24 successive sines at intervals of 225 minutes. Since one minute of arc is a 
very small quantity relative to the radius, the 24 values provide sufficient precision 
for the observational technology available at the time. Notice, however, t ha t to 
calculate the sine of half of an angle è one would have to apply the cumbersome 
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formula 

(f3438 - N / 3438 2 - s in 2 è 

2 
We can therefore well understand why Aryabhata did not refine his table fur-

ther. Aryabhata 's list of sine differences is the following: 

225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174, 

164, 154, 143, 131, 119, 106, 93, 79, 65, 51, 37, 22, 7. 

A comparison with a computer-generated table for the same differences reveals 
that Aryabhata ' s table is accurate except tha t his sixth entry should be 211 and the 
eighth should be 198. Bu t surely an error of less than half of 1% is not a practical 
matter , and Aryabhata definitely took the practical approach. He explained tha t 
his table of sine differences was computed by a recursive procedure, which can be 
described in our terms as follows (Clark, 1930, p. 29). Start ing with d\ = 225, 

, _ , di + \-dn 

« n + l — « ç j , 

"1 

where each term is rounded to the nearest integer after being calculated from this 
formula. 

Aryabhata applied the sine function to determine the elevation of the Sun at 
a given hour of the day. The procedure is illustrated in Fig. 14 for an observer 
located at Ï in the northern hemisphere on a day in spring or summer. This 
figure shows a portion of the celestial sphere. The arc RETSWV is the portion 
of the great circle in which the observer's horizontal plane intersects the sphere. 
The Sun will rise for this observer at the point R and set at the point V. The 
arc is slightly larger than a semicircle, since we are assuming a day in spring or 
summer. The chord RV runs from east to west. The Sun will move along the 
small circle RHV a t a uniform rate, and the plane of this circle is parallel to the 
equatorial circle EMW. (At the equinox, the "day-circle" RV coincides with the 
equatorial circle EW.) Aryabhata gave the correct formula for finding the radius 
of this day-circle in te rms of the elevation of the Sun above the celestial equator 
and the radius of the celestial sphere. Tha t radius is the sine of the co-declination 
of the Sun. Although Aryabhata had the concept of co-latitude, which served him 
in places where we would use the cosine function, for some reason he did not use 
the analogous concept of co-declination. As a result, he had to subtract the square 
of the sine of the declination from the square of the radius of the celestial sphere, 
then take the square root. 

The point Æ is the observer's zenith, Ì is the point on the celestial equator 
tha t is due south to the observer, and S is the point due south on the horizon, 
so tha t the arc ZM is the observer's latitude, and the two arcs Æ Í and MS are 
both equal to the observer's co-latitude. The point Ç is the location of the Sun 
at a given time, MF and HG are the projections of Ì and Ç respectively on 
the horizontal plane, and HK is the projection of Ç on the chord RV. Finally, 
the great-circle arc HT, which runs through Z, is the elevation of the Sun. The 
problem is to determine its sine HG in terms of lengths tha t can be measured. 

Because their sides are parallel lines, the triangles MOF and Ç KG are similar, 
so tha t MO : HK = MF : HG. Hence we get 

HK • MF 
H G = ~ M O — -
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FIGURE 14. Finding the Sun's elevation at a given hour. 

In this relation, ÌF is the sine of MS, tha t is, the sine of the observer's co-latitude, 
and MO is the radius of the celestial sphere. The line Ç Ê is, in a loose sense, the 

sine of the arc RH, which is proportional to the t ime elapsed since sunrise. It is 
perpendicular to the chord RV and would be a genuine sine if RV were the diameter 
of its circle. As it is, that relation holds only at the equinoxes. It is not certain 
whether Aryabhata meant his formula to apply only on the equinox, or whether he 
intended to use the word sine in this slightly inaccurate sense. Because the radius 
of the Sun's small circle is never less than 90% of the radius of the celestial sphere, 
probably no observable inaccuracy results from taking Ç Ê to be a sine. In any 
case, tha t is the way Aryabhata phrased the mat ter : 

The sine of the Sun at any given point from the horizon on its 
day-circle multiplied by the sine of the co-latitude and divided by 
the radius is the [sine of the alt i tude of the Sun] when any given 
part of the day has elapsed or remains. [Clark, 1930, p. 72] 

Notice tha t it is necessary to divide by the radius, because for Aryabhata the 
sine of an arc is a length, not a ratio. 

5.2. B r a h m a g u p t a . Brahinagupta devotes five sections of Chapter 12 of the 
Brahmasphutasiddhanta to geometric results (Colebrooke, 1817, pp . 295-318). Like 
Aryabhata, he has a practical bent. In giving the common area formulas for trian-
gles and quadrilaterals, he first gives a way of gett ing a rough est imate of the area: 
Take the product of the averages of the two pairs of opposite sides. For this purpose 
a triangle counts as a quadrilateral having one side equal to zero. In the days when 
calculation had to be done by hand, this was a quick approximation tha t worked 
well for quadrilaterals and triangles tha t are nearly rectangular ( tha t is, tall , thin 
isosceles triangles). He also gave a formula that he says is exact, and this formula is 
a theorem commonly known as Brahmagupta's theorem: Half the sum of the sides 
set down four times and severally lessened by the sides, being multiplied together, 
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the square root of the product is the area. In our terms this rule says that the area 
of a quadrilateral of sides a. b, c, and d is v(s — a)(s — b)(s — c)(s — d), where s is 
half of the sum of the lengths of the sides. The case when d = 0, which is a triangle, 
is known as Heron's formula. Brahmagupta did not mention the restriction tha t 
the quadrilateral must be a cyclic quadrilateral, t ha t is, it must be inscribed in a 
circle. 

Like Aryabhata, Brahmagupta knew that what we are calling one- and two-
dimensional ð were the same number. In Stanza 40 he says tha t when the diameter 
and the square of the radius respectively are multiplied by 3, the results are the 
"practical" circumference and area. In other words, ð = 3 is a "practical" value. 
He also gives the "neat" ("exact") value as \/ºè· Since = 3.1623, this value 
is not an improvement on Aryabhata 's 3.1416 in terms of accuracy. If one had to 
work with ð 2 , however, it might be more convenient. But ð2 occurs in very few 
contexts in mathematics , and none at all in elementary mathematics. 

Section 5 of Chapter 12 of the Brahmasphutasiddhanta gives a rule for finding 
the volume of a frustum of a rectangular pyramid. In keeping with his approach of 
giving approximate rules, Brahmagupta says to take the product of the averages of 
the sides of the top and bot tom in the two directions, then multiply by the depth. 
He calls this result the "practical measure" of the volume, and he knew tha t this 
simple rule gave a volume that was too small. 

For his second approximation, which he called the "rough" volume, he took the 
average of the areas of the top and bot tom and multiplied by the d e p t h . 1 5 He also 
knew that this procedure gave a volume that was too large. The actual volume 
lies between the "practical" volume and the "rough" volume, but where? We know 
tha t the actual volume is obtained as a mixture of two par ts "practical" and one 
par t "rough", and so did Brahmagupta. His corrective procedure to give the "neat" 
(exact) volume was: Subtract the practical from the rough, divide the difference 
by three, then add the quotient to the practical value. 

The phrasing of this result cries out for speculation on its origin. Why use the 
"practical" volume twice? Why not simply say, "The exact volume is two-thirds 
of the practical volume plus one-third of the rough volume" ? Surely Brahmagupta 
could do this computat ion as well as we can and could have used this simpler 
language. Perhaps his roundabout way of expressing the result reveals the analysis 
by which he discovered it. Let us investigate what happens when we subtract the 
"practical" volume from the "rough" volume. First of all, since each is merely an 
area times the height of the frustum, we are really just subtracting the average 
area of two rectangles from the area of the rectangle formed by the averages of 
their parallel sides. Let us simplify by taking the case of two squares of sides a and 
b. Wha t we are getting, then, is the average of the squares minus the square of the 
average: 

a2 + b2 sa + b\2 

2 \~^2~) 

Figure 15 shows immediately that this difference is just the square on side 
(a — b)/2. In tha t figure, half of the squares of sides a and b are set down with 
their diagonals in a straight line. The two isosceles right triangles below and to 
the right of the dashed lines fit together to form a square of side (a + b)/2. If the 

1 5 This is the same procedure followed in the cuneiform tablet BM 85 194, discussed above in 
Subsection 2.3. 
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rectangle tha t is shaded dark, which lies inside these two isosceles triangles but 
outside the squares of sides b and a, is moved inside the square of side á so as to 
cover the rectangle tha t is shaded light, we see t ha t the two isosceles triangles cover 
all of the two half-squares except for a square of side (a — b)/2. Since this figure 
is a very simple one, it seems likely tha t Brahmagupta would have known tha t the 
difference between his two estimates of the volume of a square frustum amounted 
to the volume of a prism of square base (a - 6)/2 and height h. 

But how did he know tha t he needed to take one-third of this prism, tha t is, 
the volume of a pyramid of the same base and height, and add it to the practical 
volume? To answer that question, consider a slight variant of the dissection shown 
in Fig. 3. First remove the four pyramids in the corners, each of which has volume 
( / é / 3 ) ( ( á - 6 ) / 2 ) 2 , which is exactly one-third of the difference between the gross and 
practical volumes. Doing so leaves a square platform with four "ramps" running 
down its sides. In our previous dissection we sliced off two of these ramps on 
opposite sides and glued them upside down on the other two ramps to make a 
"slab" of dimensions á ÷ 6 x h. This t ime we slice off the outer half of all four ramps 
and bend them up to cover their upper halves. The result, shown in Fig. 16, is 
the cross-shaped prism of height h whose base is a square of side (a + b)/2 having 
a square indentation of side 9 ~ at each corner. Filling in these square prisms 
produces the volume that Brahmagupta called the practical measure. The volume 

2 2 

needed to do so is 4/é((á - b)/4) = h((a - b)/2) . Now three of the four pyramids 
removed from the corners, taken together, have exactly this much volume. If we 
use these three to fill in the practical volume, we have one pyramid left over, and 
its volume is one-third of the difference between the rough and practical volumes. 
A person who followed the dissection outlined above would then very naturally 
describe the volume of the pyramid as the practical volume plus one-third of the 
difference between the gross and practical volumes. Tha t would be natural , but it 
would be rash to infer that Brahmagupta did imagine this dissection; all we have 
shown is tha t he might have done that . 

Q u e s t i o n s a n d p r o b l e m s 

9 .1 . Show how it is possible to square the circle using ruler and compass given the 
assumption tha t ð = (16\ /2) /7 . 

9.2 . Prove tha t the implied Egyptian formula for the volume of a frustum of a 
square pyramid is correct. If the sides of the upper and lower squares are a and b 
and the height is h, the implied formula is: 

V = ^(a2 + ab + b2). 

9.3 . Looking a t the Egyptian pyramids, with their layers of brick revealed, now tha t 
most of the marble facing tha t was originally present has been removed, one can 
see tha t the total number of bricks must be 1 + 4 + 9 Ç h n2 if the slope (seked) 
is constant. Assuming tha t the Egyptian engineers had the kind of numerical 
knowledge tha t would enable them to find this sum as \n(n + l ) ( 2n + 1), can you 
conjecture how they may have arrived at the formula for the volume of a frustum? 
Is it significant that in the only example we have for this computat ion, the height 
is 6 units? 
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F I G U R E 16. Frustum of a pyramid with its corners removed and 
side "ramps" folded up to form a cross-shaped prism. 

9.4. Explain the author ' s solution of the following problem from the cuneiform 
tablet BM 85 196. Here the numbers in square brackets were worn off the tablet 
and have been reconstructed. 

A beam of length 0;30 GAR is leaning against a wall. Its upper 
end is 0;6 G A R lower than it would be if it were perfectly upright. 
How far is its lower end from the wall? 

Do the following: Square 0;30, obtaining 0;15. Subtracting 
0;6 from 0;30 leaves 0;24. Square 0;24, obtaining 0;9,36. Subtract 
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0;9,36 from [0; 15], leaving 0;5,24. Wha t is the square root of 0;5,24? 
The lower end of the beam is [0;18] from the wall. 

When the lower end is 0; 18 from the wall, how far has the top 
slid down? Square 0;18, obtaining 0;5;24.. . . 

9.5. Show that the average of the areas of the two bases of a frustum of a square 
pyramid is the sum of the squares of the average and semidifference of the sides of 
the bases. Could this fact have led the Mesopotamian mathematicians astray in 
their computation of the volume of the frustum? Could the analogy with the area 
of a trapezoid have been another piece of misleading evidence pointing toward the 
wrong conclusion? 

9.6. The author of the Zhou Bi Suan Jing had a numerical method of finding the 
length of the diagonal of a rectangle of width á and length 6, which can be described 
as follows. Square the sum of width and length, subtract twice the area, then take 
the square root. Should one conclude from this that the author knew tha t the 
square on the hypotenuse was the sum of the squares on the legs? 

9.7. Wha t happens to the estimate of the Sun's al t i tude (36,000 km) given by Zhao 
Shuang if the "corrected" figure for shadow lengthening (4 fen per 1000 li) is used 
in place of the figure of 1 fen per 1000 Ιßº 

9.8. The gougu section of the Jiu Zhang Suanshu contains the following problem: 

Under a tree 20 feet high and 3 in circumference there grows a vine, 
which winds seven times the stem of the tree and just reaches its 
top. How long is the vine? 

Solve this problem. 

9.9. Another right-triangle problem from the Jiu Zhang Suanshu is the following. 
"There is a string hanging down from the top of a pole, and the last 3 feet of string 
are lying flat on the ground. When the string is stretched, it reaches a point 8 
feet from the pole. How long is the string?" Solve this problem. You can also, of 
course, figure out how high the pole is from this information. 

9.10. A frequently reprinted problem from the Jiu Zhang Suanshu is the "broken 
bamboo" problem: A bamboo 10 feet high is broken and the top touches the ground 
at a point 3 feet from the stem. Wha t is the height of the break? Solve this problem, 
which reappeared several centuries later in the writings of the Hindu mathematician 
Brahmagupta. 

9 .11 . The Jiu Zhang Suanshu implies that the diameter of a sphere is proportional 
to the cube root of its volume. Since this fact is equivalent to saying tha t the 
volume is proportional to the cube of the diameter, should we infer tha t the author 
knew both proportions? More generally, if an author knows (or has proved) "fact 
A," and fact A is logically equivalent to fact B, is it accurate to say tha t the author 
knew or proved fact B? (See also Problem 9.6 above.) 

9.12. Show tha t the solution to the quadrilateral problem of Sawaguchi Kazuyuki 

is u = 9, í = 8, w = 5, χ = 4, y = yj(1213 + 69v^73) /40 , æ = 10. (The 

approximate value of y is 7.6698551.) From this result, explain how Sawaguchi 

Kazuyuki must have invented the problem and what the two values 60.8 and 326.2 
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F I G U R E 17. A disk cut into sectors and opened up. 

are approximations for. How does this problem illustrate the claim tha t these 
challenge problems were algebraic rather than geometric? 

9 .13 . How is it possible tha t some Japanese mathematicians believed the area of 
the sphere to be one-fourth the square of the circumference, tha t is, ÔÃ 2Ã 2 rather 
than the t rue value 4ðô· 2? Smith and Mikami [1914, p. 75) suggest a way in which 
this belief might have appeared plausible. To explain it, we first need to see an 
example in which the same line of reasoning really does work. 

By imagining a circle sliced like a pie into a very large number of very thin 
pieces, one can imagine it cut open and all the pieces laid out next to one another, 
as shown in Fig. 17. Because these pieces are very thin, their bases are such short 
segments of the circle t ha t each base resembles a straight line. Neglecting a very tiny 
error, we can say tha t if there are ç pieces, the base of each piece is a straight line 
of length 2-nr/n. The segments are then essentially triangles of height r (because 
of their thinness), and hence area (1/2) · (2ðÃ2)/ç. Since there are ç of them, the 
total area is nr2. This heuristic argument gives the correct result. In fact, this very 
figure appears in a Japanese work from 1698 (Smith and Mikami, 1914, Ñ· 131). 

Now imagine a hemispherical bowl covering the pie. If the slices are extended 
upward so as to slice the bowl into equally thin segments, and those segments are 
then straightened out and arranged like the segments of the pie, they also will have 
bases equal to but their height will be one-fourth of the circumference, in other 
words, nr/2, giving a total area for the hemisphere of (1/2) · 7 r 2 r 2 . Since the area is 
2ð7· 2, this would imply tha t ð = 4. Wha t is wrong with the argument? How much 
error would there be in taking ð = 4? 

9 .14 . Wha t is the justification for the statement by the historian of mathematics 
T. Mura ta tha t Japanese mathematics (wasan) was not a science but an ar t? 

9.15 . Show tha t Aryabhata ' s list of sine differences can be interpreted in our lan-
guage as the table whose n t h entry is 

Use a computer to generate this table for ç = 1 , . . . ,24 , and compare the result 
with Aryabhata ' s table. 

9.16 . If the recursive procedure described by Aryabhata is followed faithfully (as 
a computer can do), t he result is the following sequence. 

225, 224, 222, 219, 215, 210, 204, 197, 189, 181, 172, 

162, 151, 140, 128, 115, 102, 88, 74, 60, 45, 30, 15, 0 
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Compare this list with Aryabhata 's list, and note the systematic divergence. 
These differences should be approximately 225 times the cosine of the appropriate 
angle. That is, dn « 225 · cos (225(n + 0.5) minutes). Wha t does tha t fact suggest 
about the source of the systematic errors in the recursive procedure described by 
Aryabhata? 

9.17. Use Aryabhata 's procedure to compute the al t i tude of the Sun above the 
horizon in London (latitude 51° 32') at 10:00 AM on the vernal equinox. Assume 
that the sun rises at 6:00 AM on that day and sets at 6:00 PM. 

9.18. Why is it necessary that a quadrilateral be inscribed in a circle in order to 
compute its diagonals knowing the lengths of its sides? Why is it not possible to 
do so in general? 

9.19. Show that the formula given by Brahmagupta for the area of a quadrilateral 
is correct if and only if the quadrilateral can be inscribed in a circle. 

9.20. Imagine a sphere as a polyhedron having a large number of very small faces. 
Deduce the relation between the volume of a sphere and its area by considering the 
pyramids obtained by joining the points of each face to the center of the sphere. 
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Euclidean Geometry 

We shall divide the history of Greek mathematics into four periods. The first period, 
from about 600 to 400 BCE, was the time when the Greeks acquired geometry from 
Egypt and Mesopotamia and turned it in the direction of logical argument. The 
second period came in the fourth century, when the logical aspects of the subject 
were debated in Pla to 's Academy 1 and Aristotle's Lyceum, 2 proofs were improved, 
and basic principles and assumptions were isolated. The third period began in the 
third century, when the mature subject was expounded in Euclid's Elements, and 
further research continued on more complicated curves and surfaces. The fourth 
and final period was a long decline in originality, in which no revolutionary changes 
occurred and commentaries were the main literary form. 

1. T h e earliest Greek g e o m e t r y 

The history of Greek mathematics up to the time of Euclid (300 BCE) was written 
by Eudemus, a pupil of Aristotle. This history was lost, but it is believed to be 
the basis of the first paragraph of a survey given by Proclus in the fifth century 
CE in the course of his commentary on the first book of Euclid. In this passage 
Proclus mentions 25 men who were considered to have made significant contri-
butions to mathematics . Of these 25, five are well known as philosophers (Thales, 
Pythagoras, Anaxagoras, Pla to , and Aristotle); three are famous primarily as math-
ematicians and astronomers (Euclid, Eratosthenes, and Archimedes). The other 17 
have enjoyed much less posthumous fame. Some of them are so obscure that no 
mention of them can be found anywhere except in Proclus ' summary. Some others 
(Theodorus, Archytas, Menaechmus, Theaetetus, and Eudoxus) are mentioned by 
other commentators and by Plato . The 13 just named are the main figures we shall 
use to sketch the history of Greek geometry. It is clear from what Proclus writes 
tha t something important happened to mathematics during the century of Pla to 
and Aristotle, and the result was a unique book, Euclid's Elements. 

Missing from the survey of Proclus is any reference to Mesopotamian influence 
on Greek geometry. This influence is shown clearly in Greek astronomy, in the 

1 This word has become so common in English that its original, legendary meaning is mostly 
forgotten. In his biography of the Athenian king Theseus, who had slain the Minotaur on Crete 
as a youth, Plutarch says that at the age of 50 the widowed king abducted the beautiful 12-year-
old Helen of Sparta and hid her away. (This was before she married Menelaus and ran off with 
Paris, becoming the cause of the Trojan War.) Her twin brothers Castor and Polydeukes (Pollux) 
threatened to destroy Athens in revenge. Akademos, however, averted the calamity by telling 
them where she was hidden. For this deed he was venerated as the savior of the city, and a grove 
of trees on its northwest side, supposedly his burial place, was dedicated to his memory. Plato 
gave his lectures in that grove, and hence arose the phrase "the groves of Academe." 
2 Here is another word whose origins are lost in common usage. The Lyceum was so named 
because it was near the temple to Apollo Lykeios ("Apollo of the Wolves"). 

269 

The History of Mathematics: A Brief Course, Second Edition 
by Roger Cooke 

Copyright © 2005 John Wiley & Sons, Inc. 



270 10. EUCLIDEAN GEOMETRY 

use of the sexagesimal system of measuring angles and in Ptolemy's explicit use of 
Mesopotamian astronomical observations. It may also appear in Book 2 of Euclid's 
Elements, which contains geometric constructions equivalent to certain algebraic 
relations tha t are frequently encountered in the cuneiform tablets. This relation, 
however, is controversial. Leaving aside the question of Mesopotamian influence, 
we do see a recognition of their debt to Egypt, which the Greeks never concealed. 
And how could they? Euclid actually lived in Egypt, and the other two of the "big 
three" Greek geometers, Archimedes and Apollonius, bo th studied there, in the 
Hellenistic city of Alexandria at the mouth of the Nile. 

1.1. Tha le s . The philosopher Thales, who lived in the early sixth century BCE, 
was a citizen of Miletus, a Greek colony on the coast of Asia Minor. The ruins 
of Miletus are now administered by Turkey. Herodotus mentions Thales in several 
places. Discussing the war between the Medes and the Lydian king Croesus, which 
had taken place in the previous century, he says tha t an eclipse of the Sun frightened 
the combatants into making peace. Thales, according to Herodotus, had predicted 
that an eclipse would occur no later than the year in which it actually occurred. 
Herodotus goes on to say that Thales had helped Croesus to divert the river Halys 
so that his army could cross it. 

These anecdotes show that Thales had both scientific and practical interests. 
His prediction of a solar eclipse, which, according to the astronomers, occurred 
in 585 BCE, seems quite remarkable, even if, as Herodotus says, he gave only a 
period of several years in which the eclipse was to occur. Although solar eclipses 
occur regularly, they are visible only over small portions of the Ear th , so tha t their 
regularity is difficult to discover and verify. Lunar eclipses exhibit the same period 
as solar eclipses and are easier to observe. Eclipses recur in cycles of about 19 solar 
years, a period that seems to have been known to many ancient peoples. Among 
the cuneiform tablets from Mesopotamia there are many tha t discuss astronomy, 
and Ptolemy uses Mesopotamian observations in his system of astronomy. Thales 
could have acquired this knowledge, along with certain simple facts about geometry, 
such as the fact that the base angles of an isosceles triangle are equal. Bychkov 
(2001) argues tha t the recognition that the base angles of an isosceles triangle are 
equal probably did come from Egypt. In construction, for example, put t ing a roof 
on a house, it is not crucial tha t the cross section be exactly an isosceles triangle, 
since it is the ridge of the roof that must fit precisely, not the edges. However, 
when building a symmetric square pyramid, errors in the base angles of the faces 
would make it impossible for the faces to fit together tightly. Therefore, he believes, 
Thales must have derived this theorem from his travels in Egypt. 

In his Discourses on the Seven Wise Men, Plutarch reports that Thales traveled 
to Egypt and was able to calculate the height of the Great Pyramid by driving a pole 
into the ground and observing tha t the ratio of the height of the pyramid to tha t of 
the pole was the same as the ratio of their shadow lengths. In his Lives of Eminent 
Philosophers, Diogenes Laertius cites the historian Hieronymus (fourth or third 
century BCE) in saying that Thales calculated the height of the pyramid by waiting 
until his shadow was exactly as long as he was tall, then measuring the length of the 
shadow of the Great Pyramid . 3 There are practical difficulties in executing this 

3 A very interesting mystery/historical novel by Denis Guedj, called Le thioreme du perroquet, 
uses this history to connect its story line. An English translation of this novel now exists, The 
Parrot's Theorem, St. Martin's Press, New York, 2002. 
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plan, since one could not get into the Pyramid to measure the distance from the 
center to the tip of the shadow directly. One might use the Pythagorean theorem, 
which Thales could well have known, to measure the distance from the center of 
the pyramid to the point where its outer wall intersects the vertical plane through 
the top of the pyramid and the tip of its shadow. A simpler way of computing the 
distance, however, is to reflect a triangle about one of its vertices. This technique 
is known to have been used by Roman surveyors to measure the distance across a 
river without leaving shore. 

According to Diogenes Laertius, a Roman historian named Pamphila, who lived 
in the t ime of Nero, credits Thales with being the first to inscribe a right triangle in 
a circle. To achieve this construction, one would have to know tha t the hypotenuse 
of the inscribed triangle is a diameter. Diogenes Laertius goes on to say that others 
a t t r ibute this construction to Pythagoras. 

1.2. P y t h a g o r a s a n d t h e P y t h a g o r e a n s . Half a century later than Thales the 
philosopher Pythagoras was born on the island of Samos, another of the Greek 
colonies in Ionia. No books of Pythagoras survive, but many later writers mention 
him, including Aristotle. Diogenes Laertius devotes a full chapter to the life of 
Pythagoras. He acquired even more legends than Thales. According to Diogenes 
Laertius, who cites the logicist Apollodorus, Pythagoras sacrificed 100 oxen when 
he discovered the theorem tha t now bears his name. If the stories about Pythagoras 
can be believed, he, like Thales, traveled widely, to Egypt and Mesopotamia. He 
gathered about him a large school of followers, who observed a mystical discipline 
and devoted themselves to contemplation. They lived in a t least two places in 
Italy, first a t Croton, then, after being driven out , 4 a t Metapontion, where he died 
sometime around 500 BCE. 

According to Book I, Chapter 9 of Attic Nights, by the Roman writer Aulus 
Gellius (ca. 130 180), the Pythagoreans first looked over potential recruits for phys-
ical signs of being educable. Those they accepted were first classified as akoustikoi 
(auditors) and were compelled to listen without speaking. After making sufficient 
progress, they were promoted to mathematikoi (learners). 5 Finally, after pass-
ing through that s tate they became physikoi (natural philosophers). In his Life 
of Pythagoras Iamblichus uses these terms to denote the successors of Pythago-
ras, who split into two groups, the akoustikoi and the mathematikoi. According to 
Iamblichus, the mathematikoi recognized the akoustikoi as genuine Pythagoreans, 
but the sentiment was not reciprocated. The akoustikoi kept the pure Pythagorean 
doctrine and regarded the mathematikoi as followers of the disgraced Hippasus 
mentioned in Chapter 8. 

Diogenes Laertius quotes the philosopher Alexander Polyhistor (ca. 105-35 
BCE) as saying that the Pythagoreans generated the world from monads (units). 
By adding a single monad to itself, they generated the natural numbers. By al-
lowing the monad to move, they generated a line, then by further motion the line 
generated plane figures (polygons), the plane figures then moved to generate solids 
(polyhedra). From the regular polyhedra they generated the four elements of earth, 
air, fire, and water. 

4 Like modern cults, the Pythagoreans attracted young people, to the despair of their parents. 
Accepting new members from among the local youth probably aroused the wrath of the citizenry. 
5 Gellius remarks at this point that the word mathematikoi was being inappropriately used in 
popular speech to denote a "Chaldean" (astrologer). 
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1.3. P y t h a g o r e a n geometry . Euclid's geometry is an elaboration and system-
atization of the geometry that came from the Pythagoreans via Pla to and Aristotle. 
From Proclus and other later authors we have a glimpse of a fairly sophisticated 
Pythagorean geometry, intertwined with mysticism. For example, Proclus reports 
that the Pythagoreans regarded the right angle as ethically and aesthetically su-
perior to acute and obtuse angles, since it was "upright, uninclined to evil, and 
inflexible." Right angles, he says, were referred to the "immaculate essences," while 
the obtuse and acute angles were assigned to divinities responsible for changes in 
things. The Pythagoreans had a bias in favor of the eternal over the changeable, 
and they placed the right angle among the eternal things, since unlike acute and 
obtuse angles, it cannot change without losing its character. In taking this view, 
Proclus is being a strict Platonist; for Plato 's ideal Forms were defined precisely 
by their absoluteness; they were incapable of undergoing any change without losing 
their identity. 

Proclus mentions two topics of geometry as being Pythagorean in origin. One 
is the theorem that the sum of the angles of a triangle is two right angles (Book 1, 
Proposition 32). Since this statement is equivalent to Euclid's parallel postulate, it 
is not clear what the discovery amounted to or how it was made. 

The other topic mentioned by Proclus is a portion of Euclid's Book 6 tha t is not 
generally taught any more, called application of areas. However, t ha t topic had to 
be preceded by the simpler topic of transformation of areas. In his Nine Symposium 
Books6 Plutarch called the transformation of areas "one of the most geometrical" 
problems. He thought solving it was a greater achievement than discovering the 
Pythagorean theorem and said that Pythagoras was led to make a sacrifice when 
he solved the problem. The basic idea is to convert a figure having one shape to 
another shape while preserving its area, as in Fig. 1. To describe the problem in a 
different way: Given two geometric figures A and B, construct a third figure C the 
same size as A and the same shape as B. One can imagine many reasons why this 
problem would be attractive. If one could find, for example, a square equal to any 
given figure, then comparing sizes would be simple, merely a mat te r of converting 
all areas into squares and comparing the lengths of their sides. But why stop a t tha t 
point? Why not do as the Pythagoreans apparently did, and consider the general 
problem of converting any shape into any other? For polygons this problem was 
solved very early, and the solution appears in very elegant form as Proposition 25 
of Euclid's Book 6. 

Related to the transformation of areas is the problem of application of areas. 
There are two such problems, both involving a given straight line segment AB and 
a planar polygon Ã. The first problem is to construct a parallelogram equal to Ã 
on part of the line segment AB in such a way tha t the parallelogram needed to 
fill up a parallelogram on the entire base, called the defect, will have a prescribed 
shape. This is the problem of application with defect, and the solution is given 
in Proposition 28 of Book 6. The second application problem is to construct a 
parallelogram equal to Ã on a base containing the line AB and such tha t the portion 
of the parallelogram extending beyond AB (the excess) will have a prescribed shape. 
This is the problem of application with excess, and the solution is Proposition 29 
of Book 6. The construction for application with defect is shown in Fig. 2. This 

6 The book is commonly known as Contrivial Questions. The Greek word symposion means 
literally drinking together. 
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b 

FIGURE 1. Left: turning a triangle into a rectangle. Right: turn-

ing a rectangle into a square ( s 2 = ab). 

Á â Ó Â 

FIGURE 2. Application with defect. Euclid, Book 6, Proposition 28. 

problem does not have a solution for all given lines and areas, since the largest 
parallelogram that can be formed under these conditions is the one whose base is 
half of the given line (Book 6, Proposition 26). Assuming tha t condition, let AB 
be the given line, Ã the given polygonal region, and Ä the given parallelogram 
shape. The dashed line from Β makes the same angle with AB tha t the diagonal 
of the parallelogram Ä makes with its base. The line ΑÈ is drawn to make the 
same angle as the corresponding sides of Ä . Then any parallelogram having its 
sides along AB and ΑÈ and opposite corner on the dashed line will automatically 
generate a "defect" tha t is similar to Ä . The remaining problem is to find the one 
tha t has the same area as Ã. Tha t is achieved by constructing the parallelogram 
ÇÎÐÏ similar to Ä and equal to the difference between ΑΕÇÈ and Ã. 

The Greek word for application is parabole. Proclus cites Eudemus in assert-
ing tha t the solution of the application problems was an ancient discovery of the 
Pythagoreans, and t ha t they gave them the names ellipse and hyperbola, names tha t 
were later transferred to the conic curves by Apollonius. This version of events is 
also confirmed by Pappus . We shall see the reason for the transfer below. 

Although most of Euclid's theorems have obvious interest from the point of 
view of anyone curious about the world, the application problems raise a small 
mystery. Why were the Pythagoreans interested in them? Were they merely a 
refinement of the transformation problems? Why would anyone be interested in 
applying an area so as to have a defect or excess of a certain shape? Without 
restriction on the shape of the defect or excess, the application problem does not 



274 10. EUCLIDEAN GEOMETRY 

have a unique solution. Were the additional conditions imposed simply to make the 
problem determinate? Some historians have speculated tha t there was a further 
motive. 

In the particular case when the excess or defect is a square, these problems 
amount to finding two unknown lengths given their sum and product (application 
with deficiency) or given their difference and product (application with excess). In 
modern terms these two problems amount to quadrat ic equations. Some authors 
have argued tha t this "geometric algebra" was a natural response to the discovery of 
incommensurable magnitudes, described in Chapter 7, indeed a logically necessary 
response. On this point, however, many others disagree. Gray, for example, says 
that , while the discovery of incommensurables did point out a contradiction in a 
naive approach to ratios, "it did not provoke a foundational crisis." Nor did it force 
the Pythagoreans to recast algebra as geometry: 

There is no logical necessity about it. It would be quite possible 
to persevere with an arithmetic of natural numbers to which was 
adjoined such new quantities as, say, arose in the solution of equa-
tions. There is nothing more intelligible about a geometric seg-
ment than a root of an equation, unless you have already acquired 
a geometric habit of thought. Rather than turning from algebra 
to geometry, I suggest that the Greeks were already committed to 
geometry. [Gray. 1989, p. 16] 

1.4. Chal lenges to P y t h a g o r e a n i s m : u n s o l v e d p r o b l e m s . Supposing that 
this much was known to the early Pythagoreans, we can easily guess what problems 
they would have been trying to solve. Having learned how to convert any polygon 
to a square of equal area, they would naturally want to do the same with circles and 
sectors and segments of circles. This problem was known as quadrature (squaring) of 
the. circle. Also, having solved the transformation problems for a plane, they would 
want to solve the analogous problems for solid figures, in other words, to convert 
a polyhedron to a cube of equal volume. Finding the cube would be interpreted 
as finding the length of its side. Now, the secret of solving the planar problem 
was to triangulate a polygon, construct a square equal to each triangle, then add 
the squares to get bigger squares using the Pythagorean theorem. By analogy, the 
three-dimensional program would be to cut a polyhedron into te trahedra, convert 
any tetrahedron into a cube of equal volume, then find a way of adding cubes 
analogous to the Pythagorean theorem for adding squares. The natura l first s tep 
of this program (as we imagine it to have been) was to construct a cube equal to 
the double of a given cube, the problem of doubling the cube, just as we imagined 
that doubling a square may have led to the Pythagorean theorem. 

Yet another example of such a problem is tha t of dividing an arc (or angle) 
into equal parts. If we suppose that the Pythagoreans knew how to bisect arcs 
(Proposition 9 of Book 1 of the Elements) and how to divide a line into any number 
of equal par ts (Proposition 9 of Book 6), this asymmetry between their two basic 
figures—lines and circles—would very likely have been regarded as a challenge. The 
first step in this problem would have been to divide an arc into three equal parts, 
the problem of trisection of the angle. 

The three problems just listed were mentioned by later commentators as an 
important challenge to all geometers. To solve them, geometers had to enlarge 
their set of basic objects beyond lines and planes. They were rather conservative in 
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FIGURE 3 . Hippocrates ' quadrature of a lune, acording to Simplicius. 

doing so, first invoking familiar surfaces such as cones and cylinders, which could 
be generated by moving lines on circles, and intersecting them with planes so as 
to get the conic sections tha t we know as the ellipse, parabola, and hyperbola. 
These curves made it possible to solve two of the three problems (trisecting the 
angle and doubling the cube). Later, a number of more sophisticated curves were 
invented, among them spirals, the cissoid, and the quadratr ix. This last curve got 
its name from its use in squaring the circle. Although it is not certain tha t the 
Pythagoreans had a program like the one described here, it is known that all three 
of these problems were worked on in antiquity. 

Squaring the circle. Proclus mentions Hippocrates of Chios as having discovered 
the quadratures of lunes. In fact this mathematician (ca. 470-ca. 410 BCE), who 
lived in Athens at the t ime of the Peloponnesian War (430-404), is said to have 
worked on all three of the classical problems. A lune is a figure resembling a 
crescent moon: the region inside one of two intersecting circles and outside the 
other. In the ninth volume of his commentary on Aristotle's books on physics, 
the sixth-century commentator Simplicius discusses several lunes that Hippocrates 
squared, including the one we are about to discuss. After detailing the criticism 
by Eudemus of earlier a t t empts by Antiphon (480-411) to square the circle by the 
kind of polygonal approximation we discussed in Chapter 9, Simplicius reports one 
of Hippocrates' quadratures (Fig. 3), based on Book 12 of Euclid's Elements. The 
result needed is tha t semicircles are proportional to the squares on their diameters. 

Simplicius' reference to Book 12 of Euclid is anachronistic, since Hippocrates 
lived before Euclid; but it was probably well known tha t similar segments are 
proportional to the squares on their bases. Even tha t theorem is not needed here, 
except in the case of semicircles, and that special case is easy to derive from the the-
orem for whole circles. The method of Hippocrates does not achieve the quadrature 
of a whole circle; we can see tha t his procedure works because the "irrationalities" 
of the two circles cancel each other when the segment of the larger circle is removed 
from the smaller semicircle. 

In his essay On Exile, Plutarch reports that the philosopher Anaxagoras worked 
on the quadrature of the circle while imprisoned in Athens. (He was brought there 
by Pericles, who was eventually compelled to send him away.) Other a t tempts are 
reported, one by Dinostratus (ca. 390-ca. 320 BCE), who is said to have used the 
curve called (later, no doubt) the quadratrix (squarer), invented by Hippias of Elis 
(ca. 460-ca. 410 BCE) for the purpose of trisecting the angle. It is discussed below 
in that connection. 

Doubling the cube. Although the problem of doubling the cube fits very naturally 
into what we have imagined as the Pythagorean program, some ancient authors 
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gave it a more exotic origin. In The Utility of Mathematics, the commentator 
Theon of Smyrna, who lived around the year 100 CE, discusses a work called 
Platonicus tha t he ascribes to Eratosthenes, to the effect t ha t the citizens of Delos 
(the island tha t was the headquarters of the Athenian Empire) consulted an oracle 
in order to be relieved of a plague, and the oracle told them to double the size 
of an altar (probably to Apollo). Plagues were common in ancient Greece; one 
is described in Sophocles' Oedipus the King, and another decimated Athens early 
in the Peloponnesian War, claiming Pericles as one of its victims. According to 
Theon, Eratosthenes depicted the Delians as having turned for technical advice to 
Plato, who told them that the altar was not the point: The gods really wanted the 
Delians to learn geometry better. In his commentary on Archimedes' work on the 
sphere and cylinder, Eutocius gives another story, also citing Eratosthenes, but he 
says that Eratosthenes told King Ptolemy in a letter that the problem arose on the 
island of Crete when King Minos ordered tha t a tomb built for his son be doubled 
in size. 

Whatever the origin of the problem, both Proclus and Eutocius agree tha t Hip-
pocrates was the first to reduce it to the problem of two mean proportionals. The 
Pythagoreans knew that the mean proportional between any two square integers is 
an integer, for example, · 49 = 28 and t h a t between any two cubes such as 8 
and 216 there are two mean proportionals (Euclid, Book 8, Propositions 11 and 12); 
for example, 8 : 24 :: 24 : 72 :: 72 : 216 . If two mean proportionals could be found 
between two cubes—as seems possible, since every volume can be regarded as the 
cube on some line—the problem would be solved. It would therefore be natural 
for Hippocrates to think along these lines when comparing two cubes. Eutocius, 
however, was somewhat scornful of this reduction, saying tha t the new problem 
was just as difficult as the original one. T h a t claim, however, is not true: One can 
easily draw a figure containing two lines and their mean proportional (Fig. 1): the 
two parts of the diameter on opposite sides of the endpoint of the half-chord of a 
circle and the half-chord itself. The only problem is to get two such figures with the 
half-chord and one par t of the diameter reversing roles between the two figures and 
the other par ts of the diameters equal to the two given lines, as shown in Fig. 4. I t 
is natural to think of using two semicircles for this purpose and moving the chords 
to meet these conditions. 

In his commentary on the treatise of Archimedes on the sphere and cylinder, 
Eutocius gives a number of solutions to this problem, ascribed to various authors, 
including Plato . T h e earliest one tha t he reports is due to Archytas (ca. 428-
350 BCE). This solution requires intersecting a cylinder with a torus and a cone. 
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FIGURE 5. The three conic sections, according to Menaechmus. 

The three surfaces intersect in a point from which the two mean proportionals 
can easily be determined. A later solution by Menaechmus may have arisen as a 
simplification of Archytas' rather complicated construction. It requires intersecting 
two cones, each having a generator parallel to a generator of the other, with a plane 
perpendicular to both generators. These intersections form two conic sections, a 
parabola and a rectangular hyperbola; where they intersect, they produce the two 
mean proportionals. 

If Eutocius is correct, the conic sections first appeared, but not with the names 
they now bear, in the late fourth century BCE. Menaechmus created these sections 
by cutting a cone with a plane perpendicular to one of its generators. When that 
is done, the shape of the section depends on the vertex angle of the cone. If tha t 
angle is acute, the section will be an ellipse; if it is a right angle, the section will be 
a parabola; if it is obtuse, the section will be a hyperbola. In his commentary on 
Archimedes' treatise on the sphere and cylinder, Eutocius tells how he happened to 
find a work written in the Doric dialect which seemed to be a work of Archimedes. 
He mentions in particular tha t instead of the word parabola, used since the t ime of 
Apollonius, the author used the phrase section of a right-angled cone, and instead 
of hyperbola, the phrase section of an obtuse-angled cone. Since Proclus refers to 
"the conic section tr iads of Menaechmus," it is inferred tha t the original names of 
the conic sections were oxytome (sharp cut), orthotome (right cut), and amblytome 
(blunt cut), as shown in Fig. 5. However, Menaechmus undoubtedly thought of the 
cone as the portion of the figure from the vertex to some particular circular base. 
In particular, he wouldn't have thought of the hyperbola as having two nappes, as 
we now do. 

How Apollonius came to give them their modern names a century later is 
described below. Right now we shall look at the consequences of Menaechmus' 
approach and see how it enabled him to solve the problem of two mean proportion-
als. It is very difficult for a modern mathematician to describe this work without 
breaking into modern algebraic notation, essentially using analytic geometry. It is 
very natural to do so; for Menaechmus, if Eutocius reports correctly, 7 comes very 
close to stat ing his theorem in algebraic language. 

7 That is a big "if." Eutocius clearly had read Apollonius; Menaechmus, just as clearly, could not 
have done so. 
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F I G U R E 6. Sections of a cone. Top left: through the axis. Top 
right: perpendicular to the axis. Bottom: perpendicular to the 
generator OR at a point Q lying at distance u from the vertex O. 
The fundamental relation is v2 = h2 + 2uh — w2. The length h has 
a fixed ratio to w, depending only on the shape of the triangle 

We begin by looking at a general conic section, shown in Fig. 6. When a cone 
is cut by a plane through its axis, the resulting figure is simply a triangle. The end 
that we have left open by indicating with arrows the direction of the axis and two 
generators in this plane would probably have been closed off by Menaechmus. If it is 
cut by a plane perpendicular to the axis, the result is a circle. The conic section itself 
is obtained as the intersection with a plane perpendicular t o one of its generators a t 
a given distance (marked u in the figure) from the vertex. The impor tant relation 
needed is tha t between the length of a horizontal chord (double the length marked 
v) in the conic section and its height (marked w) above the generator tha t has 
been cut. Using only similar triangles and the fact that a half chord in a circle is 
the mean proportional between the segments of the diameter through its endpoint, 
Menaechmus would easily have derived the fundamental relation 

Although we have written this relation as an equation with letters in it, Menaechmus 
would have been able to describe what it says in terms of the lines v, u, h, and 
w, and squares and Tectangles on them. He would have known the value of the 
ratio h/w, which is determined by the shape of the triangle ROC. In our terms 
h = uitan(y>/2), where ö is the vertex angle of the cone. 

OCR. 

(1) 
v2 = h2 + 2uh - w2 . 
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A 

Ε 

d2 = 2AE 

v2 =w(w + 2d) 

{x + y)2 = 2(w + d)2 

÷2 + y2 = (w + d)2 + V2 

2xy = d2 

F I G U R E 7. One of Menaechmus' solutions to the problem of two 

mean proportionals, as reported by Eutocius. 

The simplest case is tha t of the parabola, where the vertex angle is 90° and 
h — w. In tha t case the relation between õ and w is 

é;2 = 2uw. 

In the problem of put t ing two mean proportionals Β and Ã between two lines A 
and E, Menaechmus took this u to be \A, so that v2 = Aw. 

T h e hyperbola Menaechmus needed for this problem was a rectangular hyper-
2 2* 

bola, which results when the triangle ROC is chosen so tha t RC = 20C , and 

therefore OR2 = 30C . Such a triangle is easily constructed by extending one 

side of a square to the same length as the diagonal and joining the endpoint to the 

opposite corner of the square. In any triangle of this shape the legs are the side 

and diagonal of a square. For tha t case Menaechmus would have been able to show 

that the relation 

v2 = w{w + 2d) 
holds, where d is the diagonal of a square whose side is u. To solve the prob-
lem of two mean proportionals, Menaechmus took u = V 'AE, t ha t is, the mean 
proportional between A and E. Menaechmus' solution is shown in Fig. 7. 

The solution fits perfectly within the framework of Pythagorean-Euclidean 
geometry, yet people were not satisfied with it. The objection to it was that the 
da ta and the resulting figure all lie within a plane, but the construction requires 
the use of cones, which cannot be contained in the plane. 

Trisecting the angle. The practicality of trisecting an angle is immediately evident: 
It is the vital first step on the way to dividing a circular arc into any number of 
equal pieces. If a right angle can be divided into ç equal pieces, a circle also can 
be divided into ç equal pieces, and hence the regular n-gon can be constructed. 
The success of the Pythagoreans in constructing the regular pentagon must have 
encouraged them to pursue this program. It is possible to construct the regular 
n-gon for ç = 3, 4, 5, 6, 8, 10, but not 7 or 9. The number 7 is awkward, being the 
only prime between 5 and 10, and one could expect to have difficulty constructing 

xy = AE x2 = Ay 



280 10. EUCLIDEAN GEOMETRY 

FIGURE 8. The quadratr ix of Hippias. 

the regular heptagon. Surprisingly, however, the regular 17-sided polygon can be 
constructed using only compass and straightedge. Since 9 = 3 · 3, it would seem 
natural to begin by trying to construct this figure, tha t is, to construct an angle of 
40°. Tha t would be equivalent to constructing an angle of 20°, hence trisecting the 
angles of an equilateral triangle. 

Despite the seeming importance of this problem, less has been writ ten about 
the ancient a t tempts to solve it than about the other two problems. For most of the 
history we are indebted to two authors. In his commentary on Euclid's Elements, 
Proclus mentions the problem and says that it was solved by Nicomedes using 
his conchoid and by others using the quadratrices of Hippias and Nicomedes. In 
Book 4 of his Synagogi (Collection), Pappus says tha t the circle was squared using 
the curve of Dinostratus and Nicomedes. He then proceeds to describe tha t curve, 
which is the one now referred to as the quadratr ix of Hippias . 8 

The quadratr ix is described physically as follows. The radius of a circle rotates 
at a uniform rate from the vertical position AB in Fig. 8 to the horizontal position 
AA, while in exactly the same time a horizontal line moves downward a t a constant 
speed from the position ΒÃ to the position A A. The point of intersection Æ traces 
the curve BZH, which is the quadratrix. The diameter of the circle is the mean 
proportional between its circumference and the line AH. Unfortunately, Ç is the 
one point on the quadratrix that is not determined, since the two intersecting lines 
coincide when they both reach AA. This point was noted by Pappus , citing an 
earlier author named Sporos. In order to draw the curve, which is mechanical, you 
first have to know the ratio of the circumference of a circle to its diameter. But if 
you knew tha t , you would already be able to square the circle. One can easily see, 
however, t ha t since the angle ZAA is proportional to the height of Z, this curve 
makes it possible to divide an angle into any number of equal par ts . 

Pappus also attributed a trisection to Menelaus of Alexandria. Pappus gave a 
classification of geometric construction problems in terms of three categories: pla-
nar, solid, and [curvi]linear. The first category consisted of constructions t ha t used 
only straight lines and circles, the second those tha t used conic sections. The last, 

8 Hippias should be thankful for Proclus, without whom he would apparently be completely 
forgotten, as none of the other standard commentators discuss him, except for a mention in 
passing by Diogenes Laertius in his discussion of Thales. Allman (1889, pp. 94-95) argues that 
the Hippias mentioned in connection with the quadratrix is not the Hippias of Elis mentioned in 
the Eudemian summary, and other historians have agreed with him, but most do not. 
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m 

Β Ã Æ 

F I G U R E 9. Pappus ' construction of a neusis using a rectangular hyperbola. 

catch-all category consisted of problems requiring all manner of more elaborate and 
less regular curves, which were harder to visualize than the first two and presumably 
required some mechanical device to draw them. Pappus says that some of these 
curves come from locus problems, and lists the inventors of some others, among 
them a curve tha t Menelaus called the paradox. Other spirals of the same type, he 
says, are the quadratrices, the conchoids, and the cissoids. He goes on to say tha t 
geometers regard it as a major defect when a planar problem is solved using conies 
and other curves. 

Based on this classification of problems, the first geometers were 
unable to solve the abovementioned problem of [trisecting] the an-
gle, which is by nature a solid problem, through planar methods. 
For they were not yet familiar with the conic sections; and for 
tha t reason they were at a loss. But later they trisected the angle 
through conies, using the convergence described below. 

The word convergence (neusis) comes from the verb neuein, one of whose mean-
ings is to incline toward. In this particular case, it refers t o the following construc-
tion. We are given a rectangle ΑΒÃΑ and a prescribed length m. It is required to 
find a point Ε on Ã Ä such tha t when AE is drawn and extended to meet the exten-
sion of ΒÃ a t a point Z, the line EZ will have length m. The construction is shown 
in Fig. 9, where the circle drawn has radius m and the hyperbola is rectangular, so 
tha t AA Ã Ä = \H • ZH. 

Given the neusis, it becomes a simple matter to trisect an angle, as Pappus 
pointed out. Given any acute angle, label its vertex A, choose an arbitrary point Ã 
on one of i ts sides, and let Ä be the foot of the perpendicular from Ã to the other 
side of the angle. Complete the rectangle ΑΒÃΑ, and carry out the neusis with 
m = 2ΑÃ. Then let Ç be the midpoint of ZE, and join TH, as shown in Fig. 10. 
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FIGURE 10. Trisection of an arbitrary angle by neusis construction. 

A mechanical (curvilinear) solution of the neusis problem. Finding the point Ε in 
the neusis problem is equivalent to finding the point Z. Either point allows the 
line AEZ to be drawn. Now one line tha t each of these points lies on is known. If 
some other curve tha t Æ must lie on could be drawn, the intersection of tha t curve 
with the line ΒÃ would determine Æ and hence solve the neusis problem. If we use 
the condition tha t the line ZE must be of constant length, we have a locus-type 
condition for Z, and it is easy to build a device t ha t will actually draw this locus. 
Wha t is needed is the T-shaped frame shown in Fig. 11, consisting of two pieces 
of wood or other material meeting at right angles. The horizontal part of the Ô 
has a groove along which a peg (shown as a hollow circle in the figure) can slide. 
The vertical piece has a fixed peg (shown as a solid circle) at distance ΑÄ from its 
top. Onto this frame a third piece is fitted with a fixed peg (the hollow circle) at 
distance m from its end and a groove between the peg and the other end tha t fits 
over the peg on the vertical bar. The frame is then laid down with its horizontal 
groove over the line Ã Ä and its fixed peg over A. When the moving piece is fitted 
over the frame so t h a t its peg slides along the horizontal groove over Ã Ä and its 
groove slides over the peg at A, its endpoint (where a stylus is located to draw the 
curve) traces the locus on which Æ must lie. The point Æ lies where tha t locus 
meets the extension of ΒÃ. In practical terms, such a device can be built, but the 
rigid pegs must be located at exactly the distance from the ends determined by the 
rectangle and the fixed distance given in the neusis problem. Thus the device must 
be modified by moving the pegs to the correct locations for each particular problem. 
If oxymoron is permitted, we might say tha t the practical value of this device is 
mostly theoretical. The locus it draws is the conchoid of Nicomedes, mentioned by 
Pappus and Proclus. 

Because of the objections reported by Pappus to the use of methods tha t were 
more elaborate than the problems they were intended to solve, the search for planar 
(ruler-and-compass) solutions to these problems continued for many centuries. It 
was not until the 1830s tha t it was proved tha t no ruler-and-compass solution 
exists. The proof had no effect on the cranks of the world, of course. The problems 
continue to be of interest since tha t time, and not only to cranks who imagine they 
have solved them. Felix Klein, a leading German mathematic ian and educator in 
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FIGURE 11 . A mechanical device for drawing the conchoid of Nicomedes. 

the late nineteenth and early twentieth centuries, urged tha t they be studied as a 
regular part of the curriculum (Beman and Smith, 1930). 

1.5. Cha l l enges t o P y t h a g o r e a n i s m : t h e paradoxes of Zeno of Elea. Al-
though we have some idea of the geometric results proved by the Pythagoreans, our 
knowledge of their interpretation of these results is murkier. How did they conceive 
of geometric entities such as points, lines, planes, and solids? Were these objects 
physically real or merely ideas? Wha t properties did they have? Some light is shed 
on this question by the philosophical critics of Pythagoreanism, one of whom has 
become famous for the paradoxes he was able to spin out of Pythagorean principles. 

In the Pythagorean philosophy the universe was generated by numbers and 
motion. Tha t these concepts needed to be sharpened up became clear from critics 
of the Pythagorean school. It turned out that the Pythagorean view of geometry 
and number contained paradoxes within itself, which were starkly pointed out by 
the philosopher Zeno of Elea. Zeno died around 430 BCE, and we do not have 
any of his works to rely on, only expositions of them by other writers. Aristotle, 
in particular, says tha t Zeno gave four puzzles about motion, which he called the 
Dichotomy (division), the Achilles, the Arrow, and the Stadium. Here is a summary 
of these arguments in modern language, based on Book 6 of Aristotle's Physics. 

The Dichotomy. Motion is impossible because before an object can arrive at its 
destination it must first arrive at the middle of its route. But before it can arrive 
a t the middle, it must travel one-fourth of the way, and so forth. Thus we see tha t 
the object must do infinitely many things in a finite time in order to move. 
The Achilles. (This paradox is apparently so named because in Homer's Iliad the 
legendary warrior Achilles chased the Trojan hero Hector around the walls of Troy, 
overtook him, and killed him.) If given a head start , the slower runner will never be 
overtaken by the faster runner. Before the two runners can be at the same point a t 
the same instant, the faster runner must first reach the point from which the slower 
runner started. But at t ha t instant the slower runner will have reached another 
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point ahead of the faster. Hence the race can be thought of as beginning again at 
that instant, with the slower runner still having a head star t . The race will "begin 
again" in this sense infinitely many times, with the slower runner always having a 
head start . Thus, as in the dichotomy, infinitely many things must be accomplished 
in a finite t ime in order for the faster runner to overtake the slower. 

The Arrow. An arrow in flight is at rest at each instant of t ime. T h a t is, it does 
not move from one place to another during tha t instant. But then it follows tha t 
it cannot traverse any positive distance because successive addit ions of zero will 
never result in anything but zero. 

The Stadium. (In athletic stadiums in Greece the athletes ran from the goal, around 
a halfway post and then back. This paradox seems to have been inspired by imag-
ining two lines of athletes running in opposite directions and meeting each other.) 
Consider two parallel line segments of equal length moving toward each other with 
equal speeds. The speed of each line is measured by the number of points of space 
it passes over in a given time. But each point of one line passes twice t ha t many 
points of the other line in the same time as the two lines move past each other. 
Hence the velocity of the line must equal its double, which is absurd. 

The Pythagoreans had built their system on lines "made of" points, and now 
Zeno was showing them that space cannot be "made of" points in the same way 
that a building can be made of bricks. For assuredly the number of points in a 
line segment cannot be finite. If it were, the line would not be infinitely divisible 
as the dichotomy and Achilles paradoxes showed tha t it must be; moreover, the 
stadium paradox would show that the number of points in a line segment equals 
its double. There must therefore be an infinity of points in a line. But then each 
of these points must take up no space; for if each point occupied some space, an 
infinite number of them would occupy an infinite amount of space. But if points 
occupy no space, how can the arrow, whose tip is a t a single point at each instant 
of time, move through a positive quantity of space? A continuum whose elements 
are points was needed for geometry, yet it could not be thought of as being made 
up of points in the way that discrete collections are made up of individuals. 

1.6. Cha l l enges t o P y t h a g o r e a n i s m : i n c o m m e n s u r a b l e s . The difficulties 
pointed out by Zeno affected the intuitive side of geometry. The challenge they 
posed may have been an impetus to the kind of logical rigor tha t we know as Eu-
clidean. There is, however, an even stronger impetus to t ha t rigor, one tha t was 
generated from within Pythagorean geometry. To the modern mathematician, this 
second challenge to Pythagorean principles is much more relevant and interesting 
than the paradoxes of Zeno. Tha t challenge is the problem of incommensurables, 
which led ultimately to the concept of a real number. 

The existence of incommensurables throws doubt on certain oversimplified 
proofs of geometric proportion. When two lines or areas are commensurable, one 
can describe their rat io as, say, 5 : 7, meaning tha t there is a common measure such 
tha t the first object is five times this measure and the second is seven times it. A 
proportion such as á : b :: c : d, then, is the statement tha t ratios a : b and c : d 
are both represented by the same pair of numbers. 

This theory of proportion is extremely impor tant in geometry if we are to have 
such theorems as Proposition 1 of Book 6 of Euclid 's Elements, which says tha t the 
areas of two triangles or two parallelograms having the same height are proportional 
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to their bases, or the theorem (Book 12, Proposition 2) that the areas of two circles 
are proportional to the squares on their diameters. Even the simplest constructions, 
such as the construction of a square equal in area to a given rectangle or the 
application problems mentioned above, may require the concept of proportionality 
of lines. Because of the importance of the theory of proportion for geometry, the 
discovery of incommensurables made it imperative to give a definition of proportion 
without relying on a common measure to define a ratio. 

Fowler (1998) argues for the existence of a Pythagorean theory of proportion 
based on anthyphairesis, the mutual subtraction procedure we have now described 
many t imes . 9 He makes a very telling point (p. 18) in citing a passage from 
Aristotle's Topics where the assertion is made tha t having the same antanairesis is 
tantamount to having the same ratio. Fowler takes antanairesis to be a synonym of 
anthyphairesis. Like Gray (quoted above), Knorr (1975) argues that the discovery 
of irrationals was not a major "scandal," and tha t it was not responsible for the 
"geometric algebra" in Book 2 of Euclid. While arguing tha t incommensurability 
forced some modifications in the way the Pythagoreans thought about physical 
magnitudes, he says (p. 41): 

It is thus thoroughly obvious tha t , far from being in a s tate of 
paralysis, fifth- and fourth-century geometers proceeded with their 
studies of similar figures as if they were still unaware of the foun-
dational consequences of the existence of incommensurable lines. 

1.7. T h e inf luence o f P l a t o . Pla to is still held in high esteem by philosophers, 
and it is well recognized tha t his philosophy contains a strong mathematical ele-
ment. But since Pla to was a follower of Socrates, who was almost entirely concerned 
with questions of ethics and the right conduct of l i fe , 1 0 his interest in mathematical 
questions needs to be explained. Born in 427 BCE, Plato served in the Athenian 
army during the Peloponnesian War. He was also a devoted follower of Socrates. 
Socrates enjoyed disputat ion so much and was so adept at showing up the weakness 
in other people's arguments tha t he made himself very unpopular. When Athens 
was defeated in 404 BCE, Plato sided with the par ty of oligarchs who ruled the 
city temporarily. When the democratic rule was restored, the citizens took revenge 
on their enemies, among whom they counted Socrates. P la to was devastated by 
the trial and execution of Socrates in 399 BCE. He left Athens and traveled to 
Italy, where he became acquainted with the Pythagorean philosophy. He seems to 
have met the Pythagorean Philolaus in Sicily in 390. He also met the Pythagorean 
Archytas a t Tarentum (where some Pythagoreans had fled to escape danger at Cro-
ton). P la to returned to Athens and founded the Academy in 387 BCE. There he 
hoped to t rain the young m e n 1 1 for public service and establish good government. 
At the behest of Archytas and a Syracusan politician named Dion, brother-in-law 
of the ruler Dionysus I, Pla to made several trips to Syracuse, in Sicily, between 367 
and 361 BCE, to act as advisor to Dionysus II. However, there was virtual civil war 
between Dion and Dionysus, and Plato was arrested and nearly executed. Diogenes 

9 Fowler avoids as far as possible using the phrase Euclidean algorithm. 
1 0 The Socrates depicted by Plato is partly a literary device through which Plato articulated his 
own thoughts on many subjects that the historical Socrates probably took little notice of. 
1 1 In his writing, especially The Republic, Plato argues for equal participation by women in 
government. There is no record of any female student at his Academy, however. His principles 
were far in advance of what the Athenians would tolerate in practice. 
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Laertius quotes a letter allegedly from Archytas to Dionysus urging tha t Pla to be 
released. Pla to returned to the Academy in 360 and remained there for the last 13 
years of his life. He died in 347. 

Archytas. Archytas, although a contemporary of Plato, is counted paradoxically 
among the "pre-Socratics" in philosophy; but t ha t is because he worked outside 
Athens and continued the earlier Pythagorean tradit ion. Archytas ' solution of the 
problem of two mean proportionals using two half-cylinders intersecting at right 
angles was mentioned above. In his Symposium Discourses, Plutarch claimed that 

for tha t reason Plato also lamented tha t the disciples of Eudoxus, 
Archytas, and Menaechmus attacked the duplication of a solid by 
building tools and machinery hoping to get two ratios through the 
irrational, by which it might be possible to succeed, [saying tha t 
by doing so they] immediately ruined and destroyed the good of 
geometry by turning it back toward the physical and not directing 
it upward or striving for the eternal and incorporeal images, in 
which the god is ever a god. 

Although the sentiment Plutarch ascribes to Pla to is consistent with the ideals 
expressed in the Republic, Eutocius reports one such mechanical construction as 
being due to Plato himself. From his upbringing as a member of the Athenian elite 
and from the influence of Socrates, P la to had a strong practical streak, concerned 
with life as it is actually l ived. 1 2 Platonic idealism in the purely philosophical 
sense does not involve idealism in the sense of unrealistic striving for perfection. 

Archytas and Philolaus provided the connection between Pythagoras and Plato, 
whose interest in mathematics began some time after the death of Socrates and 
continued for the rest of his life. Mathematics played an impor tant role in the 
curriculum of his Academy and in the research conducted there, and Plato himself 
played a leading role in directing that research. Lasserre (1964, P- 1?) believes tha t 
the most important mathematical work at the Academy began with the arrival of 
Theaetetus in Athens around 375 and ended with Eudoxus ' departure for Cnidus 
around 350. 

The principle tha t knowledge can involve only eternal, unchanging entities led 
Plato to some statements tha t sound paradoxical. For example, in Book 7 of the 
Republic he writes: 

Thus we must make use of techniques such as geometry when we 
take up astronomy and let go of the things in the heavens if we 
really intend to create something intrinsically useful and practical 
in the soul by mastering astronomy. 

If Pla to 's mathematical concerns seem to be largely geometrical, tha t is prob-
ably because he encountered Pythagoreanism at the t ime when the challenges dis-
cussed above were still current topics. (Recall the quotat ion from the Republic in 

1 2 In the famous allegory of the cave in Book 7 of the Republic, Plato depicts the nonphilosophical 
person as living in a cave with feet in chains, seeing only flickering shadows on the wall of the 
cave, while the philosopher is the person who has stepped out of the cave into the bright sunshine 
and wishes to communicate that reality to the people back in the cave. While he encouraged his 
followers to "think outside the cave," his trips to Syracuse show that he understood the need to 
make philosophy work inside the cave, where everyday life was going on. 
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Chapter 3, where he laments the lack of public support for research into solid ge-
ometry.) There is a long-standing legend that Plato 's Academy bore the following 
sign above its en t rance : 1 3 

Á Ã Å Ù Ì Å Ô Ñ Ç Ô Ï Ó Ì Ç Ä Å É Ó ÅÉÓÉÔÙ 

("Let no ungeometrical person enter.") If Plato was indeed more concerned with 
geometry than with ari thmetic, there is an obvious explanation for his preference: 
The imperfections of the real world relate entirely to geometry, not at all to arith-
metic. For example, it is sometimes asserted that there are no examples of exact 
equality in the real world. But in fact, there are many. Those who make the as-
sertion always have in mind continuous magnitudes, such as lengths or weights, in 
other words, geometrical concepts. Where arithmetic is concerned, exact equality 
is easy to achieve. If I have $11,328.75 in the bank, and my neighbor has $11,328.75 
in the bank, the two of us have exactly the same amount of money. Our bank ac-
counts are interchangeable for all monetary purposes. But Pla to 's love for geometry 
should not be overemphasized. In his ideal curriculum, described in the Republic, 
arithmetic is still regarded as the primary subject. 

1.8. E u d o x a n g e o m e t r y . To see why the discovery of incommensurables created 
a problem for the Pythagoreans, consider the following conjectured early proof of a 
fundamental result in the theory of proportion: the proposition tha t two triangles 
having equal alti tudes have areas proportional to their bases. This assertion is half 
of Proposition 1 of Book 6 of Euclid's Elements. Let ABC and AC ¼ in Fig. 12 be 
two triangles having the same altitude. Euclid draws them as having a common 
side, but that is only for convenience. This positioning causes no loss in generality 
because of the proposition tha t any two triangles of equal al t i tude and equal base 
have equal areas, proved as Proposition 38 of Book 1. 

Suppose tha t the rat io of the bases BC : CD is 2 : 3, tha t is, 3BC = 2CD. 
Extend BD leftward to Ç so tha t BC = BG - GH, producing triangle AHC, 
which is three times triangle ABC. Then extend CD rightward to Ê so tha t 
CD = DK, yielding triangle ACK equal to two times triangle ACD. But then, 
since GC = 3BC = 2CD = CK, triangles AGC and ACK are equal. Since 
AGC = 3ABC and ACK = 2ACD, it follows that ABC : ACD = 2 : 3 . We, like 
Euclid, have no way of actually drawing an unspecified number of copies of a line, 
and so we are forced to illustrate the argument using specific numbers (2 and 3 in 
the present case), while expecting the reader to understand that the argument is 
completely general. 

An alternative proof could be achieved by finding a common measure of BC 
and CD, namely \BC = \CD. Then, dividing the two bases into parts of this 
length, one would have divided ABC into two triangles, ACD into three triangles, 
and all five of the smaller triangles would be equal. But bo th of these arguments 
fail if no integers m and ç can be found such that mBC = nCD, or (equivalently) 
no common measure of BC and CD exists. This proof needs to be shored up, but 
how is that to be done? 

1 3 These words are the earliest version of the legend, which Fowler (1998, pp. 200 201) found 
could not be traced back earlier than a scholium attributed to the fourth-century orator Sopatros. 
The commonest source cited for this legend is the twelfth-century Byzantine Johannes Tzetzes, 
in whose Chiliades, VIII, 975, one finds ÌçäåÉò ÜçåùìÝôñçôïò åßóßôù ìïí ôçí óôå^çí. "Let no 
ungeometrical person enter my house." 
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F I G U R E 12. A fundamental theorem in the theory of proportion. 
Proposition 1 of Book 6 of the Elements. 

The solution to the difficulty was provided by Eudoxus of Cnidus (ca. 407-354 
BCE), whom Diogenes Laertius describes as "astronomer, geometer, physician, and 
lawgiver." He learned geometry from Archytas. Diogenes Laertius cites another 
commentator, named Sotion, who said tha t Eudoxus spent two months in Athens 
and at tended lectures by Plato. Because of his poverty, he could not afford to live 
in Athens proper. He lived a t the waterfront, known as the Piraeus, supported 
by a physician named Theomedus, and walked 11 km from there into Athens. 
Then, with a subsidy from friends, he went to Egypt and other places, and finally 
returned, "crammed full of knowledge," to Athens, "some say, just to annoy Plato 
for snubbing him earlier." Pla to was not in Eudoxus ' league as a mathematician; 
and if Eudoxus felt that Pla to had patronized him in his earlier visit, perhaps 
because Plato and his other students were wealthy and Eudoxus was poor, his 
desire to return and get his own back from Plato is quite understandable. He must 
have made an impression on Plato on his second visit. In his essay On Socrates' 
Daemon, Plutarch reports that when the Delians consulted Plato about doubling 
the cube, in addition to advising them to study geometry, he told them tha t the 
problem had already been solved by Eudoxus of Cnidus and Helicon of Cyzicus. 
If true, this story suggests that the Delians appealed to Pla to after Eudoxus had 
left for Cnidus, around 350. By that t ime Plato was a very old man, and perhaps 
mellower than he had been a quarter-century earlier during Eudoxus ' first stay 
in Athens. In Cnidus, Eudoxus made many astronomical observations tha t were 
cited by the astronomer Hipparchus, and one set of his astronomical observations 
has been preserved. Although the evidence is not conclusive, it seems tha t while 
he was in Athens, he contributed two vital pieces to the mosaic tha t is Euclid's 
Elements. 

The Eudoxan definition oj proportion. The first piece of the Elements contributed 
by Eudoxus was the solution of the problem of incommensurables. This solution 
is a t t r ibuted to him on the basis of two facts: (1) Proclus ' comment that Euclid 
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"arranged many of the theorems of Eudoxus"; (2) an anonymous scholium (com-
mentary) on Euclid's Book 5, which asserts that the book is the creation "of a 
certain Eudoxus, [the student] of the teacher Plato" (Allman, 1889, p. 132). 

His central observation is a very simple one: Suppose tha t D and S are respec-
tively the diagonal and side of a square (or pentagon). Even though there are no 
integers m and ç such t ha t mD = nS, so that the rat io D : S cannot be defined as 
ç : m for any integers, it remains true that for every pair of integers m and ç there 
is a trichotomy: Either mD < nS or mD — nS or mD > nS. Tha t fact makes it 
possible at least to define what is meant by saying that the ratio of D to S is the 
same for all squares. We simply define the proportion D\ : Si :: D2 • S2 for two 
different squares to mean tha t whatever relation holds between mD\ and nS\ for 
a given pair of integers m and n, that same relation holds between m£>2 and nSi. 
Accordingly, as defined by Euclid at the beginning of Book 5, "A relation tha t two 
magnitudes of the same kind have due to their sizes is a ratio." As a definition, this 
statement is somewhat lacking, but we may paraphrase it as follows: "the relative 
size of one magnitude in terms of a second magnitude of the same kind is the ratio 
of the first to the second." We think of size as resulting from measurement and 
relative size as the result of dividing one measurement by another, but Euclid keeps 
silent on both of these points. Then, "Two magnitudes are said to have a ratio to 
each other if they are capable of exceeding each other when multiplied." Tha t is, 
some multiple of each is larger than the other. Thus, the periphery of a circle and 
its diameter can have a ratio, but the periphery of a circle and its center cannot. 
Although the definition of ratio would be hard to use, fortunately there is no need 
to use it. W h a t is needed is equality of ratios, tha t is, proportion. Tha t definition 
follows from the trichotomy just mentioned. Here is the definition given in Book 5 
of Euclid, with the material in brackets added from the discussion just given to 
clarify the meaning: 

Magnitudes are said to be in the same ratio, the first to the second 
[Di : S\] and the third to the fourth [D% : S2], when, if any equimul-
tiples whatever be taken of the first and third [mD\ and mDg] and 
any equimultiples whatever of the second and fourth [nSi and nS2], 
the former equimultiples alike exceed, are alike equal to, or are alike 
less than the lat ter equimultiples taken in corresponding order [that 
is, mDi > nS\ and m£>2 > nS2, or mD\ = nS\ and m£>2 = nS%, or 

mD\ < nS\ and m.D2 < n S y . 

Let us now look again at our conjectured early Pythagorean proof of Euclid's 
Proposition 1 of Book 6 of the Elements. How much change is required to make 
this proof rigorous? Very little. Where we have assumed tha t 3BC = 2CD, it is 
only necessary to consider the cases 3BC > 2CD and SBC < 2CD and show with 
the same figure tha t 3 A B C > 2ACD and 3 A B C < 2ACD respectively, and tha t is 
done by using the trivial corollary of Proposition 38 of Book 1: / / two triangles have 
equal altitudes and unequal bases, the one with the larger base is larger. Eudoxus has 
not only shown how proportion can be defined so as to apply to incommensurables, 
he has done so in a way tha t fits together seamlessly with earlier proofs that apply 
only in the commensurable case. If only the fixes for bugs in modern computer 
programs were so simple and effective! 
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The method of exhaustion. Eudoxus' second contribution is of equal importance 

with the first; it is the proof technique known as the method of exhaustion. This 

method is used by both Euclid and Archimedes to establish theorems about areas 

and solids bounded by curved lines and surfaces. As in the case of the definition of 

proportion for incommensurable magnitudes, the evidence tha t Eudoxus deserves 

the credit for this technique is not conclusive. In his commentary on Aristotle's 

Physics, Simplicius credits the Sophist Antiphon (480-411) with inscribing a poly-

gon in a circle, then repeatedly doubling the number of sides in order t o square the 

circle. However, the perfected method seems to belong to Eudoxus. Archimedes 

says in the cover letter accompanying his treatise on the sphere and cylinder that 

it was Eudoxus who proved tha t a pyramid is one-third of a prism on the same 

base with the same altitude and that a cone is one-third of the cylinder on the 

same base with the same altitude. What Archimedes meant by proof we know: He 

meant proof that meets Euclidean standards, and that can be achieved for the cone 

only by the method of exhaustion. Like the definition of proportion, the basis of 

the method of exhaustion is a simple observation: When the number of sides in an 

inscribed polygon is doubled, the excess of the circle over the polygon is reduced 

by more than half, as one can easily see from Fig. 13. This observation works to-

gether with the theorem that if two magnitudes have a ratio and more than half 

of the larger is removed, then more than half of what remains is removed, and this 

process continues, then at some point what remains will be less than the smaller 

of the original two magnitudes (Elements, Book 10, Proposition 1). This principle 

is usually called Archimedes' principle because of the frequent use he made of it. 

The phrase if two magnitudes have a ratio is critical, because Euclid's proof of the 

principle depends on converting the problem to a problem about integers. Since 

some multiple (n) of the smaller magnitude exceeds the larger, it is only a mat ter 

of showing tha t a finite sequence o j , 02 , . . . in which each term is less than half of 

the preceding will eventually reach a point where the ratio á& : áú is less t han 1 jn. 

The definition of ratio and proportion allowed Eudoxus/Eucl id to establish all 

the standard facts about the theory of proportion, including the important fact that 

similar polygons are proportional to the squares on their sides (Elements, Book 6, 

Propositions 19 and 20). Once that result is achieved, the method of exhaustion 

makes it possible to establish rigorously what the Pythagoreans had long believed: 

that similar curvilinear regions are proportional to the squares on similarly situated 

chords. In particular, it made it possible to prove the fundamental fact t ha t was 

being used by Hippocrates much earlier: Circles are proport ional to the squares 

on their diameters. This fact is now stated as Proposition 2 of Book 12 of the 

Elements, and the proof given by Euclid is illustrated in Fig. 14. 
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FIGURE 14. Proof that circles are proportional to the squares on 
their diameters. 

Let ΑΒÃΑ and ΕÆÇÈ be two circles with diameters Β A and ÈÆ, and suppose 
that the circles are not proportional to the squares on their diameters. Let the ratio 
Β A2 : ÈÆ2 be the same as ΑΒÃΑ : Ó , where Ó is an area larger or smaller than 
ΕÆÇÈ. Suppose first t ha t Ó is smaller than the circle ΕÆÇÈ. Draw the square 
ΕÆÇÈ inscribed in the circle ΕÆÇÈ. Since this square is half of the circumscribed 
square with sides perpendicular and parallel to the diameter ÈÆ, and the circle is 
smaller than the circumscribed square, the inscribed square is more than half of 
the circle. Now bisect each of the arcs EZ, ZH, ÇÈ, and È.Å at points Ê, Α, M, 
and N, and join the polygon ΕÊÆΑÇÈÍΕ. As shown above, doing so produces 
a larger polygon, and the excess of the circle over this polygon is less than half of 
its excess over the inscribed square. If this process is continued enough times, the 
excess of the circle over the polygon will eventually be less than its excess over Ó , 
and therefore the polygon will be larger than Ó . For definiteness, Euclid assumes 
that this polygon is the one reached at the first doubling: ΕÊÆΑÇÈÍΕ. In the 
first circle ΑΒÃΑ, inscribe a polygon ΑÎΒÏÃÚΙΑÑ similar to ΕÊÆΑÇÈÍΕ. Now 
the square on BA is to the square on ÆÈ as ΑÎΒÏÃÐΑÑ is to ΕÊÆΑÇÈÍΕ. 
But also the square on BA is to the square on ÆÈ as the circle ΑΒÃΑ is to Ó . It 
follows that ΑÎΒÏÃÚΙΑÑ is to ΕÊÆΑÇÈÍΕ as the circle ΑΒÃΑ is to Ó . Since 
the circle ΑΒÃΑ is larger than ΑÎΒÏÃÚΙΑÑ, it follows tha t Ó must be larger than 
ΕÊÆΑÇÈÍΕ, But by construction, it is smaller, which is impossible. A similar 
argument shows that it is impossible for Ó to be larger than ΕÆÇÈ. 

A look ahead. Ratios as defined by Euclid are always between two magnitudes of 
the same type. He never considered what we call density, for example, which is the 
ratio of a mass to a volume. Being always between two magnitudes of the same 
type, ratios are "dimensionless" in our terms, and could be used as numbers, if only 
they could be added and multiplied. However, the Greeks obviously did not think 
of operations on ratios as being the same thing they could do with numbers. In 
terms of adding, Euclid does say (Book 6, Proposition 24) tha t if two proportions 
have the same second and fourth terms, then their first terms and third terms can 
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be added (first to first and third to third), tha t is, if á : b :: c : d and e : & : : / : d, 
then (a+e) : b :: (c+f) : d. But he did not think of the second and fourth terms in a 
proportion as denominators or try to get a common denominator. For multiplication 
of ratios, Euclid gives three separate definitions. In Book 5, Definition 9, he defines 
the duplicate (which we would call the square) of the ratio a : b to be the rat io á : c 
if b is the mean proportional between a and c, t ha t is, á : b :: b : c. Similarly, when 
there are four terms in proportion, as in the problem of two mean proportionals, 
so that a : b :: b : c :: c : d, he calls the ratio a : d the triplicate of á : b. We would 
call it the cube of this ratio. Not until Book 6, Definition 5 is there any kind of 
general definition of the product of two ratios. Even that definition is not in all 
manuscripts and is believed to be a later interpolation. It goes as follows: A ratio 
is said to be the composite of two ratios when the sizes in the two ratios produce 
something when multiplied by themselves.1* This rather vague definition is made 
worse by the fact that the word for composed (sygkeimena) is simply a general word 
for combined. It means literally lying together and is the same word used when two 
lines are placed end to end to form a longer line. In tha t context it corresponds 
to addition, whereas in the present one it corresponds (but only very loosely) to 
multiplication. It can be understood only by seeing the way tha t Euclid operates 
with it. Given four lines a, 6, c, and d, to form the compound ratio a : b.c : d, 
Euclid first takes any two lines m and ç such tha t a : b :: m : n. He then finds a 
line ñ such tha t n:p::c:d and defines the compound ratio á : b.c : d to be m : p. 

There is some arbitrariness in this procedure, since m could be any line. A 
modern mathematician looking at this proof would note tha t Euclid could have 
shortened the labor by taking m = a and ç = b. The same mathematic ian would 
add that Euclid ought to have shown that the final ratio is the same independently 
of the choice of m, which he did not do. But one must remember tha t the scholarly 
community around Euclid was much more int imate than in today 's world; he did not 
have to write a "self-contained" book. In the present instance a glance at Euclid's 
Data shows that he knew what he was doing. The first proposition in tha t book says 
that "if two magnitudes A and Β are given, then their ratio is given." In modern 
language, any quantity can be replaced by an equal quanti ty in a ratio without 
changing the ratio. The proof is that if A = Ã and Β = Ä , then A : Ã :: Β : Ä , 
and hence by Proposition 16 of Book 5 of the Elements, A : Β :: Ã : Ä . The second 
proposition of the Data draws the corollary t ha t if a given magni tude has a given 
ratio to a second magnitude, then the second magni tude is also given. Tha t is, if two 
quantities have the same ratio to a given quantity, then they are equal. From these 
principles, Euclid could see that the final ratio m : ñ is what mathematicians now 
call "well-defined," that is, independent of the initial choice of m . 1 5 The first use 
made of this process is in Proposition 23 of Book 6, which asserts tha t equiangular 
parallelograms are in the compound ratio of their (corresponding) sides. 

With the departure of Eudoxus for Cnidus, we can bring to a close our discus-
sion of Pla to ' s influence on mathematics. If relations between P la to and Eudoxus 
were less than intimate, as Diogenes Laertius implies, Eudoxus may have drawn 
off some of Pla to 's students whose interests were more scientific (in modern terms) 

1 4 I am aware that the word "in" here is not a literal translation, since the Greek has the genitive 
case—the sizes of the two ratios. But I take of here to mean belonging to, which is one of the 
meanings of the genitive case. 
1 5 A good exposition of the purpose of Euclid's Data and its relation to the Elements was given 
by Il'ina (ZOOS), elaborating a thesis of I.G. Bashmakova. 
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and less philosophical. It is likely that even Plato realized tha t his a t tempt to un-
derstand the universe through his Forms was not going to work. His late dialogue 
Parmenides gives evidence of a serious rethinking of this doctrine. In any case, it 
is clear that P la to could not completely dominate the intellectual life of his day. 

1.9. A r i s t o t l e . Pla to died in 347 BCE, and his place as the pre-eminent scholar 
of Athens was taken a decade after his death by his former pupil Aristotle (384-322 
BCE) . Aristotle became a student at the Academy at the age of 18 and remained 
there for 20 years. After the death of P la to he left Athens, traveled, got married, 
and in 343 became tu tor to the future Macedonian King Alexander (the Great) , 
who was 13 years old when Aristotle began to teach him and 16 when he became 
king on the death of his father. In 335 Aristotle set up his own school, located 
in the Lyceum, over the hill from the Academy. For the next 12 years he lived 
and wrote there, producing an enormous volume of speculation on a wide variety 
of subjects, scientific, literary, and philosophical. In 322 Alexander died, and the 
Athenians he had conquered turned against his friends. Unlike Socrates, Aristotle 
felt no obligation to be a martyr to the laws of the polis. He fled to escape the 
persecution, but died the following year. Aristotle's writing style resembles very 
much that of a modern scholar, except for the absence of footnotes. Like Plato, in 
mathematics he seems more like a well-informed generalist than a specialist. 

The drive toward the logical organization of science reached its full extent in 
the treatises of Aristotle. He analyzed reason itself and gave a very thorough and 
rigorous discussion of formal inference and the validity of various kinds of arguments 
in his treatise Prior Analytics, which was written near the end of his time at the 
Academy, around 350 BCE. It is easy to picture debates at the Academy, with the 
mathematicians providing examples of their reasoning, which the logician Aristotle 
examined and criticized in order to distill his rules for making inferences. In this 
treatise Aristotle discusses subjects, predicates, and syllogisms connecting the two, 
occasionally giving a glimpse of some mathematics that may indicate what the 
mathematicians were doing at the time. 

• Academy 

* Lyceum 

Athens in the fourth century BCE: the waterfront (Piraeus), 
Academy, and Lyceum. 
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F I G U R E 15. How do we exclude the possibility tha t two lines per-
pendicular to the same line may intersect each other? 

In Book 1 Aristotle describes how to organize the study of a subject, looking 
for all the at tr ibutes and subjects of both of the terms tha t are to appear in a 
syllogism. The subject-at tr ibute relation is mirrored in modern thought by the 
notion of elements belonging to a set. The element is the subject, and the set it 
belongs to is defined by at tr ibutes that can be predicated of all of its elements and 
no others. Just as sets can be elements of other sets, Aristotle said t ha t the same 
object can be both a subject and a predicate. He thought, however, t ha t there were 
some absolute subjects (individual people, for example) tha t were not predicates of 
anything and some absolute predicates (what we call abstractions, such as beauty) 
that were never the subject of any proposi t ion. 1 6 Aristotle says tha t the postulates 
appropriate to each subject must come from experience. If we are thorough enough 
in stating all the attributes of the fundamental terms in a subject, it will be possible 
to prove certain things and state clearly what must be assumed. 

In Book 2 he discusses ways in which reasoning can go wrong, including the 
familiar fallacy of "begging the question" by assuming what is to be proved. In this 
context he offers as an example the people who claim to construct parallel lines. 
According to him, they are begging the question, s tart ing from premises tha t cannot 
be proved without the assumption that parallel lines exist. We may infer tha t there 
were around him people who did claim to show how to construct parallel lines, but 
that he was not convinced. It seems obvious tha t two lines perpendicular to the 
same line are parallel, but surely that fact, so obvious to us, would also be obvious 
to Aristotle. Therefore, he must have looked beyond the obvious and realized that 
the existence of parallel lines does not follow from the immediate properties of lines, 
circles, and angles. Only when this realization dawns is it possible to see the fallacy 
in what appears to be common sense. Common sense—that is, human intuition— 
suggests what can be proved: If two perpendiculars to the same line meet on one 
side of the line, then they must meet on the other side also, as in Fig. 15. Indeed, 
Ptolemy did prove this, according to Proclus. But Ptolemy then concluded tha t 
two lines perpendicular to the same line cannot meet at all. "But," Aristotle would 
have objected, "you have not proved tha t two lines cannot meet in two different 
points." And he would have been right: the assumptions tha t two lines can meet in 
only one point and that the two sides of a line are different regions (not connected 
to each other) are equivalent to assuming that parallel lines exist. 

1 6 In modern set theory it is necessary to assume that one cannot form an infinite chain of sets a, 
6, c, . . . such that 6 e a, c å b,.... That is, at the bottom of any particular element of a set, there 
is an "atom" that has no elements. 
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F I G U R E 16. The exterior angle theorem. 

Euclid deals with this issue in the Elements by stat ing as the last of his assump-
tions that "two straight lines do not enclose an area." Oddly, however, he seems 
unaware of the need for this assumption when proving the main lemma (Book 1, 
Proposition 16) needed to prove the existence of parallel l ines . 1 7 This proposition 
asserts that an exterior angle of a triangle is larger than either of the opposite in-
terior angles. Euclid's proof is based on Fig. 16, in which a triangle ABT is given 
with side BT extended to Ä , forming the exterior angle .4ÃÄ. He wishes to prove 
that this angle is larger than the angle at A. To do so, he bisects AT at E, draws 
AE, and extends it to Æ so tha t EZ — AE. When ÆÃ is joined, it is seen that the 
triangles ABE and TZE are congruent by the side-angle-side criterion. It follows 
that the angle at A equals ZETZ, which is smaller than ZETA, being only a part 
of it. 

In the proof Euclid assumes that the points Ε and Æ are on the same side of 
line BT. But that is obvious only for triangles small enough to see. It needs to 
be proved. To be sure, Euclid could have proved it by arguing that if Ε and Æ 
were on opposite sides of BT, then EZ would have to intersect either BT or its 
extension in some point H, and then the line Β Ç passing through Ã and the line 
BEH would enclose an area. But he did not do tha t . In fact, the only place where 
Euclid invokes the assumption that two lines cannot enclose an area is in the proof 
of the side-angle-side criterion for congruence (Book 1, Proposition 4 ) . 1 8 

Granting tha t Aristotle was right about this point, we still must wonder why 
he considered the existence of parallel lines to be in need of proof. Why would he 
have doubts about something that is so clear on an intuitive level? One possible 
reason is tha t parallelism involves the infinite: Parallelism involves the concept tha t 
two finite line segments will never meet, no mat ter how far they are extended. If 
geometry is interpreted physically (say, by regarding a straight line as the path of 
a light ray), we really have no assurance whatever tha t parallel lines exist—how 
could anyone assert with confidence what will happen if two apparently parallel 
lines are extended to a length of hundreds of light years? 

1 7 In standard editions of Euclid, there are 14 assumptions, but three of them, concerned with 
adding equals to equals, doubling equals, and halving equals, are not found in some manuscripts. 
Gray [1989, p. 46) notes that the fourteenth assumption may be an interpolation by the Muslim 
mathematician al-Nayrizi, the result of speculation on the foundations of geometry. That would 
explain its absence from the proof of Proposition 16. 
1 8 This proof also uses some terms and some hidden assumptions that are visually obvious but 
which mathematicians nowadays do not allow. 
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As Aristotle's discussion of begging the question continues, further evidence 
comes to light that this matter of parallel lines was being debated around 350, and 
proofs of the existence of parallel lines (Book 1, Proposition 27 of the Elements) 
were being proposed, based on the exterior-angle principle. In pointing out that 
different false assumptions may lead to the same wrong conclusion, Aristotle notes 
in particular tha t the nonexistence of parallel lines would follow if an internal angle 
of a triangle could be greater than an external angle (not adjacent to it) , and 
also if the angles of a triangle added to more than two right ang les . 1 9 One is 
almost tempted to say that the mathematicians who analyzed the mat te r in this 
way foresaw the non-Euclidean geometry of Riemann, but of course t ha t could not 
be. Those mathematicians were examining what must be assumed in order to get 
parallel lines into their geometry. They were not exploring a geometry without 
parallel lines. 

2. Eucl id 

In retrospect the third century BCE looks like the high-water mark of Greek ge-
ometry. Beginning with the Elements of Euclid around 300 BCE, this century saw 
the creation of sublime mathematics in the treatises of Archimedes and Apollo-
nius. It is very tempting to regard Greek geometry as essentially finished after 
Apollonius, to see everything that came before as leading up to these creations and 
everything tha t came after as "polishing up." And indeed, although there were 
some bright spots afterward and some interesting innovations, none had the scope 
or the profundity of the work done by these three geometers. 

The first of the three major figures from this period is Euclid, who is world 
famous for his Elements, which we have in essence already discussed. This work is 
so famous, and dominated all teaching in geometry throughout much of the world for 
so long, tha t the man and his work have essentially merged. For centuries people 
said not tha t they were studying geometry, bu t tha t they were studying Euclid. 
This one work has eclipsed both Euclid's other books and his biography. He did 
write other books, and two of them—the Data and Optics—still exist. Others—the 
Phenomena, Loci, Conies, and Porisms—are mentioned by Pappus, who quotes 
theorems from them. 

Euclid is defined for us as the author of the Elements. Apart from his writ-
ings, we know only that he worked at Alexandria in Egypt just after the death of 
Alexander the Great. In a possibly spurious passage in Book 7 of his SynagogS, 
Pappus gives a brief description of Euclid as the most modest of men, a man who 
was precise but not boastful, like (he implies) Apollonius. 

2 .1 . T h e Elements. As for the Elements themselves, the editions tha t we now 
have came to us through many hands, and some passages seem to have been added 
by hands other than Euclid's, especially Theon of Alexandria. We should remember, 
of course, tha t Theon was not interested in preserving an ancient literary artifact 
unchanged; he was trying to produce a good, usable treatise on geometry. Some 
manuscripts have 15 books, but the last two have since been declared spurious by 
the experts, so tha t the currently standard edition has 13 books, the last of which 
looks suspiciously less formal than the first 12, leading some to doubt tha t Euclid 
wrote it. Leaving aside the thorny question of which par ts were actually written 

1 9 Field and Gray (1987, p. 64) note that this point has been made by many authors since 
Aristotle, 
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F I G U R E 1 7 . Expression of a rectangle as the difference of two squares. 

by Euclid, we give just a summary description of the contents, since we have seen 
them coming together in the work of the Pythagoreans, Plato, and Aristotle. 

The contents of the first book of the Elements are covered in the standard 
geometry courses given in high schools. This material involves the elementary 
geometric constructions of copying angles and line segments, drawing squares, and 
the like and the basic properties of parallelograms, culminating in the Pythagorean 
theorem (Proposition 4 7 ) . In addition, these properties are applied to the problem 
of transformation of areas, leading to the construction of a parallelogram with a 
given base angle, and equal in area to any given polygon (Proposition 4 5 ) . There 
the mat te r rests until the end of Book 2 , where it is shown (Proposition 1 4 ) how 
to construct a square equal to any given polygon. 

Book 2 contains geometric constructions needed to solve problems tha t may 
involve quadratic incommensurables without resorting to the Eudoxan theory of 
proportion. For example, a fundamental result is Proposition 5 : / / á straight line is 
cut into equal and unequal segments, the rectangle contained by the unequal segments 
of the whole together with the square on the straight line between the points of the 
section is equal to the square on the half. This proposition is easily seen using Fig. 
1 7 , in terms of which it asserts tha t [A + B) + D = 2A + C + D; t ha t is, Β = A+C. 

This proposition, in arithmetic form, appeared as a fundamental tool in the 
cuneiform tablets. For if the unequal segments of the line are regarded as two 
unknown quantities, then half of the segment is precisely their average, and the 
straight line between the points ( that is, the segment between the midpoint of the 
whole segment and the point dividing the whole segment into unequal parts) is 
precisely what we called earlier the semidifference. Thus, this proposition says tha t 
the square of the average equals the product plus the square of the semidifference; 
and that result was fundamental for solving the important problems of finding two 
numbers given their sum and product or their difference and product. However, 
those geometric constructions do not appear until Book 6 . These application prob-
lems could have been solved in Book 2 in the case when the excess or defect is a 
square. Instead, these special cases were passed over and the more general results, 
which depend on the theory of proportion, were included in Book 6 . 

Book 2 also contains the construction of what came to be known as the Section, 
tha t is, the division of a line in mean and extreme ratio so tha t the whole is to one 
part as tha t part is to the other. But Euclid is not ready to prove that version 
yet, since he doesn't have the theory of proportion. Instead, he gives what must 
have been the original form of this proposition (Proposition 1 1 ) : to cut a line so 
that the rectangle on the whole and one of the parts equals the square on the other 
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part. After it is established that four lines are proportional when the rectangle 
on the means equals the rectangle on the extremes (Proposition 16, Book 6), it 
becomes possible to convert this construction into the construction of the Section 
(Proposition 30, Book 6). 

Books 3 and 4 take up topics familiar from high-school geometry: circles, tan-
gents and secants, and inscribed and circumscribed polygons. In particular, Book 4 
shows how to inscribe a regular pentagon in a circle (Proposition 11) and how to 
circumscribe a regular pentagon about a circle (Proposition 12), then reverses the 
figures and shows how to get the circles given the pentagon (Propositions 13 and 14). 
After the easy construction of a regular hexagon (Proposition 15), Euclid finishes 
off Book 4 with the construction of a regular pentakaidecagon (15-sided polygon, 
Proposition 16). 

Book 5 contains the Eudoxan theory of geometric proportion, in particular 
the construction of the mean proportional between two lines (Proposition 13). In 
Book 6 this theory is applied to solve the problems of application with defect and 
excess. A special case of the latter, in which it is required to construct a rectangle 
on a given line having area equal to the square on the line and with a square excess 
is the very famous Section (Proposition 30). Euclid phrases the problem as follows: 
to divide a line into mean and extreme ratio. This means to find a point on the 
line so that the whole line is to one part as tha t part is to the second part . The 
Pythagorean theorem is then generalized to cover not merely the squares on the 
sides of a right triangle, but any similar polygons on those sides (Proposition 31). 
The book finishes with the well-known statement tha t central and inscribed angles 
in a circle arc proportional to the arcs they subtend. 

Books 7 9 were discussed in Chapter 7. They are devoted to Pythagorean 
number theory. Here, since irrationals cannot occur, the notion of proportion is 
redefined to eliminate the need for the Eudoxan technique. 

Book 10 occupies fully one-fourth of the entire length of the Elements. For its 
sheer bulk, one would be inclined to consider it the most impor tan t of all the 13 
books, yet its 115 propositions are among the least studied of all, principally because 
of their technical nature. The irrationals constructed in this book by taking square 
roots are needed in the theory developed in Book 13 for inscribing regular solids in a 
sphere ( that is, finding the lengths of their sides knowing the radius of the sphere). 
The book begins with the operating principle of the method of exhaustion, also 
known as the principle of Archimedes. The way to demonstrate incommensurability 
through the Euclidean algorithm then follows as Proposition 2: //, when the smaller 
of two given quantities is continually subtracted from the larger, that which is left 
never divides evenly the one before it, the quantities are incommensurable. We 
used this method of showing that the side and diagonal of a regular pentagon are 
incommensurable in Chapter 8. 

Book 11 contains the basic parts of the solid geometry of planes, parallelepipeds, 
and pyramids. The theory of proportion for these solid figures is developed in 
Book 12, where one finds neatly tucked away the theorem tha t circles are propor-
tional to the squares on their diameters (Proposition 2), which we quoted above. 

Book 12 continues the development of solid geometry by establishing the usual 
proportions and volume relations for solid figures; for example, a tr iangular prism 
can be divided by planes into three pyramids, all having the same volume (Propo-
sition 7), a cone has one-third the volume of a cylinder on the same base, similar 
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cones and cylinders are proportional to the cubes of their linear dimensions, end-
ing with the proof t ha t spheres are proportional to the cubes on their diameters 
(Proposition 18). As we noted above, Archimedes (or someone who edited his 
works) credited these theorems to Eudoxus. 

Book 13, the last book of the Elements, is devoted to the construction of the 
regular solids and the relation between their dimensions and the dimensions of 
the sphere in which they are inscribed. The last proposition (Proposition 18) sets 
out the sides of these regular solids and their ratios to one another. An informal 
discussion following this proposition concludes tha t there can be only five regular 
solids. 

2.2. T h e Data. Euclid's Elements assume a certain familiarity with the principles 
of geometric reasoning, principles that are explained in more detail in the Data. The 
Greek name of this work (Dedomena) means [Things T h a t Are] Given, just as Data 
does in Latin. The propositions in this book can be interpreted in various ways. 
Some can be looked a t as uniqueness theorems. For example (Proposition 53), if 
the shapes—that is, the angles and ratios of the sides—are given for two polygons, 
and the ratio of the areas of the polygons is given, then the ratio of any side of 
one to any side of the other is given. Here, being given means being uniquely 
determined. Uniqueness is needed in proofs and constructions so tha t one can be 
sure tha t the result will be the same no matter wha t choices are made. It is an 
issue tha t arises frequently in modern mathematics, where operations on sets are 
defined by choosing representatives of the sets; when tha t is done, it is necessary to 
verify tha t the operation is well defined, tha t is, independent of the choice made. In 
geometry we frequently say, "Let ABC be a triangle having the given properties and 
having such-and-such a property," such as being located in a particular position. 
In such cases we need to be sure tha t the additional condition does not restrict 
the generality of the argument. In another sense, this same proposition reassures 
the reader t ha t an explicit construction is possible, and removes the necessity of 
including it in the exposition of a theorem. 

Other propositions assert tha t certain properties are invariant. For example 
(Proposition 81), when four lines Α, Β, Ã, and Ä are given, and the line Ç is such 
tha t Ä : Ε = A : Ç, where Ε is the fourth proportional to A, B, and Ã, then 
Ä : Ã = Β : Ç. This last proposition is a lemma tha t can be useful in working out 
locus problems, which require finding a curve on which a point must, lie if it satisfies 
certain prescribed conditions. Finally, a modern mathematic ian might interpret the 
assertion tha t an object is "given" as saying tha t the object "exists" and can be 
meaningfully talked about . To Euclid, tha t existence would mean that the object 
was explicitly constructible. 

3 . A r c h i m e d e s 

Archimedes is one of a small number of mathematicians of antiquity of whose 
works we know more than a few fragments and of whose life we know more than 
the approximate t ime and place. The man indirectly responsible for his death, the 
Roman general Marcellus, is also indirectly responsible for the preservation of some 
of what we know about him. Archimedes lived in the Greek city of Syracuse on 
the island of Sicily during the third century BCE and is said by Plutarch to have 
been "a relative and a friend" of King Hieron II. Since Sicily lies nearly on a direct 
line between Carthage and Rome, it became embroiled in the Second Punic War. 
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Marcellus took the city of Syracuse after a long siege, and Archimedes was killed 
by a Roman soldier in the chaos of the final fall of the city. In the course of writing 
a biography of Marcellus, the polymath Plutarch included some information on 
mathematics and philosophy in general. 

According to Plutarch's biography of Marcellus, the general was very upset 
that Archimedes had been killed and had his body buried in a suitably imposing 
tomb. According to Eutocius, a biography of Archimedes was written by a certain 
Heracleides, who is mentioned in some of Archimedes' letters. However, no copy of 
this biography is known to exist today. 

There are many legends connected with Archimedes, scattered among the var-
ious sources. Plutarch, for instance, says that Archimedes made many mechanical 
contrivances but generally despised such work in comparison with pure mathemat i -
cal thought. Plutarch also reports three different stories of the death of Archimedes 
and tells us tha t Archimedes wished to have a sphere inscribed in a cylinder carved 
on his tombstone. The famous story that Archimedes ran naked through the streets 
shouting "Eureka!" ("I've got it!") when he discovered the principle of specific grav-
ity in the ba ths is reported by the Roman architect Vitruvius. Proclus gives another 
well-known anecdote: tha t Archimedes built a system of pulleys tha t enabled him 
(or King Hieron) single-handedly to pull a ship through the water. Finally, Plutarch 
and Pappus both quote Archimedes as saying in connection with his discovery of 
the principle of the lever that if there were another Earth , he could move this one 
by standing on it. 

Wi th Archimedes we encounter the first author of a considerable body of orig-
inal mathematical research that has been preserved to the present day. He was 
one of the most versatile, profound, creative, imaginative, rigorous, and influential 
mathematicians who ever lived. Ten of Archimedes' treatises have come down to 
the present, along with a Book of Lemmas tha t seems to be Archimedean. Some of 
these works are prefaced by a "cover letter" intended to explain their contents to the 
person to whom Archimedes sent them. These correspondents of Archimedes were: 
Gelon, son of Hieron II and one of the kings of Syracuse during Archimedes' life; 
Dositheus, a student of Archimedes' student and close friend Conon; and Eratos-
thenes, an astronomer who worked in Alexandria. Like the manuscripts of Euclid, 
all of the Archimedean manuscripts date from the ninth century or later. These 
manuscripts have been translated into English and published by various authors. 
A complete set of Medieval manuscripts of Archimedes' work has been published 
by Marshall Clagett in the University of Wisconsin series on Medieval Science. 

The 10 treatises referred to above are the following. 

1. On the Equilibrium of Planes, Par t I 
2. Quadrature of the Parabola 
3. On the Equilibrium of Planes, Par t II 
4. On the Sphere and the Cylinder, Par ts I and II 
5. On Spirals 
6. On Conoids and Spheroids 
7. On Floating Bodies 
8. Measurement of a Circle 
9. The Sand-reckoner 

10. The Method 
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References by Archimedes himself and other mathematicians tell of the exis-
tence of other works by Archimedes of which no manuscripts are now known to 
exist. These include works on the theory of balances and levers, optics, the regular 
polyhedra, the calendar, and the construction of mechanical representations of the 
motion of heavenly bodies. In 1998 a palimpsest of Archimedes' work was sold at 
auction for $2 million (see Plate 6). 

From this list we can see the versatility of Archimedes. His treatises on the 
equilibrium of planes and floating bodies contain principles that are now fundamen-
tal in mechanics and hydrostatics. The works on the quadrature of the parabola, 
conoids and spheroids, the measurement of the circle, and the sphere and cylinder 
extend the theory of proportion, area, and volume found in Euclid for polyhedra 
and polygons to the more complicated figures bounded by curved lines and surfaces. 
The work on spirals introduces a new class of curves, and develops the theory of 
length, area, and proportion for them. 

Since we do not have space to discuss all of Archimedes' geometry, we shall 
confine our discussion to what may be his greatest achievement: finding the surface 
area of a sphere. In addition, because of its impact on the issues involving proof 
that we have been discussing, we shall discuss his Method. 

3.1. The area of a sphere. Archimedes' two works on the sphere and cylinder 
were sent to Dositheus. In the letter accompanying the first of these he gives some 
of the history of the problem. Archimedes considered his results on the sphere to 
be rigorously established, but he did have one regret: 

It would have been beneficial to publish these results when Conon 
was alive, for he is the one we regard as most capable of under-
standing and rendering a proper judgment on them. But, as we 
think it well to communicate them to the initiates of mathemat-
ics, we send them to you, having rewritten the proofs, which those 
versed in the sciences may scrutinize. 

The fact that a pyramid is one-third of a prism on the same base and altitude 
is Proposition 7 of Book 12 of Euclid's Elements. Thus Archimedes could say 
confidently that this theorem was well established. Archimedes sought the surface 
area of a sphere by finding the lateral surface area of a frustum of a cone and the 
lateral area of a right cylinder. In our terms the area of a frustum of a cone with 
upper radius r, lower radius R, and side of slant height h is nh(R + r). Archimedes 
phrased this fact by saying that the area is that of a circle whose radius is the mean 
proportional between the slant height and the sum of the two radii; that is, the 
radius is \Jh{R + r). Likewise, our formula for the lateral surface area of a cylinder 
of radius r and height h is 2irrh. Archimedes said it was the area of a circle whose 
radius is the mean proportional between the diameter and height of the cylinder. 

These results can be applied to the figures generated by revolving a circle about 
a diameter with certain chords drawn. Archimedes showed (Proposition 22) that 

(BB' + CC + -- + KK' + LM) : AM = A'Β : ΒΑ 

in Fig. 18. 
This result is easily derived by connecting B' to C, C to K, and K' to L and 

considering the ratios of the legs of the resulting similar triangles. These ratios can 
be added. All that then remains is to cross-multiply this proportion and use the 
expressions already derived for the area of a frustum of a cone. One finds easily 
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FIGURE 18. Finding the surface area of a sphere. 

that the area of the surface obtained by revolving the broken line ABCKL about 
the axis AA! is ð AM • A'B. The method of exhaustion then shows that the product 
AM • A'B can be made arbitrarily close to the square of AA'; it therefore gives the 
following result (Proposition 33): The surface of any sphere is equal to four times 
the greatest circle in it. 

By the same method, using the inscribed right circular cone with the equatorial 
circle of the sphere as a base, Archimedes shows that the volume of the sphere is 
four times the volume of this cone. He then obtains the relations between the areas 
and volumes of the sphere and circumscribed closed cylinder. He finishes this first 
treatise with results on the area and volume of a segment of a sphere, that is, the 
portion of a sphere cut off by a plane. This argument is the only ancient proof of 
the area and volume of a sphere that meets Euclidean standards of rigor. 

Three remarks should be made on this proof. First, in view of the failure 
of efforts to square the circle, it seems that the later Greek mathematicians had 
two standard areas, the circle and the square. Archimedes expressed the area of 
a sphere in terms of the area of a circle. Second, as we have seen, the volume 
of a sphere was found in China several centuries after Archimedes' time, but the 
justification for it involved intuitive principles such as Cavalieri's principle that do 
not meet Euclidean standards. Third, Archimedes did not discover this theorem 
by Euclidean methods. He told how he came to discover it in his Method-
ic. The Method. Early in the twentieth century the historian of mathematics 
J. L. Heiberg, reading in a bibliographical journal of 1899 the account of the dis-
covery of a tenth-century manuscript with mathematical content, deduced from a 
few quotations that the manuscript was a copy 2 0 of a work of Archimedes. In 

2 0 A copy, not Archimedes' own words, since it was written in the Attic dialect, while Archimedes 
wrote in Doric. It is interesting that in the statement of his first theorem Archimedes refers to a 
"section of a right-angled cone ÁÂÃ," and then immediately in the proof says, "since ABT is a 
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FIGURE 19. Volumes of sphere, cone, and cylinder. 

1906 and 1908 he journeyed to Constantinople and established the text, as far as 
was possible. Attempts had been made to wash off the mathematical text during 
the Middle Ages so that the parchment could be used to write a book of prayers. 
The 177 pages of this manuscript contain parts of the works just discussed and a 
work called Method. The existence of such a work had been known because of the 
writings of commentators on Archimedes. 

There are quotations from the Method in a work of the mathematician Heron 
called the Metrica, which was discovered in 1903. The Method had been sent to 
the astronomer Eratosthenes as a follow-up to a previous letter that had contained 
the statements of two theorems without proofs and a challenge to discover the 
proofs. Both of the theorems involve the volume and surface of solids of revolution. 
In contrast to his other work on this subject, however, Archimedes here makes 
free use of the principle now commonly known as Cavalieri's principle, which we 
mentioned in connection with the Chinese computation of the volume of a sphere. 
Archimedes' Method is a refinement of this principle, obtained by imagining the 
sections of a region balanced about a fulcrum. The reasoning is that if each pair 
of corresponding sections balance at distances a and b, then the bodies themselves 
will balance at these distances, and therefore, by Archimedes' principle of the lever, 
the area or volume of the two bodies must be have the ratio b : a. 

The volume of a sphere is four times the volume of the cone with base equal to 
a great circle of the sphere and height equal to its radius, and the cylinder with base 
equal to a great circle of the sphere and height equal to the diameter is half again 
as large as the sphere. 

Archimedes' proof is based on Fig. 19. If this figure is revolved about the line 
CAH, the circle with center at Ê generates a sphere, the triangle AEF generates 

parabola...". If these were the original words, it appears that the nomenclature for conic sections 
was changing in Archimedes' time. 
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a cone, the rectangle LGFE generates a cylinder, and each horizontal line such as 
Ì Í generates a disk. The point A is the midpoint of CH. Archimedes shows that 
the area of the disk generated by revolving QR plus the area of the disk generated 
by revolving OP has the same ratio to the area of the disk generated by revolving 
Ì Í that AS has to AH. It follows from his work on the equilibrium of planes that 
if the first two of these disks are hung at H, they will balance the third disk about 
A as a fulcrum. Archimedes concluded that the sphere and cone together placed 
with their centers of gravity at Ç would balance (about the point A) the cylinder, 
whose center of gravity is at K. 

Therefore, 
HA : AK = (cylinder) : (sphere + cone). 

But HA = 2AK. Therefore, the cylinder equals twice the sum of the sphere and 
the cone AEF. And since it is known that the cylinder is three times the cone 
AEF, it follows that the cone AEF is twice the sphere. But since EF = 2BD, 
cone AEF is eight times cone ABD, and the sphere is four times the cone ABD. 

From this fact Archimedes easily deduces the famous result allegedly depicted 
on his tombstone: The cylinder circumscribed about a sphere equals the volume of 
the sphere plus the volume of a right circular cone inscribed in the cylinder. 

Having concluded the demonstration, Archimedes reveals that this method en-
abled him to discover the area of a sphere. He writes 

For I realized that just as every circle equals a triangle having as 
its base the circumference of the circle and altitude equal to the 
[distance] from the center to the circle [that is, the radius], in the 
same way every sphere is equal to a cone having as its base the 
surface [area] of the sphere and altitude equal to the [distance] 
from the center to the sphere. 

The Method gives an inside view of the route by which Archimedes discovered 
his results. The method of exhaustion is convincing as a method of proving a 
theorem, but useless as a way of discovering it. The Method shows us Archimedes' 
route to discovery. 

4. Apollonius 

From what we have already seen of Greek geometry we can understand how the 
study of the conic sections came to seem important. From commentators like Pap-
pus we know of treatises on the subject by Aristaeus, a contemporary of Euclid who 
is said to have written a book on Solid Loci, and by Euclid himself. We have also 
just seen that Archimedes devoted a great deal of attention to the conic sections. 
The only treatise on the subject that has survived, however, is that of Apollonius, 
and even for this work, unfortunately, no faithful translation into English exists. 
The version most accessible is that of Heath, who says in his preface that writing his 
translation involved "the substitution of a new and uniform notation, the conden-
sation of some propositions, the combination of two or more into one, some slight 
re-arrangements of order for the purpose of bringing together kindred propositions 
in cases where their separation was rather a matter of accident than indicative of 
design, and so on." He might also have mentioned that he supplemented Apol-
lonius' purely synthetic methods with analytic arguments, based on the algebraic 
notation we are familiar with. All this labor has no doubt made Apollonius more 
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readable. On the other hand, Apollonius' work is no longer current research, and 
from the historian's point of view this kind of tinkering with the text only makes 
it harder to place the work in proper perspective. 

In contrast to his older contemporary Archimedes, Apollonius remains a rather 
obscure figure. His dates can be determined from the commentary written on the 
Conies by Eutocius. Eutocius says that Apollonius lived in the time of the king 
Ptolemy Euergetes and defends him against a charge by Archimedes' biographer 
Heracleides that Apollonius plagiarized results of Archimedes. Eutocius' informa-
tion places Apollonius reliably in the second half of the third century BCE, perhaps 
a generation or so younger than Archimedes. 

Pappus says that as a young man Apollonius studied at Alexandria, where he 
made the acquaintance of a certain Eudemus. It is probably this Eudemus to whom 
Apollonius addresses himself in the preface to Book 1 of his treatise. From Apol-
lonius' own words we know that he had been in Alexandria and in Perga, which 
had a library that rivaled the one in Alexandria. Eutocius reports an earlier writer, 
Geminus by name, as saying that Apollonius was called "the great geometer" by his 
contemporaries. He was highly esteemed as a mathematician by later mathemati-
cians, as the quotations from his works by Ptolemy and Pappus attest. In Book 12 
of the Almagest, Ptolemy attributes to Apollonius a geometric construction for lo-
cating the point at which a planet begins to undergo retrograde motion. From these 
later mathematicians we know the names of several works by Apollonius and have 
some idea of their contents. However, only two of his works survive to this day, and 
for them we are indebted to the Islamic mathematicians who continued to work 
on the problems that Apollonius considered important. Our present knowledge of 
Apollonius' Cutting Off of a Ratio, which contains geometric problems solvable by 
the methods of application with defect and excess, is based on an Arabic manu-
script, no Greek manuscripts having survived. Of the eight books of Apollonius' 
Conies, only seven have survived in Arabic and only four in Greek. 

4.1. History of the Conies. The evolution of the Conies was reported by Pap-
pus five centuries after they were written in Book 7 of his Collection. 

By filling out Euclid's four books on the conies and adding four oth-
ers Apollonius produced eight books on the conies. Aristaeus... and 
all those before Apollonius, called the three conic curves sections of 
acute-angled, right-angled, and obtuse-angled cones. But since all 
three curves can be produced by cutting any of these three cones, 
as Apollonius seems to have objected, [noting] that some others 
before him had discovered that what was called a section of an 
acute-angled cone could also be [a section of] a right- or obtuse-
angled cone... changing the nomenclature, he named the so-called 
acute section an ellipse, the right section a parabola, and the ob-
tuse section a hyperbola. 

As already mentioned, the first four books of Apollonius' Conies survived in 
Greek, and seven of the eight books have survived in Arabic; the astronomer Ed-
mund Halley (1656-1743) published a Latin edition of them in 1710. 

4.2. Contents of the Conies. In a preface addressed to the aforementioned 
Eudemus, Apollonius lists the important results of his work: the description of 
the sections, the properties of the figures relating to their diameters, axes, and 
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asymptotes, things necessary for analyzing problems to see what data permit a 
solution, and the three- and four-line locus. He continues: 

The third book contains many remarkable theorems of use for the 
construction of solid loci and for distinguishing when problems 
have a solution, of which the greatest part and the most beauti-
ful are new. And when we had grasped these, we knew that the 
three-line and four-line locus had not been constructed by Euclid, 
but only a chance part of it and that not very happily. For it 
was not possible for this construction to be completed without the 
additional things found by us. 

We have space to discuss only the definition and construction of the conic 
sections and the four-line locus problem, which Apollonius mentions in the passage 
just quoted. 

4.3. Apollonius' definition of the conic sections. The earlier use of conic 
sections had been restricted to cutting cones with a plane perpendicular to a gen-
erator. As we saw in our earlier discussion, this kind of section is easy to analyze 
and convenient in the applications for which it was intended. In fact, only one kind 
of hyperbola, the rectangular, is needed for duplicating the cube and trisecting the 
angle. The properties of a general section of a general cone were not discussed. 
Also, it was considered a demerit that the properties of these planar curves had to 
be derived from three-dimensional figures. Apollonius set out to remove these gaps 
in the theory. 

First it was necessary to define a cone as the figure generated by moving a line 
around a circle while one of its points, called the apex and lying outside the plane of 
the circle, remains fixed. Next, it was necessary to classify all the sections of a cone 
that happen to be circles. Obviously, those sections include all sections by planes 
parallel to the plane of the generating circle (Book 1, Proposition 4). Surprisingly, 
there is another class of sections that are also circles, called subcontrary sections. 
Once the circles are excluded, the remaining sections must be parabolas, hyperbolas, 
and ellipses. We have space only to consider Apollonius' construction of the ellipse. 
His construction of the other conies is very similar. Consider the planar section of 
a cone in Fig. 20, which cuts all the generators of the cone on the same side of its 
apex. This condition is equivalent to saying that the cutting intersects both sides 
of the axial triangle. Apollonius proved that there is a certain line, which he called 
the [up]right side, now known by its Latin name latus rectum, such that the square 
on the ordinate from any point of the section to its axis equals the rectangle applied 
to the portion of the axis cut off by this ordinate (the abscissa) and whose defect 
on the axis is similar to the rectangle formed by the axis and the latus rectum. 
He gave a rule, too complicated to go into here, for constructing the latus rectum. 
This line characterized the shape of the curve. Because of its connection with the 
problem of application with defect, he called the resulting conic section an ellipse. 
Similar connections with the problems of application and application with excess 
respectively arise in Apollonius' construction of the parabola and hyperbola. These 
connections motivated the names he gave to these curves. 

In Fig. 20 the latus rectum is the line EH, and the locus condition is that the 
square on LM equal the rectangle on EO and EM; that is, LM2 = EO • EM. 
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FIGURE 20. Apollonius' construction of the ellipse. 

In one sense, this locus definition for an ellipse is not far removed from what 
we now think of as the equation of the ellipse, but that small gap was unbridgeable 
in Apollonius' time. If we write LM = y and EM = χ in Fig. 20 (so that we are 
essentially taking rectangular coordinates with origin at E), we see that Apollonius 
is claiming that y2 = χ • EO. Now, however, EO — EH - OH, and EH is constant, 
while OH is directly proportional to EM, that is, to x. Specifically, the ratio 
of OH to EM is the same as the ratio of EH to the axis. Thus, if we write 
OH = kx—the one, crucial step that Apollonius could not take, since he did not 
have the concept of a dimensionless constant of proportionality —and denote the 
latus rectum EH by C, we find that Apollonius' locus condition can be stated as 
the equation y2 = Cx - kx2. By completing the square on x, transposing terms, 
and dividing by the constant term, we can bring this equation into what we now 
call the standard form for an ellipse with center at (a, 0): 

(2) + ^ = 

where a = C/(2k) and b = C\fk. In these terms the latus rectum C is 2b2/a. 
Apollonius, however, did not have the concept of an equation nor the symbolic 
algebraic notation we now use, and if he did have, he would still have needed the 
letter k used above as a constant of proportionality. These "missing" pieces gave 
his work on conies a ponderous character with which most mathematicians today 
have little patience. 

Apollonius' constructions of the parabola and hyperbola also depend on the 
latus rectum. He was the first to take account of the fact that a plane that produces 
a hyperbola must cut both nappes of the cone. He regarded the two branches as 
two hyperbolas, referring to them as "opposites" and reserving the term hyperbola 
for either branch. For the hyperbola Apollonius proves the existence of asymptotes, 
that is, a pair of lines through the center that never meet the hyperbola but such 
that any line through the center passing into the region containing the hyperbola 
does meet the hyperbola. The word asymptote means literally not falling together, 
that is, not intersecting. 

Books 1 and 2 of the Conies are occupied with finding the proportions among 
line segments cut off by chords and tangents on conic sections, the analogs of 
results on circles in Books 3 and 4 of Euclid. These constructions involve finding 
the tangents to the curves satisfying various supplementary conditions such as being 
parallel to a given line. 
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FIGURE 21. Focal properties of an ellipse. 

4.4. Foci and the three- and four-line locus. We are nowadays accustomed to 
constructing the conic sections using the focus-directrix property, so that it comes 
as a surprise that the original expert on the subject does not seem to recognize 
the importance of the foci. He never mentions the focus of a parabola, and for 
the ellipse and hyperbola he refers to these points only as "the points arising out 
of the application." The "application" he has in mind is explained in Book 3. 
Propositions 48 and 52 read as follows: 

(Proposition 48) / / in an ellipse a rectangle equal to the fourth part of the figure is 
applied from both sides to the major axis and deficient by a square figure, and from 
the points resulting from the application straight lines are drawn to the ellipse, the 
lines will make equal angles with the tangent at that point. 

(Proposition 52) / / in an ellipse a rectangle equal to the fourth part of the figure is 
applied from both sides to the major axis and deficient by a square figure, and from 
the points resulting from the application straight lines are drawn to the ellipse, the 
two lines will be equal to the axis. 

The "figure" referred to is the rectangle whose sides are the major axis of the 
ellipse and the latus rectum. In Fig. 21 the points Fi and F2 must be chosen on the 
major axis AB so that AF\ • F\B and AF2 • BF2 both equal one-fourth of the area of 
the rectangle formed by the axis AB and the latus rectum. Proposition 48 expresses 
the focal property of these two points: Any ray of light emanating from one will 
be reflected to the other. Proposition 52 is the string property that characterizes 
the ellipse as the locus of points such that the sum of the distances to the foci 
is constant. These are just two of the theorems Apollonius called "strange and 
beautiful." Apollonius makes little use of these properties, however, and does not 
discuss the use of the string property to draw an ellipse. 

A very influential part of the Conies consists of Propositions 54-56 of Book 3, 
which contain the theorems that Apollonius claimed (in his cover letter) would pro-
vide a solution to the three- and four-line locus problems. Both in their own time 
and because of their subsequent influence, the three- and four-line locus problems 
have been of great importance for the development of mathematics. These proposi-
tions involve the proportions in pieces of chords inscribed in a conic section. Three 
propositions are needed because the hyperbola requires two separate statements to 
cover the cases when the points involved lie on different branches of the hyperbola. 

Proposition 54 asserts that given a chord AT such that the tangents at the 
endpoints meet at Ä, and the line from Ä to the midpoint Ε of the chord meets 
the conic at B, any point è on the conic has the following property (Fig. 22). The 
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FIGURE 22. The basis for solving the four-line locus problem. 

lines from è to A and Ã meet the lines through Ã and A respectively, each parallel 
to the tangent through the other endpoint, in points Ç and Æ respectively such that, 
the following proportion holds: The ratio of the rectangle on AZ and ÃÇ to the 
square on ΑÃ is the composite of the ratio of the square on EB to the square on 
Β A and the ratio of the rectangle on A A and AT to the rectangle on AE and ET. 
As we would write this relation, 

AZ • TH : AT2 :: EB2 : ΒÄ2.ΑΑ • ÄÃ : AE • ET. 

It is noteworthy that this theorem involves an expression that seldom occurs in 
Greek mathematics: a composition of ratios involving squares. If we thought of it 
in our terms, we would say that Apollonius was working in four dimensions. But he 
wasn't. The composition of two ratios is possible only when both ratios are between 
quantities of the same type, in this case areas. The proof given by Apollonius has 
little in common with the way we would proceed nowadays, by multiplying and 
dividing. Apollonius had to find an area C such that AZ • TH : C :: EB2 : BA2 

and C : AT2 :: AA • AT : ZE • ET. He could then "cancel" C in accordance with 
the definition of compound ratio. 

It is not at all obvious how this proposition makes it possible to solve the four-
line locus, and Apollonius does not fill in the details. We shall not attempt to do so, 
either. To avoid excessive complexity, we merely state the four-line locus problem 
and illustrate it. The data for the problem are four lines, which for definiteness we 
suppose to intersect two at a time, and four given angles, one corresponding to each 
line. The problem requires the locus of points Ñ such that if lines are drawn from 
Ñ to the four lines, each making the corresponding angle with the given line (for 
simplicity all shown as right angles in Fig. 23), the rectangle on two of the lines will 
have a constant ratio to the rectangle on the other two. The solution is in general 
a pair of conies. 

The origin of this kind of problem may lie in the problem of two mean pro-
portionals, which was solved by drawing fixed reference lines and finding the loci 
of points satisfying two conditions resembling this. The square on the line drawn 
perpendicular to one reference line equals the rectangle on a fixed line and the line 
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drawn to the other reference line. The commentary on this problem by Pappus, who 
mentioned that Apollonius had left a great deal unfinished in this area, inspired 
Fermat and Descartes to take up the implied challenge and solve the problem com-
pletely. Descartes offered his success in solving the locus problem to any number 
of lines as proof of the value of his geometric methods. 

Questions and problems 

10.1. Show how it would be possible to compute the distance from the center of 
a square pyramid to the tip of its shadow without entering the pyramid, after first 
driving a stake into the ground at the point where the shadow tip was located at 
the moment when vertical poles cast shadows equal to their length. 

10.2. Describe a mechanical device to draw the quadratrix of Hippias. You need 
a smaller circle of radius 2/ð times the radius that is rotating, so that you can 
use it to wind up a string attached to the moving line; or conversely, you need the 
rotating radius to be ð/2 times the radius of the circle pulling the line. How could 
you get such a pair of circles? 

10.3. Prove that the problem of constructing a rectangle of prescribed area on part 
of a given base a in such a way that the defect is a square is precisely the problem of 
finding two numbers given their sum and product (the two numbers are the lengths 
of the sides of the rectangle). Similarly, prove that the problem of application with 
square excess is precisely the problem of finding two numbers (lengths) given their 
difference and product. 

10.4. Show that the problem of application with square excess has a solution for 
any given area and any given base. What restrictions are needed on the area and 
base in order for the problem of application with square defect to have a solution? 

10.5. Use an argument similar to the argument in Chapter 8 showing that the side 
and diagonal of a pentagon are incommensurable to show that the side and diagonal 
of a square are incommensurable. That is, show that the Euclidean algorithm, when 
applied to the diagonal and side of a square, requires only two steps to produce the 
side and diagonal of a smaller square, and hence can never produce an equal pair. 
To do so, refer to Fig. 24. 

In this figure AB = BC, angle ABC is a right angle, AD is the bisector of angle 
CAB, and DE is drawn perpendicular to AC. Prove that BD = DE, DE = EC, 
and AB = AE. Then show that the Euclidean algorithm starting with the pair 
{AC, AB) leads first to the pair {AB, EC) = {BC, BD), and then to the pair 
{CD, BD) = {CD, DE), and these last two are the diagonal and side of a square. 

10.6. It was stated above that Thales might have used the Pythagorean theorem in 
order to calculate the distance from the center of the Great Pyramid to the tip of its 
shadow. How could this distance be computed without the Pythagorean theorem? 

10.7. State the paradoxes of Zeno in your own words and tell how you would have 
advised the Pythagoreans to modify their system in order to avoid these paradoxes. 

10.8. Do we share any of the Pythagorean mysticism about geometric shapes that 
Proclus mentioned? Think of the way in which we refer to an honorable person 
as upright, or speak of getting a square deal, while a person who cheats is said 
to be crooked. Are there other geometric images in our speech that have ethical 
connotations? 
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FIGURE 23. The four-line locus. If a point moves so that the 
product of its distances to two lines bears a constant ratio to the 
product of its distances to two other lines, it must move in a conic. 
In this illustration, two conies satisfy the condition: one an ellipse, 
the other a hyperbola. 

10.9. In the Pythagorean tradition there were two kinds of mathematical activity. 
One kind, represented by the attempt to extend the theory of the transformation of 
polygons to circles and solid figures, is an attempt to discover new facts and enlarge 
the sphere of mathematics—to generalize. The other, represented by the discovery 
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FIGURE 24. Diagonal and side of a square. 

of incommensurables, is an attempt to bring into sharper focus the theorems already 
proved and to test the underlying assumptions of a theory—to rigorize. Are these 
kinds of activity complementary, opposed, or simply unrelated to each other? 

10.10. Hippocrates' quadrature of a lune used the fact that the areas of circles 
are proportional to the squares on their radii. Could Hippocrates have known this 
fact? Could he have proved it? 

10.11. Plato apparently refers to the famous 3-4-5 right triangle in the Republic, 
546c. Proclus alludes to this passage in a discussion of right triangles with commen-
surable sides. We can formulate the recipes that Proclus attributes to Pythagoras 
and Plato respectively as 

(2n + l ) 2 + (2n 2 + 2n) 2 = (2n 2 + 2n+ l ) 2 

and 
(2n) 2 + (ç 2 - l ) 2 = (ç2 + l ) 2 . 

Considering that Euclid's treatise is regarded as a compendium of Pythagorean 
mathematics, why is this topic not discussed? In which book of the Elements 
would it belong? 

10.12. Proposition 14 of Book 2 of Euclid shows how to construct a square equal in 
area to a rectangle. Since this construction is logically equivalent to constructing the 
mean proportional between two line segments, why does Euclid wait until Book 6, 
Proposition 13 to give the construction of the mean proportional? 

10.13. Show that the problem of squaring the circle is equivalent to the problem of 
squaring one segment of a circle when the central angle subtended by the segment 
is known. (Knowing a central angle means having two line segments whose ratio is 
the same as the ratio of the angle to a full revolution.) 

10.14. Referring to Fig. 18, show that all the right triangles in the figure formed 
by connecting B' with C, C with K, and K' with L are similar. Write down a 
string of equal ratios (of their legs). Then add all the numerators and denominators 
to deduce the equation 

(BB' + <%"+·· + KK' + LM) : AM = A'Β : ΒΑ. 
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FIGURE 25. Archimedes' trisection of an angle: ZATA = ^ZAAE. 

10.15. Show that Archimedes' result on the relative volumes of the sphere, cylinder, 
and cone can be obtained by considering the cylinder, sphere and double-napped 
cone formed by revolving a circle inscribed in a square about a midline of the 
square, the cone being generated by the diagonals of the square. In this case the 
area of a circular section of the cone plus the area of the same section of the sphere 
equals the area of the section of the cylinder since the three radii form the sides 
of a right triangle. The radius of a section of the sphere cuts off a segment of the 
axis of rotation from the center equal to the radius of the section of the cone, since 
the vertex angle of the cone is a right angle. These two segments form the legs of 
a right triangle whose hypotenuse is a radius of the sphere, which is equal to the 
radius of the section of the cylinder. 

10.16. A minor work attributed to Archimedes called the Book oj Lemmas contains 
an angle trisection. In Fig. 25 we are given an acute angle ZAAE, whose trisection 
is required. We draw a circle of any radius r about Ä, the vertex of the angle. 
Then, using a straightedge, we mark off on it two points Ñ and Q separated by the 
distance r. Setting the straightedge down so that Ñ is at point Ã on the extension 
of the diameter EAZ, Q is at point Β on the circle, and the point A is also on 
the edge of the straightedge, we draw the line ΑÃ. By drawing EH parallel to AT, 
we get ZATE = ZYEH. By joining AB, we obtain the isosceles triangle ÃΒΑ. 

Now since ZBAZ is a central angle on the arc BZ and is equal to ÆÂÃÄ, which 

is equal to ZZEH, which is inscribed in the arc ZH, it follows that ZH — 2 BZ. 

Since the arcs AE and Β Ç are equal (being cut off by parallel chords), we now get 

AE — BH= 3 BZ. Therefore, Ä AT Ε = ZBAZ = ±ZAAE. 
Why is this construction not a straightedge-and-compass trisection of the angle, 

which is known to be impossible? How does it compare with the neilsis trisection 
shown above? Show how to obtain this same result more simply by erasing every-
thing in the figure below the diameter of the circle. 

10.17. Show that the problem of increasing the size of a sphere by half is equivalent 
to the problem of two mean proportionals (doubling the cube). 

10.18. A circle can be regarded as a special case of an ellipse. What is the latus 
rectum of a circle? 
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10.19. When the equation y2 = Cx - kx2 is converted to the standard form 

a2 + b2 ' 
what are the quantities h, a, and b in terms of C and fc? 

10.20. Show from Apollonius' definition of the foci that the product of the distances 
from each focus to the ends of the major axis of an ellipse equals the square on half 
of the minor axis. 

10.21. We have seen that the three- and four-line locus problems have conic sections 
as their solutions. State and solve the two-line locus problem. You may use modern 
analytic geometry and assume that the two lines are the χ axis and the line y = ax. 
The locus is the set of points whose distances to these two lines have a given ratio. 
What curve is this? 

10.22. Show that the apparent generality of Apollonius' statement of the three-line 
locus problem, in which arbitrary angles can be prescribed at which lines are drawn 
from the locus to the fixed lines, is illusory. (To do this, show that the ratio of a 
line from a point Ñ to line / making a fixed angle è with the line / bears a constant 
ratio to the line segment from Ñ perpendicular to I. Hence if the problem is solved 
for all ratios in the special case when lines are drawn from the locus perpendicular 
to the given lines, then it is solved for all ratios in any case.) 

10.23. Show that the line segment from a point Ñ = (x,y) to a line ax + by = c 
making angle è with the line has length 

\ax + by — cj 

Use this expression and three given lines : á*÷ + hy = Ci, i = 1,2,3, to formulate 
the three-line locus problem analytically as a quadratic equation in two variables by 
setting the square of the distance from ( i , y) to line l\ equal to a constant multiple 
of the product of the distances to fa and I3. Show that the locus passes through 
the intersection of the line li with I2 and ^3, but not through the intersection of I2 
with i 3 . Also show that its tangent line where it intersects Zj is Z* itself, i = 2,3. 

10.24. One reason for doubting Cavalieri's principle is that it breaks down in one 
dimension. Consider, for instance, that every section of a right triangle parallel to 
one of its legs meets the other leg and the hypotenuse in congruent figures (a single 
point in each case). Yet the other leg and the hypotenuse are obviously of different 
lengths. Is there a way of redefining "sections" for one-dimensional figures so that 
Cavalieri's principle can be retained? If you could do this, would your confidence 
in the validity of the principle be restored? 

10.25. We know that interest in conic sections arose because of their application 
to the problem of two mean proportionals (doubling the cube). Why do you think 
interest in them was sustained to the extent that caused Euclid, Aristaeus, and 
Apollonius to write treatises developing their properties in such detail? 

10.26. Pappus' history of the conies implies that people knew that the ellipse, for 
example, could be obtained by cutting a right-angled cone with a plane. Can every 
ellipse be obtained by cutting a right-angled cone with a plane? Prove that it can, by 
showing that any a and b whatsoever in Eq. 2 can be obtained as the section of the 
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right-angled cone whose equation is y2 = zx by the plane χ = 2a — (a2z/b2). Then 
show that by taking a = eu/(l — e2), b = a\ / l — e 2 , χ = w, y = v, where e = h/w, 
you get Eq. 1. [Hint: Recall that e is constant in a given conic section. Also, 
observe that 0 < e < 1 for a section of an acute-angle cone, since h = u;tan(0/2), 
where è is the vertex angle of the cone.] 

10.27. As we have seen, Apollonius was aware of the string property of ellipses, 
yet he did not mention that this property could be used to draw an ellipse. Do 
you think that he did not notice this fact, or did he omit to mention it because he 
considered it unimportant? 

10.28. Prove Proposition 54 of Book 3 of Apollonius' Conies in the special case in 
which the conic is a circle and the point è is at the opposite end of the diameter 
from Β (Fig. 22). 





CHAPTER 11 

Post-Euclidean Geometry 

A certain dullness came over Greek geometry from the beginning of the second 
century BCE. The preceding century had seen the beginning of Roman expansion, 
whose early stage took the life of the aged Archimedes. Julius Caesar (100-44 
BCE), who did more than anyone before him to turn Rome from a republic into 
an empire, took an army to Egypt to fight his rival Pompey and incidentally help 
Cleopatra, the last of the heirs of Ptolemy Soter, defeat her brother in a civil war. 
In pursuing his aim he sent fire ships into the harbor of Alexandria to set it ablaze. 
Although he himself naturally says nothing about any destruction of the city, later 
writers, such as Plutarch in his Life of Caesar and Gellius in his Attic Nights, 
say that the fire damaged the Library. Gellius claims that 700,000 books were 
destroyed. After Caesar's heir Octavian defeated Mark Antony and Cleopatra in 
31 BCE, Egypt became a province of the Roman Empire. Whether because of this 
disruption or from limitations inherent in the Pythagorean philosophy, the level 
of brilliant achievements of Euclid, Archimedes, and Apollonius was not sustained. 
Nevertheless, geometry did not die out entirely, and some of the later commentators 
are well worth reading. Very little new geometry was written in Greek after the sixth 
century, however. From the ninth century to the fifteenth the Euclidean tradition 
in geometry was pursued by Muslim mathematicians. Since these mathematicians 
were also interested in the philosophy of Aristotle, in their work mathematics once 
again began to be mixed with philosophy, as it was in the time just before Euclid. 

When the Roman Empire was vigorous, all upper-class Romans understood 
Greek, and many seemed to prefer it to Latin. The Emperor Marcus Aurelius, 
for example, who ruled from 161 to 180, wrote his meditations in Greek. Af-
ter the Emperor Diocletian (284-305) split the empire into eastern and western 
halves to make it governable and the eastern Emperor Constantine (307-337), who 
proclaimed Christianity the official religion of the Empire, moved his capital to 
Constantinople, knowledge of Greek began to decline in the western part of the 
empire. Many books were translated into Latin, or replacements for them were 
written in Latin. 

The repeated ravaging of Italy by invaders from the north caused an irreversible 
decline in scholarship there. In the east, which fared somewhat better, scholarship 
continued for another thousand years, until the Turkish conquest of Constantinople 
in 1453. The eastern Emperor Justinian (525-565) managed to reassert his rule over 
part of Italy, but this project proved too expensive to sustain, and Italy was soon 
once again beyond the control of the Emperor. For several centuries before the reign 
of Justinian an entirely new civilization based on Christianity had been replacing 
the ancient Greco-Roman world, symbolically marked by the Justinian's closing of 
the pagan Academy at Athens in 529. 
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1. Hellenistic geometry 

Although the Euclidean restrictions set limits to the growth of geometry, there 
remained people who attempted to push the limits beyond the achievements of 
Archimedes and Apollonius, and they produced some good work over the next few 
centuries. We shall look at just a few of them. 

1.1. Zenodorus. The astronomer Zenodorus lived in Athens in the century fol-
lowing Apollonius. Although his exact dates are not known, he is mentioned by 
Diocles in his book On Burning Mirrors and by Theon of Smyrna. According to 
Theon, Zenodorus wrote On Isoperimetric Figures, in which he proved four theo-
rems: (1) If two regular polygons have the same perimeter, the one with the larger 
number of sides encloses the larger area; (2) a circle encloses a larger area than any 
regular polygon whose perimeter equals its circumference; (3) of all polygons with 
a given number of sides and perimeter, the regular polygon is the largest; (4) of all 
closed surfaces with a given area, the sphere encloses the largest volume. With the 
machinery inherited from Euclidean geometry, Zenodorus could not have hoped for 
any result more general than these. Let us examine his proof of the first two, as 
reported by Theon. 

Referring to Fig. 1, let ΑΒÃ and ÄΕÆ be two regular polygons having the same 
perimeter, with ABT having more sides than AEZ. Let Ç and è be the centers 
of these polygons, and draw the lines from the centers to two adjacent vertices and 
their midpoints, getting triangles ΒÃÇ and ΕÆÈ and the perpendicular bisectors 
of their bases Ç Ê and ÈË. Then, since the two polygons have the same perimeter 
but ΑΒÃ has more sides, BK is shorter than Ε A. Mark off Ì on Ε A so that MA = 
BK. Then if Ñ is the common perimeter, we have Ε A : Ñ :: ÆΕÈΑ : 4 right angles 
and Ñ : BK :: 4 right angles : ZBHK. By composition, then Ε A : BK :: ÆΕÈΑ : 
ZBHK, and therefore EA : MA :: ÆΕÈΑ : ZBHK. But, Zenodorus claimed, the 
ratio EA : MA is larger than the ratio ÆΕÈΑ : ÆÌÈΑ, asking to postpone the 
proof until later. Granting that lemma, he said, the ratio ÆΕÈΑ : ZBHK will 
be larger than the ratio ÆΕÈΑ : ÆÌÈΑ, and therefore ZBHK is smaller than 
ÆÌÈΑ. It then follows that the complementary angles ZHBK and ÆÈÌΑ satisfy 
the reverse inequality. Hence, copying ZHBK at Ì so that one side is along MA, 
we find that the other side intersects the extension of ËÈ at a point Í beyond 
È. Then, since triangles BHK and MNA are congruent by angle-side-angle, it 
follows that Ç Ê = ÍΑ > ÈË. But it is obvious that the areas of the two polygons 
are \HK • Ñ and ^ÈË · Ñ, and therefore ABT is the larger of the two. 

The proof that the ratio Ε A : MA is larger than the ratio ÆΕÈΑ : ÆÌÈΑ was 
given by Euclid in his Optics, Proposition 8. But Theon does not cite Euclid in 
his quotation of Zenodorus. He gives the proof himself, implying that Zenodorus 
did likewise. The proof is shown on the top right in Fig. 1, where the circular arc 
ÎÌÍ has been drawn through Ì with è as center. Since the ratio ΑΕÈÌ : 
sector ÍÈÌ is larger than the ratio ÄÌÈË : sector ÌÈÎ (the first triangle is 
larger than its sector, the second is smaller), it follows, interchanging means, that 
ΕÈÌ : ÌÈΑ > sector ÍÈÌ : sector ÌÈÎ. But ΕÈÌ : ÌÈΑ :: EM : MA, since 
the two triangles have the same altitude measured from the base line EM A. And 
sector ÍÈÌ : sector ÌÈÎ :: ÆΕÈÌ : ÆÌÈΑ. Therefore, EM : MA is larger 
than the ratio ÆΕÈÌ : ÆÌÈΑ, and it then follows that Ε A : MA is larger than 
ÆΕÈΑ : ÆÌÈΑ. 
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FIGURE 1. Two theorems of Zenodorus. Top: When two regular 
polygons have the same perimeter, the one with the larger number 
of sides is larger. Bottom: A circle is larger than a regular polygon 
whose perimeter equals the circumference of the circle. 

Zenodorus' proof that a circle is larger than a regular polygon whose perimeter 
equals the circumference of the circle is shown at the bottom of Fig. 1. Given 
such a polygon and circle, circumscribe a similar polygon around the circle. Since 
this polygon is "convex on the outside," as Archimedes said in his treatise on 
the sphere and cylinder, it can be assumed longer than the circumference. (Both 
Archimedes and Zenodorus recognized that this was an assumption that they could 
not prove; Zenodorus cited Archimedes as having assumed this result.) That means 
the circumscribed polygon is larger than the original polygon since it has a larger 
perimeter. But then by similarity, Ç Ê is larger than ÈË. Since the area of the 
circle equals half of the rectangle whose sides are its circumference and HK, while 
the area of the polygon is half of the rectangle whose sides are its perimeter and 
ÈË, it follows that the circle is larger. 

1.2. The parallel postulate. We saw in the Chapter 10 that there was a debate 
about the theory of parallel lines in Plato's Academy, as we infer from the writing 
of Aristotle. This debate was not ended by Euclid's decision to include a parallel 
postulate explicitly in the Elements. This foundational issue was discussed at length 
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by the Stoic philosopher Geminus, whose dates are a subject of disagreement among 
experts, but who probably lived sometime between 50 BCE and 50 CE. Geminus 
wrote an encyclopedic work on mathematics, which has been entirely lost, except 
for certain passages quoted by Proclus, Eutocius, and others. Proclus said that 
the parallel postulate should be completely written out of the list of postulates, 
since it is really a theorem. The asymptotes of hyperbolas provided the model on 
which he reasoned that converging is not the same thing as intersecting. But still 
he thought that such behavior was impossible for straight lines. He claimed that 
a line that intersected one of two parallel lines must intersect the other, 1 and he 
reports a proof of Geminus that assumes in many places that certain lines drawn 
will intersect, not realizing that by doing so he was already assuming the parallel 
postulate. 

Proclus also reports an attempt by Ptolemy to prove the postulate by arguing 
that a pair of lines could not be parallel on one side of a transversal "rather than" 
on the other side. (Proclus did not approve of this argument.) But of course the 
assumption that parallelism is two-sided is one of the properties of Euclidean geom-
etry that does not extend to hyperbolic geometry. These early attempts to prove 
the parallel postulate began the process of unearthing more and more plausible 
alternatives to the postulate, but of course did not lead to a proof of it. 

1.3. Heron. We have noted already the limitations of the Euclidean approach 
to geometry, the chief one being that lengths are simply represented as lines, not 
numbers. After Apollonius, however, the metric aspects of geometry began to 
resurface in the work of later writers. One of these writers was Heron (ca. 10-ca. 
75), who wrote on mechanics; he probably lived in Alexandria. Pappus discusses 
his work at some length in Book 8 of his Synagoge. Heron's geometry is much 
more concerned with measurement than was the geometry of Euclid. The change 
of interest in the direction of measurement and numerical procedures signaled by 
his Metrica is shown vividly by his repeated use (130 times, to be exact) of the word 
area (embadon), a word never once used by Euclid, Archimedes, or Apollonius.2 

There is a difference in point of view between saying that two plane figures are equal 
and saying that they have the same area. The first statement is geometrical and is 
the stronger of the two. The second is purely numerical and does not necessarily 
imply the first. Heron discusses ways of finding the areas of triangles from their 
sides. After giving several examples of triangles that are either integer-sided right 
triangles or can be decomposed into such triangles by an altitude, such as the 
triangle with sides of length 13, 14, 15, which is divided into a 5-12-13 triangle and 
a 9-12-15 triangle by the altitude to the side of length 14, he gives "a direct method 
by which the area of a triangle can be found without first finding its altitude." He 

1 This assertion is an assumption equivalent to the parallel postulate and obviously equivalent to 
the form of the postulate commonly used nowadays, known as Playfair's axiom: Through a given 
point not on a line, only one parallel can be drawn to the line. 
2 Reporting (in his commentary on Ptolemy's Almagest) on Archimedes' measurement of the 
circle, however, Theon of Alexandria did use this word to describe what Archimedes did; but 
that usage was anachronistic. In his work on the sphere, for example, Archimedes referred to its 
surface (epiphdneia), not its area. On the other hand, Dijksterhuis (1956, pp. 412-413) reports the 
Arabic mathematician al-Biruni as having said that "Heron's formula" is really due to Archimedes. 
Considering the contrast in style between the proof and the applications, it does appear plausible 
that Heron learned the proof from Archimedes. Heath (1921, Vol. 2, p. 322) endorses this assertion 
unequivocally. 
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FIGURE 2. Heron's proof of his direct method of computing the 
area of a triangle. 

gave as an example a triangle whose sides were 7, 8, and 9 units. His prescription 
was: Add 9 and 8 and 7, getting 24. Take half of this, getting 12. Subtract 7 
units from this, leaving 5. Then subtract 8 from 12, leaving 4. Finally, subtract 9, 
leaving 3. Multiply 12 by 5, getting 60. Multiply this by 4, getting 240. Multiply 
this by 3, getting 720. Take the square root of this, and that will be the area of the 
triangle. He went on to explain that since 720 is not a square, it will be necessary 
to approximate, starting from the nearest square number, 729. 

This result seems anomalous in Greek geometry, since Heron is talking about 
multiplying an area by an area. That is probably why he emphasizes that his results 
are numerical rather than geometric. An examination of his proof of the formula 
shows that he need not have multiplied two areas together. He must have made a 
deliberate choice to express himself this way. His proof is based on Fig. 2, in which 
one superfluous line has been omitted to streamline it. In the following proof, some 
rewording has been done to accommodate this minor modification of the figure. 

The lines AB and AH are perpendicular respectively to BT and HT. The proof 
follows easily once it is shown that the quadrilateral ΑΒÇÃ is cyclic, that is, can 
be inscribed in a circle. In fact, if Ó denotes the semiperimeter, then 

Ó 2 : Ó · (Ó - ΒÃ) :: Ó : (Ó - ΒÃ) :: (Ó - ÁÃ) : ÊΕ :: (Ó - ΑÃ) ÃΕ.ÊΕÃΕ 

= (Ó - ΑÃ) • (Ó - AB) : ΕÇ2 . 

Here ÊΕ • ÔΕ = EH2 because EH is the altitude to the base of the right triangle 
HKY. 

Heron could have stated the result in Euclidean language if he had wanted to. 
If he were to regard each term in the proportion 

Ó 2 : Ó • (Ó - ΒÃ) :: (Ó - ΑÃ) • (Ó - ΑΒ) : ΕÇ2 

as an area and take the sides of squares equal to them, he would have four squares 
in proportion, of sides Ó, á, â, EH, where a is the mean proportional between Ó 
and Ó — ΒÃ and â the mean proportional between Ó - ΑÃ and Ó - AB. It would 
need to be proved that if four squares are in proportion, then their sides are also 
in proportion; however, that fact follows immediately from the Eudoxan theory of 
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proportion (see Problem 11.3). Working with the sides of the squares, it would 
then be legitimate to multiply means and extremes—that is, to form rectangles on 
the sides—since the appropriate theorems were proved in Book 6 of Euclid. He 
could have said that the triangle ABT equals the rectangle on Ó and EH, which in 
turn equals the rectangle on a and â. The assertion that the triangle ABT is the 
rectangle on a and â is precisely Heron's theorem. What he has done up to this 
point would not have offended a logical Euclidean purist. Why did he not finish 
the proof in this way? 

The most likely explanation is that the proof came from Archimedes, as many 
scholars believe, and that Heron was aiming at numerical results. Another possible 
explanation is that our reconstruction of what Heron could have done lacks the 
symmetry of the process described by Heron, since á and â do not contain the 
sides in symmetric form. Whatever the reason, his summing up of the argument 
leaves no doubt that he was willing to accept the product of two areas as a product 
of numbers. 

1.4. Pappus. Book 4 of Pappus' Synagoge contains a famous generalization of 
the Pythagorean theorem: Given a triangle ABT and any parallelograms BTZH 
and ΑΒÄΕ constructed on two sides, it is possible to construct (with straightedge 
and compass) a parallelogram ATMh. on the third side equal in area to the sum of 
the other two (see Fig. 3). 

The isoperimetric problem. In Book 5 Pappus states almost verbatim the argument 
that Thcon of Alexandria, quoting Zenodorus, gave for the proof of the isoperimet-
ric inequality. Pappus embroiders the theorem with a beautiful literary device, 
however. He speaks poetically of the divine mission of the bees to bring from 
heaven the wonderful nectar known as honey and says that in keeping with this 
mission they must make their honeycombs without any cracks through which honey 
could be lost. Being endowed with a divine sense of symmetry as well, the bees 
had to choose among the regular shapes that could fulfill this condition, that is, 
triangles, squares, and hexagons. They chose the hexagon because a hexagonal 
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prism required the least material to enclose a given volume, out of all the possible 
prisms whose base would tile the plane.3 

Analysis, locus problems, and Pappus' theorem. Book 7 of the Synagoge is a trea-
sure trove of fascinating information about Greek geometry for several reasons. 
First, Pappus describes the kinds of techniques used to carry on the research that 
was current at the time. He lists a number of books of this analysis and tells who 
wrote them and what their contents were, in general terms, thereby providing valu-
able historical information. What he means by analysis, as opposed to synthesis, 
is a kind of algebraic reasoning in geometry. As he puts it, when a construction is 
to be made or a relation is to be proved, one imagines the problem to have been 
solved and then deduces consequences connecting the result with known principles, 
after which the process is reversed and a proof can be synthesized. This process 
amounts to thinking about objects not yet determined in terms of properties that 
they must have; when applied to numbers, that process is algebra. 

Second, Book 7 also contains a general discussion of locus problems, such as we 
have already encountered in Apollonius' Conies. This discussion exerted a strong 
influence on the development of geometry in seventeenth-century France. 

Proposition 81 of Euclid's Data, discussed above, inspired Pappus to create a 
very general proposition about plane loci. Referring to the points of intersection of 
a set of lines, he writes: 

To combine these discoveries in a single proposition, we have writ-
ten the following. If three points are fixed on one line... and all 
the others except one are confined to given lines, then that last one 
is also confined to a given line. This is asserted only for four lines, 
no more than two of which intersect in the same point. It is not 
known whether this assertion is true for every number. 

Pappus could not have known that he had provided the essential principle by 
which a famous theorem of projective geometry known as Desargues' theorem (see 
Section 2 of Chapter 12) was to be proved 1400 years later. Desargues certainly 
knew the work of Pappus, but may not have made the connection with this theorem. 
The connection was pointed out by van der Waerden (1963, p. 287). 

Pappus discusses the three- and four-line locus for which the mathematical 
machinery is found in Book 3 of Apollonius' Conies. For these cases the locus is 
always one of the three conic sections. Pappus mentions that the two-line locus 
is a planar problem; that is, the solution is a line or circle. He says that a point 
satisfying the conditions of the locus to five or six lines is confined to a definite 
curve (a curve "given in position" as the Greeks said), but that this curve is "not 
yet familiar, and is merely called a curve." The curve is defined by the condition 
that the rectangular parallelepiped spanned by the lines drawn from a point to 
three fixed lines bears a fixed ratio to the corresponding parallelepiped spanned by 
the lines drawn to three other fixed lines. In our terms, this locus is a cubic curve. 

3 If one is looking for mathematical explanations of this shape, it would be simpler to start with 
the assumption that the body of a bee is approximately a cylinder, so that the cells should be 
approximately cylinders. Now one cylinder can be tightly packed with six adjacent cylinders of 
the same size. If the cylinders are flexible and there is pressure on them, they will flatten into 
hexagonal prisms. 
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Third, in connection with the extension of these locus problems, Pappus con-
siders the locus to more than six lines and says that a point satisfying the corre-
sponding conditions is confined to a definite curve. This step was important, since 
it proposed the possibility that a curve could be determined by certain conditions 
without being explicitly constructible. Moreover, it forced Pappus to go beyond the 
usual geometric interpretation of products of lines as rectangles, thus pushing the 
same boundary that Heron had gone through. Noting that "nothing is subtended 
by more than three dimensions," he continues: 

It is true that some of our recent predecessors have agreed among 
themselves to interpret such things, but they have not made a 
meaningful clear definition in saying that what is subtended by 
certain things is multiplied by the square on one line or the rec-
tangle on others. But these things can be stated and proved using 
the composition of ratios. 

It appears that Pappus was on the very threshold of the creation of the modern 
concept of a real number as a ratio of lines. Why did he not cross that threshold? 
The main reason was probably the cumbersome Euclidean definition of a composite 
ratio, discussed in Chapter 10. But there was a further reason: he wasn't interested 
in foundational questions. He made no attempt to prove or justify the parallel 
postulate, for example. And that brings us to the fourth attraction of Book 7. In 
that book Pappus investigated some very interesting problems, which he preferred 
to foundational questions. After concluding his discussion of the locus problems, he 
implies that he is merely reporting what other people, who are interested in them, 
have claimed. "But," he says, 

after proving results that are much stronger and promise many 
applications,.. .to show that I do not come boasting and empty-
handed. .. I offer my readers the following: The ratio of rotated 
bodies is the composite of the ratio of the areas rotated and the 
ratio of straight lines drawn similarly [at the same angle] from 
their centers of gravity to the axes of rotation. And the ratio of 
incompletely rotated bodies is the composite of the ratio of the ar-
eas rotated and the ratio of the arcs described by their centers of 
gravity. 

Pappus does not say how he discovered these results, nor does he give the 
proof. The proof would have been fairly easy, given that he had read Archimedes' 
Quadrature of the Parabola, in which the method of exhaustion is used. For the 
first theorem it would have been sufficient to compute the volume generated by 
revolving a right triangle with one leg parallel to the axis of rotation, and in that 
case the volume could be computed by subtracting the volume of a cylinder from 
the volume of a frustum of a cone. If the theorem is true for two nonoverlapping 
areas, it is easily seen to be true for the union of those areas. Pappus could then 
have applied the method of exhaustion to get the general result. The second result 
is an immediate application of the Eudoxan theory of proportion, since the volume 
generated is obviously in direct proportion to the angle of rotation, as are the 
arcs traversed by individual points. The modern theorem that is called Pappus' 
theorem asserts that the volume of a solid of revolution is equal to the product of 
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the area rotated and the distance traversed by its center of gravity (which is 2ð 
times the length of the line from the center of gravity to the axis of rotation). In 
the modern form this theorem was first stated in 1609 by the Swiss astronomer-
mathematician Paul Guldin (1577-1643), a Jesuit priest, and published between 
1635 and 1640 in the second volume of his four-volume work Centrobaryca seu 
de centra gravitatis trium specierum quantitatis continuae (The Barycenter, or on 
the Center of Gravity of the Three Kinds of Continuous Magnitude). Guldin had 
apparently not read Pappus and made the discovery independently. He did not 
prove the result, and the first proof is due to Bonaventura Cavalicri (1598-1647). 

2. Roman geometry 

In the Roman Empire geometry found applications in mapmaking. The way back 
from the abstractness of Euclidean geometry was led by Heron, Ptolemy, and 
other geometers who lived during the early Empire. We have already mentioned 
Ptolemy's Almagest, which was an elegant arithmetization of some basic Euclidean 
geometry applied to astronomy. In it, concrete computations using the table of 
chords are combined with rigorous geometric demonstration of the relations in-
volved. But Ptolemy studied the Earth as well as the sky, and his contribution to 
geography is also a large one, and also very geometric. 

Ptolemy was one of the first scholars to look at the problem of representing 
large portions of the Earth's surface on a flat map. His data, understandably very 
inaccurate from the modern point of view, came from his predecessors, including the 
astronomers Eratosthenes (276-194) and Hipparchus (190-120) and the geographers 
Strabo (ca. 64 BCE-24 CE) and Marinus of Tyre (70-130), whom he followed 
in using the now-familiar lines of latitude and longitude. These lines have the 
advantage of being perpendicular to one another, but the disadvantage that the 
parallels of latitude are of different sizes. Hence a degree of longitude stands for 
different distances at different latitudes. 

Ptolemy assigned latitudes to the inhabited spots that he knew about by com-
puting the length of sunlight on the longest day of the year. This computational 
procedure is described in Book 2, Chapter 6 of the Almagest, where Ptolemy de-
scribes the latitudes at which the longest day lasts 12j hours, 12 | hours, and so 
on up to 18 hours, then at half-hour intervals up to 20 hours, and finally at 1-hour 
intervals up to 24. Although he knew theoretically what the Arctic Circle is, he 
didn't know of anyone living north of it, and took the northernmost location on the 
maps in his Geography to be Thoule, described by the historian Polybius around 
150 BCE as an island six days sail north of Britain that had been discovered by the 
merchant-explorer Pytheas (380-310) of Masillia (Marseille) some two centuries 
earlier.4 It has been suggested that Thoule is the Shetland Islands (part of Scot-
land since 1471), located between 60° and 61° north; that is just a few degrees south 
of the Arctic Circle, which is at 66° 30'. It is also sometimes said to be Iceland, 
which is on the Arctic Circle, but west of Britain rather than north. Whatever 
it was, Ptolemy assigned it a latitude of 63°, although he said in the Almagest 
that some "Scythians" (Scandinavians and Slavs) lived still farther north at 6 4 5 ° . 

Ptolemy did know of people living south of the equator and took account of places 
as far south as Agisymba (Ethiopia) and the promontory of Prasum (perhaps Cabo 
Delgado in Mozambique, which is 14° south). Ptolemy placed it 12° 30' south of 

4 The Latin idiom uiiiraa Thule means roughly the last extremity. 
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FIGURE 4. Ptolemy's first method of mapping. 

the Equator. The extreme southern limit of his map was the circle 16° 25' south of 
the equator, which he called "anti-Meroe," since Meroe was 16° 25' north. 

Since he knew only the geography of what is now Europe, Africa, and Asia, he 
did not need 360° of longitude. He took his westernmost point to be the Blessed 
Islands (possibly the Canary Islands, at 17° west). That was his prime meridian, 
and he measured longitude out to 180° eastward from there, to the Seres5 and the 
Chinese (Sinai) and "Kattigara." According to Dilke (1985, p. 81), "Kattigara" 
may refer to Hanoi. Actually, the east-west span from the Canary Islands to 
Shanghai (about 123° east) is only 140° of longitude. Ptolemy's inaccuracy is due 
partly to unreliable reports of distances over trade routes and partly to his decision 
to accept 500 stades as the length of a degree of latitude when the true distance is 
about 600 stades. 6 We are not concerned with geography, however, only with its 
mathematical aspects. 

The problem Ptolemy faced was to draw a flat map of the Earth's surface 
spanning 180° of longitude and about 80° degrees of latitude, from 16° 25' south 
to 63° north. Ptolemy described three methods of doing this, the first of which we 
shall now discuss. The latitude and longitude coordinates of the inhabited world 
(oikumene) known to Ptolemy represent a rectangle whose width is | of its length. 
But Ptolemy did not like to represent parallels of latitude as straight lines; he 
preferred to draw them as arcs of concentric circles while keeping the meridians 

5 The Seres were a Hindu people known to the Greeks from the silk trade. 
6 It has become a commonplace that Christopher Columbus, relying on Ptolemy's geography, 
expected to reach the Orient at a distance that would have placed him in the middle of the Pacific 
Ocean had North America not been in the way. If he believed Ptolemy, he would have thought 
it about 180° of longitude, which at a latitude of 40° would have been about 138 great-circle 
degrees. But he thought a degree was 500 stades (92 km), and hence that the distance to Japan 
was about 12,700 km. Since a degree is actually 600 stades (110 km), the journey would have 
been more than 15,000 km. But the latitude of Japan is slightly south of the latitude of Spain. 
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of longitude as straight lines emanating from the common center, representing the 
north pole. Thus, his plan is to map this portion of the Earth into the portion 
of a sector of a disk bounded by two radii and two concentric circles. In terms 
of Fig. 4, his first problem is to decide which radii and which circles are to form 
these boundaries. Ptolemy recognized that it would be impossible in such a map 
to place all the parallels of latitude at the correct distances from one another and 
still get their lengths in proportion. He decided to keep his northernmost parallel, 
through Thoule, in proportion to the parallel through the equator. That meant 
these arcs should be in the proportion of about 9:20—to be precise, cos(63°) in 
our terms. Since there would be 63 equal divisions between that parallel and the 
equator, he needed the upper radius χ to satisfy χ : (χ + 63) :: 9 : 20. Solving this 
proportion is not hard, and one finds that χ = 52, to the nearest integer. The next 
task was to decide on the angular opening. For this principle he decided, like his 
predecessor Marinus, to get the parallel of latitude through Rhodes in the correct 
proportion. Since Rhodes is at 36° latitude, half of the parallel through it amounts 
to about I of the 180° arc of a great circle, which is about 145°. Since the radius 
of Rhodes must be 79 (27 great-circle degrees more than the radius of Thoule), he 
needed the opening angle of the sectors è to satisfy è : 180° :: 146 : 79ð, so that 
9 « 106°. After that, he inserted meridians of longitude every one-third of an hour 
of longitude (5°) fanning out from the north pole to the equator. 

Ptolemy recognized that continuing to draw the parallels of latitude in the 
same way for points south of the equator would lead to serious distortion, since the 
circles in the sector continue to increase as the distance south of the north pole 
increases, while the actual parallels on the Earth begin to decrease at that point. 
The simplest solution to that problem, he decided, was to let his southernmost 
parallel at 16° 25' south have its actual length, then join the meridians through 
that parallel by straight lines to the points where they intersect the equator. Once 
that decision was made, he was ready to draw the map on a rectangular sheet of 
paper. He gave instructions for how to do that: Begin with a rectangle that is 
approximately twice as long as it is wide, draw the perpendicular bisector of the 
horizontal (long) sides, and extend it above the upper edge so that the portion 
above that edge and the whole bisector are in the ratio 34° : 131°, 25'. In that 
way, the 106° arc through Thoule will begin and end just slightly above the upper 
edge of the rectangle, while the lowest point of the map will be at the foot of the 
bisector, being about 80 units below the lowest point on the parallel of Thoule, as 
indicated by the dashed line in Fig. 4. 

This way of mapping is not a conical projection, as it might appear to be, since 
it preserves north-south distances. It does a tolerably good job of mapping the 
parts of the world for which Ptolemy had reliable data. One can recognize Europe 
and the Middle East in the map of Plate 8, constructed around the year 1300 CE 
to accompany an edition of the Geography. 

2.1. Roman civil engineering. Dilke (1985, pp. 88-90) describes the use of ge-
ometry in Roman civil engineering as follows. The center of a Roman village would 
be at the intersection of two perpendicular roads, a (usually) north-south road 
called the kardo maximus (literally, the main hinge) and an east-west road called 
decumanus maximus, the main tenth. Lots were laid out in blocks (insula?) called 
hundredths (centunae), each block being assigned a pair of numbers, telling how 
many units it was dextra decumani (on the right decumanus) or sinistra decumani 
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FIGURE 5. Nipsus' method of computing the width of a river. 

(on the left decumanus) and how many units it was ultra kardinem (on the far 
kardo) or citra kardinem (on the near kardo). 7 

A collection of Roman writings on surveying was collected, translated into Ger-
man, and published in Berlin in the middle of the nineteenth century. This two-
volume work bears the title Corpus Agrimensorum Romanorum, the word agrimen-
sor (field measurer) being the Latin name for a surveyor. Among the agrimensores 
was one named M. Iunius Nipsus, a second-century surveyor, who, according to 
Dilke (1985, p. 99), gives the following directions for measuring the width of a river 
(Fig. 5). 

You mark the point C on the opposite bank from Β (a part of the procedure 
Nipsus neglects to mention until later), continue the straight line CB to some 
convenient point A, lay down the crossroads sign at A, then move along the direction 
perpendicular to AC until you reach a point G, where you erect a pole, then continue 
on to D so that GD = AG. You then move away from D along the direction 
perpendicular to AD until you see G and C in a straight line from the point H. 
Since the triangles AGC and DGH are congruent (by angle-side-angle), it follows 
that CB = CA - AB = HD - AB. 

For this procedure to work in practice, it is necessary to have an accessible and 
level piece of land covering the lines shown as AD and DH. If the river is large, 
such a stretch of land may not exist, since the river banks are likely to be hilly. In 
its neglect of similar triangles, this method seems a large step backward in applied 
geometry. 

3. Medieval geometry 

Among the translations of Greek works into Latin mentioned above was a transla-
tion of Euclid's Elements written by Boethius (ca. 480-524). This work has been 
lost, although references to it survive.8 A "pseudo-Boethius" text of geometry, 
written some centuries later, has survived. It may have been a standard text dur-
ing the Middle Ages. There were anonymous treatises on geometry during this time, 
some attributed to Boethius, usually containing Latin translations of a few of the 

7 In modern terms these would be First Avenue East, First Avenue West, North Main Street, 
and South Main Street. 
8 For example, in his Encyclopedia of Liberal and Literary Studies the early sixth-century writer 
Magnus Aurelius Cassiodorus refers to the great Greek mathematicians "of whom Euclid was 
given to us translated into the Latin language by the same great man Boethius." 
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early books of Euclid, often drastically edited. The tradition of attributing these 
works to Boethius continued even in the twelfth century, when translations from 
Arabic began to appear, as one can see in the booklets of Folkerts (1970, 1971), the 
second of which compares an anonymous Latin version ascribed to Boethius with 
the translation (from Arabic) of Athelhard of Bath. In a series of papers (1999, 
2000) Zaitsev has argued that the pseudo-Boethius was enlarging the commen-
taries on Euclid by including material from surveying and geometric astronomy. 
As a result, 

[I] ç the writing process geometric concepts were systematically 
translated into the language of surveying, and the resulting melange 
of surveying and geometry was used as the basis for discussing 
the theological-cosmological significance of the discipline. [Zait-
sev, 2000, p. 222] 

Thus, in the West also, mathematics became once again mixed with philosophy, 
but this time with the philosophy of Christianity.9 Zaitsev also notes (2000, p. 
223) that the idea of multiple layers of meaning was dear to the authors of medieval 
texts; but in contrast to biblical commentaries, which were strictly separated from 
the texts used as a source, commentaries and sources were routinely intermixed in 
the geometric work. 

Mathematics sank to a rather low level in Europe after 500 CE, recovering 
only slightly if at all in the Carolingian Renaissance of the ninth century. One 
of the better-informed scholars of the tenth century was Gerbert of Aurillac (ca. 
940-1002), who reigned as Pope Sylvester II during the last three years of his life. 
Even though Gerbert was one of the leading scholars of his day, who advocated the 
use of Hindu-Arabic numerals, one of his letters to a certain Adalbold of Liege is 
occupied with a discussion of the rule for finding the area of a triangle given its base 
and altitude! The general level of geometry, however, was not so bad as the corre-
spondence between Gerbert and Adalbold seems to imply. In fact, Gerbert wrote, 
but did not finish, Geometria, a practical manual of surveying based on what was 
probably in Boethius' textbook. This work, which can be read online, 1 0 consists 
of 89 brief chapters devoted to triangles, circles, spheres, and regular polygons. It 
gives the names of standard units of length and finds the areas of such simple figures 
as a trapezoid (Chapter XVLIII) and a semicircle (Chapter LXXIX, where the rule 
is given to multiply the square of the diameter by 11 and divide the product by 28). 
A specimen that may be typical of the level of geometric knowledge used in civil en-
gineering, architecture, surveying, and geometric astronomy in the twelfth century, 
just as translations from Arabic works began to circulate in Europe, is provided by 
Hugh of St. Victor's Practical Geometry (Homann, 1991), in which one can find a 
description of the construction and use of an astrolabe (a fundamental tool used by 

9 Compare with the quotations from the pseudo-Boethius and Gerbert in Chapter 3. 
1 0 http:Wpld.chadvyck.com, a commercial site that provides the Patrologia Latino, of Jacques-
Paul Migne (1800-1875). Search for the title "geometria." 
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navigators and explorers for many centuries)1 1 and a discussion of different ways 
of using similar triangles to determine distances to inacessible objects. 

3.1. Late Medieval and Renaissance geometry. In the late Middle Ages Eu-
ropeans from many countries eagerly sought Latin translations of Arabic treatises, 
just as some centuries earlier Muslim scholars had sought translations of Hindu and 
Greek treatises. In both cases, those treatises were made the foundation for ever 
more elaborate and beautiful mathematical theories. An interesting story arises in 
connection with these translations, showing the unreliability of transmission. The 
Sanskrit word "bowstring" [jya) used for a half-chord of a circle was simply bor-
rowed by the Arab translators and written as jb, apparently pronounced jiba, since 
Arabic was written without vowels. Over time, this word came to be interpreted as 
jaib, meaning a pocket or fold in a garment. When the Arabic works on trigonom-
etry were translated into Latin in the twelfth century, this word was translated as 
sinus, which also means a pocket or cavity. The word caught on very quickly, ap-
parently because of the influence of Leonardo of Pisa, and is now well established 
in all European languages. That is the reason we now have three trigonometric 
functions, the secant (Latin for cutting), the tangent (Latin for touching), and the 
sine (Latin for a concept having nothing at all to do with geometry!). 

We think of analytic geometry as the application of algebra to geometry. Its 
origins in Europe, however, antedate the high period of European algebra by a 
century or more. The first adjustment in the way mathematicians think about 
physical dimensions, an essential step on the way to analytic geometry, occurred in 
the fourteenth century. 

Nicole d 'Oresme. The first prefiguration of analytic geometry occurs in the work of 
Nicole d'Oresme (1323-1382). The Tractatus de latitudinibus formarum, published 
in Paris in 1482 and ascribed to Oresme but probably written by one of his students, 
contains descriptions of the graphical representation of intensities. The crucial 
realization that he came to was that since the area of a rectangle is computed 
by multiplying length and width and the distance traveled at constant speed is 
computed by multiplying velocity and time, it follows that if one line is taken 
proportional to time and a line perpendicular to it is proportional to a (constant) 
velocity, the area of the resulting rectangle is proportional to the distance traveled. 

Oresme considered three forms of qualities, which he labeled uniform, uniformly 
difform, and difformly difform. We would call these classifications constant, linear, 
and nonlinear. Examples are provided in Fig. 6, although Oresme realized that the 
"difformly difform" constituted a large class of qualities and mentioned specifically 
that a semicircle could be the representation of such a quality. 

The advantage of representing a distance by an area rather than a line appeared 
in the case when the velocity changed during a motion. In the simplest nontrivial 
case the velocity was uniformly difform. In that case, the distance traversed is 
what it would have been had the body moved the whole time with the velocity it 

1 1 The FVench explorer Samuel de Champlain (1567-1635) apparently lost his astrolabe while 
exploring the Ottawa River in 1613. Miraculously, that astrolabe was found 254 years later, 
in 1867, and the errors in Champlain's diaries were used by an author named Alex Jamieson 
Russell (1807-1887) to establish the fact and date of the loss (Russell, 1879). The discovery of 
this astrolabe only a month after the founding of the Canadian Federation was of metaphorical 
significance to Canadian poets. See, for example, The Buried Astrolabe, by Craig Stewart Walker, 
McGill-Queens University Press, Montreal, 2001, a collection of essays on Canadian dramatists. 



3. MEDIEVAL GEOMETRY 331 

Uniformly uniform Uniformly difform Difformly difform 

FIGURE 6. Nicole Oresme's classification of motions. 

had at the midpoint of the time of travel. This is the case now called uniformly 
accelerated motion. According to Clagett (1968, p. 617), this rule was first stated 
by William Heytesbury (ca. 1313-ca. 1372) of Merton College, Oxford around 1335 
and was well known during the Middle Ages. 1 2 It is called the Merton Rule. In his 
book De configurationibus qualitatum et motuum, Oresme applied these principles 
to the analysis of such motion and gave a simple geometric proof of the Merton 
Rule. He illustrated the three kinds of motion by drawing a figure similar to Fig. 6. 
He went on to say that if a difformly difform quality was composed of uniform or 
uniformly difform parts, as in the example in Fig. 6, its quantity could be mea-
sured by (adding) its parts. He then pushed this principle to the limit, saying that 
if the quality was difform but not made up of uniformly difform parts, say being 
represented by a curve, then "it is necessary to have recourse to the mutual mea-
surement of curved figures" (Clagett, 1968, p. 410). This statement must mean 
that the distance traveled is the "area under the velocity curve" in all three cases. 
Oresme unfortunately did not give any examples of the more general case, but he 
could hardly have done so, since the measurement of figures bounded by curves was 
still very primitive in his day. 

Trigonometry. Analytic geometry would be unthinkable without plane trigonome-
try. Latin translations of Arabic texts of trigonometry, such as those of al-Tusi and 
al-Jayyani, which will be discussed below, began to circulate in Europe in the late 
Middle Ages. These works provided the foundation for such books as De triangulis 
omnimodis by Regiomontanus, published in 1533, after his death, which contained 
trigonometry almost in the form still taught. Book 2, for example, contains as 
its first theorem the law of sines for plane triangles, which asserts that the sides of 
triangles are proportional to the sines of the angles opposite them. The main differ-
ence between this trigonometry and ours is that a sine remains a length rather than 
a ratio. It is referred to an arc rather than to an angle. It was once believed that 
Regiomontanus discovered the law of sines for spherical triangles (Proposition 16 of 
Book 4) as well; but we now know that this theorem was known at least 500 years 
earlier to Muslim mathematicians whose work Regiomontanus must have read. A 
more advanced book on the subject, which reworked the reasoning of Heron on the 
area of a triangle given its sides, was TrigonometrieE sive de dimensione triangu-
lorum libri quinque (Five Books of Trigonometry, or, On the Size of Triangles), 
first published in 1595, written by the Calvinist theologian Bartholomeus Pitiscus 

1 2 Boyer (1949, p. 83) says that the rule was stated around this time by another fourteenth-century 
Oxford scholar named Richard Suiseth, known as Calculator for his book Liber calculatorum. 
Suiseth shares with Oresme the credit for having proved that the harmonic series diverges. 
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FIGURE 7. Pitiscus' derivation of the proportions in which an al-
titude divides a side of a triangle. 

(1561-1613). This was, incidentally, the book that established the name trigonom-
etry for this subject. Pitiscus showed how to determine the parts into which a side 
of a triangle is divided by the altitude, given the lengths of the three sides. To 
guarantee that the angles adjacent to the side were acute, he stated the theorem 
only for the altitude from the vertex of the largest angle. 

Pitiscus' way of deriving this proportion was as follows. If the shortest side of 
the triangle ABC is AC and the longest is BC, let the altitude to BC be AG, as in 
Fig. 7. Draw the circle through C with center at A, so that Β lies outside the circle, 
and let the intersections of the circle with AB and BC be Ε and F respectively. 
Then extend Β A to meet the circle at D, and connect CD. Then ZBFE is the 
supplement of ZCFE, which subtends the arc Ε DC, which in turn is an arc of 

180° plus the arc CD. Hence ZBFE is the complement of the angle subtended by 

the arc CD. That in turn is the angle subtended by the supplementary arc CE; 
thus ZBFE = ZCDB, and so the triangles BCD and BEF are similar. It follows 
that 

AB2 = AC2 + BC2 - 2AC.BCcos{ZACB), 

which is what we now know as the law of cosines. 
Pitiscus also gave an algebraic solution of the trisection problem discovered by 

an earlier mathematician, Jobst Biirgi (1552-1632). The solution had been based 
on the fact that the chord of triple an angle is three times the chord of the angle 
minus the cube of the chord of the angle. This relation makes no sense in terms 
of geometric dimension; it is a purely numerical relation. It is interesting that it is 
stated in terms of chords, since Pitiscus surely knew about sines. 

4. Geometry in the Muslim world 

In the Western world most of the advancement of geometry in the millennium 
from the fall of the Western Roman Empire to the fall of the Eastern Empire 
occurred among the Muslim and Jewish mathematicians of Baghdad, Samarkand, 
Cordoba, and other places. This work had some features of Euclid's style and 
some of Heron's. Matvievskaya (1999) has studied the extensive commentaries 
on the tenth book of Euclid's Elements written by Muslim scholars from the ninth 
through twelfth centuries and concluded that while formally preserving a Euclidean 
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distinction between magnitude and number, they actually operated with quadratic 
and quartic irrationals as if they were numbers. 

4.1. The parallel postulate. The Islamic mathematicians continued the later 
Hellenistic speculation on Euclid's parallel postulate. According to Sabra (1969), 
this topic came into Islamic mathematics through a commentary by Simplicius on 
Book 1 of the Elements, whose Greek original is lost, although an Arabic transla-
tion exists. In fact, Sabra found a manuscript that contains Simplicius' attempted 
proof. The reworking of this topic by Islamic mathematicians consisted of a crit-
icism of Simplicius' argument followed by attempts to repair its defects. Gray 
(1989, pp. 42-54) presents a number of these arguments, beginning with the ninth-
century mathematician al-Gauhari. Al-Gauhari attempted to show that two lines 
constructed so as to be parallel, as in Proposition 27 of Book 1 of the Elements 
must also be equidistant at all points. If he had succeeded, he would indeed have 
proved the parallel postulate. 

4.2. Thabit ibn-Qurra. Thabit ibn-Qurra (826-901), whose revision of the Ara-
bic translation of Euclid became a standard in the Muslim world, also joined the 
debate over the parallel postulate. According to Gray (1989, pp. 43-44), he con-
sidered a solid body moving without rotating so that one of its points Ñ traverses a 
straight line. He claimed that the other points in the body would also move along 
straight lines, and obviously, they would remain equidistant from the line generated 
by the point P. By regarding these lines as completed loci, he avoided a certain 
objection that could be made to a later argument of ibn al-Haytham, discussed 
below. Thabit ibn-Qurra's work on this problem was ground-breaking in a number 
of ways, anticipating much that is usually credited to the eighteenth-century math-
ematicians Lambert and Saccheri. He proved, for example, that if a quadrilateral 
has two equal adjacent angles, and the sides not common to these two angles are 
equal, then the other two angles are also equal to each other. In the case when 
the equal angles are right angles, such a figure is called—unjustly, we may say—a 
Saccheri quadrilateral, after Giovanni Saccheri (1667-1733), who like Thabit ibn-
Qurra, developed it in an attempt to prove the parallel postulate. Gray prefers 
to call it a Thabit quadrilateral, and we shall use this name. Thabit ibn-Qurra's 
proof amounted to the claim that a perpendicular drawn from one leg of such a 
quadrilateral to the opposite leg would also be perpendicular to the leg from which 
it was drawn. Such a figure, a quadrilateral having three right angles, or half of a 
Thabit quadrilateral, is now called—again, unjustly—a Lambert quadrilateral, af-
ter Johann Heinrich Lambert (1728-1777), who used it for the same purpose. We 
should probably call it a semi-Thabit quadrilateral. Thabit's claim is that either 
type of Thabit quadrilateral is in fact a rectangle. If this conclusion is granted, it 
follows by consideration of the diagonals of a rectangle that the sum of the acute 
angles in a right triangle is a right angle, and this fact makes Thabit's proof of the 
parallel postulate work. 

The argument of Thabit ibn-Qurra, according to Gray, is illustrated in Fig. 8 . 1 3 

Given three lines /, m, and ç such that I is perpendicular to ç at Ε and m intersects 
it at A, making an acute angle, let W be any point on m above ç and draw a 
perpendicular WZ from W to n. If Ε is between A and Z, then I must intersect m 
by virtue of what is now called Pasch's theorem. That much of the argument would 

1 3 We are supplementing the figure and adding steps to the argument for the sake of clarity. 
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FIGURE 8. Thabit ibn-Qurra's attempted proof of the parallel postulate. 

be uncontroversial. The difficult part occurs when Æ is between A and E. Thabit 
ibn-Qurra argued as follows. By Archimedes' principle, some multiple of AZ, say 
AH, exceeds AE, so that Ε lies between A and H. Now by drawing a perpendicular 
to ç at Ç and making HK equal to ZW, we get a Thabit quadrilateral, so that 
if WK is joined, we have a rectangle WZHK. Then, if X is chosen so that 
AW = WX and a perpendicular XU is drawn to WK, the triangles AW Æ and 
WXU will be congruent because the sum of the acute angles of a right triangle is 
a right angle. Then WU will equal AZ. We can then start over, since WK will 
be less than AH by a length equal to AZ. In this way, in a finite number of steps, 
we will reach a point Í on line m that is also on the extension of HK. Hence ôç 
contains points on both sides of / and therefore intersects I. 

Gray has called Thabit ibn-Qurra's mistake "an interesting and deep one," 
since it makes use of motion in geometry in a way that seems to be implied by Eu-
clid's own arguments involving coinciding figures; that is, that they can be moved 
without changing their size or shape. Euclid makes this assumption in Proposi-
tion 4 of Book 1 where he "proves" the side-angle-side criterion for congruence by 
superimposing one triangle on another. He does not speak explicitly of moving a 
triangle, but how else is one to imagine this superimposition taking place? 

Thabit ibn-Qurra also created a generalization of the Pythagorean theorem. His 
theorem is easily derived from similar triangles. Consider a triangle ABC whose 
longest side is BC. Copy angle Β with A as vertex and AC as one side, extending 
the other side to meet BC in point C", then copy angle C with A as vertex and 
BA as one side, extending the other side to meet BC in point B', so that angle 
AB'B and angle AC'C both equal angle A. It then follows that the triangles B' AB 
and CAC are similar to the original triangle ABC, and so AB — BC • BB' and 

AC2 = BC • CC, hence 

AB2 + AC2 = BC(BB' + CC). 

The case when angle A is acute is shown in Fig. 9. 
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FIGURE 9. Thabit ibn-Qurra's Pythagorean theorem. 

4.3. Al-Kuhi. A mathematician who devoted himself almost entirely to geometry 
was Abu Sahl al-Kuhi (ca. 940-ca. 1000), the author of many works, of which some 
30 survive today. Berggren (1989), who has edited these manuscripts, notes that 
14 of them deal with problems inspired by the reading of Euclid, Archimedes, 
and Apollonius, while 11 others are devoted to problems involving the compass, 
spherical trigonometry, and the theory of the astrolabe. Berggren presents as an 
example of al-Kuhi's work the angle trisection shown in Fig. 10. In that figure 
the angle ö to be trisected is ABG, with the base BG horizontal. The idea of the 
trisection is to extend side AB any convenient distance to D. Then, at the midpoint 
of BD, draw a new set of mutually perpendicular lines making an angle with the 
horizontal equal to ø/2, and draw the rectangular hyperbola through Β having 
those lines as asymptotes. Apollonius had shown (Conies, Book 1, Propositions 29 
and 30) that D lies on the other branch of the hyperbola. Then BE is drawn equal 
to BD, that is a circle through D with center at Β is drawn, and its intersection 
with the hyperbola is labeled E. Finally, EZ is drawn parallel to BG. It then 
follows that ø = ÄΑÆΕ = IZBE + ÄÆΕΒ = 30, as required. 

4.4. Al-Haytham. One of the most prolific and profound of the Muslim math-
ematician-scientists was Abu Ali ibn al-Haytham (965-1040), known in the West 
as Alhazen. He was the author of more than 90 books, 55 of which survive. 1 4 A 
significant indication of his mathematical prowess is that he attempted to recon-
struct the lost Book 8 of Apollonius' Conies. His most famous book is his Treatise 
on Optics (Kitab al-Manazir) in seven volumes. The fifth volume contains the 
problem known as Alhazen's problem: Given the location of a surface, an object, 
and an observer, find the point on the surface at which a light ray from the object 
will be reflected to the observer. Rashed (1990) points out that burning-mirror 
problems of this sort had been studied extensively by Muslim scholars, especially 
by Abu Saad ibn Sahl some decades before al-Haytham. More recently (see Guizal 
and Dudley, 2002) Rashed has discovered a manuscript in Teheran written by ibn 
Sahl containing precisely the law of refraction known in Europe as Snell's law, after 
Willebrod Snell (1591-1626) or Descartes' law.15 The law of refraction as given by 
Ptolemy in the form of a table of values of the angle of refraction and the angle of 
incidence implied that the angle of refraction was a quadratic function of the angle 
of incidence. The actual relation is that the ratio of the sines of the two angles is 
a constant for refraction at the interface between two different media. 

1 4 Rashed (1989) suggested that these works and the biographical information about al-Haytham 
may actually refer to two different people. The opposite view was maintained by Sabra (1998). 
1 5 According to Guizal and Dudley, this law was stated by Thomas Harriot (1560-1621) in 1602. 
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FIGURE 1 0 . Al-Kuhi's angle trisection. 

Al-Haytham also attempted to prove the parallel postulate. According to 
Gray (1989, p. 4 5 ) , the argument given by al-Haytham in his Commentary on 
the Premises to Euclid's Book The Elements, and later in his Book on the Res-
olution of Doubts was based on the idea of translating a line perpendicular to a 
given line in such a way that it always remains perpendicular. The idea is that the 
endpoint of the line must trace a straight line parallel to the directing line. 

4.5. Omar Khayyam. In his paper "Discussion of difficulties in Euclid" (Amir-
Moez, 1959), the Persian mathematician Omar Khayyam ( 1 0 4 8 - 1 1 3 1 ) raised a 
number of questions about al-Haytham's argument. He asked how a line could move 
while remaining perpendicular to a given line, and more generally, how geometry 
and motion could be connected. Even admitting that Euclid allowed a line to 
be generated by a moving point and a surface by a moving line, he pointed out 
that al-Haytham was requiring something more in demanding that one line remain 
perpendicular to another at each instant during its motion. 1 6 

Having refuted al-Haytham's proof, Omar Khayyam himself attempted a proof 
(Amir-Moez, 1959) based on a proposition that he claimed Aristotle had proved: If 
two lines converge, they will (eventually) intersect. This claim raises an interesting 
question, since as we have seen, Aristotle did not accept the arguments given by 
scholars in Plato's Academy to prove that parallel lines exist. Given his disbelief 
in a completed infinity, he probably would have liked an argument proving that 

1 6 Omar Khayyam's objection is right on target from the point of view of modern physics. If the 
special theory of relativity is correct, no sense can be attached to the statement that two events 
occurring at different places are simultaneous. One observer may find them so, while another does 
not agree. The same objection applies to Thabit ibn-Qurra's argument, which assumes a rigid 
body. In special relativity rigid bodies do not exist. What al-Haytham did was to ignore all points 
from the moving solid except those lying along a certain line. The relation between motion and 
geometry lies at the heart of relativity theory. 
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converging lines must intersect. Although none of the writings now attributed 
to Aristotle contain such an argument, Gray (1989, p. 47) points out that Omar 
Khayyam may have had access to Aristotelian treatises that no longer exist. In 
any case, he concluded on the basis of Aristotle's argument that two lines that 
converge on one side of a transversal must diverge on the other side. With that, 
having proved correctly that the perpendicular bisector of the base of a Thabit 
quadrilateral is also the perpendicular bisector of the summit, Omar Khayyam 
concluded that the base and summit could not diverge on either side, and hence 
must be equidistant. Like Thabit ibn-Qurra's proof, his proof depended on building 
one Thabit quadrilateral on top of another by doubling the common bisector of the 
base and summit, then crossing its endpoint with a perpendicular which (he said) 
would intersect the extensions of the lateral sides. Unfortunately, if that procedure 
is repeated often enough in hyperbolic geometry, those intersections will not occur. 

All of these mathematicians were well versed in the Euclidean tradition of 
geometry. In the preface to his book on algebra, Omar Khayyam says that no one 
should attempt to read it who has not already read Euclid's Elements and Data and 
the first two books of Apollonius' Conies. His reason for requiring this background 
was that he intended to use conic sections to solve cubic and quartic equations 
geometrically. This book contains Euclidean rigor attached to algebra in a way 
that fits equally well into the history of both algebra and geometry. However, in 
other places it seems clear that Omar Khayyam was posing geometric problems for 
the sake of getting interesting equations to solve. For example (Amir-Moez, 1963), 
he posed the problem of finding a point on a circle such that the perpendicular 
from the point to a radius has the same ratio to the radius that the two segments 
into which it divides the radius have to each other. If the radius is r and the 
length of the longer segment cut off on the radius is the unknown x, the equation 
to be satisfied is x3 + rx2 4- r2x = r 3 . Without actually writing out this equation, 
Omar Khayyam showed that the geometric problem amounted to using the stated 
condition to find the second asymptote of a rectangular hyperbola, knowing one of 
its asymptotes and one point on the hyperbola. However, he regarded that analysis 
as merely an introduction to his real purpose, which was a discussion of the kinds 
of cubic equations that require conic sections for their solution. After a digression 
to classify these equations, he returned to the original problem, and finally, showed 
how to solve it using a rectangular hyperbola. He found the arc to be about 57°, 
so that χ ~ rcos(57°) = 0.544r. Omar Khayyam described χ as being about 3 0 | 
pieces, that is, sixtieths of the radius. We reserve the discussion of this combination 
of algebra and geometry for Chapter 14. 

As his work on the parallel postulate shows, Omar Khayyam was very interested 
in logical niceties. In the preface to his Algebra and elsewhere (for example, Amir-
Moez, 1963, p. 328) he shows his adherence to Euclidean standards, denying the 
reality of a fourth dimension: 

If the algebraist were to use the square of the square in measur-
ing areas, his result would be figurative [theoretical] and not real, 
because it is impossible to consider the square of the square as a 
magnitude of a measurable nature... This is even more true in the 
case of higher powers. [Kasir, 1931, p. 48] 

4.6. Nasir al-Din al-Tusi. The thirteenth century was as disruptive to the Is-
lamic world as the fifth century had been to the Roman world. This was the time 
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of the Mongol expansion, which brought the conquest of China in the early part of 
the century, then the conquest of Kievan Rus in 1243, and finally, the sack of Bagh-
dad in 1254. Despite the horrendous times, the astronomer-mathematician Nasir 
al-Din al-Tusi (1201-1274) managed to produce some of the best mathematics of 
the era. Al-Tusi was treated with respect by the Mongol conqueror of Baghdad, 
who even built for him an astronomical observatory, at which he made years of 
accurate observations and improved the models in Ptolemy's Almagest.17 Al-Tusi 
continued the Muslim work on the problem of the parallel postulate. According 
to Gray (1989, pp. 50-51), al-Tusi's proof followed the route of proving that the 
summit angles of a Thabit quadrilateral are right angles. He showed by arguments 
that Euclid would have accepted that they cannot be obtuse angles, since if they 
were, the summit would diverge from the base as a point moves from either summit 
vertex toward the other. Similarly, he claimed, they could not be acute, since in 
that case the summit would converge toward the base as a point moves from either 
summit vertex toward the other. Having thus argued that a Thabit quadrilateral 
must be a rectangle, he could give a proof similar to that of Thabit ibn-Qurra to 
establish the parallel postulate. 

In a treatise on quadrilaterals written in 1260, al-Tusi also reworked the trigo-
nometry inherited from the Greeks and Hindus and developed by his predecessors 
in the Muslim world, including all six triangle ratios that we know today as the 
trigonometric functions. In particular, he gave the law of sines for spherical trian-
gles, which states that the sines of great-circle arcs forming a spherical triangle are 
proportional to the sines of their opposite angles. According to Hairetdinova (1986) 
trigonometry had been developing in the Muslim world for some centuries before 
this time, and in fact the mathematician Abu Abdullah al-Jayyani (989-1079), who 
lived in the Caliphate of Cordoba, wrote The Book on Unknovm Arcs of a Sphere, 
a treatise on plane and spherical trigonometry. Significantly, he treated ratios of 
lines as numbers, in accordance with the evolution of thought on this subject in 
the Muslim world. Like other Muslim mathematicians, though, he does not use 
negative numbers. As Hairetdinova mentions, there is clear evidence of the Mus-
lim influence in the first trigonometry treatise written by Europeans, the book De 
triangulis omnimodis by Regiomontanus, whose exposition of plane trigonometry 
closely follows that of al-Jayyani. 

Among these and many other discoveries, al-Tusi discovered the interesting 
theorem that if a circle rolls without slipping inside a circle twice as large, each 
point on the smaller circle moves back and forth along a diameter of the larger 
circle. This fact is easy to prove and an interesting exercise in geometry. It has 
obvious applications in geometric astronomy, and was rediscovered three centuries 
later by Copernicus and used in Book 3, Chapter 4 of his De revolutionibus. 

5. Non-Euclidean geometry 

The centuries of effort by Hellenistic and Islamic mathematicians to establish the 
parallel postulate as a fact of nature began to be repeated in early modern Europe 
with the efforts of a number of mathematicians to replace the postulate with some 
other assumption that seemed indubitable. Then, around the year 1800, a change 

1 7 The world's debt to Muslim astronomers is shown in the large number of stars bearing Arabic 
names, such as Aldebaran (the Follower), Altair (the Flyer), Algol (the Ghoul), Betelgeuse (either 
the Giant's Hand or the Giant's Armpit), and Deneb (the Tail). 
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in attitude took place, as a few mathematicians began to explore non-Euclidean 
geometries as if they might have some meaning after all. Within a few decades the 
full light of day dawned on this topic, and by the late nineteenth century, models 
of the non-Euclidean geometries inside Euclidean and projective geometry removed 
all doubt as to their consistency. This history exhibits a sort of parallelism with 
the history of the classical construction problems and with the problem of solving 
higher-degree equations in radicals, all of which were shown in the early nineteenth 
century to be impossible tasks. In all cases, the result was a deeper insight into the 
original questions. In all three cases, group theory came to play a role, although a 
much smaller one in the case of non-Euclidean geometry than in the other two. 

5.1. Girolamo Saccheri. The Jesuit priest Girolamo Saccheri (1667-1733), a 
professor of mathematics at the University of Pavia, published in the last year of 
his life the treatise Euclides ab omni ncevo vindicatus (Euclid Acquitted of Every 
Blemish), a good example of the creativity a very intelligent person will exhibit 
when trying to retain a strongly held belief. Some of his treatise duplicates what 
had already been done by the Islamic mathematicians, including the study of Thabit 
quadrilaterals, that is, quadrilaterals having a pair of equal opposite sides and equal 
base angles and also quadrilaterals having three right angles. Saccheri deduced with 
strict rigor all the basic properties of Thabit quadrilaterals with right angles at the 
base. 1 8 He realized that the fundamental question involved the summit angles of 
these quadrilaterals—Saccheri quadrilaterals, as they are now called. Since these 
angles were equal, the only question was whether they were obtuse, right, or acute 
angles. He showed in Propositions 5 and 6 that if one such quadrilateral had obtuse 
summit angles, then all of them did likewise, and that if one had right angles, 
then all of them did likewise. It followed by elimination and without further proof 
(Proposition 7, which Saccheri proved anyway) that if one of them had acute angles, 
then all of them did likewise. Not being concerned to eliminate the possibility of 
the right angle, which he believed was the true one, he worked to eliminate the 
other two hypotheses. 

He showed that the postulate as Euclid stated it is true under the hypothesis 
of the obtuse angle. That is, two lines cut by a transversal in such a way that the 
interior angles on one side are less than two right angles will meet on that side of 
the transversal. As we now know, that is because they will meet on both sides of the 
transversal, assuming it makes sense to talk of opposite sides. Saccheri remarked 
that the intersection must occur at a finite distance. This remark seems redundant, 
since all distances in geometry were finite until projective geometers introduced 
points at infinity. But Saccheri, in the end, would be reasoning about points at 
infinity as if something were known about them, even though he had no careful 
definition of them. 

It is true, as many have pointed out, that his proof of this fact uses the exterior 
angle theorem (Proposition 16 of Book 1 of Euclid) and hence assumes that lines 
are infinite. 1 9 But Euclid himself, at least as later edited, states explicitly that 

1 8 It is unlikely that Saccheri knew of the earlier work by Thabit ibn-Qurra and others. Although 
Arabic manuscripts stimulated a revival of mathematics in Europe, they were apparently soon 
forgotten as Europeans began writing their own treatises. Coolidge (1940) gives the history of 
the parallel postulate jumping directly from Proclus and Ptolemy to Saccheri, never mentioning 
any of the Muslim mathematicians. 
1 9 Actually, the use of that proposition is confined to elaborations by the modern reader. The 
proof stated by Saccheri uses only the fact that lines arc unbounded, that is, can be extended to 
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FIGURE 11. (a) Lines through A that intersect BE and those that 
share a common perpendicular with BE are separated by a line 
(AL) that is asymptotic to BE. (b) The angle defect of AAB'C 
is more than twice the defect of AABC. 

two lines cannot enclose an area, so that Saccheri can hardly be faulted for dealing 
with only one Euclidean postulate at a time. Since the parallel postulate implies 
that the summit and base of a Saccheri quadrilateral must meet on both sides of the 
quadrilateral under the hypothesis of the obtuse angle, even a severe critic should 
be inclined to give Saccheri a passing grade when he rejects this hypothesis. 

Having disposed of the hypothesis of the obtuse angle, Saccheri then joined 
battle (his phrase) with the hypothesis of the acute angle. Here again, he proved 
some basic facts about what we now call hyperbolic geometry. Given any quadri-
lateral having right angles at the base and acute angles at the summit, it follows 
from continuity considerations that the length of a perpendicular dropped from 
the summit to the base must reach a minimum at some point, and at that point 
it must also be perpendicular to the summit. Saccheri analyzed this situation in 
detail, describing in the process a great deal of what must occur in what is now 
called hyperbolic geometry. In terms of Fig. 11(a), 2 0 he considered all the lines 
like AF through the point A such that angle BAF is acute. He wished to show 
that they all intersected the line BE. 

Saccheri proved that there must be at least one angle 0n for which the line AL 
making that angle neither intersects BE nor has a common perpendicular with it. 
This line, as Saccheri showed in Proposition 23, must approach BE asymptotically 
as we would say. At that point he made the small slip that had been warned 
against even in ancient times, assuming that "approaching" implies "meeting." His 
intuition for hyperbolic geometry was very good, as he imagined a line perpendicular 
to BE moving away from AB and the lines from A perpendicular to it rotating 

any length. It is not necessary to require that the extension never overlap the portion already 
present. 
2 0 Since the flat page is not measurably non-Euclidean, and wouldn't be even if spread out to 
cover the entire solar system, the kinds of lines that occur in hyperbolic geometry cannot be 
drawn accurately on paper. Our convention is the usual one: When asymptotic properties are 
not involved, draw the lines straight. When asymptotic properties need to be shown, draw them 
as hyperbolas. Actually, if the radius of curvature of the plane were comparable to the width of 
the page, two lines with a common perpendicular would diverge from each other like the graphs 
of cosh £ and — coshi , very rapidly indeed. 
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clockwise about A to make angles that decreased to <90. He then—too hastily, as 
we now know—drew the conclusion that èï would have the properties of both of the 
sets of angles that it separated, that is, the line making this angle would intersect 
BE and would also have a common perpendicular with it. In fact, it has neither 
property. But Saccheri was determined to have both. As he described the situation, 
the hypothesis of the acute angle implied the existence of two straight lines that 
have a common perpendicular at the same point. In other words, there could be 
two distinct lines perpendicular to the same line at a point, which is indeed a 
contradiction. Unfortunately, the point involved was not a point of the plane, but 
is infinitely distant, as Saccheri himself realized. But he apparently believed that 
points and lines at infinity must obey the same axioms as those in the finite plane. 

Once again, as in the case of Ptolemy, Thabit ibn-Qurra, ibn al-Haytham, and 
others, Saccheri had developed a new kind of geometry, but resorted to procrustean 
methods to reconcile it with the geometry he believed in. 

5.2. Lambert and Legendre. The writings of the Swiss mathematician Johann 
Heinrich Lambert (1728-1777) seem modern in many ways. For example, he proved 
that ð is irrational (specifically, that tan ÷ and χ cannot both be rational numbers), 
studied the problem of constructions with straightedge and a fixed compass, and 
introduced the hyperbolic functions and their identities as they are known today, 
including the notation sinh χ and cosh x. He wrote, but did not publish, a treatise 
on parallel lines, in which he pointed out that the hypothesis of the obtuse angle 
holds for great circles on a sphere and that the area of a spherical triangle is the 
excess of its angle sum over ð times the square of the radius. He concluded that in a 
sphere of imaginary radius ir, whose area would be negative, the area of a triangle 
might be proportional to the excess of ð over the angle sum. What a sphere of 
imaginary radius looks like took some time to discern, a full century, to be exact. 

By coincidence, the hyperbolic functions that he studied turned out to be the 
key to trigonometry in this imaginary world. Just as on the sphere there is a 
natural unit of length (the radius of the sphere, for example), the same would be 
true, as Lambert realized, on his imaginary sphere. Such a unit could be selected in 
a number of ways. The angle èï mentioned above, for example, decreases steadily 
as the length AB increases. Hence every length is associated with an acute angle, 
and a natural unit of length might be the one associated with half of a right angle. 
Or, it might be the length of the side of an equilateral triangle having a specified 
angle. In any case, Lambert at least recognized that he had not proved the parallel 
postulate. As he said, it was always possible to develop a proof of the postulate to 
the point that only some small, seemingly obvious point remained unproved, but 
that last point nearly always concealed an assumption equivalent to what was being 
proved. 

Some of Lambert's reasoning was recast in more precise form by Legendre, who 
wrote a textbook of geometry used in many places during the nineteenth century, 
including (in English translation) the United States. Legendre, like Lambert and 
Saccheri, refuted the possibility that the angle sum of a triangle could be more than 
two right angles and attempted to show that it could not be less. Since the defect of 
a triangle—the difference between two right angles and its angle sum—is additive, 
in the sense that if a triangle is cut into two smaller triangles, the defect of the 
larger triangle is the sum of the defects of the two smaller ones, he saw correctly 
that if one could repeatedly double a triangle, eventually the angle sum would have 
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to become negative, which was surely impossible. Unfortunately, the possibility of 
repeated doubling that he had in mind was just one of those small points mentioned 
by Lambert that turn out to be equivalent to the parallel postulate. In fact, it is 
rather easy to see that such is the case, since (Fig. 11(6)) the possibility of drawing 
a line B'C through a point A' inside the angle CAB that intersects both AB and 
AC is simply another way of saying that the lines AB and AC must both intersect 
some line through A', that is, AC cannot be parallel to every line through A' that 
intersects AB. 

5.3. Gauss. The true situation in regard to the parallel postulate was beginning 
to be understood by the end of the eighteenth century. Gauss, who read Lambert's 
work on parallels (which had been published posthumously), began to explore this 
subject as a teenager, although he kept his thoughts to himself except for letters to 
colleagues and never published anything on the subject. His work in this area was 
published in Vol. 8 of the later edition of his collected works. It is nicely summarized 
by Klein (1926, pp. 58-59). In 1799 he wrote to Farkas Bolyai (1775-1856), his 
classmate from Gottingen, that he could prove the parallel postulate provided that 
triangles of arbitrarily large area were admitted. Such a confident statement can 
only mean that he had developed the metric theory of hyperbolic geometry to a 
considerable extent. Five years later he wrote again to explain the error in a proof 
of the parallel postulate proposed by Bolyai. Gauss, like Lambert, realized that a 
non-Euclidean space would have a natural unit of length, and mentioned this fact 
in a letter of 1816 to his student Christian Ludwig Gerling (1788-1864), proposing 
as unit the side of an equilateral triangle whose angles were 59° 59' 59.99999. . .". 2 1 

To Gauss' surprise, in 1818 he received from Gerling a paper written by Ferdinand 
Karl Schweikart (1780-1859), a lawyer then in Marburg, who had developed what 
he called astral geometry. It was actually hyperbolic geometry, and Schweikart had 
gone far into it, since he knew that there was an upper bound to the area of a triangle 
in this geometry, that its metric properties depended on an undetermined constant 
C (its radius of curvature), and that it contained a natural unit of length, which he 
described picturesquely by saying that if that length were the radius of the earth, 
then the line joining two stars would be tangent to the earth. Gauss wrote back 
to correct some minor points of bad drafting on Schweikart's part (for example, 
Schweikart neglected to say that the stars were assumed infinitely distant), but 
generally praising the work. In fact, he communicated his formula for the limiting 
area of a triangle: 

7TC 2 

{\n(l + V2)Y' 

By coincidence, Schweikart's nephew Franz Adolph Taurinus (1794-1874), also 
a lawyer, who surely must have known of his uncle's work in non-Euclidean geom-
etry, sent Gauss his attempt at a proof of the parallel postulate in 1824. Gauss 
explained the true situation to Taurinus under strict orders to keep the matter se-
cret. The following year, Taurinus published a treatise Geometric prima elementa 
(First Elements of Geometry) in which he accepted the possibility of other ge-
ometries. Gauss wrote to the astronomer -mathematician Friedrich Wilhelm Bessel 

2 1 In comparison with the radius of curvature of space, this would be an extremely small unit of 
length; however, if space is curved negatively at all, its radius of curvature is so enormous that in 
fact this unit might be very large. 



5. NON-EUCLIDEAN GEOMETRY 343 

(1784-1846) in 1829 that he had been thinking about the foundations of geome-
try off and on for nearly 40 years (in other words, from the age of 13 on), saying 
that his investigations were "very extensive," but probably wouldn't be published, 
since he feared the controversy that would result. Some time during the mid-1820s, 
the time when he was writing and publishing his fundamental work on differential 
geometry, Gauss wrote a note—which, typically, he never published—in which he 
mentioned that revolving a tractrix about its asymptote produced a surface that 
is the opposite of a sphere. This surface turns out to be a perfect local model of 
the non-Euclidean geometry in which the angle sum of a triangle is less than two 
right angles. It is now called a pseudosphere. This same surface was discussed a 
decade later by Ferdinand Minding (1806-1885), who pointed out that some pairs 
of points on this surface can be joined by more than one minimal path, just like 
antipodal points on a sphere. 

5.4. Lobachevskii and Janos Bolyai. From what has been said so far, it is clear 
that the full light of day was finally dawning on the subject of the parallel postulate. 
As more and more mathematicians worked over the problem and came to the same 
conclusion, from which others gained insight little by little, all that remained was a 
slight push to tip the balance from attempts to prove the parallel postulate to the 
exploration of alternative hypotheses. The fact that this extra step was taken by 
several people nearly simultaneously can be expressed poetically, as it was by Felix 
Klein (1926, p. 57), who referred to "one of the remarkable laws of human history, 
namely that the times themselves seem to hold the great thoughts and problems 
and offer them to heads gifted with genius when they are ripe." But we need not be 
quite so lyrical about a phenomenon that is entirely to be expected: When many 
intelligent people who have received similar educations work on a problem, it is 
quite likely that more than one of them will make the same discovery. 

The credit for first putting forward hyperbolic geometry for serious consider-
ation must belong to Schweikart, since Gauss was too reticent to do so. However, 
credit for the first full development of it, including its trigonometry, is due to the 
Russian mathematician Nikolai Ivanovich Lobachevskii (1792-1856) and the Hun-
garian Janos Bolyai (1802-1860), son of Farkas Bolyai. Their approaches to the 
subject are very similar. Both developed the geometry of the hyperbolic plane and 
then extended it to three-dimensional space. In three-dimensional space they con-
sidered the entire set of directed lines parallel to a given directed line in a given 
direction. Then they showed that a surface (now called a horosphere) that cuts 
all of these lines at right angles has all the properties of a Euclidean plane. By 
studying sections of this surface they were able to deduce the trigonometry of their 
new geometry. In modern terms the triangle formulas fully justify Lambert's asser-
tion that this kind of geometry is that of a sphere of imaginary radius. Here, for 
example, is the Pythagorean theorem for a right triangle of sides a, b, c in spherical 
and hyperbolic geometry, derived by both Lobachevskii and Bolyai, but not in the 
notation of hyperbolic functions. Since cos(ia;) = cosh(x) the hyperbolic formula 
can be obtained from the spherical formula by replacing the radius r with ir, just 
as Lambert stated. 

Spherical geometry Hyperbolic geometry 
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Lobachevskii's geometry. Lobachevskii connected the parts of a hyperbolic triangle 
through his formula for the angle of parallelism, which is the angle è0 referred to 
above, as a function of the length AB. He gave this formula as 

where á denotes the length AB and F(a) the angle 6Q. Here e could be any 
positive constant, since the radius of curvature of the hyperbolic plane could not 
be determined. However, Lobachevskii found it convenient to take this constant to 
be e = 2.71828 — In effect, he took the radius of curvature of the plane as the 
unit of length. Lobachevskii gave the Pythagorean theorem, for example, as 

Of the two nearly simultaneous creators of hyperbolic geometry and trigonom-
etry, Lobachevskii was the first to publish, unfortunately in a journal of limited 
circulation. He was a professor at the provincial University of Kazan' in Russia and 
published his work in 1826 in the proceedings of the Kazan' Physico-Mathematical 
Society. He reiterated this idea over the next ten years or so, developing its impli-
cations. Like Gauss, he drew the conclusion that only observation could determine 
if actual space was Euclidean or not. As luck would have it, the astronomers were 
just beginning to attempt measurements on the interstellar scale. In particular, by 
measuring the angles formed by the lines of sight from the Earth to a given fixed 
star at intervals of six months, one could get the base angles of a gigantic triangle 
and thereby (since the angle sum could not be larger than two right angles, as every-
one agreed) place an upper bound on the size of the parallax of the star (the angle 
subtended by the Earth's orbit from that star). Many encyclopedias claim that 
the first measurement of stellar parallax was carried out in Konigsberg by Bessel 
in 1838, and that he determined the parallax of 61 Cygni to be 0.3 seconds. Rus-
sian historians credit another Friedrich Wilhelm, namely Friedrich Wilhelm Struve 
(1793-1864), who emigrated to Russia and is known there as Vasilii Yakovlevich 
Struve. He founded the Pulkovo Observatory in 1839. Struve determined the par-
allax of the star Vega in 1837. Attempts to determine stellar parallax must have 
been made earlier, since Lobachevskii cited such measurements in an 1829 work 
and claimed that the measured parallax was less than 0.000372", which is much 
smaller than any observational error. 2 2 As he said (see his collected works, Vol. 1, 
p. 207, quoted by S.N. Kiro, 1967, Vol. 2, p. 159): 

At the very least, astronomical observations prove that all the lines 
amenable to our measurements, even the distances between ce-
lestial bodies, are so small in comparison with the length taken 
as a unit in our theory that the equations of (Euclidean) plane 
trigonometry, which have been used up to now must be true with-
out any sensible error. 

The vast distances between stars make terrestrial units of length inadequate. The light-year 
(about 9.5 · 1 0 1 2 km) is the most familiar unit now used, particularly good, since it tells us "what 
time it was" when the star emitted the light we are now seeing. Stellar parallax provides another 
unit, the parsec, which is the distance at which the radius of the Earth's orbit subtends an angle 
of 1". A parsec is about 3.258 light-years. 

sin F(a) sin F(b) = sin F(c) . 
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Thus, ironically, the acceptance of the logical consistency of hyperbolic geom-
etry was accompanied by a nearly immediate rejection of any practical application 
of it in astronomy or physics. That situation was to change only much later, with 
the advent of relativity. 

Lobachevskii was unaware of the work of Gauss, since Gauss kept it to him-
self and urged others to do likewise. Had Gauss been more talkative, Lobachevskii 
would easily have found out about his work, since his teacher Johann Martin Chris-
tian Bartels (1769 1836) had been many years earlier a teacher of the 8-year-old 
Gauss and had remained a friend of Gauss. As it was, however, although he contin-
ued to perfect his "imaginary geometry," as he called it, and wrote other mathemat-
ical papers, he made his career in administration, as rector of Kazan' University. 
He at least won some recognition for his achievement during his lifetime, and his 
writings were translated into French and German after his death and highly re-
garded. 

Even though his imaginary geometry was not used directly to describe the 
world, Lobachevskii found some uses for it in providing geometric interpretations 
of formulas in analysis. In particular, his paper "Application of imaginary geometry 
to certain integrals," which he published in 1836, was translated into German in 
1904, with its misprints corrected (Liebmann, 1904)· Just as we can compute the 
seemingly complicated integral 

immediately by recognizing that it represents the area of a quadrant of a circle of 
radius r, he could use the differential form for the element of area in rectangular 
coordinates in the hyperbolic plane given by dS = (1 / siny') dxdy, where y' is the 
angle of parallelism for the distance y (in our terms sin y' = sech y) to express certain 
integrals as the non-Euclidean areas of simple figures. In polar coordinates the 
corresponding element of area is dS = cot r' dr Üè = sinh r dr d9. Lobachevskii also 
gave the elements of volume in rectangular and spherical coordinates and computed 
49 integrals representing hyperbolic areas and volumes, including the volumes of 
pyramids. These volumes turn out to involve some very complicated integrals 
indeed. He proved, for example, that 

Bolyai's fate. Janos Bolyai 's career turned out less pleasantly than Lobachevskii's. 
Even though he had the formula for the angle of parallelism in 1823, a time when 
Lobachevskii was still hoping to vindicate the parallel postulate, he did not publish 
it until 1831, five years after Lobachevskii's first publication. Even then, he had 
only the limited space of an appendix to his father's textbook to explain himself. 
His father sent the appendix to Gauss for comments, and for once Gauss became 
quite loquacious, explaining that he had had the same ideas many years earlier, and 
that none of these discoveries were new to him. He praised the genius of the young 
Lobachevskii for discovering it, nevertheless. Bolyai the younger was not overjoyed 
at this response. He suspected Gauss of trying to steal his ideas. According to Paul 
Stackel (1862-1919), who wrote the story of the Bolyais, father and son (quoted 
in Coolidge, 1940, p. 73), when Lobachevskii's work began to be known, Bolyai 
immediately thought that Gauss was stealing his work and publishing it under the 

Jo Jo 
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pseudonym Lobachevskii, since "it is hardly likely that two or even three people 
knowing nothing of one another would produce almost the same result by different 
routes." 

5.5. The reception of non-Euclidean geometry. Some time was required for 
the new world revealed by Lobachevskii and Bolyai to attract the interest of the 
mathematical community. Because it seemed possible—even easy—to prove that 
parallel lines exist, or equivalently, that the sum of the angles of a triangle could not 
be more than two right angles, one can easily understand why a sense of symmetry 
would lead to a certain stubbornness in attempts to refute the opposite hypothesis 
as well. Although Gauss had shown the way to a more general understanding with 
the concept of curvature of a surface, which could be either negative or positive, in 
the 1825 paper on differential geometry (published in 1827, to be discussed in detail 
in Sect. 3 of Chapter 12), it took Riemann's inaugural lecture in 1854 (published 
in 1867, also discussed in detail in Sect. 3 of Chapter 12), which made the crucial 
distinction between the unbounded and the infinite, to give the proper perspective. 
After that, acceptance of non-Euclidean geometry was quite rapid. In 1868, the year 
after the publication of Riemann's lecture, Eugenio Beltrami (1835-1900) realized 
that Lobachevskii's theorems provide a model of the Lobachevskii-Bolyai plane in 
a Euclidean disk. This model is described by Gray (1989, p. 112), as follows. 

Imagine a directed line perpendicular to the Lobachevskii-Bolyai plane in 
Lobachevskii-Bolyai three-dimensional space. The entire set of directed lines that 
are parallel (asymptotic) to this line on the same side of the plane generates a 
unique horosphere tangent to the plane at its point of intersection with the line. 
Some of the lines parallel to the given perpendicular in the given direction intersect 
the original plane, and others do not. Those that do intersect it pass through the 
portion of the horosphere denoted Ù in Fig. 12. Shortest paths on the horosphere 
are obtained as its intersections with planes passing through the point at infinity 
that serves as its "center." These paths are called horocycles. But there is only one 
horocycle through a given point in Ù that does not intersect a given horocycle, so 
that the geometry of Ù is Euclidean. As a result, we have a faithful mapping of the 
Lobachevskii-Bolyai plane onto the interior of a disk Ù in a Euclidean plane, under 
which lines in the plane correspond to chords on the disk. This model provides 
an excellent picture of points at infinity: they correspond to the boundary of the 
disk Ù. Lines in the plane are parallel if and only if the chords corresponding to 
them have a common endpoint. Lines that have a common perpendicular in the 
Lobachevskii-Bolyai plane correspond to chords whose extensions meet outside the 
circle. It is somewhat complicated to compute the length of a line segment in the 
Lobachevskii-Bolyai plane from the length of its corresponding chordal segment in 
Ù or vice versa, and the angle between two intersecting chords is not simply related 
to the angle between the lines they correspond t o . 2 3 Nevertheless these computa-
tions can be carried out from the trigonometric rules given by Lobachevskii. The 
result is a perfect model of the Lobachevskii-Bolyai plane within the Euclidean 
plane, obtained by formally reinterpreting the words line, plane, and angle. If 

2 3 It can be shown that perpendicular lines correspond to chords having the property that the 
extension of each passes through the point of intersection of the tangents at the endpoints of 
the other. But it is far from obvious that this property is symmetric in the two chords, as 
perpendicularity is for lines. 
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FIGURE 12. Projection of the Lobachevskii-Bolyai plane onto the 
interior of a Euclidean disk. 

FIGURE 13. The pseudosphere. Observe that it has no definable 
curvature at its cusp. Elsewhere its curvature is constant and 
negative. 

there were any contradiction in the new geometry, there would be a corresponding 
contradiction in Euclidean geometry itself. 

A variant of this model was later provided by Henri Poincare (1854-1912), who 
showed that the diameters and the circular arcs in a disk that meet the boundary 
in a right angle can be interpreted as lines, and in that case angles can be measured 
in the ordinary way. 

Beltrami also provided a model of a portion of the Lobachevskii-Bolyai plane 
that could be embedded in three-dimensional Euclidean space: the pseudosphere 
obtained by revolving a tractrix about its asymptote, as shown in Fig. 13. 

In 1871 Felix Klein gave a discussion of the three kinds of plane geometry in his 
article "Uber die sogennante nicht-Euklidische Geometrie" ("On the so-called non-
Euclidean geometry"), published in the Mathematische Annalen. In that article he 
gave the classification of them that now stands, saying that the points at infinity on 
a line were distinct in hyperbolic geometry, imaginary in spherical geometry, and 
coincident in parabolic (Euclidean) geometry. 

The pseudosphere is not a model of the entire Lobachevskii-Bolyai plane, since 
its curvature has a very prominent discontinuity. The problem of finding a surface in 
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three-dimensional Euclidean space that was a perfect model for the Lobachevskii-
Bolyai plane, in the sense that its geodesies corresponded to straight lines and 
lengths and angles were measured in the ordinary way, remained open until Hubert, 
in an article "Uber Flachen von konstanter Gaufischer Kriimmung" ("On surfaces 
of constant Gaussian curvature"), published in the Transactions of the American 
Mathematical Society in 1901, showed that no such surface exists. 

5.6. Foundations of geometry. The problem of the parallel postulate was only 
one feature of a general effort on the part of mathematicians to improve on the 
rigor of their predecessors. This problem was particularly acute in the calculus, but 
the parts of calculus that raised the most doubts were those that were geometric 
in nature. Euclid, it began to be realized, had taken for granted not only the 
infinitude of the plane, but also its continuity, and had not specified in many cases 
what ordering of points was needed on the line for a particular theorem to be true. 
If one attempts to prove these theorems without drawing any figures, it becomes 
obvious what is being assumed. It seemed obvious, for example, that a line joining 
a point inside a circle to a point outside the circle must intersect the circle in 
a point, but that fact could not be deduced from Euclid's axioms. A complete 
reworking of Euclid was the result, expounded in detail in Hubert 's Grundlagen 
der Geometrie (Foundations of Geometry), published in 1903. This book went 
through many editions and has been translated into English (Bernays, 1971). In 
Hubert's exposition the axioms of geometry are divided into axioms of incidence, 
order, congruence, parallelism, and continuity, and examples are given to show what 
cannot be proved when some of the axioms are omitted. 

One thing is clear: No new comprehensive geometries are to be expected by pur-
suing the axiomatic approach of Hubert. In a way, the geometry of Lobachevskii and 
Bolyai was a throwback even in its own time. The development of projective and 
differential geometry would have provided—indeed, did provide—non-Euclidean 
geometry by a natural expansion of the study of surfaces. It was Riemann, not 
Lobachevskii and Bolyai, who showed the future of geometry. The real "action" in 
geometry since the early nineteenth century has been in differential and projective 
geometry. That is not to say that no new theorems can be produced in Euclidean 
geometry, only that their scope is very limited. There are certainly many such 
theorems. Coolidge, who undertook the herculean task of writing his History of 
Geometric Methods in 1940, stated in his preface that the subject was too vast to 
be covered in a single treatise and that "the only way to make any progress is by a 
rigorous system of exclusion." In his third chapter, on "later elementary geometry," 
he wrote that "the temptation to run away from the difficulty by not considering 
elementary geometry after the Greek period at all is almost irresistible." But to 
attempt to build an entire theory as Apollonius did, on the synthetic methods and 
limited techniques in the Euclidean tool kit, would be futile. Even Lobachevskii and 
Bolyai at least used analytic geometry and trigonometry to produce their results. 
Modern geometries are much more algebraic, as we shall see in Chapter 12. 

6. Questions and problems 

11.1. The figure used by Zenodorus at the main step in his proof of the isoperi-
metric inequality had been used earlier by Euclid to show that the apparent size of 
objects is not inversely proportional to their distance. Prove this result by referring 
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FIGURE 14. Greek use of a fundamental inequality. Left: from 
Euclid's Optics. Right: from Ptolemy's Almagest. 

to the diagram on the left in Fig. 14. Show that BE : EA :: AB : Æ A :: ÃÄ : Æ A 

and that this last ratio is larger than ÇÈ.ÆÈ. 

11.2. Use the diagram on the right in Fig. 14 to show that the ratio of a larger 
chord to a smaller is less than the ratio of the arcs they subtend, that is, show that 

ΒÃ : AB is less than BT-.AB, where AT and AZ are perpendicular to each other. 
(Hint: BA bisects angle ABT.) Ptolemy said, paradoxically, that the chord of 1° 
had been proved "both larger and smaller than the same number" so that it must 
be approximately 1; 2,50.) Carry out the analysis carefully and get accurate upper 
and lower bounds for the chord of 1°. Convert this result to decimal notation, and 
compare with the actual chord of 1° which you can find from a calculator. (It is 
120sin(±°).) 

11.3. Let A, B, C, and D be squares such that A : Β :: C : £), and let r, s, t, and u 
be their respective sides. Show that r : s :: t: u by strict Eudoxan reasoning, giving 
the reason for each of the following implications. Let m and ç be any positive 
integers. Then 

mr >ns=> m2 A > n2B => m2C > n2D =>mt>nu. 

11.4. Sketch a proof of Pappus' theorem on solids of revolution by beginning with 
right triangles having a leg parallel to the axis of rotation, then progressing to 
unions of areas for which the theorem holds, and finally to general areas that can 
be approximated by unions of triangles. 

11.5. Explain how Thabit ibn-Qurra's generalization of the Pythagorean theorem 
reduces to that theorem when angle A is a right angle. What does the figure look 
like if angle A is obtuse? Is there an analogous theorem if BC is not the longest 
side of the triangle? 

11.6. One form of non-Euclidean geometry, known as doubly elliptic geometry, is 
formed by replacing the plane with a sphere and straight lines with great circles, 
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that is, the intersections of the sphere with planes passing through its center. Let 
one "line" (great circle) be the equator of the sphere. Describe the equidistant 
curve generated by the endpoint of a "line segment" (arc of a great circle) of fixed 
length and perpendicular to the equator when the other endpoint moves along the 
equator. Why is this curve not a "line"? 

11.7. Al-Haytham's attempted proof of the parallel postulate is fallacious because 
in non-Euclidean geometry two straight lines cannot be equidistant at all points. 
Thus in a non-Euclidean space the two rails of a railroad cannot both be straight 
lines. Assuming Newton's laws of motion (an object that does not move in a 
straight line must be subject to some force), show that in a non-Euclidean universe 
one of the wheels in a pair of opposite wheels on a train must be subject to some 
unbalanced force at all times. [Note: The spherical earth that we live on happens 
to be non-Euclidean. Therefore the pairs of opposite wheels on a train cannot both 
be moving in a great circle on the earth's surface.] 

11.8. Prove that in any geometry, if a line passes through the midpoint of side 
AB of triangle ABC and is perpendicular to the perpendicular bisector of the 
side BC, then it also passes through the midpoint of AC. (This is easier than it 
looks: Consider the line that does pass through both midpoints, and show that 
it is perpendicular to the perpendicular bisector of BC; then argue that there is 
only one line passing through the midpoint of BC that is perpendicular to the 
perpendicular bisector of BC.) 

11.9. Use the previous result to prove, independently of the parallel postulate, that 
the line joining the midpoints of the lateral sides of a Thabit (Saccheri) quadrilateral 
bisects the diagonals. 
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Modern Geometries 

In geometry, as in number theory, the seventeenth century represents a break with 
the past. The two main reasons for the sudden surge of mathematical activity are 
the same in both cases: first, the availability of translations from the Arabic, which 
stimulated European mathematicians to try to recover and extend the fascinating 
results achieved by the ancient Greeks and medieval Muslims; second, the devel-
opment of algebra and its evolution into a symbolic form in the Italian city-states 
during the sixteenth century. This development suggested new ways of thinking 
about old problems. The result was a variety of new forms of geometry that came 
about as a result of the calculus: analytic geometry, algebraic geometry, projective 
geometry, descriptive geometry, differential geometry, and topology. 

1. A n a l y t i c and algebraic g e o m e t r y 

The creation of what we now know as analytic geometry had to wait for algebraic 
thinking about geometry (the type of thinking Pappus called analytic) to become a 
s tandard mode of thinking. No small contribution t o this process was the creation 
of the modern notational conventions, many of which were due to Frangois Viete 
(1540-1603) and Descartes. It was Descartes who started the very useful convention 
of using letters near the beginning of the alphabet for constants and data and those 
near the end of the alphabet for variables and unknowns. Viete's convention, which 
was followed by Fermat, had been to use consonants and vowels respectively for 
these purposes. 

1 .1 . Fermat . Besides working in number theory, Fermat studied the works of 
Apollonius, including references by Pappus to lost works. This study inspired him 
to write a work on plane and solid loci, first published with his collected works 
in 1679. He used these terms in the sense of Pappus: A plane locus is one that 
can be constructed using straight lines and circles, and a solid locus is one that 
requires conic sections for its construction. He says in the introduction tha t he 
hopes to systematize wha t the ancients, known to him from Book 7 of Pappus ' 
Synagdge, had left haphazard. Pappus had written tha t the locus to more than six 
lines had hardly been touched. Thus, locus problems were the context in which 
Fermat invented analytic geometry. 

Apart from his adherence to a dimensional uniformity tha t Descartes (finally!) 
eliminated, Fermat 's analytic geometry looks much like what we are now familiar 
with. He stated its basic principle very clearly, asserting tha t the lines representing 
two unknown magni tudes should form an angle t h a t would usually be assumed a 
right angle. He began with the equation of a straight line: 1 Z2 - DA = BE. This 
equation looks strange to us because we automatically (following Descartes) tend 

1 Fermat actually wrote "Z pi — D in A aequetur Â in E." 
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to look at the Æ as a variable and the A and Å as constants, exactly the reverse 
of what Fermat intended. If we make the replacements Æ é—> c, D >—> a, A >—> x, 
Å »-» y, this equation becomes c 2 - aa; = fey, and now only the exponent looks 
strange, the result of Fermat 's adherence to the Euclidean niceties of dimension. 

Fermat illustrated the claim of Apollonius tha t a locus was determined by the 
condition tha t the sum of the pairwise products of lines from a variable point to 
given lines is given. His example was the case of two lines, where it is the familiar 
rectangular hyperbola that we have now seen used many t imes for various purposes. 
Fermat wrote its equation as ae — z2. He showed that the graph of any quadrat ic 
equation in two variables is a conic section. 

1.2. D e s c a r t e s . Fermat 's work on analytic geometry was not published in his 
lifetime, and therefore was less influential than it might have been. As a result, his 
contemporary Rene Descartes is remembered as the creator of analytic geometry, 
and we speak of "Cartesian" coordinates, even though Fermat was more explicit 
about their use. 

Rene Descartes is remembered not only as one of the most original and creative 
modern mathematicians, but also as one of the leading voices in modern philoso-
phy and science. Both his scientific work on optics and mechanics and his geometry 
formed part of his philosophy. Like Plato, he formed a grand project of integrating 
all of human knowledge into a single system. Also like Plato, he recognized the 
special place of mathematics in such a system, Àç his Discourse on Method, pub-
lished at Leyden in 1637, he explained that logic, while it enabled a person to make 
correct judgments about inferences drawn through syllogisms, did not provide any 
actual knowledge about the world, what we would call empirical knowledge. In 
what was either a deadpan piece of sarcasm or a sincere t r ibute to Ramon Lull 
(mentioned above in Chapter 8), he said that in the ar t of "Lully" it enabled a 
person to speak fluently about matters on which he is entirely ignorant. He seems 
to have agreed with Plato that mathematical concepts are real objects, not mere 
logical relations among words, and that they are perceived directly by the mind. In 
his famous a t tempt at doubting everything, he had brought himself back from utter 
skepticism by deducing the principle that whatever he could clearly and distinctly 
perceive with his mind must be correct. 

As Davis and Hersh (1986) have written, the Discourse on Method was the 
fruit of a decade and a half of hard work and thinking on Descartes' part , following 
a series of three vivid dreams on the night of November 10, 1619, when he was 
a 23-year-old soldier of fortune. The link between Descartes' philosophy and his 
mathematics lies precisely in the matter of "clear and distinct perception." For 
there seems to be no other area of thought in which human ideas are so clear and 
distinct. As Grabiner (1995, p. 84) says, when Descartes attacked, for example, a 
locus problem, the answer had to be "it is this curve, it has this equation, and it 
can be constructed in this way." Descartes' Geometric, which contains his ideas on 
analytic geometry, was published as the last of three appendices to the Discourse. 

What Descartes meant by "clear and distinct" ideas in mathematics is shown 
in a method of generating curves given in his Geometrie t h a t appears mechanical, 
but can be stated in pure geometric language. A pair of lines intersecting a t a fixed 
point Y coincide initially (Fig. 1). The point A remains fixed on the horizontal 
line. As the oblique line rotates about Õ, the point B, which remains fixed on 
it, describes a circle. The tangent at Â intersects the horizontal line a t C, and 
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AC Ε G 

F I G U R E 1. Descartes' linkage for generating curves. The curve 

x4n = a2(x2 + y2)2n~l is shown for ç = 0,1,2,3. 

the point on the oblique line directly above C is D. The line perpendicular to 
the oblique line at D intersects the horizontal line at E, from which a vertical 
line intersects the oblique line at F, and so forth in a zigzag pattern. Descartes 
imagined a mechanical linkage that could actually draw these curves. 

Descartes regarded determinate curves of this sort, depending on one parame-
ter, as we would say, as legitimate to use in geometry. He offered the opinion that 
the opposition to "mechanical" curves by ancient Greek mathematicians arose be-
cause the curves they knew about—he mentioned the spiral of Archimedes and the 
quadratix—were indeterminate. In the case of the spiral of Archimedes, which is 
generated by a point moving at constant linear velocity along a line tha t is rotating 
with constant angular velocity, the indeterminacy arises because the two velocities 
need to be coordinated with infinite precision. For the quadratr ix, the same prob-
lem arises, as the ratio of the velocity of a rotating line and that of a translating 
line needs to be known with infinite precision. 

Descartes' Geometrie resembles a modern textbook of analytic geometry less 
than does Fermat 's Introduction to Plane and Solid Loci. He does not routinely use 
a system of "Cartesian" coordinates, as one might expect from the name. But he 
does remove the dimensional difficulties tha t had complicated geometric arguments 
since Euclid's cumbersome definition of a composite ratio. 

[U]nity can always be understood, even when there are too many 
or too few dimensions; thus, if it be required to extract the cube 
root of a 2 6 2 — b, we must consider the quantity a2b2 divided once 
by unity, and the quanti ty b multiplied twice by unity. [Smith and 
Latham, 1954, P- 6] 

Here Descartes is explaining that all four arithmetic operations can be per-
formed on lines and yield lines as a result. He illustrated the product and square 
root by the diagrams in Fig. 2, where AB = 1 on the left and FG = 1 on the right. 

Descartes went a step further than Oresme in eliminating dimensional con-
siderations, and he went a step further than Pappus in his classification of locus 
problems. Having translated these problems into the language of algebra, he real-
ized tha t the three- and four-line locus problems always led to polynomial equations 
of degree a t most 2 in a; and y, and conversely, any equation of degree 2 or less rep-
resented a three- or four-line locus. He asserted with confidence that he had solved 
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F I G U R E 2. Left: AB = 1, so that BE = BCBD. Right: FG = 1, 

so tha t GI = y/GH. 

the problem tha t Pappus reported unsolved in his day. It was in this context tha t 
he formulated the idea of using two intersecting lines as a frame of reference, saying 
that 

since so many lines are confusing, I may simplify mat ters by consid-
ering one of the given lines and one of those to be d r a w n . . . as the 
principal lines, to which I shall try to refer all the others. [Smith and 
Latham, 1954, p. 29] 

The idea of using two coordinate lines is psychologically very close to the link-
ages illustrated in Fig. 1. In terms of Fig. 3, Descartes took one of the fixed lines 
as a horizontal axis AB, since a line was to be drawn from point C on the locus 
making a fixed angle è with AB. He thought of this line as sliding along AB and 
intersecting it at point B, and he denoted the variable length AB by x. Then since 
C needed to slide along this moving line so as to keep the proportions demanded 
by the conditions of the locus problem, he denoted the distance CB by y. All the 
lines were fixed except CB, which moved parallel to itself, causing ÷ to vary, while 
on it y adjusted to the conditions of the problem. For each of the other fixed lines, 
say AR, the angles ö, è, and ø will all be given, ö by the position of the fixed 
lines AB and AR, and the other two by the conditions prescribed in the problem. 
Since these three angles determine the shape of the triangles ADR and BCD, they 
determine the ratios of any pair of sides in these triangles through the law of sines, 
and hence all sides can be expressed in terms of constants and the two lengths ÷ 
and y. If the set of 2n lines is divided into two sets of ç as the 2n-line locus problem 
requires, the conditions of the problem can be stated as an equation of the form 

p{x,y) = q(x,y), 

where ñ and q are of degree at most ç in each variable. The analysis was mostly 
"clear and distinct." 

Descartes argued that the locus could be considered known if one could locate 
as many points on it as desired. 2 He next pointed out tha t in order to locate points 
on the locus one could assign values to either variable ÷ and y, then compute the 
value of the other by solving the equation. 3 

Everyone who has studied analytic geometry in school must have been struck 
at the beginning by how much clearer and easier it was to use than the synthetic 
geometry of Euclid. That aspect of the subject is nicely captured in the words 
the poet Paul Valery (1871-1945) applied to Descartes' philosophical method in 

2 The validity of this claim is somewhat less than "clear and distinct." 
3 This claim also involves a great deal of hope, since equations of degree higher than 4 were 
unknown territory in his day. 
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F I G U R E 3 . Descartes' analysis of the ç-line locus problem. 

general: "the most brilliant victory ever achieved by a man whose genius was 
applied to reducing the need for genius" (quoted by Davis and Hersh, 1986, p. 7). 

This point was ignored by Newton in a rather ungenerous exhibition of his own 
remarkable mathematical talent (Whiteside, 1967, Vol. IV, pp. 275-283). Newton 
said that Descartes "makes a great show" about his solution of the three- and four-
line locus problems, "as if he had achieved something so earnestly sought after by 
the ancients." He also expressed a distaste for Descartes' use of symbolic algebra 
to solve this problem (a distaste that would be echoed by other mathematicians), 
saying that if this algebra were written out in words, it "would prove to be so 
tedious and entangled as to provoke nausea." One is inclined to say, on Descartes' 
behalf, "Precisely! T h a t ' s why it 's better to use algebraic symbolism and avoid the 
tedium, confusion, and nausea." 

1.3. N e w t o n ' s c lass i f icat ion of curves . Like Descartes, Newton made a clas-
sification of curves according to the degree of the equations that represent them, 
or rather, according to the maximal number of points in which they could inter-
sect a straight line. As Descartes had argued for the use of any curves that could 
be generated by one parameter , excluding spirals and the quadratr ix because they 
required two independent motions to be coordinated, Newton likewise argued that 
geometers should either confine themselves to conic sections or else allow any curve 
having a clear description. In his Universal Arithmetick, he mentioned in particular 
the trochoid, 4 which makes it possible to divide an angle into any number of equal 
parts, as a useful curve tha t is simple to describe. 

1.4. Algebra ic g e o m e t r y . As we have just seen, Descartes began the subject of 
algebraic geometry with his classification of algebraic curves into genera, and New-
ton gave an alternative classification of curves also, based on algebra, although he 
included some curves tha t we would call transcendental, curves that could intersect 
a line in infinitely many points. The general study of algebraic curves p(x, y) = 0, 
where p(x, y) is a polynomial in two variables, began with Colin Maclaurin (1698-
1746), who in his Geometria organica of 1720 remarked tha t a cubic curve was not 
uniquely determined by nine points, even though nine points apparently suffice to 
determine the coefficients of any polynomial p(x, y) of degree 3, up to proportional-
ity and hence determine a unique curve p(x, y) = 0. Actually, however, two distinct 

4 A trochoid is the locus of a point rigidly attached to a rolling wheel. If the point, lies between 
the rim and the center, the trochoid is called a curtate cycloid. If the point lies outside the rim, 
the trochoid is a prolate cycloid. If the point is right on the rim, the trochoid is called a cycloid. 
The names come from the Greek words trokhos (wheel) and kyklos (circle). 
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cubic curves generally intersect in nine points, so tha t some sets of nine points do 
not determine the curve uniquely (see Problem 12.7). This fact was later (1748) 
noted by Euler as well, and finally, by Gabriel Cramer (1704-1752), who also noted 
Maclaurin's priority in the discovery that a curve of degree m and a curve of degree 
ç meet generally in mn points. This interesting fact is called Cramer's paradox 
after Cramer published it in a 1750 textbook on algebraic curves. Although he 
correctly explained why more than one curve of degree ç can sometimes be made 
to pass through n(n + 3)/2 points—because the equations for determining the co-
efficients from the coordinates of the points might not be independent—he noted 
that in tha t case there were actually infinitely many such curves. Tha t , he said, 
was a real paradox. Incidentally, it was in connection with the determination of the 
coefficients of an algebraic curve through given points tha t Cramer stated Cramer 's 
rule for solving a system of linear equations by determinants . 5 

2. Pro jec t ive and d e s c r i p t i v e g e o m e t r y 

It is said tha t Euclid's geometry is tactile rather than visual, since the theorems 
tell you what you can measure and feel with your hands, not what your eye sees. 
It is a commonplace that a circle seen from any position except a point on the line 
through its center perpendicular to its plane appears to be an ellipse. If figures did 
not distort in this way when seen in perspective, we would have a very difficult t ime 
navigating through the world. We are so accustomed to adjusting our judgments of 
what we see that we usually recognize a circle automatically when we see it, even 
from an angle. The distortion is an essential element of our perception of depth. 
Artists, especially those of the Italian renaissance, used these principles to create 
paintings tha t were astoundingly realistic. As Leonardo da Vinci (1452-1519) said, 
"the primary task of a painter is to make a flat plane look like a body seen in 
relief projecting out of it." Many records of the principles by which this effect was 
achieved have survived, including treatises of Leonardo himself and a very famous 
painter's manual of Albrecht Durer (1471 1528), first published in 1525. Over a 
period of several centuries these principles gave rise to the subject now known as 
projective geometry. 

2.1 . P r o j e c t i v e propert i e s . Projective geometry studies the mathemat ical rela-
tions among figures that remain constant in perspective. Among these things are 
points and lines, the number of intersections of lines and circles, and consequently 
also such things as parallelism and tangency, but not things tha t depend on shape, 
such as angles or circles. 

A less obvious property that is preserved is what is now called the cross-ratio 
of four points on a l ine. 6 If A, B, C, and D are four points on a line, with Â and 

5 As mentioned in Chapter 8, the solution of linear equations by determinants had been known 
to Seki Kowa and Leibniz. Thus, Cramer has two mathematical concepts named after him, and 
in both cases he was the third person to make the discovery. 
6 Although this ratio has been used for centuries, the name it now bears in English seems to go 
back only to an 1869 treatise on dynamics by William Kingdon Clifford (1845 1879). Before that 
it was called the anharmonic ratio, a phrase translated from an 1837 French treatise by Michel 
Chasles (1809-1880). This information came from the website on the history of mathematical 
terms maintained by Jeff Miller of Gulf High School in New Port Richey, Florida. The url of the 
website is http://member8.aol.com/jeff570/mathword.html. 
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A circle seen in perspective is an ellipse. 

C both between A and D and C between Â and D, their cross-ratio is 

^ • " - ^ 
It is not difficult to show, for example, tha t if the rays PA, PB, PC, and PD from 
a point Ñ intersect a second line in points Á', B', C', and D', the cross-ratio of 
these new points is the same as tha t of the original four points. Coolidge (1940, p. 
88) speculated tha t Euclid may have known about the cross-ratio, and he asserted 
tha t the early second-century mathematician Menelaus did know about it. 

Some theorems tha t might appear difficult to prove from the standard Eu-
clidean techniques of proportion and congruence can be quite easy when looked at 
"in perspective," so to speak. For example, it is easy to prove that if two tangents 
to a circle from points A and C meet at a point P, then the line from Ñ to the 
midpoint of the chord AC meets the circle in a point (namely the midpoint of the 

arc AC) a t which the tangent to the circle is parallel to the chord AC. To prove 
that same theorem for an ellipse using analytic geometry is a very tedious compu-
tation. However, remembering tha t the ellipse was obtained as the intersection of a 
cone with a plane oblique to its base, one has only to note tha t projection preserves 
tangency, intersections, parallelism (usually), and midpoints. Then, projecting the 
cone and all the lines into the base plane yields the result immediately, as shown in 
Fig. 4 . 7 Similarly, it could be shown that the bisector of a chord from the point of 
intersection of the tangents at the endpoints of the chord passes through the center 
of the ellipse. 

2 .2 . T h e R e n a i s s a n c e ar t i s t s . The revival of interest in ancient culture in gen-
eral during the Renaissance naturally carried with it an interest in geometry. The 
famous artist Piero della Francesca (14107-1492) was inspired by the writings of 
Leonardo of Pisa and others to write treatises on arithmetic and the five regu-
lar solids. The scholar Luca Pacioli (1445-1517), who was influenced by Piero 
della Francesca and was a friend of Leonardo da Vinci, published a comprehensive 

7 Of course, in the figure the "circle" in the base is really an ellipse because it has been projected 
onto the page. 
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F I G U R E 4. Central projections preserve tangency, midpoints, and 
(usually) parallelism. 

treatise on ari thmetic and geometry in 1494, and a second book, De divina pro-
portioned in 1509. He gave the name divine proportion to what is now called the 
Golden Section, the division of a line into mean and extreme ratios. Interest in the 
five regular solids branched out into an interest in semiregular solids. Leonardo da 
Vinci designed wooden models of these, which were depicted in Pacioli's treatise. 

The regular and semiregular solids formed an important part of Diirer's manual 
for painters, published in 1525. He showed how to cut out a paper model of a 
truncated icosahedron, which consists of 12 pentagons and 20 hexagons (Fig. 5). 
The solid, although not the name, has become very familiar to modern people 
through its application in athletics and organic chemistry. 

A geometric description of perspective was given by Leon Bat t i s ta Alberti 
(1404 1472) in a treatise entitled Delia picture., published posthumously in 1511. If 
the eye is at fixed height above a horizontal plane, parallel horizontal lines in that 
plane receding from the imagined point where the eye is located can be drawn as 
rays emanating from a point (the vanishing point) at the same height above the 
plane, giving the illusion that the vanishing point is infinitely distant . The appli-
cation to art is obvious: Since the canvas can be thought of as a window through 
which the scene is viewed, if you want to draw parallel horizontal lines as they 
would appear through a window, you must draw them as if they all converged on 
the vanishing point. Thus, a family of lines having a common property (passing 
through the vanishing point) projects to a family having a different common prop-
erty (being parallel to one another). Obviously, lines remain lines under such a 
projection. However, perpendicular lines will not remain perpendicular, nor will 
circles remain circles. 
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F I G U R E 5. Diirer's paper model of a truncated icosahedron. 

In those days before photography and computers, the mechanical aspects of 
drawing according to Alberti 's rules apparently did not disturb artists. Durer, in 
particular, seemed to enjoy thinking up mechanical ways of producing technical 
perfection. One of his devices is shown below. Although the device seems a very 
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Two modern applications of the truncated icosahedron: a mole-

cule of buckminsterfullerene ("buckyball"); a soccer ball. 

strange and inefficient way of painting, it does illustrate the use of projection very 
vividly, even if it was only a "thought exper iment ." 8 

2.3. Girard D e s a r g u e s . The mathematical development of the theory of projec-
tion began with the work of Girard Desargues (1593-1662). In 1636, one year before 
the publication of Descartes' Geometrie, Desargues published a pamphlet with the 
ponderous title An Example of One of the General Methods of S.G.D.L? Applied 
to the Practice of Perspective Without the Use of Any Third Point, Whether of 
Distance or Any Other Kind, Lying Outside the Work Area. The reference to a 
"third point" was aimed at the primary disadvantage of Alberti 's rules, the need to 
use a point not on the canvas in order to get the perspective correct. Three years 
later he produced a Rough Draft of an Essay on the Consequences of Intersecting a 
Cone with a Plane. In both works, written in French rather than the more custom-
ary Latin, he took advantage of the vernacular to invent new names, not only for 
the conic sect ions , 1 0 as Durer had done, but also for a large number of concepts 
that called attention to particular aspects of the distribution and proportions of 
points and lines. He was particularly fond of botanical n a m e s , 1 1 and included tree, 
trunk, branch, shoot, and stem, among many other neologisms. Although the new 
language might seem distracting, using s tandard terms for what he had in mind 
would have been misleading, since the theory he was constructing unified concepts 
that had been distinct before. For example, he realized tha t a cylinder could be 
regarded as a limiting case of a cone, and so he gave the name scroll to the class 
consisting of both surfaces. Desargues had very little need to refer to any specific 
conic section; his theorems applied to all of them equally. As he said (Field and 
Gray, 1987, p. 102—I have changed their roll to scroll): 

8 According to Strauss (1977, p. 31), painters of Durcr's time who actually tried to build such 
devices found them quite impracticable. 
9 Sieur Girard Desargues Lyonnois. 
1 0 He gave the standard names, but suggested deficit, equalation, and exceedence as alternatives. 
1 1 Ivins (1947, cited by Field and Gray, 1987, p. 62) suggested that these names were inspired by 
similar names in Alberti's treatise. 
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One of Diirer's devices for producing an accurate painting. The 
artist 's assistant at the left holds a needle a t a particular point on 
the lute being painted, while the artist sticks a pair of crosshairs on 
the frame to mark the exact point where the thread passes through 
the window. The needle and thread are then to be removed, the 
door holding the canvas closed, and the spot where the crosshairs 
meet marked on the canvas. © Corbis Images (No. SF1906). 

The most remarkable properties of the sections of a scroll are com-
mon to all types, and the names Ellipse, Parabola, and Hyperbola 
have been given them only on account of mat ters extraneous to 
them and to their nature. 

Desargues was among the first to regard lines as infinitely long, in the modern 
way. In fact, he opens his treatise by saying that he will consider both the infinitely 
large and the infinitely small in his work, and he says firmly tha t "in this work every 
straight line is, if necessary, taken to be produced to infinity in both directions." 
He also had the important insight that a family of parallel lines and a family of 
lines with a common point of intersection have similar properties. He said tha t 
lines belonged to the same order12 if either they all intersected at a common point 
or were all mutually parallel. This term was introduced "[to] indicate that in the 
one case as well as in the other, it is as if they all converged to the same place" 
[emphasis added]. 

2 Now called a pencil or sheaf. 
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FIGURE 6. Menelaus' theorem for a plane triangle. 

Although Desargues' terminology is very difficult to follow, his Rough Draft 
contained some elegant theorems about points on conies. Two significant results 
are the following: 1 3 

First: If four lines in a plane intersect two at a time, and the points of inter-
section on the first line are A, B, and C, with Â between A and C, and the lines 
through A and Â intersect in the point D, those through A and C in Å and those 
through Â and C in F, then 

The situation here was described by Pappus, and the result is also known as 
Menelaus' theorem. The proof is easily achieved by drawing the line through Å 
parallel to AB, meeting BD in a point G, then using the similarity of triangles 
EGF and CBF and of triangles DEG and DAB, as in Fig. 6. From Eq. 1 it is 
easy to deduce that BD • AE • CF = BF • AD • CE. Klein (1926, p . 80) at tr ibutes 
this form of the theorem to Lazare Carnot (1753-1823). 

Second: The converse of this statement is also true, and can be interpreted as 
stating that three points lie on a line. Tha t is, if ADB is a triangle, and Å and F 
are points on AD and BD respectively such tha t AD : AE < BD : BF, then the 
line through Å and F meets the extension of AB on the side of Â in a point C, 
which is characterized as the only point on the line EF satisfying Eq. 1. 

In 1648 the engraver Abraham Bosse (1602-1676), who was an enthusiastic 
supporter of Desargues' new ideas, published La Perspective de Mr Desargues, in 
which he reworked these ideas in detail. Near the end of the book he published the 
theorem tha t is now known as Desargues' theorem. Like Desargues' work, Bosse's 
statement of the theorem is a tangled mess involving ten points denoted by four 
uppercase letters and six lowercase letters. The points lie on nine different lines. 
When suitably clarified, the theorem states tha t if the lines joining the three pairs 
of vertices from two different triangles intersect in a common point, the pairs of 
lines containing the corresponding sides of these triangles meet in three points all 
on the same line. This result is easy to establish if the triangles lie in different 
planes, since the three points must lie on the line of intersection of the two planes 
containing the triangles, as shown in Fig. 7. 

For two triangles in the same plane, the theorem, illustrated in Fig. 8, was 
proved by Bosse by applying Menelaus' theorem to the three sets of collinear points 

1 3 To keep the reader's eye from getting too tangled up, we shall use standard letters in the 
statement and figure rather than Desargues' weird mixture of uppercase and lowercase letters and 
numbers, which almost seems to anticipate the finest principles of computer password selection. 

( i ) 
BD _ AD CE 

BF~AE'CF' 
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F I G U R E 8. Desargues' theorem for two triangles in the same plane. 

{A", C, Â}, {B", A, C } , and {C", A, B}, with Ê as the third vertex of the triangle 
whose base ends in the second and third points in all three cases. (There is no other 
conceivable way to proceed, so that in a sense the proof is a mere computation.) 
When the ratios AK : A A'', Â Ê : ÂÂ', and CK : CC are eliminated from the 
three resulting equations, the result can be written as the equation 

C"B' _ A"B' B"C 

C"A' ~ A"C B"A! ' 
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Having received a copy of this work from Marin Mersenne, Descartes took the 
word draft literally and regarded it as a proposal to write a treatise—which it may 
have been—such as a modern author would address to a publisher, and a publisher 
would send to an expert for review. He wrote to Desargues to express his opinion 
of "what I can conjecture of the Treatise on Conic Sections, of which [Mersenne] 
sent me the Draft." Descartes' "review" of the work contained the kind of advice 
reviewers still give: tha t the author should decide more definitely who the intended 
audience was. As he said, if Desargues was aiming to present new ideas to scholars, 
there was no need to invent new terms for familiar concepts. On the other hand, 
if the book was aimed at the general public, it would need to be very thick, since 
everything would have to be explained in great detail (Field and Gray, 1987, p. 
176). 

2.4. B la i se Pasca l . Desargues' work was read by a teenage boy named Blaise 
Pascal (1623-1662), who was to become famous for his mathematical work and 
renowned for his Pensees (Meditations), which are still read by many people today 
for inspiration. He began working on the project of writing his own treatise on 
conies. Being very young, he was humble and merely sketched what he planned 
to do, saying that his mistrust of his own abilities inclined him to submit the 
proposal to experts, and "if someone thinks the subject worth pursuing, we shall 
try to carry it out to the extent that God gives us the strength." Pascal admired 
Desargues' work very much, saying that he owed "what little I have discovered to 
his writings" and would imitate Desargues' methods, which he considered especially 
important because they treated conic sections without introducing the extraneous 
axial section of the cone. He did indeed use much of Desargues' notat ion for points 
and lines, including the word order for a family of concurrent lines. His work, like 
that of Desargues, remained only a draft, although Struik (1986, p . 165) reports 
that Pascal did work on this project and tha t Leibniz saw a manuscript of it— 
not the rough draft, apparently- in 1676. All t ha t has been preserved, however, 
is the rough draft. That draft contains several results in the spirit of Desargues, 
one of which, called by Pascal a "third lemma," is still known as Pascal 's theorem. 
Referring to Fig. 9, in which four lines MK, MV, SK, and SV are drawn and then 
a conic is passed through Ê and V meeting these four lines in four other points P, 
Ï, N, and Q respectively, Pascal asserted tha t the lines PQ, NO, and MS would 
be concurrent (belong to the same order). 

2.5. N e w t o n ' s degree -preserv ing m a p p i n g s . Newton also made contributions 
to projective geometry, in a way that related it to Descartes' analytic geometry and 
to algebraic geometry. He described the mapping shown in Fig. 10 (Whiteside, 1967, 
Vol. VI, p. 269). In that figure the parallel lines BL and AO and the points A, 
B, and Ï are fixed from the outset, and the angle è is specified in advance. Thus 
the distances h and Ä and the angles ø and è are given before the mapping is 
defined. Then, to map the figure GHI to its image ghi, first project each point G 
parallel to BL so as to meet the extension of A Â at a point D. Next, draw the 
line OD meeting BL in point d. Finally, from d along the line making angle è with 
BL, choose the image point g so that gd : Od :: GD : OD. The original point, 
according to Newton, had coordinates (BD, DG) and its image the coordinates 
(Bd,dg). Thus, if we let ÷ = BD and y = DG, the coordinate transformation in 
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Q 

FIGURE 9. Pascal's theorem (third lemma), 

the two directions can be described as 

M " ( ( Ä - O s n V ^ ) · 

Newton noted that this kind of projection preserves the degree of an equation. 
Hence a conic section will remain a conic section, a cubic curve will remain a cubic 
curve, and so on, under such a mapping. In fact, if a polynomial equation p(x, y) = 0 
is given whose highest-degree term is xmyn, then every term xpyq, when expressed in 
terms of î and 77, will be a multiple of îñç'1/{Ä—î)ñ+'', so tha t if the entire equation 
is converted to the new coordinates and then multiplied by (Ä - £ ) m + n , this term 
will become îñçç(Á — ^ ) m + n _ p ^ 9 ! which will be of degree m + n. Thus the degree of 
an equation does not change under Newton's mapping. These mappings are special 
cases of the transformations known as fractional-linear or Mobius transformations, 
after August Ferdinand Mobius (1790-1868), who developed them more fully. They 
play a vital role in algebraic geometry and complex analysis, being the only one-
to-one analytic mappings of the extended complex plane onto itself. According to 
Coolidge (1940, p. 269), it was Edward Waring (1736-1798) who first remarked, in 
1762, tha t fractional-linear transformations were the most general degree-preserving 
transformations. 

2.6. Char les B r i a n c h o n . Pascal's work on the projective properties of conies was 
extended by Charles Julien Brianchon (1785-1864), who was also only a teenager 
when he proved what is now recognized as the dual of Pascal 's theorem: The pairs 
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F I G U R E 1 0 . Newton's degree-preserving projection. 

F I G U R E 1 1 . Brianchon's theorem for a circle. 

of opposite sides of a hexagon inscribed in a conic meet in three collinear points. 
The case of a circle is illustrated in Fig. 1 1 . 

2.7. M o n g e a n d h i s school . After a century of relative neglect, projective ge-
ometry revived at the Ecole Polytechnique under the students of Gaspard Monge 
( 1 7 4 6 - 1 8 1 8 ) , who was a master of the application of calculus to geometry. Klein 
(1926, pp. 7 7 - 7 8 ) described his school as distinguished by "the liveliest spatial in-
tuition combined in the most natural way possible with analytic operations." Klein 
went on to say that he taught his students to make physical models, "not to make 
up for the deficiencies of their intuition bu t to develop an already clear and lively 
intuition." As a military engineer, Monge had used his knowledge of geometry to 
design fortifications. His work in this area was highly esteemed by his superiors 
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and declared a military secret. He wrote a book on descriptive geometry and one 
on the applications of analysis to geometry, whose influence appeared in the work 
of his students. Klein says of the second book that it "reads like a novel." In this 
book, Monge analyzed quadric surfaces with extreme thoroughness. 

Monge is regarded as the founder of descriptive geometry, which is based on 
the same principles of perspective as projective geometry but more concerned with 
the mechanics of representing three-dimensional objects properly in two dimensions 
and the principles of interpreting such representations. Monge himself described the 
subject as the science of giving a complete description in two dimensions of those 
three-dimensional objects that can be defined geometrically. As such, it continues 
to be taught today under other names, such as mechanical drawing; it is the most 
useful form of geometry for engineers. 

Monge's greatest s tudent (according to Klein) was Jean-Victor Poncelet (1788-
1867). He participated as a military engineer in Napoleon's invasion of Russia in 
1812, was wounded, and spent a year in a Russian prison, where he busied himself 
with what he had learned from Monge. Returning to France, he published his 
Treatise on the Projective Properties of Figures in 1822, the founding document of 
modern projective geometry. Its connection with its historical roots in the work of 
Desargues shows in the first chapter, where Poncelet says he will be using the word 
projective in the same sense as the word perspective. In Chapter 3 he introduces the 
idea tha t all points at infinity in a plane can be regarded as belonging to a single 
line a t infinity. 1 4 These concepts brought out fully the duality between points and 
lines in a plane and between points and planes in three-dimensional space, so tha t 
interchanging these words in a theorem of projective geometry results in another 
theorem. The theorems of Pascal and Brianchon, for example, are dual to each 
other. 

2.8. J a c o b Ste iner . The increasing algebraization of geometry was opposed by 
the Swiss mathematician Jacob Steiner (1796-1863), described by Klein (1926, pp. 
126-127) as "the only example known to m e . . . of the development of mathematical 
abilities after maturity." Steiner had been a farmer up to the age of 17, when he 
entered the school of the Swiss educational reformer Johann Heinrich Pestalozzi 
(1746-1827), whose influence was widespread, extending through the philosopher-
psychologist Johann Friedrich Herbart (1776 1841) down to Riemann, as will be 
explained in the next sec t ion. 1 5 Steiner was a peculiar character in the history 
of mathematics, who when his own originality was in decline, adopted the ideas of 
others as his own without acknowledgement (see Klein, 1926, p. 128). But in his 
best years, around 1830, he had the brilliant idea of building space using higher-
dimensional objects such as lines and planes instead of points, recognizing tha t 
these objects were projectively invariant. He sought to restore the ancient Greek 
"synthetic" approach to geometry, which was independent of numbers and the con-
cept of length. To this end, in his 1832 work on geometric figures he considered 
a family of mappings of one plane on another that resembles somewhat Newton's 
projection. Klein (1926, p . 129) found nothing materially new in this work, but 
admired the systematization that it contained. The Steiner principle of successively 

1 4 Field and Gray (1987, p. 185) point out that Johannes Kepler (1571 1630) had introduced 
points at infinity in a 1604 work on conic sections, so that a parabola would have two foci. 
1 5 Klein (1926, pp. 127-128), has nothing good to say about the more extreme recommendations 
of these men, calling these recommendations "pedagogical monstrosities." 
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building more and more intricate figures by allowing simpler ones to combine ge-
ometrically was novel and had its uses, but according to Klein, encompassed only 
one part of geometry. 

2.9. A u g u s t Ferdinand M o b i u s . Projective geometry was enhanced through 
the barycentric calculus invented by August Ferdinand Mobius (1790-1868) and 
expounded in a long treatise in 1827. This work contained a number of very useful 
innovations. Mobius' use of barycentric coordinates to specify the location of a 
point anticipated vector methods by some 20 years, and proved its value in many 
parts of geometry. He used his barycentric coordinates to classify plane figures in 
new ways. As he explained in Chapter 3 of the second section of his barycentric 
calculus (Baltzer, 1885, pp. 177-194), if the vertices of a triangle were specified as 
A, B, C, and one considered all the points tha t could be writ ten as aA + bB + cC, 
with the lengths of the sides and the proportions of the coefficients a : b : c given, 
all such figures would be congruent (he used the phrase "equal and similar"). If 
one specified only the proportions of the sides instead of their lengths, all such 
figures would be similar. If one specified only the proportions of the coefficients, 
the figures would be in an affine relationship, a word still used to denote a linear 
transformation followed by a translation in a vector space. Finally, he introduced 
the relation of equality (in area). 

Cauchy, then at the height of his powers, reviewed Mobius' w o r k 1 6 on the 
barycentric calculus. In his review, as reported by Baltzer (1885, pp . xi-xii) , he was 
cautious a t first, saying that the work was "a different method of analytic geometry 
whose foundation is certainly not so simple; only a deeper s tudy can enable us to 
determine whether the advantages of this method will repay the difficulties." After 
reporting on the new classification of figures in Pa r t 2, he commented: 

One must be very confident of taking a large step forward in science 
to burden it with so much new terminology and to demand tha t 
your readers follow you in investigations presented to them in such a 
strange manner. 

Finally, after reporting some of the results from Par t 3, he concluded tha t , "It 
seems that the author of the barycentric calculus is not familiar with the general 
theory of duality between the properties of systems of points and lines established 
by M. Gergonne." This comment is difficult to explain on the assumption that 
Cauchy had actually read Chapters 4 and 5 of Pa r t 3, since this duali ty (gegenseit-
iges Entsprechen) was part of the title of bo th chapters; bu t perhaps Cauchy was 
alluding to ideas in Gergonne's papers not found in the work of Mobius. Chap-
ters 4 and 5 contain some of the most interesting results in the work. Chapter 4, 
for example, discusses conic sections and uses the barycentric calculus t o prove that 
two distinct parabolas can be drawn through four coplanar points, provided none 
of them lies inside the triangle formed by the other three. 

1 6 It might appear that Cauchy was able to read German, not a common accomplishment for 
French mathematicians in the 1820s, when the vast majority of mathematical papers of significance 
were written in French. But perhaps he read a French or Latin version of the work. 
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Mobius is best remembered for two concepts, the Mobius transformation, and 
the Mobius band. A Mobius transformation, by which we now understand a map-
ping of the complex plane into itself, æ t -> w, of the form 

w = a" "*~ â ad - be ^ 0, 
cz + d 

can be found in his 1829 paper on metric relations in line geometry. He gave such 
transformations with real coefficients in terms of the two coordinates (x,y), the 
real and imaginary par ts of what we now write as the complex number z, and 
showed tha t they were the most general one-to-one transformations that preserve 
collinearity. The Mobius band is discussed in Section 4 below. 

2.10. Ju l ius Pl i icker . A number of excellent German, Swiss, and Italian geome-
ters arose in the nineteenth century. Their work cannot be classified as purely 
projective geometry, since it also relates to algebraic geometry. As an example, we 
take Julius Pliicker (1801-1868), who was a professor at the University of Bonn 
for the last 30 years of his life. Pliicker himself remembered (Coolidge, 1940, p. 
144) tha t when young he had discovered a theorem in Euclidean geometry: The 
three lines containing the common chords of pairs of three intersecting circles are 
all concurrent. Plucker's proof of this theorem is simplicity itself. Suppose tha t 
the equations of the three circles are A = 0, Â = 0, C = 0, where each equation 
contains x 2 + y2 plus linear terms. By subtracting these equations in pairs, we get 
the quadratic terms to drop out, leaving the equations of the three lines containing 
the three common chords: Á — Â=¼, A — C = 0, B-C = 0. But it is manifest 
tha t any two of these equations imply the third, so tha t the point of intersection of 
any two also lies on the third line. 

Plucker's student Felix Klein (1926, p. 122) described a more sophisticated 
specimen of this same kind of reasoning by Pliicker to prove Brianchon's t heo rem 1 7 

tha t the opposite sides of a hexagon inscribed in a conic, when extended, intersect 
in three collinear points. The proof goes as follows: The problem involves two sets, 
each containing three lines, six of whose nine pairwise intersections lie on a conic 
section. The conic section has an equation of the form q(x, y) = 0, where q(x, y) is 
quadratic in both ÷ and y. Represent each line by a linear polynomial of the form 
ajX + bjy + Cj, the j t h line being the set of (x, y) where this polynomial equals zero, 
and assume tha t the lines are numbered in clockwise order around the hexagon. 
Form the polynomial 

s(x,y) = (aix + biy + cl)(a3x + b3y + c3)(a5x + b5y + c5) 

- ì ( á 2 £ + b2y + C2)(a4X + b^y + c4)(aex + fay + ce) 

with the parameter ì to be chosen later. This polynomial vanishes at all nine 
intersections of the lines. Line 1, for example, meets lines 2 and 6 inside the conic 
and line 4 outside i t . 1 8 

Now, when y is eliminated from the equations q(x,y) = 0 and s(x,y) = 0, 
the result is an equation t(x) = 0, where t(x) is a polynomial of degree at most 6 
in x. This polynomial must vanish at all of the simultaneous zeros of q(x, y) and 
s(x, y). We know tha t there are six such zeros for every ì. However, it is very easy 

1 7 Klein called it Pascal's theorem. 
1 8 This polynomial is the difference of two completely factored cubics, by coincidence exactly the 
kind of polynomial that arises in the six-line locus problem, even though we are not dealing with 
the distances to any lines here. 
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to choose ì so that there will be a seventh common zero. Wi th that choice of ì, 
the polynomial t(x) must have seven zeros, and hence must vanish identically. But 
since t(x) was the result of eliminating y between the two equations q(x, y) — 0 
and s(x, y) — 0, it now follows that q(x, y) divides s(x, y) (see Problem 12.5 below). 
Tha t is, the equation s(x, y) = 0 can be written as (ax + by + c)q(x, y) — 0. Hence 
its solution set consists of the conic and the line ax + by + c = 0, and this line must 
contain the other three points of intersection. 

Conic sections and quadratic functions in general continued to be a source of 
new ideas for geometers during the early nineteenth century. Plucker liked to use 
homogeneous coordinates to give a symmetric description of a quadric surface. To 
take the simplest example, consider the sphere of radius 2 in three-dimensional 
space with center at (2 ,3 ,1) , whose equation is 

( x - 2 ) 2 + ( 2 / - 3 ) 2 + ( 2 - l ) 2 = 4 . 

If x, y, and z, are replaced by î/ô, ç/ô, and æ/ô and each term is multiplied by 
r 2 , this equation becomes a homogeneous quadrat ic relation in the four variables 
(i,»?,C,r): 

(î - 2 r ) 2 + ( 1 7 - 3 r ) 2 + (C - ô)2 = 4 r 2 . 

The sphere of unit radius centered at the origin then has the simple equation 
ô2 — î2 — ç2 — æ2 = 0. Plucker introduced homogeneous coordinates in 1830. One 
of their advantages is that if r = 0, but the other three coordinates are not all zero, 
the point (î, ç, æ, ô ) can be considered to be located on a sphere of infinite radius. 
The point (0 ,0 ,0 ,0 ) is excluded, since it seems to correspond to all points a t once. 

Homogeneous coordinates correspond very well to the ideas of projective geom-
etry, in which a point in a plane is identified with all the points in three-dimensional 
space tha t project to that point from a point outside the plane. If, for example, we 
take the center of projection as (0 ,0 ,0) and identify the plane with the plane 2 = 1, 
that is, each point (x, y) is identified with the point (x, y, 1), the points tha t project 
to (x,y) are all points (tx,ty, t), where t ö 0. Since the equation of a line in the 
(x, y)-plane has the form ax+by+c = 0, one can think of the coordinates (a, b, c) as 
the coordinates of the line. Here again, multiplication by a nonzero constant does 
not affect the equation, so that these coordinates can be identified with (ta, tb, tc) 
for any t ö 0. Notice that the condition for the point (x, y) to lie on the line (o, 6, c) 
is tha t ((a, b, c), (x, y, 1)) = a · ÷ + b • y + c • 1 = 0, and this condition is unaffected 
by multiplication by a constant. The duality between points and lines in a plane 
is then clear. Any triple of numbers, not all zero, can represent either a point or a 
line, and the incidence relation between a point and a line is symmetric in the two. 
We might as well say that the line lies on the point as tha t the point lies on the 
line. 

Equations can be written in either line coordinates or point coordinates. For 
example, the equation of an ellipse can be written in homogeneous point coordinates 
(£,V, æ) as 

b V ^ + aVr? 2 = á 2ß> 2æ 2, 

or in line coordinates (ë, ì, í) as 

2 \2 , r2 2 2 2 
o A + b ì = c í , 

where the geometric meaning of this last expression is tha t the line (ë, ì, u) is 
tangent to the ellipse. 



3. DIFFERENTIAL GEOMETRY 371 

2 .11 . A r t h u r Cayley . Homogeneous coordinates provided important invariants 
and covar iants 1 9 in projective geometry. One such invariant under orthogonal 
transformations (those tha t leave the sphere fixed) is the angle between two planes 
Ax + By + Cz = D and A'x + B'y + C'z = D1, given by 

In his "Sixth memoir on quantics," published in the Transactions of the London 
Philosophical Society in 1858, Cayley fixed a "quantic" (quadratic form) ]Ð 
whose zero set was a quadric surface that he called the absolute, and defined angles 
by analogy with Eq. (2) and other metric concepts by a similar analogy. In this 
way he obtained the general projective metric, commonly called the Cayley metric. 
It allowed metric geometry to be included in descriptive-projective geometry. As 
Cayley said, "Metrical geometry is thus a part of descriptive geometry and de-
scriptive geometry is all geometry." By suitable choices of the absolute, one could 
obtain the geometry of all kinds of quadric curves and surfaces, including the non-
Euclidean geometries studied by Gauss, Lobachevskii, Bolyai, and Riemann. Klein 
(1926, p . 150) remarked tha t Cayley's models were the most convincing proof tha t 
these geometries were consistent. 

Differential geometry is the study of curves and surfaces (from 1852 onwards, mani-
folds) using the methods of differential calculus, such as derivatives and local series 
expansions. This history falls into natural periods defined by the primary sub-
ject matter : first, the tangents and curvatures of plane curves; second, the same 
properties for curves in three-dimensional space; third, the analogous properties 
for surfaces, geodesies on surfaces, and minimal surfaces; fourth, the application 
(conformal mapping) of surfaces on one another; fifth, very broad expansions of all 
these topics, to embrace ç-dimensional manifolds and global properties instead of 
local. 

3 . 1 . H u y g e n s . Struik (1933) and Coolidge (1940, p. 319) agree that credit for 
the first exploration of secondary curves generated by a plane curve —the involute 
and evolute—occurred in Christiaan Huygens' work Horologium oscillatorium (Of 
Oscillating Clocks) in 1673, even though calculus had not yet been developed. The 
involute of a curve is the pa th followed by the endpoint of a t au t string being wound 
onto the curve or unwound from it. Huygens did not give it a name; he simply called 
it the "line [curve] described by evolution." There are as many involutes as there 
are points on the curve to begin or end the winding process. 

Huygens was seeking a truly synchronous pendulum clock, and he needed a 
pendulum that would have the same period of oscillation no mat ter how great 
the ampli tude of the oscillation w a s . 2 0 Huygens found the mathematically ideal 
solution of the problem in two properties of the cycloid. First, a frictionless particle 

1 9 According to Klein (1926, p. 148), the distinction between an invariant and a covariant is 
not essential. Any algebraic expression that remains unchanged under a family of changes of 
coordinates is a covariant if it contains variables, and is an invariant if it contains only constants. 
2 0 Despite the legend that Galileo observed a chandelier swinging and noticed that all its swings, 
whether wide or short, required the same amount of time to complete, for circular arcs that obser-
vation is only true approximately for small amplitudes, as anyone who has done the experiment 
in high-school physics will have learned. 

(2) 
AA' + BB' + CC 

3 . Differential g e o m e t r y 
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FIGL TB2JL 

Huygens' cycloidal pendulum, from his Horologium oscillatoriurn. 
© Stock Montage, Inc. 

requires the same t ime to slide to the bot tom of a cycloid no mat ter where it 
begins; second, the involute of a cycloid is another cycloid. He therefore designed 
a pendulum clock in which the pendulum bob was at tached to a flexible leather 
strap that is confined between two inverted cycloidal arcs. The pendulum is thereby 
forced to fall along the involute of a cycloid and hence to be truly tautochronous. 
Reality being more complicated than our dreams, however, this apparatus—like 



Diirer's mechanical drawing methods—does not really work any better than the 
standard m e t h o d s . 2 1 

Referring to Fig. 12, in which a line is drawn from one peak of a cycloid to 
the next and an identical cycloid then drawn atop tha t line, he showed that BE is 
perpendicular to the cycloid. But the curve that cuts all the tangents to another 
curve at right angles is precisely the "curve generated by evolution." 

3 .2 . N e w t o n . In his Fluxions, which was first published in 1736, after his death, 
even though it appears to have been written in 1671, Newton found the circle that 
best fits a curve. Struik (1933, 19, p. 99) doubted tha t this material was really in the 
1671 manuscript. Be tha t as it may, the topic occurs as Problem 5 in the Fluxions: 
At any given Point of a given Curve, to find the Quantity of Curvature. Newton 
needed to find a circle tangent to the curve at a given point, which meant finding 
its center. However, Newton wanted not just any tangent circle. He assumed tha t 
if a circle was tangent to a curve at a point and "no other circle can be interscribed 
in the angles of contact near tha t point , . . . that circle will be of the same curvature 
as the curve is of, in tha t point of contact." In this connection he introduced terms 
center of curvature and radius of curvature still used today. His construction is 
shown in Fig. 13, in which one unnecessary letter has been removed and the figure 
has been rotated through a right angle to make it fit the page. The weak point 
of Newton's argument was his claim that , "If C D be conceived to move, while it 
insists [remains] perpendicularly on the Curve, that point of it C (if you except the 
motion of approaching to or receding from the Point of Insistence C,) will be least 
moved, but will be as it were the Center of Motion." Huygens had had this same 
problem with clarity. Where Huygens had referred to points tha t can be treated as 
coincident, Newton used the phrase will be as it were. 

Newton also treated the problem of the cycloidal pendulum in his Principia 
Mathematica, published in 1687. Huygens had found the evolute of a complete 
arch of a cyloid. Tha t is, the complete arch is the involute of the portion of two 
half-arches start ing a t the halfway point on the arch. In Proposition 50, Problem 33 
of Book 1, Newton found the evolute for an arbitrary piece of the arch, which was 

2 1 The master's thesis of Robert W. Katsma at California State University at Sacramento in the 
year 2000 was entitled "An analysis of the failure of Huygens' cycloidal pendulum and the design 
and testing of a new cycloidal pendulum." Katsma was granted patent 1992-08-18 in Walla Walla 
County for a cycloidal pendulum. However, the theoretical consensus is that "in every case, such 
devices would introduce greater errors into the going of a good clock than the errors they are 
supposed to eliminate." (See the website http: //www.ubr. com/clocks/navec/hsc/hsn95a.html.) 
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a much more complicated problem. It was, however, once again a cycloid. This 
evolute made it possible to limit the oscillations of a cycloidal pendulum by put t ing 
a complete cycloidal frame in place to stop the pendulum when the thread was 
completely wound around the evolute. 

3.3 . Leibniz . Leibniz' contributions to differential geometry began in 1684, when 
he gave the rules for handling what we now call differentials. His notat ion is essen-
tially the one we use today. He regarded ÷ and ÷ + dx as infinitely near values of 
÷ and í and dv as the corresponding infinitely near values of í on a curve defined 
by an equation relating ÷ and v. At a maximum or minimum point he noted that 
dv = 0, so t ha t the equation defining the curve had a double root (v and í + dv) at 
that point. He noted that the two cases could be distinguished by the concavity of 
the curve, defining the curve to be concave if the difference of the increments ddv 
(which we would now write as (d2v/dx2) dx2) was positive, so that the increments 
dv themselves increased with increasing v. He defined a point where the increments 
changed from decreasing to increasing to be a point of opposite turning (punctum 
flexus contrarii), and remarked that at such a point (if it was a point where dv = 0 
also), the equation had a triple root. Wha t he said is easily translated into the 
language of today, by looking at the equation 0 — f(x + h) - f(x). Obviously, 
h = 0 is a root. At a maximum or minimum, it is a double root. If the point ÷ 
yields dv — 0 ( that is, f'(x) = 0) but is not a maximum or minimum, then h = 0 
is a triple root. 

In 1686 he was the first to use the phrase osculating circle. He explained the 
mat ter thus: 
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In the infinitely small parts of a curve it is possible to consider not 
only the direction or inclination or declination, as has been done 
up to now, but also the change in direction or curvature (flexura), 
and as the measures of the direction of curves are the simplest lines 
of geometry having the same direction at the same point, tha t is, 
the tangent lines, likewise the measure of curvature is the simplest 
curve having at the same point not only the same direction but 
also the same curvature, tha t is a circle not only tangent to the 
given curve but , what is more, osculat ing. 2 2 

Leibniz recognized the problem of finding the evolute as tha t of constructing 
"not merely an arbitrary tangent to a single curve at an arbitrary point, but a 
unique common t a n g e n t 2 3 of infinitely many curves belonging to the same order." 
Tha t meant differentiating with respect to the parameter and eliminating it between 
the equation of the family and the differentiated equation. In short, Leibniz was 
the first to discuss what is now called the envelope of a family of curves defined by 
an equation containing a parameter. 

3.4 . T h e e i g h t e e n t h c e n t u r y . Compared to calculus, differential equations, and 
analysis in general, differential geometry was not the subject of a large number of 
papers in the eighteenth century. Nevertheless, there were important advances. 

Euler. According to Coolidge (1940, p. 325), Euler's most important contribution 
to differential geometry came in a 1760 paper on the curvature of surfaces. In tha t 
paper he observed tha t different planes cutting a surface at a point would generally 
intersect it in curves having different curvatures, bu t tha t the two planes for which 
this curvature was maximal or minimal would be a t right angles to each other. For 
any other plane, making angle á with one of these planes, the radius of curvature 
would be 

2 / g 
/ + 3 + ( g - / ) c o s 2 a ' 

where / and g are the minimum and maximum radii of curvature at the point. 
Nowadays, because of an 1813 treatise of Monge's student Pierre Dupin (1784-
1873), this formula is written in terms of the curvature 1/r as 

1 cos 2 a s in 2 a 

r g f 

where a is the angle between the given cutting plane and the plane in which the 
curvature is minimal (l/g). The equation obviously implies that in a plane per-
pendicular to the given plane the curvature would be the same expression with the 
cosine and sine reversed, or, what is the same, with / and g reversed. 

Another fundamental innovation due to Euler was the introduction of the now-
familiar idea of a parameterized surface, in a 1770 paper on surfaces that can be 
mapped into a plane. The canvas on which an artist paints and the paper on 
which an engineer or architect draws plans are not only two-dimensional but also 
flat, having curvature zero. Parameters allow the mathematician or engineer to 
represent, information about any curved surface, as Euler remarked, in the form of 

Literally, kissing. 
The tangent was not necessarily to be a straight line. 
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functions (t,u) t-* (x(t, u),y(t, u), z(t, u)). Quantities such as curvature and area 
are then expressed as functions of the parameters (t, u). 

Lagrange. Another study of surfaces, actually a paper in the calculus of variations, 
was Lagrange's 1762 work on extremal values of in tegra ls . 2 4 The connection with 
differential geometry is in the problem of minimal surfaces and isoperimetric prob-
lems, although he began with the brachystochrone problem (finding the curve of 
most rapid descent for a falling body). Lagrange found a necessary condition for a 
surface æ = f(x, y) to be minimal. 

The French geometers. After these "preliminaries" we finally arrive a t the tradi-
tional beginning of differential geometry, a 1771 paper of Monge on curves in space 
and his 1780 paper on curved surfaces. Monge elaborated Leibniz' idea for finding 
the envelope of a family of lines, considering a family of planes parametrized by 
their intersections with the z-axis, and obtained the equation of the surface tha t is 
the envelope of the family of planes and can be locally mapped into a plane without 
stretching or shrinking. 

3.5. G a u s s . With the nineteenth century, differential geometry entered on a pe-
riod of growth and has continued to reach new heights for two full centuries. The 
first mathematician to be mentioned is Gauss, who during the 1820s was involved in 
mapping the region of Hannover in Lower Saxony, where Gott ingen is located. This 
mapping had been ordered by King George IV of England, who was also Elector 
of Hannover by inheritance from his great grandfather George I. Gauss had been 
interested in geodesy for many years (Reich, 1977, pp. 29-34) and had written a 
paper in response to a problem posed by the Danish Academy of Sciences. This pa-
per, which was published in 1825, discussed conformal mapping, tha t is, mappings 
that are a pure magnification at each point, so that directions are preserved and 
the limiting ratio of the actual distance between two points to the m a p distance 
between them as one of them approaches the other is the same for approach from 
any direction. 

Involvement with the mapping project inspired Gauss to reflect on the math-
ematical aspects of developing a curved surface on a flat page and eventually, the 
more general problem of developing one curved surface on another, t ha t is, mapping 
the surfaces so that the ratio that the distance from a given point Ñ to a nearby 
point Q has to the distance between their images P' and Q' tends to 1 as Q tends to 
P. Gauss apparently planned a full-scale treatise on geodesy but never completed 
it. Two versions of his major work Disquisitiones generates circa superficies curvas 
(General Investigations oj Curved Surfaces) were written in the years 1825 and 
1827. In the preface to the latter Gauss explained the problem he had set: "to find 
all representations of a given surface upon another in which the smallest elements 
remain unchanged." He admitted that some of what he was doing needed to be 
made more precise through a more careful s tatement of hypotheses, but wished to 
show certain results of fundamental importance in the general problem of mapping. 

A simple and fruitful technique tha t Gauss used was to represent any line in 
space by a point on a fixed sphere of unit radius: the endpoint of the radius parallel 
to the l i ne . 2 5 This idea, he said, was inspired by the use of the celestial sphere 

2 4 (Euvres de Lagrange, Ô. 1, pp. 335-362. 
2 5 An oriented line is meant here, since there are obviously two opposite radii parallel to the line. 
Gauss surely knew that the order of the parameters could be used to fix this orientation. 
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in geometric astronomy. This unit sphere is used in mapping a curved surface by 
taking the normal line a t each point of the surface and mapping it to a point on 
the sphere, as described, so tha t the sphere and the surface have parallel normal 
lines at corresponding points. Obviously a plane maps to a single point under this 
procedure, since all of its normal lines are parallel to one another. Gauss proposed 
to use the area of the portion of the sphere covered by this map as a measure of 
curvature of the surface in question. He called this area the total curvature of the 
surface. He refined this to ta l curvature by specifying tha t it was to be positive if the 
surface was convex in both of two mutually perpendicular directions and negative if 
it was convex in one direction and concave in the other (like a saddle). Gauss gave 
an informal discussion of this question in terms of the side of the surface on which 
the normals were to be erected. When the quality of convexity varied in different 
parts of a surface, Gauss said, a still more refined definition was necessary, which 
he found it necessary to omit . Along with the total curvature he defined what we 
would call its density function and he called the measure of curvature, namely the 
ratio of the total curvature of an element of surface to the area of the same element 
of surface, which he denoted k. The simplest example is provided by a sphere of 
radius R, any region of which projects to the similar region on the unit sphere. 
The ratio of the areas is k = l/R2, which is therefore the measure of curvature of 
a sphere at every point. 

Gauss used two mappings from the parameter space (p, q) into three-dimensional 
space. The first was the mapping onto the surface itself: 

(p, q) i-+ (x(p, q), y(p, q), z(p, q)). 

The second was the mapping 

(p, q) H-> (X{p, q), Y{p, q), Z{p, <?)) 

to the unit sphere, which takes (p, q) to the three direction cosines of the normal 
to the surface at the point (x(p, q), y(p, q), z(p, q)). 

From these preliminaries, Gauss was able to derive very simply what he him-
self described as "almost everything that the illustrious Euler was the first to prove 
about the curvature of curved surfaces." In particular, he showed that his mea-
sure of curvature k was the reciprocal of the product of the two principal radii of 
curvature tha t Euler called / and g. He then went on to consider more general 
parameterized surfaces. Here he introduced the now-standard quantities E, F, and 
G, given by 

E - (%)'+<&)' + $)'• 
ñ _ dx dx dy dy dz dz 

dp dq dp dq dp dq ' 

c - (!)'+(£)'•(£)'· 
and what is now called the first fundamental form for the square of the element of 
arc length: 

ds2 = Edp2 + 2Fdpdq + G dq2 . 

It is easy to compute tha t the element of area—the area of an infinitesimal par-
allelogram whose sides are ( ^ j dp, |* dp, | | dp) and ( | | dq, |" dq, |^ dq)—is just 
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Adpdq, where Ä = sjEG - F2. Gauss denoted the analogous expression for the 

mapping (p,q) ^ (X(p,q),Y(p,q), Z(p,q)), by 

(3) D dp2 + 2D'dpdq + D" dq2 . 

It turns out tha t D is just Ä times the cosine of the angle between the normal line 
to the surface and the line through the origin passing through the point 

id2 ÷ d2x d2x\ 

V dp2 ' dpdq' dq2 ) ' 

and similarly for D' and D" with ÷ replaced by y and æ respectively. This coinci-
dence is particular to three-dimensional space, since there just happen to be three 
different second-order partial derivatives. 

The expression in formula (3) is now divided by Ä and the quotient, called the 
second fundamental form, is written edp2 + 2 / d p d q + gdq2. The element of area 
on the sphere is (DD" - [D')2)dpdq. Hence the measure of curvature—what is 
now called the Gaussian curvature and denoted k—is 

DD" - (D')2 

(EG - F2)2 ' 

or as it is now written, 

eg-Ñ 
EG-F2' 

Gauss found another expression for k involving only the quantities E, F, and 
G and their first and second partial derivatives with respect to the parameters ñ 
and q. The expression was complicated, but it was needed for theoretical purposes, 
not computation. 

In a very prescient remark that was later t o be developed by Riemann, Gauss 
noted tha t "for finding the measure of curvature, there is no need of finite formula?, 
which express the coordinates x, y, æ as functions of the indeterminates p, q; but 
that the general expression for the magnitude of any linear element is sufficient." 
The idea is tha t the geometry of a surface is to be built up from the infinitesimal 
level using the parameters, not derived from the metric imposed on it by its position 
in Euclidean space. Tha t is the essential idea of what is now called a differentiable 
manifold. 

It is also clear from Gauss' correspondence (Klein, 1926, p . 16) tha t Gauss 
already realized that non-Euclidean geometry was consistent. In fact, the question 
of consistency did not trouble him; he was more interested in measuring large 
triangles to see if the sum of their angles could be demonstrably less than two right 
angles. If so, what we now call hyperbolic geometry would be more convenient for 
physics than Euclidean geometry. 

Gauss considered the possibility of developing one surface on another, t ha t is, 
mapping it in such a way that lengths are preserved on the infinitesimal level. If the 
mapping is (x,y,z) \-* (u,v,w), then by composition, u, v, and w are all functions 
of the same parameters that determine x, y, and z, and they generate functions 
E', F', and G' for the second surface tha t must be equal to E, F, and G a t the 
corresponding points, since tha t is what is meant by developing one surface on 
another. But since he had just derived an expression for the measure of curvature 
that depended only on E, F, G and their part ial derivatives, he was able to s tate 
the profound result tha t has come to be called his theorema egregium (outstanding 
theorem): 
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// a curved surface is mapped on any other surface, the measure of curvature at 
each point remains unchanged. 

Among other consequences, this meant that surfaces tha t can be developed on 
a plane, such as a cone or cylinder, must have Gaussian curvature 0 at each point. 

With the first fundamental form Gauss was able to derive a pair of differential 
equations tha t must be satisfied by geodesic lines, which he called shortest lines,26 

and prove tha t the endpoints of a geodesic circle—the set of geodesies originating at 
a given point and having a given length—form a curve that intersects each geodesic 
at a right angle. This result was the foundation for a generalized theory of polar 
coordinates on a surface, using ñ as the distance along a geodesic from a variable 
point to a pole of reference and q as the angle between tha t geodesic and a fixed 
geodesic through the pole. This topic very naturally led to the subject of geodesic 
triangles, formed by joining three points to one another along geodesies. Since he 
had shown earlier tha t the element of surface area was 

do = y/EG-F2dpdq, 

and tha t this expression was particularly simple when one of the sets of coordinate 
lines consisted of geodesies (as in the case of a sphere, where the lines of longitude 
are geodesies), the tota l curvature of such a triangle was easily found for a geodesic 
triangle and turned out to be 

A + B + C-ô, 

where A, B, and C are the angles of the triangle, expressed in radians. For a 
plane triangle this expression is zero. For a spherical triangle it is, not surprisingly, 
the area of the triangle divided by the square of the radius of the sphere. In 
this way, area, curvature, and the sum of the angles of a triangle were shown 
to be linked on curved surfaces. This result was the earliest theorem on global 
differential geometry, since it applies to any surface that can be triangulated. In its 
modern, developed version, it relates curvature to the topological property of the 
surface as a whole known as the Euler characteristic. It is called the Gauss-Bonnet 
theorem after Pierre Ossian Bonnet (1819-1892), who introduced the notion of the 
geodesic curvature of a curve on a surface (that is, the tangential component of the 
acceleration of a point moving along the curve with unit s p e e d ) 2 7 and generalized 
the formula to include this concept. 

3.6. T h e French a n d B r i t i s h g e o m e t e r s . In France differential geometry was of 
interest for a number of reasons connected with physics. In particular, it seemed ap-
plicable to the problem of heat conduction, the theory of which had been pioneered 
by such outstanding mathematicians as Jean-Baptiste Joseph Fourier (1768-1830), 
Simeon-Denis Poisson (1781-1840), and Gabriel Lame (1795-1870), since isother-
mal surfaces and curves in a body were a topic of primary interest. It also applied 
to the theory of elasticity, studied by Lame and Sophie Germain, among others. 
Lame developed a theory of elastic waves that he hoped would explain light prop-
agation in an elastic medium called ether. Sophie Germain noted tha t the average 

2 6 According to Klein (1926, Vol. 2, p. 148), the term geodesic was first used by Joseph Liouville 
(1809-1882) in 1850. Klein cites an 1893 history of the term by Paul Stackel (1862-1919) as 
source. 
2 7 According to Struik (1933, 20, pp. 163, 165), even this concept was anticipated by Gauss in 
an unpublished paper of 1825 and followed up on by Ferdinand Minding (1806-1885) in a paper 
in Crelle's Journal in 1830. 
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of the two principal curvatures derived by Euler would be the same for any two 
mutually perpendicular planes cutting a surface. She therefore recommended this 
average curvature as the best measure of curvature. Her approach does indeed 
make sense in elasticity theory, 2 8 but turns out not to be so useful for pure geom-
e t ry . 2 9 Joseph Liouvillc (1809-1882), who founded the Journal de mathematiques 
pures et appliquees in 1836 and edited it until 1874, proved tha t conformal maps 
of three-dimensional regions are far less varied than those in two dimensions, being 
necessarily either inversions or similarities or rigid motions. He published this result 
in the fifth edition of Monge's book on the applications of analysis to geometry. In 
contrast, a mapping (x, y) H-> (U, V) is conformal if and only if one of the functions 
u{x, y) ± iv(x, y) is analytic. As a consequence, there is a rich supply of conformal 
mappings of the plane. 

After Newton differential geometry languished in Britain until the nineteenth 
century, when William Rowan Hamilton (1805-1865) published papers on systems 
of rays, building the foundation for the application of differential geometry to dif-
ferential equations. Another British mathematician, George Salmon (1819-1904), 
made the entire subject more accessible with his famous textbooks Higher Plane 
Curves (1852) and Analytic Geometry of Three Dimensions (1862). 

3.7. R i e m a n n . Once the idea of using parameters to describe a surface has been 
grasped, the development of geometry can proceed algebraically, without reference 
to what is possible in three-dimensional Euclidean space. This idea was understood 
by Hermann Grassmann (1809-1877), a secondary-school teacher, who wrote a 
philosophically inclined mathematical work published in 1844 under the title Die 
lineale Ausdehnungslehre, ein neuer Zweig der Mathematik (The Theory of Lineal 
Extensions, a New Branch of Mathematics). This work, which developed ideas 
Grassmann had conceived earlier in a work on the ebb and flow of tides, contained 
much of what is now regarded as multilinear algebra. Wha t we call the coefficients 
in a linear combination of vectors Grassmann called the numbers by means of which 
the quanti ty was derived from the other quantities. He introduced what we now call 
the tensor product and the wedge product for what he called extensive quantities. 
He referred to the tensor product simply as the product and the wedge product as 
the combinatory product. The tensor product of two extensive quantities 53 Ï-ô^ô 
and ^2Pses was 

The combinatory product was obtained by applying to this product the rule tha t 
[ e r , e s ] = — [ e s , e r ] (antisymmetrizing). The determinant is a special case of the 
combinatory product. Grassmann remarked tha t when the factors are "numerically 
related" (which we call linearly dependent), the combinatory product would be 
zero. When the basic units eT and es were entirely distinct, Grassmann called the 
combinatory product the outer product to distinguish it from the inner product, 
which is still called by that name today and amounts to the ordinary dot product 

2 8 In particular, her concept of the average curvature plays a role in the Navier-Stokes equations 
(http://www.navier-stokes.net/nsbest.htm). 
2 9 However, the average curvature must be zero on a minimal surface. 
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when applied to vectors in physics. Grassmann remarked tha t parentheses have no 
effect on the outer product - in our terms, it is an associative opera t ion . 3 0 

Working with these concepts, Grassmann defined the numerical value of an 
extended quantity as the positive square root of its inner square, exactly what we 
now call the absolute value of a vector in ç-dimensional space. He proved that 
"the quantities of an orthogonal system are not related numerically," that is, an 
orthogonal set of nonzero vectors is linearly independent. 

Historians of mathemat ics seem to agree that, because of i ts philosophical tone 
and unusual nomenclature, Ausdehnungslehre did not a t t ract a great deal of notice 
until Grassmann revised it and published a more systematic exposition in 1862. If 
that verdict is correct, there is a small coincidence in Riemann's use of the term 
"extended." which appears to mimic Grassmann's use of the word, and in his focus 
on a general number of dimensions in his inaugural lecture a t the University of 
Gottingen. Riemann's most authoritative biographer Laugwitz (1999, p. 223) says 
that Grassmann's work would have been of little use to Riemann, since for him 
linear algebra was a trivial subject . 3 1 This lecture was read in 1854, with the 
aged Gauss in the aud ience . 3 2 Although Riemann's lecture "Uber die Hypothesen 
die der Geometrie zu Grunde liegen" ("On the hypotheses tha t form the basis of 
geometry") occupies only 14 printed pages and contains almost no mathematical 
symbolism—it was aimed at a largely nonmathematical audience;—it set forth ideas 
tha t had profound consequences for the hiture of both mathemat ics and physics. 
As Hermann Wcyl said: 

The same step was taken here tha t was taken by Faraday and 
Maxwell in physics, the theory of electricity in particular, . . . by 
passing from the theory of action a t a distance to the theory of 
local action: the principle of understanding the world from its 
behavior on the infinitesimal level. [Narasimhan, 1990, p . 740] 

In the first section Riemann began by developing the concept of an ç-fold ex-
tended quantity, asking the indulgence of his audience for delving into philosophy, 
where he had limited experience. He cited only some philosophical work of Gauss 
and of Johann Friedrich Herbart (1776 1841), a mathematically inclined philoso-
pher whose a t tempts to quantify sense impressions was an early form of mathemat-
ical psychology. 3 3 He began with the concept of quanti ty in general, which arises 
when some general concept can be defined (measured or counted) in different ways. 
Then, according as there is or is not a continuous transformation from one of the 

3 0 To avoid confusing the reader who knows that the cross product is not an associative product, 
we note that the outer product applies only when each of the factors is orthogonal to the others. 
In three dimensional space the cross product of three such vectors, however they are grouped, is 
always zero. 
3 1 One can't help wondering about the muiitlinear algebra that Grassmann was developing. The 
recognition of this theory as an essential part of geometry is explicit in Felix Klein's 1908 work 
on elementary geometry from a higher viewpoint, but Riemann apparently did not make the 
connection. 
1 1 2 At the time of the lecture Gauss had less than a year of life remaining. Yet his mind was still 
active, and he was very favorably impressed by Riemann's performance. 
3 3 Herbart's 1824 book Psychologie als Wissenschaft, neu gegriindet auf Erfahrung, Metaphysik, 
und Mathematik (Psychology as Science on a New Foundation of Experiment, Metaphysics, and 
Mathematics) is full of mathematical formulas involving the strength of sense impressions, ma-
nipulated by the rules of algebra and calculus. 
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ways into another, the various determinations of it form a continuous or discrete 
manifold. He noted tha t discrete manifolds (sets of things t ha t can be counted, as 
we would say) are very common in everyday life, bu t continuous manifolds are rare, 
the spatial location of objects of sense and colors being almost the only examples. 

The main part of his lecture was the second part , in which he investigated the 
kinds of metric relations that could exist in a manifold if the length of a curve 
was to be independent of its position. Assuming tha t the point was located by a 
set of ç coordinates x\,. ..,xn (almost the only mathematical symbols that appear 
in the paper) , he considered the kinds of properties needed to define an infinites-
imal element of arc length ds along a curve. The simplest function that met this 
requirements was 

where the coefficients were continuous functions of position and the expression 
under the square root is always nonnegative. The next simplest case, which he 
chose not to develop, occurred when the Maclaurin series began with fourth-degree 
terms. As Riemann said, 

The investigation of this more general type, to be sure, would not 
require any essentially different principles, but it would be rather 
time-consuming and cast relatively little new light on the theory of 
space; and moreover the results could not be expressed geometrically. 

For the case in which coordinates could be chosen so that an = 1 and = 0 when 
i Φ j , Riemann called the manifold flat. 

Having listed the kinds of properties space was assumed to have, Riemann 
asked to what extent these properties could be verified by experiment, especially in 
the case of continuous manifolds. Wha t he said a t this point has become famous. 
He made a distinction between the infinite and the unbounded, pointing out tha t 
while space is always assumed to be unbounded, it might very well not be infinite. 
Then, as he said, assuming that solid bodies exist independently of their position, it 
followed tha t the curvature of space would have to be constant, and all astronomical 
observation confirmed that it could only be zero. But, if the volume occupied by 
a body varied as the body moved, no conclusion about the infinitesimal na ture of 
space could be drawn from observations of the metric relations tha t hold on the 
finite level. "It is therefore quite conceivable tha t the metric relations of space are 
not in agreement with the assumptions of geometry, and one must indeed assume 
this if phenomena can be explained more simply thereby." Riemann evidently 
intended to follow up on these ideas, but his mind produced ideas much faster than 
his frail body would allow him to develop them. He died before his 40th birthday 
with this project one of many left unfinished. He did, however, send an essay to 
the Paris Academy in response to a prize question proposed (and later withdrawn): 
Determine the thermal state of a body necessary in order for a system of initially 
isothermal lines to remain isothermal at all times, so that its thermal state can be 
expressed as a function of time and two other variables. Riemann 's essay was not 
awarded the prize because its results were not developed with sufficient rigor. It 
was not published during his l ifet ime. 3 4 

3 4 Klein (1926, Vol. 2, p. 165) notes that very valuable results were often submitted for prizes at 
that time, since professors were so poorly paid. 
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Differential geometry and physics. The work of Grassmann and Riemann was to 
have a powerful impact on the development of bo th geometry and physics. One 
has only to read Einstein's accounts of the development of general relativity to 
understand the extent to which he was imbued with Riemann's outlook. The idea 
of geometrizing physics seems an attractive one. The Aristotelian idea of force, 
which had continued to serve through Newton's t ime, began to be replaced by 
subtler ideas developed by the Continental mathematical physicists of the nine-
teenth century, with the introduction of such principles as conservation of energy 
and minimal action. In his 1736 treatise on mechanics, Euler had shown tha t a 
particle constrained to move along a surface by forces normal to the surface, but 
on which no forces tangential to the surface act, would move along a shortest curve 
on the surface. And when he discovered the variational principles that enabled him 
to solve the isoperimetric problem (see Chapter 17), he applied them to the theory 
of elasticity and vibrating membranes. As he said, 

Since the material of the universe is the most perfect and proceeds 
from a supremely wise Creator, nothing at all is found in the world 
tha t does not illustrate some maximal or minimal principle. For 
that reason, there is absolutely no doubt that everything in the 
universe, being the result of an ult imate purpose, is amenable to 
determination with equal success from these efficient causes using 
the method of maxima and minima. [Euler, 1744, P- 245] 

It is known tha t Riemann was searching for a connection between light, elec-
tricity, magnetism, and gravitation at this t i m e . 3 5 In 1846, Gauss' collaborator 
Wilhelm Weber (1804-1891) had incorporated the velocity of light in a formula 
for the force between two moving charged particles. According to Hermann Wey] 
(Narasimhan, 1990, p . 741), Riemann did not make any connection between that 
search and the content of his inaugural lecture. Laugwitz (1999, p. 222), however, 
cites letters from Riemann to his brother which show tha t he did make precisely 
tha t connection. In any case, four years later Riemann sent a p a p e r 3 6 to the Royal 
Society in Gott ingen in which he made the following remarkable statement: 

I venture to communicate to the Royal Society a remark that brings 
the theory of electricity and magnetism into a close connection 
with the theory of light and heat radiation. I have found that the 
electrodynamic effects of galvanic currents can be understood by 
assuming tha t the effect of one quantity of electricity on others is 
not instantaneous but propagates to them with a velocity that is 
constant (equal to tha t of light within observational error). 

3.8 . T h e Ita l ian g e o m e t e r s . The unification of Italy in the mid-nineteenth cen-
tury was accompanied by a surge of mathematical activity even greater than the 
sixteenth-century work in algebra (discussed in Chapter 14). Gauss had analyzed 
a general surface by using two parameters and introducing six functions: the co-
efficients of the first and second fundamental forms. The question naturally arises 

3 5 His lecture was given nearly a decade before Maxwell discovered his famous equations connect-
ing the speed of light with the propagation of electromagnetic waves. 
3 6 This paper was later withdrawn, but was published after his death (Narasimhan, 1990, pp. 
288-293). 
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whether a surface can be synthesized from any six functions regarded as the coef-
ficients of these forms. Do they determine the surface, up to the usual Euclidean 
motions of translation, rotation, and reflection tha t can be used to move any pre-
scribed point to a prescribed position and orientation? Such a theorem does hold for 
curves, as was established by two French mathematicians, Jean Frenet (1816-1900) 
and Joseph Serret (1818-1885), who gave a set of equations—the Frene t -Ser re t 3 7 

equations—determining the curvature and torsion of a curve in three-dimensional 
spaces. A curve can be reconstructed from its curvature and torsion up to trans-
lation, rotation, and reflection. A natural related question is: Which sets of six 
functions, regarded as the components of the two fundamental forms, can be used 
to construct a surface? After all, one needs generally only three functions of two 
parameters to determine the surface, so that the six given by Gauss cannot be 
independent of one another. 

In an 1856 paper, Gaspare Mainardi (1800-1879) provided consistency condi-
tions in the form of four differential equations, now known as the Mainardi-Codazzi 
equat ions , 3 8 tha t must be satisfied by the six functions E, F, G, D, D', and D" if 
they are to be the components of the first and second fundamental forms introduced 
by Gauss. Mainardi had learned of Gauss' work through a French translation, which 
had appeared in 1852. These same equations were discovered by Delfino Codazzi 
(1824-1875) two years later, using an entirely different approach, and helped him to 
win a prize from the Paris Academy of Sciences. Codazzi published these equations 
only in 1883. 

When Riemann's lecture was published in 1867, the year after his death, it 
became the point of departure for a great deal of research in I t a ly . 3 9 One who 
worked to develop these ideas was Riemann's friend Enrico Betti (1823-1892), who 
tried to get Riemann a chair of mathematics in Palermo. These ideas led Betti 
to the notion of the connectivity of a surface. On the simplest surfaces, such as a 
sphere, every closed curve is the boundary of a region. On a torus, however, the 
circles of lati tude and longitude are not boundaries. These ideas belong properly 
to topology, discussed in the next section. In his fundamental work on this subject, 
Henri Poincare named the maximum number of independent non-boundary cycles 
in a surface the Betti number of the surface, a concept tha t is now generalized to 
ç dimensions. The n t h Betti number is the rank of the n t h homology group. 

Another Italian mathematician who extended Riemann's ideas was Eugenio 
Beltrami (1835-1900), whose 1868 paper on spaces of constant curvature contained 
a model of a three-dimensional space of constant negative curvature. Beltrami had 
previously given the model of a pseudosphere, as explained in Chapter 11, to repre-
sent the hyperbolic plane. It was not obvious before his work tha t three-dimensional 
hyperbolic geometry and a three-dimensional manifold of constant negative curva-
ture were basically the same thing. Beltrami also worked out the appropriate n-
dimensional analogue of the Laplacian ^ + + §pr, which plays a fundamental 
role in mathematical physics. By working with an integral considered earlier by 

3 7 Frenet gave six equations for the direction cosines of the tangent and principal normal to the 
curve and its radius of curvature. Serret gave the full set of nine now called by this name, which 
are more symmetric but contain no more information than the six of Frenet. 
3 8 The Latvian mathematician Karl Mikhailovich Peterson (1828-1881) published an equivalent 
set of equations in Moscow in 1853, but they went unnoticed for a full century. 
3 9 Riemann went to Italy for his health and died of tuberculosis in Selasca. He was in close contact 
with Italian mathematicians and even published a paper in Italian. 



4. TOPOLOGY 385 

Jacobi (see Klein, 1926, Vol. 2, p. 190), Beltrami arrived at the operator 

where, with the notation slightly modernized, the Riemannian metric is given by 
the usual ds2 = o,ij dx* dx^, and ï denotes the determinant det (a , j ) . The 
generalized operator is now referred to as the Laplace-Beltrami operator on a Rie-
mannian manifold. 

The algebra of Grassmann and its connection with Riemann's general metric on 
an ð-dimensional manifold was not fully codified until 1901, in "Methodes de calcul 
differentiel absolu et leurs applications" ("Methods of absolute differential calculus 
and their applications"), published in Mathematische Annalen in 1901, written by 
Gregorio Ricci-Curbastro (1853-1925) and Tullio Levi-Civita (1873-1941). This 
article contained the critical ideas of tensor analysis as it is now taught. The 
absoluteness of the calculus consisted in the great generality of the transformations 
tha t it permitted, showing how differential forms changed when coordinates were 
changed. Although Ricci-Curbastro competed in a prize contest sponsored tha t year 
by the Accademia dei Lincei, he was not successful, as some of the judges regarded 
his absolute differential calculus as "useful but not essent ia l" 4 0 to the development 
of mathematics—the same sort of criticism leveled by Weierstrass against the work 
of Hamilton in quaternions (see Section 2 of Chapter 15). 

The following year Luigi Bianchi (1873-1928) published "Sui simboli a quat t ro 
indice e sulla curvatura di Riemann" ("On the quadruply-indexed symbols and Rie-
mannian curvature"), in which he gave the relations among the covariant derivatives 
of the Riemann curvature tensor, which, however, he derived by a direct method 
for manifolds of constant curvature, not following the route of Ricci-Curbastro and 
Levi-Civita. The Bianchi identity was later to play a crucial role in general relativ-
ity, assuring local conservation of energy when Einstein's gravitational equation is 
assumed. 

4. Topo logy 

Projections distort the shape of geometric objects, so tha t some metric properties 
are lost. Some properties, such as parallelism, however, remain simply because the 
number of intersections of two curves does not change. T h e study of space focusing 
on such very general properties as connections and intersections has been known 
by various names over the centuries. Latin has two words, locus and situs, meaning 
roughly place and position. The word locus is one tha t we still use today to denote 
the pa th followed by a point moving subject to stated constraints. It was the trans-
lation of the Greek word topos used by Pappus for the same concept. Since locus 
was already in use, Leibniz fastened on situs and mentioned the need for a geom-
etry or analysis of situs in a 1679 letter to Huygens . 4 1 The meaning of geometria 
situs and analysis situs evolved gradually. It seems to have been Johann Benedict 
Listing (1808-1882) who, some t ime during the 1830s, realized that the Greek root 

4 0 See the article on Ricci-Curbastro's paper at http: //www .math. unif i . i t /matematicaitaliana/. 
4 1 This letter was published in Huygens' (Euvres competes, M. Nijhoff, La Haye, 1888, Vol. 8, 
p. 216. From the context it appears that Leibniz was calling for some simple way of expressing 
position "as algebra expresses magnitude." If so, perhaps we now have what he wanted in the 
form of vector analysis. 
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was available. The word topology first appeared in the title of his 1848 book Vorstu-
dien zur Topologie (Prolegomena to Topology). Like geometry itself, topology has 
bifurcated several times, so that one can now distinguish combinatorial, algebraic, 
differential, and point-set topology. 

4 . 1 . Early combinator ia l topo logy . The earliest result t ha t deals with the com-
binatorial properties of figures is now known as the Euler characteristic, al though 
Descartes is entitled to some of the credi t . 4 2 In a work on polyhedra tha t he never 
published, Descartes defined the solid angle at a vertex of a closed polyhedron to 
be the difference between 2ð and the sum of the angles at t ha t vertex. He asserted 
that the sum of the solid angles in any closed polyhedron was exactly eight right 
angles. (In our terms, that number is Air, the area of a sphere of uni t radius.) 
Descartes' work was found among his effects after he died. By chance Leibniz saw 
it a few decades later and made a copy of it. When it was found among Leibniz' 
papers, it was finally published. In the eighteenth century, Euler discovered this 
same theorem in the form that the sum of the angles at the vertices of a closed 
polyhedron was 4n - 8 right angles, where ç is the number of vertices. Euler noted 
the equivalent fact tha t the number of faces and vertices exceeded the number of 
edges by 2. Tha t is the formula now generally called Euler's formula: 

V-E + F = 2. 

Somewhat peripheral to the general subject of topology was Euler 's analysis 
of the famous problem of the seven bridges of Konigsberg in 1736. In Euler's 
day there were two islands in the middle of the River Pregel, which flows through 
Kongisberg (now Kaliningrad, Russia). These islands were connected to each other 
by a bridge, and one of them was connected by two bridges to each shore, the other 
by one bridge to each shore. The problem was to go for a walk and cross each 
bridge exactly once, returning, if possible to the start ing point. In fact, as one can 
easily see, it is impossible even to cross each bridge exactly once without boating 
or swimming across the river. Returning to the start ing point merely adds another 
condition to a condition that is already impossible to fulfill. Euler proved this fact 
by labeling the two shores and the two islands A, B, C, and D, and representing 
a stroll as a "word," such as ABCBD, in which the bridges are "between" the 
letters. He showed tha t any such path as required would have to be represented 
by an 8-letter word containing three of the letters twice and the other letter three 
times, which is obviously impossible. This topic belongs to what is now called graph 
theory; it is an example of the problem of unicursal tracing. 

4.2 . R i e m a n n . The study of analytic functions of a complex variable turned out 
to require some concepts from topology. These issues were touched on in Riemann's 
1851 doctoral dissertation at Gottingen, "Grundlagen fur eine allgemeine Theorie 
der Functionen einer veranderlichen complexen Grosse" ("Foundations for a gen-
eral theory of functions of a complex variable"). Although all analytic functions of 
a complex variable, both algebraic and transcendental, were encompassed in Rie-
mann's ideas, he was particularly interested in algebraic functions, tha t is functions 
w = f(z) t h a t satisfy a nontrivial polynomial equation p(z, w) = 0. Algebraic func-
tions are essentially and unavoidably multivalued. To take the simplest example, 

4 2 Much of the information in this paragraph is based on the following website: 
http: //www.math.sunyeb.edu/ tony/vhatsnew/column/descartes-0899/cle3cartes2.html. 
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in which æ — w2 — 0, every complex number æ = a + bi has two distinct complex 
square roots: 

w = ±(u + IV), where u = W and í = sgn (b)]l . 

The square roots of the positive real numbers that occur here are assumed positive. 
There is no way of choosing just one of the two values at each point that will result 
in a continuous function w — \J~z. In particular, it is easy to show that any such 
choice must have a discontinuity at some point of the circle \z\ — 1. 

One way to handle this multivaluedness was to take two copies of the z-plane, 
labeled with subscripts as z\ and z-i and place one of the square roots in one plane 
and the other in the other. This technique was used by Cauchy and had been 
developed into a useful way of looking at complex functions by Victor Puiseux 
(1820-1883) in 1850. Indeed, Puiseux seems to have had the essential insights tha t 
can be found in Riemann's work, although differently expressed. Riemann is known 
to have seen the work of Puiseux, although he did not cite it in his own work. He 
generally preferred to work out his own way of doing things and tended to ignore 
earlier work by other people. In any case, the essential problem with choosing one 
square root and sticking to it is that a single choice cannot be continuous on a 
closed path tha t encloses the origin without going through it. At some point on 
such a path, there will be nearby points at which the function assumes two values 
tha t are close to being negatives of each other. 

Riemann had the idea of cutting the two copies of the z-plane along a line 
running from zero to infinity (both being places where there is only one square 
root, assuming a bit about complex infinity). Then if the lower edge of each plane 
is imagined as being glued to the upper edge of the o the r , 4 3 the result is a single 
connected surface in which the origin belongs to bo th planes. On this new surface 
a continuous square-root function can be defined. It was the gluing tha t was really 
new here. Cauchy and Puiseux both had the idea of cutting the plane to keep a 
path from winding around a branch point and of using different copies of the plane 
to map different branches of the function. 

Riemann introduced the idea of a simply connected surface, one that is dis-
connected by any cut from one boundary point to another tha t passes through its 
interior without intersecting itself. He stated as a theorem tha t the result of such a 
cut would be two simply connected surfaces. In general, when a connected surface 
is cut by a succession of such crosscuts, as he called them, the difference between 
the number of crosscuts and the number of connected components tha t they pro-
duce is a constant, called the order of connectivity of the surface. A sphere, for 
example, can be thought of as a square with adjacent edges glued together, as in 
Fig. 14. It is simply connected because a diagonal cut disconnects it. The torus, 
on the other hand, can be thought of as a square with opposite edges identified 
(see Fig. 14). To disconnect this surface, it is necessary to cut it a t least twice, for 
example, either by drawing both diagonals or by cutting it through its midpoint 
with two lines parallel to the sides. No single cut will do. The torus is thus doubly 
connected. 

4 3 You can visualize this operation being performed if you imagine one copy of the plane picked 
up and turned upside down above the other so that the upper edge is glued to the upper edge 
and the lower to the lower. 
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F I G U R E 14. Left: The sphere, regarded as a square with edges 
identified, is disconnected by a diagonal. Right: The torus requires 
two cuts to disconnect. 

4.3 . Mobius. One fact that had been thought well established about polyhedra 
was tha t in any polyhedron it was possible to direct the edges in such a way tha t one 
could trace around the boundary of each face by following the prescribed direction 
of its edges. Each face would be always to the left or always to the right as one 
followed the edges around it while looking at it from outside the polyhedron. This 
fact was referred to as the edge law (Gesetz der Kanten). The first discovery of 
a closed polyhedron that violated this condi t ion 4 4 was due to Mobius, sometime 
during the late 1850s. Mobius did not publish this work, al though he did submit 
some of it to the Paris Academy as his entry to a prize competit ion in 1858. This 
work was edited and introduced by Curt Reinhardt (dates unknown) and published 
in Vol. 2 of Mobius' collected works. There in the first section, under the heading 
"one-sided polyhedra," is a description of the Mobius band as we now know it 
(Fig. 14). After describing it, Mobius went on to say that al though a triangulated 
polyhedron whose surface was two-sided will apparently contain only two-sided 
bands, nevertheless a triangulated polyhedron with a one-sided surface can contain 
both one- and two-sided bands. 

Mobius explored polyhedra and made a classification of them according to the 
number of boundary curves they possessed. He showed how more complicated poly-
hedra could be produced by gluing together a certain set of basic figures. He found 
an example of a triangulated polyhedron consisting of 10 triangles, six vertices, and 
15 edges, rather than 14, as would be expected from Euler 's formula for a closed 
polyhedron: V — Ε + F = 2. This figure is the projective plane, and cannot be em-
bedded in three-dimensional space. If one of the triangles is removed, the resulting 
figure is the Mobius band, which can be embedded in three-dimensional space. 

4.4. Po incare ' s Analysis situs. Poincare seemed to be dealing constantly with 
topological considerations in his work in both complex function theory and dif-
ferential equations. To set everything that he discovered down in good order, he 
wrote a treatise on topology called Analysis situs in 1895, published in the Jour-
nal de I'Ecole Polytechnique, tha t has been regarded as the founding document of 
modern algebraic topology. 4 5 He introduced the notion of homologous curves— 
curves that (taken together) form the boundary of a surface. This notion could 
be formalized, so tha t one could consider formal linear combinations (now called 

4 4 In fact, a closed nonorientable polyhedron cannot be embedded in three-dimensional space, so 
that the edge law is actually true for dosed polyhedra in three-dimensional space. 
4 5 Poincare followed this paper with a number of supplements over the next decade. 
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FIGURE 15. Left: the projective plane tr iangulated and cut open. 
If two opposite edges with corresponding endpoints are glued to-
gether, the figure becomes a Mobius band. In three-dimensional 
space it is not possible to glue all the edges together as indicated. 
Right: the Mobius band as originally described by Mobius. 

chains) C = n\C\ + · · · + nrCr of oriented curves Cj with integer coefficients T i j . 
The interpretation of such a combination came from analysis: A line integral over 
C was interpreted as the number I = n\I\ + • • · + nTIr, where Ij was the line 
integral over Cj. When generalized to fc-dimensional manifolds (called varieties by 
Poincare) and combined with the concept of the boundary of an oriented manifold 
as a cycle, this idea was the foundation of homology theory: The fc-cycles (fc-chains 
whose boundaries are the zero (fc — l)-chain—Poincare called them closed varieties) 
form a group, of which the fc-cycles tha t are the boundary of a (fc + l)-cycle form 
a subgroup. When two homologous cycles (cycles whose difference is a boundary) 
are identified, the resulting classes of cycles form the fcth homology group. For ex-
ample, in the sphere shown in Fig. 14, the diagonal tha t is drawn forms a cycle. 
This cycle is the complete boundary of the upper and lower triangles in the figure, 
and it turns out tha t any cycle on the sphere is a boundary. The first homology 
group of the sphere is therefore trivial (consists of only one element). For the torus 
depicted in Fig. 14, a and b are each cycles, but neither is a boundary, nor is any 
cycle ma + nb. On the other hand, the cycle formed by adding either diagonal to 
a+b is the boundary of the two triangles with these edges. Thus, the first homology 
group of the torus can be identified with the set of cycles ma + nb. Any other cycle 
will be homologous to one of these. 

Poincare also introduced the notion of the fundamental group of a manifold. 
He had been led to algebraic topology partly by his work in differential equations. 
He discovered the fundamental group by imagining functions satisfying a set of dif-
ferential equations and being permuted as a point moved around a closed loop. He 
was thus led to consider formal sums of loops start ing and ending at a given point, 
two loops being equivalent if tracing them successively left the functions invari-
ant. The resulting set of permutations was what he called the fundamental group. 
He cautioned tha t , despite appearances, the fundamental group was not the same 
thing as the first homology group, since there was no base point involved in the 
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homology group. Moreover, he noted, while the order in which the cycles in a chain 
were traversed was irrelevant, the fundamental group was not necessarily commu-
tative. He suggested redefining the term simply connected t o mean having a trivial 
fundamental group. He gave examples to show tha t the homology groups do not 
determine the topological nature of a manifold, exhibiting three three-dimensional 
manifolds all having the same homology groups, but different fundamental groups 
and therefore not topologically the same (homeomorphic). He then asked a number 
of questions about fundamental groups, one of which has become famous. Given 
two manifolds of the same number of dimensions having the same fundamental 
group, are they homeomorphic? Like Fermat 's last theorem, this question has been 
attacked by many talented mathematicians, and proofs have been proposed for a 
positive answer to the question, but—at least until recently—all such proofs have 
been found wan t ing . 4 6 

4.5. P o i n t - s e t topology . Topology is sometimes popularly defined as "rubber-
sheet geometry," in the sense tha t the concepts i t introduces are invariant under 
moving and stretching, provided tha t no tearing takes place. In the kinds of com-
binatorial topology just discussed, those concepts usually involve numbers in some 
form or other—the number of independent cycles on a manifold, the Euler charac-
teristic, and so forth. But there are also topological concepts not directly related 
to number. 

Continuity and connectedness. The most important of these is the notion of con-
nectedness or continuity. This word denotes a deep intuitive idea tha t was the 
source of many paradoxes in ancient times, such as the paradoxes of Zeno. As 
we shall see in Chapter 15, it is impossible to prove the fundamental theorem of 
algebra without this concept . 4 7 For analysts, it was crucial to know tha t if a cer-
tain function was negative at one point on a line and positive a t another, it must 
assume the value zero at some point between the two points. Tha t property eventu-
ally supplanted earlier definitions of continuity, and the property now taken as the 
definition of continuity is designed to make this proposition true. The clarification 
of the ideas surrounding continuity occurred in the early part of the nineteenth 
century and is discussed in more detail in Chapter 17. Once serious analysis of this 
concept was undertaken, it became clear tha t many intuitive assumptions about the 
connectedness of curves and surfaces had been made from the beginning of deduc-
tive geometry. These continuity considerations complicated the theory of functions 
of a real variable for some decades until adequate explanations of it were found. A 
good example of such problems is provided by Dedekind's construction of the real 
numbers, discussed in Chapter 8, which he presented as a solution to the problem 
of defining what is meant by a continuum. 

4 6 As of this writing, evidence begins to accumulate that the Russian mathematician Grigorii 
Perlman of the Steklov Institute in St. Petersburg has settled the Poincare conjecture (Associated 
Press, January 7, 2004). As a graduate student at Princeton in 1964, when a mathematician came 
to town claiming to have proved this elusive result, I discussed it with Norman Steenrod (1910-
1971), one of the twentieth century's greatest topologists. He told me that proving the conjecture, 
although difficult, would be a rather uninteresting thing to do, since it would only confirm what 
people already thought was true. It would have been much more exciting to disprove it. 
4 7 Even the second of the four proofs that Gauss gave, which is generally regarded as a purely 
algebraic proof, required the assumption that an equation of odd degree with real coefficients has 
a real solution—a fact that relies on connectedness. 
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Compactness. Another basic concept of point-set topology is that of compactness. 
This concept is needed to make the distinction between being bounded and having 
a minimum or maximum. The concepts of compactness, connectedness, and con-
tinuity are used together nowadays to prove such theorems as Rolle's theorem in 
calculus. 

At least three lines of thought led to the notion of compactness. The first 
was the search for maxima and minima of functions, tha t is, points at which the 
function assumed the largest or smallest possible value. It was clear that a sequence 
of points xn could always be found such that f(xn) tended to a maximum value; 
that was what a maximum value meant. But did the sequence xn itself, or some 
subsequence of it, also converge to a point x? If so, it was clear from the definition 
of continuity tha t ÷ must be a maximum or minimum. This property was studied 
by the Czech mathematic ian Bernard Bolzano (1781-1848), who was looking for 
a proof of the continuity property discussed above. He showed as early as 1817 
(see Manheim, 1964, P- 67) tha t the continuity property could be made to follow 
from the property t ha t a set of numbers that is bounded above has a least upper 
bound. He phrased this statement differently, of course, saying that if there is a 
property possessed by a function at some points, but not all, and that property 
holds for all points less than some a, there is a smallest number U such tha t the 
property holds for all numbers less than U. Bolzano proved this fact by repeated 
bisection of an interval such tha t the property holds at the lower endpoint but 
not the upper. Some 50 years later, after defining real numbers as sequences of 
rational numbers (with a suitable notion of equivalent sequences), Weierstrass used 
arguments of this type to deduce that a bounded sequence of real numbers has a 
convergent subsequence. This theorem, in several closely equivalent forms, is now 
known as the Bolzano- Weierstrass theorem. 

The second line of thought leading to compactness was the now-familiar dis-
tinction between pointwise continuity and uniform continuity. This distinction was 
brought to the fore in the mid-1850s, and Dirichlet proved tha t on an interval [a, b] 
(including the endpoints) a continuous function was uniformly continuous. He was 
really the first person to use the idea of replacing a covering by open sets with a 
finite subcovering. The same theorem was proved by Eduard Heine (1821-1881) in 
1872; as a result, Heine found his name attached to one form of the basic theorem. 

The third line was certain work in complex analysis by Emile Borel (1871-1956) 
in the 1890s. Borel was studying analytic continuation, whereby a complex-valued 
function is expanded as a power series about some point: 

If the series has a finite radius of convergence, it represents f(z) only inside a disk. 
However, it enables all the derivatives of f(z) to be computed at all points of the 
disk, so tha t if one forms the analogous series at some point z\ in the disk different 
from zo, it is possible t ha t the new series will converge at some points outside the 
original disk. In this way, one can continue a function uniquely along a pa th 7 
from one point á to another point b, provided there is such a series with a positive 
radius of convergence a t each point of 7. Wha t is needed is some way of proving 
tha t only a finite number of such disks will be required to cover the whole curve 7. 
The resulting covering theorem was further refined by a number of mathematicians, 

n = l 
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including Henri Lebesgue (1875 1941), and is now generally known as the Heine-
Borel theorem. The word compact was first used in 1906 in two equivalent senses 
in two different papers, by Maurice Frechet (1878-1973). 

Closed and open sets. The word set, without which modern mathematicians would 
not be able to talk at all, was not introduced formally until the 1870s. The history 
of set theory is discussed in more detail in Chapter 19. At present we merely 
mention tha t the idea of a closed set arose from consideration of the set of limit 
points of a given set (its derived set). In an 1884 paper, Georg Cantor (1854-1918) 
called a set closed if it contained all of its limit points. Since it was easy to show 
that a limit point of limit points of a set Ñ is itself a limit point of P, it followed 
that the derived set P' is always a closed set. 

Although the phrase closed set appears in 1884, its dual—the phrase open set— 
did not appear for nearly two more decades. Weierstrass had used the concept of an 
open set in discussing analytic functions, since he used power series, which required 
that the function be defined a small disk called a neighborhood about each point 
in its domain of definition. Weierstrass used the German term Gebiet (region) for 
such a domain of definition. The phrase open set seems to have been used for the 
first time by W. H. Young in 1902. 4 8 In a 1905 paper in descriptive function theory 
(that is, discussing what it means for a function to be "analytic" in a very general 
sense), Henri Lebesgue referred specifically to ensembles ouverts (open sets) and 
defined them to be the complements of closed sets. 

Metric spaces. The frequent repetition of certain basic pat terns of reasoning, and 
perhaps just a normal human penchant for order, led to the creation of very abstract 
structures around the beginning of the twentieth century. The kind of continuity 
argument we now associate with <5's and e's was generalized in 1905 by Maurice 
Frechet, who considered abstract sets on which there was a sort of distance between 
two points A and B, denoted (A, B). This distance had the properties normally 
associated with distance, that is, (Á, Â) = (B, A) (the distance from A to Â is the 
same as the distance from Â to A), (A, B) > 0 if Á ö Â, and (A, A) = 0. Further, 
he assumed that there was a real-valued funct ion ' / ( i ) tending to 0 as t tends to 
0, and such tha t (A,C) < f(s) if (Á,Â) < å and (B,C) < å. Such a structure 
is now called a metric space, although the definition is streamlined somewhat, the 
third property being replaced by the triangle inequality. It can be shown tha t for 
each distance function introduced by Frechet there is an equivalent metric in the 
modern sense. 

In 1906 Frechet also gave two definitions of the term compact (for metric spaces) 
in the modern sense. In one paper he defined a space to be compact if every infinite 
subset of it had at least one limit point. In the other he defined compactness to 
mean that every decreasing sequence of nonempty closed sets had a nonempty 
intersection. Thus he used both the Bolzano-Weierstrass property and the Heine-
Borel property (which are equivalent for metric spaces). 

General topology. The notion of a topological space in the modern sense arose in 
1914 in the work of the Youngs and in the work of Felix Hausdorff (1868-1942), 
who was at the t ime a professor at Bonn. HausdorfT's influential book Grundzuge 
der Mengenlehre (Elements of Set Theory) was translated into many languages. 

4 8 The early papers of W. H. Young and his wife G.C. Young were published under his name 
alone, as mentioned in Chapter 4. 
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The first part of the book is an exposition of abstract set theory as it existed at 
the time, including cardinal and ordinal numbers, and the early stages of what is 
now called descriptive set theory, tha t is, the classification of sets according to their 
complexity, starting with a ground class consisting of closed sets and open sets, and 
then proceeding up a hierarchy by passing to countable unions and intersections. 
He invented the term ring for a class of sets that was closed under finite unions and 
intersections and field for a class tha t was closed under set differences and finite 
unions, but warned in a footnote that "the expressions ring and field are taken 
from the theory of algebraic numbers based on an approximate analogy that it will 
not do to push too f a r . " 4 9 

Hausdorff introduced metric spaces, being the first to use tha t name for them, 
via the axioms now used, then gave a set of "neighborhood axioms" for a more 
general type of space: 

1. To each point ÷ there corresponds at least one neighborhood Ux; every 
neighborhood Ux contains the point x. 

2. If Ux and Vx are two neighborhoods of the point x, there is another neigh-
borhood Wx of x contained in both of them. 

3. If the point y lies in Ux, there is a neighborhood Uy contained in Ux. 
4. For any distinct points ÷ and y, there are two neighborhoods Ux and Uy 

whose intersection is empty. 

These were Hausdorff's axioms for topology, and they were well designed for 
discussing the local behavior of functions on a highly abstract level. A quarter-
century later, the group of French authors known collectively as Nicolas Bourbaki 
introduced a global point of view, defining a topological space axiomatically as we 
know it today, in terms of open sets. The open sets of a space can be any collection 
tha t has the empty set and the whole set as members and is closed under arbitrary 
unions and finite intersections. In those terms, one of Hausdorff's neighborhoods 
Ux is any open set Ï with ÷ G O. Conversely, given a set on which the first three 
of Hausdorff's axioms hold, it is easy to show that the sets tha t are neighborhoods 
of all of their points form a topology in the sense of Bourbaki. Bourbaki omitted 
the last property specified by Hausdorff. Spaces having this extra property are now 
called (appropriately enough) Hausdorff spaces. 

Q u e s t i o n s and prob lems 

12 .1 . Judging from Descartes' remarks on mechanically drawn curves, should he 
have admit ted the conchoid of Nicomedes among the legitimate curves of geometry? 

12 .2 . Prove Menelaus' theorem and its converse. Wha t happens if the points Å and 
F are such that AD : AE :: BD : ÂÅº (Euclid gave the answer to this question.) 

12 .3 . Use Menelaus' theorem to prove that two medians of a triangle intersect in 
a point tha t divides each in the ratio of 1:2. 

4 8 The word ring in the abstract algebraic sense was also introduced in 1914, in a paper of A. 
Fraenkel (see Section 2 of Chapter 15). A very influential work in measure theory, written in 1950 
by Paul Halmos (b. 1916), caused Hausdorff's ring to fall into disuse and appropriated the term 
ring to mean what Hausdorff called a field. Halmos reserved the term algebra for a ring, one of 
whose elements was the entire space. Probabilists, however, use the term field for what Halmos 
called an algebra. 
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12.4. Deduce Brianchon's theorem for a general conic from the special case of a 
circle. How do you interpret the case of a regular hexagon inscribed in a circle? 

12.5. Fill in the details of Plucker's proof of Brianchon's theorem, as follows: Sup-
pose tha t the equation of the conic is q(x, y) = y2 + ð (x)y + r2 (x) = 0, where n ( x ) 
is a linear polynomial and r2(x) is quadratic. Choose coordinate axes not parallel 
to any of the sides of the inscribed hexagon and such that the x-coordinates of all of 
its vertices will be different, and also choose the seventh point to have x-coordinate 
different from those of the six vertices. Then suppose tha t the polynomial gener-
ated by the three lines is s(x, y) = y3 + h(x)y2 + t2(x)y + t3(x) = 0, where tj(x) is 
of degree j , j = 1,2,3. Then there are polynomials Uj(x) of degree j , j = 1,2,3, 
such tha t 

s(x, y) = q(x, y) (y - ui(x)) + (u2(x)y + u3(xj) . 
We need to show tha t u2 = Q and u3 = 0. At the seven points on the conic where 
both q(x, y) and s(x, y) vanish it must also be t rue tha t u2(x)y+u3(x) — 0. Rewrite 
the equation q(x, y) = 0 at these seven points as 

(u2y)2 + riu2(u2y) + u\r2 = 0 

observe tha t at these seven points u2y = —u3, so tha t the polynomial u3 — ð u 2 u 3 + 
u2r2, which is of degree 6, has seven distinct zeros. It must therefore vanish iden-
tically, and tha t means that 

(2u 3 - r i u 2 ) 2 = u\(r\ - 4 r 2 ) . 

This means tha t either u2 is identically zero, which implies tha t u3 also vanishes 
identically, or else u2 divides u3. Prove tha t in the second case the conic must be 
a pair of lines, and give a separate argument in t ha t case. 

12.6. Consider the two equations 

xy = 0, 

x{y-\) = 0. 

Show tha t these two equations are independent, yet have infinitely many common 
solutions. W h a t kind of conic sections do these equations represent? 

12.7. Consider the general cubic equation 

Ax3 + Bx2y + Cxy2 + Dy3 + Ex2 + Fxy + Gy2 + Hx + Iy + J = 0, 

which has 10 coefficients. Show tha t if this equation is to hold for the 10 points 
(1,0), (2,0) , (3,0) , (4 ,0) , (0,1), (0,2) , (0 ,3) , (1 ,1) , (2 ,2) , (1 , - 1 ) , all 10 coefficients 
A,..., J must be zero. In general, then, it is not possible to pass a curve of degree 3 
through any 10 points in the plane. Use linear algebra to show tha t it is always 
possible to pass a curve of degree 3 through any nine points, and tha t the curve is 
generally unique. 

On the other hand, two different curves of degree 3 generally intersect in 9 
points, a result known as Bezout's theorem after Etienne Bezout (1730-1783), who 
stated it around 1758, although Maclaurin had s ta ted it earlier. How does it happen 
tha t while nine points generally determine a unique cubic curve, yet two distinct 
cubic curves generally intersect in nine points? [Hint: Suppose tha t a set of eight 
points {(XJ,yj) : j = 1 , . . . , 8} is given for which the system of equations for 
A,..., J has rank 8. Although the system of linear equations for the coefficients is 
generally of rank 9 if another point is adjoined to this set, there generally is a point 
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(xg, J/9), the ninth point of intersection of two cubic curves through the other eight 
points, for which the rank will remain at 8.] 

12.8. Find the Gaussian curvature of the hyperbolic paraboloid æ = (÷2 - y2)/a 
at each point using ÷ and y as parameters. 

12.9 . Find the Gaussian curvature of the pseudosphere obtained by revolving a 
tractrix about the x-axis. Its parameterization can be taken as 

r (u , v) = — a t a n h ^—^,asech —̂j cos(w),asech —̂j sin(u)^ . 

Observe tha t the elements of area on both the pseudosphere and its map to the 
sphere vanish when u = 0. (In terms of the first and second fundamental forms, 
Å = 0 = g when u = 0.) Hence curvature is undefined along the circle tha t is the 
image of t ha t portion of the parameter space. Explain why the pseudosphere can 
be thought of as "a sphere of imaginary radius." Notice tha t it has a cusp along 
the circle in which it intersects the plane ÷ = 0. 

12 .10 . Prove tha t the Euler relation V — £ , + F = 2 f o r a closed polyhedron is 
equivalent to the s ta tement t ha t the sum of the angles at all the vertices is (2V—4)ð, 
where V is the number of vertices. [Hint: Assume tha t the polygon has F faces, 
and tha t the numbers of edges on the faces are e i , . . .,ep. Then the number of 
edges in the polyhedron is Å = (e\ + V ep)/2, since each edge belongs to two 
faces. Observe tha t a point traversing a polygon changes direction by an amount 
equal to the exterior angle a t each vertex. Since the point returns to its start ing 
point after making a complete circuit, the sum of the exterior angles of a polygon 
is 2ð. Since the interior angles are the supplements of the exterior angles, we see 
tha t their sum is å^ð — 2ð = (e* — 2)ð. The sum of all the interior angles of the 
polyhedron is therefore (2E — 2F)7r.] 

12 .11 . Give an informal proof of the Euler relation V - Å + F — 2 for closed 
polyhedra, assuming t ha t every vertex is joined by a sequence of edges to every 
other vertex. [Hint: Imagine the polyedron inflated to become a sphere. Tha t 
stretching will not change V, E, or F. Start drawing the edges on a sphere with a 
single vertex, so tha t V = 1 = F and Å = 0. Show that adding a new vertex by 
distinguishing an interior point of an edge as a new vertex, or by distinguishing an 
interior point of a face as a new vertex and joining it to an existing vertex, increases 
both V and Å by 1 and leaves F unchanged, while drawing a diagonal of a face 
increases Å and F by 1 and leaves V unchanged. Show tha t the entire polyhedron 
can be constructed by a sequence of such operations.] 
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Occasionally, a practical problem arises in which it is necessary to invert a sequence 
of arithmetic operations. That is, we know the result of the operations but not 
the data. The best examples of this kind of problem come from geometry, and a 
typical specimen can be seen in the sangaku plaque shown in Color Pla te 2. This 
type of problem is the seed of the area we call algebra, whose development can be 
conveniently divided into three stages. In the first stage, knowing the procedure 
followed and the result, one is forced to think in the terms t ha t Pappus referred to as 
analysis, t ha t is, deducing consequences of the formula until one arrives at the data . 
The main tool in this analysis is the equation, but equations occur explicitly only 
after a stock of examples has been accumulated. At the second stage, equations are 
identified as an object of independent interest, and techniques for solving them are 
developed. In the third stage, a higher-level analysis of the algorithms for solution 
leads to the subject we now know as modern algebra. We shall devote one chapter 
to each of these stages. 
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Problems Leading to Algebra 

Algebra suffers from a motivational problem. Examples of the useless artificiality 
of most algebraic problems abound in every textbook ever writ ten on the subject. 
Here, for example, is a problem from Girolamo Cardano's book Ars magna (1545): 

Two men go into business together and have an unknown capital. 
Their gain is equal to the cube of the tenth part of their capital. 
If they had made three ducats less, they would have gained an 
amount exactly equal to their capital. Wha t was the capital and 
their profit? [Quoted by Pesic, (2003), pp. 30-31] 

If reading this problem makes you want to suggest, "Let 's just ask them what 
their capital and profit were," you are to be congratulated on your astuteness. The 
second statement of the problem, in particular, marks the entire scenario as an airy 
flight of fancy. Where in the world would anyone get this kind of information? 
Wha t da ta banks is it kept in? How could anyone know this relationship between 
capital and profit wi thout knowing what the capital and profit were? One of the 
hardest questions to answer in teaching either algebra or its history is "What is it 
/ o r ? " Although some interesting algebra problems can be generated from geometric 
figures, it is not clear tha t these problems are interesting as geometry. Reading the 
famous treatises on algebra, we might conclude that it is pursued for amusement 
by people who like puzzles. 1 Tha t answer is not very satisfying, however, and we 
shall be on the alert for better motivations as we study the relevant documents. 

1. E g y p t 

Although arithmetic and geometry fill up most of the Egyptian papyri, there are 
some problems in them tha t can be considered algebra. These problems tend to 
be what we now classify as linear problems, since they involve the implicit use of 
direct proportion. The concept of proportion is the key to the problems based on 
the "rule of false position." Problem 24 of the Ahmose Papyrus, for example, asks 
for the quanti ty that yields 19 when its seventh par t is added to it. The author 
notes tha t if the quanti ty were 7 (the "false [sup]position"), it would yield 8 when 
its seventh par t is added to it. Therefore, the correct quanti ty will be obtained 
by performing the same operations on the number 7 tha t yield 19 when performed 
on the number 8. The Egyptian format for such computat ions is well adapted for 
handling problems of this sort. The key to the solution seems to be, implicitly, the 

1 In one episode of a popular American situation comedy series during the 1980s, a young police-
woman was working undercover, pretending to be a high-school student. While studying algebra 
with a classmate, she encountered a problem akin to the following. "Johnny is one-third as old as 
his father; in 15 years he will be half as old. How old are Johnny and his father?" Her response—a 
triumph of common sense over a mindless educational system—was: "Do we know these people?" 
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notion that multiplication is distributive over addit ion (another way of saying that 
proportions are preserved). But of course, since multiplication was thought of in a 
peculiar way in Egyptian culture, the algebraic reasoning was very likely as follows: 
Such-and-such operations applied to 8 will yield 19. If I first add the seventh part 
of 7 to 7, I will get 8 as a result. If I then perform those operations on 8, I will 
get 19. Therefore, if I first perform those operations on 7, and then add the seventh 
part of the result to itself, I will also get 19. 

The computation is carried out by the s tandard Egyptian method. First find 
the operations tha t must be performed on 8 in order t o yield 19: 

1 8 

2 16* 

2 4 

4 2 * 

8 1 * 

2 4 8 19 Resul t . 

Next, perform these operations on 7: 

1 7 

2 14* 

2 3 2 

4 1 2 4 * 

8 2 4 8 * 

2 4 8 16 2 8 Result . 

This is the answer. The scribe seems quite confident of the answer and does 
not carry out the computation needed to verify tha t it works. 

The Egyptian scribes were capable of performing operations more complicated 
than mere proportion. They could take the square root of a number, which they 
called a corner. The Berlin Papyrus 6619, contains the following problem (Gillings, 
1972, p. 161): 

The area of a square of 100 is equal to tha t of two smaller squares. 
The side of one is 2 4 the side of the other. Let me know the sides 
of the two unknown squares. 

Here we are asking for two quantities given their rat io ( | ) and the sum of their 
squares (100). The scribe assumes that one of the squares has side 1 and the other 
has side 2 4. Since the resulting total area is 1 2 16, the square root of this quanti ty 
is taken ( 1 4 ) , yielding the side of a square equal to the sum of these two given 
squares. This side is then multiplied by the correct proportionality factor so as to 
yield 10 (the square root of 100). Tha t is, the number 10 is divided by 1 4, giving 8 
as the side of the larger square and hence 6 as the side of the smaller square. This 
example, incidentally, was cited by van der Waerden as evidence of early knowledge 
of the Pythagorean theorem in Egypt. 
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2 . M e s o p o t a m i a 

If we interpret Mesopotamian algebra in our own terms, we can credit the math-
ematicians of t ha t culture with knowing how to solve some systems of two linear 
equations in two unknowns, any quadratic equation having at least one real positive 
root, some systems of two equations where one of the equations is linear and the 
other quadratic, and a potentially complete set of cubic equations. Of course, it 
must be remembered tha t these people were solving problems, not equations. They 
did not have any classification of equations in which some forms were solvable and 
others not. Wha t they knew was that they could find certain numbers from certain 
data . 

2 .1 . Linear a n d q u a d r a t i c prob lems . As mentioned in Section 4 of Chapter 6, 
the Mesopotamian approach to algebraic problems was to associate with every 
pair of numbers another pair: their average and their semidifference. These linear 
problems arise frequently as a subroutine in the solution of more complex problems 
involving squares and products of unknowns. In Mesopotamia, quadratic equations 
occur most often as problems in two unknown quantities, usually the length and 
width of a rectangle. The Mesopotamian mathematicians were able to reduce a large 
number of problems to the form in which the sum and product or the difference 
and product of two unknown numbers are given. We shall consider an example tha t 
has been writ ten about by many authors. It occurs on a tablet from the Louvre in 
Paris, known as AO 8862. 2 

A loose translation of the text of this tablet, made from Neugebauer's German 
translation, reads as follows: 

I have multiplied the length and width so as to make the area. Then 
I added to the area the amount by which the length exceeds the 
width, obtaining 3,3. Then I added the length and width together, 
obtaining 27. W h a t are the length, width, and area? 

27 3,3 the sums 
15 length 

3,0 area 

12 width 

You proceed as follows: 

Add the sum (27) of the length and width to 3,3. You thereby ob-
tain 3,30. Next add 2 to 27, getting 29. You then divide 29 in half, 
getting 14;30. The square of 14;30 is 3,30,15. You subtract 3,30 
from 3,30;15, leaving the difference of 0;15. The square root of 0;15 
is 0;30. Adding 0;30 to the original 14;30 gives 15, which is the 
length. Subtracting 0;30 from 14;30 gives 14 as width. You then 
subtract 2, which was added to the 27, from 14, giving 12 as the 
final width. 

The author continues, verifying that these numbers do indeed solve the problem. 
This text requires some commentary, since it is baffling at first. Knowing the 
general approach of the Mesopotamian mathematicians to problems of this sort, 
one can understand the reason for dividing 29 in half (so as t o get the average of 
two numbers) and the reason for subtracting 3,30 from the square of 14;30 (the 

2 AO stands for Antiquites Orientales. 
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area 

width length - width 1 

+ length 1 

FIGURE 1. Reduction of a problem to s tandard form. 

difference between the square of the average and the product will be the square 
of the semidifference of the two numbers whose sum is 29 and whose product is 
3,30, that is, 210). Wha t is not clear is the following: Why add 27 to the number 
3,3 in the first place, and why add 2 to 27? Possibly the answer is contained in 
Fig. 1, which shows tha t adding the difference between length and width to the 
area amounts to gluing a smaller rectangle of unit width onto a larger rectangle. 
Then adding the sum of length and width amounts to gluing a gnomon onto the 
resulting figure in order to complete a rectangle two units wider than the original. 
Finding the dimensions of that rectangle from its perimeter and area is the s tandard 
technique of solving a quadratic equation, and tha t is what the author does. 

The tablet AO 6670, discussed by van der Waerden (1963, pp. 73-74) con-
tains a rare explanation of the procedure for solving a problem tha t involves two 
unknowns and two conditions, given in abstract terms without specific numbers. 
Unfortunately, the explanation is very difficult to understand. The statement of the 
problem is taken directly from Neugebauer's translation: Length and width as much 
as area; let them be equal. Thereafter, the translation given by van der Waerden, 
due to Frangois Thureau-Dangin (1872-1944), goes as follows: 

The product you take twice. From this you subtract 1. You form 
the reciprocal. With the product tha t you have taken you multiply, 
and the width it gives you. 

Van der Waerden asserts tha t the formula y = (l/(x — 1)) • ÷ is "stated in the 
text" of Thureau-Dangin's translation. If so, it must have been s ta ted in a place 
not quoted by van der Waerden, since ÷ is not a "product" here, nor is it taken 
twice. Van der Waerden also notes tha t according to Evert Marie Bruins (1909-
1990), the phrase "length and width" does not mean the sum of length and width. 
Van der Waerden says that "the meaning of the words has to be determined in 
relation to the mathematical content." The last two sentences in the description 
tell how to determine the width once the length has been found. T h a t is, you take 
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FIGURE 2. A scenario t ha t may "fit" a text from cuneiform tablet AO 6670. 

reciprocal of the length and multiply it by the product of length and width, which 
must be given in the problem as the area. The mystery is then pushed into the first 
two instructions. W h a t product is being "taken twice"? Does taking a product 
twice mean multiplying by 2, or does it mean cubing? Why is the number 1 being 
subtracted? Perhaps we should go back to the original s tatement and ask whether 
"as much as area" implies an equation, or whether it simply means that length 
and width form an area. W h a t does the word them refer to in the statement, 
"Let them be equal"? Is it the length and the width, or some combination of 
them and the area? Without knowing the original language and seeing the original 
text, we cannot do anything except suggest possible meanings, based on what is 
mathematically correct, to those who do know the language. 

We can get a geometric problem tha t fits this description by considering Fig. 2, 
where two equal squares have been placed side by side and a rectangle of unit 
length, shown by the dashed line, has been removed from the end. If the problem 
is to construct a rectangle on the remaining base equal to the par t tha t was cut 
off, we have conditions tha t satisfy the instructions in the problem. That is, the 
length ÷ of the base of the new rectangle is obtained numerically by subtracting 1 
from twice the given area. This scenario is fanciful, however, and is not seriously 
proposed as an explanation of the text. Another scenario tha t "explains" the text 
can be found in Problem 13.4. 

2.2 . H i g h e r - d e g r e e p r o b l e m s . Cuneiform tablets have been found that give the 
sum of the square and the cube of an integer for many values of the integer. These 
tablets may have been used for finding the numbers to which this operation was 
applied in order to obta in a given number. In our terms these tablets make it 
possible to solve the equation x3 + x2 = a, a very difficult problem indeed. In fact, 
given a complete table of x3 + x2, one can solve every cubic equation ay3 + by2 + 
cy = d, where b and c are nonnegative numbers and a and d are positive. (See 
Problem 13.5.) 

Neugebauer (1935, p. 99; 1952, p. 43) reports tha t the Mesopotamian math-
ematicians moved beyond algebra proper and investigated the laws of exponents, 
compiling tables of successive powers of numbers and determining the power to 
which one number must be raised in order to yield another. Such problems occur 
in a commercial context, involving compound interest. For example, the tablet 
AO 6484 gives the sum of the powers of 2 from 0 to 9 as the last term plus one less 
than the last term, and the sum of the squares of the first segment of integers as 
the sum of the same integers multiplied by the sum of | and | of the last term. 
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This recipe is equivalent to the modern formula for the sum of the squares of the 

first ç integers. 

3 . Ind ia 

Problems leading to algebra can be found in the Sulva Sutras and the Bakshali 
Manuscript, mentioned in Section 2 of Chapter 2. Since we have already discussed 
the Diophantine-type equations that result from the altar-construction problems in 
the Sulva Sutras, we confine ourselves here to a few problems tha t lead to linear 
Diophantinc equations, determinate quadratic equations, and the summat ion of 
progressions. 

3.1 . Ja ina a lgebra. According to Srinivasiengar (1967, p . 25), by the year 300 
BCE Jaina mathematicians understood certain cases of the laws of exponents. They 
could make sense of an expression like am^2", interpreting it as extracting the square 
root ç times and then raising the result to the power m. The notat ion used was 
of course not ours. The power | , for example, was described as "the cube of the 
second square root." That the laws of exponents were understood for these special 
values is at tested by such statements as "the second square root multiplied by the 
third square root, or the cube of the third square root," indicating an understanding 
of the equality 

„ > / V / 8 = a 3 / 8 . 

3 .2 . T h e Bakshal i Manuscr ipt . The birchbark manuscript discovered in the 
village of Bakshali, near Peshawar, in 1881 uses the symbol " to denote an unknown 
quantity. One of the problems in the manuscript is written as follows, using modem 
number symbols and a transliteration of the Sanskrit into the Latin alphabet: 

C 5 _ 3 C 7+ ôçà ~ 
1 J yu rnu ÷ sa ÷ ÷ 1 . 

This symbolism can be translated as, "a certain thing is increased by 5 and the 
square root is taken, giving [another] thing; and the thing is decreased by 7 and the 
square root is taken, giving [yet another] thing." In other words, we are looking 
for a number ÷ such that ÷ + 5 and ÷ - 7 are both perfect squares. This problem 
is remarkably like certain problems in Diophantus. For example, Problem 11 of 
Book 2 of Diophantus is to add the same number to two given numbers so as to 
make each of them a square. If the two given numbers are 5 and —7, this is exactly 
the problem stated here; Diophantus, however, did not use negative numbers. 

The Bakshali Manuscript also contains problems in linear equations, of the 
sort tha t have had a long history in elementary mathematics texts. For example, 
three persons possess seven thoroughbred horses, nine draft horses, and 10 camels 
respectively. Each gives one animal to each of the others. The three are then 
equally wealthy. Find the (relative) prices of the three animals. Before leaping 
blindly into the set of two linear equations in three unknowns tha t this problem 
prescribes, we should take time to note that the problem can be solved by imagining 
the experiment actually performed. Suppose tha t these donations have been made 
and the three people are now equally wealthy. They will remain equally wealthy 
if each gives away one thoroughbred horse, one draft horse, and one camel. It 
follows tha t four thoroughbred horses, six draft horses, and seven camels are all of 
equal value. The problem has thereby been solved, and no actual algebra has been 
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performed. Srinivasiengar (1967, p. 39) gives the solution using symbols for the 
unknown values of the animals, but does not assert that the solution is given this 
way in the manuscript itself. 

4. China 

With the exception of the the Zhou Bi Suan Jing, which is mostly about geometry 
and astronomy, algebra forms a major part of early Chinese mathematical works. 
The difficulty with finding early examples of problems leading to algebra is tha t the 
earliest document after the Zhou Bi Suan Jing, the Jiu Zhang Suanshu, contains not 
only many problems leading to systems of linear equations but also a sophisticated 
method of solving these equations, fully equivalent to what we now call Gaussian 
elimination (row reduction) of matrices and known as fang cheng or the rectangular 
algorithm. Li and Du (1987, pp. 46-47) discuss one example involving the yield 
of three different kinds of grain, in which a matr ix is triangularized so tha t the 
solution can be obtained by working from bottom to top. Our discussion of this 
technique, like the discussion of quadratic equations, is reserved for Chapter 14. 

4 .1 . T h e Jiu Zhang Suanshu. In Chapter 6 of the Jiu Zhang Suanshu we find 
some typical problems leading to one linear equation in one unknown. This type 
of problem can be solved using algebra, but does not necessarily require algebraic 
reasoning to solve, since the answer lies very close to the surface. For example 
(Mikami, 1913, p . 16), if a fast walker goes 100 paces in the t ime required for a 
slow walker to go 60 paces, and the slower walker has a head start of 100 paces, 
how many paces will be required for the fast walker to overtake the slow one? The 
instruction given is to multiply the head start by the faster speed and divide by 
the difference in speeds. Tha t will obviously give the number of paces taken by 
the faster runner. The author says nothing about the number of paces tha t will 
be taken by the slower runner, but he probably noticed that that number could be 
obtained in two ways: by subtracting 100 (the head start) or by multiplying by the 
slower speed instead of the faster. This equivalence, if noticed, would give some 
insight into manipulat ing expressions for numbers. 

Chapter 7 contains the kind of excess-deficiency problems discussed in Section 2 
of Chapter 6. The solutions are described in some detail, so tha t we can judge 
the extent to which they are to be considered algebra. For example, an unknown 
number of people are buying hens. If each gives nine (units of money), there will be 
a surplus of 11 units. If each gives six, there will be a deficit of 16. The instructions 
for solution are to arrange the data in a rectangle, cross-multiply, and add the 
products. In other words, form the number 9 · 16 + 6 · 11 = 210. If this number is 
divided by the difference 9 — 6, the result, 70, represents the total price to be paid. 
Adding the surplus and deficit gives 27, and when this is divided by 9 - 6, we get 
9, the number of people buying. This solution is far too sophisticated and general 
to be an early method aimed at one specific problem. It is algebra proper. 

4 .2 . T h e Suanshu Shu. Li and Du (1987, pp. 56-57) describe a set of bamboo 
strips discovered in 1983-1984 in three tombs from the western Han Dynasty con-
taining a Suanshu Shu (Arithmetical Book) and dated no later than the first half 
of the second century BCE. This work contains instructions on the performance of 
arithmetical operations and some applications tha t border on algebra. For exam-
ple, one problem is to find the width of a field whose area is 1 mu (240 square hu) 
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and whose length is 1 \ bu. This problem amounts to one linear equation in one 
unknown. Dividing the area by the length yields 160 bu as the answer. The whole 
difficulty of the problem lies in the complicated rules for dividing by a fraction. 

4.3 . T h e Sun Zi Suan Jing. A large number of problems leading to algebra 
are considered in the Sun Zi Suan Jing. Some of these are the kind of excess 
and deficit problems already discussed. Others involve ari thmetic and geometric 
progressions and are solved by clever numerical reasoning. As an example of an 
arithmetic progression, Problem 25 of Chapter 2 of the Sun Zi Suan Jing discusses 
the distribution of 60 tangerines among five noblemen of different ranks in such a 
way that each will receive three more than the one below him. Sun Zi says first 
to give the lowest-ranking nobleman three, then six to the next-higher rank, and 
so on, until the fifth person gets 15. Tha t accounts for 3 + 6 + 9 + 1 2 + 1 5 = 45 
tangerines and leaves fifteen more to be divided equally among the five. Thus the 
numbers given out are 6, 9, 12, 15, and 18. 

4.4. Zhang Qiuj ian. To the fifth-century mathematician Zhang Qiujian (ca. 430-
490) we owe one of the most famous and long-lasting problems in the history of 
algebra. It goes by the name of the Hundred Fowls Problem, and reads as follows: 
Roosters cost 5 qian each, hens 3 qian each, and three baby chicks cost 1 qian. 
If 100 fowls are bought for 100 qian, how many roosters, hens, and chicks were 
bought? The answer is not unique, but Zhang gives all the physically possible 
solutions: (4 ,18,78) , (8,11,81), and (12,4,84) . Probably this answer was obtained 
by enumeration. Given that one is to buy at least one of each type of chicken, at 
most 19 roosters can be bought. Zhang observed tha t the number of roosters must 
increase in increments of 4, the number of hens must decrease in increments of 7, 
and the number of baby chicks must increase in increments of 3. T h a t is because 
4 - 7 + 3 = 0 and 4 · 5 - 7 · 3 + 3 - | = 0. 

According to Mikami (1913, p. 41), three other "hardy perennials" of algebra 
can be traced to Zhan Qiujian's treatise. One involves ar i thmetic progression. A 
weaver produces 5 feet of fabric on the first day, and the output diminishes (by the 
same amount) each day, until only 1 foot is produced on the thir t ieth day. Wha t 
was the total production? The recipe for the answer is to add the amounts on the 
first and last days, divide by 2, and multiply by the number of days. 

The second is a rate problem of the type found in the Jiu Zhang Suanshu. A 
horse thief rode 37 miles before his theft was discovered. The owner then pursued 
him for 145 miles and narrowed the distance between them to 23 miles, but gave 
up at tha t point and returned home. If he had continued the pursuit , how many 
more miles would he have had to ride to catch the thief? Here we have the case 
of one person traveling 145 miles in the same t ime required for the other to travel 
131 miles, and the other person having a 23-mile head star t . Following the formula 
given in the Jiu Zhang Suanshu, Zhang Qiujian gives the answer as 145 ÷ 23 + 14. 

Finally, we have another rate problem: If seven men construct 12^ bows in 
nine days, how many days will be required for 17 men to construct 15 bows? 

All these problems can be solved by reasoning about numbers without necessar-
ily writing down any equations. But they are definitely proto-algebra in tha t they 
require thinking about performing operations on abstract, unspecified numbers. 
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FIGURE 3 . Another scenario to "fit" a text on cuneiform tablet AO 6670. 

Q u e s t i o n s and p r o b l e m s 

1 3 . 1 . Wha t do the two problems of recovering two numbers from their sum and 
product or from their difference and product have to do with quadratic equations 
as we understand them today? Can we conclude tha t the Mesopotamians "did 
algebra" ? 

13.2 . You can verify t ha t the solution of the problem from tablet AO 8862 (15 
and 12) given by the author is not the only possible one. The numbers 14 and 13 
will also satisfy the conditions of the problem. W h y didn ' t the author give this 
solution? 

13 .3 . Of what practical value are the problems we have called "algebra"? Taking 
just the quadratic equation as an example, the data can be coastrued as the area 
and the semiperimeter of a rectangle and the solutions as the sides of the rectangle. 
W h a t need, if any, could there be for solving such a problem? Where are you ever 
given the perimeter and area of a rectangle and asked to find its shape? 

13 .4 . Figure 3 gives a scenario that can be fit to the da t a in AO 6670. Given 
a square 1 unit on a side, in the right angle opposite one of its corners construct 
a rectangle of prescribed area A tha t will be one-third of the completed gnomon. 
Explain how the figure fits the statement of the problem. (As in Section 2, this 
scenario is not being proposed as a serious explanation of the text.) 

13.5 . Given a cubic equation 

ax3 + bx2 + cx = d, 

where all coefficients are assumed positive, let A = d + be/(3a) - 2b3/(9a2), Â = 
b2/(3a) - c, and t = 3aA/(3aBx - bB), t ha t is, ÷ = A/(Bt) + 6/(3a). Show tha t in 
terms of these new parameters, this equation is 

It could therefore be solved numerically by consulting a table of values of f3 +t2. 
[Again a caution: The fact tha t such a table exists and could be used this way does 
not imply tha t it was used this way, any more than the fact tha t a saucer can be 
used to hold paper clips implies that it was designed for t h a t purpose.] 

13.6 . Considering the origin of algebra in the mathematical traditions we have 
studied, do you find a point in their development a t which mathematics ceases to 
be a disjointed collection of techniques and becomes systematic? Wha t criteria 
would you use for defining such a point, and where would you place it in the 
mathematics of Egypt, Mesopotamia, Greece, China, and India? 
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Equations and Algorithms 

In this chapter we take up the history of algebra from the point at which equa-
tions appear explicitly and carry it forward along two parallel lines. In one line of 
development the emphasis is on finding numerical approximations to the roots of 
an equation. In the second line the emphasis is on finding an algorithm involving 
only the four operations of arithmetic and the extraction of roots tha t will yield the 
solution. The second line of development reached its highest point of achievement 
in sixteenth-century Italy, with the arithmetical solution of equations of degree 4. 
Tha t is the point at which the present chapter ends. Standing somewhat to one side 
of both lines of evolution was the work of Diophantus, which contains a mixture of 
topics that now form par t of number theory and algebra. 

1. T h e Arithmetica of D i o p h a n t u s 

The work of Diophantus of Alexandria occupies a special place in the history of 
algebra. To judge it, one should know something of its predecessors and its in-
fluence. Unfortunately, information about either of these is difficult to come by. 
The Greek versions of the treatise, of which there are 28 manuscripts, according to 
Sesiano (1982, p. 14), all da te to the thirteenth century. Among the predecessors 
of Diophantus, we can count Heron of Alexandria and one very obscure Thymari-
das, who showed how to solve a particular set of linear equations, the epanthema 
(blossom) of Thymaridas . Because the work of Diophantus is so different from the 
Pythagorean style found in Euclid and his immediate successors, the origins of his 
work have been traced to other cultures, notably Egypt and Mesopotamia. The his-
torian of mathematics Paul Tannery (1843-1904) printed an edition of Diophantus' 
work and included a fragment supposedly written by the eleventh-century writer 
Michael Psellus (1018-ca. 1078), which stated tha t "As for this Egyptian method, 
while Diophantus developed it in more deta i l , . . . ." It was on this basis, identify-
ing Anatolius with a third-century Bishop of Laodicea originally from Alexandria, 
tha t Tannery assigned Diophantus to the third century. Neugebauer (1952, p. 80) 
distinguishes two threads in Hellenistic mathematics, one in the logical tradition of 
Euclid, the other having roots in the Babylonian and Egyptian procedures and says 
tha t , "the writings of Heron and Diophantus . . . form part of this oriental tradit ion 
which can be followed into the Middle Ages both in the Arabic and in the western 
world." Neugebauer sees Diophantus as reflecting an earlier type of mathemat-
ics practiced in Greece alongside the Pythagorean mathematics and temporarily 
eclipsed by the Euclidean school. As he says (1952, p . 142): 

It seems to me characteristic, however, that Archytas of Tarentum 
could make the statement that not geometry but arithmetic alone 
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could provide satisfactory proofs. If this was the opinion of a lead-
ing mathematician of the generation just preceding the birth of 
the axiomatic method, then it is rather obvious t ha t early Greek 
mathematics cannot have been very different from the Heronic Dio-
phantine type. 

1.1. D i o p h a n t i n e equat ions . An equation containing two or more unknowns for 
which only rational (or more often, integer) solutions are sought is nowadays called 
a Diophantine equation. Diophantus wrote a treatise commonly known under the 
somewhat misleading name Arithmetica. As mentioned previously, the six books of 
this treatise tha t have been known for some centuries may now be supplemented 
by par ts of four other books, discovered in 1968, but that is not certain. The title 
itself is of some interest. Its suffix -tica has come into English from Greek in a large 
number of words such as logistics, mathematics, and gymnastics. It has a sense of 
how-to, tha t is, the techniques involved in using numbers (arithmoi) or reasoning 
(logoi) or learning (mathemata) or physical training (gymnasts).1 The plural -s 
on these English words, even though they are now regarded as singular, reflects 
the fact that these words were originally intended to be plural—the neuter plural 
form of the corresponding adjectives arithmetikos (adept with number) , logistikos 
(skilled in calculating), mathematikos (disposed to learn), and gymnastikos (skilled 
in bodily exercise), but which evolved into a feminine singular form. The Greek 
title of the work is Diophantou Alexdndreds ArithmMikon, meaning [The Books] of 
Arithmetics of Diophantus of Alexandria. 

1.2. Genera l character is t ics of the Arithmetica. In contrast to other ancient 
works containing problems that lead to algebra, the problems that require algebraic 
techniques in the Arithmetica all involve purely numerical relations. They are 
not problems about things tha t have been counted or measured. They are about 
counting itself. The work begins with a note to one Dionysius, whom the author 
characterizes as "eager to learn" how to solve problems in ar i thmet ic . 2 In a number 
of ways Diophantus seems to be doing something tha t resembles the algebra taught 
nowadays. In particular, he has a symbol for an unknown or abstract number tha t 
is to be found in a problem, and he appears to know what an equation is, although 
he doesn't exactly use the word equation. 

ï 

Diophantus began by introducing a symbol for a constant unit M , from monas 
(ìïíÜò), along with a symbol for an unknown number ò, conjectured to be an 
abbreviation of the first two letters of the Greek word for number: arithmos 
(áñéèìüò). For the square of an unknown he used Av, the first two letters of 
dynamis (Áííáìé,ò), meaning power. For its cube he used Kv, the first two letters 
of kybos (Êýâïò), meaning cube. He then combined these letters to get fourth 
( Ä õ Ä ) , fifth (ÄÊõ), and sixth (KVK) powers. For the reciprocals of these powers 
of the unknown he invented names by adjoining the suffix -ton (-ôïí) to the names 
of the corresponding powers. These various powers of the unknown were called 
eida (åßäá), meaning species. Diophantus' system for writ ing down the equivalent 
of a polynomial in the unknown consisted of writing down these symbols in order 

1 From the root gymnos, meaning naked. 
2 One of the reasons that Tannery assigned Dionysius to the third century was that this date 
made it easy to imagine that Dionysius was the man appointed Bishop of Alexandria in 247—not 
that Dionysius (Dennis) was exactly a rare name in those days. 
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to indicate addition, each term followed by the corresponding number symbol (for 
which the Greeks used their alphabet) . Terms to be added were placed first, sepa-
rated by a pitchfork (rtl) from those to be subtracted. Heath conjectured tha t this 
pitchfork symbol is a condensation of the letters lambda and iota, the first two let-
ters of a Greek root meaning less or leave. Thus what we would call the expression 

2 x 4 - x3 - 3 x 2 + 4x + 2 would be written ÄíÁâòä Ì â rh ÊíÜÄíç. 
Diophantus ' use of symbolism is rather sparing by modern standards; he of-

ten uses words where we would use symbolic manipulation. For this reason his 
algebra was described by the nineteenth-century German historian of mathematics 
Nesselmann as a transitional "syncopated" phase between the earliest "rhetorical" 
algebra, in which everything is written out in words, and the modern "symbolic" 
algebra. 3 

1.3. D e t e r m i n a t e p r o b l e m s . The determinate problems in the Arithmetica re-
quire tha t one or more unknown numbers be found from conditions tha t we would 
nowadays write as systems of linear or quadratic equations. The 39 problems of 
Book 1 and the first ten problems of Book 2 are of these types. Some of these 
problems have a unique solution. For example, Problem 7 of Book 1 is: From a 
given unknown number subtract two given numbers so that the remainders have a 
given ratio. In our terms, this condition says 

÷ — a = m(x — b), 

where ÷ is unknown, a and b are the given numbers, and m is the given ratio. Since 
it is obvious t ha t m > 1 if all quantities are positive and a <b, Diophantus has no 
need to state this restriction. 

Similarly, Problem 15 of Book 1 asks for two numbers (x and y, we would say) 
such tha t for given numbers á and 6 the ratios ÷ + á : y — a and y + b : ÷ — b are 
equal to two given ratios r and s. 

The symbolic notat ion of Diophantus extended only as far as the unknown 
and representations of sums, products, and differences. He had no way of forming 
mathematical expressions containing the phrases "a given number" (a and 6 above) 
and "a given ratio" (r and s above). As a result, he could explain his methods 
of solution only by using a particular example, in the present case taking á = 30, 
r = 2, b = 50, s = 3. He then assumed tha t y = ò + 30 and ÷ = 2ò — 30, so tha t the 
first equation was satisfied automatically and the second became ò + 8 0 = 3(2ò —80). 
Here it is very easy to recognize the explicit manipulation of formal expressions, 
leading to the discovery of the unknown number. This manipulation of expressions 
is characteristic of algebraic technique. 

Some of the problems tha t are determinate from our point of view may have no 
positive rational solutions for certain da ta , and in such cases Diophantus requires 
a restriction on the da ta so t ha t positive rational solutions will exist. For example, 
Problem 8 of Book 1 is to add the same (unknown) number to two given numbers 
so that the sums have a given ratio. This problem amounts to the equation 

÷ + á = m(x + 6). 

3 Nesselmann is quoted by Jacob Klein (1934-36, p. 146). In the author's opinion, there is not 
much for Diophantus to be transitional between, since little is known of his algebraic predecessors, 
and later algebraists wrote everything out in words. Jacob Klein seems to share these reservations. 
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If x > 0 and a > b, then 1 < rn = (x + a)/(x + b) < a/6. T h a t is, the given ratio 
must be larger than 1 and less than the ratio of the larger number to the smaller. 

1.4. T h e s ignif icance of t h e Arithmetica. The existence of Arabic manuscripts 
of Diophantus ' treatise shows that his work was known to the Muslim mathemat i -
cians of the Middle Ages. Sesiano (1982, pp. 9-20) discusses the extent to which 
a number of Islamic and Byzantine mathematicians were influenced by his work or 
commented on it. He comments (p. 9) tha t , "There is nothing to suggest t ha t the 
Egyptian Abu-Kamil had any direct (or even indirect) knowledge of Diophantus ' 
Arithmetica, although the problems in his Algebra dealing with indeterminate anal-
ysis are perfectly Diophantine in form and the basic methods are attested to in the 
Arithmetica." In contrast, the Diophantine connection is clear in the case of the 
eleventh-century mathematician al-Karkhi, (also known as al-Karaji, 953-1029), 
whose Fakhri has many points of contact with Diophantus. Tracing the influ-
ence of Diophantus, however, is more difficult. Jacob Klein (1934-36, p . 5), citing 
nineteenth-century work of Tannery and others, says that "the special influence of 
the Arithmetic of Diophantus on the content, but even more so on the form, of this 
Arabic science is unmistakable if not in the Liber Algorismi of Al-Khowarizmi 
himself, at any rate from the tenth century on." In a treatise on algebra published 
in the late sixteenth century, the engineer mathematician Rafael Bombelli stated 
that , although it had been agreed up to his t ime that algebra was an invention 
of the Muslims, he was convinced, after reading the work of Diophantus, tha t the 
invention should be ascribed to the latter. 

At the very least, Diophantus used equations and developed a symbolism for 
handling algebraic expressions, and that , in the long run, was an impor tant inno-
vation. As two prominent Russian historians of science say: 

Diophantus was the first to deduce tha t it was possible to formulate 
the conditions of a problem as equations or systems of equations; 
as a mat ter of fact, before Diophantus, there were no equations a t 
all, either determinate or indeterminate. Problems were studied 
tha t we can now reduce to equations, but nothing more than tha t . 
[Bashmakova and Smirnova 1997, p . 132] 

1.5. T h e v i e w of Jacob Kle in . In several places in Par t 2 and in the present 
part we have used without comment the "standard view" among historians of a 
contrast between logistike and arithmetike in the science and philosophy of ancient 
Greece, logistike being counting or computat ion and arithmetike being the study 
of the theoretical properties of numbers. A different point of view is contained in 
the extended essay by Jacob Klein (1934-36). Klein maintains tha t even the word 
arithmos itself has been misinterpreted, tha t Euclid and Diophantus did not have 
in mind cardinal numbers in the abstract, but used the word arithmos to mean a 
set or collection. As he says (p. 7), "arithmos never means anything other than 
'a definite number of definite objects . '" He goes on to say (p. 19) tha t for Pla to 
" 'a r i thmet ic ' is, accordingly, not 'number theory, ' but first and foremost the art 
of correct count ing." 4 In particular, Klein denies that Euclid was thinking about 

4 Such may well be the case. If so, that is unfortunate for Plato's reputation. Neugebauer (1952, p. 
146) offers the opinion that "Plato's role has been widely exaggerated. His own direct contributions 
to mathematical knowledge were obviously nil.. .The often adopted notion that Piato 'directed' 
research fortunately is not borne out by the facts." 
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numbers in the abstract and illustrating them geometrically with lines. It does 
seem strange tha t Euclid clings to what appears to be a completely unnecessary 
geometric representation of a number. According to Klein, the mystery is solved if 
we recognize tha t specific numbers were always intended, even though an abstract 
symbol (a letter or two letters) was used for them. Klein (p. 124) cites Tannery in 
arguing that these letters did not represent general, unspecified numbers, because 
they were not amenable to being operated on. 

2. China 

The development of algebra in China began early and continued for many centuries. 
The aim was to find numerical approximate solutions to equations, and the Chinese 
mathematicians were not intimidated by equations of high degree. 

2 .1 . Linear e q u a t i o n s . We have already mentioned the Chinese technique of 
solving simultaneous linear equations and pointed out its similarity to modern ma-
trix techniques. Examples of this method are found in the Jiu Zhang Suanshu 
(Mikami, 1913, pp. 18-22; Li and Du, 1987, pp. 46-49). Here is one example of the 
technique. 

There are three kinds of [wheat]. The grains contained in two, three 
and four bundles, respectively, of these three classes of [wheat], are 
not sufficient to make a whole measure. If however we add to them 
one bundle of the second, third, and first classes, respectively, then 
the grains would become one full measure in each case. How many 
measures of grain does then each one bundle of the different classes 
contain? 

The following counting-board arrangement is given for this problem. 

1 2 1st class 
3 1 2nd class 

4 1 3rd class 
1 1 1 measures 

Here the columns from right to left represent the three samples of wheat. Thus 
the right-hand column represents 2 bundles of the first class of wheat, to which one 
bundle of the second class has been added. The bot tom row gives the result in each 
case: 1 measure of wheat. The word problem might be clearer if the final result 
is thought of as the result of threshing the raw wheat to produce pure grain. We 
can easily, and without much distortion in the procedure followed by the author, 
write down this counting board as a matr ix and solve the resulting system of three 
equations in three unknowns. The author gives the solution: A bundle of the first 
type of wheat contains ^ measure, a bundle of the second ^ measure, and a bundle 
of the third ^ measure. 

2 .2 . Q u a d r a t i c e q u a t i o n s . The last chapter of the Jiu Zhang Suanshu, which 
involves right triangles, contains problems that lead to linear and quadratic equa-
tions. For example (Mikami, 1913, p. 24), there are several problems involving a 
town enclosed by a square wall with a gate in the center of each side. In some cases 
the problem asks at what distance from the south gate a tree a given distance east 
of the east gate will first be visible. The da ta are the side s of the square and the 
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distance d of the tree from the gate. For that kind of da ta , the problem is the linear 
equation (x + s / 2 ) / ( s / 2 + d) = s/(2d). When the side of the town is the unknown, 
a quadratic equation results, as in one case, in which it is asserted tha t the tree is 
20 paces north of the north gate and is just visible to a person who walks 14 paces 
south of the south gate, then 1775 paces west. This problem proposes a quadrat ic 
equation as a problem to be solved for a single unknown number, in contrast to the 
occurrence of quadrat ic equations in Mesopotamia, where they amount to finding 
two numbers given their sum and product. Since the Chinese technique of solving 
equations numerically is practically independent of degree, we shall not bother to 
discuss the techniques of solving quadratic equations separately. 

2.3 . Cubic e q u a t i o n s . Cubic equations first appear in Chinese mathematics (Li 
and Du, 1987, p . 100; Mikami, 1913, p. 53) in the seventh-century work Xugu 
Suanjing (Continuation of Ancient Mathematics) by Wang Xiaotong. This work 
contains some intricate problems associated with right triangles. For example, 
compute the length of a leg of a right triangle given tha t the product of the other 
leg and the hypotenuse is 1 3 3 7 ^ and the difference between the hypotenuse and 
the leg is l ^ j - 5 Obviously, the data are perfectly general for a product Ñ and a 
difference D. Wang Xiaotong gives a general description of the result of eliminating 
the hypotenuse and the other leg that amounts to the equation 

3 5£> , „ p 2 D3 

x3 + —x2 + 2D ÷ = 
2 2D 2 

In this particular case the equation is 

x3 + \x2 + -J-x - 8 9 3 8 5 1 3 ^ : = 0 . 
4 50 125 

He then says to compute the root (which he gives as 921) "according to the 
rule of the cubic root extraction." Li and Du (1987, pp . 118-119) report tha t 
the eleventh-century mathematician Jia Xian developed the following method for 
extracting the cube root. This method generalizes from the case ÷3 = Í to the 
general cubic equation quite easily, as we shall see. 

The computat ion is arranged in rows (or columns) of five elements. We shall 
use columns for convenience. The top entry is always the current approximation á 
to the cube root, the bottom entry is always 1. The entries in the next- to-bottom 
and middle rows are obtained successively by multiplying the entry tha t was just 
below at the preceding stage by the adjustment and adding to the entry tha t was 
in the same row at the preceding step. The entry next to the top is obtained the 
same way, except tha t the adjustment is subtracted instead of being added. This 
row always contains the current or adjusted error. The adjustment procedure works 
first from the bo t tom to the second row, then from the bo t tom to the third row, 
and finally, from the bottom to the fourth row. For example, the first four steps go 
as follows, assuming a "zeroth" approximation of 0, which is to be improved by an 
initial guess a: 

5 Mikami gives as the difference, which is incompatible with the answer given by Wang Xiao-
tong. I do not know if the mistake is due to Mikami or is in the original. 
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0 á a á 

Í Í - a3 Í-a3 Í - a3 

0 -- á 2 —> 3á 2 -- 3á 2 

0 a 2á 3á 

1 1 1 1 

Next, given any approximation á, the approximation is improved by adding 
an adjustment 6, and the rows are then recomputed, again, first working from the 
bot tom to the second row, then from the bottom to the third row, and finally, from 
the bot tom to the fourth row: 

a a + b a + b a + b 
Í-a3 Í-{a + b)3 Í-(a + b)3 Í-(a + b)3 

3 a 2 —-» 3 a 2 + 3ab + b2 —-> 3(o + b)2 —» 3(a -I- 6 ) 2 

3a 3a + b 3 a + 26 3(a + 6) 

1 1 1 1 

By introduction of a counting board ruled into squares analogous to the reg-
isters in a calculator, the procedure could be made completely mechanical. Using 
an analogous procedure, one can take fifth roots, seventh roots, and so on, with 
increasingly messy computations, of course. Composite roots can be reduced to 
prime roots, but since the generalization of this method works so well, there is 
really no need to do so. The sixth root, for example, can be taken by extracting 
the square root of the cube root, or it could be extracted directly following this 
method. 

2.4 . T h e numerica l so lu t ion of equat ions . The Chinese mathematicians of 
800 years ago invented a method of finding numerical approximations of a root 
of an equation, similar to a method that was rediscovered independently in the 
nineteenth century in Europe and is commonly called Horner's method, in honor 
of the British school teacher William Horner (1786-1837). 6 The first appearance 
of the method is in the work of the thirteenth-century mathematician Qin Jiushao, 
who applied it in his 1247 treatise Sushu Jiu Zhang (Arithmetic in Nine Chapters, 
not to be confused with the Jiu Zhang Suanshu). 

The connection of this method with the cube root algorithm will be obvious. 
We illustrate with the case of the cubic equation. Suppose in at tempting to solve 
the cubic equation px3 + qx2 + rx + s = 0 we have found the first digit (or any 
approximation) á of the root. We then "reduce" the equation by setting ÷ — y + a 
and rewriting it. Wha t will the coefficients be when the equation is written in terms 
of y? The answer is immediate; the new equation is 

py3 + Spay2 + 3po?y + pa3 

+ qy2 + 2qay + qa2 

+ ry + ra 
+ s = 0 . 

6 Besides being known to the Chinese mathematicians 600 years before Horner, this procedure 
was used by Sharaf al-Tusi (ca. 1135-1213), as discussed in Section 5 below, and was discovered 
by the Italian mathematician Paolo Ruffini (1765-1822) a few years before Horner published it. 
In fairness to Horner, it must be said that he applied the method not only to polynomials, but to 
infinite series representations. To him it was a theorem in calculus, not algebra. 
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We see that we need to make the following conversion of the coefficients (reading 

from bottom to top): 

s ñáë + qa2 + ra + s 
r Spa2 + 2qa + r 

q 'Spa + q 

Ñ Ñ 

The procedure followed in the cube root algorithm works perfectly. T h a t is, 

start at the bot tom and at each stage, multiply the element below by a and add it 

to the element in the same row at the preceding stage. Going from bot tom all the 

way to the top gets the top row correct. Then going from bot tom to the second 

row gets the second row correct; and finally going from the bot tom to the third row 

completes the transition: 

,s pa3 + qa? + ra + s pa3 + qa2 + ra + s pa3 + qa2 + ra+ s 
r pa2 + qa + r Spa2 + 2qa + r Spa2 + 2qa + r 
q pa + q 2pa + q Spa + q 

ñ ñ ñ ñ 

In this context the cube root algorithm itself becomes merely the case ñ = 1, 
q = 0 = r, s = —N, with the top row omitted and the subtraction in the second 
row (now the top row) replaced by addition, since Í has been replaced by —N. 
Not only is this algorithm simple to use; it also provides the most efficient and ac-
curate way of computing a polynomial numerically. Before the advent of computer 
algebra programs, numerical analysis books instructed the student to compute the 
polynomial pa; 3 + qx2 + rx + s at different values of ÷ by the sequence of operations 

ñ —> px —> px + q -* x(px + q) —> x(px + q) + r —> 

—> ,r(.r(p.r + q) + r) —• x(x(px + q) + r ) + .s. 

This sequence of operations avoids the error tha t tends to accumulate when large 
numbers of opposite sign are added. 7 

Wang Xiaotong's reference to the use of cube root extraction for solving his 
equation seems to suggest tha t this method was known as early as the seventh 
century. However, as we have just noted, the earliest explicit record of it seems to 
be in the treatise of Qin Jiushao, who illustrated it by solving the quart ic equation 

- á · 4 + 703200á·2 - 40642560000 = 0 . 

The method of solution gives proof that the Chinese did not think in terms of a 
quadratic formula. If they had, this equation would have been solved for x2 using 
that formula and then ÷ could have been found by taking the square root of any 
positive root. But Qin Jiushao applied the method described above to get the 
solution ÷ = 840. (He missed the smaller solution ÷ = 240.) 

The efficiency of this method in finding approximate roots allowed the Chinese 
to attack equations involving large coefficients and high degrees. Qin Jiushao (Lib-
brecht, 1973, pp . 134 136) considered the following problem: Three li north of the 
wall of a circular town there is a tree. A traveler walking east from, the southern 
gate of the town first sees the tree after walking 9 li. What, are the diameter and 
circumference of the town? 

7 In addition, a very simple hand calculator with no memory cells can carry out this sequence of 
operations without the need to stop entering and write down a partial result. 
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9 

F I G U R E 1. A quartic equation problem. 

This problem is obviously concocted so as to lead to an equation of higher 
degree. (The diameter of the town could surely be measured directly from inside, 
so tha t it is highly unlikely tha t anyone would ever need to solve such a problem 
for a practical purpose.) Representing the diameter of the town as x 2 , Qin Jiushao 
obtained the equat ion 8 

x 1 0 + 15x 8 + 72x 6 - 864x 4 - 11664x 2 - 34992 = 0 . 

The reasoning behind such a complicated equation is difficult to understand. 
Perhaps the approach to the problem was to equate two expressions for the area of 
the triangle formed by the center of the town, the tree, and the traveler. In tha t 
case, if the line from the traveler to the tree is represented as b + y/a(x2 + a), the 
formula for the area of a triangle in terms of its sides is used, and the resulting area 
is equated to 5 ( 0 + ( x 2 ) / 2 ) 6 , the result, after all radicals are cleared, will be an 
equation of degree 10 in x, but not the one mentioned by Qin Jiushao. It will be 

axw + (a2 - ib2)x8 - 8a6x 6 - 8 a 2 6 2 x 4 + 16a6 4 x 2 + 16a 2 6 4 = 0 . 

One has to be very unlucky to get such a high-degree equation. Even a very 
simplistic approach leads only to a quartic equation. It is easy to see (Fig. 1) that 
if the diameter of the town rather than its square root is taken as the unknown, 
and the radius is drawn to the point of tangency, t r igonometry will yield a quartic 
equation. If the radius is taken as the unknown, the similar right triangles in Fig. 1 
lead to the cubic equation 2 r 3 + 3 r 2 — 243. But, of course, the object of this 
game was probably to practice the art of algebra, not to get the simplest possible 
equation, no mat ter how virtuous it may seem to do so in other contexts. In any 
case, the historian's job is not that of a commentator trying to improve a text. It 
is to try to understand what the original author was thinking. 

3. J a p a n 

The Japanese mathematic ians showed themselves to be superb algebraists from the 
beginning. We have already mentioned (Section 4 of Chapter 9) the quadrilateral 
problem of Sawaguchi Kazuyuki, which led to an equation of degree 1458, solved 
by Seki Kowa. This problem, like many of the problems in the sangaku plaques, 

8 Even mathematicians working within the Chinese tradition seem to have been puzzled by the 
needless elevation of the degree of the equation (Libbrecht, 1973, p. 136). 
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LM = rx 

Ì Í — r 3 - Ãé 

Ê Í = r3 - r 2 

KM = ri + r2 

LN = v ^ f - 2r 3 r , 

FIGURE 2. Sawaguchi Kazuyuki 's first problem. 

seems to be inspired by the desire to do some complicated algebra rather than by 
any pressing geometric need. 

One impetus to the development of mathematics in J apan came with the arrival 
of the Chinese "method of the celestial element" (tian yuan shu), used in China. 
This name was given to the unknown in an equation by Li Ye in his 1248 treatise 
Ceyuan Haijing (Sea Mirror of Circle Measurements, see Mikami, 1913, p . 81) . 9 

This term spread to Korea as ch 'onwonsul and thence to Japan as tengen jutsu. 
This Chinese algebra became part of the s tandard Japanese curriculum before the 
seventeenth century. 

Fifteen problems were published by Sawaguchi Kazuyuki in his 1670 work 
Kokon Sampd-ki (Ancient and Modern Mathematics). As an example of the great 
difficulty of these problems, consider the first of them. In this problem there are 
three circles each externally tangent to the other two and internally tangent to a 
fourth circle, as in Fig. 2. The diameters of two of the enclosed circles are equal 
and the third enclosed circle has a diameter five units larger. The area inside the 
enclosing circle and outside the three smaller circles is 120 square units. The prob-
lem is to compute the diameters of all four circles. This problem, al though it yields 
to modern algebra, is complicated. In fact, Fig. 2 shows tha t the problem leads to 
the simultaneous equations 

5 
Ð + 2 = r a , 

27rr2 + ?rr| + 120 = ÔÃÃ2, , 

4 r 2 r 3 + 2 r i r 2 r 3 + + Ã É Ã 2 = 4 r 2 r 2 , 

where ô-÷, r 2 , and r 3 are the radii of the circles. The last of these relations results 
from applying the Pythagorean theorem first to the triangle LMN to get LM, then 
to KIM. 

3 . 1 . Seki K o w a . This problem was solved by Seki Kowa (Smith and Mikami, 
1914, pp. 96-97). In case Seki Kowa's prowess in setting up and solving equations 
was not clear from his solution of Sawaguchi Kazuyuki 's first problem, remember 

9 The same word was used in a rather different and obscure sense by Qin Jiushao a year earlier 
in his Sushu Jiu Zhang (Libbrecht, 1973, pp. 345-346). 
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tha t he also solved the fourteenth problem (see Section 4 of Chapter 9), which 
involved an equation of degree 1458. Although the procedure was a mechanical one 
using counting boards, prodigious concentration must have been required to execute 
it. What a chess player Seki Kowa could have been! As Mikami (1913, p. 160) 
remarks, "Perseverance and hard study were a part of the spirit tha t characterized 
Japanese mathematics of the old times." 

Seki Kowa was primarily an algebraist who converted the celestial element 
method into two sophisticated techniques for handling equations, known as the 
method of explanation and the method of clarifying things of obscure origin. He 
kept the latter method a secret. According to some scholars, his pupil Takebe Kenko 
(1664-1739) refused to divulge the secret, saying, "I fear t ha t one whose knowledge 
is so limited as mine would tend to misrepresent its significance." However, other 
scholars claim that Takebe Kenko did write an exposition of the latter method, and 
that it amounts to the principles of cancellation and transposition. (See Section 2 
of Chapter 3.) 

Determinants. Seki Kowa is given the credit for inventing one of the central ideas 
of modern mathematics: determinants. He introduced this subject in 1683 in Kai 
Fukudai no Ho (Method of Solving Fukudai Problems).10 Nowadays determinants 
are usually introduced in connection with linear equations, but Seki Kowa developed 
them in relation to equations of higher degree as well. The method is explained as 
follows. Suppose tha t we are trying to solve two simultaneous quadratic equations 

ax2 + bx + c = 0 

a'x2 + b'x + c = 0. 

When we eliminate x2, we find the linear equation 

(a'b - ab')x + (a'c - ad) = 0. 

Similarly, if we eliminate the constant term from the original equations and then 
divide by x, we find 

(ac' - a'cjx + (be' - b'c) = 0. 

Thus from two quadrat ic equations we have derived two linear equations. Seki 
Kowa called this process tatamu (folding). 

We have written out expressions for the simple 2 x 2 determinants here. For 
example, 

but , as everyone knows, the full expanded expressions for determinants are very 
cumbersome even for the 3 x 3 case. It is therefore important to know ways of 
simplifying such determinants, using the structural properties we now call the mul-
tilinear property and the alternating property. Seki Kowa knew how to make use of 
the multilinear property to take out a common factor from a given row. He not only 
formulated the concept of a determinant but also knew many of their properties, 
including how to determine which terms are positive and which are negative in the 
expansion of a determinant. It is interesting that determinants were introduced in 

1 0 The word fukudai seems to be related to fukugen suru, meaning reconstruct or restore. Ac-
cording to Smith and Mikami (1914, P- 124), Seki Kowa's school offered five levels of diploma, the 
third of which was called the fukudai menkyo (fukudai license) because it involved knowledge of 
determinants. 
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Europe around the same time (1693, by Leibniz), but in a comparatively limited 
context. As Smith and Mikami say {1914, p. 125), 

It is evident tha t Seki was not only the discoverer but tha t he had a 
much broader idea than tha t of his great German contemporary. 

4. H i n d u a lgebra 

The promising symbolic notation of the Bakshali Manuscript was not adopted im-
mediately throughout the world of Hindu mathematics. In particular, Aryabhata I 
tended to work in prose sentences. He considered the problem of finding two num-
bers given their product and their difference and gave the s tandard recipe for solving 
it. 

4 .1 . B r a h m a g u p t a . The techniques involved with the kuttaka (pulverizer) belong 
to algebra, but since they are applied in number theory, we discussed them in that 
connection in Section 4 of Chapter 7. Brahmagupta also considered many problems 
that require finding the lengths of lines partit ioning a polygon into triangles and 
quadrilaterals. 

Brahmagupta 's algebra is done entirely in words; for example (Colebrooke, 
1817, p . 279), his recipe for the cube of a binomial is: 

The cube of the last term is to be set down; and, a t the first remove 
from it, thrice the square of the last multiplied by the preceding; 
then thrice the square of the preceding term taken into t ha t last 
one; and finally the cube of the preceding term. The sum is the 
cube. 

In short, (a + b)3 = a3 +3a2b+3ab2 +b3. This rule is used for finding successive 
approximations to the cube root, just as in China and Japan. Similarly, in Section 4 
(Colebrooke, 1817, p. 346), he tells how to solve a quadrat ic equation: 

Take the absolute number from the side opposite to t ha t from 
which the square and simple unknown are to be subtracted. To 
the absolute number multiplied by four times the [coefficient of the] 
square, add the square of the [coefficient of the] middle term; the 
square root of the same, less the [coefficient of the] middle term, 
being divided by twice the [coefficient of the] square is the [value 
of the] middle term. 

Here the "middle term" is the unknown, and this s ta tement is a very involved 
description of what we write as the quadratic formula: 

\j4oc + b2 -b 2 é 
÷ = when ax + bx = c. 

2a 

Brahmagupta does not consider equations of degree higher than 2. 
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4 .2 . Bhaskara II. In the five centuries between Brahmagupta and Bhaskara II 
(who will henceforth be referred to simply as Bhaskara), the idea of using symbols 
for the unknown in an equation seems to have taken hold in Hindu mathematics. In 
Section 4 of his Vija Ganita (Algebra) Bhaskara reports tha t the initial syllables of 
the names for colors "have been selected by venerable teachers for names of values 
of unknown quantities, for the purpose of reckoning therewith" (Colebrooke, 1817, 
p. 139). He proceeds to give the rules for manipulating expressions involving such 
quantities; for example, the rule tha t we would write as (—x — 1) + (2x — 8) = ÷ — 9 
is written 

ya 1 ru 1 

ya2 ru8 

Sum ya 1 ru 9, 

where the dots indicate negative quantities. The syllable ya is the first syllable of 
the word for black, and ru is the first syllable of the word for species.11 

By the t ime of Bhaskara, the distinction between a rational and an irrational 
square root was well known. The Sanskrit word is carani, according to the com-
mentator Krishna (Colebrooke, 1817, p. 145), who defines it as a number "the root 
of which is required but cannot be found without residue." Bhaskara gives rules 
such as V8 + V2 = y/l8 and V8 - %/2 = s/2. 

Bhaskara's algebraic rules go beyond what is taught even today as s tandard 
algebra. He says that a nonzero number divided by zero gives an infinite quotient. 

This fraction [3/0], of which the denominator is cipher, is termed 
an infinite quantity. 

In this quanti ty consisting of that which has cipher for its di-
visor, there is no alteration, though many be inserted or extracted; 
as no change takes place in the infinite and immutable GOD, at the 
period of the destruction or creation of worlds, though numerous 
orders of beings are absorbed or put forth. [Colebrooke, 1817, pp. 
137-138] 

Both the Vija Ganita and the Lilavati contain problems on simple interest in 
which an unknown principal is to be found given the rate of simple interest and the 
amount to which it accrues after a given time. These equations are linear equations 
in one unknown. 

The Lilavati contains a collection of problems in algebra, which are sometimes 
stated as though they were intended purely for amusement. For example, the rule 
for solving quadratic equations is applied in the Vija Ganita (Colebrooke, 1871, 
p. 212) to find the number of arrows ÷ tha t Arjuna (hero of the Bhagavad Gita) 
had in his quiver, given tha t he shot them all, using | r to deflect the arrows of 
his antagonist, 4^/x t o kill his antagonist 's horse, six to kill the antagonist himself, 
three to demolish his antagonist 's weapons and shield, and one to decapitate him. 
In other words, ÷ = \x + 4>/r + 10. 

Bhaskara gives a criterion for a quadratic equation to have two (positive) roots. 
He also says tha t "if the solution cannot be found in this way, as in the case of cubic 

1 1 There is no evidence that Bhaskara knew of Diophantus; the fact that both describe a power of 
the unknown using a word whose meaning is approximated by the English word species is simply 
a coincidence. 
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or quartic equations, it must be found by the solver's own ingenuity" (Colebrooke, 
1817, pp. 207-208). That ingenuity includes some work tha t would nowadays be 
regarded as highly inventive, not to say suspect; for example (Colebrooke, 1817, p. 
214), how to solve the equation 

( 0 ( ÷ + | ÷ ) ) 2 + 2 ( è ( ÷ + ^ ) ) _ i c 

0 ~ 1 5 ' 

Bhaskara warns tha t multiplying by zero does not make the product zero, since 
further operations are to be performed. Then he simply cancels the zeros, saying 
that , since the multiplier and divisor are both zero, the expression is unaltered. 
The result is the equation we would write as | x 2 + 3x = 15. Bhaskara clears the 
denominator and writes the equivalent of 9x2 + l2x = 60. Even if the multiplication 
by zero is interpreted as multiplication by an expression tha t is tending to zero, as 
a modern mathematician would like to do, this cancellation is not allowed, since the 
first term in the numerator is a higher-order infinitesimal than the second. Bhaskara 
is handling 0 here as if it were 1. Granting tha t operation, he does correctly deduce, 
by completing the square (adding 4 to each side), tha t ÷ = 2. 

5. T h e M u s l i m s 

It has always been recognized that Europe received algebra from the Muslims; the 
very word algebra (al-jabr) is an Arabic word meaning transposition or restora-
tion. Its origins in the Muslim world date from the ninth century, in the work 
of Muhammed ibn Musa al-Khwarizmi (780-850), as is well es tabl ished. 1 2 W h a t 
is less certain is how much of al-Khwarizmi's algebra was original with him and 
how much he learned from Hindu sources. According to Colebrooke {1817, pp. 
lxiv-lxxx), he was well versed in Sanskrit and translated a treatise on Hindu com-
p u t a t i o n 1 3 into Arabic at the request of Caliph al-Mamun, who ruled from 813 to 
833. Colebrooke cites the Italian writer Pietro Cossa l i 1 4 who presented the alter-
natives that al-Khwarizmi learned algebra either from the Greeks or the Hindus 
and opted for the Hindus. These alternatives are a false dichotomy. We need not 
conclude tha t al-Khwarizmi took everything from the Hindus or tha t he invented 
everything himself. It is very likely that he expounded some material tha t he read 
in Sanskrit and added his own ideas to it. Rosen (1831, p . x) explains the difference 
in the preface to his edition of al-Khwarizmi's algebra text , saying tha t "at least 
the method which he follows in expounding his rules, as well as in showing their 
application, differs considerably from that of the Hindu mathematical writers." 

1 2 Colebrooke (1817, p. lxxiii) noted that a manuscript of this work dated 1342 was in the Bodleian 
Library at Oxford. Obviously, this manuscript could not be checked out, and Colebrooke com-
plained that the library's restrictions "preclude the study of any book which it contains, by a 
person not enured to the temperature of apartments unvisited by artificial warmth." If he worked 
in the library in 1816, his complaint would be understandable: Due to volcanic ash in the at-
mosphere, there was no summer that year. This manuscript is the source that Rosen (1831) 
translated and reproduced. 
1 3 It is apparently this work that brought al-Khwarizmi's name into European languages in the 
form algorism, now algorithm. A Latin manuscript of this work in the Cambridge University 
Library, dating to the thirteenth century, has recently been translated into English (Crossley and 
Henry, 1990). 
1 4 His dates are 1748-1813. He was Bishop of Parma and author of Origine, trasporto in Italia, 
primi progressi in essa dell' algebra (The Origins of Algebra, and Its Transmission to Italy and 
Early Progress There), published in Parma in 1797. 
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Colebrooke also notes (p. Ixxi) that Mohammed Abu'l-Wafa al-Buzjani (940-
998) wrote a translation or commentary on the Arithmetica of Diophantus. This 
work, however, is now lost. Apart from these possible influences of Greek and Hindu 
algebra, whose effect is difficult to measure, it appears that the progress of algebra 
in the Islamic world was an indigenous growth. We shall trace that growth through 
several of its most prominent representatives, starting with the man recognized as 
its originator, Muhammed ibn Musa al-Khwarizmi. 

5 .1 . A l -Khwar izmi . Besides the words algebra and algorithm, there is a common 
English word whose use is traceable to Arabic influence (although it is not an Arabic 
word), namely root in the sense of a square or cube root or a root of an equation. 
The Greek picture of the square root was the side of a square, and the word side 
(pleura) was used accordingly. The Muslim mathematicians apparently thought of 
the root as the part from which the equation was generated and used the word 
jadhr accordingly. According to al-Daffa (1973, p. 80), translations into Latin from 
Greek use the word latus while those from Arabic use radix. In English the word 
side lost out completely in the competition. 

Al-Khwarizmi's numbers correspond to what we call positive real numbers. 
Theoretically, such a number could be defined by any convergent sequence of ra-
tional numbers, but in practice some rule is needed to generate the terms of the 
sequence. For that reason, it is more accurate to describe al-Khwarizmi's numbers 
as positive algebraic numbers, since all of his numbers are generated by equations 
with rational coefficients. The absence of negative numbers prevented al-Khwarizmi 
from writing all quadratic equations in the single form "squares plus roots plus num-
bers equal zero" (ox 2 + bx + c = 0). Instead, he had to consider three basic cases 
and three others, in which either the square or linear term is missing. He described 
the solution of "squares plus roots equal numbers" by the example of "a square 
plus 10 roots equal 39 dirhems." (A dirhem is a uni t of money.) Al-Khwarizmi's 
solution of this problem is to draw a square of unspecified size (the side of the 
square is the desired unknown) to represent the square (Fig. 3). To add 10 roots, 
he then attaches to each side a rectangle of length equal to the side of the square 
and width 2^ (since 4 · 2^ = 10). The resulting cross-shaped figure has, by the 
condition of the problem, area equal to 39. He then fills in the four corners of the 
figure (literally "completing the square"). The total area of these four squares is 
4 • ( 2 5 ) 2 = 25. Since 39 + 25 = 64, the completed square has side 8. Since this 
square was obtained by adding rectangles of side 2\ to each side of the original 
square, it follows that the original square had side 3. 

This case is the one al-Khwarizmi considers first and is the simplest to un-
derstand. His figures for the other two cases of quadratic equations are more 
complicated, but all are based on Euclid's geometric illustration of the identity 
((a + b)/2)2 + ((a - b)/2)2 = ab (Fig. 17 of Chapter 10). 

Al-Khwarizmi did not consider any cubic equations. Roughly the first third of 
the book is devoted to various examples of pure mathematical problems leading to 
quadratic equations, causing the reader to be somewhat skeptical of his claim to be 
presenting the material needed in commerce and law. In fact, there are no genuine 
applications of quadratic equations in the book. But if quadratic equations have no 
practical applications (outside of technology, of course), there are occasions when 
a practical problem requires solving linear equations. Al-Khwarizmi found many 
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Ç — 2 i—Ç 
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F I G U R E 3 . Al-Khwarizmi's solution of "square plus 1 0 roots equals 3 9 dirhems." 

such cases in problems of inheritance, which occupy more than half of his Algebra. 
Here is a sample: 

A man dies, leaving two sons behind him, and bequeathing one-fifth 
of his property and one dirhem to a friend. He leaves 1 0 dirhems in 
property and one of the sons owes him 1 0 dirhems. How much does 
each legatee receive? 

Although mathematics is cross-cultural, its applications are very specific to the 
culture in which they are used. The difference between the modern solution of this 
legal problem and al-Khwarizmi's solution is considerable. Under modern law the 
man 's estate would be considered to consist of 2 0 dirhems, the 1 0 dirhems cash on 
hand, and the 1 0 dirhems owed by one of the sons. The friend would be entitled to 
5 dirhems (one-fifth plus one dirhem), and the indebted son would owe the estate 
1 0 dirhems. His share of the estate would be one-half of the 1 5 dirhems left after 
the friend's share is taken out, or l\ dirhems. He would therefore have to pay l\ 
dirhems to the estate, providing it with cash on hand equal to 1 2 ^ dirhems. His 
brother would receive l\ dirhems. 

Now the notion of an estate as a legal entity tha t can owe and be owed money 
is a modern European one, alien to the world of al-Khwarizmi. Apparently in al-
Khwarizmi's time, money could be owed only to a person. W h a t principles are to 
be used for settling accounts in this case? Judging from the solution given by al-
Khwarizmi, the estate is to consist of the 1 0 dirhems cash on hand, plus a certain 
portion (not all) of the debt the second son owed to his deceased father. This 
"certain portion" is the unknown in a linear equation and is the reason for invoking 
algebra in the solution. It is to be chosen so tha t when the estate is divided up, 
the indebted son neither receives any more money nor owes any to the other heirs. 
This condition leads to an equation that can be solved by algebra. Al-Khwarizmi 
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explains the solution as follows (we put the legal principle that provides the equation 
in capital letters): 

Call the amount taken out of the debt thing. Add this to the property; 

the sum is 10 dirhems plus thing. Subtract one-fifth of this, since he 

has bequeathed one-fifth of his property to the friend. The remainder 

is 8 dirhems plus | of thing. Then subtract the 1 dirhem extra that 

is bequeathed to the friend. There remain 7 dirhems and | of thing. 
Divide this between the two sons. The portion of each of them is 

3£ dirhems plus § of thing. THIS MUST BE EQUAL T O THING. 
Reduce it by subtract ing | of thing from thing. Then you have | 

of thing equal t o 3 | dirhems. Form a complete thing by adding to 

this quanti ty | of itself. Now | of 3 ^ dirhems is 2 | dirhems, so that 

thing is 5 | dirhems. 

Rosen (1831, p. 133) suggested that the many arbitrary principles used in these 
problems were introduced by lawyers to protect the interests of next-of-kin against 
those of other legatees. 

5.2. A b u Kami l . A commentary on al-Khwarizmi's Algebra was written by the 
mathematician Abu Kamil (ca. 850-930). His exposition of the subject contained 
none of the legacy problems found in al-Khwarizmi's treatise, but after giving the 
basic rules of algebra, it listed 69 problems of considerable intricacy to be solved. 
For example, a paraphrase of Problem 10 is as follows: 

The number 50 is divided by a certain number. If the divisor is 
increased by 3, the quotient decreases by 3 | . What is the divisor? 

Abu Kami! is also noteworthy because many of his problems were copied by 
Leonardo of Pisa, one of the first to introduce the mathemat ics of the Muslims into 
Europe. 

5.3. O m a r K h a y y a m . Although al-Khwarizmi did not consider any equations 
of degree higher than 2, such equations were soon to be considered by Muslim 
mathematicians. As we saw in Section 1 of Chapter 10, a link between geometry 
and algebra appeared in the use of the rectangular hyperbola by Pappus to carry 
out the neusis construction for trisecting an angle (Fig. 9 of Chapter 10). The 
mathematician Omar Khayyam, of the late eleventh and early twelfth centuries 
(see Amir-Moez, 1963), realized tha t a large class of geometric problems of this 
type led to cubic equations tha t could be solved using conic sections. His treatise 
on a lgebra 1 5 was largely occupied with the classification and solution of cubic 
equations by this method. 

Omar Khayyam did not have modern algebraic symbolism. He lived within the 
confines of the universe constructed by the Greeks. His classification of equations, 
like al-Khwarizmi's, is conditioned by the use of only positive numbers as data. 
For tha t reason his classification is even more complicated than al-Khwarizmi's, 
since he is considering cubic equations as well as quadratics. He lists 25 types of 
equations (Kasir, 1931, pp . 51-52), six of which do not involve any cubic terms. The 
particular cubic we shall consider is cubes plus squares plus sides equal number, or, as 

1 5 This treatise was little noticed in Europe until a French translation by Franz Woepcke (1827-
1864) appeared in 1851 (Kasir, 1931, p. 7). 
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F I G U R E 4. Omar Khayyam's solution of x3 + ax2 + b2x = b2c. 

we would phrase it, x3 + ax2 + bx = c. In keeping with his geometric interpretation 
of magnitudes as line segments, Omar Khayyam had to regard the coefficient b 
as a square, so that we shall write b2 rather t han b. Similarly, he regarded the 
constant term as a solid, which without any loss of generality he considered to be a 
rectangular prism whose base was an area equal to the coefficient of the unknown. 
In keeping with this reduction we shall write 6 2 c instead of c. Thus Omar Khayyam 
actually considered the equation x3 + ax2 + b2x = 6 2c, where a, b, and c are da ta 
for the problem, to be represented as lines. His solution is illustrated in Fig. 4. 
He drew a pair of perpendicular lines intersecting at a point Ï and marked off 
OA — a and OC = c in opposite directions on one of the lines and OB = b on 
the other line. He then drew a semicircle having AC as diameter, the line DB 
through Â perpendicular to OB (parallel to AC), and the rectangular hyperbola 
through C having DB and the extension of OB as asymptotes. This hyperbola 
intersects the semicircle in the point C and in a second point Z. From Æ he drew 
ZP perpendicular to the extension of OB, and Æ Ñ represented the solution of the 
cubic. 

When it comes to actually producing a root by numerical procedures, Omar 
Khayyam's solution is circular, a mere restatement of the problem. He has broken 
the cubic equation into two quadratic equations in two unknowns, but any a t t empt 
to eliminate one of the two unknowns merely leads back to the original problem. 
In fact, no method of solution exists or can exist t ha t reduces the solution of every 
cubic equation with real roots to the extraction of real square and cube roots of real 
numbers. Wha t Omar Khayyam had created was an analysis of cubic equations 
using conic sections. He said tha t no mat ter how hard you look, you will never 
find a numerical solution "because whatever is obtained by conic sections cannot 
be obtained by arithmetic" (Amir-Moez, 1963, p . 336). 

5.4. Sharaf a l -Din al-Muzaffar al-Tusi . A generation after the death of Omar 
Khayyam, another Muslim mathematician, Sharaf al-Tusi (ca. 1135-1213, not to 
be confused with Nasir-Eddin al-Tusi, whose work was discussed in Section 4 of 
Chapter 11), wrote a treatise on equations in which he analyzed the cubic equation 
using methods tha t are surprisingly modern in appearance. This work has been 
analyzed by Hogendijk (1989). Omar Khayyam had distinguished between the 
eight types of cubic equations tha t always have a solution and the five tha t could 
fail to have a solution. Al-Tusi provided a numerical method of solution for the 
first eight types tha t was essentially the Chinese method of solving cubic equations. 



6. EUROPE 427 

He then turned to the five types that could have no (positive) solutions for some 
values of the data . As an example, one of these forms is 

x3 + ax2 + c = bx . 

For each of these cases, al-Tusi considered a particular value of x, which for this 
example is the value m satisfying 

3 m 2 + 2am = b. 

Let us denote the positive root of this equation (the larger root, if there are two) 
by rn. The reader will undoubtedly have noticed tha t the equation can be obtained 
by differentiating the original equation and setting ÷ equal to m. The point m is 
thus in all cases a relative minimum of the difference of the left- and right-hand 
sides of the equation. Tha t , of course, is precisely the property tha t al-Tusi wanted. 
Hogendijk comments tha t it is unlikely that al-Tusi had any concept of a derivative. 
In fact, the equation for m can be derived without calculus, by taking m as the 
value at which the minimum occurs, subtracting the values at ÷ from the value at 
m, and dividing by ÷ - TO. The result is the inequality m2 + mx + x2 + a(m + x) > b 
for ÷ > m and the opposite inequality for ÷ < m. Therefore equality must hold 
when ÷ = TO, tha t is, 3 m 2 + 2am = b, which is the condition given by al-Tusi. 
After finding the point m, al-Tusi concluded that there will be no solutions if the 
left-hand side of the equation is larger than the right-hand side when ÷ = m. There 
will be one unique solution, namely ÷ = m if equality holds there. Tha t left only 
the case when the left-hand side was smaller than the right-hand side when ÷ = m. 
For tha t case he considered the auxiliary cubic equation 

y3+py2 = d, 

where ñ and d were determined by the type of equation. The quanti ty d was simply 
the difference between the right- and left-hand sides of the equation a t ÷ = TO, tha t 
is, bm — TO3 — am2 — c in the present case, with ñ equal to 3m + a. Al-Tusi was 
replacing ÷ with y = x — m here. The procedure was precisely the method we know 
as Horner's method, and the linear term drops out because the condition by which 
TO was chosen ordains t ha t it be so (see Problem 14.9.) The equation in y was 
known to have a root because it was one of the other 13 types, which always have 
solutions. Thus , it followed t ha t the original equation must also have a solution, 
÷ = m+y, where y was the root of the new equation. The added bonus was tha t 
a lower bound of m was obtained for the solution. 

6. E u r o p e 

As soon as translations from Arabic into Latin became generally available in the 
twelfth and thirteenth centuries, Western Europeans began to learn about algebra. 
The first of these was a Latin translation of al-Khwarizmi's Algebra, made in 1145 
by Robert of Chester (dates unknown). Several talented mathematicians appeared 
early on who were able to make original contributions to its development. In 
some cases the books tha t they wrote were not destined to be published for many 
centuries, but at least one of them formed part of an Italian tradit ion of algebra 
tha t continued for several centuries. 
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6.1 . Leonardo of P i s a (F ibonacc i ) . Many of the problems in the Liber abaci re-
flect the routine computations that must be performed when converting currencies. 
These are applications of the Rule of Three that we have found in Brahmagupta 
and Bhaskara. Many of the other problems are purely fanciful. Leonardo's indebt-
edness to Arabic sources was detailed by Levey (1966, pp . 217-220), who listed 29 
problems in the Liber abaci tha t are identical to problems in the Algebra of Abu 
Kamil. In particular, the problem of separating the number 10 into two parts sat-
isfying an extra condition occurs many times. For example, one problem is to find 
÷ such that 10/x + 10/(10 - x) = 6±. 

The Liber quadratorum. The Liber quadratorum is written in the spirit of Dio-
phantus. The resemblance in some points is so strong tha t it would be very strange 
if Leonardo had not seen a copy of Diophantus. This question is discussed by the 
translator of the Liber quadratorum. (Sigler, 1987, pp. xi-xii) , who notes that strong 
resemblances have been pointed out between the Liber quadratorum and al-Karaji 's 
Fakhri, parts of which were copied from the Arithmetica, but tha t there are also 
parts of the Liber quadratorum tha t are original. The resemblance to Diophantus 
is shown in such statements as the ninth of its 24 propositions: Given a nonsquare 
number that is the sum of two squares, find a second pair of squares having this 
number as their sum. Leonardo's solution of this problem, like tha t of Diophantus, 
involves a great deal of arbitrariness, since the problem does not have a unique 
solution. 

One advance in the Liber quadratorum is the use of general letters in an argu-
ment. Although in some proofs Leonardo argues much as Diophantus does, using 
specific numbers, he becomes more abstract in others. For example, Proposition 5 
requires finding two numbers the sum of whose squares is a square tha t is also the 
sum of the squares of two given numbers (Problem 9 of Book 2 of Diophantus). He 
says to proceed as follows. Let the two given numbers be .a. and .6. and the sum of 
their squares .g. . Now take any other two numbers .de. and .ez. [not proportional 
to the given numbers] the sum of whose squares is a square. These two numbers 
are arranged as the legs of a right triangle. If the square on the hypotenuse of this 
triangle is .g., the problem is solved. If the square on the hypotenuse is larger than 
.g., mark off the square root of .g. on the hypotenuse. The projections (as we would 
call them) of this portion of the hypotenuse on each of the legs are known, since 
their ratios to the square root of .g. are known. Moreover, t ha t rat io is rational, 
since they are the same as the ratios of .o. and .b. to the hypotenuse of the original 
triangle. These two projections therefore provide the new pair of numbers. Being 
proportional to .a. and .6., which are not proportional to the two numbers given 
originally, they must be different from those numbers. This argument is more con-
vincing, because more abstract, than proofs by example, but the geometric picture 
plays an important role in making the proof comprehensible. 

The Flos. Leonardo's approach to algebra begins to look modern in other ways 
as well. In one of his works, called the Flos super solutionibus quarumdam ques-
tionum ad numerum et ad geometriam vel ad utrumque pertinentum (The Full 
Development16 of the Solutions of Certain Questions Pertaining to Number or 
Geometry or Both, see Boncompagni, 1854, P- 4), he mentions a challenge from 
John of Palermo to find a number satisfying ÷3 + 2x2 + lOx = 20 using the methods 

1 6 The word flos means bloom, and is used in the figurative sense of "the bloom of youth." That 
appears to be its meaning here. 
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given by Euclid in Book 10 of the Elements, that is, to construct a line of this length 
using ruler and compass. In working on this question, Leonardo made two impor-
tant contributions to algebra, one numerical and one theoretical. The numerical 
contribution was to give the unique positive root in sexagesimal notation correct to 
six places. The theoretical contribution was to show by using divisibility properties 
of numbers that there cannot be a rational solution or a solution obtained using 
only rational numbers and square roots of rational numbers. 

6.2 . Jordanus N e m o r a r i u s . The translator and editor of the book De numeris 
datis (On Given Numbers), written by Jordanus Nemorarius, says (Hughes, 1981, p. 
11) "It is reasonable to assume. . . that Jordanus was influenced by al-Khwarizmi's 
work." This conclusion was reached on the basis of Jordanus ' classification of 
quadratic equations and his order of expounding the three types, among other 
resemblances between the two works. 

De numeris datis is the algebraic equivalent of Euclid's Data. Where Euclid 
says tha t a line is given (determined) if its ratio to a given line is given, Jordanus 
Nemorarius says that a number is given if its ratio to a given number is given. 
The well-known elementary fact that two numbers can be found if their sum and 
difference are known is generalized to the theorem tha t any set of numbers can be 
found if the differences of the successive numbers and the sum of all the numbers is 
known . 1 7 In general, this book contains a large variety of d a t a sets that determine 
numbers. For example, if the sum of the squares of two numbers is known, and the 
square of the difference of the numbers is known, the numbers can be found. The 
four books of De numeris datis contain about 100 such results. These results admit 
a purely algebraic interpretation. For example, in Book 4 Jordanus Nemorarius 
writes: 

If a square with the addition of its root multiplied by a given 
number makes a given number, then the square itself will be given. 
[Hughes, 1981, p. 100] 1 8 

Where earlier mathematicians would have proved this proposition with examples, 
Jordanus Nemorarius uses letters representing abstract numbers. The assertion is 
tha t there is only one (positive) number ÷ such tha t x 2 + ax = â, and that ÷ can 
be found if a and â are given. 

6.3 . T h e f o u r t e e n t h and fifteenth centur ies . The century in which Nicole 
d'Oresme made such remarkable advances in geometry, coming close to the cre-
ation of analytic geometry, was also a time of rapid advance in algebra, epitomized 
by Antonio de' Mazzinghi (ca. 1353 1383). His Trattato d'algebra contains some 
complicated systems of linear and quadratic equations in as many as three un-
knowns (Franci, 1988). He was one of the earliest algebraists to move the subject 
toward the numerical and away from the geometric interpretation of problems. 

In the following century Luca Pacioli wrote Summa de arithmetica, geometrica, 
proportioni et proportionalita (Treatise on Arithmetic, Geometry, Proportion, and 
Proportionality), which was closer to the elementary work of al-Khwarizmi and 
more geometrical in its approach to algebra than the work of Mazzinghi. Actually 

1 7 This statement is a variant of the epanthema (blossom) of Thymaridas. 
1 8 This translation is my own and is intended to be literal; Hughes gives a smoother, more 
idiomatic translation on p. 168. 
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(see Parshall, 1988), the work was largely a compilation of the works of Leonardo 
of Pisa, but it did bring the art of abbreviation closer to true symbolic notation. 
For example, what we now write as ÷ — \/x2 — 36 was written by Pacioli as 

l .co.mRv.l .ce m 3 6 . 

Here co means cosa (thing), the unknown; ce means censo (power), and Rv is 
probably a printed version of Rx, from the Latin radix, meaning roo t . 1 9 Pacioli 's 
work was both an indication of how widespread knowledge of algebra had become 
by this time and an important element in propagating it. The sixteenth-century 
Italian algebraists who moved to the forefront of the subject and advanced it far 
beyond where it had been up to that time had all read Pacioli 's treatise thoroughly. 

6.4. C h u q u e t . The Triparty en la science des nombres by Nicolas Chuquet is 
accompanied by a book of problems to illustrate its principles, a book on geometrical 
mensuration, and a book of commercial ari thmetic. The last two are applications 
of the principles in the first book. Thus the subject mat ter is similar to tha t of 
al-Khwarizmi's Algebra or Leonardo's Liber abaci. 

There are several new things in the Triparty. One is a superscript notat ion 
similar to the modern notation for the powers of the unknown in an equation. The 
unknown itself is called the premier or "first." Algebra in general is called the rigle 
des premiers or "rule of firsts." Chuquet listed the first 20 powers of 2 and pointed 
out that when two such numbers are multiplied, their indices are added. Thus, 
he had a clear idea of the laws of integer exponents. A second innovation in the 
Triparty is the free use of negative numbers as coefficients, solutions, and exponents. 
Still another innovation is the use of some symbolic abbreviations. For example, 
the square root is denoted R2 (R for the Latin radix, or perhaps the French racine). 
The equation we would write as 3 x 2 + 1 2 = 9x was wri t ten . 3 . 2 p.12. egaulx a . 9 . 1 . 
Chuquet called this equation impossible, since its solution would involve taking the 
square root of — 63. 

His instructions are given in words. For example (Struik, 1986, p. 62), consider 
the equation 

R2A2pA1p.2lp.l egaulx a .100, 

which we would write 

\/ix2 +Ax + 2x + 1 = 100. 

Chuquet says to subtract .2^p.l from both sides, so tha t the equation becomes 

fl242p.41 egaulx a . è è ô ç ^ 1 . 

Next he says to square, getting 

4 2 p .4 1 egaulx a 9801.m.396|p.4 2 . 

Subtracting 4 2 from both sides and adding 396.1 to both sides then yields 

400 1 egaulx a .9801 . . 

Thus ÷ = 9801/400. 

1 9 The symbol Ha; should not be confused with the same symbol in pharmacy, which comes from 
the Latin recipe, meaning take. 
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6.5. S o l u t i o n of cubic and quart ic equat ions . In Europe algebra was confined 
to linear and quadratic equations for many centuries, whereas the Chinese and 
Japanese had not hesitated to attack equations of any degree. The difference in the 
two approaches is a result of different ideas of what constitutes a solution. This 
distinction is easy to make nowadays: The European mathematicians were seeking 
an exact solution using only arithmetic operations and root extractions, what is 
called solution by radicals. However, it will not do to press the distinction too far: 
It is impossible to do good numerical work without a sound theoretical basis. As 
we saw in the work of Sharaf al-Tusi, the coefficients that appear in the course of 
his numerical solution have theoretical significance. 

The Italian algebraists of the early sixteenth century made advances in the 
search for a general algorithm for solving higher-degree equations. We discussed 
the interesting personal aspects of the solution of cubic equations in Section 4 of 
Chapter 3. Here we concentrate on the technical aspects of the solution. 

The verses Tartaglia had memorized say, in modern language, that to solve the 
problem x3 +px = q, one should look for two numbers u and í satisfying u-v = q, 
uv = ( p / 3 ) 3 . The problem of finding u and í is tha t of finding two numbers given 
their difference and their product, and of course, t ha t is merely a mat ter of solving 
a quadratic equation, a problem that had already been completely solved. Once 
this quadratic has been solved, the solution of the original cubic is ÷ = yfu — ffi. 
The solution of the cubic has thus been reduced to solving a quadratic equation, 
taking the cube roots of its two roots, and subtracting. Cardano illustrated with 
the case of "a cube and six times the side equal to 20." Using his complicated rule 
(complicated because he stated it in words), he gave the solution as 

He did not add tha t this number equals 2. 

Ludovico Ferrari. Cardano 's student Ludovico Ferrari worked with him in the so-
lution of the cubic, and between them they had soon found a way of solving certain 
fourth-degree equations. Ferrari 's solution of the quartic was included near the end 
of Cardano's Ars magna. Counting cases as for the cubic, one finds a total of 20 
possibilities. The principle in most cases is the same, however. The idea is to make 
a perfect square in x2 equal to a perfect square in ÷ by adding the same expression 
to both sides. Cardano gives the example 

It is necessary to add to both sides an expression rx2 + s to make them squares, 
tha t is, so that both sides of 

are perfect squares. Now the condition for this to happen is well known: ax2+bx+c 
is a perfect square if and only if b2 — Aac = 0. Hence we need to have simultaneously 

Solving the second of these equations for s in terms of r and substituting in the 
first leads to the equation 

60x = ÷ 4 + 6x2 + 36. 

rx2 + 60x -)- s = x4 + (6 + r)x2 + (36 + s) 

3600 - 4sr = 0, (6 + r)2 - 4(36 + s) = 0. 

r3 + 12r2 = 108r + 3600. 
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This is a cubic equation called the resolvent cubic. Once it is solved, the original 
quartic breaks into two quadratic equations upon taking square roots and adding 
an ambiguous sign. 

A few aspects of the solution of cubic and quartic equations should be noted. 
First, the problem is not a practical one. Second, the Cardano recipe for solving 
an equation sometimes gives the solution in a rather strange form. For example, 
Cardano says that the solution of x3 + 6x = 20 is V^VW+IO- \/\/Ú08- 10. The 
expression is correct, but can you tell at a glance tha t it represents the number 2? 

Third, the procedure does not always work. For example, the equation x3 + 6 = 
7x has to be solved by guessing a number that can be added to both sides so as to 
produce a common factor that can be canceled out. The number in this case is 21, 
but there is no algorithm for finding such a number. For equations of this type the 
algebraic procedures for finding ÷ involve square roots of negative numbers. The 
search for an algebraic procedure using only real numbers to solve this case of the 
cubic continued for 300 years, until finally it was shown tha t no such procedure can 
exist. 

6.6. Conso l idat ion . There were two natural ways to build on what had been 
achieved in algebra by the end of the sixteenth century. One was to find a notation 
that could unify equations so that it would not be necessary to consider so many 
different cases and so many different possible numbers of roots. The other was to 
solve equations of degree five and higher. We shall discuss the first of these here 
and devote Chapter 15 to the quest for the second and its consequences. 

All original algebra treatises written up to and including the treatise of Bombelli 
are very tiresome for the modern student, who is familiar with symbolic notation. 
For that reason we have sometimes allowed ourselves the convenience of modern 
notation when doing so will not distort the thought process involved. In the years 
between 1575 and 1650 several innovations in notat ion were introduced tha t make 
treatises writ ten since that time appear essentially modern. The symbols + and — 
were originally used in bookkeeping in warehouses to indicate excess and deficien-
cies; they first appeared in a German treatise on commercial ar i thmetic in 1489 
but were not widely used in the rest of Europe for another century. The sign for 
equality was introduced by a Welsh medical doctor, physician to the short-lived 
Edward VI, named Robert Recorde (1510-1558). His symbol was a very long pair 
of parallel lines, because, as he said, "noe 2. thynges, can be moare equalle." The 
use of abbreviations for the various powers of the unknown in an equation was 
eventually achieved, but there were two other needs to be met before algebra could 
become a mathematical subject on a par with geometry: a unified way of writing 
equations and a concept of number in which every equation would have a solution. 
The use of exponential notation and grouping according to powers was discussed 
by Simon Stevin (see Section 7 of Chapter 6). Stevin used the abbreviation Ì for 
the first unknown in a problem, sec for the second, and ter for the third. Thus (see 
Zeuthen, 1903, p. 95), what we would write as the equation 

6x3

 2 3x2 

— 4- 2xz2 = —? 
y yz2 

was expressed as follows: If we divide 

6 Ì © D sec © by 2 Ì © ter © , 
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we obtain 

3 Ì © D sec © D ter © . 

Although notation still had far to go, from the modern point of view, at least it was 
no longer necessary to use a different letter to represent each power of the unknown 
in a problem. 

Frangois Viete. The French lawyer Frangois Viete (1540-1603), who worked as 
tutor in a wealthy family and later became an advisor to Henri de Navarre (the 
future king Henri IV), found t ime to study Diophantus and to introduce his own 
ideas into algebra. Viete is credited with several crucial advances in the subject. 
In his book Artis analyticae praxis (The Practice of the Analytic Art) he begins by 
giving the rules for powers of binomials (in words). For example, he describes the 
fifth power of a binomial as "the fifth power of the first [term], plus the product 
of the fourth power of the first and five times the s e c o n d , . . . . " Viete's notation 
was slightly different from ours, but is more recognizable to us than that of Stevin. 
He would write the equation A 3 + SB A — D, where the vowel A represented the 
unknown and the consonants Â and D were taken as known, as follows (Zeuthen, 
1903, p. 98): 

A cubus + Â planum in A3 aequatur D solido. 

As this quotation shows, Viete appears to be following the tedious route of 
writing everything out in words, and to be adhering to the requirement that all the 
terms in an equation be geometrically homogeneous. 

This introduction is followed by five books of zetetics (research, from the Greek 
word zetein, meaning seek). The mention of "roots" in connection with the bino-
mial expansions was not accidental. Viete studied the relation between roots and 
coefficients in general equations. By using vowels t o represent unknowns and con-
sonants to represent d a t a for a problem, Viete finally achieved what was lacking in 
earlier treatises: a convenient way of talking about general da t a without having to 
give specific examples. His consonants could be thought of as representing num-
bers tha t would be known in any particular application of a process, but were left 
unspecified for purposes of describing the process itself. His first example was the 
equation A2 + AB = Z2, in other words, a standard quadratic equation. According 
to Viete these three letters are associated with three numbers in direct proportion, 
Æ being the middle, Â the difference between the extremes, and A the smallest 
number. In our terms, Æ — AT and Â = Ar2 — A. Thus, the general problem 
reduces to finding the smallest of three numbers A, Ar, Ar2 given the middle value 
and the difference of the largest and smallest. Viete had already shown how to do 
tha t in his books of zetetics. 

This analysis showed Viete the true relation between the coefficients and the 
roots. For example, he knew tha t in the equation x 3 — 6 x 2 + 1 l x = 6, the sum and 
product of the roots must be 6 and the sum of the products taken two at a t ime 
must be 11. This observation still did not enable him to solve the general cubic 
equation, but he did s tudy the problem geometrically and show that any cubic could 
be solved provided t ha t one could solve two of the classical problems of antiquity: 
constructing two mean proportionals between two given lines and trisecting any 
angle. As he concluded at the end of his geometric chapter: "It is very worthwhile 
to note this." 
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Ques t ions and p r o b l e m s 

14 .1 . Problem 6 of Book 1 of the Arithmetica is to separate a given number into 
two numbers such that a given fraction of the first exceeds a given fraction of the 
other by a given number. In our terms this is a problem in two unknowns ÷ and 
y, and there are four bits of data: the sum of the two numbers, which we denote 
by a, the two proper fractions r and s, and the amount b by which rx exceeds sy. 
Write down and solve the two equations tha t this problem involves. Under what 
conditions will the solutions be positive rational numbers (assuming tha t a, b, r, 
and s are positive rational numbers)? Compare your statement of this condition 
with Diophantus ' condition, stated in very complicated language: The last given 
number must be less than that which arises when that fraction of the first number 
is taken which exceeds the other fraction. 

14.2 . Carry out the solution of the bundles of wheat problem from the Jiu Zhang 
Suanshu. Is it possible to solve this problem without the use of negative numbers? 

14 .3 . Solve the equation for the diameter of a town considered by Li Rui. [Hint: 
Since ÷ = — 3 is an obvious solution, this equation can actually be writ ten as 
x3 + 3x2 = 972.] 

14.4. Solve the following legacy problem from al-Khwarizmi's Algebra: A woman 
dies and leaves her daughter, her mother, and her husband, and bequeaths to some 
person as much as the share of her mother and to another as much as one-ninth 
of her entire capital. Find the share of each person. It was understood from legal 
principles tha t the mother's share would be ^ and the husband's ã^. 

14.5 . Solve the problem of Abu Kamil in the text. 

14.6. If you know some modern algebra, explain, by filling in the details of the fol-
lowing argument, why it is not surprising tha t Omar Khayyam's geometric solution 
of the cubic cannot be turned into an algebraic procedure. Consider a cubic equa-
tion with rational coefficients but no rational r o o t s , 2 0 such as x3 + x2 +x = 2. By 
Omar Khayyam's method, this equation is replaced with the system y(z + 1) = 2, 
z2 = (y+1)(2 - y), one obvious solution of which is y = 2, æ — 0. The desired value 
of ÷ is the y-coordinate of the other solution. The procedure for eliminating one 
variable between the two quadratic equations representing the hyperbola and circle 
is a rational one, involving only multiplication and addition. Since the coefficients 
of the two equations are rational, the result of the elimination will be a polynomial 
equation with rational coefficients. If the root is irrational, that polynomial will be 
divisible by the minimal polynomial for the root over the rational numbers. How-
ever, a cubic polynomial with rational coefficients but no rational roots is itself the 
minimal polynomial for all of its roots. Hence the elimination will only return the 
original problem. 

14.7. Why did al-Khwarizmi include a complete discussion of the solution of qua-
dratic equations in his treatise when he had no applications for them at all? 

14.8 . Contrast the modern Western solution of the Islamic legacy problem dis-
cussed in the text with the solution of al-Khwarizmi. Is one solution "fairer" than 
the other? Can mathematics make any contribution to deciding what is fair? 

2 0 If the coefficients are rational, their denominators can be cleared. Then all rational roots will 
be found among the finite set of fractions whose numerators divide the constant term and whose 
denominators divide the leading coefficient. There is an obvious algorithm for finding these roots. 
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14.9 . Consider the cubic equation of Sharaf al-Tusi's third type, which we write 
as - x 3 - ax2 + bx - c = 0. Using Horner's method, as described in Section 2, show 
that if the first approximation is .ô = m, where m satisfies 3 m 2 + 2am — 6 = 0, then 
the equation to be satisfied a t the second approximation is y2 — (3m + a)y2 — ( m 3 + 
am2 — bm + c) = 0. T h a t is, carry out the algorithm for reduction and show tha t 
the process is 

—c — m 3 — a m 2 + bm. — c 
b - 3 m 2 - 2am + b ( = 0) 

—a —3m — a 
- 1 - 1 

14.10 . Consider Problem 27 of Book 1 of De numeris datis: Two numbers are 
given whose sum is 10. If one is divided by 4 and the other by 2, the product of the 
quotients is 2. What are the two numbers? Solve this problem in your own way, 
then solve it following Jordanus ' recipe, which we paraphrase as follows. Let the 
two numbers be ÷ and y, and let the quotients be e and / when ÷ and y are divided 
by c and d respectively; let the product of the quotients be ef = b. Let be — h, 
which is the same as fee or fx. Then multiply d by h to produce j , which is the 
same as xdf or xy. Since we now know both ÷ + y and xy, we can find ÷ and y. 

1 4 . 1 1 . Solve the equation x 3 + 60x = 992 using the recipe given by Tartaglia. 

14 .12 . How can you prove tha t vVfi)8 + 10 - í Ë / Ú 0 8 - 10 = 2? 

14 .13 . If you know the polar form of complex numbers æ = r cos è + ir sin È, show 
tha t the problem of taking the cube root of a complex number is equivalent to 
solving two of the classical problems of antiquity simultaneously, just as Viete 
claimed: the problem of two mean proportionals and the problem of trisecting the 
angle. 

14 .14 . Consider Viete's problem of finding three numbers in direct proportion given 
the middle number and the difference between the largest and smallest. Show tha t 
this problem amounts to finding ÷ and y given ^/xy and y — x. How do you solve 
such a problem? 

14.15. Show tha t the equation x 3 = px + q, where ñ > 0 and q > 0, has the 
solution ÷ = ã /4ñ /3 cosfl, where è — \ arccos ( ( 9 v / 2 7 ) / ( 2 v

/ P 3 ) ) - In order for this 
inverse cosine to exist it is necessary and sufficient that g 2 / 4 — p 3 / 2 7 < 0, which is 
precisely the condition under which the Cardano formula requires the cube root of 
a complex number. [Hint:Use the formula 4 cos 3 è — 3cos# = cos(30).] 

Observe tha t 
1 fl 1 

where a = (q\/27)/(2y/jft). Thus, the solution of the cubic equation has a connec-
tion with the integral of an algebraic function 1/y, where y satisfies the quadratic 
equation y2 = 1 — x 2 . This kind of connection turned out to be the key to the solu-
tion of higher-degree algebraic equations. As remarked in the text, Viete's solution 
of the cubic uses a transcendental method, even though an algebraic method exists. 
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Modern Algebra 

By the mid-seventeenth century, the relation between the coefficients and roots of a 
general equation was understood, and it was conjectured tha t if you counted roots 
according to multiplicity and allowed complex roots, an equation of degree ç would 
have ç roots. Algebra had been consolidated to the point tha t the main unsolved 
problem, the solution of equations of degree higher than 4, could be stated simply 
and analyzed. 

The solution of this problem took nearly two centuries, and it was not until the 
late eighteenth and early nineteenth centuries that enough insight was gained into 
the process of determining the roots of an equation from its coefficients to prove 
tha t arithmetic operations and root extractions were not sufficient for this purpose. 
Although the solution was a negative result, it led to the important concepts of 
modern algebra tha t we know as groups, rings, and fields; and these, especially 
groups, turned out to be applicable in many areas not directly connected with 
algebra. Also on the positive side, nonalgebraic methods of solving higher-degree 
equations were also sought and found, and a theoretically perfect way of deciding 
whether a given equation can be solved in radicals was produced. 

1. T h e o r y of equat ions 

Viete understood something of the relation between the roots and the coefficients 
of some equations. His understanding was not complete, because he was not able 
to find all the roots. Before the connection could be made completely, there had to 
be a domain in which an equation of degree ç would have ç roots. Then the general 
connection could be made for quadratic, cubic, and quartic equations and general-
ized from there. The missing theorem was eventually to be called the fundamental 
theorem of algebra.1 

1.1. A l b e r t Girard . This fundamental theorem was first stated by Albert Girard 
(1595-1632), the editor of the works of Simon Stevin. In 1629 he wrote L'invention 
nouvelle en I'algebre (New Discovery (Invention) in Algebra). This work contained 
some of the unifying concepts that make modern algebra the compact, efficient 
system tha t it now is. One of these, for example, is regarding the constant term 
as the coefficient of the zeroth power of the unknown. He introduced the notion 
of factions of a finite set of numbers. The first faction is the sum of the numbers, 
the second the sum of all products of two distinct numbers from the set, and so 
on. The last faction is the product of all the numbers, so tha t "there are as many 

1 In his textbook on analytic function theory (Analytic Function Theory, Ginn & Co., Boston, 
1960, Vol. 1, p. 24), Einar Hille (1894-1980) wrote that "modern algebraists are inclined to deny 
both its algebraic and its fundamental character." Hille does not name the modern algebraists, 
but he was a careful writer who must have had someone in mind. In the context of its time, the 
theorem was both algebraic and fundamental. 
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factions as there are numbers given." He noted tha t the number of terms in each 

faction could be found by using Pascal's triangle. 

Girard always regarded the leading coefficient as 1. Pu t t ing the equation into 

this form, he stated as a theorem (see, for example, Struik, 1986, p. 85) t ha t "all 

equations of algebra receive as many solutions as the denomination [degree] of the 

highest form shows, except the incomplete, and the first faction of the solutions is 

equal to the number of the first mixed [that is, the cofficient of the power one less 

than the degree of the equation], their second faction is equal to the number of the 

second mixed, their third to the third mixed, and so on, so that the last faction is 

equal to the closure [product], and this according to the signs tha t can be observed 

in the al ternate order." This recognition tha t the coefficients of a polynomial are 

elementary symmetric polynomials in its zeros was the first ray of light a t the dawn 

of modern algebra. 

By "incomplete," Girard meant equations with some terms missing. In some 

cases, he said, these may not have a full set of solutions. He gave the example of the 

equation x 4 = 4x — 3, whose solutions he gave as 1, 1, —1 + \ / - 2 , and - 1 — \f-2, 
showing tha t he realized the need to count both complex roots and multiple real 

roots for the sake of the general rule. He invoked the simplicity of the general rule 

as justification for introducing the multiple and complex roots, along with the fact 

that complex numbers provide solutions where otherwise none would exist. 

1.2. T s c h i r n h a u s transformat ions . Every complex number has n t h roots— 

exactly ç of them except in the case of 0—that are also complex numbers. As 

a consequence, any formula for solving equations that involves only the applica-

tion of rational operations and root extractions start ing with the coefficients will 

remain within the domain of complex numbers. This elementary fact led to the 

proposition stated by Girard, which we know as the fundamental theorem of alge-

bra. Finding such a formula for equations of degree five and higher was to become 

a preoccupation of algebraists for the next two centuries. 

Analysis of the cubic. By the year 1600 equations of degrees 2, 3, and 4 could all be 
solved, assuming tha t one could extract the cube root of a complex number. The 
methods used suggest an inductive process in which the solution of an equation of 
degree n, say 

xn - á é ÷ 7 1 - 1 + · · · Ô an~]X ± a„ = 0 , 

would be found by a substitution y — x"~* - b\Xn~2 + • · · ± 6 n - 2 X Ô l>n-\ with 

the coefficients bi,..., 6„_i chosen so that the original equation becomes yn = C. 
Observe tha t there are ç — 1 coefficients bjt at our disposal and ç — 1 coefficients 

o i , . . . , á ç _ é to be removed from the original equation. The program looks feasible. 

Something of the kind must have been the reasoning tha t led Ehrenfried Walther 

von Tschirnhaus (1652 1708) to the belief tha t he had discovered a general solution 

to all polynomial equations. In 1677 he wrote to Leibniz: 

In Paris I received some letters from Mr. Oldenburg, but from lack 

of t ime have not yet been able to write back tha t I have found a 

new way of determining the irrational roots of all equa t ions . . . The 

entire problem reduces to the following: We must be able to remove 

all the middle terms from any equation. When tha t is done, and as 

a result only a single power and a single known quanti ty remain, 

one need only extract the root. 
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Tschirnhaus claimed tha t the the middle terms (the á& above) would be elimi-
nated by a polynomial of the sort just discussed, provided tha t the 6jt are suitably 
chosen. Such a change of variable is now called a Tschirnhaus transformation. If 
a Tschirnhaus transformation could be found for the general equation of degree n , 
and a formula existed for solving the general equation of degree ç — 1, the two could 
be combined to generate a formula for solving the general equation of degree n. At 
the time, there was not even a Tschirnhaus transformation for the cubic equation. 
Tschirnhaus was to provide one. 

He illustrated his transformation using the example x3 - qx - r = 0. Taking 
y = x2 — ax — 6, he noted tha t y satisfied the equation 

y3 + (36 - 2q)y2 + (3b2 + 3a r - 4qb + q2 - a2q)y 

+ (b2 - 2q6 2 + 36ar + q2b - aqr - a2qb + a3r - r2) = 0 . 

He eliminated the square term by choosing 6 = 2q/3, then removed the linear term 
by solving for a in the quadratic equation 

qa2 - 3ra + 4q2/3 = 0 . 

In this way, he had found at the very least a second solution of the general cubic 
equation, independent of the solution given by Cardano. And, what is more im-
portant , he had indicated a plausible way by which any equation might be solved. 
If it worked, it would prove that every polynomial equation could be solved using 
rational operations and root extractions, thereby proving at the same time tha t the 
complex numbers are algebraically closed. Unfortunately, detailed examination of 
the problem revealed difficulties that Tschirnhaus had apparently not noticed at 
the t ime of his letter t o Leibniz. 

The main difficulty is that when the variable ÷ is eliminated between two 
polynomial equations pn(x) = 0 and y = pn-i(x), where pn is of degree ç and p „ _ i 
of degree ç — 1, the degrees of the equations needed to eliminate the successive 
coefficients in the equation for y increase to (ç - 1)!, not ç - l . 2 It is only in the 
case of a cubic, where (n — 1)! = ç - 1, tha t the program can be made to work in 
general. It may, however, work for a particular equation of higher degree. Leibniz, 
at any rate, was not convinced. He wrote to Tschirnhaus, 

I do not believe tha t [your method] will be successful for equations 
of higher degree, except in special cases. I believe tha t I have a 
proof for this. [Kracht and Kreyszig, 1990, p . 27] 

Tschirnhaus' method had intuitive plausibility: If there existed an algorithm 
for solving all equations, t ha t algorithm should be a procedure like the Tschirnhaus 
transformation. Because the method does not work, the thought suggests itself t ha t 
there may be equations tha t cannot be solved algebraically. The work of Tschirn-
haus and Girard had produced two important insights into the general problem of 
polynomial equations: (1) the coefficients are symmetric functions of the roots; (2) 
solving the equation should be a matter of finding a sequence of operations tha t 
would eliminate coefficients until a pure equation yn = C was obtained. Since the 
problem was still unresolved, still more new insights were needed. 

2 Seki Kowa knew the rational procedures (what he called folding, as discussed in Section 3 of 
Chapter 14) for eliminating x. It does seem a pity that the contemporaries Tschirnhaus and Seki 
Kowa lived so far apart. They would have had much to talk about if they could have met. 
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To explain the most important of these new insights, let us consider what 
Girard's result means when applied to Cardano's solution of the cubic y3 + py = q. 
If the roots of this equation arc r , s, and t, then ñ = st + tr + rs, q = rst, t= -r-s, 
since the coefficient of y2 is zero. The sequence of operations implied by Cardano's 
formula is 

Ñ <1 
U = 3; v = r 
a = \/ u3 + v2; 

y = \/v + a + \/v - a. 

Girard's work implies that the quantity a, which is an irrational function of the 
coefficients ñ and q, is a rational function of the roots r, ,s, and t: 

a = ±—L={r - s)(s - t)(t - r); 

that is, it does not involve taking the square root of any expression containing a 
root. 

1.3. N e w t o n , Leibniz , and t h e Bernoul l i s . In the 1670s Newton wrote a text-
book of algebra called Arithmetica universalis, which was published in 1707, in 
which he stated more clearly and generally than Girard had done the relation be-
tween the coefficients and roots of a polynomial. Moreover, he showed that other 
symmetric polynomials of the roots could be expressed as polynomials in the coef-
ficients by giving a set of rules tha t are still known by his name, although Edward 
Waring also proved that such an expression is possible. 

Another impetus toward the fundamental theorem of algebra came from calcu-
lus. The well-known method known as partial fractions for integrating a quotient 
of two polynomials reduces all such problems to the purely algebraic problem of 
factoring the denominator. It is not immediately obvious tha t the denominator 
can be factored into linear and quadratic real factors; t ha t is the content of the 
fundamental theorem of algebra. Johann Bernoulli (1667-1748, the first of three 
mathematicians named Johann in the Bernoulli family) asserted in a paper in the 
Acta eruditorum in 1702 that such a factoring was always possible, and therefore 
all rational functions could be integrated. Leibniz did not agree, arguing tha t the 
polynomial x4 + a2, for example, could not be factored into quadrat ic factors over 
the reals. Here we see a great mathematician being misled by following a method. 
He recognized that the factorization had to be (÷2 + a2\/—\)(x2 — a2\f—I) and that 
the first factor should therefore be factored as (x + ay/—y/^t)(x — á\/—ô/^ú) and 
the second factor as (x + d \ / V - l ) ( i - á \ / \ /—ú) , but he did not realize tha t these 
factors could be combined to yield x4 + a2 = (x2 - \/2ax + a2)(x2 + s/2ax + a2). 
It was pointed out by Niklaus Bernoulli (1687 1759, known as Niklaus I) in the 
Acta eruditorum of 1719 (three years after the death of Leibniz) tha t this last 
factorization was a consequence of the identity x4 + a 4 = (x2 + a 2 ) 2 - 2 a 2 x 2 . 

1.4. Euler , d ' A l e m b e r t , and Lagrange . The eighteenth century saw consid-
erable progress in the understanding of equations in general and the procedures 
needed to solve them. Much of this new understanding came from the two men 
who dominated mathematical life in that century, Euler and Lagrange. 
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Euler. In his 1749 paper "Recherches sur les racines imaginaires des equations" 
("Investigations into the imaginary roots of equations"), devoted to equations whose 
degree is a power of 2 and published in the memoirs of the Berlin Academy, Euler 
showed that when the coefficients of a polynomial are real, its roots occur in con-
jugate pairs, and therefore produce irreducible real quadratic factors of the form 
(x - a)2 + b2. In this paper Euler argued that every polynomial of degree 2 n with 
real coefficients can be factored as a product of two polynomials of degree 2 " _ 1 

with real coefficients. In the course of the proof Euler presented the germ of an 
idea that was to have profound consequences. In showing tha t a polynomial of 
degree 8 could be written as a product of two polynomials of degree 4, he assumed 
tha t the coefficient of x7 was made equal to zero by means of a linear substitution. 
The remaining polynomial ÷ 8 - ax6 + bx5 - cx* - dx2 + ex — f was then to be 
written as a product 

(x4 - ux3 + ax2 + â÷ + 7 ) ( x 4 + ux3 + ä÷2 + å÷ + æ). 

Euler noted tha t since u was the sum of four roots of the equation, it could assume 
(potentially) 70 values ( the number of combinations of eight things taken four a t a 
t ime), and its square would satisfy an equation of degree 35. 

In this paper, Euler also conjectured that the roots of an equation of degree 
higher than 4 cannot be constructed by applying a finite number of algebraic oper-
ations to the coefficients. This was the first explicit s tatement of such a conjecture. 

In his 1762 paper "De resolutione aequationum cuiusque gradus" ("On the 
solution of equations of any degree"), published in the proceedings of the Petersburg 
Academy, Euler tried a different approach, 3 assuming a solution of the form 

x = w + AS/v + B y/÷â + •·· + £? vV 1 " 1 , 

where w is a real number and í and the coefficients A,...,Q are to be found by a 
procedure resembling a Tschirnhaus transformation. This approach was useful for 
equations of degree 2" , but fell short of being a general solution of the problem. 

D'Alembert. Euler's contemporary and correspondent Jean le Rond d'Alembert 
(1717-1783) tried to prove tha t all polynomials could be factored into linear and 
quadratic factors in order to prove that all rational functions could be integrated 
by partial fractions. In the course of his argument he assumed that any algebraic 
function could be expanded in a scries of fractional powers of the independent 
variable. While Euler was convinced by this proof, he also wrote to d'Alembert to 
say tha t this assumption would be questioned (Bottazzini, 1986, pp . 1 5 1 8 ) . 

Lagrange. In 1770 Lagrange made a survey of the methods known up to his t ime 
for solving general equations. He devoted a great deal of space to a preliminary 
analysis of the cubic and quartic equations. In particular, he was intrigued by the 
fact that the resolvent equation, which he called the reduced equation (equation 
reduite), for the cubic was actually an equation of degree 6 tha t just happened to 
be quadrat ic in the third power of the unknown. He showed tha t if the roots of 
the cubic equation x3 + px = q being solved were o, 6, and c, then a root of the 
resolvent would be 

a + ab + a2c 

3 This approach was discovered independently by Etienne Bezout (1730 1783). 
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where a3 = 1, á ø 1. He argued tha t since the original equation was symmetric in 
a, b, and c, the resolvent would have to admit this y as a root, no mat te r how the 
letters o, b, and c were permuted. It therefore followed tha t the resolvent would in 
general have six different roots. 

For the quartic equation with roots a, b, c, and d, he showed tha t the resolvent 
cubic equation would have a root 

ab + cd 
t=~i~-

Since this expression could assume only three different values when the roots were 
permuted—namely, half of ab + cd, ac + bd, or ad + be—it would have to satisfy an 
equation of degree three. 

Proceeding to equations of fifth degree, Lagrange noted the only methods pro-
posed up to that time, by Tschirnhaus and Euler-Bezout, and showed tha t the 
resolvent to be expected in all cases would be of degree 24. Pointing out t ha t even 
Tschirnhaus, Euler, and Bezout themselves had not seriously attacked equations of 
degree five or higher, nor had anyone else tried to extend their methods, he said, "It 
is therefore greatly to be desired that one could estimate á priori the success that 
is to be expected in applying these methods to degrees higher than the fourth." He 
then set out to provide proof that , in general, one could not expect the resolvent 
equation to reduce to lower degree than the original equation in such cases, at least 
using the methods mentioned. 

To prove his point, Lagrange analyzed the method of Tschirnhaus from a more 
general point of view. For cubic and quartic equations, in which only two coefficients 
needed to be eliminated (the linear and quadratic terms in the cubic, the linear and 
cubic terms in the quartic) the substitution y = x2 + ax + b would always work, 
since the elimination procedure resulted in linear and quadrat ic expressions in á 
and b in the coefficients that needed to be eliminated. Still, as Lagrange remarked, 
that meant two pairs of possible values (a, b) and hence really two cubic resolvents 
to be solved. The resolvent was therefore once again an equation of degree 6, 
which happened to factor into the product of two cubics. He noted what must 
be an ominous sign for those hoping to solve all algebraic equations by algebraic 
methods: The construction of the coefficients in the resolvent for an equation of 
degree ç appeared to require solving ç - 1 equations in ç — 1 unknowns, of degrees 
1, 2,..., ç — 1, so tha t eliminating the variable ÷ in these equations therefore led 
to an expression for ÷ that was of degree (ç — 1)! in y, and hence to a resolvent 
equation of degree n! in y. 

Lagrange summed up his analysis as follows: 

To apply, for example, the method of Tschirnhaus to the equation 
of degree 5, one must solve four equations in four unknowns, the 
first being of degree 1, the second of degree 2, and so on. Thus 
the final equation resulting from the elimination of three of these 
unknowns will in general be of degree 24. But apar t from the 
immense amount of labor needed to derive this equation, it is clear 
t ha t after finding it, one will be hardly bet ter off than before, unless 
one can reduce it to an equation of degree less t han 5; and if such 
a reduction is possible, it can only be by dint of further labor, even 
more extensive than before. 
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The technique of counting the number of different values the root of the re-
solvent will have when the roots of the original equation are permuted among 
themselves was an important clue in solving the problem of the quintic. 

1.5. G a u s s and t h e f u n d a m e n t a l t h e o r e m of a lgebra . The question of the 
theoretical existence of roots was settled on an intuitive level in the 1799 dissertation 
of Gauss. Gauss distinguished between the abstract existence of a root, which he 
proved, and an algebraic algorithm for finding it, the existence of which he doubted. 
He pointed out that a t t empts to prove the existence of a root and any possible 
algorithm for finding it must assume the possibility of extracting the nth root of a 
complex number. He also noted the opinion, first s tated by Euler, tha t no algebraic 
algorithm existed for solving the general quintic. 

The reason we say t ha t the existence of roots was settled only on the intuitive 
level is tha t the proof of the fundamental theorem of algebra is as much topological 
as algebraic. The existence of real roots of an equation of odd degree with real 
coefficients seems obvious since a real polynomial of odd degree tends to oppositely 
signed infinities as the independent variable ranges from one infinity to the other. 
It thus follows by connectivity that it must assume a zero at some point. Gauss ' 
proof of the existence of complex roots was similar. Much of what he was doing was 
new at the time, and he had to explain it in considerable detail. For that reason, he 
preferred to use only real-variable methods, so as not to raise any additional doubts 
with the use of complex numbers. In fact, he stated his purpose in that way: to 
prove that every equation with real coefficients has a complete factorization into 
linear and quadratic real polynomials. 

The complex-variable background of the proof is obvious nowadays, and Gauss 
admitted tha t his lemmas were normally proved using complex numbers. The steps 
were as follows. First, considering the equation zm + Azm~l + Bzm~2 + • •• + 
Kz2 + Lz + Ì = 0, where all coefficients A,..., Ì were real numbers, 4 taking 
æ = r(cos</? + isinip) and using the relation zm — rm (cos ôçö + i sin ôçö), one can 
see tha t finding a root amounts to setting the real and imaginary parts equal to 
zero simultaneously, t ha t is, finding r and ö such t ha t 

rm cosnup + Arm~l cos(m — \)ø + h Kr2 cos 2ö + Lr cos ø + Ì = 0 , 

r m sin ôçö + Arm~x sin(m - \)ö + ••• + Kr2 sin 2ö + Lr sin ø = 0 . 

What remained was to show that there actually were points where the two 
curves intersected. For tha t purpose, Gauss divided both equations by rm and 
argued tha t for large values of r the two curves must have zeros near the zeros of 
cos m y = 0 and sinmy? = 0. Tha t would mean tha t on a sufficiently large circle, 
each would have 2m zeros, and moreover the zeros of one curve, being near the 
points with polar angles (fc + \/2)ð/ôç must separate those of the other, which are 
near the points with polar angles kw/m. Then, arguing tha t the portion of each 
curve inside the disk of radius r was connected, he said tha t it was obvious tha t 
one could not join all the pairs from one set and all the pairs from the other set 
using two curves that do not intersect. 

Gauss was uneasy about the intuitive aspect of the proof. During his lifetime 
he gave several other proofs of the theorem that he regarded as more rigorous. 

4 This restriction involves no loss of generality (see Problem 15.1). 
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1.6. Ruffini. As it turned out, Gauss had no need to publish his own research 
on the quintic equation. In the very year in which he wrote his dissertation, the 
first claim of a proof that it is impossible to find a formula for solving all quintic 
equations by algebraic operations was made by the Italian physician Paolo Ruffini 
(1765-1822). Ruffini's proof was based on Lagrange's count of the number of values 
a function can assume when its variables are pe rmuted . 5 The principles of such 
a proof were gradually coming into focus. Waring's proof tha t every symmetric 
function of the roots of a polynomial is a function of its coefficients was an important 
step, as was the idea of counting the number of different values a rational function 
of the roots can assume. To get the general proof, it was necessary to show tha t 
the root extractions performed in the course of a hypothetical solution would also 
be rational functions of the roots. Tha t this is the case for quadratic and cubic 
equations is not difficult to see, since the quadrat ic formula for solving x2 — (ri + 
r2)x + ÃéÃ2 = 0 involves taking only one square root: 

V(ri + r 2 ) 2 - 4 r i r 2 = \/(ð - r 2 ) 2 . 

Similarly, the Cardano formula for solving y3 + (r\r2+r2r3+r3ri )y = r\r2r3, where 
T\ + r2 + r3 = 0, involves taking 

/ (nr2 + r2r3 + r3n)3 ( r , r 2 r 3 ) 2 [-If, W O 2 , C , „ 2Ë 
V 2º + 4 = V LOG [ { r i ~

 Ã 2 ) ( 2 Ã ? + 5 Ã É Ã 2 + 2 ô 2 ç ' 

followed by extraction of the cube roots of the two numbers 

n2 
n+Ljr2) and —-=(ô ë +u2r2) 

where ù = —1/2 + À \ / 3 / 2 is a complex cube root of 1. These radicals are conse-
quently rational (but not symmetric) functions of the roots. 

1.7. Cauchy . Although Ruffini's proof was not generally accepted by his contem-
poraries, it was endorsed many years later by Augustin-Louis Cauchy (1789-1856). 
In 1812 Cauchy wrote a paper "Essai sur les fonctions symetriques" in which he 
proved the crucial fact that a function of ç variables tha t assumes fewer values than 
the largest prime number less than ç when the variables are permuted, actually as-
sumes at most two values. In 1815 he published this result. 

Cauchy gave credit to Lagrange, Alexandre Theophile Vandermonde (1735-
1796), and Ruffini for earlier work in this area. Vandermonde, in particular, exhib-
ited the Vandermonde determinant 

det 

1 x\ x\ 

1 X 2 X 2 • * • J?2 

X2 · · • xn~1 

= -(×é - X2){XI -×3)··· (Xl - ×ç)(×2 - Xa) · • • (X2 - £ „ ) · · • (xn-l ~ Xn) , 

which assumes only two values, since interchanging two variables permutes the rows 
of the determinant and hence reverses the sign of the determinant . 

5 An exposition of Ruffini's proof, clothed in modern terminology that Ruffini would not have 
recognized, can be found in the paper of Ayoub (1980). 
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Ruffini had shown tha t it was not possible to exhibit a function of five variables 
tha t could be changed into three different functions or four different functions by 
permuting the variables. It was this work that Cauchy proposed to generalize. 

Cauchy's theorem was an elegant piece of work in the theory of finite permu-
tation groups. To prove it, he had to invent a good deal of tha t theory. He pointed 
out tha t the number of permutations Í equals n!, and tha t the number of those 
permutat ions tha t leave the function unchanged is a divisor of JV, which he de-
noted M. In a manner now familiar, he showed that the number of different values 
( that is, different functions of the variables) that can be obtained by permuting 
the variables is R = N/M, and that if S is a permutation tha t leaves the function 
unchanged and Ô changes its value from Ê to K', then ST also changes its value 
from Ê to K'. He then introduced cyclic permutations and what we now call the 
order of a cyclic permutat ion. The matrix notation now sometimes used for per-
mutat ions and the notat ion (áâç) for a permutation tha t maps á to â, â to 7, and 
7 to a, leaving all other elements fixed, was introduced in this paper. 

Cauchy showed tha t if a permutation U is of order m, the complete set of 
permutat ions breaks up into N/m pairwise disjoint subsets (now called cosets) of 
m elements each. If m > R, which means Ì > N/m, some coset must contain two 
distinct elements S and Ô that leave the function invariant. When m is a prime p, 
this fact implies that some power Us with s between 1 and ñ — 1 leaves the function 
invariant, and since every power Usk then leaves the function invariant, it follows 
tha t all powers of U leave the function invariant. If ñ is 2, this is not a strong 
statement, since R = 1 in tha t case, and all permutat ions whatsoever leave the 
function invariant. For ñ > 2, it implies tha t the set of permutat ions tha t leave the 
function invariant contains all permutations of order p . 

Cauchy then showed that this set must contain all permutat ions of order 3, 
by explicitly writing any permutation of order 3 as the composition of two permu-
tations of order p . 6 It then followed tha t the permutation group can produce at 
most two different functions. For this case Cauchy showed tha t the function must 
be of the form Ê + SV, where Ê and S are symmetric and V is the Vandermonde 
determinant mentioned above, which switches sign when any two of its arguments 
are interchanged. 

Besides the notat ion for permutations and cycles, Cauchy also invented some 
of the terminology of group theory, including the word index (indice) still used for 
the number of cosets of a subgroup of a finite group. For the number of elements 
Ì in the subgroup, he used the term indicial (or indicative) divisor (diviseur in-
dicatif). He proposed the name substitution (of one permutat ion into another) for 
the composition of two permutations, and he called two permutat ions equivalent if 
they produce the same function, that is, they are equal modulo the subgroup of 
permutat ions that leave the function invariant. To picture cyclic permutations of 
finite order, he suggested arranging the distinct powers as the vertices of a regular 
polygon and thinking of the composition of two of them as a clockwise rotation (he 
said "a rotation from east to west") of the polygon. Such an arrangement suggests 
studying the symmetries of these polygons. However, although he frequently re-
ferred to "groups of indices" in this paper, he did not define the notion of a group 
in its modern sense. 

The number Í = ç! has no prime factors larger than n, so that ñ < ç in any case. 
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1.8. Abe l . Cauchy's work had a profound influence on two young geniuses whose 
lives were destined to be very short. The first of these, the Norwegian mathe-
matician Niels Henrik Abel (1802-1829), believed in 1821 tha t he had succeeded 
in solving the quintic equation. He sent his solution to the Danish mathematician 
Ferdinand Degen (1766-1825), who asked him to provide a worked-out example of 
a quintic equation that could be solved by Abel's method. While working through 
the details of an example, Abel realized his mistake. In 1824 he constructed an 
argument to show that such a solution was impossible and had the proof published 
privately. A formal version was published in the Journal fur die reine und ange-
wandte Mathematik in 1826. Abel was aware of Ruffini's work, and mentioned it 
in his argument. He attempted to fill in the gap in Ruffini's work with a proof that 
the intermediate radicals in any supposed solution by formula can be expressed as 
rational functions of the roots. 

Abel's idea was that if some finite sequence of rational operations and root 
extractions applied to the coefficients produces a root of the equation 

xb - ax4 + bx3 - cx2 + dx - e = 0 , 

the final result must be expressible in the form 

× = p + #™ +p2R™ ë rPm-lR^ , 

where p, p 2 , - - , P m - i i a n d R a r e also formed by rational operations and root 
extractions applied to the coefficients, m is a prime number , 7 and R)lm is not 
expressible as a rational function of the coefficients a, b, c, d, e, p , p 2 , . . . , p m _ i . 8 

By straightforward reasoning on a system of linear equations for the coefficients pj, 
he was able to show that R is a symmetric function of the roots, and hence that 
R]/'n must assume exactly m different values as the roots are permuted. Moreover, 
since there are 5! permutations of the roots and m is a prime, it followed that 
m = 2 or m = 5, the case m = 3 having been ruled out by Cauchy. The hypothesis 
that m = 5 led to an equation in which the left-hand side assumed only five values 
while the right-hand side assumed 120 values as the roots were permuted. Then the 
hypothesis m = 2 led to a similar equation in which one side assumed 120 values 
and the other only 10. Abel concluded that the hypothesis tha t there exists an 
algorithm for solving the equation was incorrect. 

The standard version of the history of mathematics credits Abel with being 
"the" person who proved the impossibility of solving the quintic equation. But 
according to Ayoub (1980, p. 274), in 1832 the Prague Scientific Society declared 
the proofs of Ruffini and Abel unsatisfactory and offered a prize for a correct proof. 
The question was investigated by William Rowan Hamilton in a report to the Royal 
Society in 1836 and published in the Transactions of the Royal Irish Academy in 
1839. Hamilton's report was so heavily laden with subscripts and superscripts bear-
ing primes tha t only the most dedicated reader would a t t empt to understand it, 
although Felix Klein was later (1884) to describe it as being "as lucid as it is volu-
minous." The proof was described by the American number theorist and historian 

7 Extracting any root is tantamount to the sequential extraction of prime roots. Hence every root 
extraction in the hypothetical process of solving the equation can be assumed to be the extraction 
of a prime root. 
8 Abel incorporated the apparently missing coefficient pi into R here, since he saw no loss of 
generality in doing so. A decade later, Hamilton pointed out that doing so might increase the 
index of the root that needed to be extracted, since p\ might itself require the extraction of an 
mth root. 
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of mathematics Leonard Eugene Dickson as "a very complicated reconstruction of 
Abel's proof." Hamilton regarded the problem of the solvability of the quintic as 
still open. He wrote: 

[T]he opinions of mathematicians appear to be not yet entirely 
agreed respecting the possibility or impossibility of expressing a 
root as a function of the coefficients by any finite combination of 
radicals and rational functions. 

The verdict of history has been that Abel's proof, suitably worded, is correct. 
Ruffini also had a sound method (see Ayoub, 1980), but needed to make certain 
subtle distinctions t ha t were noticed only after the problem was better understood. 
By the end of the nineteenth century, Klein (see 1884) referred to "the proofs of 
Ruffini and Abel, by which it is established that a solution of the general equation 
of the fifth degree by extracting a finite number of roots is impossible." 

Besides his impossibility proof, Abel made positive contributions to the solution 
of equations. He generalized the work of Gauss on the cyclotomic (circle-splitting) 
equation xn +÷ç_1 +· • --\-x + l = 0, which had led Gauss to the construction of the 
regular 17-sided polygon. Abel showed that if every root of an equation could be 
generated by applying a given rational function successively to a single (primitive) 
root, the equation could be solved by radicals. Any two permutat ions tha t leave 
this function invariant necessarily commute with each other. As a result, nowadays 
any group whose elements commute is called an Abelian group. 

1.9. Galo is . More light was shed on the solution of equations by the work of 
Abel's contemporary Evariste Galois (1811-1832), a volatile young man who did 
not live to become even mature. As is well known, he died at the age of 20 in a 
duel fought with one of his fellow Republicans. 9 

The neatly systematized concepts of group, ring, and field tha t now make 
modern algebra the beautiful subject tha t it is grew out of the work of Abel and 
Galois, but neither of these two short-lived geniuses had a full picture of any of 
them. The absence of the notion of a field seems to be the most noticeable lacuna 
in the theorems they were proving. Where we now talk easily about algebraic and 
transcendental field extensions and regard the general equation of degree ç over a 
field F as ÷" + á é ÷ ç _ 1 + · · • + a n - i x + o„ = 0, where a, is transcendental over 
F, Galois had to explain tha t the concept of a rational function was relative to 
what was given. For an equation with numerical coefficients, a rational function 
was simply a quotient of two polynomials with numerical coefficients, while if the 
equation had letters as coefficients, a rational function meant a quotient of two 
polynomials whose coefficients were rational functions of the coefficients of the 
equation. Even the concept of a group, which is associated with Galois, is not stated 
formally in any of his work. He does use the word group frequently in referring to 
a set of permutations of the roots of an equation, and he uses the properties tha t 

9 The word Republican (republicain) is being used in its French sense, of course, not the American 
sense. It is approximately the opposite of royaliste. There are murky details about the duel, but 
it appears that the gun Galois used was not loaded, probably because he did not wish to kill a 
comrade-in-arms. It is also possible that the combatants had jointly decided to let fate determine 
the outcome and each picked up a weapon not knowing which of the two guns was loaded. The 
cause of the duel is also not entirely clear. The notes that Galois left behind seem to imply that 
he felt it necessary to warn his friends about what he considered to be the wiles of a certain young 
woman by whom he felt betrayed, and they felt obliged to defend her honor against his remarks. 
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we associate with a group: the composition of permutations. However, it is clear 
from his language tha t what makes a set of permutat ions a group is tha t all of them 
have the same effect on certain rational functions of the roots. In particular, when 
what we now call a group is decomposed into cosets over a subgroup, Galois refers 
to the cosets as groups, since any two elements of a given coset have the same effect 
on the rational functions. He says that a group, in this sense, may begin with any 
permutation at all, since there is no need to specify any natural initial order of the 
roots. 

Besides the shortness of their lives, Abel and Galois had another thing in com-
mon: neglect of their achievements by the Paris Academy of Sciences. We shall see 
some details of Abel's case in Chapter 17. As for Galois, he had been expelled from 
the Ecole Normale because of his Republican activities and had been in prison. He 
left a second paper on the subject among his effects, which was finally published 
in 1846. 1 0 It had been written in January 1831, 17 months before his death, and 
it contained the following plaintive preface: 

The attached paper is excerpted from a work tha t I had the honor 
to present to the Academy a year ago. Since this work was not un-
derstood, and doubt was cast on the propositions tha t it contains, 
I have had to settle for giving the general principles and only one 
application of my theoric in systematic order. I beg the referees at 
least to read these few pages with at tention. [Picard, 1897, p . 33] 

The language and notation used by Galois are very close to those of Lagrange. 
He considers an equation of degree ç and claims t ha t there exists a function (polyno-
mial) ö(á, b,c,d,...) that takes on n! different values when the roots are permuted. 
Such a polynomial, he says, can be ö(á,b,c,d,...) = Aa + Bb + Cc + Dd + • • •, 
where A, B, C, D, and so on, are positive integers. He then fixes one root a and 
forms a function of two variables 

= Ð ( V - v ( o , f t , c , d , . . . ) ) , 

(the Galois resolvent), in which the product extends over all permutat ions tha t 
leave a fixed. Since the function on the right is symmetric in b, c, d,..., all of 
these variables can be replaced by suitable combinations of á and the coefficients 
pi,...,pn (see Problem 15.4). The equation f(ip(a,b,c,d,...),x) = 0 then has 
the solution ÷ = a, but has no other roots in common with the equation p(x) = 
0. Finding the greatest common divisor of these two polynomials then makes it 
possible to express á as a rational function of ø(á,b,c,d,...). Galois cited one of 
Abel's memoirs (on elliptic functions) as having stated this theorem without proof. 

The main theorem of the memoir was the following: For any equation, there 
is a group of permutations of the roots such that every function of the roots that 
is invariant under the group can be expressed rationally in terms of the coefficients 
of the equation, and conversely, every such function is invariant under the group. 
We would nowadays say that the elements of this group generate automorphisms 
of the splitting field of the equation tha t leaves the field of coefficients invariant. 
As his formulation shows, Galois had only the skeleton of that result. He called 
the group of permutations in question the group of the equation. His groups are 

1 0 Abel's great work on integrals of algebraic functions, submitted in 1827, was finally published, 
at the insistence of Jacobi, in 1841. 
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all concrete objects—permutations of the roots of equations. He developed Galois 
theory to the extent of analyzing what happened to the group of an equation when, 
in modern terms, a new element is adjoined to the base field. Galois could not be 
so clear. He said, "When we agree thus to regard certain quantities as known, we 
shall say tha t we are adjoining them to the equation being solved and that these 
quantities are adjoined to the equation." He thought of the new element as a root 
of an auxiliary polynomial (the minimal polynomial of the new element, in our 
terms), since tha t is where he got the elements that he adjoined. Instead of saying 
that the original group might be decomposed into the cosets of the group of the 
new equation when all the roots of the auxiliary equation are adjoined, he said it 
might split into ñ groups, each belonging to the equation. He noted that "these 
groups have the remarkable property that one can pass from one to the other by 
operating on all the permutat ions with the same letter substitution." 

In a letter to a friend written the night before the duel in which he died, Galois 
showed that he had gone still further into this subject, making the distinction 
between proper and improper decompositions of the group of an equation, tha t is, 
the distinction we now make between normal and nonnormal subgroups. 

Galois theory. The ideas of Galois and his predecessors were developed further 
by Laurent Wantzel (1814-1848) and Enrico Betti. In 1837 Wantzel used Galois' 
ideas to prove that it is impossible to double the cube or trisect the angle using 
ruler and compass; in 1845 he proved that it is impossible to solve all equations 
in radicals. In 1852 Bett i published a series of theorems elucidating the theory of 
solvability by radicals. In this way, group theory proved to be the key not only 
to the solvability of equations but to the full understanding of classical problems. 
When Ferdinand Lindemann (1852-1939) proved in 1881 tha t ð is a transcendental 
number, it followed tha t no ruler-and-compass quadrature of the circle was possible. 

The proof tha t the general quintic equation of degree 5 was not solvable by 
radicals naturally raised two questions: (1) How can the general quintic equation 
of degree 5 be solved? (2) Which particular quintic equations can be solved by 
radicals? These questions required some time to answer. 

Solution of the general quintic by elliptic integrals. A part ial answer to the first 
question came from the young mathematician Ferdinand Eisenstein (1823-1852), 
who showed in 1844 tha t the general quintic equation could be solved in terms of 
a function \ ( \ ) tha t satisfies the special quintic equation 

( ÷ ( ë ) ) 5 + ÷ (ë ) = ë , 

This function is in a sense an analog of root extraction, since the square root 
function ö and the cube root function ø satisfy the equations 

(ö{\))2 = A, 

{mf = ë . 

Eisenstein's solution stands somewhat apart from the main line of development, 
but in modern times it begins to look more reasonable. To solve all quadratic 
equations in a field of characteristic 2, for example, it is necessary to assume, in 
addition to the possibility of extracting a square root, tha t one has solutions to the 
equation ÷2 + ÷ + 1 = 0; these roots must be created by fiat. For a full discussion 
of Eisenstein's paper, see the article of Patterson (1990). 
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As elliptic integrals—integrals containing the square root of a cubic or quartic 
polynomial—became better understood, both computat ional and theoretical con-
siderations brought about a focus on transformations of one elliptic integral to 
another. In 1828 Jacobi studied rational changes of variable y = U(x)/V(x), where 
U and V are polynomials of degree at most n, and found an algebraic equation that 
U and V must satisfy in order for this transformation to convert an elliptic integral 
containing one parameter (modulus) into another. 

The transformation 

where u = ^/c and í = í 'ë (see Klein, 1884, P a r t H) Chapter 1, Section 3). Galois 
had recognized this connection and noted tha t the general modular equation of 
degree 6 could be reduced to an equation of degree 5 of which it was a resolvent. The 
parameter u can be expressed as a quotient of two infinite series ( theta functions) 
in the number q = e~*K'/K, where Ê and K' are the complete elliptic integrals 
of first kind with moduli ê and \/l - ê2. Thus, a family of equations of degree 6 
containing a parameter could be solved using the elliptic modular function. It was 
finally Charles Hermite (1822-1901) who, in 1858, made all these facts fit together 
in a solution of the general quintic equation using elliptic functions. 

Solution of particular quintics by radicals. The study of particular quintics that 
are solvable by radicals has occupied considerably more time. It is not difficult to 
reduce the general problem to the study of equations of the form x5 + px + g = 0 
via a Tschirnhaus transformation. This topic was studied by Carl Runge (1856-
1927) in an 1886 paper in the Acta mathematica. There are only five groups of 
permutations of five letters that leave no letter fixed and hence could be the group 
of an irreducible quintic equation. They contain respectively 5, 10, 20, 60, and 120 
permutations. A quintic equation having one of the first three as its group will be 
solvable by radicals, whereas an equation having either of the other two groups will 
not be. The actual construction of the solution, however, is by no means trivial. 
The situation is similar to that involved in the construction of regular polygons with 
ruler and compass. Thanks to Galois theory, we now know that it is possible for 
a person with sufficient patience to construct a 17-sided regular polygon—that is, 
partition a circle into 17 equal arcs—using ruler and compass, and Gauss actually 
did s o . 1 1 The details of the construction, however, are quite complicated. The 
same theory assures us that it is similarly possible to divide the circle into 65,537 
congruent arcs, a task at tempted by Johann Hermes (see p . 189). In contrast, 
algorithms have been produced for solving quintics by radicals where it is possible 
to do s o . 1 2 An early summary of results in this direction was the famous book 
by Felix Klein on the icosahedron (1884). An up-to-date study of the theory of 
solvability of equations of all degrees, with historical documentat ion, is the book of 
R. Bruce King (1996). 

1 1 Abel, using elliptic functions, partitioned the lemniscate into 17 arcs of equal length. 
1 2 See the paper by D. S. Dummit "Solving solvable quintics," in Mathematics of Computation, 
5 7 (1991), No. 195, 387-401. 

corresponds to an equation 

u6 - v6 + 5u2v2(u2 - v2) + 4uu(l - u V ) = 0 , 
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2. Algebraic s t ruc tures 

The concept of a group was the first of the many abstractions tha t make up the 
world of modern algebra. We have seen how it arises through the study of the 
permutations of the roots of an equation. In the work of Lagrange, Ruffini, Cauchy, 
and Abel, only the number of different forms that a function of the roots could take 
was studied. Then Galois focused attention on the structure of the permutations 
themselves, and the result was the first abstract structure, a permutat ion group. 
Another two decades passed before the idea of a group was made abstract by Arthur 
Cayley (1821-1895) in 1849. Cayley defined a group as a set of symbols that could 
be combined in a way tha t was associative (he used the word) but not necessarily 
commutative, and such tha t the elements must repeat themselves if all are operated 
on by the same element. (From Cayley's language it is not clear whether he intended 
this last property as an axiom or believed that it followed from the other properties 
of a group.) An important example given by Cayley was a group of mat r ices . 1 3 

The complete set of axioms for an abstract group was stated by Walther von Dyck 
(1856-1934), a student of Felix Klein, in 1883. 

2 . 1 . F ie lds , r ings , a n d a lgebras . The concept of a group arose in the study of 
the procedures used to solve equations, but that study involved other concepts tha t 
were also somewhat vague and in need of clarification. W h a t exactly did Galois 
mean when he said "if we agree to regard certain objects as known" and spoke 
of adjoining roots to an equation? Rational expressions in variables representing 
unspecified numbers had long been part of the discourse in the solution of algebraic 
equations. Both Abel and Galois made frequent use of this concept. Over the course 
of the nineteenth century this domain of rationality evolved into what Dedekind in 
1858 called a Zahlkdrper (number body). Leopold Kronecker (1823-1891) preferred 
the term Rationalitats-Bereich (domain of rationality). The abstract object tha t 
grew out of this concept eventually came to be known in French as a corps, in 
German as a Korper, and in English as a field.14, Dedekind considered only fields 
built on top of the rational numbers. Finite fields were first introduced, along 
with the word field itself, by Å. H. Moore (1862-1932) in a paper published in the 
Bulletin of the New York Mathematical Society in 1893. 

Other algebraic concepts arise as generalizations of number systems. In partic-
ular, the integers, the complex numbers of the form m + ni (the Gaussian integers), 
and the integers modulo a fixed integer m led to the general concept that Hubert , 
in his exhaustive 1897 report to the German Mathematical Union "Die Theorie 
des allgemeinen Zahlkorpers" ("The theory of the general number field") , called a 
Zahlring (Number ring). He gave as an equivalent term Integritatsbereich (integral 
domain). Both, however, were names for sets of complex numbers. Nowadays, an 
integral domain is defined abstractly as a commutative ring with identity in which 
the product of nonzero elements is nonzero; that is, there do not exist zero divisors. 
An element tha t is not a zero divisor is said to be regular. These structures were 
consciously abstracted and developed into the concept of an abstract ring in the 
paper "Uber die Teiler der Null und die Zerlegung von Ringen" ("On zero divisors 
and the decomposition of rings") by Adolf Fraenkel (1891-1965), which appeared 

1 3 The word matrix was Cayley's invention; the word is Latin for womb and is used figuratively in 
mining to denote an ore-bearing rock. Cayley's "wombs" bore numbers rather than ore or babies. 
1 4 A corps, however, is not necessarily commutative. Strictly speaking, it corresponds to what is 
called in English a division ring. 



452 15. MODERN ALGEBRA 

in the Journal fur die reine und angewandte Mathernatik in 1914. In his introduc-
tion Fraenkei cited the large number of particular examples as a reason for defining 
the abstract object. He required that the ring have at least one right identity, an 
element å such that áå = a for all a, and that for at least one of the right identities 
every regular element should have an inverse. The English term was introduced by 
Eric Temple Bell (pseudonym of John Taine, 1883 1960) in a paper in the Bulletin 
of the American Mathematical Society in 1930. 

Although mathematical communication was very extensive from the nineteenth 
century on, there was still enough difficulty due to language and transportat ion that 
British and Continental mathematicians sometimes took very different approaches 
to the same subject. Such was the case in algebra, where the solution of equations 
and abstract number theory led Continental mathematicians in one direction, at 
the time when British mathematicians were pursuing an abstract approach to al-
gebra having connections with an outstanding British school of symbolic logic. For 
linguistic and academic reasons, the British approach also caught on in the United 
States, the first American foray into mathematical research. This Anglo-American 
algebra has been studied by Parshall (1985). 

One of the first examples of this British algebra was the algebra of quaternions, 
invented by William Rowan Hamilton in 1843. Hamilton had been intrigued by 
the complex numbers since his teenage years. He questioned the meaningfulness 
of writing, for example 3 + since this notation made it appear tha t two 
objects of different kinds real and imaginary numbers were being added. To 
rationalize this process, he took the step that seems obvious now, regarding the 
two numbers as ordered pairs, so that 3 is merely an abbreviation for (3,0) and 

an abbreviation for (0, \/E), thereby algebraizing the plane. Hamilton was 
very much a physicist, and he saw complex multiplication, when the numbers were 
put in polar form r(cosf? 4- isinf?), as representing rotations and dilations. For 
him, complex addition represented all the possible translations of the plane, and 
complex multiplication sufficed to describe all its rotations and dilations. 

Influenced by the mysticism of the poet Coleridge (1772-1834) , 1 5 whom he 
knew personally, he felt that great insight would be obtained if he could similarly 
algebraize three-dimensional space, that is, find a way to multiply triples of numbers 
(x, y, z) similar to the complex multiplication of pairs (x, y). In particular, he wished 
to find algebraic operations corresponding to all translations and rotat ions of three-
dimensional space. Translations were not a problem, since ordinary addit ion took 
care of them. After much reflection, during a walk in Dublin on October 10, 1843 
that has become one of the most famous events in the history of mathematics , he 
realized tha t he needed a fourth quantity, since if he used one coordinate to provide 
a unit x, having the property that xy = y and xz — z, the product yz would have 
to be expressible symmetrically in x, y, and z. When the formulas we now write 
as i2 = j 2 = k2 = - 1 , ij = —ji = k, ki = —ik = j , jk = —kj = i occurred to him 
during this walk, he scratched them in the stone on Brougham Br idge . 1 6 In his 
1845 paper in the Quarterly Journal he referred to ix + jy + kz as "the vector from 
0 to the point x,y,z." The word vector (Latin for carrier) occurs in this context 
for the first time. A quaternion thus consists of a number and a vector. Very 

1 5 Coleridge's most famous poem, The Rime of the Ancient Mariner, is full of mystical uses of 
the numbers 3, 7, and 9. 
1 6 In the 160 years since then, they have been effaced. 
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likely it was his physical intuition that led him to make this discovery. A rotation 

in two-dimensional space requires only one parameter for its determination: the 

angle of rotation. In three-dimensional space it is necessary to specify the axis 

of rotation by a point on the unit sphere, and then the angle of rotation, a total 

of three parameters. Dilations then require a fourth parameter. Thus, although 

quaternions were invented to describe transformations of three-dimensional space, 

they require four parameters to do so. 

Hamilton, an excellent physicist and astronomer, worried about simply making 

up symbols out of his head and manipulating them. He soon found applications of 

them, however; and a school of his followers grew up, dedicated to spreading the 

lore of quaternions. By throwing away one of Hamilton's dimensions (the one tha t 

contained the unit) and using only the three symbols i, j , and fc, the American 

mathematician Josiah Willard Gibbs (1839-1903) developed the vector calculus 

as we know it today, in essentially the same language tha t is used now. In the 

language of vectors quaternions can be explained easily. A quaternion is simply the 

formal sum of a number and a point in three-dimensional space, such as A = a + a 
or Â — b + â. As Hamilton had done with complex numbers, it is possible to 

rationalize this seeming absurdity by regarding the number, the point, and the 

quaternion itself as quadruples of numbers: á = (á ,0 ,0 ,0 ) , a = ( 0 , á é , á 2 , è 3 ) , 
A = (á,áé,á·2,á3). The familiar cross product developed by Gibbs is obtained by 

regarding two vectors as quaternions, multiplying them, then setting the numerical 

part equal to zero (projecting from four-dimensional space to three-dimensional 

space). Conversely, quaternion multiplication can be denned in terms of the vector 

(dot and cross) products: AB = (ab - á- â) + (áâ + ba + á ÷ â). The quaternion 

A = a - a is the conjugate, analogous to the complex conjugate, and has the 

analogous property AA — o? + a • a = a2 + \a\2 — a2 + a2 + a2 + a2. Thus AA 
represents the square of Euclidean distance from A to (0 ,0 ,0 ,0 ) and can be denoted 

\A\2. This equation in turn shows how to divide quaternions, multiplying by the 

reciprocal: l/A = (l/\A\2)A. The absolute value of a quaternion has the pleasant 

property tha t \AB\ = \A\ \B\. 

The Harvard professor Benjamin Peirce (1808-1880) became an enthusiast of 

quaternions and was already lecturing on them in 1848, only a few years after their 

invention. Like many mathematicians before and after, he was philosophically 

attracted to algebra and believed it encapsulated pure thought in a way tha t was 

unique to itself. His treatise Linear Associative Algebra was one of the earliest 

treatises in this surprisingly late-arising subject . 1 7 

On the Continent algebra developed from other roots, more geometric in nature, 

exemplified by Grassmann's Aiisdehnungslehre, which was described in Section 3 of 

Chapter 12. To some Continental mathematicians, what the British were doing did 

not seem sufficiently substantial . On New Year's Day 1875, Weierstrass wrote to 

his pupil Sof'ya Kovalevskaya that she had much more important things to learn 

than Hamilton's quaternions, whose algebraic foundations, he said, were of a very 

trivial nature. In his discussion of quaternions Klein [1926, p. 182) remarked, 

"It is hardly necessary to mention that the Grassmannians and the quaternionists 

were bitter rivals, while each of the two schools in turn split into fiercely warring 

subspecies." Weierstrass himself, in 1884, gave a discussion of an algebra, including 

1 7 I say "surprisingly" because, as anyone would agree, its basic subject matter linear 
equations—is much simpler than many parts of algebra that developed earlier. 
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the structure constants that constitute the multiplication table for the elements of 
a basis. Even so, the subject seems to have caught on in only a few places in 
Germany. At Gottingen Emmmy Noether revolutionized the subject of algebras 
and representations of finite groups, and the concept of a Noetherian ring is now 
one of the basic parts of ring theory. Yet Salomon Bochner (1899-1982), who was 
educated in Germany and spent the first 15 years of his professional career there 
before coming to Princeton, recalled that the concept of an algebra was completely 
new to him when he first heard a young American woman lecture on it a t Oxford 
in 1925 . 1 8 

She came from Chicago and she gave at this seminar a lecture on 
algebras, which left all of us totally uncomprehending what it was 
all about. She spoke in a well-articulated, self-confident manner, 
but none of us had remotely heard before the terms she used, and 
we were lost. [Bochner, 1974, p. 832] 

Bochner went on to say that a decade later he was taken aback to find a German 
book with the title Algebren (Algebras- it was use of the plural tha t Bochner found 
jarring). Bochner was an extremely creative and productive analyst and differential 
geometer. Not until the mid-1960s did he have t ime to ferret out Peirce's book and 
sit down to read it. 

2.2. A b s t r a c t groups . The general theory of groups of permutat ions was devel-
oped in great detail in an 1869 treatise of Camille Jordan (1838-1922). This work 
made the importance of groups widely known. But despite Cayley's 1849 paper in 
group theory, the word group was still being used in an imprecise sense as late as 
1871, in the work of two of the founders of group theory, Felix Klein and Sophus 
Lie (see Hawkins, 1989, p. 286). All groups were pictured concretely, as one-to-one 
mappings of sets. Tha t assumption made a cancellation law ab = ac => b — c 
valid automatically. For permutations of finite sets, the cancellation law implied 
that every clement had an inverse. The corresponding inference for mappings of 
infinite sets is not valid, but Klein and Lie did not notice the difference at first. 
Lie even thought this inference could be proved. Groups as an abstract concept, 
characterized by the three, four, or five axioms one finds in modern textbooks, did 
not arrive until the twentieth century. On the abstract concept of a group Klein 
(1926, pp. 335-336) commented: 

This abstract formulation is helpful in the construction of proofs, 
but not at all adapted to the discovery of new ideas and methods; 
on the contrary, it rather represents the culmination of an earlier 
development. 

Klein was quick to recognize the potential of groups of transformations as a 
useful tool in the study of many areas of geometry and analysis. The double peri-
odicity of elliptic functions, for example, meant tha t these functions were invariant 

1 8 The woman's name was Echo Dolores Pepper, and the Mathematics Genealogy website lists 
her as having received the Ph. D. at the University of Chicago in 1925. Her dissertation, Theory 
of Algebras over a Quasi-field is on record, and she published at least one paper the year after 
receiving the degree, "Asymptotic expression for the probability of trials connected in a chain," 
Annals of Mathematics, 2 (28) (1926 27), 318 326. I have been unable to find out any more 
about her. 
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under an infinite group of translations of the plane. Klein introduced the concept of 
an automorphic function, an analytic function f(z) tha t is invariant under a group 
of fractional-linear (Mobius) transformations 

æ H-»
 a Z

 ~*~ ^ , ad — be ö 0 . 
cz + d 

Both Klein and Lie made use of groups to unify many aspects of projective 
geometry, and Klein suggested tha t various kinds of geometry could be classified in 
relation to the groups of transformations that leave their basic objects invariant. 

Lie groups. One of the most fundamental and far-reaching applications of the group 
concept is due to Lie, Klein's companion from 1869, when both young geometers 
felt like outsiders in the intensely analytic and algebraic world of Berlin mathe-
matics. In studying surfaces in three-dimensional space, Lie and Klein naturally 
encountered the problem of solving the differential equations tha t lead to such sur-
faces. Lie had the idea of solving these equations using continuous transformations 
tha t leave the differential equation invariant, in analogy with what Galois had done 
for algebraic equations. Klein noticed an analogy between this early work of Lie 
and Abel's work on the solution of equations and wrote to Lie about it. Lie was 
very pleased at Klein's suggestion. He believed as a mat ter of faith in the basic 
validity of this analogy and developed it into the theory of Lie groups. Lie himself 
did not present a whole Lie group, only a portion of it near its identity element. He 
considered a set of one-to-one transformations indexed by ç-tuples of sufficiently 
small real numbers in a neighborhood of ( 0 , 0 , . . . , 0) in such a way that the com-
position of the transformations corresponded to addition of the points that indexed 
them. This subject was developed by Lie, Wilhelm Killing (1847-1923), Elie Car tan 
(1869-1951), Hermann Weyl (1885-1955), Claude Chevalley (1909-1984), Harish-
Chandra (1923-1983), and others into one of the most imposing edifices of modern 
mathematics. A Lie group is a manifold in Riemann's sense tha t also happens to be 
a group, in which the group operations (multiplication and inversion) are analytic 
functions of the coordinates. 

Lie's work is far too complicated to summarize, but we can explain his basic 
ideas with a simple example. The sphere S 3 in four-dimensional space can be 
regarded as the set of quaternions of unit norm, tha t is, A = a + a such tha t 
\A\2 — a2 + \a\2 = 1. Because \AB\ = \A\ \B\, this set is closed under quaternion 
multiplication and inverses. But this sphere is also a three-dimensional manifold 
and can be parameterized by, say, the stereographic projection from (—1,0,0,0) 
through the equatorial hyperplane consisting of points (0,x,y, z). This projection 
maps (0, x, y, z) to 

/ 1 - x2 - y2 - z2 2x 2y 2z \ 

\ 1 + x2 + y2 + z 2 ' I T x ^ T j ^ T ? ' l + x2 + y2 + z 2 ' 1 + x2 + y2 + z 2 ) ' 
This parameterization covers the entire group except for the point (—1,0,0,0). 
To parameterize a port ion of the sphere containing this point requires a second 
parametrization, which can be projection from the opposite pole (1 ,0 ,0 ,0 ) . When 
the points in the group with coordinates (u, v, w) and (x, y, z) are multiplied, the 
result is the point whose first coordinate is 

~(u2x + ( - 1 + v2 + w2)x + 2wy-2vz + u{-l + x2 + y2 + z2)) 

1 - 2(ux + vy + wz) + (u2 + v2 + w2)(x2 + y2 + z2) 
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Since we have no need to do any computations, we omit the other two coordinates. 
The point to be noticed is that this function is differentiable, so tha t the group 
operation, when interpreted in terms of the parameters, is a differentiable operation. 

To study a Lie group, one passes to the tangent spaces it has as a manifold: in 
particular, the tangent space at the group identity. This tangent space is determined 
by the directions in the parameter space around the point corresponding to the 
identity. Each direction gives a directional derivative that operates on differentiable 
functions. For that reason, the tangent space is defined to be the set of differential 
operators of the form X = J2aj(x)alT- The composition of two such operators 
involves second derivatives, so that XY is not in general an element of the tangent 
space. However, the second partial derivatives cancel in the expression XY - YX 
(the Lie bracket). This multiplication operation makes the tangent space into a Lie 
algebra. This algebra, being a finite-dimensional vector space, is determined as an 
algebra once the multiplication table for the elements of a basis is given. To take 
the simplest nontrivial example, the Lie group of rotations of three-dimensional 
space (represented as 3 ÷ 3 rotation matrices) has the vector algebra developed by 
Gibbs (with the cross product as multiplication) as its Lie algebra. 

Elements of the group can be generated from the Lie algebra by applying a 
mapping called the exponential mapping from the Lie algebra into the Lie group. 
Finding this mapping amounts to solving a differential equation. The resulting 
combination of algebra, geometry, and analysis is both profound and beautiful. 

It would have been pleasant for mathematics in general and for Lie in particular 
if this beauty and profundity had been recognized immediately. Unfortunately, Lie's 
work was not well understood a t first. In January 1884 he wrote to his friend, the 
German mathematician Adolf Mayer (1839 1908): 

I am so certain, so absolutely certain, t ha t these theories will be 
acknowledged as fundamental one day in the future. If I wish to 
procure such an opinion soon, it i s . . . because I could produce ten 
times more. [Engel, 1899, quoted by Parshall, 1985, p . 265] 

Lie's vision was soon vindicated. By the end of his life, the potential of the 
theory was being recognized, and its development has never slowed in the century 
that has elapsed since that time. 

Group representations. The road to abstraction is a two-way street. Once an ax-
iomatic characterization of an object is stated, a classification program s tar t s au-
tomatically, aimed at answering two important questions: First, how abstract is 
the abstract object, really? Second, how many abstractly different objects fit the 
axioms? 

The first question leads to the search for concrete representations of abstract 
groups given only by a multiplication table. We know, for example, tha t every group 
G can be thought of as a group of one-to-one mappings by associating with each 
á e G the mapping La : G —> G given by æ <—> az. This fact was noted by Cay ley 
when he introduced the abstract concept. It is also easy to show tha t any finite 
group can be represented in a trivial way as a group of invertible matrices whose 
entries are all zeros and ones. First regard the group as a group of permutat ions 
of a set of k objects. Then make the k objects into the basis of a vector space 
and associate with each permutation the matr ix of the linear transformation it 
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defines. Essentially, this representation was introduced by the American logician 
philosopher Charles Sanders Peirce in 1879. 

An early prefiguration of an important concept in the representation of groups 
occurred in an 1837 paper of Dirichlet proving that an arithmetic progression whose 
first term and difference are relatively prime contains infinitely many primes. As 
discussed in Section 1 of Chapter 8, tha t paper contains the Dirichlet character 
÷(ç), defined as ( - l ) ( n - 1 ) / 2 if n is odd and 0 if ç is even. This character has 
the property tha t ÷{ôçç) = ÷{ôç)÷(ç). The definition of a character as a homo-
morphism into the multiplicative group of nonzero complex numbers was given by 
Dedekind in an 1879 supplement to Dirichlet's lectures. About the same time, 
Sylvester was showing how matrices could be used to represent the quaternions . 1 9 

T h e theory of representations of finite groups was developed by the German 
mathematician Ferdinand Georg Frobenius (1849-1917), responding to a question 
posed by Dedekind. The original question was simply to factor the determinant of a 
certain matr ix associated with a finite group. In trying to solve this problem, Frobe-
nius introduced the idea of a representation and a character of a representation. 
Although the subject is too technical for details to be given here, the characters, 
being computable, reveal certain facts about the structure of a finite group, and in 
some cases determine it completely. 

This theory was extended to Lie groups in 1927 by Hermann Weyl and his 
student F . Peter. In tha t context, it turned out, representation theory subsumes 
and unifies the theories of Fourier series and Fourier integrals, both of which are 
ways of analyzing functions defined on a Lie group (the circle or line) by transferring 
them to functions defined on a separate (dual) group. The subject is now called 
abstract harmonic analysis. 

Finite groups. The subject of finite groups grew up in connection with the solution 
of equations, as we have already seen. For that purpose, one of the most important 
questions was to decide which groups corresponded to equations that are solvable. 
Such a group G has a chain of normal subgroups G D Gi D G2 D ·•• D {1} 
in which each factor group Gi/Gi+\ is commutative. Because of the connection 
with equations, a group having such a chain of subgroups is said to be solvable. 
A solvable group can be built up from the simplest type of group, the group of 
integers modulo a prime, and so its structure may be regarded as known. It would 
be desirable to have a classification that can be used to break down any finite group 
into its simplest elements in a similar way. The general problem is so difficult tha t 
it is nowhere near solution. However, a significant piece of the program has been 
achieved: the classification of simple groups. A simple group is one whose only 
normal subgroups are itself and {1}. 

The project of classifying these groups was referred to by one of its leaders, 
Daniel Gorenstein (1923-1992), as the Thirty Years' War, since a strategy for the 
classification was suggested by Richard Brauer (1901-1977) at the International 
Congress of Mathematicians in 1954 and the classification was completed in the 

1 9 Cayley, Peirce, and Sylvester were well acquainted personally and professionally with one an-
other. Cayley and Peirce were at Johns Hopkins University during part of the time that Sylvester 
was chair of mathematics there. They formed the strong core of the Anglo-American school of 
abstract algebra described by Parshall (1985). At the heart of this abstraction, at least in the 
case of Peirce, was a philosophical program of creating a universal symbolic algebra that could be 
applied in any situation. Such a program required that the symbols be mere symbols until applied 
to some specific situation. 
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1980s with the discovery of the last "sporadic" group. The project consists of so 
many complicated parts that the process of streamlining and clarifying it, with all 
the new projects that process will no doubt spawn, is likely to continue for many 
decades to come. 

An important part of the project was the 1963 proof by Walter Feit and John 
Thompson (b. 1932) that all finite simple groups have an even number of elements. 
The proof was 250 pages long and occupied an entire issue of the Pacific Journal of 
Mathematics. As it turned out, this project was destined to generate large numbers 
of long papers. In fact, the mathematician who contributed the last step in the 
classification later wrote, "At least 3,000 pages of mathematical ly dense preprints 
appeared in the years 1976-1980 and simply overwhelmed the digestive system of 
the group theory community" (Solomon, 1995, p. 236). The outcome of the project 
is intensely satisfying from an aesthetic point of view. It turns out tha t there are 
three (or four) infinite classes of finite simple groups: (1) groups of prime order; 
(2) the group of even permutations on ç letters (ç > 5 ) ; 2 0 (3) certain finite linear 
groups, a class that can be subdivided into classical matr ix groups and twisted 
groups of Lie type, whose exact definition is not important for present purposes. 
Outside those classes are the "sporadic" groups. 

If this classification seems to resemble the old classification of constructions as 
planar, solid, and curvilinear, in which the final class is merely a catchall term for 
anything tha t doesn't fit into the other classes, tha t impression is misleading. The 
class of sporadic groups turns out to contain precisely 26 groups, whose properties 
have been tabulated. The smallest of them is Ë/ð with 7920 elements, one of 
five sporadic simple groups discovered by Emil Mathieu (1835 1890). The largest, 
officially denoted F\, is informally known as the Monster, since it consists of 

2 4 6 . 320 . 5 9 . 7 e . Ð 2 . ] 3 3 . 17 . 19 . 23 • 29 • 31 • 41 • 47 · 59 · 71 

elements. It was constructed in 1980. 

2 . 3 . N u m b e r s y s t e m s . Rings and fields can be regarded as generalized number 
systems, since they admit addition, subtraction, and multiplication, and sometimes 
division as well. As noted above, such general systems have been used since Gauss 
began the study of arithmetic modulo an integer and proved tha t the factorization 
of a Gaussian integer m + ni into irreducible Gaussian integers is unique up to a 
power of i. Gauss was particularly interested in these numbers, since when they 
are introduced, 2 is not a prime number (2 = (1 + i ) ( l — i)), nor is any number of 
the form 4n + 1 prime. For example. 5 = (2 + i)(2 — i). The number 3, however, 
remains prime. If we pass to numbers of the form m + n\ /—2, factorization is 
still unique, but this uniqueness is lost for numbers of the form m 4- n i / - ? , since 
4 = 2 - 2 = (1 + - >/~3)- The Gaussian integers were the first of an 

increasingly abstract class of structures on which multiplication is defined and obeys 
a cancellation law ( that is ac = be and c ö 0 implies tha t á = 6), but division is 
not necessarily always possible. If the factorization of each element is essentially 
unique, such a structure is called a Gaussian domain. 

2 0 The fact that this group is simple and noncommutative implies that the symmetric group 
consisting of all permutations on ç letters cannot be solvable for ç > 5, and hence that the 
general equation of degree ç is not solvable by radicals. 
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Ideal complex numbers. Numbers of the form m + çù, where ù = - 1 / 2 + v^ -3 /2 , 
a primitive cube root of unity, satisfies the equation ù2 = — 1 — u>, have properties 
similar to the Gaussian integers. For this system the number 3 is not a prime, since 
3 = (2 + ù)(1 -ù). Numbers of the form m + çù do have a unique factorization into 
primes, but Ernst Eduard Kummer (1810-1893) discovered in 1844 that "complex 
integers" of the form m + nia + n2Ct2-\ h n A - 2 « A ~ 2 , where 1 + á + · · · + á ë _ 1 = 0 
and ë is prime, do not necessarily have the property of unique factorization. 2 1 This 
fact seems to have a connection with Fermat's last theorem, which can be stated 
by saying that the number 

xX + yX = {x + y)(x + ay)(x + a2y) •••{x + ax~ly) 

is never equal to zx for any nonzero integers x, y, z. For tha t reason, Klein (1926, 
p. 321) asserted tha t it was precisely in this context tha t Kummer made the dis-
covery. But Edwards (1977, pp . 79-81) argues convincingly tha t the discovery 
was connected with the search for higher reciprocity laws, analogs of the quadratic 
reciprocity discussed in Section 1 of Chapter 8. 

However that may be, what Kummer made of the discovery is quite interesting. 
He introduced "ideal" numbers tha t would divide some of the otherwise irreducible 
numbers, just as the imaginary number 2 + i divides 5, and (he said) just as one 
introduces ideal chords to be held in common by two circles that do not intersect 
in the ordinary sense. By his definition, a prime number ñ tha t equals 1 modulo 
ë has ë — 1 factors . 2 2 These factors may be actual complex integers of the form 
stated. For example, when ë = 3, ñ — 13, we have 13 = (4 +ù)(3—ù). If they were 
not actual complex numbers, he assigned an ideal factor of ñ to correspond to each 
root î of the congruence î ë î 1 mod ñ, thereby obtaining ë — 1 nonunit factors. 
His rationale was tha t if f(a) divided ñ in the ordinary sense, then /(î) would 
be divisible by ñ in the ordinary sense. More generally, a complex integer Ö ( á ) 
was to have the ideal factor corresponding to î if Ö(î) = 0 mod p. Then if Ö(á ) 
was divisible by p, it would be divisible by all of the factors of p, whether actual 
complex numbers or ideal complex numbers. When these ideal complex numbers 
were introduced, unique factorization was restored. 

Q u e s t i o n s a n d prob lems 

1 5 . 1 . Prove tha t if every polynomial with real coefficients has a zero in the complex 
numbers, then the same is t rue of every polynomial with complex coefficients. To 
get started, let p(z) = zn + a\zn~l + · • • + an-\z + an be a polynomial with 
complex coefficients á ú , . . . , a „ . Consider the polynomial q(z) of degree 2n given by 
q(z) = p(z)p(z), where the overline indicates complex conjugation. This polynomial 
has real coefficients, and so by hypothesis has a complex zero ZQ. 

15 .2 . Formulate Cauchy's 1812 result as the following theorem and prove it: Let ñ 
be a prime number, 3 < ñ < ç. If a subgroup of the symmetric group on ç letters 
contains all permutations of order p, it is either the entire symmetric group or the 
alternating group. 

2 1 The first prime for which unique factorization fails is ñ = 23, just in case the reader was hoping 
to see an example. 
2 2 This relation between the primes ñ and ë speaks in favor of Edwards' argument that Kummer's 
goal had been a higher reciprocity law. 
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15.3 . Cauchy's theorem that every cycle of order 3 can be writ ten as the compo-
sition of two cycles of order m if m > 3 looks as if it ought to apply to cycles of 
order 2 also. Wha t goes wrong when you t ry to prove this "theorem" ? 

15.4. Let Sj (a, 6, c, d) be the j t h elementary symmetric polynomial, t ha t is, the sum 
of all products of j distinct factors chosen from {a, b, c, d}. Prove t ha t Sj (a, b, c, d) = 
Sj(b, c, d) + a5 j_ i (6 , c, d). Derive as a corollary t ha t given a polynomial equation 
x4 - Si (a, b, c, d)x3 + Szla, b, c, d)x2 + S3 (a, b, c, d)x + 5 r ( a , b, c, d) — 0 = x4 - fix3 + 
P2X2 — P3X + PA having a, b,c,d as roots, each elementary symmetric function in 
b,c, d can be expressed in terms of a and the coefficients py. S\(b,c,d) = p\ — a, 
S2(b, c, d) = P2 - aSi(b,c,d) = p2 - ap\ + a2, 53(6,c, d) = p3 - ap2 + a2p\ - a3. 

15.5. Prove t ha t if æ is a prime in the ring obtained by adjoining the pth roots of 
unity to the integers (where ñ is a prime), the equation 

zv = xp + yp 

can hold only if ÷ = 0 or y — 0. 

15.6 . Consider the complex numbers of the form æ = ôç + çù, where ù = —1/2 + 
\ / - 3 / 2 is a cube root of unity. Show tha t N(z) = m2 — mn + n2 has the property 
N(zw) = N(z)N{w) and tha t N(z + w) < 2(N(z) + N(w)). Then show tha t a 
Euclidean algorithm exists for such complex numbers: Given æ and w ö 0, there 
exist q and r . Such that æ = qw + r where N(r) < N(w). Thus, a Euclidean 
algorithm exists for these numbers, and so they must exhibit unique factorization. 
[Hint: N(z) = \z\2. Show tha t for every complex number u there exists a number 
q of this form such tha t \q - u\ < 1. Apply this fact with u = z/w and define r to 
be æ — qui.} 

15.7. Show tha t in quaternions the equation X2 + r2 = 0, where r is a positive 
real number (scalar), is satisfied precisely by the quaternions X = ÷ + î such tha t 
÷ — 0, ]î\ = r, tha t is, by all the points on the sphere of radius r . In other words, 
in quaternions the square roots of negative numbers are simply the nonzero vectors 
in three-dimensional space. Thus, even though quaternions act "almost" like the 
complex numbers, the absence of a commutative law makes a great difference when 
polynomial algebra is considered. A linear equation can have only one solution, but 
a quadratic equation can have an uncountable infinity of solutions. 
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The great watershed in the history of mathematics is the invention of the calcu-
lus. It synthesized nearly all the algebra and geometry t ha t had come before and 
generated problems tha t led to much of the mathematics studied today. Although 
calculus is an amalgam of algebra and geometry, it soon developed results tha t were 
indispensible in other areas of mathematics. Even theories whose origins seem to 
be independent of all forms of geometry—combinatorics, for example—turn out to 
involve concepts such as generating functions, for which the calculus is essential. 

Elements of the calculus had existed from the earliest t imes in the form of 
infinitesimal methods in geometry, and such techniques were refined in the early 
seventeenth century. Although strict boundaries in history tend to be artificial 
constructions, there is such a boundary between analytic geometry and calculus. 
Tha t boundary is the introduction of infinitesimal methods. As approximate, easy-
to-remember formulas, we can write: algebra + geometry = analytic geometry, and 
analytic geometry 4- infinitesimals = calculus. 

The introduction of infinitesimals into a geometry tha t had only recently strug-
gled back to the level of rigor achieved by Archimedes raised alarms in certain quar-
ters, but the new methods led to spectacular advances in theoretical physics and 
geometry tha t have continued to the present t ime. Like the Pythagoreans, modern 
mathematicians faced the twin challenges of extending the range of applicability of 
their mathematics while making it more rigorous. The responses to these challenges 
led to the modern subject of analysis. Starting from a base of real numbers, repre-
sented as ratios of line segments and written in the symbolic language of modern 
algebra, mathematicians extended their formulas to complex numbers, opening up 
a host of new applications and creating the beautiful subject of analytic function 
theory (complex analysis). At the same time, they were examining the hidden as-
sumptions in their methods and making their limiting processes more rigorous by 
introducing the appropriate definitions of integrals, derivatives, and series, leading 
to the subject of functions of a real variable (real analysis). 

Part 6 consists of two chapters. The creation of calculus and its immediate 
outgrowths, differential equations and the calculus of variations, is described in 
Chapter 16, while the further development of these subjects into modern analysis 
is the theme of Chapter 17. 
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The Calculus 

The infinite occurs in three forms in calculus: the derivative, the integral, and the 
power series. Integration, in the form of finding areas and volumes, was developed as 
a particular theory before the other two subjects came into general use. As we have 
seen, infinitesimal methods were used in geometry by the Chinese and Japanese, 
and the latter also used infinite series to solve geometric problems. In India also, 
mathematicians used infinite series to solve geometric problems via trigonometry. 
According to Rajagopal (1993), the mathematician Nilakanta, who lived in South 
India and whose dates are given as 1444-1543, gave a general proof of the formula 
for the sum of a geometric series. The most advanced of these results is at tr ibuted to 
Madhava (1340-1425), bu t is definitively stated in the work of Jyeshtadeva (1530-
ca. 1608): 

The product of the given Sine and the radius divided by the Co-
sine is the first result. From the first,...etc., results o b t a i n . . . a 
sequence of results by taking repeatedly the square of the Sine as 
the multiplier and the square of the Cosine as the divisor. Divide 
. . . in order by the odd numbers one, three, e t c . . . From the sum of 
the odd terms, subtract the sum of the even terms. [The result] 
becomes the arc. [Rajagopal, 1993, p. 98] 

These instructions give in words an algorithm that we would write as the follow-
ing formula, remembering tha t the Sine and Cosine used in earlier t imes correspond 
to our r sin è and r cos È, where r is the radius of the circle: 

Ë r 2 s inf? r 4 s i n 3 0 r 6 s i n 5 0 
rf? = 1 

r cos è 3 r 3 cos 3 è 5 r 5 cos 5 è 

The bulk of calculus was developed in Europe during the seventeenth century, 
and it is on t ha t development tha t the rest of this chapter is focused. 

Since analytic geometry was discussed in Section 1 of Chapter 12, we take 
up the story at the point where infinitesimal methods begin to be used in finding 
tangents and areas. The crucial step is the realization of the mutually inverse 
nature of these two processes and their consolidation as a set of algebraic and limit 
operations t ha t can be applied to any function. At the center of the entire process 
lies the very concept of a function, which was a seventeenth-century innovation. 

1. P r e l u d e t o t h e calculus 

In his comprehensive history of the calculus (1949), Boyer described "a century of 
anticipation" during which the application of algebra to geometric problems began 
to incorporate some of the less systematic parts of ancient geometry, especially the 
infinitesimal ideas contained in what was called the method of indivisibles. Let us 
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FIGURE 1 . Fermat's method of finding the subtangent. 

take up the story of calculus at the point where algebra enters the picture, beginning 
with some elementary problems of finding tangents and areas. 

1.1. T a n g e n t a n d m a x i m u m p r o b l e m s . The main problem in finding a tangent 
to a curve a t a given point is to find some second condition, in addition to passing 
through the point, t ha t this line must satisfy so as to determine it uniquely. It 
suffices to know either a second point that it must pass through or the angle tha t it 
must make with a given line. Format had attacked the problem of finding maxima 
and minima of variables even before the publication of Descartes' Geomctrie. As 
his works were not published during his lifetime but only circulated among those 
who were in a rather select group of correspondents, his work in this area was 
not recognized for some time. His method is very close to what is still taught in 
calculus books. The difference is that whereas we now use the derivative to find 
the slope of the tangent line, tha t is, the tangent of the angle it makes with a 
reference axis, Fermat looked for the point where the tangent intercepted tha t axis. 
If the two lines did not intersect, obviously the tangent was easily determined as 
the unique parallel through the given point to the given axis. In all other cases 
Fermat needed to determine the length of the projection of the tangent on the axis 
from the point of intersection to the point below the point of tangency, a length 
known as the subtangent. In a letter sent to Mersenne and forwarded to Descartes 
in 1 6 3 8 Fermat explained his method of finding the subtangent. 

In Fig. 1 the curve DB is a parabola with axis CE, and the tangent at Â 
meets the axis a t E. Since the parabola is convex, a point Ï between Â and 
Å on the tangent lies outside the parabola. T h a t location provided Fermat with 
two inequalities, one of which was CD : DI > BC : 01 . (Equality would 
hold here if 01 were replaced by the portion of it cut off by the parabola.) Since 
BC : Ol = CE :¸7, it followsjhat CD : 7JI > CE2 : El2. Then abbreviating by 
setting CD = g, CE = x, and CI - y, we have g : g - y > x2 : x2 -f y2 - 2xy, and 
cross-multiplying, 

gx2 + gy2 - 2gxy > gx2 — x2y. 

Canceling the term gx2 and dividing by y, we obtain gy — 2gx > —x2. Since this 
inequality must hold for all y (no matter how small), it follows tha t x2 > 2gx, tha t 
is, ÷ > 2g if ÷ > 0. Choosing a point Ï beyond Â on the tangent and reasoning in 
the same way would give ÷ < 2g, so that ÷ = 2g. Since ÷ was the quanti ty to be 
determined, the problem is solved. 
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F I G U R E 2. The folium of Descartes. Descartes and Fermat con-
sidered only the loop in this curve. 

In this paper Fermat asserted, "And this method never fails " This assertion 
provoked an objection from Descartes, 1 who challenged Fermat with the curve of 
Fig. 2, now known as the folium of Descartes, having equation a;3 + y3 = Saxy. 

Descartes did not regard curves such as the spiral and the quadratrix as admis-
sible in argument, since they are generated by two motions whose relationship to 
each other cannot be determined exactly. A few such curves, however, were to prove 
a very fruitful source of new constructions and applications. One of them, which 
had first been noticed in the early sixteenth century by an obscure mathematician 
named Charles Bouvelles (ca. 1470-ca. 1553), is the cycloid, the curve generated 
by a point on a circle (called the generating circle) tha t rolls without slipping along 
a straight line. We have already mentioned this curve, assuming tha t the reader 
will have heard of it, in Section 3 of Chapter 12. It is easily pictured by imagining 
a painted spot on the rim of a wheel as the wheel rolls along the ground. Since 
the linear velocity of the rim relative to its center is exactly equal to the linear 
velocity of the center, it follows that the point is a t any instant moving along the 
bisector of the angle formed by a horizontal line and the tangent to the generating 
circle. In this way, given the generating circle, it is an easy mat ter to construct 
the tangent to the cycloid. This result was obtained independently around 1638 by 
Descartes, Fermat, and Gilles Personne de Roberval (1602-1675), and slightly later 
by Evangelista Torricelli (1608-1647), a pupil of Galileo Galilei (1564-1642). 

1.2. L e n g t h s , areas , a n d v o l u m e s . Seventeenth-century mathematicians had 
inherited two conceptually different ways of applying infinitesimal ideas to find 
areas and volumes. One was to regard an area as a "sum of lines." The other 
was to approximate the area by a sum of regular figures and try to show that the 
approximation got bet ter as the individual regular figures got smaller. The rigorous 
version of the latter argument , the method of exhaustion, was tedious and of limited 
application. 

Cavalieri's principle. In the "sum of lines" approach, a figure whose area or volume 
was required was sliced into parallel sections, and these sections were shown to be 
equal or proportional to corresponding sections of a second figure whose area or 

1 There was little love lost between Descartes and Fermat, since Fermat had dismissed Descartes' 
derivation of the law of refraction. (Descartes assumed that light traveled faster in denser media; 
Fermat assumed that it traveled slower. Yet they both arrived at the same law! For details, see 
Indorato and Nastasi, 1989) Descartes longed for revenge, and even though he eventually ended 
the controversy over Fermat's methods with the equivalent of, "You should have said so in the 
first place, and we would never have argued...," he continued to attack Fermat's construction of 
the tangent to a cycloid. 
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FIGURE 3. RobervaFs quadra ture of the cycloid. 

volume was known. The first figure was then asserted to be equal or proportional 
to the second. The principle was stated in 1635 by Bonaventura Cavalieri (1598-
1647), a Jesuit priest and a student of Galileo. At the t ime it was customary 
for professors to prove their worthiness for a chair of mathemat ics by a learned 
dissertation. Cavalieri proved certain figures equal by pairing off congruent sections 
of them, in a manner similar to that of Archimedes' Method and the method by 
which Zu Chongzhi and Zu Geng found the volume of a sphere. This method implied 
that figures in a plane lying between two parallel lines and such tha t all sections 
parallel to those lines have the same length must have equal area. This principle is 
now called Cavalieri's principle. The idea of regarding a two-dimensional figure as 
a sum of lines or a three-dimensional figure as a sum of plane figures was extended 
by Cavalieri to consideration of the squares on the lines in a plane figure, then to 
the cubes on the lines in a figure, and so on. 

The cycloid. Cavalieri's principle was soon applied to find the area of the cycloid. 
Roberval, who found the tangent to the cycloid, also found the area beneath it by 
a clever use of the method of indivisibles. He considered along with half an arch of 
the cycloid itself a curve he called the companion to the cycloid. This companion 
curve is generated by a point that is always directly below or above the center of 
the generating circle as it rolls along and at the same height as the point on the rim 
that is generating the cycloid. As the circle makes half a revolution (see Fig. 3), the 
cycloid and its companion first diverge from the ground level, then meet again at 
the top. Symmetry considerations show that the area under the companion curve 
is exactly one-half of the rectangle whose vertical sides are the initial and final 
positions of the diameter of the generating circle through the point generating the 
cycloid. But by definition of the two curves their generating points are always at 
the same height, and the horizontal distance between them at any instant is half of 
the corresponding horizontal section of the generating circle. Hence by Cavalieri's 
principle the area between the two curves is exactly half the area of the circle. 

Rectangular approximations and the method of exhaustion. Besides the method of 
indivisibles (Cavalieri's principle), mathematicians of the t ime also applied the 
method of polygonal approximation to find areas. In 1640 Fermat wrote a pa-
per on quadratures in which he found the areas under certain figures by a method 
that he saw could easily be generalized. He considered a "general hyperbola," as 
in Fig. 4, a curve referred to asymptotes AR and AC and defined by the property 
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FIGURE 4. Fermat 's quadrature of a generalized hyperbola. 

tha t the ratio AHm : AGm = EGn : Ç Ã is the same for any two points Å and / 
on the curve; we would describe this property by saying tha t xmyn = const. 

Powers of sines. Cavalieri found the "sums of the powers of the lines" inside a 
triangle. In 1659 Pascal did the same for the "sums of the powers of the lines 
inside a quadrant of a circle." Now a line inside a quadrant of a circle is what 
up to now has been called a sine. Thus, Pascal found the sum of the powers 
of the sines of a quadrant of a circle. In modern terms, where Cavalieri found 
fix" dx = an+1/(n+l), Pascal found fP{Rsin(p)Rd(p = R(Rcosa - flcos/?). 

1.3. T h e re lat ion b e t w e e n t a n g e n t s and areas . The first statement of a re-
lation between tangents and areas appears in 1670 in a book entitled Lectiones 
geometricae by Isaac Barrow (1630-1677), a professor of mathematics at Cam-
bridge and later chaplain to Charles II. Barrow gave the credit for this theorem 
to "that most learned man, Gregory of Aberdeen" (James Gregory, 1638-1675). 
Barrow states several theorems resembling the fundamental theorem of calculus. 
The first theorem (Section 11 of Lecture 10) is the easiest to understand. Given a 
curve referred to an axis, Barrow constructs a second curve such tha t the ordinate 
at each point is proportional to the area under the original curve up to that point. 
We would express this relation as F(x) = (1/R) fi f(t)dt, where y = f(x) is the 
first curve, y = F(x) is the second, and l/R is the constant of proportionality. If 
the point Ô = (t, 0) is chosen on the axis so that (÷ — t)· f(x) = RF(x), then, said 
Barrow, Ô is the foot of the subtangent to the curve y = F(x); tha t is, ÷ — t is 
the length of the subtangent. In modern language the length of the subtangent to 
the curve y = F(x) is \F(x)/F'(x)\. This expression would replace (x - 1 ) in the 
equation given by Barrow. If both F(x) and F'(x) are positive, this relation really 
does say tha t f(x) = RF'(x) = (d/dx) fi f(t) dt. 

Later, in Section 19 of Lecture 11, Barrow shows the other version of the 
fundamental theorem, tha t is, tha t if a curve is chosen so tha t the ratio of its 
ordinate to its subtangent (this ratio is precisely what we now call the derivative) 
is proportional to the ordinate of a second curve, the area under the second curve 
is proportional to the ordinate of the first. 

1.4. Inf inite ser ies a n d p r o d u c t s . The methods of integration requiring the 
summing of infinitesimal rectangles or all the lines inside a plane figure led naturally 
to the consideration of infinite series. Several special series were known by the 
mid-seventeenth century. For example, the Scottish mathematician James Gregory 
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published a work on geometry in 1668 in which he stated the equivalent of the 
formula given earlier (unbeknown to Gregory, of course) by Jyeshtadeva: 

J*3 ,̂5 .̂7 

arctan ÷ — ÷ 1 \- • • • . 
3 5 7 

Similarly, infinite product expansions were known by this t ime for the number ð. 
One, due to Wallis, is 

2 _ 1 · 3 - 3 · 5 · 5 · 7 · · 

ð ~ 2 · 2 · 4 · 4 · 6 · 6 · · · ' 

The binomial series. It was the binomial series tha t really established the use of 
infinite series in analysis. The expansion of a power of a binomial leads to finite 
series when the exponent is a nonnegative integer and to an infinite series otherwise. 
This series, which we now write in the form 

( 1 + I r = , + i r < r - \ > - t + v 

was discovered by Isaac Newton (1642-1727) around 1665, although, of course, he 
expressed it in a different language, as a recursive procedure for finding the terms. 
In a 1676 letter to Henry Oldenburg (1615-1677), the Secretary of the Royal Society, 
Newton wrote this expansion as 

P + PQ\— = P\—-r —AQ + ——BQ + — CQ + —- DQ + etc. 
1 η 1 ç ç 2n 3n An 

"where Ñ + PQ s tands for a quantity whose root or power or whose root of a power 
is to be found, Ñ being the first term of that quantity, Q being the remaining terms 
divided by the first term and m / n the numerical index of the powers of Ñ + PQ... 
A s tands for the first term P\^, Â for the second term ^AQ, and so o n . . . ." 

Newton's explanation of the meaning of the terms A, B, C , . . . , means tha t the 
kth term is obtained from its predecessor via multiplication by { [ (m/n ) — fc]/(fc + 
1)}Q. He said that m / n could be any fraction, positive or negative. 

2. N e w t o n a n d Leibniz 

The results we have just examined show that par ts of the calculus were recognized 
by the mid-seventeenth century, like the pieces of a jigsaw puzzle lying loose on 
a table. W h a t was needed was someone to see the pat tern and fit all the pieces 
together. The unifying principle was the concept of a derivative, and tha t concept 
came to Newton and Leibniz independently and in slightly differing forms. 

2 .1 . Isaac N e w t o n . Isaac Newton discovered the binomial theorem, the general 
use of infinite series, and what he called the method of fluxions during the mid-
16608. His early notes on the subject were not published until after his death, but 
a revised version of the method was expounded in his Principia. 
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Newton's first version of the calculus. Newton first developed the calculus in what 
we would call parametric form. Time was the universal independent variable, and 
the relative rates of change of other variables were computed as the ratios of their 
absolute rates of change with respect to time. Newton thought of variables as 
moving quantities and focused attention on their velocities. He used the letter 
ï to represent a small t ime interval and ñ for the velocity of the variable x, so 
that the change in ÷ over the time interval ï was op. Similarly, using q for the 
velocity of y, if y and ÷ are related by yn = xm, then (y + oq)n = (x + op)m. Both 
sides can be expanded by the binomial theorem. Then if the equal terms yn and 
xm are subtracted, all the remaining terms are divisible by o. When ï is divided 
out, one side is nqyn~l + ï A and the other is mpxm~l + oB. Ignoring the terms 
containing o, since ï is small, one finds that the relative ra te of change of the two 
variables, q/p is given by q/p = (mxm~l) / (nyn~~l); and since y = xm^n, it follows 
that q/p = {m/n)x^mln)-1. Here at last was the concept of a derivative, expressed 
as a relative rate of change. 

Newton recognized tha t reversing the process of finding the relative rate of 
change provides a solution of the area problem. He was able to find the area under 
the curve y = axm^n by working backward. 

Fluxions and fluents. Newton's "second draft" of the calculus was the concept of 
fluents and fluxions. A fluent is a moving or flowing quanti ty; its fluxion is its ra te 
of flow, which we now call its velocity or derivative. In his Fluxions, written in 
Latin in 1671 and published in 1742 (an English translation appeared in 1736), he 
replaced the notation ñ for velocity by x, a notation still used in mechanics and in 
the calculus of variations. Newton's notation for the opposite operation, finding a 
fluent from the fluxion has been abandoned: Where we write j x(t) dt, he wrote x. 

The first problem in the Fluxions is: The relation of the flowing quantities to 
one another being given, to determine the relation of their fluxions. The rule given 
for solving this problem is to arrange the equation tha t expresses the given relation 
(assumed algebraic) in powers of one of the variables, say x, multiply its terms by 
any arithmetic progression (that is, the first power is multiplied by c, the square by 
2c, the cube by 3c, etc.), and then multiply by x/x. After this operation has been 
performed for each of the variables, the sum of all the resulting terms is set equal 
to zero. 

Newton illustrated this operation with the relation x3 — ax1 4- axy — y2 = 0, 
for which the corresponding fluxion relation is 3x2x — 2axx + axy + axy — 2yy = 
0, and by numerous examples of finding tangents to well-known curves such as 
the spiral and the cycloid. Newton also found their curvatures and areas. The 
combination of these techniques with infinite series was important , since fluents 
often could not be found in finite terms. For example, Newton found that the 
area under the curve æ = 1/(1 + ÷2) was given by the Jyeshtadeva Gregory series 

Later exposition of the calculus. Newton made an a t tempt to explain fluxions in 
terms that would be more acceptable logically, calling it the "method of first and 
last ratios," in his treatise on mechanics, the Philosophiae naturalis principia math-
ematica (Mathematical Principles of Natural Philosophy), where he said, 

Quantities, and the ratios of quantities, which in any finite time 
converge continually toward equality, and before the end of that 
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time approach nearer to each other than by any given difference, 
become ultimately equal. 

If you deny it, suppose them to be ultimately unequal, and let 
D be their ultimate difference. Therefore they cannot approach 
nearer to equality than by that given difference D; which is con-
trary to the supposition. 

If only the phrase become ultimately equal had some clear meaning, as Newton 
seemed to assume, this argument might have been convincing. As it is, it comes 
close to being a definition of ultimately equal, or, as we would say, equal in the limit. 
Newton came close to stating the modern concept of a limit, when he described 
the "ult imate ratios" (derivatives) as "limits towards which the ratios of quantities 
decreasing without limits do always converge, and to which they approach nearer 
than by any given difference." Here one can almost see the "arbitrarily small å" 
that plays the central role in the concept of a limit. 

2.2. G o t t f r i e d W i l h e l m v o n Leibniz . Leibniz believed in the reality of infinites-
imals, quantities so small that any finite sum of them is still less than any assignable 
positive number, but which are nevertheless not zero, so tha t one is allowed to di-
vide by them. The three kinds of numbers (finite, infinite, and infinitesimal) could, 
in Leibniz 1 view, be multiplied by one another, and the result of multiplying an 
infinite number by an infinitesimal might be any one of the three kinds. This po-
sition was rejected in the nineteenth century but was resurrected in the twentieth 
century and made logically sound. It lies a t the heart of what is called nonstandard 
analysis, a subject that has not penetrated the undergraduate curriculum. The 
radical step tha t must be taken in order to believe in infinitesimals is a rejection of 
the Archimedean axiom that for any two positive quantities of the same kind a suf-
ficient number of bisections of one will lead to a quanti ty smaller than the second. 
This principle was essential to the use of the method of exhaustion, which was one 
of the crowning glories of Euclidean geometry. It is no wonder that mathematicians 
were reluctant to give it up. 

Leibniz invented the expression dx to indicate the difference of two infinitely 
close values of x, dy to indicate the difference of two infinitely close values of y, 
and dyjdx to indicate the ratio of these two values. This notat ion was beautifully 
intuitive and is still the preferred notation for thinking about calculus. Its logical 
basis at the t ime was questionable, since it avoided the objections listed above by 
claiming tha t the two quantities have not vanished a t all but have yet become less 
than any assigned positive number. However, at the t ime, consistency would have 
been counterproductive in mathematics and science. 

The integral calculus and the fundamental theorem of calculus flowed very 
naturally from Leibniz' approach. Leibniz could argue tha t the ordinates to the 
points on a curve represent infinitesimal rectangles of height y and width dx, and 
hence finding the area under the curve— "summing all the lines in the figure" — 
amounted to summing infinitesimal differences in area dA, which collapsed to give 
the total area. Since it was obvious that on the infinitesimal level dA = ydx, the 
fundamental theorem of calculus was an immediate consequence. Leibniz first set 
it out in geometric form in a paper on quadratures in the 1693 Acta eruditorum. 
There he considered two curves: one, which we denote y = f(x) with its graph 
above a horizontal axis, the other, which we denote æ = F(x), with its graph below 
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F i g u r e 5 . Leibniz' proof of the fundamental theorem of calculus. 

the horizontal axis . 2 The second curve has an ordinate proportional to the area 

under the first curve. T h a t is, for a positive constant a, having the dimension of 

length, aF(x) is the area under the curve y = f(x) from the origin up to the point 

with abscissa x. As we would write the relation now, 

In this form the relation is dimensionally consistent. W h a t Leibniz proved was tha t 
the curve æ = F(x), which he called the quadratrix (squarer), could be constructed 
from its infinitesimal elements. In Fig. 5 the parentheses around letters denote 
points at an infinitesimal distance from the points denoted by the same letters 
without parentheses. In the infinitesimal triangle CE(C) the line E(C) represents 
dF, while the infinitesimal quadrilateral HF(F)(H) represents dA, the element of 
area under the curve. The lines F(F) and CE both represent dx. Leibniz argued 
tha t by construction, adF = f(x)dx, and so dF : dx = / ( ÷ ) : a. T h a t meant tha t 
the quadratr ix could be constructed by antidifferentiation. 

Leibniz eventually abbreviated the sum of all the increments in the area ( that 

is, the total area) using an elongated S, so that A — I dA = I ydx. Nearly all 

the basic rules of calculus for finding the derivatives of the elementary functions 
and the derivatives of products, quotients, and so on, were contained in Leibniz' 
1684 paper on his method of finding tangents. However, he had certainly obtained 
these results much earlier. His collected works contain a paper written in Latin 
with the title Compendium quadraturae arithmeticae, to which the editor assigns 
a date of 1678 or 1679. This paper shows Leibniz' approach through infinitesimal 
differences and their sums and suggests tha t it was primarily the problem of squar-
ing the circle and other conic sections tha t inspired this work. T h e work consists 
of 49 propositions and two problems. Most of the propositions are stated without 

aF(x) = / / ( f ) dt. 

2 The vertical axis is to be assumed positive in both directions from the origin. We are preserving 
in Fig. 5 only the lines needed to explain Leibniz' argument. He himself merely labeled points on 
the two curves with letters and referred to those letters. 
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proof; they contain the basic results on differentiation and integration of elemen-
tary functions, including the Taylor series expansions of logarithms, exponentials, 
and trigonometric functions. Although the language seems slightly archaic, one can 
easily recognize a core of standard calculus here. 

Later reflections on the calculus. Like Newton, Leibniz was forced to answer objec-
tions to the new methods of the calculus. In the Acta eruditorum of 1695 Leibniz 
published (in Latin) a "Response to certain objections raised by Herr Bernardo 
Niewentiit regarding differential or infinitesimal methods." These objections were 
three: (1) tha t certain infinitely small quantities were discarded as if they were zero 
(this principle was set forth as fundamental in the following year in the textbook of 
calculus by the Marquis de l'Hospital); (2) the method could not be applied when 
the exponent is a variable; and (3) the higher-order differentials were inconsistent 
with Leibniz' claim that only geometry could provide a foundation. In answer to 
the first objection Leibniz at tempted to explain different orders of infinitesimals, 
pointing out that one could neglect all but the lowest orders in a given equation. 
To answer the second, he used the binomial theorem to demonstra te how to handle 
the differentials dx, dy, dz when y1 = z. To answer the third, Leibniz said tha t one 
should not think of d(dx) as a quanti ty tha t fails to yield a (finite) quant i ty even 
when multiplied by an infinite number. He pointed out t ha t if ÷ varies geometri-
cally when y varies arithmetically, then dx = (xdy)/a, and ddx = (dxdy)/a, which 
makes perfectly good sense. 

2.3 . T h e disc iples of N e w t o n and Leibniz . Newton and Leibniz had disciples 
who carried on their work. Among Newton's followers was Roger Cotes (1682 
1716), who oversaw the publication of a later edition of Newton's Principia and 
defended Newton's inverse square law of gravitation in a preface to tha t work. 
He also fleshed out the calculus with some particular results on plane loci and 
considered the extension of functions defined by power series to complex values, 
deriving the important formula éö — log(cos0 + i s in ö), where i = Another 
of Newton's followers was Brook Taylor (1685-1731), who developed a calculus of 
finite differences that mirrors in many ways the "continuous" calculus of Newton 
and Leibniz and is of both theoretical and practical use today. Taylor is famous 
for the infinite power series representation of functions tha t now bears his name. It 
appeared in his 1715 treatise on finite differences. We have already seen, however, 
that many particular "Taylor series" were known to Newton and Leibniz; Taylor's 
merit is to have recognized a general way of producing such a series in terms of 
the derivatives of the generating function. This step, however, was also taken by 
Johann Bernoulli. 

Leibniz also had a group of active and intelligent followers who continued to 
develop his ideas. The most prominent of these were the Bernoulli brothers Jakob 
(1654-1705) and Johann (1667-1748), citizens of Switzerland, between whom rela-
tions were not always cordial. They investigated problems t ha t arose in connection 
with calculus and helped to systematize, extend, and popularize the subject. In ad-
dition, they pioneered new mathematical subjects such as the calculus of variations, 
differential equations, and the mathematical theory of probability. A French noble-
man, the Marquis de l'Hospital (1661-1704), took lessons from Johann Bernoulli 
and paid him a salary in return for the right to Bernoulli 's mathematical discov-
eries. As a result, Bernoulli's discovery of a way of assigning values to what are 
now called indeterminate forms appeared in L'Hospital 's 1696 textbook Analyse 
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des infiniment petits (Infinitesimal Analysis) and has ever since been known as 
L'Hospital 's rule. Like the followers of Newton, who had to answer the objections 
of Bishop Berkeley (see Section 3 below) Leibniz' followers encountered objections 
from Michel Rolle (1652-1719), which were answered by Johann Bernoulli with the 
claim that Rolle didn ' t understand the subject. 

The priority dispute. One of the better-known and less edifying incidents in the 
history of mathematics is the dispute between the disciples of Newton and those 
of Leibniz over the credit for the invention of the calculus. Although Newton 
had discovered the calculus by the early 1670s and had described it in a paper 
sent to James Collins, the librarian of the Royal Society, he did not publish his 
discoveries until 1687. Leibniz made his discoveries a few years later than Newton 
but published some of them earlier, in 1684. Newton's vanity was wounded in 1695 
when he learned tha t Leibniz was regarded on the Continent as the discoverer of the 
calculus, even though Leibniz himself made no claim to this honor. In 1699 a Swiss 
immigrant to England, Nicolas Fatio de Duillier (1664-1753), suggested that Leibniz 
had seen Newton's paper when he had visited London and talked with Collins 
in 1673. (Collins died in 1683, before his testimony in the mat ter was needed.) 
This unfortunate rumor poisoned relations between Newton and Leibniz and their 
followers. In 1711-1712 a committee of the Royal Society (of which Newton was 
President) investigated the mat ter and reported t ha t it believed Leibniz had seen 
certain documents tha t in fact he had not seen. Relations between British and 
Continental mathematicians reached such a low ebb tha t Newton deleted certain 
laudatory references to Leibniz from the third edition of his Principia. This dispute 
confirmed the British in the use of the clumsy Newtonian notat ion for more than a 
century, a notation far inferior to Leibniz's elegant and intuitive symbolism. But in 
the early nineteenth century the impressive advances made by Continental scholars 
such as Euler, Lagrange, and Laplace won over the British mathematicians, and 
scholars such as William Wallace (1768-1843) rewrote the theory of fluxions in 
terms of the theory of limits. Wallace asserted that there was never any need to 
introduce motion and velocity into this theory, except as illustrations, and tha t 
indeed Newton himself used motion only for illustration, recasting his arguments 
in terms of limits when rigor was needed (see Panteki, 1987, and Craik, 1999). 
Eventually, even the British began using the term integral instead of fluent and 
derivative instead of fluxion, and these Newtonian terms became mathematically 
part of a dead language. 

Certain relevant facts were concealed by the terms in which the priority dispute 
was cast. One of these is the extent to which Fermat, Descartes, Cavalieri, Pascal, 
Roberval, and others had developed the techniques in isolated cases that were to 
be unified by the calculus as we know it now. In any case, Newton's teacher Isaac 
Barrow had the insight into the connection between subtangents and area before 
either Newton or Leibniz thought of it. Barrow's contributions were shunted aside 
in the heat of the dispute; their significance has been pointed out by Feingold 
(1993). 

Early textbooks on calculus. The secure place of calculus in the mathematical cur-
riculum was established by the publication of a number of excellent textbooks. One 
of the earliest was the Analyse des infiniment petits, mentioned above, which was 
published by the Marquis de 1'Hospital in 1696. 



474 16. THE CALCULUS 

Most students of calculus know the Maclaurin series as a special case of the 
Taylor series. Its discoverer was a Scottish contemporary of Taylor, Colin Maclaurin 
(1698-1746), whose treatise on fluxions (1742) contained a thorough and rigorous 
exposition of calculus. It was written part ly as a response to the philosophical 
attacks on the foundations of calculus by the philosopher George Berkeley. 

The Italian textbook Istituzioni analitiche ad uso della gioventu italiana (An-
alytic Principles for the Use of Italian Youth) became a s tandard treatise on ana-
lytic geometry and calculus and was translated into English in 1801. I ts author was 
Maria Gaetana Agnesi, who was mentioned in Chapter 4 as one of the first women 
to achieve prominence in mathematics. 

The definitive textbooks of calculus were writ ten by the greatest mathemat ic ian 
of the eighteenth century, the Swiss scholar Leonhard Euler. In his 1748 Introductio 
in analysin infinitorum, a two-volume work, Euler gave a thorough discussion of 
analytic geometry in two and three dimensions, infinite series (including the use 
of complex variables in such series), and the foundations of a systematic theory of 
algebraic functions. The modern presentation of tr igonometry was established in 
this work. The Introductio was followed in 1755 by Institutiones calculi differentialis 
and a three-volume Institutiones calculi integralis (1768-1774), which included the 
entire theory of calculus and the elements of differential equations, richly illustrated 
with challenging examples. It was from Euler 's textbooks tha t many prominent 
nineteenth-century mathematicians such as the Norwegian genius Niels Henrik Abel 
first encountered higher mathematics, and the influence of Euler 's books can be 
traced in their work. 

The state of the calculus around 1700. Most of what we now know as calculus— 
rules for differentiating and integrating elementary functions, solving simple differ-
ential equations, and expanding functions in power series—was known by the early 
eighteenth century and was included in the s tandard textbooks just mentioned. 
Nevertheless, there was much unfinished work. We list here a few of the open 
questions: 

Nonelementary integrals. Differentiation of elementary functions is an algorithmic 
procedure, and the derivative of any elementary function whatsoever, no mat te r how 
complicated, can be found if the investigator has sufficient patience. Such is not the 
case for the inverse operation of integration. Many important elementary functions, 
such as (s inx)/a: and e~x , are not the derivatives of elementary functions. Since 
such integrals turned up in the analysis of some fairly simple motions, such as that 
of a pendulum, the problem of these integrals became pressing. 
Differential equations. Although integration had originally been associated with 
problems of area and volume, because of the importance of differential equations in 
mechanical problems the solution of differential equations soon became the major 
application of integration. The general procedure was to convert an equation to 
a form in which the derivatives could be eliminated by integrating both sides (re-
duction to quadratures). As these applications became more extensive, more and 
more cases began to arise in which the natural physical model led to equations tha t 
could not be reduced to quadratures. The subject of differential equations began 
to take on a life of i ts own, independent of the calculus. 

Foundational difficulties. The philosophical difficulties connected with the use of in-
finitesimal methods were paralleled by mathematical difficulties connected with the 
application of the algebra of finite polynomials to infinite series. These difficulties 
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were hidden for some t ime, and for a blissful century mathematicians and physicists 
operated formally on power series as if they were finite polynomials. They did so 
even though it had been known since the time of Oresme tha t the partial sums of 
the harmonic series 1 + \ + \ + · • • grow arbitrarily large. 

3 . B r a n c h e s and r o o t s of t h e ca lculus 

The calculus grew organically, sending forth branches while simultaneously put t ing 
down firm roots. The roots were the subject of philosophical speculation tha t even-
tually led to new mathematics as well, but the branches were natural outgrowths 
of pure mathematics tha t appeared very early in the history of the subject. We 
begin this section with the branches and will end it with the roots. 

3 . 1 . Ord inary differential equat ions . Ordinary differential equations arose al-
most as soon as there was a language (differential calculus) in which they could 
be expressed. 3 These equations were used to formulate problems from geometry 
and physics in the late seventeenth century, and the natural approach to solving 
them was to apply the integral calculus, tha t is, t o reduce a given equation to 
quadratures. Leibniz, in particular, developed the technique now known as sepa-
ration of variables as early as 1690 (Grosholz, 1987). In the simplest case, tha t of 
an ordinary differential equation of first order and first degree, one is seeking an 
equation / ( x , y) = c, which may be interpreted as a conservation law if ÷ and y are 
functions of t ime having physical significance. The conservation law is expressed 
as the differential equation 

df df 
-dx + -dy = 0. 

The resulting equation is known as an exact differential equation. To solve this 
equation, one has only to integrate the first differential with respect to x, adding 
an arbitrary function g(y) to the solution, then differentiate with respect to y and 
compare the result with ^ in order to get an equation for g'{y), which can then 
be integrated. 

If all equations were this simple, differential equations would be a very trivial 
subject. Unfortunately, it seems that nature tries to confuse us, multiplying these 
equations by arbitrary functions ì(÷, y). T h a t is, when an equation is written down 
as a particular case of a physical law, it often looks like 

M(x, y) dx + N(x, y) dy = 0 , 

where M ( x , y ) = ì ( ÷ ^ ) | ^ and N(x,y) = ì (÷ ,2 / ) | £ , and no one can tell from 

looking at Ì just which factors in it constitute ì and which constitute | | . To take 

the simplest possible example, the mass y of a radioactive substance that remains 

undecayed in a sample after t ime t satisfies the equation 

dy - ky dx = 0 , 

where k is a constant. The mathematician 's job is to get rid of ì(÷, y) by looking for 
an "integrating factor" that will make the equation exact. One integrating factor 
for this equation is 1/y; another is e~kx. 

3 This subsection is a summary of an unpublished paper that can be found in full at the following 
website: ht tp: //www.emba.uvm.edu/~cooke/ckthm.pdf 
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It appeared at a very early stage tha t finding an integrating factor is not in 
general possible, and both Newton and Leibniz were led to the use of infinite series 
with undetermined coefficients to solve such equations. Later, Maclaurin, was to 
warn against too hasty recourse to infinite series, saying tha t certain integrals could 
be better expressed geometrically as the arc lengths of various curves. But the idea 
of replacing a differential equation by a system of algebraic equations was very 
attractive. The earliest examples of series solutions were cited by Feigenbaum 
(1994). In his Fluxions, which was written in 1671 and left unpublished during 
his lifetime (see Whiteside, 1967, Vol. 3, p. 99), Newton considered the linear 
differential equation that we would now write as 

^ = 1 - 3 . T + I 2 + (l + x)y. 
ax 

Newton wrote it as n / m = 1 - 3.̧  + y + xx + xy and found tha t 

9 I - * l j f ^ f f i 

» = + 3 X " 6 * + 3 0 ^ - 4 5 * 

Similarly, in a paper published in the Acta eruditorum in 1693 (Gerhardt , 1971, 
Vol. 5, p. 287), Leibniz studied the differential equations for the logarithm and the 
arcsine in order to obtain what we now call the Maclaurin series of the logarithm, 
exponential, and sine functions. For example, he considered the equation a 2 dy2 = 
a2 dx2 + x2 dy2 and assumed tha t ÷ = by + q / 3 + ey5 + fy7 -\ , thereby obtaining 

the scries that represents the function ÷ = asm(y/a). Neither Newton nor Leibniz 
mentioned that the coefficients in these series were the derivatives of the functions 
represented by the series divided by the corresponding factorials. However, that 
realization came to Johann Bernoulli very soon after the publication of Leibniz' 
work. In a letter to Leibniz dated September 2, 1694 (Gerhardt , 1971, Vol. 3 / 1 , 
p. 350), Bernoulli described essentially what we now call the Taylor series of a 
function. In the course of this description, he gave in passing what became a 
standard definition of a function, saying, "I take ç to be a quant i ty formed in an 
arbitrary manner from variables and constants." Leibniz had used this word as 
early as 1673, and in an article in the 1694 Acta eruditorum had defined a function 
to be "the portion of a line cut off by lines drawn using only a fixed point and a 
given point lying on a curved line." As Leibniz said, a given curve defines a number 
of functions: its abscissas, its ordinates, its subtangents, and so on. The problem 
that differential equations solve is to reconstruct the curve given the rat io between 
two of these functions. 

In classical terms, the solution of a differential equation is a function or family of 
functions. Given tha t fact, the ways in which a function can be presented become 
an important issue. With the modern definition of a function and the familiar 
notation, one might easily forget that in order to apply the theory of functions it is 
necessary to deal with particular functions, and these must be presented somehow. 
Bernoulli's description addresses that issue, although it leaves open the question of 
what methods of combining variables and constants are legal. 

A digression on time. The Taylor series of a given function can be generated know-
ing the values of the function over any interval of the independent variable, no 
mat ter how short. Thus, a quanti ty represented by such a series is determined for 
all values of the independent variable when the values are given on any interval 
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at all. Given tha t the independent variable is usually time, tha t property corre-
sponds to physical determinacy: Knowing the full s tate of a physical quantity for 
some interval of t ime determines its values for all t ime. Lagrange, in particular, 
was a proponent of power series, for which he invented the term analytic function. 
However, as we now know, the natural domain of analytic function theory is the 
complex numbers. Now in mechanics the independent variable represents time, and 
that fact raises an interesting question: Why should t ime be a complex variable? 
How do complex numbers turn out to be relevant to a problem where only real 
values of the variables have any physical meaning? To this question the eighteenth-
and nineteenth-century mathematicians gave no answer. Indeed, it does not appear 
that they even asked the question very often. Extensive searches of the nineteenth-
century literature by the present author have produced only the following comments 
on this interesting question, made by Weierstrass in 1885 (see his Werke, Bd. 3, 
S. 24): 

It is very remarkable tha t in a problem of mathematical physics 
where one seeks an unknown function of two variables tha t , in 
terms of their physical meaning, can have only real values and is 
such that for a particular value of one of the variables the function 
must equal a prescribed function of the other, an expression often 
results that is an analytic function of the variable and hence also 
has a meaning for complex values of the latter. 

It is indeed very remarkable, but neither Weierstrass nor anyone since seems to 
have explained the mystery. But, just as complex numbers were needed to produce 
the three real roots of a cubic equation, it may not have seemed strange tha t the 
complex-variable properties of solutions of differential equations are relevant, even 
in the study of problems generated by physical considerations involving only real 
variables. Time is, however, sometimes represented as a two-dimensional quantity, 
in connection with what are known as Gibbs random fields. 

3.2 . Part ia l differential equat ions . In the middle of the eighteenth century 
mathematical physicists began to consider problems involving more than one in-
dependent variable. The most famous of these is the vibrat ing string problem 
discussed by Euler, d 'Alembert, and Daniel Bernoulli (1700-1782, son of Johann 
Bernoulli) during the 1740s and 1750s. This problem led to the one-dimensional 
wave equation 

d2u _ 29
2u 

dt?=c d2^1 

with the initial condition u(x,Q) = f(x), f^(x ,0) = 0, which Bernoulli solved in 
the form of an infinite trigonometric series 

oo 

an sin nx cos net, 

oo 
the an being chosen so tha t Ó a n s i n n a ; = / ( ÷ ) . 4 

n=l 

With this problem, part ial differential equations arose, leading to new methods 
of solution. The developments tha t grew out of trigonometric-series techniques are 

4 This solution was criticized by Euler, leading to a debate over the allowable methods of defining 
functions and the proper definition of a function. 
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discussed in Chapter 17, along with the development of real analysis in general. For 
the rest of the present section, we confine our discussion to power-series techniques. 

The heat equation 

du _ d2u 

m=adx2 

was the first partial differential equation to which the power-series method was 
applied. Fourier used this method to produce the solution 

r=0 

when a = 1, without realizing that this solution "usually" diverges. 

It was not until the nineteenth century that mathematicians began to worry 
about the convergence of their series solutions. Then Cauchy and Weierstrass pro-
duced proofs tha t the series do converge for ordinary differential equations, provided 
that the coefficients have convergent series representations. For part ial differential 
equations, it turned out that the form of the equation had some influence. Weier-
strass' student Sof'ya Kovalevskaya showed that in general the power series solution 
for the heat equation diverges if the intial temperature distribution is prescribed, 
even when tha t temperature is an analytic function of position. She showed, how-
ever, that the series converges if the temperature and temperature gradient a t one 
point are prescribed as analytic functions of time. More generally, she showed tha t 
the power-series solution of any equation in "normal form" (solvable for a pure 
derivative of order equal to the order of the equation) would converge. 

3.3 . Calcu lus of variat ions. The notion of function lies at the heart of calculus. 
The usual picture of a function is of one point being mapped to another point. 
However, the independent variable in a function can be a curve or surface as well 
as a point. For example, given a curve 7 that is the graph of a function y — f(x) 
between ÷ = a and ÷ = b, we can define its length as 

Ë ( 7 ) = f yj\ + {f'{x))2dx. 
J a 

One of the important problems in the history of geometry has been to pick out the 
curve 7 tha t minimizes Ë(7) and satisfies certain extra conditions, such as joining 
two fixed points Ñ and Q on a surface or enclosing a fixed area A. The calculus 
technique of "setting the derivative equal to zero" needs to be generalized for such 
problems, and the techniques for doing so consti tute the calculus of variations. 
The history of this outgrowth of the calculus has been studied very thoroughly in 
a number of classic works, such as Woodhouse (1810),5 Todhunter (1861), and 
Goldstine (1980), as well as many articles, such as Kreyszig (1993). 

5 The treatise of Woodhouse is a textbook as much as a history, and its last chapter is a set of 
29 examples posed as exercises for the reader with solutions provided. The book also marks an 
important transition in British mathematics. Woodhouse says in the preface that, "In a former 
Work, I adopted the foreign notation...". The foreign notation was the Leibniz notation for 
differentials, in preference to the dot above the letter that Newton used to denote his fluxions. 
He says that he found this notation even more necessary in calculus of variations, since he would 
otherwise have had to adopt some new symbol for Lagrange's variation. But he then goes on to 
marvel that Lagrange had taken the reverse step of introducing Newton's fluxion notation into 
the calculus of variations. 
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Q 

F I G U R E 6. Left: Fermat 's principle. Choosing the point Ï so 
tha t the t ime of travel from Ñ to Q through Ï is a minimum. 
Right: the principle applied layer by layer when the speed increases 
proportionally to the square root of the distance of descent. 

As with the ordinary calculus, the development of calculus of variations pro-
ceeded from particular problems solved by special devices to general techniques and 
algorithms based on theoretical analysis and rigorous proof. In the seventeenth cen-
tury there were three such special problems tha t had important consequences. The 
first was the brachystochrone (shortest-time) problem for an object crossing an in-
terface between two media while moving from one point to another. In the simplest 
case (Fig. 6), the interface is a straight line, and the point Ï is to be chosen so tha t 
the t ime required to travel from Ñ to Ï a t speed v, then from Ï to Q a t speed 
w, is minimized. If t he two speeds are not the same, it is clear tha t the pa th of 
minimum t ime will not be a straight line, since t ime can be saved by traveling a 
slightly longer distance in the medium in which the speed is greater. 

The second problem, tha t of finding the cross-sectional shape of the optimally 
streamlined body moving through a resisting medium, is discussed in the scholium 
to Proposition 34 (Theorem 28) of Book 2 of Newton's Principia. 

Fermat 's principle, which asserts tha t the path of a light ray is the one t ha t re-
quires least t ime, came into play in a challenge problem stated by Johann Bernoulli 
in 1696: To find the curve down which a frictionless particle will slide from point 
Ñ to point Q under the influence of gravity in minimal time. Since the speed of 
a falling body is proportional to the square root of the distance fallen, Bernoulli 
reasoned tha t the sine of the angle between the tangent and the vertical would be 
proportional to the square root of the vertical coordinate (assuming the vertical 
axis directed downward). (Recall tha t ibn Sahl, al-Haytham, Harriot, Snell, and 
Descartes had all derived the law of refraction which asserts tha t the ratio of the 
sines of the angles of incidence and refraction at an interface are proportional to 
the velocities in the two media.) In tha t way he arrived at a differential equation 
for the curve: 

dy = j y 

dx y a + y 
(We have taken y as the vertical coordinate. Bernoulli apparently took x.) He 
recognized this equation as the differential equation of a cycloid and thus came to 
the fascinating conclusion that this curve, which Huygens had studied because it 
enabled a clock to keep theoretically perfect t ime (the tautochrone property), also 
had the brachystochrone property. The challenge problem was solved by Bernoulli 
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himself, his brother Jakob, and by both Newton and Leibniz. 6 According to Wood-
house (1810, p. 150), Newton's anonymously submitted solution was so concise and 
elegant t ha t Johann Bernoulli knew immediately who i t must be from. He wrote, 
"Even though the author, from excessive modesty, does not give his name, we can 
nevertheless tell certainly by a number of signs tha t it is the famous Newton; and 
even if these signs were not present, seeing a small sample would suffice to recognize 
him, as ex ungue Leonem."7 

Euler. Variational problems were categorized and systematized by Euler in a large 
treatise in 1744 named Methodus inveniendi lineas curvas (A Method of Finding 
Curves). In this treatise Euler set forth a series of problems of increasing com-
plexity, each involving the finding of a curve having certain extremal properties, 
such as minimal length among all curves joining two points on a given surface. 8 

Proposition 3 in Chapter 2, for example, asks for the minimum value of an integral 
/ Zdx, where Æ is a function of variables, x, y, and ñ = y1 = ^ . Based on his 
previous examples, Euler derived the differential equation 

0 = Ndx-dP, 

where dZ = Ì dx -f- Í dy + Ñ dp is the differential of the integrand Z. Since 
Í = f f a n ( ^ Ñ ~ ' t n ' s e Q u a t i o n could be writ ten in the form tha t is now the 
basic equation of the calculus of variations, and is known as Euler 's equation: 

<)Z_ _ d_/dZ\ 

dy dx í dy') 

In Chapter 3, Euler generalized this result by allowing Æ to depend on addi-
tional parameters and applied his result to find minimal surfaces. In an appendix 
he studied elastic curves and surfaces, including the problem of the vibrating mem-
brane. This work was being done at the very t ime when Euler 's friend Daniel 
Bernoulli was studying the simpler problem of the vibrating string. In a second 
appendix he showed how to derive the equations of mechanics from variational 
principles, thus providing a unifying mathematical principle t ha t applied to both 
optics (Fermat 's principle) and mechanics. 

Lagrange. The calculus of variations acquired "variations" and its name as the 
result of a letter written by Lagrange to Euler in 1755. In t ha t letter, Lagrange 
generalized Leibniz' differentials from points to curves, using the Greek ä instead of 
the Latin d to denote them. Thus, if y — f(x) was a curve, its variation 6y was a 
small perturbation of it. Just as dy was a small change in the value of y at a point, <5y 
was a small change in all the values of y at all points. The variation operator ä can 
be manipulated quite easily, since it commutes with differentiation and integration: 
ä÷/ = (äõ)' and ä j Æ dx = J äÆ dx. Wi th this operator, Euler 's equation and its 
many applications, were easy to derive. Euler immediately recognized the usefulness 
of what Lagrange had done and gave the new theory the name it has borne ever 
since: calculus of variations. 

Lagrange also considered extremal problems with constraint and introduced 
the famous Lagrange multipliers as a way of turning these relative (constrained) 

6 Newton apparently recognized structural similarities between this problem and his own optimal-
streamlining problem (see Goldstine, 1980, pp. 7-35). 
7 A Latin proverb much in vogue at the time. It means literally "from [just] the claw [one can 
recognize] the Lion." 
8 This problem was Example 4 in Chapter 4 of the treatise. 
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extrema into absolute (unconstrained) extrema. Euler had given an explanation of 
this process earlier. Woodhouse (1810, p. 79) thought tha t Lagrange's systemati-
zation actually deprived Euler 's ideas of their simplicity. 

Second-variation tests for maxima and minima. Like the equation f'(x) = 0 in 
calculus, the Euler equation is only a necessary condition for an extremal, not 
sufficient, and it does not distinguish between maximum, minimum, and neither. 
In general, however, if Euler 's equation has only one solution, and there is good 
reason to believe t ha t a maximum or minimum exists, t he solution of the Euler 
equation provides a basis to proceed in practice. Still, mathematicians were bound 
to explore the question of distinguishing maxima from minima. Such investigations 
were undertaken by Lagrange and Legendre in the late eighteenth century. 

In 1786 Legendre was able to show that a sufficient condition for a minimum 
of the integral 

i(y) = / f(x,y,y')dx, 
J a 

at a function satisfying Euler 's necessary condition, was > 0 for all ÷ and tha t 

a sufficient condition for a maximum was -^ö < 0. 

In 1797 Lagrange published a comprehensive treatise on the calculus, in which 
he objected to some of Legendre's reasoning, noting tha t it assumed that certain 
functions remained finite on the interval of integration (Dorofeeva, 1998, p. 209) . 9 

Jacobi: sufficiency criteria. The second-variation test is strong enough to show tha t 
a solution of the Euler equation really is an extremal among the smooth functions 
tha t are "nearby" in the sense tha t their values are close to those of the solution 
and their derivatives also take values close to those of the derivative of the solution. 
Such an extremal was called a weak extremal by Adolf Kneser (1862-1930). Jacobi 
had the idea of replacing the curve y(x) tha t satisfied Euler's equation with a 
family of such curves depending on parameters (two in the case we have been 
considering) y(x, ct\, a2) and replacing the nearby curves y + Sy and y' + 5y' with 
values corresponding to different parameters. In 1837—see Dorofeeva (1998) or 
Fraser (1993)—he finally solved the problem of finding sufficient conditions for an 
extremal. He included his solution in the lectures on dynamics tha t he gave in 
1842, which were published in 1866, after his death. The complication tha t had 
held up Jacobi and others was the fact tha t sometimes the extremals with given 
endpoints are not unique. The most obvious example is the case of great circles on 
the sphere, which satisfy the Euler equations for the integral t ha t gives arc length 
subject to fixed endpoints. If the endpoints happen to be ant ipodal points, all great 
circles passing through the two points have the same length. Weierstrass was later 
to call such pairs of points conjugate points. Jacobi gave a differential equation 
whose solutions had zeros at these points and showed tha t Legendre's criterion was 
correct, provided tha t the interval (a, b] contained no points conjugate to o. 

Weierstrass and his school. A number of important advances in the calculus of 
variations were due to Karl Weierstrass, such as the elimination of some of the more 

9 More than that was wrong, however, since great circles on a sphere satisfy Legendre's criteria, 
but do not give a minimum distance between their endpoints if they are more than 180° long. 
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9 = 2 
\j = 3+arctan fcx/ arctan fc 

J/ = 4 

F I G U R E 7. The functional $(y) = J_1 (xy'(x)) dx does not as-
sume its minimum value for continuously differentiable functions 
y(x) satisfying y(-l) = 2, y{+l) = 4. The limiting position of a 
minimizing sequence is the dashed line. 

restrictive assumptions about differentiability and taking account of the distinction 
between a lower bound and a m i n i m u m . 1 0 

An important example in this connection was Riemann's use of Dirichlet's 
principle to prove the Riemann mapping theorem, which asserts t ha t any simply 
connected region in the plane except the plane itself can be mapped conformally 
onto the unit disk Ä = {(÷, y): ÷2 +y2 < 1}. T h a t principle required the existence 
of a real-valued function u(x, y) tha t minimizes the integral 

Ä 

among all functions u(x, y) taking prescribed values on the boundary of the disk. 
Tha t function is the unique harmonic function in Ä with the given boundary values. 
In 1870 Weierstrass called attention to the integral 

Ö(ö)= É+\2(ø'(÷))2Ü÷, 

which when combined with the boundary condition ø(—1) = á, ö(+1) = b, can be 
made arbitrarily small by the function 

a + b b — a arctan(fcx) 
fix) = - ã - + 2 a r c t a n ( j f c ) ' 

yet (if á ö b) cannot be zero for any function ø satisfying the boundary conditions 
and such t ha t ö' exists at every point. 

Weierstrass' example was a case where it was necessary to look outside the 
class of smooth functions for a minimum of the functional. The limiting position of 
the graphs of the functions for which the integral approximates i ts minimum value 
consists of the two horizontal lines from (—1, o) to (0, a) , from (0, b) to ( + 1 , b), and 
the section of the y-axis joining them (see Fig. 7). 

Weierstrass thought of the smoothness assumptions as necessary evils. He 
recognized t ha t they limited the generality of the results, yet he saw tha t without 
them no application of the calculus was possible. The result is a certain vagueness 
about the formulation of minimal principles in physics. A certain functional must be 

1 0 This distinction was pointed out by Gauss as early as 1799, in his criticism of d'Alembert's 
1746 proof of the fundamental theorem of algebra. 
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a minimum assuming tha t all the relevant quantities are differentiable a sufficient 
number of times. Obviously, if a functional can be extended to a wider class of 
functions in a natural way, the minimum reached may be smaller, or the maximum 
larger. To make the restrictions as weak as possible, Weierstrass imposed the 
condition tha t the partial derivatives of the integrand should be continuous a t 
corners. An extremal among all functions satisfying these less restrictive hypotheses 
was called a strong extremal. The corner condition was also found by G. Erdmann, 
a teacher a t the Gymnasium in Konigsberg, who proved tha t Jacobi 's sufficient 
condition for a weak extremal was also necessary. 

3.4 . F o u n d a t i o n s of t h e ca l cu lus . The British and Continental mathematicians 
both found the power of the calculus so attractive t ha t they applied and developed 
it (sending forth new branches), all the while struggling to be clear about the 
principles they were using (extending its roots). The branches grew more or less 
continuously from the beginning. The development of the roots was slower and more 
sporadic. A satisfactory consensus was achieved only late in the nineteenth century, 
with the full development of real analysis, which is discussed in the Chapter 17. 

The source of all the difficulty was the introduction of the infinite into analysis, 
in the form of infinitesimal reasoning. Leibniz believed in actual infinitesimals, 
levels of magnitude tha t were real, not zero, but so small tha t no accumulation 
of them could ever exceed any finite quantity. His dx was such an infinitesimal, 
and a product of two, such as dxdy or dx2, was a higher-order infinitesimal, so 
small tha t no accumulation of such could ever exceed any infinitesimal of the first 
order. On this view, even though theorems established using calculus were not 
absolutely accurate, the errors were below the threshold of human perception and 
therefore could not mat ter in practice. Newton was probably alluding to Leibniz 
when in his discussion of the quadrature of curves, he wrote, "Errores quam minimi 
in rebus mathematicis non sunt contemnendi" ("Errors, no mat ter how small, are 
not to be considered in mathematics") . Newton knew tha t his arguments could 
have been phrased using the Eudoxan method of exhaustion. In his Principia he 
wrote that he used his method of first and last ratios "to avoid the tediousness 
of deducing involved demonstrations ad absurdum, according to the method of the 
ancient geometers." 

There seemed to be three approaches that would allow the operation tha t we 
now know as integration to be performed by antidifferentiation of tangents. One is 
the infinitesimal approach of Leibniz, characterized by Mancosu (1989) as "static." 
Tha t is, a tangent is a s tate or position of a line, namely that of passing through 
two infinitely near points. The second is Newton's "dynamic" approach, in which 
a fluxion is the velocity of a moving object. The third is the ancient method of 
exhaustion. In principle, a reduction of calculus to the Eudoxan theory of propor-
tion is possible. Psychologically, it would involve not only a great deal of tedium, 
as Newton noted, but also a great deal of unnecessary confusion, which he did not 
point out. If mathematicians had been shackled by the requirements of this kind of 
rigor, the amount of geometry and analysis created would have been incomparably 
less than it was. Still, Newton felt the objection and tried to phrase his exposition 
of the method of first and last ratios in such a way as not to outrage anyone's logical 
scruples. He said: 
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Perhaps it may be objected, that there is no ul t imate proportion of 
evanescent quantities; because the proportion, before the quanti-
ties have vanished, is not the ultimate; and when they are vanished, 
is [not defined]. But by the same argument it may be alleged tha t 
a body arriving a t a certain place, and there stopping, has no ul-
t imate velocity, because the velocity before the body comes to the 
place, is not its ult imate velocity; when it has arrived, there is 
none. But the answer is easy; for by the ul t imate velocity is meant 
that with which the body is moved, neither before it arrives a t its 
last place and the motion ceases, nor after, but a t the very instant 
it arrives. 

Was this explanation adequate? Do human beings in fact have any conception 
of what is meant by an instant of time? Do we have a clear idea of the velocity 
of a body at the very instant when it stops moving? Or do some people only 
imagine that we do? We are here very close to the arrow paradox of Zeno. At 
any given instant, the arrow does not move; therefore it is a t rest. How can there 
be a motion (a traversal of a positive distance) as a result of an accumulation of 
states of rest, in each of which no distance is traveled? Newton's "by the same 
argument" practically invited the further objection tha t his a t tempted explanation 
merely stated the same fallacy in a new way. 

Tha t objection was raised in 1734 by the philosopher George Berkeley 1 1 (1685-
1753, Anglican Bishop of Cloyne, Ireland), for whom the city of Berkeley 1 2 in 
California is named. Berkeley first took on Newton's fluxions: 

It is said that the minutest errors are not to be neglected in math-
ematics: tha t the fluxions are celerities [speeds], not proportional 
to the finite increments, though ever so small; but only to the mo-
ments or nascent increments, whereof the proportion alone, and 
not the magnitude, is considered. And of the aforesaid fluxions 
there be other fluxions, which fluxions of fluxions are called sec-
ond fluxions. And the fluxions of the second fluxions are called 
third fluxions: and so on, fourth, fifth, sixth, &c. ad infinitum. 
Now, as our sense is strained and puzzled with the perception of 
objects extremely minute, even so the imagination, which faculty 
derives from sense, is very much strained and puzzled to frame clear 
ideas of the least particles of t i m e . . . and much more so to compre-
hend. . . those increments of the flowing quant i t i es . . . in their very 
first origin, or beginning to exist, before they become finite par-
ticles. . . The incipient celerity of an incipient celerity, the nascent 
augment of a nascent augment, i.e., of a thing which ha th no mag-
nitude: take it in what light you please, the clear conception of it 
will, if I mistake not, be found impossible. 

He then proceeded to attack the views of Leibniz: 

1 1 Pronounced "Barkley." 
1 2 Pronounced "Birkley". 
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The foreign mathematicians are supposed by some, even of our 
own, to proceed in a manner less accurate, perhaps, and geomet-
rical, yet more intelligible.. . Now to conceive a quanti ty infinitely 
small, tha t is, infinitely less than any sensible or imaginable quan-
tity or than any the least finite magnitude is, I confess, above my 
capacity. But to conceive a part of such infinitely small quanti ty 
that shall be still infinitely less than it, and consequently though 
multiplied infinitely shall never equal the minutest finite quantity, 
is, I suspect, an infinite difficulty to any man whatsoever. 

Berkeley analyzed a curve whose area up to ÷ was x 3 (he wrote xxx). If æ - ÷ 
was the increment of the abscissa and z3 — x 3 the increment of area, the quotient 
would be z2 + zx + x2. He said that , if æ = ÷, of course this last expression is 3 x 2 , 
and that must be the ordinate of the curve in question. Tha t is, its equation must 
be y = 3 x 2 . But , he pointed out, 

[Hjerein is a direct fallacy: for, in the first place, it is supposed 
that the abscisses æ and ÷ are unequal, without which supposi-
tion no one step could have been made [that is, the division by 
æ — ÷ would have been undefined]; which is a manifest incon-
sistency, and amounts to the same thing tha t ha th been before 
considered.. . The great author of the method of fluxions felt this 
difficulty, and therefore he gave in to those nice abstractions and 
geometrical metaphysics without which he saw nothing could be 
done on the received principles. . . It must, indeed, be acknowledged 
that he used fluxions, like the scaffold of a building, as things to 
be laid aside or got rid of as soon as finite lines were found pro-
portional to t h e m . . . And what are these fluxions? The velocities 
of evanescent increments? And what are these same evanescent 
increments? They are neither finite quantities, nor quantities in-
finitely small, nor yet nothing. May we not call them the ghosts 
of departed quantit ies? 

The debate on the Continent. Calculus disturbed the metaphysical assumptions of 
philosophers and mathematicians on the Continent as well as in Britain. L'Hospital 's 
textbook had made two explicit assumptions: first, tha t if a quanti ty is increased 
or diminished by a quant i ty t ha t is infinitesimal in comparison with itself, it may 
be regarded as remaining unchanged. Second, that a curve may be regarded as an 
infinite succession of straight lines. L'Hospital's justification for these claims was 
not commensurate with the strength of the assumptions. He merely said: 

[T]hey seem so obvious to me that I do not believe they could 
leave any doubt in the mind of attentive readers. And I could even 
have proved them easily after the manner of the Ancients, if I had 
not resolved to t reat only briefly things tha t are already known, 
concentrating on those that are new. [Quoted by Mancosu, 1989, 
p. 228] 

The idea that ÷ + dx = x, implicit in l 'Hospital's first assumption, leads alge-
braically to the equation dx — 0 if equations are to retain their previous meaning. 
Rolle raised this objection and was answered by the claim tha t dx represents the 
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distance traveled in an instant of time by an object moving with finite velocity. 
This debate was carried on in private in the Paris Academy during the first decade 
of the eighteenth century, and members were at first instructed not to discuss it in 
public, as if it were a criminal case! Rolle's criticism could be answered, bu t it was 
not answered a t the time. According to Mancosu (1989), the mat te r was settled 
in a most unacademic manner, by making l 'Hospital into an icon after his death in 
1704. His eulogy by Bernard Lebouyer de Fontenelle (1657-1757) simply declared 
the anti-infinitesimalists wrong, as if the Academy could decide metaphysical ques-
tions by fiat, just as it can define what is proper usage in French: 

[T]hose who knew nothing of the mysteries of this new infinitesimal 
geometry were shocked to hear that there are infinities of infinities, 
and some infinities larger or smaller than others; for they saw only 
the top of the building without knowing its foundation. [Quoted 
by Mancosu, 1989, 241] 

In the eighteenth century, however, better expositions of the calculus were pro-
duced by d'Alembert. In his article on the differential for the famous Encyclopedic 
he wrote tha t 0/0 could be equal to anything, and that the derivative ^ was not 
actually 0 divided by 0, but the limit of finite quotients as numerator and denomi-
nator tended to zero. 

Lagrange's algebraic analysis. The a t tempt to be clear about infinitesimals or to 
banish them entirely took many forms during the eighteenth and nineteenth cen-
turies. One of the most prominent (see Fraser, 1987) was Lagrange's exposition 
of analytic functions. Lagrange understood the term function to mean a formula 
composed of symbols representing variables and arithmetic operations. He argued 
that "in general" (with certain obvious exceptions) every function f(x) could be 
expanded as a power series, based on Taylor's theorem, for which he provided his 
own form of the remainder term. Using an argument that resembles the one given 
by Ruffini and Abel to prove the insolvability of the quintic, he claimed tha t the 
hypothetical expansion 

s/x + h = ,/x~ + ph + qh2 + ••• + h m / n 

could not occur, since the left-hand side has only two values, while the right-hand 
side has ç values. In this way, he ruled out fractional exponents. Negative exponents 
were ruled out by the mere fact that the function was defined at h = 0. The 
determinacy property of analytic functions was used implicitly by Lagrange when 
he assumed t ha t any zero of a function must have finite order, as we would say 
(Fraser, 1987, p . 42). 

The advantage of confining attention to functions defined by power series is 
tha t the derivative and integral of such a function have a perfectly definite meaning. 
Lagrange advocated it on the grounds that it pointed up the quali tat ive difference 
between the new functions produced by infinitesimal analysis: dx was a completely 
different function from x. 

Cauchy's calculus. The modern presentation of calculus owes a great deal to the 
textbooks of Cauchy, written for his lectures a t the Ecole Polytechnique during 
the 1820s . 1 3 Cauchy recognized that calculus could not get by without something 

1 3 Although we have mentioned particular results of Cauchy in connection with the solution of 
algebraic and differential equations, his treatises on analysis are the contributions for which he is 
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equivalent to infinitesimals. He defined a function f(x) to be continuous if the 
absolute value of the difference / ( x + a) — f(x) "decreases without limit along with 
that of Q." He continues: 

In other words, the function f(x) remains continuous with respect 
to ÷ in a given interval, if an infinitesimal increase in the variable 
within this interval always produces an infinitesimal increase in the 
function itself. 

Certain distinctions tha t we now make to clarify whether ÷ is a fixed point or 
the increase is thought of as occurring at all points simultaneously are not stated 
here. In particular, uniform convergence and continuity are assumed but not stated. 
Cauchy defined a limit in terms of the "successive values a t t r ibuted to a variable," 
approaching a fixed value and ultimately differing from it by an arbitrarily small 
amount. This definition can be regarded as an informal version of what we now 
s ta te precisely with del tas and epsilons, and Cauchy is generally regarded, along 
with Weierstrass, as being one of the people who finally made the foundations of 
calculus secure. Yet Cauchy's language clearly presumes tha t infinitesimals are real. 
As Laugwitz (1987, p. 272) says: 

All a t tempts to understand Cauchy from a 'rigorous' theory of 
real numbers and functions including uniformity concepts have 
failed.. . One advantage of modern theories like the Nonstandard 
Analysis of Robinson. . . [which includes infinitesimals] is tha t they 
provide consistent reconstructions of Cauchy's concepts and results 
in a language which sounds very much like Cauchy's. 

The secure foundation of modern analysis owes much to Cauchy's treatises. 
As Grabiner (1981) says, he applied ancient Greek rigor and modern algebraic 
techniques to derive results from analysis. The contributions of other nineteenth-
century mathematicians to this rigor are discussed in Chapter 17. 

16 .1 . Show tha t the Madhava-Jyeshtadeva formula given at the beginning of the 
chapter is equivalent to 

16 .2 . Consider an ellipse with semiaxes a and 6 and a circle of radius b, both circle 
and ellipse lying between a pair of parallel lines a distance 26 apar t . For every line 
between the two lines and parallel to them, show tha t the portion inside the ellipse 
will be a /6 times the port ion inside the circle. Use this fact and Cavalieri's principle 
to compute the area of the ellipse. This result was given by Kepler. 

best remembered. Incidentally, he became a mathematician only after practicing as an engineer 
for several years. 

Q u e s t i o n s a n d p r o b l e m s 

or, letting ÷ — tan È. 
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16.3 . Show that the point at which the tangent to the curve y = f(x) intersects 
the y axis is y = f(x) - xf'(x), and verify that the area under this curve—more 
precisely, the integral of f(x) - xf'(x) from ÷ = 0 to ÷ — a—is twice the area 
between the curve y — f(x) and the line ay = f(a)x between the points (0,0) and 
(a, / ( a ) ) . This result was used by Leibniz to illustrate the power of his infinitesimal 
methods. 

16.4. Recall tha t Eudoxus solved the problem of incommensurables by changing 
the definition of proportion, or rather, making a definition to cover cases where 
no definition existed before. Newton's "theorem" asserting tha t quantities that 
approach each other continually (we would say monotonically) and become arbi-
trarily close to each other in a finite time must become equal in an infinite t ime 
assumes tha t one has a definition of equality a t infinity. W h a t is the definition of 
equality at infinity? Since we cannot actually reach infinity, the definition will have 
to be stated as a potential infinity, tha t is, a statement about all possible finite 
times. Formulate the definition and compare Newton's solution of this difficulty 
with Eudoxus' solution of the problem of incommensurables. 

16 . 5 . Draw a square and one of its diagonals. Then draw a very fine "staircase" by 
connecting short horizontal and vertical line segments in al ternation, each segment 
crossing the diagonal. The total length of the horizontal segments is the same as the 
side of the square, and the same is true of the vertical segments. Now in a certain 
intuitive sense these segments approximate the diagonal of the square, seeming to 
imply that the diagonal of a square equals twice its side, which is absurd. Does 
this argument show that the method of indivisibles is wrong? 

16.6. In the passage quoted from the Analyst, Berkeley asserts tha t the experience 
of the senses provides the only foundation for our imagination. From tha t premise 
he concludes that we can have no understanding of infinitesimals. Analyze whether 
the premise is true, and if so, whether it implies the conclusion. Assuming tha t our 
thinking processes have been shaped by the evolution of the brain, for example, is it 
possible tha t some of our spatial and counting intuition is "hard-wired" and not the 
result of any previous sense impressions? The philosopher Immanuel Kant (1724-
1804) thought so. Do we have the power to make correct judgments about spaces 
and times on scales tha t we have not experienced? Wha t would Berkeley have said 
if he had heard Riemann's argument that space may be finite, yet unbounded? 
How would he have explained the modern computer chip, on which unimaginable 
amounts of da ta can be recorded in space far too small for the senses to perceive? Go 
a step further and consider how quantum mechanics is understood and interpreted. 
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Real and Complex Analysis 

In the mid-1960s Walter Rudin (b. 1921), the author of a number of s tandard grad-
uate textbooks in mathematics , wrote a textbook with the t i t le Real and Complex 
Analysis, aimed at showing the considerable unity and overlap between the two sub-
jects. It was necessary to write such a book because the two subjects, while sharing 
common roots in the calculus, had developed quite differently. The contrasts be-
tween the two are considerable. Complex analysis considers the smoothest, most 
orderly possible functions, those that are analytic, while real analysis allows the 
most chaotic imaginable functions. Complex analysis was, t o pursue our botanical 
analogy, fully a "branch" of calculus, and foundational questions hardly entered 
into it. Real analysis had a share in both roots and branches, and it was intimately 
involved in the debate over the foundations of calculus. 

Wha t caused the two varieties of analysis to become so different? Both are 
dealing with functions, and both evolved under the stimulus of the differential 
equations of mathematical physics. The central point is the concept of a function. 
We have already seen the early definitions of this concept by Leibniz and Johann 
Bernoulli. All mathematicians from the seventeenth and eighteenth centuries had 
an intuitive picture of a function as a formula or expression in which variables are 
connected by rules derived from algebra or geometry. A function was regarded as 
continuous if it was given by a single formula throughout its range. If the formula 
changed, the function was called "mechanical" by Euler. Although "mechanical" 
functions may be continuous in the modern sense, they are not usually analytic. 
All the "continuous" functions in the older sense are analytic. They have power-
series expansions, and those power-series expansions are often sufficient to solve 
differential equations. As a general signpost indicating where the paths diverge, the 
path of power-series expansions and the path of trigonometric-series expansions is 
a very good guide. A consequence of the development was tha t real-variable theory 
had to deal with very irregular and "badly behaved" functions. It was therefore in 
real analysis tha t the delicate foundational questions arose. 

1. C o m p l e x analysis 

Calculus began with a limited stock of geometry: a few curves and surfaces, all of 
which could be described analytically in terms of rational, trigonometric, exponen-
tial, and logarithmic functions of real variables. Soon, however, calculus was used 
to formulate problems in mathematical physics as differential equations. To solve 
those equations, the preferred technique was integration, but where integration 
failed, power series were the technique of first resort. These series automatically 
brought with them the potential of allowing the variables to assume complex val-
ues. But then integration and differentiation had to be suitably defined for complex 
functions of a complex variable. The result was a theory of analytic functions of a 
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complex variable whose range was much vaster than the materials tha t led to its 
creation. 

In his 1748 Introductio, Euler emended the definition of a function, saying tha t a 
function is an analytic expression formed from a variable and constants. The rules 
for manipulat ing symbols were agreed on as long as only finite expressions were 
involved. But what did the symbols represent? Euler s ta ted tha t variables were 
allowed to take on negative and imaginary values. Thus, even though the physical 
quantities the variables represented were measured as positive rational numbers, 
the algebraic and geometric properties of negative, irrational, and complex numbers 
could be invoked in the analysis. The extension from finite to infinite expressions 
was not long in coming. The extension of the calculus to complex numbers turned 
out to have monumental importance. 

Lagrange undertook to reformulate the calculus in his treatises Theorie des 
functions analytiques (1797) and Lecons sur le calcul des fonctions (1801), basing 
it entirely on algebraic principles and stat ing as a fundamental premise tha t the 
functions to be considered are those that can be expanded in power series (having no 
negative or fractional powers of the variable). W i t h this approach the derivatives of 
a function need not be defined as ratios of infinitesimals, since they can be defined in 
terms of the coefficients of the series tha t represents the function. Functions having 
a power series representation are known nowadays as analytic functions from the 
title of Lagrange's work. 

1.1. A lgebra ic integrals . Early steps toward complexification were taken only 
on a basis of immediate necessity. As we have already seen, the applications of cal-
culus in solving differential equations made the computat ion of integrals extremely 
important. Where computing the derivative never leads outside the class of ele-
mentary functions and leaves algebraic functions algebraic, trigonometric functions 
trigonometric, and exponential functions exponential, integrals are a very different 
matter . Algebraic functions often have nonalgebraic integrals, as Leibniz realized 
very early. The relation we now write as 

where ÷ = 1 — cos á. 1 Eighteenth-century mathemat ic ians were greatly helped in 
handling integrals like this by the use of trigonometric functions. It was therefore 
natural tha t they would see the analogy when more complicated integrals came to 
be considered. Such problems arose from the study of pendulum motion and the 
rotation of solid bodies in physics, but we shall illustrate it with examples from 
pure geometry: the rectification of the ellipse and the division of the lemniscate 
into equal arcs. For the circle, we know tha t the corresponding problems lead to 
the integral 

1 The limits of integration that we now use were introduced by Joseph Fourier in the nineteenth 
century. 

was written by him as 
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for rectification and an equation 

fy 1 1 fx 1 
/ , dt=- „ dt, 

Jo %/T^t 2 W o 

which can be written in differential form as 

dx ndy 

for the division of an arc. 

Trigonometry helps to solve this last equation. Instead of the arccosine function 
tha t the integral actually represents, it makes more sense to look at the inverse of 
it, the cosine function. This function provides an algebraic equation through its 
addition formula, 

aoy - 022/ +a3y = x, 

relating the abscissas of the end of the given arc (x) and the end of the n th part of it 
(y). The algebraic na ture of this equation determines whether the division problem 
can be solved with ruler and compass. In particular, for ç = 3 and a 60-degree 
arc (x = 1/2), for which the equation is Ay3 — 3y — 1/2, such a solution does not 
exist. Thus the problems of computing arc length on a circle and equal division 
of its arcs lead to an interesting combination of algebra, geometry, and calculus. 
Moreover, the periodicity of the inverse function makes this equation easy to solve 
(see Problem 17.1). 

The division problem was fated to play an important role in s tudy of integrals 
of algebraic functions. The Italian nobleman Fagnano (1682-1766) studied the 
problem of rectifying the lemniscate, whose polar equation is r 2 = 2cos(20). Its 
element of arc is Ë/2(1 — 2 s i n 2 0 ) _ 1 / / 2 d t ? , and the substitution u = tanf? turns 
this expression into \ / 2 ( l - ui)~ll2du. Thus, the rectification problem involves 
evaluating the integral 

/ 
Jo 

: du , 
VI -u4 

while the division problem involves solving the differential equation 

dz ndu 

Fagnano gave the solution for ç = 2 as the algebraic relation 

Euler observed the analogy between these integrals and the circular integrals just 
discussed, and suggested tha t it would be reasonable to s tudy the inverse function. 
But Euler lived at a t ime when the familiar functions were still the elementary ones. 
He found a large number of integrals tha t could be expressed in terms of algebraic, 
logarithmic, and trigonometric functions and showed tha t there were others t ha t 
could not be so expressed. 
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Legendre, Jacobi, and Abel. The foundation for further work in integration was laid 

by Legendre, who invented the term elliptic integral. Off and on for some 40 years 

between 1788 and 1828, he thought about integrals like those of Fagnano and Euler, 

classified them, computed their values, and studied their properties. He found their 

algebraic addition formulas and thereby reduced the division problem for these 

integrals to the solution of algebraic equations. Interestingly, he found tha t whereas 

the division problem requires solving an equation of degree ç for the circle, it 

requires solving an equation of degree n2 for the ellipse. After publishing his results 

as exercises in integral calculus in 1811, he wrote a comprehensive treatise in the 

1820s. As he was finishing the third volume of this treatise he discovered a new set of 

transformations of elliptic integrals that made their computat ion easier. (He already 

knew one set of such transformations.) Just after the treatise appeared in 1827, 

he found to his astonishment that Jacobi had discovered the same transformations, 

along with others, and had connected them with the division problem. Jacobi's 

results in turn were partially duplicated by those of Abel. 

Abel, who admired Gauss, was proud of having achieved the division of the 

lemniscate into 17 equal pa r t s , 2 just as Gauss had done for the circle. The secret 

for the circle was to use the algebraic addition formula for trigonometric functions. 

For the lemniscate, as Legendre had shown, the equation was of higher degree. Abel 

was able to solve it by using complex variables, and in the process, he discovered 

that the inverse functions of the elliptic integrals, when regarded as functions of 

a complex variable, were doubly periodic. The double period accounted for the 

fact that the division equation was of degree n 2 rather than n. Wi thou t complex 

variables, the theory of elliptic integrals would have been a disconnected collection 

of particular results. With them, a great simplicity and unity was achieved. Abel 

went on to study algebraic addition formulas for very general integrals of the type 

J R(x,y{x))dx, 

where R(x, y) is a rational function of ÷ and y and y(x) satisfies a polynomial 
equation P(x,y(x)) = 0. Such integrals are now called Abelian integrals in his 
honor. In particular, he established that for each polynomial P(x,y) there was 
a number p, now called the genus of P(x, y), such tha t a sum of any number of 
integrals R(x, y) with different limits could be expressed in terms of just ñ integrals, 
whose limits of integration were rational functions of those in the given sum. For 
elliptic integrals, ñ = 1, and that is the content of the algebraic addition formulas 
discovered by Legendre. For a more complicated integral, say 

/
.^ dx, 

V<z(z) 

where q(x) is a polynomial of degree 5 or higher, the genus may be higher. If 

P(x, y) = y2 — q(x), where the polynomial q is of degree 2p + 1 or 2p + 2, the genus 

is p. 

After Abel 's premature death, Jacobi continued to develop algebraic function 

theory. In 1832, he realized tha t for algebraic integrals of higher genus, the inverse 

functions could not be well defined, since there were ñ integrals and only one equa-

tion connecting them to the variable in terms of which they were to be expressed. 

He therefore had the idea of adjoining extra equations in order to get well-behaved 

2 Or, more generally, a Fermat prime number of parts. 
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inverses. For example, if q(x) is of degree 5, he posed the problem of solving for ÷ 
and y in terms of u and í in the equations 

This problem became known as the Jacobi inversion problem. Solving it took a 
quarter of a century and led to progress in both complex analysis and algebra. 

Jacobi himself gave it a start in connection with elliptic integrals. Although a 
nonconstant function t ha t is analytic in the whole plane cannot be doubly periodic 
(because its absolute value cannot at tain a maximum), a quotient of such func-
tions can be, and Jacobi found the ideal numerators and denominators to use for 
expressing the doubly periodic elliptic functions as quotients: the ta functions. The 
secret of solving the Jacobi inversion problem was to use the ta functions in more 
than one complex variable, but working out the proper definition of those functions 
and the mechanics of applying them to the problem required the genius of Riemann 
and Weierstrass. These two giants of nineteenth-century mathematics solved the 
problem independently and simultaneously in 1856, but considerable preparatory 
work had been done in the meantime by other mathematicians. The importance of 
algebraic functions as the basic core of analytic function theory cannot be overem-
phasized. Klein (1926, p . 280) goes so far as to say that Weierstrass' purpose in 
life was 

to conquer the inversion problem, even for hyperelliptic integrals 
of arbitrarily high order, as Jacobi had foresightedly posed it, per-
haps even the problem for general Abelian integrals, using rigor-
ous, methodical work with power series (including series in several 
variables). 

It was in this way tha t the topic called the Weierstrass theory 
of analytic functions arose as a by-product. 

1.2. C a u c h y . Cauchy's name is associated most especially with one particular 
approach to the study of analytic functions of a complex variable, tha t based on 
complex integration. A complex variable is really two variables, as Cauchy was 
saying even as late as 1821. But a function is to be given by the same symbols, 
whether they denote real or complex numbers. When we integrate and differentiate 
a given function, which variable should we use? Cauchy discovered the answer, 
as early as 1814, when he first discussed such questions in print. The value of 
the function is also a pair of real numbers u 4- iv, and if the derivative is to be 
independent of the variable on which it is taken, these must satisfy the equations 
we now call the Cauchy-Riemann equations: 

In tha t case, as Cauchy saw, if we are integrating u + iv in a purely formal way, 
separating real and imaginary parts , over a pa th from the lower left corner of a rec-
tangle (xo, yo) to its upper right corner (xi , t/i), the same result is obtained whether 
the integration proceeds first vertically, then horizontally or first horizontally, then 
vertically. As Gauss had noted as early as 1811, Cauchy observed tha t the function 

u 

í 

du dv du dv 

dx dx dy' dy 
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l / ( x + iy) did not have this property if the rectangle contained the point (0,0) . 
The difference between the two paths was 2ðß, which Cauchy called the residue. 
Over the period from 1825 to 1840, Cauchy developed from this theorem what is 
now known as the Cauchy integral theorem, the Cauchy integral formula, Taylor's 
theorem, and the calculus of residues. The Cauchy integral theorem states tha t if 
7 is a curve enclosing a region in which f(z) has a derivative then 

If the real and imaginary parts of this integral are written out and compared with 
the Cauchy-Riemann equations, this formula becomes a simple consequence of what 
is known as Green's theorem (the two-variable version of the divergence theorem), 
published in 1828 by George Green (1793 1841) and simultaneously in Russia by 
Mikhail Vasilevich Ostrogradskii (1801-1862). When combined with the fact tha t 
the integral of 1/z around a curve that winds once around 0 is 2ðú, this theorem 
immediately yields as a consequence the Cauchy integral formula 

When generalized, this formula becomes the residue theorem. Also from it, one 
can obtain estimates for the size of the derivatives. Finally, by expanding the 
denominator as a geometric series in powers of æ — æ÷, where Æ÷ lies inside the 
curve 7, one can obtain the Taylor series expansion of f(z). These theorems form 
the essential core of modern first courses in complex analysis. This work was 
supplemented by a paper of Pierre Laurent (1813-1854), submit ted to the Paris 
Academy in 1843, in which power series expansions about isolated singularities 
(Laurent series) were studied. 

Cauchy was aware of the difficulties tha t arise in the case of multivalued func-
tions and introduced the idea of a boundary curve (ligne d'arret) to prevent a 
function from assuming more than one value a t a given point. As mentioned in 
Chapter 12, his student Puiseux studied the behavior of algebraic functions in the 
neighborhood of what we now call branch points, which are points c such tha t 
the function assumes many different values at each point of every neighborhood of 
c. Puiseux showed tha t at a branch point c near which there are ç values of the 
function each of the ç values of the function could be expanded in its own series of 
powers of a variable u such that it" — x — c. The work of Cauchy, Laurent, Puiseux, 
and others thus brought complex analysis into existence as a well-articulated theory 
containing important principles and theorems. 

1.3. R i e m a n n . The work of Puiseux on algebraic functions of a complex variable 
was to be subsumed in two major papers of Riemann. The first of these, his doc-
toral dissertation, contained the concept now known as a Riemann surface. It was 
aimed especially at simplifying the study of an algebraic function w(z) satisfying 
a polynomial equation P(z, w(z)) = 0 . In a sense, the Riemann surface revealed 
that all the significant information about the function was contained precisely in its 
singularities—the way it branched at its branch points. Information about the sur-
face was contained in its genus, defined as half the total number of branch points, 

7 

7 
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counted according to order, less the number of sheets in the surface, plus l . 3 The 
Riemann surface of w = y/z, for example, has two branch points (0 and oo), each 
of order 1, and two sheets, resulting in genus 0. Riemann's geometric approach to 
the subject brought out the duality between surfaces and mappings of them, en-
capsulated in a formula known as the Riemann-Roch theorem (after Gustav Roch, 
1839-1866). This formula connects the dimension of the space of functions on a 
Riemann surface having prescribed zeros and poles with the genus of the surface. 
Although it is a simple formula to write down, explaining the meaning of the terms 
in it requires considerable space, and so we omit the details. 

In 1856 Riemann used his theory to give a very elegant solution of the Jacobi 
inversion problem. Since an analytic function must be constant if it has no poles on 
a Riemann surface, it was possible to use the periods of the integrals that occur in 
the problem to determine the function up to a constant multiple and then to find 
quotients of the ta functions having the same periods, thereby solving the problem. 

1.4. Weiers trass . Of the three founders of analytic function theory, Weierstrass 
was the most methodical. He had found his own solution to the Jacobi inversion 
problem and submit ted it simultaneously with Riemann. When he saw Riemann's 
work, he withdrew his own paper and spent many years working out in detail how 
the two approaches related to each other. Where Riemann had allowed his geomet-
ric intuition to create castles in the air, so to speak, Weierstrass was determined 
to have a firm algebraic foundation. Instead of picturing kinematically a point 
wandering from one sheet of a Riemann surface to another, Weierstrass preferred a 
static object tha t he called a Gebilde (structure). His Gebilde was based on the set 
of pairs of complex numbers (z,w) satisfying a polynomial equation p{z,w) = 0, 
where p(z, w) was an irreducible polynomial in the two variables. These pairs were 
supplemented by certain ideal points of the form ( 2 , 0 0 ) , ( 0 0 , uv), or ( 0 0 , 0 0 ) when 
one or both of w or æ tended to infinity as the other approached a finite or infi-
nite value. Around all but a finite set of points, it was possible to expand w in 
an ordinary Taylor series in nonnegative integer powers of æ — ZQ. For each of the 
exceptional points, there would be one or more expansions in fractional or nega-
tive powers of æ - z$, as Puiseux and Laurent had found. These power series were 
Weierstrass' basic tool in analytic function theory. 

Comparison of the three approaches. At first sight, it appears that Cauchy's ap-
proach, which is simultaneously analytic and geometric, subsumes the work of both 
Riemann and Weierstrass. Riemann, to be sure, had a more elegant way of over-
coming the difficulty presented by multivalued functions, but Cauchy and Puiseux 
between them came very close to doing something logically equivalent. Weierstrass 
begins with the power series and considers only functions tha t have a power-series 
development, whereas Cauchy assumes only that the function is continuously dif-
ferentiable. 4 On the other hand, before you can verify Cauchy's basic assumption 
tha t a function is differentiable, you have to know what the function is. How is 
tha t information to be communicated, if not through some formula like a power 
series? Weierstrass saw this point clearly; in 1884 he said, "No mat ter how you 
twist and turn, you cannot avoid using some sort of analytic expressions" (quoted 
by Siegmund-Schultze, 1988, p. 253). 

3 Klein (1926, p. 258) ascribes this definition to Alfred Clebsch (1833-1872). 
4 It was shown by Edouard Goursat (1858-1936) in 1900 that differentiability implies continuous 
differentiability on open subsets of the plane. 
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2. Real analys i s 

In complex analysis attention is restricted from the outset to functions tha t have 
a complex derivative. That very strong assumption automatically ensures tha t the 
functions studied will have convergent Taylor series. If only mathemat ical physics 
could manage with jus t such smooth functions, the abstruse concepts tha t fill up 
courses in real analysis would not be needed. But the physical world is full of bound-
aries, where the density of mat ter is discontinuous, temperatures undergo abrupt 
changes, light rays reflect and refract, and vibrating membranes are clamped. For 
these situations the imaginary part of the variable, which often has no physical 
interpretation anyway, might as well be dropped, since its only mathematical role 
was to complete the analytic function. From tha t point on, analysis proceeds on 
the basis of real variables only. Real analysis, which represents another extension 
of calculus, has to deal with much more general and "rough" functions. All of the 
logical difficulties about calculus poured into this area of analysis, including the 
important questions of convergence of series, existence of maxima and minima, al-
lowable ways of defining functions, continuity, and the meaning of integration. As 
a result, real analysis is so much less unified than complex analysis t ha t it hardly 
appears to be a single subject. Its basic theorems do not follow from one another 
in any canonical order, and their proofs tend to be a bag of special tricks, rarely 
remembered for long except by professors who lecture on the subject constantly. 

The free range of intuition suffered only minor checks in complex analysis. In 
that subject, what one wanted to believe very often turned out to be true. But 
real analysis almost seemed to be trapped in a hall of mirrors at t imes, as it strug-
gled to gain the freedom to operate while avoiding paradoxes and contradictions. 
The generality of operations allowed in real analysis has fluctuated considerably 
over the centuries. While Descartes had imposed rather strict criteria for allowable 
curves (functions), Daniel Bernoulli a t tempted to represent very arbitrary func-
tions as trigonometric series, and the mathematical physicist Andre-Marie Ampere 
(1775-1836) a t tempted to prove that a continuous function (in the modern sense, 
but influenced by preconceptions based on the earlier sense) would have a deriva-
tive a t most points. The critique of this proof was followed by several decades of 
backtracking, as more and more exceptions were found for operations with series 
and integrals that appeared to be formally all right. Eventually, when a level of 
rigor was reached tha t eradicated the known paradoxes, the t ime came to reach for 
more generality. Georg Cantor 's set theory played a large role in this increasing 
generality, while developing paradoxes of its own. In the twentieth century, the 
theories of generalized functions and distributions restored some of the earlier free-
dom by inventing a new object to represent the derivative of functions tha t have 
no derivative in the ordinary sense. 

2 .1 . Fourier ser ies , funct ions , and integra ls . There is a symmetry in the 
development of real and complex analysis. Broadly speaking, bo th arose from 
differential equations, and complex analysis grew out of power series, while real 
analysis grew out of trigonometric series. These two techniques, closely connected 
with each other through the relation zn = rn(cosn6 + ismn0), led down divergent 
pa ths tha t nevertheless crossed frequently in their meanderings. The real and 
complex viewpoints in analysis began to diverge with the study of the vibrating 
string problem in the 1740s by d'Alembert, Euler, and Daniel Bernoulli. 
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For a string fastened at two points, say (0,0) and (L, 0) and vibrating so tha t 
its displacement above or below the point (x, 0) at t ime t is y(x, t), mathematicians 
agreed tha t the best compromise between realism and comprehensibility to describe 
this motion was the one-dimensional wave equation, which d'Alembert studied in 
1747, 5 publishing the results in 1749: 

D'Alembert pointed out tha t the solution must be of the form 

y(x,t) = 9(t + x) + T(t-x), 

where for simplicity he assumed that c = 1. The equation alone does not determine 
the function, of course, since the vibrations depend on the initial position and 
velocity of the string. Accordingly, d'Alembert followed up with a prescribed initial 
position f(x) = y(x,0) and velocity v(x) = f^|t_0- He considered first the case 
when the initial position is identically zero, for which the function Ö must be an 
even function of period 2L, then the more general case. 

The following year Euler took up this problem and commented on d' Alembert 's 
solution. He observed tha t the initial position could be any shape at all, "either 
regular or irregular and mechanical." D'Alembert found tha t claim hard to accept. 
After all, the functions Ö and Ã had to have periodicity and pari ty properties. How 
else could they be defined except as power series containing only odd or only even 
powers? Euler and d 'Alembert were not interpreting the word "function" in the 
same way. Euler was even willing to consider initial positions f(x) with corners (a 
"plucked" string), whereas d'Alembert insisted tha t f(x) must have two derivatives 
simply to satisfy the equation. 

Three years later Daniel Bernoulli tried to straighten this mat ter out, giving a 
solution in the form 

which he did not actually write out. Here the coefficients an were to be chosen so 
tha t the initial condition was satisfied, tha t is, 

Observing t ha t he had a n infinite set of coefficients at his disposal for "fitting" 
the function, Bernoulli claimed that "any" function f(x) had such a representa-
tion. Bernoulli 's solution was the first of many instances in which the classical 
partial differential equations of mathematical physics—the wave, heat, and poten-
tial equations—were studied by separating variables and superposing the resulting 
solutions. The technique was ultimately to lead to what are called Sturm-Liouville 
problems, which we shall mention again below. 

Before leaving the wave equation, we must mention one more important crossing 
between real and complex analysis in connection with it. In studying the action 

5 Thirty years earlier Brook Taylor (1685-1731) had analyzed the problem geometrically and 
concluded that the normal acceleration at each point would be proportional to the normal cur-
vature at that point. That statement is effectively the same as this equation, and was quoted by 
d'Alembert. 

d2y = 2d2V 
dt2 c dx2' 

n=l 
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of gravity, Pierre-Simon Laplace (1749-1827) was led to what is now known as 
Laplace's equation in three variables. The two-variable version of this equation is 

d2u d2u _ 

dx2 dy2 

The operator on the left-hand side of this equation is known as the Laplacian. 
Since Laplace's equation can be thought of as the wave equation with velocity c = 
v/—T, complex numbers again enter into a physical problem. Recalling d 'Alembert 's 
solution of the wave equation, Laplace suggested that the solutions of his equation 
might be sought in the form f(x + é / \ / - ú ) + - õ\/—ú). Once again a problem 
that started out as a real-variable problem led inexorably to the need to study 
functions of a complex variable. 

The definition of a function. Daniel Bernoulli accepted his father's definition of a 
function as "an expression formed in some manner from variables and constants," 
as did Euler and d'Alembert. But those words seemed to have different meanings 
for each of them. Daniel Bernoulli thought tha t his solution met the criterion of 
being "an expression formed from variables and constants." His former colleague 
in the Russian Academy of Sciences, 6 Euler, saw the mat ter differently. This t ime 
it was Euler who argued that the concept of function was being used too loosely. 
According to him, since the right-hand side of Bernoulli 's formula consisted of odd 
functions of period 2L, it could represent only an odd function of period 2L. There-
fore, he said, it did not have the generality of the solution he and d'Alembert had 
given. Bottazzini (1986, p. 29) expresses the situation very well, saying, "We are 
here facing a misunderstanding that reveals one aspect of the contradictions be-
tween the old and new theory of functions, even though they, are both present in 
the same man, Euler, the protagonist of this transformation." The difference be-
tween the old and new concepts is seen in the simplest example, the function |x|, 
which equals ÷ when ÷ > 0 and -x for ÷ < 0. We have no difficulty thinking of 
this function as one function. It appeared otherwise to nineteenth-century mathe-
maticians. Fourier described what he called a "discontinuous function represented 
by a definite integral" in 1822: the function 

2 r°° cosgx _ (e~x i f x > 0 , 

i / o 1 + q2 Q ~ { ex if ÷ < 0 . 

Fifty years later Gaston Darboux (1844-1918) gave the modern point of view, that 
this function is not truly discontinuous but merely a function expressed by two 
different analytic expressions in different par ts of its domain. 

The change in point of view came about gradually, but an important step 
was Cauchy's refinement of the definition in the first chapter of his 1821 Cours 
d 'analyse: 

When variable quantities are related so that , given the value of 
one of them, one can infer those of the others, we normally con-
sider tha t the quantities are all expressed in terms of one of them, 
which is called the independent variable, while the others are called 
dependent variables. 

Bernoulli had left St. Petersburg in 1733, Euler in 1741. 
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Cauchy's definition still does not specify what ways of expressing one variable 
in terms of another are legitimate, but this definition was a step toward the basic 
idea that the value of the independent variable determines (uniquely) the value of 
the dependent variable or variables. 

Fourier series. Daniel Bernoulli's work introduced trigonometric series as an al-
ternative to power series. In his classic work of 1811, a revised version of which 
was published in 1821, 7 Theorie analytique de chaleur (Analytic Theory of Heat), 
Fourier established the s tandard formulas for the Fourier coefficients of a function. 
For an even function of period 2ð, these formulas are 

1 °° 1 Ã2ð 

f(x) = - a n + o n c o s n x ; a„ — — I f(x)cosnxdx, ç = 0,1,.... 

A trigonometric series whose coefficients are obtained from an integrable function 
f(x) in this way is called a Fourier series. 

After trigonometric series had become a familiar technique, mathematicians 
were encouraged to look for other simple functions in terms of which solutions 
of more general differential equations than Laplace's equation could be expressed. 
Between 1836 and 1838 this problem was attacked by Charles Sturm (1803-1855) 
and Joseph Liouville, who considered general second-order differential equations of 
the form 

[p(x)y'(x)}' + \\r(x) + q(x)}y(x) = 0 . 
When a solution of Laplace's equation is sought in the form of a product of functions 
of one variable, the result is often an equation of this type for the one-variable 
functions. It often happens that only isolated values of ë yield solutions satisfying 
given boundary conditions. Sturm and Liouville found tha t in general there will 
be an infinite set of values ë = ë ç , ç = 1 ,2 , . . . , satisfying the equation and a pair 
of conditions at the endpoints of an interval [a, b], and tha t these values increase 
to infinity. The values can be arranged so that the corresponding solutions yn(x) 
have exactly ç zeros in [a,b], and any solution of the differential equation can be 
expressed as a series 

oo 

y(x) = X ] c n y n ( x ) . 
n=l 

The sense in which such series converge was still not clear, but it continued to 
be studied by other mathematicians. It required some decades for all these ideas 
to be sorted out clearly. 

Proving that a Fourier series actually did converge to the function that gener-
ated it was one of the first places where real analysis encountered greater difficulties 
than complex analysis. In 1829 Dirichlet proved that the Fourier series of f(x) con-
verged to f(x) for a bounded periodic function f(x) having only a finite number 
of discontinuities and a finite number of maxima and minima in each per iod. 8 

Dirichlet tried to get necessary and sufficient conditions for convergence, but tha t 
is a problem tha t has never been solved. He showed that some kind of continuity 
would be required by giving the famous example of the function whose value at ÷ 
is one of two different values according as ÷ is rational or irrational. This function 
7 The original version remained unpublished until 1972, when Grattan-Guiimess published an 
annotated version of it. 
8 We would call such a function piecewise monotonic. 
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is called the Dirichlet function. For such a function, he thought, no integral could 
be defined, and therefore no Fourier series could be defined. 9 

Fourier integrals. The convergence of the Fourier series of f(x) can be expressed 

as the equation 

f{x) = - I f(y) dy + - V / fiy) cos(ny) cos(na;) dy. 
* Jo "^Jo 

That equation may have led to an analogous formula for Fourier integrals, which 
appeared during the early nineteenth century in papers on the wave and heat equa-
tions written by Poisson, Laplace, Fourier, and Cauchy. The central discovery in 
this area was the Fourier inversion formula, which we now write as 

2 f°° Ã°° 
f{x) = - / f(y) cos(zy) cosizx) dy dz. 

ð Jo Jo 

The analogy with the formula for series is clear: The continuous variable æ replaces 
the discrete index n, and the integral on æ replaces the sum over n. Once again, the 
validity of the representation is much more questionable than the validity of the 
formulas of complex analysis, such as the Cauchy integral formula for an analytic 
function. The Fourier inversion formula has to be interpreted very carefully, since 
the order of integration cannot be reversed. If the integrals make sense in the order 
indicated, tha t happy outcome can only be the result of some special properties of 
the function f(x). But what are those properties? 

The difficulty was that the integral extended over an infinite interval so that 
convergence required the function to have two properties: It needed to be contin-
uous, and it needed to decrease sufficiently rapidly at infinity to make the integral 
converge. These properties turned out to be, in a sense, dual to each other. Con-
sidering just the inner integral as a function of z: 

Ë f°° 
f{z) = / fiy)cosizy)dy, 

Jo 

it turns out that the more rapidly f(y) decreases at infinity, the more derivatives 
f{z) has, and the more derivatives f(y) has, the more rapidly f(z) decreases at 
infinity. The converses are also, broadly speaking, true. Could one insist on having 
both conditions, so tha t the representation would be valid? Would these assump-
tions impair the usefulness of these techniques in mathematical physics? Alfred 
Pringsheim (1850-1941, father-in-law of the great writer Thomas Mann) studied 
the Fourier integral formula {1910), noting especially the two kinds of conditions 
that f{x) needed to satisfy, which he called "conditions in the finite region" ("im 
Endlichen") and "conditions at infinity" ("im Unendlichen"). Nowadays, they are 
called local and global conditions. Pringsheim noted tha t the local conditions could 
be traced all the way back to Dirichlet's work of 1829, but said tha t "a rather ob-
vious backwardness reveals itself" in regard to the global conditions. 

9 The increasing latitude allowed in analysis, mentioned above, is illustrated very well by this 
example. When the Lebesgue integral is used, this function is regarded as identical with the 
constant value it assumes on the irrational numbers. 
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[They] seem in general to be limited to a relatively narrow condi-
tion, one which is insufficient for even the simplest type of applica-
tion, namely tha t of absolute integrability of f{x) over an infinite 
interval. There are, as far as I know, only a few exceptions. 

Thus, to the question as to whether physics could get by with sufficiently 
smooth functions f(x) t ha t decay sufficiently rapidly, the answer turned out to 
be, in general, no. Physics needs to deal with discontinuous integrable functions 
f(y), and for these f(z) cannot decay rapidly enough at infinity to make its integral 
converge, at least not absolutely. Wha t was to be done? 

One solution involved the introduction of convergence factors, leading to a more 
general sense of convergence, called Abel-Poisson convergence. In a paper on wave 
motion published in 1818 Poisson used the representation 

f(x) = - / f(a) cos a{x - a)e~ka da da. 
ð J0 J-oo 

The exponential factor provided enough decrease at infinity to make the integral 
converge. Poisson claimed tha t the resulting integral tended toward f{x) as k 
decreased to 0. 

Abel used a similar technique to justify the natural value assigned to nonabso-
lutely convergent series such as 

. . I l l , ir , 1 1 1 
1 ç ( 2 ) = 1 - 2 + 3 - 4 + · · · a n d 4 = 1 - 3 + 5 - 7 + - · 

which can be obtained by expanding the integrands of the following integrals as 

geometric series and integrating termwise: 

/ , dr; / , 1 » dr. 
J0 1 + r Jo 1 + r 2 

In Abel's case, the motive for making a careful study of continuity was his having 
noticed tha t a trigonometric series could represent a discontinuous function. From 
Paris in 1826 he wrote to a friend that the expansion 

X · 1 · Ï 1 · Ï 1 · , 

— = sm ð — — sin 2x + - sin 3x — — sin 4x + • • • 

Α Ä ü Q 

was provable for 0 < ÷ < ð, although obviously it could not hold at ÷ = ð. 
Thus, while the representation might be a good thing, it meant , on the other hand, 
tha t the sum of a series of continuous functions could be discontinuous. Abel 
also believed tha t many of the difficulties mathematicians were encountering were 
traceable t o the use of divergent series. He gave, accordingly, a thorough discussion 
of the convergence of the binomial series, the most difficult of the elementary Taylor 
series to ana lyze . 1 0 

For the two conditionally convergent series shown above and the general Fourier 
integral, continuity of the sum was needed. In both cases, what appeared to be a 
necessary evil—the introduction of the convergence factor e~ka or r—turned out to 
have positive value. For the functions r n cos çè and r™ sin çè are harmonic functions 
1 0 Unknown to Abel, Bolzano had discussed the binomial series in 1816, considering integer, 
rational, and irrational (real) exponents, admitting that he could not cover all possible cases, 
due to the incomplete state of the theory of complex numbers at the time (Bottazzini, 1986, pp. 
96-97). He performed a further analysis of series in general in 1817, with a view to proving the 
intermediate value property (see Section 4 of Chapter 12). 
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if r and è are regarded as polar coordinates, while e~ay cos(ax) and e~ay s in(ax) 
are harmonic if ÷ and y are regarded as rectangular coordinates. The factor used 
to ensure convergence was providing harmonic functions, at no extra cost. 

General trigonometric series. The study of trigonometric functions advanced real 
analysis once again in 1854, when Riemann was required to give a lecture to qual-
ify for the position of Privatdocent (roughly what would be an assistant professor 
nowadays). As the rules required, he was to propose three topics and the faculty 
would choose the one he lectured on. One of the three, based on conversations he 
had had with Dirichlet over the preceding year, was the representation of functions 
by trigonometric series. 1 1 Dirichlet was no doubt hoping for more progress toward 
necessary and sufficient conditions for convergence of a Fourier series, the topic he 
had begun so promisingly a quarter-century earlier. Riemann concentrated on one 
question in particular: Can a function be represented by more than one trigono-
metric series? Tha t is, can two trigonometric series with different coefficients have 
the same sum at every point? In the course of his study, Riemann was driven to 
examine the fundamental concept of integration. Cauchy had defined the integral 

as Í becomes large, where á = x 0 < x\ < · · • < i „ _ i < xn = b. Riemann 
refined the definition slightly, allowing f(xn) to be replaced by / ( x * ) for any x* 
between x n - i and x n . The resulting integral is known as the Riemann integral 
today. Riemann sought necessary and sufficient conditions for such an integral to 
exist. The condition that he formulated led ultimately to the concept of a set of 
measure z e ro , 1 2 half a century later: For each ó > 0 the total length of the intervals 
on which the function f(x) oscillates by more than ó must become arbitrarily small 
if the partition is sufficiently fine. 

2.2. C o m p l e t e n e s s of t h e r ea l n u m b e r s . The concept now known as complete-
ness of the real numbers is associated with the Cauchy convergence criterion, which 
asserts tha t a sequence of real numbers {áç}^=1 converges to some real number á 
if it is a Cauchy sequence; that is, for every å > 0 there is an index ç such that 
Wn — ak\ < å for all fc > n. This condition was s ta ted somewhat loosely by Cauchy 
in his Cours d'analyse, published in the mid-1820s, and the proof given there was 
also somewhat loose. The same criterion had been stated, and for sequences of 
functions ra ther than sequences of numbers, a decade earlier by Bolzano. 

1 1 As the reader will recall from Chapter 12, this topic was not the one Riemann did lecture on. 
Gauss preferred the topic of foundations of geometry, and so Riemann's paper on trigonometric 
series was not published until 1867, after his death. 
1 2 A set of points on the line has measure zero if for every å > 0 it can be covered by a sequence 
of intervals (afc,bfc) whose total length is less than e. 

as the number approximated by the sums 

Í 
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2.3 . U n i f o r m c o n v e r g e n c e a n d cont inui ty . Cauchy was not aware a t first of 
any need to make the distinction between pointwise and uniform convergence, and 
he even claimed tha t the sum of a series of continuous functions would be contin-
uous, a claim contradicted by Abel, as we have seen. The distinction is a subtle 
one. It is all too easy not to notice whether choosing ç large enough to get a good 
approximation when fn(x) converges to f(x) requires one to take account of which 
÷ is under consideration. T h a t point was rather difficult to s ta te precisely. T h e first 
clear s tatement of it is due to Philipp Ludwig von Seidel (1821-1896), a professor 
at Munich, who in 1847 studied the examples of Dirichlet and Abel, coming to the 
following conclusion: 

When one begins from the certainty thus obtained tha t the propo-
sition cannot be generally valid, then its proof must basically lie 
in some still hidden supposition. When this is subject to a precise 
analysis, then it is not difficult to discover the hidden hypothesis. 
One can then reason backwards t ha t this [hypothesis] cannot oc-
cur [be fulfilled] with series that represent discontinuous functions. 
[Quoted in Bottazzini, 1986, p. 202] 

In order t o reason confidently about continuity, derivatives, and integrals, math-
ematicians began restricting themselves to cases where the series converged uni-
formly. Weierstrass, in particular, provided a famous theorem known as the M-tes t 
for uniform convergence of a series. But, although the M-tes t is certainly valuable 
in dealing with power series, uniform convergence in general is too severe a restric-
tion. The important trigonometric series studied by Abel, for example, represented 
a discontinuous function as the sum of a series of continuous functions and there-
fore did not converge uniformly. Yet it could be integrated term by term. One 
could provide many examples of series of continuous functions tha t converged to a 
continuous function but not uniformly. Weaker conditions were needed tha t would 
justify the operations rigorously without restricting their applicability too strongly. 

2.4. G e n e r a l in tegra l s a n d d i s cont inuous funct ions . The search for less re-
strictive hypotheses and the consideration of more general figures on a line than 
just points and intervals led to more general notions of length, area, and integral, 
allowing more general functions to be integrated. Analysts began generalizing the 
integral beyond the refinements introduced by Riemann. Foundational problems 
also added urgency to this search. For example, in 1881, Vito Volterra (1860-1940) 
gave an example of a continuous function having a derivative at every point, but 
whose derivative was not Riemann integrable. Wha t could the fundamental the-
orem of calculus mean for such a function, which had an antiderivative but no 
integral, as integrals were then understood? 

New integrals were created by the Latvian mathematician Axel Harnack (1851-
1888), by the French mathematicians Emile Borel (1871-1956), Henri Lebesgue 
(1875-1941), and Arnaud Denjoy (1884-1974), and by the German mathematician 
Oskar Perron (1880-1975). By far the most influential of these was the Lebesgue 
integral, which was developed between 1899 and 1902. This integral was to have 
profound influence in the area of probability, due to its use by Borel, and in trigono-
metric series representations, an application that Lebesgue developed, perhaps as 
proof of the usefulness of his highly abstruse integral, which, as a former colleague 
of the author was fond of saying, "did not change any tables of integrals." Lebesgue 
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justified his more general integral in the following words, from the preface to his 
1904 monograph. 

[I]f we wished to limit ourselves always to these good [that is, 
smooth] functions, we would have to give up on the solution of a 
number of easily stated problems tha t have been open for a long 
time. It was the solution of these problems, rather than a love of 
complications, that caused me to introduce in this book a definition 
of the integral that is more general than tha t of Riemann and 
contains the latter as a special case. 

Despite its complexity—to develop it with proofs takes four or five times as 
long as developing the Riemann integral—the Lebesgue integral was included in 
textbooks as early as 1907: for example, Theory of Functions of a Real Variable, 
by E. W. Hobson (1856-1933). Its chief at tract ion was the greater genera l i ty of 
the conditions under which it allowed termwise integration. Following the typical 
pat tern of development in real analysis, the Lebesgue integral soon generated new 
questions. The Hungarian mathematician Frigyes Riesz (1880-1956) introduced 
the classes now known as L p -spaces, the spaces of measurable funct ions 1 3 / for 
which | / | p is Lebesgue integrable, ñ > 0. (The space Loo consists of functions that 
are bounded on a set whose complement has measure zero.) How the Fourier series 
and integrals of functions in these spaces behave became a mat te r of great interest, 
and a number of questions were raised. For example, in his 1915 dissertation at the 
University of Moscow, Nikolai Nikolaevich Luzin (1883-1950) posed the conjecture 
that the Fourier series of a square-integrable function converges except on a set of 
measure zero. Fifty years elapsed before this conjecture was proved by the Swedish 
mathematician Lennart Carleson (b. 1928). 

2.5. T h e abs trac t a n d t h e concre te . The increasing generality allowed by the 
notation y = f(x) threatened to carry mathematics off into stratospheric heights 
of abstraction. Although Ampere had tried to show tha t a continuous function is 
differentiable a t most points, the a t tempt was doomed to failure. Bolzano con-
structed a "sawtooth" function in 1817 tha t was continuous, yet had no derivative 
at any point. Weierstrass later used an absolutely convergent trigonometric series to 
achieve the same resul t , 1 4 and a young Italian mathemat ic ian Salvatore Pincherle 
(1853-1936), who took Weierstrass' course in 1877-1888, wrote a treatise in 1880 in 
which he gave a very simple example of such a function (Bottazzini, 1986, p. 286): 

Volterra's example of a continuous function whose derivative was not integrable, 
together with the examples of continuous functions having no derivative at any 
point naturally cast some doubt on the applicability of the abstract concept of 
continuity and even the abstract concept of a function. Besides the construction of 
more general integrals and the consequent ability to "measure" more complicated 

1 See below for the definition. 
1 4 This example was communicated by his student Paul du Bois-Reymond (1831-1889) in 1875. 
The following year du Bois-Reymond constructed a continuous periodic function whose Fourier 
series failed to converge at a set of points that came arbitrarily close to every point. 

oo 
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geometric figures, it was necessary to investigate differentiation in more detail as 
well. 

The secret of tha t quest turned out to be not continuity, bu t monotonicity. 
A continuous function may fail to have a derivative, but in order to fail, it must 
oscillate very wildly, as the examples of Bolzano and Weierstrass did. A function 
tha t did not oscillate or oscillated only a finite total amount , necessarily had a 
derivative except on a set of measure zero. The ul t imate result in this direction 
was achieved by Lebesgue, who showed tha t a monotonic function has a derivative 
on a set whose complement has measure zero. Such a function might or might not 
be the integral of its derivative, as the fundamental theorem of calculus states. In 
1902 Lebesgue gave necessary and sufficient conditions for the fundamental theorem 
of calculus to hold; a function that satisfies these conditions, and is consequently 
the integral of its derivative, is called absolutely continuous. 

To return to the problem of abstractness, we note tha t it had been known 
at least since the t ime of Lagrange tha t any finite set of ç da ta points (xk,yk), 
k = É , . , . , ç , with Xk all different, could be fitted perfectly with a polynomial 
of degree at most ç — 1. Such a polynomial might—indeed, probably would— 
oscillate wildly in the intervals between the data points. Weierstrass showed in 
1884 that any continuoiis function, no matter how abstract , could be uniformly 
approximated by a polynomial over any bounded interval [a, b\. Since there is always 
some observational error in any set of data, this result meant tha t polynomials could 
be used in bo th practical and theoretical ways, to fit data , and to establish general 
theorems about continuous functions. Weierstrass also proved a second version of 
the theorem, for periodic functions, in which he showed tha t for these functions the 
polynomial could be replaced by a finite sum of sines and cosines. This connection 
to the classical functions freed mathematicians to use the new abstract functions, 
confident t h a t in applications they could be replaced by computable functions. 

Weierstrass lived before the invention of the new abstract integrals mentioned 
above arose, although he did encourage the development of the abstract set theory 
of Georg Cantor on which these integrals were based. Wi th the development of 
the Lebesgue integral a new category of functions arose, the measurable functions. 
These are functions f(x) such tha t the set of ÷ for which f(x) > c always has a 
meaningful measure, al though it need not be a geometrically simple set, as it is in 
the case of continuous functions. It appeared that Weierstrass' work needed to be 
repeated, since his approximation theorem did not apply to measurable functions. 
In his 1915 dissertation Luzin produced two beautiful theorems in this direction. 
The first was what is commonly called by his name nowadays, the theorem tha t for 
every measurable function f(x) and every å > 0 there is a continuous function g(x) 
such that g(x) ö / ( ÷ ) only on a set of measure less than å. As a consequence of this 
result and Weierstrass' approximation theorem, it followed t ha t every measurable 
function is the limit of a sequence of polynomials on a set whose complement has 
measure zero. Luzin's second theorem was that every finite-valued measurable 
function is the derivative of a continuous function at the points of a set whose 
complement has measure zero. He was able to use this result to show tha t any 
prescribed set of measurable boundary values on the disk could be the boundary 
values of a harmonic function. 

With the Weierstrass approximation theorem and theorems like those of Luzin, 
modern analysis found some anchor in the concrete analysis of the "classical" pe-
riod tha t ran from 1700 to 1900. But that striving for generality and freedom of 
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operation still led to the invocation of some strong principles of inference in the 
context of set theory. By mid-twentieth century mathematicians were accustomed 
to proving concrete facts using abstract techniques. To take just one example, it 
can be proved that some differential equations have a solution because a contraction 
mapping of a complete metric space must have a fixed point. Classical mathemat i -
cians would have found this proof difficult to accept, and many twentieth-century 
mathematicians have preferred to write in "constructivist" ways tha t avoid invok-
ing the abstract "existence" of a mathematical object t h a t cannot be displayed 
explicitly. But most mathematicians are now comfortable with such reasoning. 

2.6. Discontinuity as a positive property. The Weierstrass approximation 
theorems imply tha t the property of being the limit of a sequence of continuous 
functions is no more general than the property of being the limit of a sequence 
of polynomials or the sum of a trigonometric series. T h a t fact raises an obvious 
question: W h a t kind of function is the limit of a sequence of continuous functions? 
As noted above, du Bois-Reymond had shown tha t it can be discontinuous on a set 
tha t is, as we now say, dense. But can it, for example, be discontinuous at every 
point? Tha t was one of the questions tha t interested Rene-Louis Baire (1874-
1932). If one thinks of discontinuity as simply the absence of continuity, classifying 
mathematical functions as continuous or discontinuous seems to make no more 
sense than classifying mammals as cats or noncats. Baire, however, looked a t the 
mat ter differently. In his 1905 Lecons sur les functions discontinues (Lectures on 
Discontinuous Functions) he wrote 

Is it not the duty of the mathematician to begin by studying in 
the abstract the relations between these two concepts of continuity 
and discontinuity, which, while mutually opposite, are intimately 
connected? 

Strange as this view may seem at first, we may come to have some sympathy 
for it if we think of the dichotomy between the continuous and the discrete, t ha t is, 
between geometry and arithmetic. At any rate, to a large number of mathemat i -
cians at the turn of the twentieth century, it did not seem strange. The Moscow 
mathematician Nikolai Vasilevich Bugaev (1837-1903, father of the writer Andrei 
Belyi) was a philosophically inclined scholar who thought it possible to establish 
two parallel theories, one for continuous functions, the other for discontinuous func-
tions. He called the latter theory arithmology t o emphasize its ari thmetic character. 
There is a t least enough of a superficial parallel between integrals and infinite se-
ries and between continuous and discrete probability distributions (another area 
in which Russia has produced some of the world's leaders) to make such a pro-
gram plausible. It is partly Bugaev's influence tha t caused works on set theory 
to be translated into Russian during the first decade of the twentieth century and 
brought the Moscow mathematicians Luzin and Dmitrii Fyodorovich Egorov (1869-
1931) and their students to prominence in the area of measure theory, integration, 
and real analysis. 

Baire's monograph was single-mindedly dedicated to the pursuit of one goal: 
to give a necessary and sufficient condition for a function to be the pointwise limit 
of a sequence of continuous functions. He found the condition, building on earlier 
ideas introduced by Hermann Hankel (1839-1873): The necessary and sufficient 
condition is tha t the discontinuities of the function form a set of first category. 
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A set is of first category if it is the union of a sequence of sets Ak such tha t 
every interval (a,b) contains an interval (c, d) disjoint from A^. All other sets 
are of second ca tegory . 1 5 Although interest in the specific problems that inspired 
Baire has waned, the importance of his work has not. The whole edifice of what 
is now functional analysis rests on three main theorems, two of which are direct 
consequences of what is called the Baire category theorem (that a complete metric 
space is of second category as a subset of itself) and cannot be proved without it. 
Here we have an example of an unintended and fortuitous consequence of one bit 
of research turning out to be useful in an area not considered by its originator. 

1 7 . 1 . The familiar formula cos# = 4cos 3 (0 /3 ) - 3cos(0/3) , can be rewritten as 
p(cos#/3 , cos0) = 0, where p(x, y) = 4x3-3x-y. Observe tha t cos(6+2mn) = cosf? 
for all integers m, so t ha t 

for all integers m. T h a t makes it very easy to construct the roots of the equation 
p(x,cosO) = 0. They must be cos((f? + 2ôçð)/3) for m = 0 ,1 ,2 . Wha t is the 
analogous equation for dividing a circular arc into five equal pieces? 

Suppose (as is the case for elliptic integrals) tha t the inverse function of an 
integral is doubly periodic, so tha t f(x+mu>i +çù2) = f(x) for all m and n. Suppose 
also that there is a polynomial p(x) of degree n2 such tha t p ( / ( 0 / n ) ) = / (# ) . Show 
tha t the roots of the equation p(x) — /(È) must be /(è/ç + (k/n)u)\ + (1/ç)ù2), 
where fc and / range independently from 0 to ç - 1. 

17 .2 . Show tha t if y(x,t) = (f(x + ct) + f(x - ct))/2 is a solution of the one-
dimensional wave equation t ha t is valid for all ÷ and t, and y(0, t) = 0 — y(L, t) for 
all t, then f(x) must be an odd function of period 2L. 

17 .3 . Show tha t the problem X"(x) - \X(x) = 0, Y"(y) + XY(y) = 0, with 

boundary conditions Y(0) = Y(2n), Y'(0) = Y'(27r), implies tha t ë = ç2, where 

ç is an integer, and tha t the function X(x)Y(y) must be of the form ( c n e n x + 

d„e~nx) (an cos(ny) + bn sin(ra/)) if ç ö 0. 

17.4 . Show tha t the differential equation 

has the solution y = [(1 - x 2 ) / ( l + x 2 ) ] 1 / 2 . Find another obvious solution of this 

equation. 

17.5 . Show tha t Fourier series can be obtained as the solutions to a Sturm-Liouville 
problem on [0,2ð] with p(x) = r(x) Î 1, q(x) = 0, with the boundary conditions 
y(0) = y(2ix), y'(0) = 2/(2ð). Wha t are the possible values of A? 

Q u e s t i o n s and p r o b l e m s 

1 5 In his work on set theory, discussed in Section 4 of Chapter 12, Hausdorff criticized this termi-
nology as "colorless." 
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At various points in this survey of mathematics we have found mathematic ians de-
bating the meaning of what they were doing and the legitimacy of their procedures. 
In this last par t of our study we examine the ways in which mathemat ics enters 
into the process of drawing conclusions. Human beings draw conclusions with dif-
fering levels of confidence, based on experience. At the one extreme are opinions 
about the most complicated phenomena around us, other human beings and human 
society as a whole. These matters are so complex tha t very few statements about 
them can be simultaneously free of significant doubt and of great importance. At 
the other end are matters that are so simple and obvious tha t we do not hesitate 
to label as insane anyone who doubts them. At the very least, we do not bother 
refuting a person who says that the word yes requires 10 letters to spell or tha t the 
city of Tuscaloosa is located in Siberia. Mathematics itself lies on the "confident" 
end of the spectrum, but its applications to practical life do not always share tha t 
certainty. Chapter 18 surveys the uncertain, in the form of the history of probabil-
ity and statistics. Chapter 19 covers the more certain, in the form of the history of 
logic. 



C H A P T E R 18 

Probability and Statistics 

The need to make decisions on the basis of incomplete da t a is very widespread 
in human life. We need to decide how warmly to dress and whether to carry an 
umbrella when we leave home in the morning. We may have to decide whether to 
risk a dangerous but potentially life-saving medical procedure. Such decisions rely 
on statistical reasoning. Statistics is a science that is not exactly mathematics. It 
uses mathematics, in the form of probability, but its procedures are the inverse ones 
of fitting probability distributions to real-world data . Probability theory, on the 
other hand, is a form of pure mathematics, with theorems tha t are just as certain 
as those in algebra and analysis. We begin this chapter with the pure mathematics 
and end with its application. 

1. Probabi l i ty 

The word probability is related to the English words probe, probation, prove, and 
approve. All of these words originally had a sense of testing or experimenting,1 

reflecting their descent from the Latin probo, which has these meanings. In other 
languages the word used in this mathematical sense has a meaning more like plau-
sibility,2 as in the German Wahrscheinlichkeit (literally, truth resemblance) or the 
Russian veroyatnost' (literally, credibility, from the root ver-, meaning faith). The 
concept is very difficult to define in declarative sentences, precisely because it refers 
to phenomena that are normally described in the subjunctive mood. This mood 
has nearly disappeared in modern English; it clings to a precarious existence in 
the past tense, "If it were t rue t h a t . . . " having replaced the older "If it be true 
t h a t . . . " . The language of Aristotle and Plato, however, who were among the first 
people to discuss chance philosophically, had two such moods, the subjunctive and 
the optative, sometimes used interchangeably. As a result, they could express more 
easily than we the intuitive concepts involved in discussing events tha t are imagined 
rather than observed. 

Intuitively, probability a t tempts to express the relative strength of the feeling 
of confidence we have tha t an event will occur. How surprised would we be if 
the event happened? How surprised would we be if it did not happen? Because 
we do have different degrees of confidence in certain future events, quanti tat ive 
concepts become applicable to the study of probability. Generally speaking, if an 
event occurs essentially all the t ime under specified conditions, such as an eclipse 

1 The common phrase "the exception that proves the rule" is nowadays misunderstood and mis-
used because of this shift in the meaning of the word prove. Exceptions test rules, they do not 
prove them in the current sense of that word. In fact, quite to the contrary, exceptions disprove 
rules. 
2 Here is another interesting word etymology. The root is plaudo, meaning strike, but specifically 
meaning to clap one's hands together, to applaud. Once again, approval is involved in the notion 
of probability. 
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of the Sun, we use a deterministic model (geometric astronomy, in this case) to 
study and predict it. If it occurs sometimes under conditions frequently associated 
with it, we rely on probabilistic models. Some earlier scientists and philosophers 
regarded probability as a measure of our ignorance. Kepler, for example, believed 
that the supernova of 1604 in the constellation Serpent may have been caused by 
a random collision of particles; but in general he was a determinist who thought 
tha t our uncertainty about a roll of dice was merely a mat te r of insufficient da ta 
being available. He admitted, however, tha t he could find no law to explain the 
apparently random pattern of eccentricities in the elliptical orbits of the six planets 
known to him. 

Once the mathematical subject got started, however, it developed a life of its 
own, in which theorems could be proved with the same rigor as in any other par t 
of mathematics . Only the application of those theorems to the physical world 
remained and remains clouded by doubt. We use probability informally every day, 
as the weather forecast informs us that the chance of rain is 30% or 80% or 100%, 3 

or when we are told that one person in 30 will be afflicted with Alzheimer's disease 
between the ages of 65 and 74. Much of the public use of such probabilistic notions 
is, although not meaningless, a t least irrelevant. For example, we are told tha t the 
life expectancy of an average American is now 77 years. Leaving aside the many 
questionable assumptions of environmental and political stability used in the model 
that produced this fascinating number, we should at least ask one question: Can 
the number be related to the life of any person in any meaningful way? W h a t plans 
can one base on it, since anyone may die on any given day, yet very few people can 
confidently rule out the possibility of living past age 90? 4 

The many uncertainties of everyday life, such as the weather and our health, 
occur mixed with so many possibly relevant variables t ha t it would be difficult 
to distill a theory of probability from those intensely practical mat te rs . Wha t is 
needed is a simpler and more abstract model from which principles can be extracted 
and gradually made more sophisticated. The most obvious and accessible such 
models are games of chance. On them probability can be given a quanti tat ive 
and empirical formulation, based on the frequency of wins and losses. At the same 
time, the imagination can arrange the possible outcomes symmetrically and in many 
cases assign equal probabilities to different events. Finally, since money generally 
changes hands at the outcome of a game, the notion of a random variable (payoff 
to a given player, in this case) as a quantity assuming different values with different 
probabilities can be modeled. 

1.1. C a r d a n o . The systematic mathematizat ion of probabiliy began in sixteenth-
century Italy with Cardano. Cardano gambled frequently wi th dice and at tempted 
to count the favorable cases for a throw of three dice. His table of values, as reported 
by Todhunter (1865, p . 3) is as follows. 

3 These numbers are generated by computer models of weather patterns for squares in a grid 
representing a geographical area. The modeling of their accuracy also uses probabilistic notions 
(see Problem 18.1). 
4 The Russian mathematician Yu. V. Chaikovskii (2001) believes that some of this cloudiness is 
about to be removed with the creation of a new science he calls aleatics (from the Latin word 
alen, meaning dice-play or gambling)- We must wait and see. A century ago, other Russian 
mathematicians confidently predicted a bright future for "arithmology." Prophecy is the riskiest 
of all games of chance. 
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1 2 3 4 5 6 7 8 9 10 11 12 
108 111 115 120 126 133 33 36 37 36 33 26 

Readers who enjoy playing with numbers may find some amusement here. Since 
it is impossible to roll a 1 with three dice, the table value should perhaps be 
interpreted as the number of ways in which 1 may appear on at least one of the 
three dice. If so, then Cardan has got it wrong. One can imagine him thinking tha t 
if a 1 appears on one of the dice, the other two may show 36 different numbers, and 
since there are three dice on which the 1 may appear, the tota l number of ways of 
rolling a 1 must be 3 · 36 or 108. Tha t way of counting ignores the fact tha t in some 
of these cases 1 appears on two of the dice or all three. By what is now known as 
the inclusion-exclusion principle, the total should be 3 · 36 — 3 • 6 + 1 = 9 1 . But it is 
difficult to say what Cardano had in mind. The number 111 given for 2 may be the 
result of the same count, increased by the three ways of choosing two of the dice to 
show a 1. Todhunter worked out a simple formula giving these numbers, but could 
not imagine any gaming rules tha t would correspond to them. If indeed Cardano 
made mistakes in his computations, he was not the only great mathematician to 
do so. 

Cardano 's Liber de ludo (Book on Gambling) was published about a century 
after his death. In this book Cardano introduces the idea of assigning a probability 
ñ between 0 and 1 to an event whose outcome is not certain. The principal appli-
cations of this notion were in games of chance, where one might bet, for example, 
tha t a player could roll a 6 with one die given three chances. The subject is not 
developed in detail in Cardano 's book, much of which is occupied by descriptions 
of the actual games played. However, Cardano does s tate the multiplicative rule 
for a run of successes in independent trials. Thus the probability of getting a six on 
each of three successive rolls with one die is ( g ) 3 . Most important , he recognized 
the real-world application of what we call the law of large numbers, saying tha t 
when the probability for an event is p, then after a large number ç of repetitions, 
the number of times it will occur does not lie far from the value np. This law says 
tha t it is not certain t ha t the number of occurrences will be near np, but "that is 
where the smart money bets." 

After a bet has been made and before it is settled, a player cannot unilater-
ally withdraw from the bet and recover her or his stake. On the other hand, an 
accountant computing t h e net worth of one of the players ought t o count part of 
the stake as an asset owned by tha t player; and perhaps the player would like the 
right to sell out and leave the game. W h a t would be a fair price to charge someone 
for taking over the player's position? More generally, what happens if the game 
is interrupted? How are the stakes to be divided? The principle tha t seemed fair 
was that , regardless of the relative amount of the stake each player had bet, at each 
moment in the game a player should be considered as owning the portion of the 
stakes equal to that player's probability of winning at that moment. Thus, the net 
worth of each player is constantly changing as the game progresses, in accordance 
with what we now call conditional probability. Computing these probabilities in 
games of chance usually involves the combinatorial counting techniques the reader 
has no doubt encountered. 

1.2. F e r m a t a n d P a s c a l . A French nobleman, the Chevalier de Mere, who was 
fond of gambling, proposed to Pascal the problem of dividing the stakes in a game 
where one player has bet tha t a six will appear in eight rolls of a single die, but 
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the game is terminated after three unsuccessful tries. Pascal wrote to Fermat tha t 
the player should be allowed to sell the throws one a t a t ime. If the first throw is 
foregone, the player should take one-sixth of the stake, leaving five-sixths. Then if 
the second throw is also foregone, the player should take one-sixth of the remaining 
five-sixths or ^ , and so on. In this way, Pascal argued tha t the fourth through 

eighth throws were worth | [(|)3 + (§)4 + (I)5 + (§)' + (f )7]. 
This expression is the value of those throws before any throws have been made. 

If, after the bets are made but before any throws of the die have been made, the 

bet is changed and the players agree that only three throws shall be made, then the 

player holding the die should take this amount as compensation for sacrificing the 

last five throws. Remember, however, tha t the net worth of a player is constantly 

changing as the game progresses and the probability of winning changes. The value 

of the fourth throw, for example, is smaller to begin with, since there is some 

chance that the player will win before it arrives, in which case it will not arrive. At 

the beginning of the game, the chance of winning on the fourth roll is ( | ) 3 g , the 

factor ( | ) 3 representing the probability tha t the player will not have won before 

then. After three unsuccesful throws, however, the probability tha t the player "will 

not have" won (because he did not win) on the first three throws is 1, and so the 

probability of winning on the fourth throw becomes | . 

Fermat expressed the matter as follows: 

[T]he three first throws having gained nothing for the player who 
holds the die, the total sum thus remaining at stake, he who holds 
the die and who agrees not to play his fourth throw should take 
g as his reward. And if he has played four throws without finding 
the desired point and if they agree tha t he shall not play the fifth 
time, he will, nevertheless, have | of the total for his share. Since 
the whole sum stays in play it not only follows from the theory, 
but it is indeed common sense that each throw should be of equal 
value. 

Pascal wrote back to Fermat, proclaiming himself satisfied with Fermat ' s anal-
ysis and overjoyed to find that "the t ru th is the same at Toulouse and at Paris." 

1.3. H u y g e n s . Huygens wrote a treatise on probability in 1657. His De ratiociniis 
in ludo ale<E (On Reasoning in a Dice Game) consisted of 14 propositions and 
contained some of the results of Fermat and Pascal. In addition, Huygens was 
able to consider multinomial problems, involving three or more players. Cardano 's 
idea of an estimate of the expectation was elaborated by Huygens. He asserted, for 
example, tha t if there are ñ (equally likely) ways for a player to gain á and q ways 
to gain 6, then the player's expectation is (pa + qb)/(p + q). 

Even simple problems involving these notions can be subtle. For example, 
Huygens considered two players A and Â taking turns rolling the dice, with A 
going first. Any time A rolls a 6, A wins; any t ime Â rolls a 7, Â wins. W h a t are 
the relative chances of winning? (The answer to tha t question would determine the 
fair proportions of the stakes to be borne by the two players.) Huygens concluded 
that the odds were 31:30 in favor of B, tha t is, A's probability of of winning was 
| ã and B 's probability was | y . 
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1.4. Leibniz . Although Leibniz wrote a full treatise on combinatorics, which pro-
vides the mathematical apparatus for computing many probabilities in games of 
chance, he did not himself gamble. But he did analyze many games of chance and 
suggest modifications of them tha t would make them fair (zero-sum) games. Some 
of his manuscripts on this topic have been analyzed by de Mora-Charles (1992). 
One of the games he analyzed is known as quinquenove. This game is played be-
tween two players using a pair of dice. One of the players, called the banker, rolls 
the dice, winning if the result is either a double or a total number of spots showing 
equal to 3 or 11. There are thus 10 equally likely ways for the banker to win with 
this roll, out of 36 equally likely outcomes. If the banker rolls a 5 or 9 (hence the 
name "quinquenove"), the other player wins. The other player has eight ways of 
winning of the equally likely 36 outcomes, leaving 18 ways for the game to end in 
a draw. The reader will be fascinated and perhaps relieved to learn tha t the great 
Leibniz, author of De arte combinatorial confused permutat ions and combinations 
in his calculations for this game and got the probabilities wrong. 

1.5. T h e Ars Conjectandi o f J a k o b Bernoul l i . One of the classic founding 
documents of probability theory was published in 1713, eight years after the death 
of its author, Leibniz' disciple Jakob Bernoulli. This work, Ars conjectandi (The 
Art of Prediction), moved probability theory beyond the limitations of analyzing 
games of chance. It was intended by its author to apply mathematical methods to 
the uncertainties of life. As he said in a letter to Leibniz, "I have now finished the 
major par t of the book, but it still lacks the particular examples, the principles of the 
ar t of prediction tha t I teach how to apply to society, morals, and economics. . . ." 
Tha t was an ambitious undertaking, and Bernoulli had not quite finished the work 
when he died in 1705. 

Bernoulli gave a very stark picture of the gap between theory and application, 
saying tha t only in simple games such as dice could one apply the equal-likelihood 
approach of Fermat and Pascal, whereas in the cases of interest, such as human 
health and longevity, no one had the power to construct a suitable model. He 
recommended statistical studies as the remedy to our ignorance, saying tha t if 200 
people out of 300 of a given age and constitution were known to have died within 
10 years, it was a 2-to-l bet that any other person of tha t age and constitution 
would die within a decade. 

In this treatise Bernoulli reproduced the problems solved by Huygens and gave 
his own solution of them. He considered what are now called Bernoulli trials in 
his honor. These are repeated experiments in which a particular outcome either 
happens (success) with probability b/a or does not happen (failure) with probability 
c/a, the same probability each time the experiment is performed, each outcome 
being independent of all others. (A simple nontrivial example is rolling a single 
die, counting success as rolling a 5. Then the probabilities are g and | . ) Since 
b/a + c/a = 1, Bernoulli saw correctly that the binomial expansion, and hence 
Pascal 's triangle, would be useful in computing the probability of getting a t least 
m successes in ç trials. He gave that probability as 

It was, incidentally, in this treatise, when computing the sum of the cth powers 
of the first ç integers, t ha t Bernoulli introduced what are now called the Bernoulli 
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numbers, defined by the formula 

fe=l 

Nowadays we define these numbers as Bo = 1, B\ = — | , and thence B2 = A, 
B$ = -B, and so forth. He illustrated his formula by finding 

1000 

Ó * 1 0 = 91409924241424243424241924242500. 
t = i 

The law of large numbers. Bernoulli imagined an urn containing numbers of black 
and white pebbles, whose ratio is to be determined by sampling with replacement. 
Here it is possible tha t you will always get a white pebble, no mat te r how many 
times you sample. However, if black pebbles constitute a significant proportion of 
the contents of the urn, this outcome is very unlikely. After discussing the degree of 
certainty tha t would suffice for practical purposes (he called it virtual certainty),5 

he noted tha t this degree of certainty could be at tained empirically by taking a 
sufficiently large sample. The probability that the empirically determined ratio 
would be close to the true ratio increases as the sample size increases, but the 
result would be accurate only within certain limits of error. More precisely, given 
certain limits of tolerance, by a sufficient number of trials, 

[W]e can a t ta in any desired degree of probability tha t the ratio 
found by our many repeated observations will lie between these 
limits. 

This last assertion is an informal s tatement of the law of large numbers for 
what are now called Bernoulli trials, tha t is, repeated independent trials with the 
same probability of a given outcome at each trial. If the probability of the outcome 
is ñ and the number of trials is n, this law can be phrased precisely by saying that 
for any e > 0 there exists a number no such that if m is the number of times 
the outcome occurs in ç trials and ç > no, the probability tha t the inequality 
| (m /n ) - p\ > å will hold is less than e . 6 Bernoulli stated this principle in terms 
of the segment of the binomial series of (r + s ) n ( r + a ) consisting of the ç terms on 
each side of the largest term (the term containing r n r s n s ) , and he proved it by 
giving an estimate on ç sufficient to make the rat io of this sum to the sum of the 
remaining terms at least c, where c is specified in advance. This problem is the 
earliest in which probability and statistics were combined to solve a problem of 
practical application. 

5 This phrase is often translated more literally as moral certainty, which has the wrong 
connotation. 
6 Probabilists say that the frequency of successes converges "in probability" to the probability 
of success at each trial. Analysts say it converges "in measure." There is also a strong law of 
large numbers, more easily stated in terms of independent random variables, which asserts that 
(under suitable hypotheses) there is a set of probability 1 on which the convergence to the mean 
occurs. That is, the convergence is "almost surely," as probabilists say and "almost everywhere," 
as analysts phrase the matter. On a finite measure space such as a probability space, almost 
everywhere convergence implies convergence in measure, but the converse is not true. 
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1.6. D e M o i v r e . In 1711, even before the appearance of Jakob Bernoulli's trea-
tise, another groundbreaking book on probability appeared, the Doctrine of Chances, 
written by Abraham de Moivre (1667-1754), a French Huguenot who took refuge 
in England after 1685, when Louis XIV revoked the Edict of Nantes, which had 
guaranteed civil rights for Huguenots when Henri IV took the French throne in 
1598. 7 De Moivre's book went through several editions. Its second edition, which 
appeared in 1738, introduced a significant piece of numerical analysis, useful for ap-
proximating sums of terms of a binomial expansion (a + b)n for large n. De Moivre 
had published the work earlier in a paper written in 1733. Having no notation 
for the base e, which was introduced by Euler a few years later, de Moivre simply 
referred to the hyperbolic (natural) logarithm and "the number whose logarithm 
is 1." De Moivre first considered only the middle term of the expansion. Tha t is, 
for an even power ç = 2m, he estimated the term 

'2mA (2m)! 

m J (m!) 2 

and found it equal to g ^ j , where Â was a constant for which he knew only an 
infinite series. At tha t point, he got stuck, as he admit ted, until his friend James 
Stirling (1692-1770) showed him that "the Quantity Â did denote the Square-root 
of the Circumference of a Circle whose Radius is Unity." In our terms, Â = V2n, 
but de Moivre simply wrote c for B. Without having to know the exact value of Â 
de Moivre was able to show tha t "the Logarithm of the Ratio, which a Term distant 
from the middle by the Interval I, has the the middle Term, is [approximately, for 
large n] In modern language, 

De Moivre went on to say, "The Number, which answers to the Hyperbolic Loga-
ri thm -2ll/n, [is] 

l_2U AP__^_ m&
 32* 1 0 64Z 1 2 

ç + 2nn 6 n 3 + 24ç 4 120n 5 + 7 2 0 n 7 ' ° ' 
By scaling, de Moivre was able to estimate segments of the binomial distribution. 
In particular, the fact t ha t the numerator was I2 and the denominator ç allowed 
him to estimate the probability that the number of successes in Bernoulli trials 
would be between fixed limits. He came close to noticing tha t the natural unit of 
probability for ç trials was a multiple of yfri. In 1893 this natural unit of measure 
for probability was named the standard deviation by the British mathematician 
Karl Pearson (1857-1936). For Bernoulli trials with probability of success ñ at 
each trial the s tandard deviation is ó = y/np(l - p). 

For what we would call a coin-tossing experiment in which ñ — \ —he imagined 
tossing a metal disk painted white on one side and black on the other—de Moivre 
observed tha t with 3600 coin tosses, the odds would be more than 2 to 1 against 
a deviation of more than 30 "heads" from the expected number of 1800. The 
s tandard deviation for this experiment is exactly 30, and 68 percent of the area 
under a normal curve lies within one standard deviation of the mean. De Moivre 

7 The spirit of sectarianism has infected historians to the extent that Catholic and Protestant 
biographers of de Moivre do not agree on how long he was imprisoned in France for being a 
Protestant. They do agree that he was imprisoned, however. To be fair to the French, they did 
elect him a member of the Academy of Sciences a few months before his death. 
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F i g u r e 1. Frequencies of numbers in a s tate lottery over a one-
year period. 

could imagine the bell-shaped normal curve tha t we are familiar with, but he could 
not give it an equation. Instead he described it as the curve whose ordinates were 
numbers having certain logarithms. Wha t seems most advanced in his analysis is 
tha t he recognized the area under the curve as a probability and computed it by 
a mechanical quadrature method that he credited jointly to Newton, Roger Cotes, 
James Stirling, and himself. This tendency of the average of many independent 
trials to look like the bell-shaped curve is called the central limit theorem. 

It is difficult to appreciate the work of Bernoulli and de Moivre in applications 
without seeing it applied in a real-world illustration. To take a very simple example, 
consider Fig. 1, which is a histogram of the frequencies with which the numbers 
from 1 to 42 were drawn in a state lottery over a period of one year 8 Six numbers 
are drawn twice a week, for a total of 624 numbers each year. At each drawing a 
given number has a probability of | of being drawn. Thus, focusing at tention only 
on the occurrence of a fixed integer fc, we can think of the lottery as a series of 104 
independent trials with a probability of success (drawing the number fc) equal to \ 
at each trial. 

Although the individual da ta do not reveal the binomial distribution or show 
any bell-shaped curve, we can think of the frequencies with which the 42 numbers 
are drawn as the da ta for a second probabilistic model. By the binomial distribu-
tion, for each frequency r from 0 to 104, The probability t ha t a given number will 
be drawn r times should theoretically be 

If the probability of an event is proportional to the number of times tha t the 
event occurs in a large number of trials, then the number of numbers drawn r 
times should be 42 times this expression. The resulting theoretical frequencies are 
negligibly small for r < 6 or r > 23. The values predicted by this theoretical model 
for r between 6 and 23, rounded to the nearest integer, are given in the second row 
of the following table, while the experimentally observed numbers are given in the 
bo t tom row. 

8 The Tri-state Megabucks of Maine, New Hampshire, and Vermont, from mid-December 2000 to 
mid-December 2001. 
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FIGURE 2. Histogram of the frequencies of the frequencies in 
Fig. 1, compared with a normal distribution. 

Freq. 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

P r e d . 0 0 1 1 2 3 4 4 5 5 4 4 3 2 2 1 1 0 

O b s . 1 1 0 1 2 2 3 4 4 5 3 8 2 3 1 1 0 1 

The agreement is not perfect, nor would we expect it to be. But it is remarkably 
close, except for the one "outlier" at a frequency of 17, at tained by eight numbers 
instead of the theoretically predicted four. The mean for this model is 104/7 « 
14.85, and the s tandard deviation is \ /624/7 ~ 3.569. The histogram for the 
frequencies of the frequencies, compared with the graph of the s tandard bell-shaped 
curve with this mean and standard deviation are shown in Fig. 2. The fact tha t 
mere numerical reasoning compels even the most chaotic phenomena to exhibit 
some kind of order is one of the most awe-inspiring aspects of applied probability 
theory. It is the phenomenon tha t led the British mathematician Francis Galton 
(1822-1911) to describe the normal distribution as "the supreme law of unreason." 

The Petersburg paradox. Soon after its introduction by Huygens and Jakob Bernoulli 
the concept of mathematical expectation came in for some critical appraisal. While 
working in the Russian Academy of Sciences, Daniel Bernoulli discussed the prob-
lem now known as the Petersburg paradox with his brother Niklaus (1695-1726, 
known as Niklaus II). We can describe this paradox informally as follows. Suppose 
tha t you toss a coin until heads appears. If it appears on the first toss, you win $2, 
if it first appears on the second toss, you win $4, and so on; if heads first appears on 
the n th toss, you win 2™ dollars. How much money would you be willing to pay to 
play this game? Now by "rational" computations the expected winning is infinite, 
being 2 - | + 4 - | + 8 | + -- - , s o that you should be willing to pay, say, $10,000 
to play each time. On the other hand, who would bet $10,000 knowing that there 
was an even chance of winning back only $2, and tha t the odds are 7 to 1 against 
winning more than $10? Something more than mere expectation was involved here. 
Daniel Bernoulli discussed the matter at length in an article in the Comentarii of 
the Petersburg Academy for 1730-1731 (published in 1738). He argued for the im-
portance of something tha t we now call utility. If you already possess an amount of 
money ÷ and you receive a small additional amount of money dx, how much utility 
does the additional money have for you, subjectively? Bernoulli assumed tha t the 
increment of utility dy was directly proportional to dx and inversely proportional 
to x, so tha t 

kdx 
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and as a result, the total utility of personal wealth is a logarithmic function of 
total wealth. One consequence of this assumption is a law of diminishing returns: 
The additional satisfaction from additional wealth decreases as wealth increases. 
Bernoulli used this idea to explain why any rational person would refuse to play 
the game. Obviously, the expected gain in utility from each of these wins, being 
proportional to the logarithm of the money gained, has a finite total , and so one 
should be willing to pay only an amount of money tha t has an equal utility to 
the gambler. A different explanation can be found in Problem 18.4 below. This 
explanation seems to have been given first by the mathematic ian John Venn (1834-
1923) of Ca ius 9 College, Cambridge in 1866. 

The utility y, which Bernoulli called the emolumentum (gain), is an important 
tool in economic analysis, since it provides a dynamic model of economic behavior: 
Buyers exchange money for goods or services of higher personal utility; sellers 
exchange goods and services for money of higher personal utility. If money, goods, 
and services did not have different utility for different people, no market could exist 
at a l l . 1 0 Tha t idea is valid independently of the actual formula for utility given 
by Bernoulli, although, as far as measurements of pyschological phenomena can be 
made, Bernoulli's assumption was extremely good. The physiologist Ernst Heinrich 
Weber (1795-1878) asked blindfolded subjects to hold weights, which he gradually 
increased, and to say when they noticed an increase in the weight. He found 
that the threshold for a noticeable difference was indeed inversely proportional to 
the weight. Tha t is, if S is the perceived weight and W the actual weight, then 
dS = kdW/W, where dW is the smallest increment tha t can be noticed and dS 
the corresponding perceived increment. Thus he found exactly the law assumed by 
Bernoulli for perceived increases in wea l th . 1 1 Utility is of vital importance to the 
insurance industry, which makes its profit by having a large enough stake to play 
"games" tha t resemble the Petersburg paradox. 

Mathematically, there was an important concept missing from the explanation 
of the Petersburg paradox. Granted tha t one should expect the "expected" value 
of a quanti ty depending on chance, how confidently should one expect it? The 
question of dispersion or variance of a random quant i ty lies beneath the surface 
here and needed to be brought out. It turns out t ha t when the expected value is 
infinite, or even when the variance is infinite, no rational projections can be made. 
However, since we live in a world of finite duration and finite resources, each "game" 
will be played only a finite number of times. I t follows t ha t every actual game has 
a finite expectation and variance and is subject to rational analysis using them. 

1.7. L a p l a c e . Although Laplace is known primarily as an astronomer, he devel-
oped a great deal of theoretical physics. (The differential equation satisfied by 
harmonic functions is named after him.) He also understood the importance of 
probabilistic methods for processing the results of measurements. In his Theorie 
analytique des probabilites, he proved tha t the distribution of the average of ran-
dom observational errors tha t are uniformly distributed in an interval symmetric 
about zero tends to the normal distribution as the number of observations increases. 

9 Pronounced "Keys." 
1 0 One feels the lack of this concept very strongly in the writing on economics by Aristotle and 
his followers, especially in their condemnation of the practice of lending money at interest. 
1 1 Weber's result was publicized by Gustave Theodor Fechner (1801-1887) and is now known as 
the Weber-Fechner law. 
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Except for using the letter c where we now use e to denote the base of natural loga-
rithms, he had what we now call the central limit theorem for independent uniformly 
distributed random variables. 

1 . 8 . L e g e n d r e . In a treatise on ways of determining the orbits of comets, pub-
lished in 1805, Legendre dealt with the problem that frequently results when obser-
vation meets theory. Theory prescribes a certain number of equations of a certain 
form to be satisfied by the observed quantities. These equations involve certain 
theoretical parameters tha t are not observed, but are to be determined by fitting 
observations to the theoretical model. Observation provides a large number of em-
pirical, approximate solutions to these equations, and thus normally provides a 
number of equations far in excess of the number of parameters to be chosen. If the 
law is supposed to be represented by a straight line, for example, only two constants 
are to be chosen. But the observed da ta will normally not lie on the line; instead, 
they may cluster around a line. How is the observer to choose canonical values for 
the parameters from the observed values of each of the quantities? 

Legendre's solution to this problem is now a familiar technique. If the theo-
retical equation is y — / ( x ) , where f(x) involves parameters á, â,..., and one has 
da ta points (xjt, t/t), k = 1 , . . . , n, sum the squares of the "errors" f(xk) — j/t to get 
an expression in the parameters 

ç 

£ ( « , / ? , . . . ) = £ ( / ( x f c ) - j / f c ) 2 , 
fe=l 

and then choose the parameters so as to minimize E. For fitting with a straight 
line y — ax + b, for example, one needs to choose E(a, b) given by 

ç 

E{a,b) = ^2(axk + b-yk)
2 

k=l 

so tha t 

0 £ _ 0 _ <W 

da db 
1.9. G a u s s . Legendre was not the first to tackle the problem of determining the 
most likely value of a quanti ty ÷ using the results of repeated measurements of it, 
say Xfc, k = 1 , . . . ,n. In 1799 Laplace had tried the technique of taking the value ÷ 
tha t minimizes the sum of the absolute e r rors 1 2 |x — xk\- But still earlier, in 1794 
as shown by his diary and correspondence, the teenager Gauss had hit on the least-
squares technique for the same purpose. However, as Reich (1977, p. 56) points 
out, Gauss did not consider this discovery very important and did not publish it 
until 1809. In 1816 Gauss published a paper on observational errors, in which he 
discussed the most probable value of a variable based on a number of observations 
of it. His discussion was much more modern in its notation than those that had 
gone before, and also much more rigorous. He found the likelihood of an error of 
size ÷ to be 

where h was what he called the measure of precision. He showed how to estimate 
this parameter by inverse-probability methods. In modern terms, l/\/2h is the 

1 2 This method has the disadvantage that one large error and many small errors count equally. 
The least-squares technique avoids that problem. 
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standard deviation. This work brought the normal distribution into a more or less 
s tandard form, and it is now often referred to as the Gaussian distribution. 

1.10. P h i l o s o p h i c a l i s sues . The notions of chance and necessity have always 
played a large role in philosophical speculation; in fact, most books on logic are 
kept in the philosophy sections of libraries. Many of the mathematicians who have 
worked in this area have had a strong interest in philosophy and have speculated on 
what probability means. In so doing, they have come up against the same difficulties 
that confront natural philosophers when trying to explain how induction works. 
Granted tha t like Pavlov's dogs and Skinner's pigeons (see Chapter 1), human 
beings tend to form expectations based on frequent, but not necessarily invariable 
conjunctions of events and seem to find it very difficult to suspend judgment and live 
with no belief where there is no evidence, 1 3 can philosophy offer us any assurance 
that proceeding by induction based on probability and statistics is any better than, 
say, divination such as one finds in the / Ching? Are insurance companies acting 
on pure faith when they offer to bet us tha t we will survive long enough to pay 
them more money in premiums than they will pay out when we die? If probability 
is a subjective mat ter , is subjectivity the same as arbitrariness? 

Wha t , then, is probability, when applied to the physical world? Is it merely 
a mat ter of frequency of observation, and consequently objective? Or do human 
beings have some innate faculty for assigning probabilities? For example, when we 
toss a coin twice, there are four distinguishable outcomes: HH, HT, ÔÇ, T T . Are 
these four equally likely? If one does not know the order of the tosses, only three 
possibilities can be distinguished: two heads, two tails, and one of each. Should 
those be regarded as equally likely, or should we imagine tha t we do know the 
order and distinguish all four possibilit ies? 1 4 Philosophers still argue over such 
matters . Simeon-Denis Poisson (1781-1840) seemed to be having it both ways in 
his Recherches sur la probabilite des jugemens (Investigations into the Plausibility 
of Inferences) when he wrote tha t 

The probability of an event is the reason we have to believe tha t 
it has taken place, or tha t it will take place. 

and then immediately followed up with 

The measure of the probability of an event is the ratio of the num-
ber of cases favorable to that event, to the total number of cases 
favorable or contrary. 

In the first statement, he appeared to be defining probability as a subjective 
event, one's own personal reason, but then proceeded to make tha t reason an objec-
tive thing by assuming equal likelihood of all outcomes. Wi thout some restriction 
on the universe of discourse, these definitions are not very useful. We do not know, 
for example, whether our automobile will s tar t tomorrow morning or not, but if 

1 3 In his Formal Logic, Augustus de Morgan imagined asking a person selected at random for an 
opinion whether the volcanoes—he meant craters—on the unseen side of the moon were larger 
than those on the side we can see. He concluded, "The odds are, that though he has never thought 
of the question, he has a pretty stiff opinion in three seconds." 
1 4 If the answer to that question seems intuitively obvious, please note that in more exotic appli-
cations of statistics, such as in quantum mechanics, either possibility can occur. Fermions have 
wave functions that are antisymmetric, and they distinguish between HT and TH; bosons have 
symmetric wave functions and do not distinguish them. 
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the probability of its doing so were really only 50% because there are precisely 
two possible outcomes, most of us would not bother to buy an automobile. Surely 
Poisson was assuming some kind of symmetry tha t would allow the imagination to 
assign equal likelihoods to the outcomes, and intending the theory to be applied 
only in those cases. Still, in the presence of ignorance of causes, equal probabilities 
seem to be a reasonable start ing point. The law of entropy in thermodynamics, for 
example, can be deduced as a tendency for an isolated system to evolve to a state 
of maximum probability, and maximum probability means the maximum number 
of equally likely states for each particle. 

1.11. L a r g e n u m b e r s a n d l imi t t h e o r e m s . The idea of the law of large num-
bers was s ta ted imprecisely by Cardano and with more precision by Jakob Bernoulli. 
To better carry out the computations involved in using it, de Moivre was led to 
approximate the binomial distribution with what we now realize was the normal 
distribution. He, Laplace, and Gauss all grasped with different degrees of clar-
ity the principle (central limit theorem) that when independent measurements are 
averaged, they tend to shape themselves into the bell-shaped curve. 

The law of large numbers was given its name in the 1837 work of Poisson just 
mentioned. Poisson discovered an approximation to the probability of getting a t 
most k successes in ç trials, valid when ç is large and the probability ñ is small. 
He thereby introduced what is now known as the Poisson distribution, in which the 
probability of k successes is given by 

- ë ë* 

The Russian mathematician Chebyshev introduced the concept of a random 
variable and its mathematical expectation. He is best known for his 1846 proof of 
the weak law of large numbers for repeated independent trials. Tha t is, he showed 
that the probability tha t the actual proportion of successes will differ from the 
expected proportion by less than any specified å > 0 tends to 1 as the number 
of trials increases. In 1867 he proved what is now called Chebyshev's inequality: 
The probability that a random variable will assume a value more than [what is now 
called] k standard deviations from its mean is at most 1/k2. This inequality was 
published by Chebyshev's friend and translator Irenee-Jules Bienayme (1796 1878) 
and is sometimes called the Chebyshev-Bienayme inequality (see Heyde and Seneta, 
1977). This inequality implies the weak law of large numbers. In 1887 Chebyshev 
also gave an explicit s ta tement of the central limit theorem for independent random 
variables. 

The extension of the law of large numbers to dependent trials was achieved 
by Chebyshev's student Andrei Andreevich Markov (1856-1922). The subject of 
dependent trials—known as Markov chains—remains an object of current research. 
In its simplest form it applies to a system in one of a number of states { S i , . . . , Sn} 
which a t specified times may change from one state to another. If the probability 
of a transit ion from Si t o Sj is Pij, the matr ix 

(Pu Pln\ 

P = 

\Pnl PnnJ 
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is called the transition matrix. If successive transitions are all independent of one 
another, one can easily verify that the matrix power Pk gives the probabilities of 
the transitions in fc steps. 

2. S t a t i s t i c s 

The subject of probability formed the theoretical background for the empirical sci-
ence known as statistics. Some theoretical analysis of the application of probability 
to hypothesis testing and modification is due to Thomas Bayes (1702-1761), a 
British clergyman. Bayes' articles were published in 1764-1765 (after his death) by 
Rev. Richard Price (1723 1791). Bayes considered the problem opposite to that 
considered by Jakob Bernoulli. Where Bernoulli assigned probabilities to the event 
of getting fc successes in ç independent trials, assuming the probability of success 
in each trial was p, Bayes analyzed the problem of finding the probability ñ based 
on an observation tha t fc successes and n-k failures have occurred. In other words, 
he tried to estimate the parameter in a distribution from observed data . His claim 
was tha t ñ would lie between á and b with a probability proport ional to the area 
under the curve y = xk(l - x)n~k between those limits. He then analyzed a more 
elaborate example. Suppose we know that the probability of event Â is p, given 
that event A has occurred. Suppose also tha t , after a number of trials, without 
reference to whether A has occurred or not, we find that event Â has occurred m 
times and has not occurred ç times. What probability should be assigned to Áº 
Bayes' example of event A was a line drawn across a billiard table parallel to one of 
its sides at an unknown distance ÷ from the left-hand edge. A billiard ball is rolled 
at random across the table, coming to rest on the left of the line m times and on 
the right of it ç times. Assuming that the width of the table is a, the probability 
of the ball resting left of the line is ÷ /á , and the probability t ha t it rests on the 
right is 1 — ÷/a. How can we determine ÷ from the actual observed frequencies 
m and n? Bayes' answer was that the probability that ÷ lies between 6 and c is 
proportional to the area under the curve y = xm(a — x)n between those two val-
ues. This first example of statistical estimation is also the first maximum-likelihood 
estimation, since the "density" function xm(a - x)n has its maximum value where 
m ( a - x ) = nx , that is, ÷ = a~^, so tha t the proportion m:n = x:a — x holds. It 
seems intuitively reasonable tha t the most likely value of ÷ is the value tha t makes 
this proportion correct, and that the likelihood decreases as ÷ moves away from 
this value. This is the kind of reasoning used by Gauss in his 1816 paper on the 
estimation of observational errors to find the parameter (measure of precision) in 
the normal distribution. To derive this result, Bayes had to introduce the concept 
of conditional probability. The probability of A, given that Â has occurred, is equal 
to the probability tha t both events happen divided by the probability of B. (If Â 
has occurred, it must have positive probability, and therefore the division is legit-
imate.) Although Bayes stated this much with reasonable clarity (see Todhunter, 
1865, p . 298), the full statement of what is now called Bayes' theorem (see below) 
is difficult to discern in his analysis. 

The word statistics comes from the state records of births, deaths, and other 
economic facts that governments have always found it necessary to keep for ad-
ministrative purposes. The raw da ta form far too large a set of numbers to be 
analyzed individually in most cases, and that is where probabilistic models and 
inverse-probability reasoning, such as tha t used by Bayes and Gauss become most 
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useful. An early example was an argument intended to prove tha t the world was 
designed for human habi tat ion based on the ratio of male to female births. In 1710 
Queen Anne's physician John Arbuthnott (1667-1735) published in the Philosoph-
ical Transactions of the Royal Society a paper with the ti t le, "An argument for 
Divine Providence, taken from the constant regularity observ'd in the births of 
both sexes." In tha t paper Arbuthnot t presented baptismal records from the years 
1629 through 1710 giving the number of boys and girls baptized during those years. 
In each of the 82 years, without exception, the number of boys exceeded the num-
ber of girls by amounts varying from less than 3% in 1644 (4107 boys, 3997 girls) 
to more than 15% in 1659 (3209 boys, 2781 girls). Arbuthnot t inferred correctly 
tha t the hypothesis t ha t bir ths of boys and girls were equally likely was not plau-
sible, since it implied tha t an event with probability 2 ~ 8 2 had occurred. He even 
consulted a table of logarithms to write this number out in decimal form, so as to 
impress his readers: 

1 

4 8360 0000 0000 0000 0000 0000 ' 
Exhibiting the usual haste to reach conclusions in such matters , Arbuthnott con-
cluded tha t this constant imbalance must be the result of a divine plan to offset the 
higher mortali ty of males due to violence and accidents . 1 5 He did not, for example, 
consider the possibility tha t more girls than boys were simply abandoned by moth-
ers and fathers unable to support them. His final conclusion was tha t polygamy 
was against nature. 

2 .1 . Q u e t e l e t . The first work on statistics proper was a treatise of 1835 entitled 
Physique social, wri t ten by the Belgian scientist Lambert Quetelet (1796-1874). 
Quetelet had been trained in both mathematics and astronomy, and he was famil-
iar with the normal curve. He was the first to use it to describe variables other 
than those representing observational errors. He noticed certain analogies between 
probabilistic concepts and physical concepts, and he introduced them into social 
analysis. The most famous of these concepts was the "average person" (I'homme 
moyen), which he hoped could play a mathematical role similar to its physical 
analog, the center of gravity of a physical body. 

2.2. S ta t i s t i c s in phys i c s . One of the places in which individual phenomena 
are too numerous and too chaotic for analysis is in physics at the molecular level 
and below. Statistics has become an important tool in analyzing such systems. A 
very good example is thermodynamics, in which thermal energy is considered to 
be stored in a hypothetical (unobserved) translational a n d / o r rotational motion of 
molecules against resisting forces that are equally hypothetical. In the simplest 
case, tha t of an ideal gas, there are no resisting forces and there is no rotational 
motion of molecules. All the thermal energy is stored as the translational kinetic 
energy of the molecules, which determine its temperature. At room temperature 
helium, which is monatomic, is the best approximation to an ideal gas. 

In a way, thermodynamics, and in particular its famous second law, is only 
common sense, but physics needs to explain that common sense. Why can heat 
flow only from higher temperature to lower, just as water can flow only downhill? If 
temperature is determined by the translational kinetic energy of molecules, objects 

1 5 In his day, death from contagious disease was at least as common in women as in men, perhaps 
even more common, due to the dangers of childbirth. Death from the debilities associated with 
old age was relatively uncommon. 
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at a higher temperature have molecules with higher kinetic energy—they are either 
more massive or moving faster. When two bodies are in contact, their molecules 
collide along the interface. Thermal energy then diffuses just as a gas diffuses when 
the boundaries confining it are removed. James Clerk Maxwell (1831-1879) created 
a theory of gases in which, he thought, the second law of thermodynamics could be 
violated. In an 1867 letter to Peter Guthr ie Tait (1831-1901), he imagined a per-
son or other agency, later dubbed "Maxwell's demon" by Willam Thomson (Lord 
Kelvin, 1824-1907). The demon's job was to s tand guard at a small interface be-
tween two objects at different temperatures and allow only those molecules to pass 
through t h a t would cause the temperature difference to increase. 1 6 Statistically, 
it was possible tha t thermal energy might flow "uphill," so to speak. The question 
was a quanti ta t ive one: How likely was tha t to happen? 

The workings of this process can most easily be seen in the case of a sample 
of an ideal monatomic gas, whose pressure (P), volume (V), and absolute Kelvin 
temperature Ô satisfy the equation of s tate PV = nRT = kT, where ç is the 
number of moles of gas present and R is a universal constant of proportionality. 
The quant i ty S = kln(T3V/2) is called the entropy of the s a m p l e . 1 7 

The evolution of a thermally isolated system can be thought of as the effect 
of bringing many small samples of gas a t different temperatures into contact. If a 
sample of n j moles of the ideal monatomic gas occupying volume V\ a t temperature 
Ôé is placed in thermally isolated contact with a sample of n 2 moles occupying 
volume V2 a t temperature T2, the total internal energy will be |(fci + k2)T = 
|fciTi + \k2T2, where Ô is the temperature after equilibrium is reached. Thus 
Ô = (fci7i)/(fci + fc2) + {k2T2)/{ki + k2) = cTx + (1 - c)T2. The ul t imate entropy 
of the combined system will then be 

(fc! + fc2) In ( (c7 \ + (1 - c)T2)
1 (V, + V2)). 

This quanti ty is larger than the combined initial entropy of the two parts, 

fc) l n ( T 1

3 / V 1 ) + f c 2 l n ( r 2

3 / 2 V 2 ) , 

as one can see easily since c = (k\)l(k\ + fc2).
18 Thus, entropy increases for this 

system of two samples, and by extension in any thermally isolated system. 
Maxwell began to urge a statistical view of thermodynamics in 1868, comparing 

the velocities of gas molecules with the white and black balls in the urn models tha t 
had been used for 150 years. In particular, he noted the tendency of these velocities 
to assume the normal distribution, as a consequence of the central limit theorem. 
When he became head of the Cavendish Laboratory at Cambridge in 1871, he said 
in his inaugural lecture that the statistical method 

1 6 There is more to Maxwell's demon than is implied here. Consider, for example, what energy is 
required for the demon to acquire the information about each molecule, decide whether to allow 
it to pass, and enforce the decision. 
1 7 Strictly speaking, it is not possible to take the logarithm of a quantity having a physical 
dimension. The expression J"(l/V)dV = ln(V) should be interpreted in dimensionless terms. 
That is, V is really V/Vu, where Vu is a unit volume, and likewise dV = l/VudV and ln(V) is 
ln(V/V u). 
1 8 The function 31n(x)/2 is concave, so that a point on an arc of its graph lies above the 

chord of that arc, and (assuming without loss of generality that V\ > V-J) In ( l + (Vi)/(V2)) > 

ln( (Vi ) / (V 2 ) ) > e I n ( ( V i ) / ( V a ) ) . 
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involves an abandonment of strict dynamical principles and an 
adoption of the mathematical methods belonging to the theory 
of probabil i ty. . . if the scientific doctrines most familiar to us had 
been those which must be expressed in this way, it is possible 
tha t we might have considered the existence of a certain kind of 
contingency a self-evident truth, and treated the doctrine of philo-
sophical necessity as a mere sophism. [Quoted by Porter, (1986), 
pp. 201-202] 

2 . 3 . T h e m e t a p h y s i c s of p r o b a b i l i t y a n d s t a t i s t i c s . The statistical point of 
view required an adjustment in thinking. Maxwell appeared to like the indetermi-
nacy that it introduced; Einstein was temperamentally opposed to it. Although 
deterministic and probabilistic models might both produce the same predictions 
because of the law of large numbers, there was a theoretical difference tha t could 
be seen clearly in thermodynamics. If the laws of Newtonian mechanics applied 
to the point-particles tha t theoretically made up, say, an ideal gas, the s tate of 
the gas should evolve equally well in either direction, since those mechanical laws 
are time-symmetric. Imagine, then, two identical containers containing the same 
number of molecules of an ideal gas that , at a given instant, are in exactly the same 
positions relative to the boundaries of the containers and such t ha t each particle 
is moving with equal speed but in exactly opposite direction, to the particle in the 
corresponding place in the other container. By the laws of mechanics, the past 
states of each container must be the future states of the other. But then one of the 
two must be evolving in a direction that decreases entropy, in contradiction to the 
second law of thermodynamics. 

The explanation of tha t "must be" is statistical. It is not absolutely impossible 
for the mechanical system to be in a state tha t would cause it to evolve, following the 
deterministic laws of mechanics, in a direction of decreasing entropy. But the initial 
conditions tha t lead to this evolution are extremely unlikely, so unlikely that no one 
ever expects to observe such a system. As an illustration, Newtonian mechanics 
can perfectly well explain water flowing uphill given that the initial velocities of all 
the water molecules are uphill. But no one ever expects these initial conditions to 
be satisfied in practice, in the absence of a tsunami. An additional consideration, 
which Maxwell regarded as relevant, was tha t in some cases initial-value problems 
do not have a unique solution. For example, the equation | · ^JL — y 1 / 4 — ï with 
initial condition y = 0 when t = 0 is satisfied for t > 0 by both relations y = 0 and 
y = t.s. Shortly before his death, Maxwell wrote to Francis Galton: 

There are certain cases in which a material system, when it comes 
to a phase in which the particular path which it is describing co-
incides with the envelope of all such paths may either continue in 
the particular par th or take to the envelope (which in these cases 
is also a possible path) and which course it takes is not determined 
by the forces of the system (which are the same for bo th cases) but 
when the bifurcation of the path occurs, the system, ipso facto, in-
vokes some determining principle which is extra physical (but not 
extra natural) to determine which of the two paths it is to follow. 
[Quoted in Porter, 1986, p. 206] 
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Statistics has been the focus of metaphysical debate, just like mathematics . For 
some early thinkers, such as Augustus de Morgan, the applications of probability 
were simply a mat ter of human ignorance: If we knew any reason for a system to 
be in one state rather than another, we would posit tha t reason as a physical law. 
In the absence of such a reason, all possible states are equally likely. A principle 
very close to this one is the basis of the second law of thermodynamics as now 
deduced in statistical physics. Yet other thinkers took a different point of view, 
positing some resemblance of the future to the past . This principle is the basis of 
the "frequentist" philosophy, which asserts tha t the probability of a future event is 
to be hypothesized from its occurrence in the past . The s tandard example is t h e 
question "What is the probability that the sun will rise tomorrow?" Assuming tha t 
we have adequate records tha t would have noted any exceptions to this very regular 
event over the past 5,000 years, a purely frequentist statistician would offer odds 
of 1,800,000 to 1 in favor of the event happening tomorrow. However, as William 
Feller (1906-1970) pointed out in his classic textbook of probability, our records 
really do not guarantee that there have been no exceptions. Our confidence tha t 
the sun rose in the remote past is based on the same considerations t ha t give us 
confidence t ha t it will rise tomorrow. 

Opposed to the frequentists are the Bayesians, who believe it is possible to 
assign a probability to an event before a similar event has occurred. Classical 
probabilists, with their urn models, drawings from a deck of cards, and throws 
of dice, were in effect Bayesians who believed tha t symmetry considerations and 
intuition enabled people to assign probabilities to hypothetical events. The results 
of experiment, where available, helped to revise those assignments through Bayes' 
theorem: / / the events A\,...,An are mutually exclusive and exhaustive, and Â is 
any event, then 

P(A LM - P ^ f c A i ? ) - P{Ak)P{B\Ak) 

nAk\B)- p[B) - Ó . Ñ ( â ì . ) Ñ ( Ë . ) · 

The use of this formula is as follows. From some basic principles of symmetry, 
or purely subjectively, the events Ak are assigned hypothetical probabilities. Then 
the conditional probability of event Â is computed assuming each of these events. 
After an experiment in which event Â occurs, the probability of Ak is "updated" 
to the value of Ñ(Áê\Â) computed from this formula. The simplest illustration is 
the case of a chest containing two drawers. Drawer 1 contains two gold coins, and 
drawer 2 contains a silver coin and a gold coin. The two events are Á÷: drawer 1 
is chosen; A2: drawer 2 is chosen. Each is assigned a preliminary probability of \ . 
Event B is "a gold coin is drawn from the drawer." The conditional probabilities 
are easily seen to be P{B\A{) = 1, Ñ{Â\Á·é) = \. If in fact a gold coin is drawn, 
then 

I. é É ï 
Ñ{Áé\Â) 

and 

_2 _ 2_ _ f 
1 2 + 2 2 4 J 

1 1 

= T - T - ^ T T = i = \ 
1 " Ï ô 22 ô 

2.4 . Corre la t ions and s tat i s t ica l inference . The many intricate techniques 
tha t statisticians have developed today for analyzing da ta to determine if two vari-
ables are correlated are far too complex to be discussed in full here. But we cannot 
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leave this topic without a t least mentioning one of the giants in this area, Karl 
Pearson (1856-1936), a British polymath who studied philosophy and law and was 
even called to the bar, al though he never practiced. As professor a t University 
College, London, he became interested in Darwin's theory of evolution and wrote 
a number of papers between 1893 and 1912 on the mathematics of evolution. In 
an 1893 paper he coined the term standard deviation to denote the natural unit of 
probability, and in 1900 he introduced the chi-square test of significance, a mainstay 
of applied statistics nowadays . 1 9 Mathematically, the chi-square distribution with 
ç degrees of freedom is the distribution of the sum of the squares of ç independent 
standard normal distributions. What tha t means is tha t if the probability tha t Xk 

lies between a and b is given by the normal density,: 

P{a<Xk<b) = -j=j\-^ dt, 

and each of these probabilities is independent of all the others, the probability tha t 
X\ Ë 1- X2 lies between 0 and c is given by the chi-square density with ç degrees 
of freedom: 

P{X\ + -.. + xl<c) = [ d x . 

The chi-square distribution is useful because, if X\,..., Xn are independent random 
variables with expected positive values ì é , . . . , ì „ , the random variable 

2 = ( × é - ì é ) 2 ( × ç - ì ç ) 2 

Á. ' ' 

ìé ìç 

has the chi-square distr ibution with ç - 1 degrees of freedom. One can then deter-
mine whether actual deviations of the variables Xk from their expected values are 
likely to be random (hence whether bias is present) by computing the value of ÷2 

and comparing it with a table of chi-square values. 
To illustrate the connection between the chi-square and the standard normal 

distribution, Fig. 3 shows the frequency histogram for a computer experiment in 
which 1000 random values were computed for the sum of the squares of 10 standard 
normal random variables. This histogram is superimposed on the graph of the chi-
square density function with 10 degrees of freedom. 

The word bias in the preceding paragraph has a purely statistical meaning of 
"not random." The rather pejorative meaning it has in everyday life is an indication 
of the connection tha t people tend to make between fairness and equal outcomes. 
If we find tha t some identifiable group of people is underrepresented or overrepre-
sented in some other population—prisons or universities or other institutions—we 
proceed on the assumption tha t some cause is operating. In doing so, one must 
beware of jumping to conclusions, as Arbuthnott did. He was quite correct in his 
conclusion tha t the sexual imbalance was not a random deviation from a general 
rule of equality, but there are all kinds of possible explanations for the bias. An even 
larger sexual imbalance exists in China today, for example, as a result of the one-
child policy of the Chinese government, combined wi th a tradit ional social pressure 
to produce male heirs. Evolutionary theory produces an explanation very similar 
to Arbuthnot t ' s , but based on adaptat ion rather than intelligent, human-centered 
design. 

1 9 The symbol ÷ 2 was Pearson's abbreviation for x2 + y2. 
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F I G U R E 3. Comparison of the chi-square distribution and the fre-
quencies for the sum of the squares of ten independent s tandard 
normal random variables when the experiment is performed 1000 
times. 

One of the many pitfalls of statistical inference was pointed out by Pearson's 
colleague George Udny Yule (1871- 1951) in 1903. Following up on Pearson's 1899 
paper "On the spurious correlation produced by forming a mixture of heterogeneous 
but uncorrelated material," Yule produced a set of two 2 x 2 tables, each of which 
had no correlation, but produced a correlation when combined (see David and 
Edwards, 2001, p. 137). Yule's result was, for some reason, not given his name; 
but because it was publicized by Edward Hugh Simpson in 1 9 5 1 , 2 0 it came to be 
known as Simpson's paradox.21 

Simpson's paradox is a counterintuitive oddity, not a contradiction. It arises 
frequently in practice. An example of it occurred in the admissions da ta from 
the graduate school of the University of California a t Berkeley in 1973. These 
da ta raised some warning flags. Of the 12,763 applicants, 5232 were admit ted, 
giving an admission rate of 4 1 % . However, investigation revealed tha t 44% of 
the male applicants had been admitted and only 35% of the female applicants. 
There were 8442 male applicants, 3738 of whom were accepted, and 4321 female 
applicants, 1494 of whom were accepted. Simple chi-square testing showed tha t the 
hypothesis tha t these numbers represent a random deviation from a sex-independent 
acceptance rate of 4 1 % was not plausible. There was unquestionably bias. The 
question was: Did this bias amount to discrimination? If so, who was doing the 
discriminating? 

For more information on this case study and a very surprising conclusion, see 
"Sex bias in graduate admissions: da ta from Berkeley," Science, 187 , 7 February 
1975, 398-404. In tha t paper, the authors analyzed the very evident bias in admis-
sions to look for evidence of discrimination. Since admission decisions are made 
by the individual departments, it seemed logical to determine which departments 
had a noticeably higher admission rate for men than for women. Surprisingly, the 
authors found only four such departments (out of 101), and the imbalance resulting 
from those four departments was more than offset by six other depar tments tha t 
had a higher admission rate for women. It appears tha t the source of the bias was 

2 0 See "The interpretation of interaction in contingency tables," Journal of the Royal Statistical 
Society, Series Â, 13, 238-241. 
2 1 The name Simpson's paradox goes back at least to the article of C. R. Blyth, "On Simpson's 
paradox and the sure-thing principle," in the Journal of the American Statistical Association, 6 7 
(1972), 364-366. 
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hiding itself very well. The curious reader is referred to Problem 18.7, where the 
paradox is explained with an even more extreme example. 

Q u e s t i o n s a n d p r o b l e m s 

18 .1 . Weather forecasters are evaluated for accuracy using the Briers score. The 
a posteriori probability of rain on a given day, judged from the observation of tha t 
day, is 0 if rain did not fall and 1 if rain did fall. A weather forecaster who said 
(the day before) tha t the chance of rain was 30% gets a Briers score of 30 2 = 900 
if no rain fell and 7 0 2 = 4900 if rain fell. Imagine a very good forecaster, who over 
many years of observation learns that a certain weather pat tern will bring rain 30% 
of the time. Also assume tha t for the sake of negotiating a contract tha t forecaster 
wishes to optimize (minimize) his or her Briers score. Should tha t forecaster state 
truthfully t ha t the probability of rain is 30%? If we assume tha t the prediction and 
the outcome are independent events, we find that , for the days on which the true 
probability of rain is 30% the forecaster who makes a prediction of a 30% probability 
would in t h e long run average a Briers score of 0.3- 7 0 2 + 0 .7-30 2 = 2100. This score 
is better (in the sense of a golf score—it is lower) than would result from randomly 
predicting a 100% probability of rain 30%> of the t ime and a 0%> probability 70% of 
the t ime. T h a t strategy will be correct an expected 58% of the t ime (.58 = . 3 2 + .7 2 ) 
and incorrect 42% of the time, resulting in a Briers score of .42 · 100 2 = 4200. Let 
ñ be the actual probability of rain and ÷ the forecast probability. Assuming tha t 
the event and the forecast are independent, show tha t the expected Briers score 
10 4 (p ( l — x)2 + (1 — p ) x 2 ) is minimized when ÷ = p. [Note: If this result did not 
hold, a meteorologist who prized his/her reputation as a forecaster, based on the 
Briers measure, would be well advised to predict an incorrect probability, so as to 
get a better score for accuracy!] 

18 .2 . We saw above t ha t Cardano (probably) and Pascal and Leibniz (certainly) 
miscalculated some elementary probabilities. As an illustration of the counter-
intuitive na ture of many simple probabilities, consider the following hypothetical 
games. (A casino could probably be persuaded to open such games if there was 
enough public interest in them.) In game 1 the dealer lays down two randomly-
chosen cards from a deck on the table and turns one face up. If t ha t card is not an 
ace, no game is played. The cards are replaced in the deck, the deck is shuffled, and 
the game begins again. If the card is an ace, players are invited to bet against a 
fixed winning amount offered by the house that the other card is also an ace. W h a t 
winning should the house offer (in order to break even in the long run) if players 
pay one dollar per bet? 

In game 2 the rules are the same, except that the game is played only when the 
card turned up is the ace of hearts. Wha t winning should the house offer in order 
to break even charging one dollar to bet? Why is this amount not the same as for 
game 1? 

18 .3 . Use the Maclaurin series for e - ' 1 / 2 ) ' 2 to verify tha t the series given by de 
Moivre, which was 
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represents the integral 

í/2ð Jo 
dt, 

which is the area under a standard normal (bell-shaped) curve above the mean, but 
by at most one standard deviation, as given in many tables. 

18 .4 . Use Daniel Bernoulli's concept of utility to explain why only a person with 
astronomical amounts of money should play a Petersburg paradox-type game. In 
your explanation, take account of what the utility of the stakes must be for a 
gambler versus the utility of the gain. Make an analogy between risk and work in 
this regard. A laborer exchanges t ime and effort for money; a gambler exchanges 
risk for potential gain. Remembering tha t all economic decisions are made "at the 
margin," at what point does additional work (or risk) not bring enough additional 
utility to be worth the exchange? 

18 .5 . Radium-228 is an unstable isotope. Each a tom of Ra-228 has a probability 
of 0.1145 (about 1 chance in 9, or about the probability of rolling a 5 with two 
dice) of decaying to form an atom of actinium within any given year. This means 
that the probability tha t the atom will survive the year as an a tom of Ra-228 is 
1 —0.1145 = 0.8855. Denote this "one-year survival" probability by p. Because any 
sample of reasonable size contains a huge number of atoms, t h a t survival probability 
(0.8855) is the proportion of the weight of Ra-228 tha t we would expect to survive 
a year. 

If you had one g ram of Ra-228 to begin with, after one year you would expect to 
have ñ = 0.8855 grams. Each succeeding year, the weight of the Ra-228 left would be 
multiplied by p, so t h a t after two years you would expect to have ñ2 = (0.8855) 2 = 
0.7841 grams. In general, after t years, if you started with Wo grams, you would 
expect to have W = Wop* grams. Now push these considerations a little further 
and determine how strongly you can rely on this expectation. Recall Chebyshev's 
inequality, which says tha t the probability of being more t han k s tandard deviations 
from the expected value is never larger than (1/fc) 2 . W h a t we need to know to 
answer the question in this case is the standard deviation ó. 

Our assumption is that each atom decays a t random, independently of what 
happens to any other atom. This independence allows us t o think tha t observing 
our sample for a year amounts to a large number of "independent trials," one for 
each atom. We test each atom to see if it survived as an Ra-228 atom or decayed 
into actinium. Let No be the number of a toms t ha t we s tar ted with. Assuming 
tha t we started with 1 gram of Ra-228, there will be No = 2.642 · 1 0 2 1 a toms of Ra-
228 in the original s ample . 2 2 Tha t is a very large number of a toms. The survival 
probability is ñ = 0.8855. For this kind of independent tr ial , as mentioned the 
standard deviation with JV0 trials is 

We write the standard deviation in this odd-looking way so tha t we can express it 
as a fraction of the number No t ha t we started with. Since weights are proportional 
to the number of a toms, tha t same fraction will apply to the weights as well. 

2 2 According to chemistry, the number of atoms in one gram of Ra-228 is the Avogadro number 
6.023 • 1 0 2 3 divided by 228. 
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Put in the given values of ñ and iV0 to compute the fraction of the initial sample 
tha t constitutes one s tandard deviation. Since the original sample was assumed to 
be one gram, you can regard the answer as being expressed in grams. The use 
Chebyshev's inequality to estimate the probability tha t the amount of the sample 
remaining will differ from the theoretically predicted amount by 1 millionth of a 
gram (1 microgram, t ha t is, 10~ 6 grams)? [Hint: How many standard deviations 
is one millionth of a gram?] 

18 .6 . Analyze the revised probabilities in the problem of two drawers, one contain-
ing two gold coins, t he other a gold and a silver coin, given an experiment in which 
event Â occurs, if Â is the event, "a silver coin is drawn." 

18 .7 . Consider the case of 200 men and 200 women applying to a university con-
sisting of only two different departments, and assume tha t the acceptance rates are 
given by the following table. 

M e n W o m e n 
D e p a r t m e n t A 120/160 32/40 
D e p a r t m e n t Â 8/40 40/160 

Observe tha t the admission rate for men in department A is | , while tha t for women 
is I. In department Â the admission rate for men is g and for women it is \ . In both 
cases, the people actually making the decisions are admit t ing a higher proportion 
of women than of men. Now explain the source of the bias, in our example and at 
Berkeley in simple, nonmathematical language. 





C H A P T E R 19 

Logic and Set Theory 

Logic has been an important part of western mathematics since the time of Plato. 
It also has a long history in other cultures, such as the Hindu and Buddhist culture 
(see Vidyabhusana, 1971). Logic became mathematized in the nineteenth century, 
in the work of mostly British mathematicians such as George Peacock (1791-1858), 
George Boole (1815-1864), William Stanley Jevons (1835-1882), and Augustus de 
Morgan, and a few Americans, notably Charles Sanders Peirce. 

Set theory was the creation of nineteenth-century analysts and geometers, 
prominent among them Georg Cantor (1845-1918), whose inspiration came from 
geometry and analysis, mostly the latter. It resonated with the new abstraction 
tha t was entering mathematics from algebra and geometry, and its use by the 
French mathematic ians Borel, Lebesgue, and Baire as the framework for their the-
ories of integration and continuity helped to establish it as the foundation of all 
mathematics . 

1. Log ic 

The mathematizat ion of logic has a prehistory that goes back to Leibniz (not pub-
lished in his lifetime), bu t we shall focus on mostly the nineteenth-century work. 
After a brief discussion of the preceding period, we examine the period from 1847 to 
1930. This period opens with the treatises of Boole and de Morgan and closes with 
Godel 's famous incompleteness theorem. Our discussion is not purely about logic in 
the earlier par ts , since the earlier writers considered both logical and probabilistic 
reasoning. 

1.1. F r o m a l g e b r a t o logic . Leibniz was one of the first to conceive the idea of 
creating an artificial language in which to express propositions. He compared formal 
logic to the lines drawn in geometry as guides to thought. If the language encoded 
thought accurately, thought could be analyzed in a purely mechanical manner: 

Then, in case of a difference of opinion, no discussion between two 
philosophers will be any longer necessary, as (it is not) between 
two calculators. It will rather be enough for them to take pen 
in hand, set themselves to the abacus and (if it so pleases, at the 
invitation of a friend) say to one another: Let us calculate! [Quoted 
by Bochenski, 1961, p . 275] 

In another place he wrote: 

Ordinary languages, though mostly helpful for the inferences of 
thought, are yet subject to countless ambiguities and cannot do the 
task of a calculus, which is to expose mistakes in inference.. . This 
remarkable advantage is afforded up to date only by the symbols of 
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arithmeticians and algebraists, for whom inference consists only in 
the use of characters, and a mistake in thought and in the calculus 
is identical. [Quoted by Bochenski, 1961, p. 275] 

The ideal enunciated by Leibniz remains largely unfulfilled when it comes to 
settling philosophical disagreements. It reflects an oversimplified and optimistic 
view of human beings as basically rational creatures. This sort of optimism contin-
ued into the early nineteenth century, as exemplified by the Handbook of Political 
Fallacies by the philosopher Jeremy Bentham (1748-1832). But if the complex 
questions of the world of nature and society could not be mastered through logic 
alone, mathematics proved more amenable to the influences of logic. The influence, 
however, was bidirectional. In fact, there is a paradox, if one thinks of logic as 
being the rudder tha t steers mathematical arguments and keeps them from going 
astray. As Charles Sanders Peirce wrote in 1896, reviewing a book on logic: 

It is a remarkable historical fact tha t there is a branch of sci-
ence in which there has never been a prolonged dispute concerning 
the proper objects of tha t science. It is ma thema t i c s . . . Hence, we 
homely thinkers believe that , considering the immense amount of 
disputation there has always been concerning the doctrines of logic, 
and especially concerning those which would otherwise be appli-
cable to settle disputes concerning the accuracy of reasonings in 
metaphysics, the safest way is to appeal for our logical principles 
to the science of mathematics. [Quoted in Bochenski, 1961, pp. 
279 280] 

Peirce seemed to believe that far from sorting out the mathematicians, logi-
cians should turn to them for guidance. But we may dispute his assertion that 
there has never been a prolonged dispute about the proper objects of mathematics. 
Zeno confronted the Pythagoreans over tha t very question. In Peirce's own day, 
Kronecker and Cantor were at opposite ends of a dispute about what is and is not 
proper mathematics, and that discussion continues, politely, down to the present 
day. (See, for example, Hersh, 1997.) 

Leibniz noted in the passage quoted above tha t algebra had the advantage of a 
precise symbolic language, which he held up as an ideal for clarity of communication. 
Algebra, in fact, was one of the mathematical sources of mathemat ica l logic. When 
de Morgan translated a French algebra textbook into English in 1828, he defined 
algebra as "the part of mathematics in which symbols are employed to abridge and 
generalize the reasonings which occur in questions relating to numbers." Thus, for 
de Morgan a t the t ime, the symbols represented numbers, but unspecified numbers, 
so tha t reasoning about them applied to any particular numbers. Algebra was a 
ship anchored in numbers, but it was about to slip its anchor. In fact, only two years 
later (in 1830) George Peacock wrote a treatise on algebra in which he proposed tha t 
algebra be a purely symbolic science independent of any ari thmetical interpretation. 
This step was a radical innovation at the time, considering tha t abstract groups, 
for example, were not to appear for several more decades. The assertion that 
the formula (a - b) (a + b) = a2 - b2 holds independently of any numerical values 
that replace a and b, for example, almost amounts to an axiomatic approach to 
mathematics. De Morgan's ideas on this subject matured during the 1830s, and at 
the end of the decade he wrote: 
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When we wish to give the idea of symbolical a lgebra . . . we ask, 
firstly, what symbols shall be used (without any reference to mean-
ing); next, what shall be the laws under which such symbols are 
to be operated upon; the deduction of all subsequent consequences 
is again an application of common logic. Lastly, we explain the 
meanings which must be attached to the symbols, in order that 
they may have prototypes of which the assigned laws of operation 
are true. [Quoted by Richards, 1987, pp. 15-16] 

This set of procedures is still the way in which mathematical logic operates, 
although the laws under which the symbols are to be operated on are now more ab-
stract than de Morgan probably had in mind. To build a formal language, you first 
specify which sequences of symbols are to be considered "well-formed formulas," 
tha t is, formulas capable of being true or false. The criterion for being well-formed 
must be purely formal, capable of being decided by a machine. Next, the sequences 
of well-formed formulas t ha t are to be considered deductions are specified, again 
purely formally. The syntax of the language is specified by these two sets of rules, 
and the final piece of the construction, as de Morgan notes, is to specify its se-
mantics, tha t is, the interpretation of its symbols and formulas. Here again, the 
modern world takes a more formal and abstract view of "interpretation" than de 
Morgan probably intended. For example, the semantics of propositional calculus 
consists of t ru th tables. After specifying the semantics, one can ask such questions 
as whether the language is consistent (incapable of proving a false proposition), 
complete (capable of proving all true propositions), or categorical (allowing only 
one interpretation, up to isomorphism). 

In his 1847 treatise Formal Logic, de Morgan went further, arguing tha t "we 
have power to invent new meanings for all the forms of inference, in every way in 
which we have power to make new meanings of is and is not... ." This focus on 
the meaning of is was very much to the point. One of the disputes that Peirce 
overlooked in the quotat ion just given is the question of what principles allow us 
to infer that an object "exists" in mathematics. We have seen this question in 
the eighteenth-century disagreement over what principles are allowed to define a 
function. In the case of symbolic algebra, where the symbols originally represented 
numbers, the existence question was still not settled to everyone's liking in the early 
nineteenth century. T h a t is why Gauss stated the fundamental theorem of algebra 
in terms of real factorizations alone. Here de Morgan was declaring the right to 
create mathematical entities by fiat, subject to certain restrictions. Tha t enigmatic 
"exists" is indispensible in first-order logic, where the negation of "For every ÷, P " 
is "For some x, no t -P . " But what can "some" mean unless there actually exist 
objects x? This defect was to be remedied by de Morgan's friend George Boole. 

In de Morgan's formal logic, this "exists" remains hidden: When he talks about 
a class X, it necessarily has members. Without this assumption, even the very first 
example he gives is not a valid inference. He gives the following table by way of 
introduction to the symbolic logic that he is about to introduce: 

Instead of: 
All men will die 

All men are rational beings 
Therefore some rational beings will die 

Write: 
Every Y is X 
Every Y is Æ 

Therefore some Zs are X ' s . 
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De Morgan's notation in this work was not the best, and very little of it has 
caught on. He used a parenthesis in roughly the same way as the modern notat ion 
for implication. For example, X ) Y denoted the proposition "Every X is a Y." 
Nowadays we would write X D Y (read "X horseshoe V") for "X implies Y." 
The rest of his no ta t ion- -X : Y for "Some X ' s are not Ya," X.Y for "No X ' s 
are Ys" and × Y for "Some X's are Ys"—is no longer used. For the negation of 
these properties he used lowercase letters, so tha t ÷ denoted not -X. De Morgan 
introduced the useful "necessary" and "sufficient" language into implications: X) Y 
meant that Y was necessary for X and X was sufficient for Y. He gave a table 
of the relations between I or é and Y or y for the relations X ) Y, X.Y, Õ ) X , 
and ÷. y. For example, given that X implies Y, he noted tha t this relation made 
Y necessary for X , y an impossible condition for X , y a sufficient condition for x, 
and Y a contingent (not necessary, not sufficient, not impossible) condition for x. 

For compound propositions, he wrote PQ for conjunction (his word), meaning 
both Ñ and Q are asserted, and Ñ, Q for disjunction (again, his word), meaning 
either Ñ or Q. He then noted what are still known as De Morgan's laws: 

The contrary of PQ is ñ, q. Not both is either not one or not the 
other, or not either. Not either Ñ nor Q (which we might denote 
by : Ñ, Q or . P , Q) is logically 'not Ñ and not Q' or pq: and this 
is then the contrary of Ñ , Q. 

De Morgan's theory of probability. De Morgan devoted three chapters (Chapters 9 
through 11) to probability and induction, s tar t ing off with a very Cartesian princi-
ple: 

T h a t which we know, of which we are certain, of which we are well 
assured nothing could persuade us to the contrary, is the existence 
of our own minds, thoughts, and perceptions. 

He then took the classical example of a certain proposition, namely tha t 2 + 2 = 
4 and showed by analyzing the meaning of 2, 4, and + tha t "It is t rue, no doubt , 
tha t 'two and two' is four, in amount, value, &c. but not in form, construction, 
definition, & C . " 1 He continued: 

There is no further use in drawing distinction between the knowlege 
which we have of our own existence, and that of two and two 
amounting to four. This absolute and inassailable feeling we shall 
call certainty. We have lower grades of knowledge, which we usually 
call degrees of belief, but they are really degrees of knowledge... It 
may seem a strange thing to treat knowledge as a magni tude, in 
the same manner as length, or weight, or surface. This is what all 
writers do who treat of probabil i ty . . . But it is not customary to 
make the statement so openly as I now do. 

As this passage shows, for de Morgan probability was a subjective entity. He 
said tha t degree of probability meant degree of belief. In this way he placed himself 
firmly against the frequentist position, saying, "I throw away objective probability 

1 There is some intellectual sleight-of-hand here. The effectiveness of this argument depends on 
the reader's not knowing—and de Morgan's not stating—what is meant by addition of integers 
and by equality of integers, so that 2 + 2 cannot be broken down into any terms simpler than 
itself. It really can be proved that 2 + 2 = 4. 
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altogether, and consider the word as meaning the state of the mind with respect to 
an assertion, a coming event, or any other matter on which absolute knowledge does 
not exist." But subjectivity is not the same thing as arbitrariness. De Morgan, like 
us, would have labeled insane a person who asserted that the probability of rolling 
double sixes with a pair of dice is 50%. In fact, he gave the usual rules for dealing 
with probabilites of disjoint and independent events, and even stated Bayes' rule of 
inverse probability. He considered two urns, one containing six white balls and one 
black ball, the other containing two white balls and nine black ones. Given that 
one has drawn a white ball, he asked what the probability is that it came from the 
first urn. Noting that the probability of a white ball was f in the first case and ãô 
in the second, he concluded tha t the odds tha t it came from either of the two urns 
must be in the same proportion, | : ãô or 33 : 7. He thus gave |§" as the probability 
that the ball came from the first urn. This answer is in numerical agreement with 
the answer tha t would be obtained by Bayes' rule, but de Morgan did not think of 
it as revising a preliminary estimate of ^ for the probability that the first urn was 
chosen. 

1.2. S y m b o l i c ca lcu lus . An example of the new freedom in the interpretation 
of symbols actually occurred somewhat earlier than the t ime of de Morgan, in 
Lagrange's algebraic approach to analysis. Thinking of Taylor's theorem as 

Ä Ë / ( ÷ ) = f(x + ft) - / ( * ) = hDf(x)h + ^h2D2f(x) + ^h3D3f(x) + ... , 

where Df(x) = f'(x), and comparing with the Taylor's series of the exponential 
function, 

â ' = 1 + ß + 2 À ß 2 + Ý ß 3 + " ' 
Lagrange arrived at the formal equation 

Ah = e h D - l . 

Although the equation is purely formal and should perhaps be thought of only 
as a convenient way of remembering Taylor's theorem, it does suggest a converse 
relation 

D / ( x ) = i ( l n ( l + Ä „ ) ) / ( ÷ ) = \(&hf(x) + \&lf{x) + •••), 

and this relation is literally t rue for polynomials / ( x ) . The formal use of this sym-
bolic calculus may have been merely suggestive, but as Grattan-Guinness remarks 
(2000, p. 19), "some people regarded these methods as legitimate in themselves, 
not requiring foundations from elsewhere." 

1.3. B o o l e ' s Mathematical Analysis of Logic. One such person was George 
Boole. In a frequently quoted passage from the introduction to his brief 1847 
treatise The Mathematical Analysis of Logic, Boole wrote 

[T]he validity of the processes of analysis does not depend upon 
the interpretation of the symbols which are employed but solely 
upon the laws of their combination. Every system of interpretation 
which does not affect the t ruth of the relations supposed is equally 
admissible, and it is thus that the same process may under one 
scheme of interpretation represent the solution of a question or the 
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properties of number, under another tha t of a geometrical problem, 
and under a third tha t of optics. 

Here Boole, like de Morgan, was arguing for the freedom to create abstract 
systems and at tach an interpretation to them later. This step was still something 
of an innovation at the time. It was generally accepted, for example, t ha t irrational 
and imaginary numbers had a meaning in geometry but not in ari thmetic. One 
could not, or should not, simply conjure them into existence. Cayley raised this 
objection shortly after the appearance of Boole's treatise (see Grattan-Guinness, 
2000, p. 41), asking whether it made any sense to write ^x. Boole replied by 
comparing the question to the existence of which he said was "a symbol (i) 
which satisfies particular laws, and especially this: i2 = — 1 . " In other words, when 
we are inventing a formal system, we are nearly omnipotent . Whatever we prescribe 
will hold for the system we define. If we want a square root of —1 to exist, it will 
exist (whatever "exist" may mean). 

Logic and classes. Although set theory had different roots on the Continent, we 
can see its basic concept—membership in a class—in Boole's work. Departing from 
de Morgan's notation, he denoted a generic member of a class by an uppercase X, 
and used the lowercase ÷ "operating on any subject," as he said, to denote the 
class itself. Then xy was to denote the class "whose members are both X's and 
Ys." This language rather blurs the distinction between a set, its members, and the 
properties tha t determine what the members are; but we should expect tha t clarity 
would take some t ime to achieve. The connection between logic and set theory is an 
intimate one and one that is easy to explain. But the kind of set theory tha t logic 
alone would have generated was different from the geometric set theory of Georg 
Cantor, which is discussed in the next section. 

The influence of the mathematical theory of probability on logic is both exten-
sive and interesting. The subtitle of de Morgan's Formal Logic is The Calculation 
of Inference, Necessary and Probable, and, as noted above, three chapters (some 
50 pages) of Formal Logic are devoted to probability and induction. Probability 
deals with events, whereas logic deals with propositions. The connnection between 
the two was stated by Boole in his later treatise, An Investigation of the Laws of 
Thought, as follows: 

[T]here is another form under which all questions in the theory 
of probabilities may be viewed; and this form consists in substi-
tuting for events the propositions which assert t ha t those events 
have occurred, or will occur; and viewing the element of numerical 
probability as having reference to the truth of those propositions, 
not to the occurrence of the events. 

Two events can combine in different ways: exactly one of Å and F may occur, 
or Å and F may both occur. If the events Å and F are independent, the probability 
tha t both Å and F occur is the product of their individual probabilities. If the two 
events cannot both occur, the probability tha t at least one occurs is the sum of 
their individual probabilities. More generally, 

P(E or F) + P ( £ a n d F) = P(E) + P{F). 

When these combinations of events are translated into logical terms, the result is 
a logical calculus. 
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The idea of probability 0 as indicating impossibility and probability 1 as indi-
cating certainty must have had some influence on Boole's use of these symbols to 
denote "nothing" and "the universe." He expressed the proposition "all X's are 
Y's," for example, as xy = ÷ or i ( l — y) = 0. Notice t ha t 1 — y appears, not y — 1, 
which would have made no sense. Here 1 — y corresponds to the things tha t are 
not-y. From there, it is not far to thinking of 0 as false and 1 as t rue. The differ-
ence between probability and logic here is that the probability of an event may be 
any number between 0 and 1, while propositions are either t rue or false. 2 These 
analogies were brought out fully in Boole's major work, to which we now turn. 

1.4. B o o l e ' s Laws of Thought. Six years later, after much reflection on the 
symbolic logic tha t he and others had developed, Boole wrote an extended treatise, 
An Investigation of the Laws of Thought, which began by recapping what he had 
done earlier. The Laws of Thought began with a very general proposition tha t laid 
out the universe of symbols to be used. These were: 

1st. Literal symbols, as x, y, & c , representing things as subjects 
of our conceptions. 
2nd. Signs of operation, as + , —, x, standing for those operations 
of the mind by which the conceptions of things are combined or 
resolved so as to form new conceptions involving the same elements. 
3rd. The sign of identity, = . 

And these symbols of Logic are in their use subject to definite 
laws, part ly agreeing with and part ly differing from the laws of the 
corresponding symbols in the science of Algebra. 

Boole used + to represent disjunction (or) and juxtaposit ion, used in algebra 
for multiplication, to represent conjunction (and). The sign — was used to stand for 
"and not." In his examples, he used + only when the properties were, as we would 
say, disjoint and — only when the property subtracted was, as we would say, a subset 
of the property from which it was subtracted. He illustrated the equivalence of 
"European men and women" (where the adjective European is intended to apply to 
both nouns) with "European men and European women" as the equation z(x + y) = 
zx + zy. Similarly, to express the idea tha t the class of men who are non-Asiatic 
and white is the same as the class of white men who are not white Asiatic men, he 
wrote z(x — y) = zx — zy. He attached considerable importance to what he was 
later to call the index law, which expresses the fact tha t affirming a property twice 
conveys no more information than affirming it once. Tha t is to say, xx = x, and 
he adopted the algebraic notat ion x2 for xx. This piece of algebraization led him, 
by analogy with the rules xO = 0 and xl = x, to conclude tha t "the respective 
interpretations of the symbols 0 and 1 in the system of Logic are Nothing and 
Universe.'" From these considerations he deduced the principle of contradiction: 

2 Classical set theory deals with propositions of the form ÷ 6 Å, which are either true or false: 
Either ÷ belongs to E, or it does not, and there is no other possibility. The recently created fuzzy 
set theory restores the analogy with probability, allowing an element to belong partially to a given 
class and expressing the degree of membership by a function ö(÷) whose values are between 0 
and 1. Thus, for example, whether a woman is pregnant or not is a classical set-theory question; 
whether she is tall or not is a fuzzy set-theory question. Fuzzy-set theorists point out that their 
subject is not subsumed by probability, since it deals with the properties of individuals, not those 
of large sets. 
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x2 = ÷ ÷ (1 — ÷) = 0, that is, no object can have a property and simultaneously 

not have tha t property. 3 

Boole was carried away by his algebraic analogies. Although he remained within 
the confines of his initial principles for a considerable distance, when he got to 
Chapter 5 he introduced the concept of developing a function. Tha t is, for each 
algebraic expression f(x), no matter how complicated, to find an equivalent linear 
expression ax + 6(1 — x), one tha t would have the same values as f(x) for ÷ = 0 
and i = l . Tha t expression would obviously be f(l)x + / ( 0 ) ( 1 - x). Boole gave a 
convoluted footnote to explain this simple fact by deriving it from Taylor's theorem 
and the idempotence property. 

Like De Morgan, after discussing his 0-1 logic, Boole then turned to philosophy, 
metaphysics, and probability, placing himself in the philosophical camp of Poisson 
and de Morgan. He gave the now-familiar rule for the conditional probability of A 
given Â as the probability of both A and Â divided by the probability of B. He also 
gave a formal definition of independence, saying t h a t two events are independent if 
"the probability of the happening of either of them is unaffected by our expectation 
of the occurrence or failure of the other." All of this was done in words, but could 
have been done symbolically, as he surely realized. 

Application to jurisprudence. Nearly all of the early writers on probability, statis-
tics, and logic had certain applications in mind, to insurance in the case of statistics, 
especially to the decisions of courts. The question of the believability of witnesses 
and the probability that a jury has been deceived interested Laplace, Quetelet, 
Poisson, de Morgan, and Boole, among others. Boole, for example, gave as an 
example, the following problem: 

The probability tha t a witness A speaks the t ru th is p, the probabil-
ity tha t another witness Â speaks the t r u th is q, and t h e probability 
tha t they disagree in a statement is r . W h a t is the probability tha t 
if they agree, their statement is true? 

Boole gave the answer as (p + q — r ) / ( 2 ( l — r ) ) . He claimed to prove as a 
theorem the following proposition: 

From the records of the decisions of a court or deliberative assem-
bly, it is not possible to deduce any definite conclusion respecting 
the correctness of the individual judgments of its members. 

1.5. V e n n . It is interesting to compare the mathemat izat ion of logic with the 
mathematizat ion of probability. Both have ult imately been successful, but both 
were resisted to some extent as an intrusion of mathemat ics into areas of philosophy 
where it had no legitimate business. The case for removing mathematics from 
philosophy was made by John Venn, whose name is associated with a common 
tool of set theory: Venn diagrams, so-called, although the idea really goes back 
to Euler. In his book The Logic of Chance, which was first published in 1867, 
then revised a decade later and revised once again after another decade, Venn 

3 Nowadays, a ring in which every element is idempotent, that is, the law ÷ 2 = ÷ holds, is called 
a Boolean ring. It is an interesting exercise to show that such a ring is always commutative and 
of characteristic 2, that is, ÷ + ÷ = 0 for all x. The subsets of a given set form a Boolean ring 
when addition is interpreted as symmetric difference, that is, A+B means "either A or Â but 
not both." 
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proudly proclaimed tha t "Not only . . . will 'no knowledge of mathematics beyond 
the simple rules of Arithmetic ' be required to understand these pages, but it is not 
intended tha t any such knowledge should be acquired by the process of reading 
them." Venn was particularly exercised about the a t t empts t o apply probability 
theory in jurisprudence. Referring to Laplace, Quetelet, and the others, he wrote: 

When they have searched for illustrations drawn from the practical 
business of life, they have very generally, but unfortunately, hit 
upon jus t the sort of instances which, as I shall endeavour to show 
hereafter, are among the very worst tha t could be chosen for the 
purpose. It is scarcely possible for any unprejudiced person to 
read what has been written about the credibility of witnesses by 
eminent writers, without his experiencing an invincible distrust of 
the principles which they adopt. 

He went on to say tha t , although probability may require considerable mathe-
matical knowledge, "the discussion of the fundamental principles on which the rules 
are based does not necessarily require any such qualification." Moreover, 

The opinion t ha t Probability, instead of being a branch of the 
general science of evidence which happens to make much use of 
mathematics, is a portion of mathematics, erroneous as it is, has 
yet been very disadvantageous t o the science in several ways. 

As one might expect, he took a dim view of the writings of de Morgan and 
Boole, saying that de Morgan had "given an investigation into the foundations of 
Probability as conceived by him, and nothing can be more complete and precise 
than his s tatement of principles and his deductions from them. If I could at all agree 
with these principles there would have been no necessity for the following essay." As 
for Boole, "Owing to his peculiar treatment of the subject, I have scarely anywhere 
come into contact with any of his expressed opinions," a subtle, but acerbic way of 
saying that Boole had failed to convince anyone. 

In Venn's view, expressed at the beginning of his fourth chapter, the practical 
application of probability in such matters as insurance was simply one more aspect 
of induction, the extrapolation of past experience into the future: 

We cannot tell how many persons will be born or die in a year, or 
how many houses will be burnt or ships wrecked, without actually 
counting them. When we thus speak of "experience," we mean to 
employ the term in its widest signification; we mean experience 
supplemented by all the aids which inductive or deductive logic 
can afford. When, for instance, we have found the series which 
comprises the numbers of persons of any assigned class who die in 
successive years, we have no hesitation in extending it some way 
into the future as well as into the past. The justification of such a 
procedure must be sought in the ordinary canons of Induction. 

Venn thus proclaimed himself a frequentist. The justification for applied proba-
bility and statistics was to be induction. But how firm a foundation was induction? 
The skeptical Scot David Hume (1711-1776) had leveled a devastating criticism 



544 19. LOGIC AND SET THEORY 

against the principles of induction and cause in the preceding century. Venn's 
reduction risked exposing probability theory to the same demolition. 

1.6. J e v o n s . Both de Morgan and Boole used the syllogism or modus ponens (in-
ferring method) as the basis of logical inference, although de Morgan did warn 
against an overemphasis on it. Their successor Will iam Stanley Jevons, formulated 
this law algebraically and adjoined to it a principle of indirect inference, which 
amounted to inference by exhaustive enumeration of cases. T h e possibility of doing 
the lat ter by sorting through slips of paper led him to the conclusion tha t this sort-
ing could be done by machine. Since he had removed much of the mathematical 
notat ion used by Boole, he speculated tha t the mathematics could be entirely re-
moved from it. He also took the additional step of suggesting, ra ther hesitantly, tha t 
mathematics was itself a branch of logic. According to Grat tan-Guinness (2000, p . 
59), this speculation apparently had no influence on the mathemat ical philosophers 
who ultimately developed its implications, Russell and Frege. 

Set theory is all-pervasive in modern mathematics. It is the common language used 
to express concepts in all areas of mathematics. Because it is the language everyone 
writes in, it is difficult to imagine a t ime when mathematic ians did not use the word 
set or think of sets of points. Yet that t ime was not long ago, less t han 150 years. 
Before that time, mathematicians spoke of geometric figures. Or they spoke of 
points and numbers having certain properties, without thinking of those points and 
numbers as being assembled in a set. We have seen how concepts similar to those of 
set theory arose, in the notion of classes of objects having certain properties, in the 
British school of logicians. On the Continent, geometry and analysis provided the 
grounds for a development tha t resulted in a sort of "convergent evolution" with 
mathematical logic. 

2 . 1 . T e c h n i c a l b a c k g r o u n d . Although the founder of set theory, Georg Cantor, 
was motivated by bo th geometry and analysis, for reasons of space we shall discuss 
only the analytic connection, which was the more immediate one. It is necessary to 
be slightly technical to explain how a problem in analysis leads to the general notion 
of a set and an ordinal number. We begin with the topic t ha t Riemann developed 
for his 1854 lecture but did not use because Gauss preferred his geometric lecture. 
Tha t topic was uniqueness of trigonometric series, and it was published in 1867, 
the year after Riemann's death. Riemann aimed a t proving tha t if a trigonometric 
series converged to zero at every point, all of its coefficients were zero. Tha t is, 

Riemann assumed tha t the coefficients an and bn tend to zero, saying tha t it was 
clear to him tha t without that assumption, the series could converge only at isolated 
points . 4 In order to prove this theorem, Riemann integrated twice to form the 
continuous function 

2 . S e t t h e o r y 

- a n + / (an cos nx + b„ sin nx) = 0 = 0 = 6, 'n · 

n = l 

F(x) = Ax + Â + -a0x
2 - Ó 

( a n cos nx + bn sin nx) 

n = l 

4 Kronecker pointed out later that this assumption was dispensible; Cantor showed that it was 
deducible from the mere convergence of the series. 
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His object was to show tha t F(x) must be a linear function, so tha t G(x) — F(x) — 
Ax — Â — \a.QX2 would be a quadratic polynomial tha t was also the sum of a 
uniformly convergent trigonometric series, and hence itself a constant, from which 
it would follow, first t ha t an = 0, and then that all the other a„ and all the bn are 
zero. To tha t end, he showed tha t its generalized second derivative 

F(x + h) + F(x-h)-2F(x) 
F*(x)=is& j ? — - — 

was zero wherever the original series converged to zero. 5 A weaker theorem, similar 
to the theorem tha t a differentiable function must be continuous, implied tha t 

H m (F(x + h)-F(x)) + (F(x-h)-F(x)) = Q 

h->0 h 

The important implication of this last result is tha t the function F(x) cannot have a 
comer. If it has a r ight-hand derivative at a point, it also has a left-hand derivative 
at the point, and the two one-sided derivatives are equal. This fact, which a t first 
sight appears to have nothing to do with set theory, was a key step in Cantor 's 
work. 

2.2 . Cantor ' s work o n t r i g o n o m e t r i c series . In 1872 Cantor published his 
first paper on uniqueness of trigonometric series, finishing the proof that Riemann 
had set out to give: t ha t a trigonometric series tha t converges to zero at every point 
must have all its coefficients equal to zero. In following the program of proving tha t 
F(x) is linear and hence constant, he observed that it was not necessary to assume 
tha t the series converged to zero at every point. A finite number of exceptions could 
be allowed, a t which the series either diverged or converged to a nonzero value. For 
F(x) is certainly continuous, and if it is linear on [a, b] and also on [b, c], the fact 
tha t it has no corners implies tha t it must be linear on [o, c]. Hence any isolated 
exceptional point b could be discounted. 

The question therefore naturally arose: Can one allow an infinite number of 
exceptional points? Here one comes up against the Bolzano-Weierstrass theorem, 
which asserts tha t the exceptional points cannot all be isolated. They must have 
at least one point of accumulation. But exceptional points isolated from other 
exceptional points could be discounted, just as before. T h a t left only their points 
of accumulation. If these were isolated—in particular, if there were only finitely 
many of them—the no-corners principle would once again imply uniqueness of the 
series. 

Ordinal numbers. Cantor saw the obvious induction immediately. Denoting the set 
of points of accumulation of a set Ñ (what we now call the derived set) by P', he 
knew tha t P' D P" D P'" D · · · . Thus, if at some finite level of accumulation points 
of accumulation points a finite set was obtained, the uniqueness theorem would 
remain valid. But the study of these sets of points of accumulation turned out to 
be even more interesting than trigonometric series themselves. No longer dealing 
with geometrically regular sets, Cantor was delving into point-set topology, as we 
now call it. No properties of a geometric nature were posited for the exceptional 
points he was considering, beyond the assumption tha t the sequence of derived sets 
must terminate at some finite level. Although the points of any particular set (as 

5 Hermann Amandus Schwarz later showed that if f j ' ( i ) = 0 on an open interval (a, 6), then 
F(x) is linear on the closed interval [a,b]. 
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we now call it) might be easily describable, Cantor needed to discuss the general 
case. He needed the abstract concept of "sethood." Cantor felt compelled to dig 
to the bo t tom of this matter and soon abandoned trigonometric series to write a 
series of papers on "infinite linear point-manifolds." 

Early on, he noticed the possibility of the transfinite. If the nth-level derived 
set is P^n\ the nesting of these sets allows the natura l definition of the derived set of 
infinite order p ( ° ° ' as the intersection of all sets of finite order. But then one could 
consider derived sets even at the transfinite level: the derived set of p(°°) could be 
defined as p(°°+l) = (p(°°)) . Cantor had discovered the infinite ordinal numbers. 
However, he did not at first recognize them as numbers, but ra ther regarded them 
as "symbols of infinity" (see Ferreiros, 1995). 

Cardinal numbers. Cantor was not only an analyst, however. He had writ ten his 
dissertation under Kronecker and Kummer on number-theoretic questions. Only 
two years after he wrote his first paper in trigonometric series, he noticed t ha t his 
set-theoretic principles led to another interesting conclusion. The set of algebraic 
real or complex numbers is a countable set (as we would now say in the famil-
iar language tha t we owe to Cantor), but the set of real numbers is not. Cantor 
had proved this point to his satisfaction in a series of exchanges of letters with 
Dedekind. 6 Hence there must exist transcendental numbers. This second hierar-
chy of sets led to the concept of a cardinal number, two sets being of the same 
cardinality if they could be placed in one-to-one correspondence. To establish such 
correspondences, Cantor allowed himself certain powers of defining sets and func-
tions tha t went beyond what mathematicians had been used to seeing. The result 
was a controversy tha t lasted some two decades. 

Grat tan-Guinness (2000, p. 125) has pointed out tha t Cantor emphasized five 
different aspects of point sets: their topology, dimension, measure, cardinality, and 
ordering. In the end, point-set topology was to become its own subject, and dimen-
sion theory became part of both algebraic and point-set topology. Measure theory 
became an important part of modern integration theory and had equally important 
applications to the theory of probability and random variables. Cardinality and or-
dering remained as an essential core of set theory, and the study of sets in relation 
to their complexity rather than their size became known as descriptive set theory. 

Although descriptive set theory produces its own questions, it had a t first a 
close relation to measure theory, since it was necessary to specify which sets could 
be measured. Borel was very careful about this procedure, allowing t ha t the kinds 
of sets one could clearly define would have to be obtained by a finite sequence of 
operations, each of which was either a countable union or a countable intersection 
or a complementation, starting from ordinary open and closed sets. Ultimately 
those of a less constructive disposition than Borel honored him with the creation of 

6 There are two versions of this proof, one due to Cantor and one due to Dedekind, but both 
involve getting nested sequences of closed intervals that exclude, one at a time, the elements of 
any given sequence {an } of numbers. The intersection of the intervals must then contain a number 
not in the sequence. In his private speculations, Luzin noted that Cantor was actually assuming 
more than the mere existence of the countable set { á ç } · In order to construct a point not in 
it, one had to know something about each of its elements, enough to find a subinterval of the 
previous closed interval that would exclude the next element. On that basis, he concluded that 
Cantor had proved that there was no effective enumeration of the reals, not that the reals were 
uncountable. Luzin thus raised the question of what it could mean for an enumeration to "exist" 
if it was not effective. He too delved into philosophy to find out the meaning of "existence." 
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the Borel sets, which is the smallest class that contains all closed subsets and also 
contains the complement of any of its sets and the union of any countable collection 
of its sets. This class can be "constructed" only by a transfinite induction. 

Set theory, although it was an a t tempt to provide a foundation of clear and 
simple principles for all of mathematics, soon threw up its own unanswered math-
ematical questions. The most important was the continuum question. Cantor had 
shown that the set of all real numbers could be placed in one-to-one correspon-
dence with the set of all subsets of the integers. Since he denoted the cardinality 
of the integers as No and the cardinality of the real numbers as c (where c s tands 
for "continuum"), the question naturally arose whether there was any subset of 
the real numbers tha t had a cardinality between these two. Cantor struggled for 
a long time to settle this issue. One major theorem of set theory, known as the 
Cantor-Bendixson theorem,7 after Ivar Bendixson (1861-1935), asserts that every 
closed set is the union of a countable set and a perfect set, one equal to its derived 
set. Since it is easily proved tha t a nonempty perfect subset of the real numbers 
has cardinality c, it follows tha t every uncountable closed set contains a subset of 
cardinality c. Thus a set of real numbers having cardinality between tt0 and c can-
not be a closed set. Many mathematicians, especially the Moscow mathematicians 
after the arrival of Luzin as professor in 1915, worked on this problem. Luzin's stu-
dents Pavel Sergeevich Aleksandrov (1896-1982) and Mikhail Yakovlevich Suslin 
(1894-1919) proved tha t any uncountable Borel set must contain a nonempty per-
fect subset, and so must have cardinality c. Indeed, they proved this fact for a 
slightly larger class of sets called analytic sets. Luzin then proved tha t a set was a 
Borel set if and only if the set and its complement were both analytic sets. 

The problem of the continuum remained open until 1938, when Kurt Godel 
(1906-1978) partially closed it by showing that set theory is consistent with the 
continuum hypothesis and the axiom of choice, 8 provided that it is consistent 
without them. Closure came to this question in 1963, when Paul Cohen (b. 1934— 
like Cantor , he began his career by studying uniqueness of trigonometric series 
representations) showed tha t the continuum hypothesis and the axiom of choice 
are independent of the other axioms of set theory. 

2 . 3 . T h e r e c e p t i o n of s e t t h e o r y . If Venn believed tha t probability was an 
unwarranted intrusion of mathematics into philosophy, there were many mathe-
maticians who believed tha t set theory was an equally unwarranted intrusion of 
philosophy into mathematics . One of those was Cantor 's teacher Leopold Kro-
necker. Although Cantor was willing to consider the existence of a transcendental 
number proved just because the real numbers were "too numerous" to be exhausted 
by the algebraic numbers, Kronecker preferred a more constructivist approach. His 
most famous u t terance , 9 and one of the most famous in all the history of mathe-
matics, is: "The good Lord made the integers; everything else is a human creation." 
("Die ganzen Zahlen hat der liebe Gott gemacht; alles andere ist Menschenwerk.") 
Tha t is, the only infinity he admitted was the series of positive integers 1,2, 

7 Ferreiros (1995) points out that it was the desire to prove this theorem adequately, in 1882, 
that really led Cantor to treat transfinite ordinal numbers as numbers. He was helped toward 
this discovery by Dedekind's pointing out to him the need to use finite ordinal numbers to define 
finite cardinal numbers. 
8 Godel actually included four additional assumptions in his consistency proof, one of the other 
two being that there exists a set that is analytic but is not a Borel set. 
9 He made this statement at a meeting in Berlin in 1886 (see Grattan-Guiness, 2000, p. 122). 
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Beyond that point, everything was human-made and therefore had to be finite. If 
you spoke of a number or function, you had an obligation to say how it was defined. 
His 1845 dissertation, which he was unable to polish to his satisfaction until 1881, 
when he published it as "Foundations of an arithmetical theory of algebraic quan-
tities" in honor of his teacher Kummer, shows how careful he was in his definitions. 
Instead of an arbitrary field defined axiomatical ly as we would now do, he wrote: 

A domain of rationality is in general an arbitrarily bounded domain 
of magnitudes, but only to the extent tha t the concept permits . 
To be specific, since a domain of rationality can be enlarged only 
by the adjoining of arbitrarily chosen elements 9t, each arbi trary 
extension of its boundary requires the simultaneous inclusion of all 
quantities rationally expressible in terms of the new Element. 

In this way, while one could enlarge a field to make an equation solvable, 
the individual elements of the larger field could still be described constructively. 
Kronecker's concept of a general field can be described as "finitistic." It is the 
minimal object that contains the necessary elements. Borel took this point of 
view in regard to measurable sets, and Hubert was later to take a similar point 
of view in describing formal languages, saying that a meaningful formula must be 
obtained from a specified list of elements by a finite number of applications of 
certain rules of combination. This approach was safer and more explicit than, for 
example, Bernoulli's original definition of a function as an expression formed "in 
some manner" from variables and constants. The "manner" was limited in a very 
definite way. 

Cantor believed that Kronecker had delayed the publication of his first paper 
on infinite cardinal numbers. Whether that is the case or not, it is clear that 
Kronecker would not have approved of some of his principles of inference. As 
Grat tan-Guinness points out, much of what is believed about the animosity between 
Cantor and Kronecker is based on Cantor 's own reports, which may be unreliable. 
Cantor was subject to periodic bouts of depression, probably caused by metabolic 
imbalances having nothing to do with his external circumstances. In fact, he had 
little to complain of in terms of the acceptance of his theories. It is t rue tha t there 
was some resistance to it, notably from Kronecker (until his death in 1891) and 
then from Poincare. But there was also a great deal of support , from Weierstrass, 
Klein, Hilbert, and many others. In fact, as early as 1892, the journal Bibliotheca 
mathematica published a "Notice historique" on set theory by Giulio Vivanti (1859-
1949), who noted that there had already been several expositions of the theory, 
and that it was still being developed by mathematicians, applied to the theory of 
functions of a real variable, and studied from a philosophical point of view. 

2.4 . E x i s t e n c e a n d t h e a x i o m of cho ice . In the early days Cantor ' s set theory 
seemed to allow a remarkable amount of freedom in the "construction" or, rather, 
the calling into existence, of new sets. Cantor seems to have been influenced in his 
introduction of the term set by an essay that Dedekind began in 1872, but did not 
publish until 1887 (see Grattan-Guinness, 2000, p . 104), in which he referred to a 
"system" as "various things o, b, c... comprehended from any cause under one point 
of view." Dedekind defined a "thing" to be "any object of our thought." Just as 
Descartes was able to conceive many things clearly and distinctly, mathematicians 
seemed to be able to form many "things" into "systems." For example, given any 
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set A, one could conceive of another set whose members were the subsets of A. This 

set is nowadays denoted 2A and called the power set of A. If A has a finite number 

ç of elements, then 2A has 2" elements, counting the improper subsets 0 and A. 
It was not long, however, before the indiscriminate use of this freedom to form 

sets led to paradoxes. The most famous of these is Russell's paradox, discussed in 

the next section. The source of the difficulty is tha t "existence" has a specialized 

mathematical meaning. The abstraction tha t comes with set theory has the conse-

quence tha t much of the action in a proof takes place "offstage." T h a t is, certain 

objects needed in a proof are called into existence by saying, "Let there b e . . . , " 

but no procedure for constructing them is given. Proofs relying on the abstract 

existence of such objects, when it is not possible to choose a particular object and 

examine it, became more and more common in the twentieth century. Indeed, much 

of measure theory, topology, and functional analysis would be impossible without 

such proofs. The principle behind these proofs later came to be known as Zermelo's 
axiom, after Ernst Zermelo (1871-1953), who first formulated it in 1904 to prove 

tha t every set could be well ordered. 1 0 It was also known as the principle of free 

choice (in German, Auswahlprinzip) or, more commonly in English, the axiom of 

choice. In its broadest form this axiom states that there exists a function f defined 
on the class of all nonempty sets such that f(A) e A for every nonempty set. In-

tuitively, if A is nonempty, there exist elements of A, and f(A) chooses one such 

element from every nonempty set. 

This axiom is used in very many proofs, but probably the earliest (see Moore, 

1982, p. 9) is Cantor 's proof tha t a countable union of countable sets is countable. 

The proof goes as follows. Assume tha t A\, i 4 2 , . . . a r e countable sets, and let 

A — A\ U i 4 2 U • • •. Then A is countable. For, let the sets Aj be enumerated, as 

follows 

A\ = a n , an, • • • é 

A2 = 0 2 i , a 2 2 , · · · 1 

An = a„i, a„2, ... , 

Then the elements of A can be enumerated as follows: á ð , a j 2 , a 2 i , 0 1 3 , a 2 2 , 0 3 1 , . . . , 

where the elements whose ranks are larger than the tr iangular number T„ = n(n + 
l ) / 2 but not larger t h a n Tn+\ = ( n + l ) ( n + 2) /2 are those for which the sum of 
the subscripts is ç + 2. There are ç + 1 such elements and ç + 1 such ranks. It is 
a very subtle point to notice tha t this proof assumes more than the mere existence 
of an enumeration of each of the sets, which is given in the hypothesis. It assumes 
the simultaneous existence of infinitely many enumerations, one for each set. The 
reasoning appears t o b e so natural t ha t one would hardly question it. If a real 
choice exists a t each stage of the proof, why can we not assume tha t infinitely 
many such choices have been made? As Moore notes, without the axiom of choice, 

1 0 A set is well ordered if any two elements can be compared and every nonempty subset has a 
smallest element. The positive integers are well ordered by the usual ordering. The positive real 
numbers are not. 
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it is consistent to assume that the real numbers can be expressed as a countable 
union of countable s e t s . 1 1 

Zermelo made this axiom explicit and showed its connection with ordinal num-
bers. The problem then was either to justify the axiom of choice, or to find a more 
intuitively acceptable substitute for it, or to find ways of doing without such "non-
effective" concepts. A debate about this axiom took place in 1905 in the pages of 
the Comptes rendus of the French Academy of Sciences, which published a number 
of letters exchanged among Hadamard, Borel, Lebesgue, and B a i r e . 1 2 Borel had 
raised objections to Zermelo's proof that every set could be well-ordered on the 
grounds that it assumed an infinite number of enumerations. Hadamard thought 
it an important distinction tha t in some cases the enumerations were all indepen-
dent, as in Cantor 's proof above, but in others each depended for its definition 
on other enumerations having been made in correspondence with a smaller ordinal 
number. He agreed that the latter should not be used transfinitely. Borel had 
objected to using the axiom of choice nondenumeratively, but Hadamard thought 
that this usage brought no further damage, once a denumerable infinity of choices 
was allowed. He also mentioned the distinction due to Jules Tannery (1848-1910) 
between describing an object and defining it. To Hadamard, describing an object 
was a stronger requirement than defining it. To supply an example for him, we 
might mention a well-ordering of the real numbers, which is defined by the phrase 
itself, but effectively indescribable. Hadamard noted Borel's own work on analytic 
continuation and pointed out how it would change if the only power series admit ted 
were those tha t could be effectively described. T h e difference, he said, belongs to 
psychology, not mathematics. 

Hadamard received a response from Baire, who took an even more conserva-
tive position than Borel. He said that once an infinite set was spoken of, "the 
comparison, conscious or unconscious, with a bag of marbles passed from hand to 
hand must disappear completely." 1 3 The heart of Baire's objection was Zermelo's 
supposition t ha t to each (nonempty) subset of a set Ì there corresponds one of its 
elements." As Baire said, "all that it proves, as far as I am concerned, is tha t we 
do not perceive a contradiction" in imagining any set well-ordered. 

Responding to Borel's request for his opinion, Lebesgue gave it. As far as he 
was concerned, Zermelo had very ingeniously shown how to solve problem A (to 
well-order any set) provided one could solve problem Â (to choose an element from 
every nonempty subset of a given set). He remarked, probably with some irony, 
that , "Unfortunately, problem Â is not easy to resolve, it seems, except for the sets 
tha t we know how to well-order." Lebesgue mentioned a concept tha t was to play a 
large role in debates over set theory, that of "effectiveness," roughly what we would 
call constructibility. He interpreted Zermelo's claim as the assertion t ha t a well-
ordering exists ( tha t word again!) and asked a question, which he said was "hardly 
new": Can one prove the existence of a mathematical object without defining it? 
One would think not, although Zermelo had apparently proved the existence of a 
well-ordering (and Cantor had proved the existence of a transcendental number) 
without describing it. Lebesgue and Borel preferred the verb to name (nommer) 

1 1 Not every countable union of countable sets is uncountable, however; the rational numbers 
remain countable, because an explicit counting function can be constructed. 
1 2 These letters were translated into English and published by Moore (1982, pp. 311-320). 
1 3 Luzin said essentially the same in his journal: What makes the axiom of choice seem reasonable 
is the picture of reaching into a set and helping yourself to an element of it. 
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when referring to an object that was defined effectively, through a finite number of 
uses of well-defined operations on a given set of primitive objects. 

After reading Lebesgue's opinion, Hadamard was sure tha t the essential dis-
tinction was between what is determined and what is described. He compared the 
situation with the earlier debate over the allowable definitions of a function. But, 
he said, uniqueness was not an issue. If one could say "For each x, there exists a 
number satisfying Let y be this number," surely one could also say "For each 
x, there exists an infinity of numbers sa t i s fy ing— Let y be one of these numbers." 
But he put his finger squarely on one of the paradoxes of set theory (the Burali-
Forti paradox, discussed in the next section). "It is the very existence of the set W 
tha t leads to a contradic t ion. . . the general definition of the word set is incorrectly 
applied." (Question to ponder: Wha t is the definition of the word set?) 

T h e validity and value of the axiom of choice remained a puzzle for some t ime. 
It leads to short proofs of many theorems whose statements are constructive. For 
example, it proves the existence of a nonzero translation-invariant Borel measure on 
any locally compact Abelian group. Since such a measure is provably unique (up to 
a constant multiple), there ought to be effective proofs of its existence that do not 
use the axiom of choice (and indeed there are). One benefit of the 1905 debate was 
a clarification of equivalent forms of the axiom of choice and an increased awareness 
of the many places where it was being used. A list of important theorems whose 
proof used the axiom was compiled for Luzin's seminar in Moscow in 1918. The 
list showed, as Luzin wrote in his journal, tha t "almost nothing is proved without 
it." Luzin was horrified, and spent some restless nights pondering the situation. 

The axiom of choice is ubiquitous in modern analysis; almost none of functional 
analysis or point-set topology would remain if it were omitted entirely (although 
weaker assumptions might suffice). It is fortunate, therefore, tha t its consistency 
with, and independence of, the other axioms of set theory has been proved. How-
ever, the consequences of this axiom are suspiciously strong. In 1924 Alfred Tarski 
(1901-1983) and Stefan Banach (1892-1945) deduced from it t ha t any two sets A 
and JB in ordinary three-dimensional Euclidean space, each of which contains some 
ball, can be decomposed into pairwise congruent subsets. This means, for example, 
tha t a cube the size of a grain of salt (set A) and a ball the size of the Sun (set 
B) can be writ ten as disjoint unions of sets A\,..., An and S i , . . . , Bn respectively 
such that Ai is congruent to Bi for each i. This result (the Banach-Tarski paradox) 
is very difficult t o accept. It can be rationalized only by realizing t h a t the notion of 
existence in mathemat ics has no metaphysical content. To say tha t the subsets Ai, 
Bi "exist" means only tha t a certain formal statement beginning 3 . . . is deducible 
from the axioms of set theory. 

2 .5 . Doubts about set theory. The powerful and counterintuitive results ob-
tained from the axiom of choice naturally led to doubts about the consistency of set 
theory. Since it was being inserted under the rest of mathematics as a foundation, 
the consistency question became an important one. A related question was t ha t of 
completeness. Could one provide a foundation for mathematics , t ha t is, a set of 
basic objects and rules of proof, tha t would allow any meaningful proposition to 
be proved t rue or false? The two desirable qualities are in the abstract opposed to 
each other, jus t as avoiding disasters and avoiding false alarms are opposing goals. 
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The most influential figure in mathematical logic during the twentieth century 
was Godel. The problems connected with consistency and completeness of arith-
metic, the axiom of choice, and many others all received a fully satisfying t reatment 
at his hands tha t settled many old questions and opened u p new areas of investi-
gation. In 1931, he astounded the mathematical world by producing a proof tha t 
any consistent formal language in which ari thmetic can be encoded is necessarily 
incomplete, tha t is, contains statements that are true according to its metalanguage 
but not deducible within the language itself. The intuitive idea behind the proof is 
a simple one, based on the statement that follows: 

This statement cannot be proved. 

Assuming that this statement has a meaning—that is, its context is properly 
restricted so tha t "proved" has a definite meaning—we can ask whether it is true. 
The answer must be positive if the system in which it is made is consistent. For 
if this s tatement is false, by its own content, it can be proved; and in a consistent 
deductive system, a false statement cannot be proved. Hence we agree t ha t the 
statement is true, but , again by its own content, it cannot be proved. 

The example just given is really nonsensical, since we have not carefully de-
lineated the universe of axioms and rules of inference in which the s tatement is 
made. The word "proved" tha t it contains is not really defined. Godel, however, 
took an accepted formalization of the axioms and rules of inference for arithmetic 
and showed tha t the metalanguage of arithmetic could be encoded within arith-
metic. In particular each formula can be numbered uniquely, and the statement 
that formula ç is (or is not) deducible from those rules can itself be coded as a 
well-formed formula of arithmetic. Then, when ç is chosen so tha t the statement, 
"Formula number ç cannot be proved" happens to be formula n, we have exactly 
the situation just described. Godel showed how to construct such an n. Thus, if 
Godel 's version of arithmetic is consistent, it contains s tatements tha t are formally 
undecidable; tha t is, they are true (based on the metalanguage) but not deducible. 
This is Godel's first incompleteness theorem. His second incompleteness theorem 
is even more interesting: The assertion that arithmetic is consistent is one of the 
formally undecidable statements.14 If the formalized version of ar i thmetic that 
Godel considered is consistent, it is incapable of proving itself so. It is doubtful, 
however, t ha t one could truly formalize every kind of argument tha t a rational per-
son might produce. For that reason, care should be exercised in drawing inferences 
from Godel's work to the actual practice of mathematics. 

3. Philosophies of mathematics 

Besides Cantor, other mathematicians were also considering ways of deriving math-
ematics logically from simplest principles. Got t lob Frege (1848-1925), a professor 
in Jena, who occasionally lectured on logic, a t tempted to establish logic on the basis 
of "concepts" and "relations" to which were at tached the labels true or false. He 
was the first to establish a complete predicate calculus, and in 1884 wrote a treatise 
called Grundgesetze der Arithmetik (Principles of Arithmetic). Meanwhile in Italy, 
Giuseppe Peano (1858-1939) was axiomatizing the natural numbers. Peano took 
the successor relation as fundamental and based his construction of the natural 

1 4 Detlefsen (2001) has analyzed the meaning of proving consistency in great detail and concluded 
that the generally held view of this theorem—that the consistency of a "sufficiently rich" theory 
cannot be proved by a "finitary" theory—is incorrect. 
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numbers on this one relation and nine axioms, together with a symbolic logic that 
he had developed. T h e work of Cantor, Frege, and Peano at t racted the notice of a 
young student at Cambridge, Bertrand Russell, who had writ ten his thesis on the 
philosophy of Leibniz. Russell saw in this work confirmation tha t mathematics is 
merely a prolongation of formal logic. This view, tha t mathematics can be deduced 
from logic without any new axioms or rules of inference, is now called logicism. 
Godel's work was par t ly inspired by it, and can be interpreted as a counterar-
gument to its basic thesis—that mathematics can be axiomatized. Logicism had 
encountered difficulties still earlier, however. Even the seemingly primitive notion 
of membership in a set turned out to require certain caveats. 

3 . 1 . P a r a d o x e s . In 1897 Peano's assistant Cesare Burali-Forti (1861-1931), ap-
parently unintentionally, revealed a flaw in the ordinal n u m b e r s . 1 5 To s ta te the 
problem in the clear light of hindsight, if two ordinal numbers satisfy ÷ < y, then 
÷ G y, but y £ x. In tha t case, what are we to make of the set of all ordinal 
numbers? Call this set A. Like any other ordinal number, it has a successor A + 1 
and A G A + 1 . But since A +1 is an ordinal number, we must also have A + 1 G A, 
and hence A < A + 1 and A + 1 < A. This was the first paradox of uncritical set 
theory, but others were to follow. 

The most famous paradox of set theory arose in connection with cardinal num-
bers rather than ordinal numbers. Cantor had defined equality between cardinal 
numbers as the existence of a one-to-one correspondence between sets representing 
the cardinal numbers. Set Â has larger cardinality than set A if there is no function 
/ : A —> Â tha t is "onto," tha t is, such that every element of Â is f(x) for some 
÷ G A. Cantor showed tha t the set of all subsets of A, which we denote 2A, is always 
of larger cardinality than A, so that there can be no largest cardinal number. If 
/ : A -* 2A, the set C = {t G A : t <£. f{t)} is a subset of A, hence an element of 
2A, and it cannot be f(x) for any ÷ G A. For if C = f(x), we ask whether ÷ G C 
or not. If ÷ G C, then ÷ G / ( x ) and so by definition of C, ÷ ö C. On the other 
hand, if ÷ ö C, then ÷ ö / ( x ) , and again by definition of C , ÷ G C. Since the whole 
paradox results from the assumption tha t C = / ( x ) for some x, it follows tha t no 
such ÷ exists, tha t is, t he mapping / is not "onto." This argument was at first 
disputed by Russell, who wrote in an essay entitled "Recent work in the philosophy 
of mathematics" (1901) tha t "the master has been guilty of a very subtle fallacy." 
Russell thought tha t there was a largest set, the set of all sets. In a later reprint 
of the article he added a footnote explaining tha t Cantor was r igh t . 1 6 Russell's 
first a t t empt at a systematic exposition of mathematics as he thought it ought to 
be was his 1903 work Principles of Mathematics. According to Grattan-Guinness 
(2000, p. 311), Russell removed his objection to Cantor 's proof and published his 
paradox in this work, but kept the manuscript of an earlier version, made before 
he was able to work out where the difficulty lay. 

To explain Russell 's paradox, consider the set of all sets. We must, by its 
definition, believe it to be equal to the set of all its subsets. Therefore the mapping 
f(E) = Å should have the property tha t Cantor says no mapping can have. Now 

1 5 Moore [1982, p. 59) notes that Burali-Forti himself did not see any paradox and (p. 53) that 
the difficulty was known earlier to Cantor. 
1 6 Moore (1982, p. 89) points out that Zermelo had discovered Russell's paradox two years before 
Russell discovered it and had written to Hilbert about it. Zermelo, however, did not consider it 
a very troubling paradox. To him it meant only that no set should contain all of its subsets as 
elements. 
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if we apply Cantor 's argument to this mapping, we are led to consider S — [E : 
Å £ E}. By definition of the mapping / we should have f(S) = S, and so, jus t 
as in the case of Cantor 's argument, we ask if S € S. Either way, we are led to a 
contradiction. This result is known as Russell's paradox. 

After Russell had straightened out the paradox with a theory of types, he collab-
orated with Alfred North Whitehead on a monumental derivation of mathematics 
from logic, published in 1910 as Principia mathematica. 

3.2. F o r m a l i s m . A different view of the foundations of mathemat ics was ad-
vanced by Hilbert, who was interested in the problem of axiomatization (the ax-
iomatization of probability theory was the sixth of his famous 23 problems) and 
particularly interested in preserving as much as possible of the freedom to reason 
that Cantor had provided while avoiding the uncomfortable paradoxes of logicism. 
The essence of this position, now known as formalism, is the idea s ta ted by de Mor-
gan and Boole that the legal manipulation of the symbols of mathematics and their 
interpretation are separate issues. Hilbert is famously quoted as having claimed 
that the words point, line, and plane should be replaceable by table, chair, and beer 
mug when a theorem is stated. Grattan-Guinness (2000, p . 208) notes tha t Hilbert 
may not have intended this statement in quite the way it is generally perceived 
and may not have thought the mat ter through a t the time. He also notes (p. 471) 
that Hilbert never used the name formalism. Characteristic of the formalist view is 
the assumption that any mathematical object whatever may be defined, provided 
only tha t the definition does not lead to a contradiction. Cantor was a formalist in 
this sense (Grattan-Guinness, 2000, p. 119). In the formalist view mathematics is 
the study of formal systems, but the rules governing those systems must be stated 
with some care. In tha t respect, formalism shares some of the caution of the earlier 
constructivist approach. It involves a strict separation between the symbols and 
formulas of mathematics and the meaning at tached to them, tha t is, a distinction 
between syntax and semantics. Hilbert had been interested in logical questions in 
the 1890s and early 1900s, but his work on formal languages such as propositional 
calculus dates from 1917. In 1922, when the intuitionists (discussed below) were 
publishing their criticism of mathematical methodologies, he formulated his own 
version of mathematical logic. In it he introduced the concept of metamathemat -
ics, the study whose subject mat ter is the s tructure of a mathematical s y s t e m . 1 7 A 
formal language consists of certain rules for recognizing legitimate formulas, certain 
formulas called axioms, and certain rules of inference (such as syllogism, general-
ization over unspecified variables, and the rules for manipulat ing equations). These 
elements make up the syntax of the language. One can therefore always tell by fol-
lowing clearly prescribed rules whether a formula is meaningful (well formed) and 
whether a sequence of formulas constitutes a valid deduction. To avoid infinity in 
this system while preserving sufficient generality, Hilbert resorted to a "finitistic" 
device called a schema. Certain basic formulas are declared to be legitimate by 
fiat. Then a few rules are adopted, such as the rule that if A and Â are legitimate 
formulas, so is [A B\. This way of defining legitimate (well-formed) formulas 
makes it possible t o determine in a finite number of steps whether or not a formula 
is well formed. It replaces the synthetic constructivist approach with an analytic 

1 7 This distinction had been introduced by L.E.J. Brouwer in his 1907 thesis, but not given a 
name and never developed (see Grattan-Guinness, 2000, p. 481). 
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approach (which can be reversed, once the analysis is finished, to synthesize a given 
well-formed formula from primitive elements). 

The formalist approach makes a distinction between statements of arithmetic 
and statements about arithmetic. For example, the assertion tha t there are no 
positive integers x, y, æ such tha t x3 + y3 = z3 is a s tatement of arithmetic. 
The assertion tha t this s tatement can be proved from the axioms of arithmetic is 
a s tatement about ari thmetic. The metalanguage, in which statements are made 
about ari thmetic, contains all the meaning to be assigned to the propositions of 
arithmetic. In particular, it becomes possible to distinguish between what is true 
(that is, what can be known to be true from the metalanguage) and what is prov-
able (what can be deduced within the object language). Two questions thus arise 
in the metalanguage: (1) Is every deducible proposition true? (the problem of con-
sistency); (2) Is every true proposition deducible? (the problem of completeness). 
As we saw in Section 2, Godel showed tha t the answer, for first-order recursive 
arithmetic and more generally for systems of that type, is very pessimistic. This 
language is not complete and is incapable of proving its own consistency. 

3 .3 . I n t u i t i o n i s m . The most cautious approach to the foundations of mathemat-
ics, known as intuitionism, was championed by the Dutch mathematician Luitzen 
Egbertus Jan Brouwer (1881-1966). Brouwer was one of the most mystical of 
mathematicians, and his mysticism crept into his early work. He even published 
a pamphlet in 1905, claiming tha t true happiness came from the inner world, and 
tha t contact with the outer world brought pain (Franchella, 1995, p. 305). In his 
dissertation a t the University of Amsterdam in 1907, he criticized the logicism of 
Russell and Zermelo's axiom of choice. Although he was willing to grant the va-
lidity of constructing each particular denumerable ordinal number, he questioned 
whether one could meaningfully form a set of all denumerable o rd ina l s . 1 8 In a 
series of articles published form 1918 to 1928, Brouwer laid down the principles 
of intuitionism. These principles include the rejection not only of the axiom of 
choice beyond the countable case, but also of proof by contradiction. Tha t is, the 
implication "A implies not-(not-A)" is accepted, but not its converse, "Not-(not-A) 
implies A." Intuitionists reject any proof whose implementation leaves choices to 
be made by the reader. Thus it is not enough in an intuitionist proof to say tha t 
objects of a certain kind exist. One must, choose such an object and use it for the 
remainder of the proof. This extreme caution has rather drastic consequences. For 
example, the function f(x) defined in ordinary language as 

is not considered to be defined by the intuitionists, since there are ways of defining 
numbers ÷ t h a t do not make it possible to determine whether the number is negative 
or positive. For example, is the number ( - 1 ) " , where ç is the trillionth decimal 
digit of ð, positive or negative? This restrictedness has certain advantages, however. 
The objects tha t are acceptable to the intuitionists tend to have pleasant properties. 
For example, every rational-valued function of a rational variable is continuous. 

The intuitionist rejection of proof by contradiction needs to be looked at in 
more detail. Proof by contradiction was always used somewhat reluctantly by 

1 8 This objection seems strange at first, but the question of whether an effectively defined set 
must have effectively defined members is not at all trivial. 
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mathematicians, since such proofs seldom give insight into the structures being 
studied. For example, Euclid's proof that there are infinitely many primes proceeds 
by assuming tha t the set of prime numbers is a finite set Ñ = {ñé,Ñ2é · • · , Ñ ç } and 
showing tha t in this case the number 1 + p\ • · • pn must either itself be a prime 
number or be divisible by a prime different from ñ÷,... , p n , which contradicts the 
original assumption that p i , . . . , p n formed the entire set of prime numbers. 

The appearance of starting with a false assumption and deriving a contradiction 
can be avoided here by stating the theorem as follows: If there exists a set of ç 
primes p i , . . . , pn, there exists a set of ç + 1 primes. The proof is exactly as before. 
Nevertheless, the proof is still not intuitionistically valid, since there is no way of 
saying whether or not 1 + p\ • • · p„ is prime. 

In 1928 and 1929, a quarter-century after the debate over Zermelo's axiom of 
choice, there was debate about intuitionism in the bulletin of the Belgian Royal 
Academy of Sciences. Two Belgian mathematicians, M. Barzin and A. Errera, had 
argued tha t Brouwer's logic amounted to a three-valued logic, since a statement 
could be true, false, or undecidable. The opposite point of view was defended by 
two distinguished Russian mathematicians, Aleksandr Yakovlevich Khinchin (1894-
1959) and Valerii Ivanovich Glivenko (1897-1940). Barzin and Errera had suggested 
that to avoid three-valued logic, intuitionists ought to adopt as an axiom tha t if 
ñ implies "q or r", then either ñ implies q or ñ implies r , 1 9 and also tha t if "p or 
ò" implies r , then ñ implies r and q implies r . Start ing from these principles of 
Barzin and Errera and the trivial axiom "p or not-p" implies "p or nofc-p", Khinchin 
deduced t ha t ñ implies not-p and not-p implies p, thus reducing the suggestions of 
Barzin and Errera to nonsense. Glivenko took only a little longer t o show tha t , 
in fact, Brouwer's logic was not three-valued. He proved tha t the s ta tement "p or 
not-p is false" is false in Brouwer's logic, and ultimately derived the theorem that 
the statement "p is neither t rue nor false" is false (see Novosyolov, 2000). 

A more "intuitive" objection to intuitionism is tha t intuition by its nature 
cannot be codified as a set of rules. In adopting such rules, the intuitionists were 
not being intuitionistic in the ordinary sense of the word. In any case, intuitionist 
mathematics is obviously going to be somewhat sparser in results t han mathematics 
constructed on more liberal principles. T h a t may be why it has a t t rac ted only a 
limited group of adherents. 

3.4 . M a t h e m a t i c a l pract ice . The paradoxes of naive set theory (such as Rus-
sell's paradox) were found to be avoidable if the word class is used loosely, as Cantor 
had previously used the word set, but the word set is restricted to mean only a 
class tha t is a member of some other class. (Classes tha t are not sets are called 
proper classes.) Then to belong to a class A, a class Â must not only fulfill the 
requirements of the definition of the class A but must also be known in advance to 
belong to some (possibly different) class. 

This approach avoids Russell's paradox. The class C = {÷ : ÷ ö x} is ¢ 
class; its elements are those classes that belong to some class and are not elements 
of themselves. If we now ask the question tha t led to Russell's paradox—Is C a 
member of itself?—we do not reach a contradiction. If we assume C £ C, then 
we conclude that C ö C, so tha t this assumption is not tenable. However, the 
opposite assumption, that C £ C, is acceptable. It no longer leads to the conclusion 

1 9 In the currently accepted semantics (metalanguage) of intuitionistic propositional calculus, if 
"q or r" is a theorem, then either q is a theorem or r is a theorem. 



QUESTIONS AND PROBLEMS 557 

tha t C £ C. For an object ÷ to belong to C, it no longer suffices tha t ÷ £ 
÷; it must also be t rue tha t ÷ æ A for some class A, an assumption not made 
for the case when ÷ is C. A complete set of axioms for set theory avoiding all 
known paradoxes was worked out by Paul Bernays (1888-1977) and Adolf Fraenkel 
(1891-1965). It forms part of the basic education of mathematicians today. It is 
generally accepted because mathematics can be deduced from it. However, it is 
very far from what Cantor had hoped to create: a clear, concise, and therefore 
obviously consistent foundation for mathematics. The axioms of set theory are 
extremely complicated and nonintuitive, and far less obvious than many things 
deduced from them. Moreover, their consistency is not only not obvious, it is even 
unprovable. In fact, one textbook of set theory, Introduction to Set Theory, by 
J. Donald Monk (McGraw-Hill, New York, 1969), p. 22, asserts of these axioms: 
"Naturally no inconsistency has been found, and we have faith tha t the axioms are, 
in fact, consistent"! (Emphasis added.) 

Q u e s t i o n s a n d p r o b l e m s 

19 .1 . Bertrand Russell pointed out tha t some applications of the axiom of choice 
are easier to avoid than others. For instance, given an infinite collection of pairs of 
shoes, describe a way of choosing one shoe from each pair. Could you do the same 
for an infinite set of pairs of socks? 

19 .2 . Prove tha t C = {÷ : ÷ £ ÷} is a proper class, not a set, tha t is, it is not an 
element of any class. 

19 .3 . Suppose tha t the only allowable way of forming new formulas from old ones 
is to connect them by an implication sign; that is, given tha t A and Â are well 
formed, [A B] is well formed, and conversely, if A and Â are not both well 
formed, then neither is [A => B). Suppose also tha t the only basic well-formed 
formulas are p, q, and r . Show that 

]p => r ] [[p => q ] =• r ] 

is well formed but 

[[Ñ => Ë => [r =>]] 

is not. Describe a general algorithm for determining whether a finite sequence of 

symbols is well formed. 

19.4 . Consider the following theorem. There exists an irrational number that 
becomes rational when raised to an irrational power. Proof: Consider the number 

ι- \/2 

è = v 3 . If this number is rational, we have an example of such a number. If it 

is irrational, the equation è^2 = y/3 = 3 provides an example of such a number. 

Is this proof intuitionistically valid? 
19 .5 . Show tha t any two distinct Fermat numbers 22™ + 1 and 2 2 " + 1, m < n, are 
relatively prime. (Use mathematical induction on n.) Apply this result to deduce 
t h a t there are infinitely many primes. Would this proof of the infinitude of the 
primes be considered valid by an intuitionist? 
19.6 . Suppose tha t you prove a theorem by assuming t ha t it is false and deriving 
a contradiction. W h a t you have then proved is tha t either the axioms you started 
with are inconsistent or the assumption that the theorem is false is itself false. 



558 19. LOGIC AND SET THEORY 

FIGURE 1. The Brouwer fixed-point theorem. 

Why should you conclude the latter rather than the former? Is this why some 
mathematicians have claimed that the practice of mathematics requires faith? 

19.7 . Wha t are the advantages, if any, of building a theory by s tar t ing with abstract 
definitions, then later proving a structure theorem showing tha t the abstract objects 
so defined are actually familiar objects? 

19.8 . Brouwer, the leader of the intuitionist school of mathematic ians , is also 
known for major theorems in topology, including the invariance of geometric di-
mension under homeomorphisms and the Brouwer fixed-point theorem, which as-
serts tha t for any continuous mapping / of a closed disk into itself there is a point 
÷ such tha t ÷ = / ( # ) · To prove this theorem, suppose there is a continuous map-
ping / for which f(x) ö ÷ at every point x. Construct a continuous mapping g by 
drawing a line from f(x) to ÷ and extending it to the point g(x) a t which it meets 
the boundary circle (see Fig. 1). Then g(x) maps the disk continuously onto its 
boundary circle and leaves each point of the boundary circle fixed. Such a continu-
ous mapping is intuitively impossible (imagine stretching the entire head of a drum 
onto the rim without moving any point already on the rim and without tearing the 
head) and can be shown rigorously to be impossible (the disk and the circle have 
different homotopy groups). How can you explain the fact tha t the champion of 
intuitionism produced theorems that are not intuitionistically valid? 

19.9 . A naive use of the formula for the sum of the geometric series 1/(1 -f x) = 
1 - ÷ + ÷2 - ÷3 Ç seems to imply that 1 - 5 + 25 - 125 Ç = 1/(1 + 5) = 
1/6. Nineteenth-century analysts rejected this use of infinite series and confined 
themselves to series that converge in the ordinary sense. However, Kurt Hensel 
(1861-1941) showed in 1905 tha t it is possible to define a notion of distance (the 
p-adic metric) by saying that an integer is close to zero if it is divisible by a large 
power of the prime number ñ (in the present case, ñ — 5). Specifically, the distance 
from m to 0 is given by d(m, 0) = 5~ f c , where 5 f c divides m but 5 f c + 1 does not 
divide m. The distance between 0 and the rational number r = m/n is then by 
definition d(m, 0)/d(n,0). Show that d ( l , 0 ) = 1. If the distance between two 
rational numbers r and s is defined to be d(r — s ,0) , then in fact the series just 
mentioned does converge to | in the sense tha t d(Sn, g) —> 0, where Sn is the n th 
partial sum. 

Wha t does this historical experience tell you about the t ru th or falsity of math-
ematical statements? Is there an "understood context" for every mathematical 
s tatement tha t can never be fully exhibited, so tha t certain assertions will be ver-
bally t rue in some contexts and verbally false in others, depending on the meaning 
attached to the terms? 

19 .10 . Are there t rue but unknowable propositions in everyday life? Suppose 
tha t your class meets on Monday, Wednesday, and Friday. Suppose also t ha t your 
instructor announces one Friday afternoon tha t you will be given a surprise exam at 
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one of the regular class meetings the following week. One of the brighter students 
then reasons as follows. The exam will not be given on Friday, since if it were, 
having been told tha t it would be one of the three days, and not having had it on 
Monday or Wednesday, we would know on Thursday tha t it was to be given on 
Friday, and so it wouldn' t be a surprise. Therefore it will be given on Monday or 
Wednesday. But then, since we know tha t it can't be given on Friday, it also can't 
be given on Wednesday. For if it were, we would know on Tuesday tha t it was to 
be given on Wednesday, and again it wouldn't be a surprise. Therefore it must be 
given on Monday, we know tha t now, and therefore it isn't a surprise. Hence it is 
impossible to give a surprise examination next week. 

Obviously something is wrong with the student 's reasoning, since the instructor 
can certainly give a surprise exam. Most students, when trying to explain what is 
wrong with the reasoning, are willing to accept the first step. Tha t is, they grant 
tha t it is impossible to give a surprise exam on the last day of an assigned window 
of days. Yet they balk a t drawing the conclusion tha t this argument implies that 
the originally next-to-last day must thereby become the last day. Notice that , if the 
professor had said nothing to the students, it would be possible to give a surprise 
exam on the last day of the window, since the students would have no way of 
knowing tha t there was any such window. The conclusion tha t the exam cannot 
be given on Friday therefore does not follow from assuming a surprise exam within 
a limited window alone, but rather from these assumptions supplemented by the 
following proposition: The students know that the exam is to be a surprise and they 
know the window in which it is to be given. 

This fact is apparent if you examine the student 's reasoning, which is full of 
s tatements about what the students would know. Can they truly know a s tatement 
(even a true statement) if it leads them to a contradiction? 

Explain the paradox in your own words, deciding whether the exam would 
be a surprise if given on Friday. Can the paradox be avoided by saying tha t the 
conditions under which the exam is promised are t rue but the s tudents cannot know 
tha t they are true? 

How does this puzzle relate to Godel 's incompleteness result? 
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with defect, 272, 306, 310 
with excess, 272, 306, 310 

Arabic mathematics, 32 
arc, 258 
Archimedes 

axiom of, 470 
tomb, 300 

arcsine, 256, 476 
Arctic Circle, 325 
area, 3, 7, 30, 129, 301, 320, 330, 469, 503 
areas, application, 272-274, 306 

with defect, 272, 306, 310 
with excess, 272, 306, 310 

arithmetic, 26, 30, 57 
commercial, 60, 430 
Pythagorean, 164 

arithmetic operations, 14 
arithmetic progression, 406 
Arithmetica (Diophantus), 170, 410, 423, 428, 

434 
Arithmetica universalis, 440 
arithmetike, 412 
arithmology, 506 
Armour Institute of Technology, 103 
/Irs magna, 61, 431 
Artis analyticae praxis, 62, 433 
Aryabhatiya, 24, 126, 175 
Aryan civilization, 21 
Association for Women in Mathematics, 79 
associative operation, 451 
astral geometry, 342 
astrolabe, 55, 335 
astrology, 15, 29 
astronomy, 26, 29, 32, 60, 192, 258, 260, 269 
Aswan Dam, 123 
asymptotes, 306, 307 
Athenian Empire, 276 
Athens, 286, 317 
Attic Nights, 271, 317 
attribute, 294 
Aurillac, 59 
Ausdehnungslehre, 380, 453 
Australian Mathematical Society, 72 
Auswahlprinzip, 549 
automorphic function, 455 
average, 141, 159, 297, 401 
average person, 525 
axes of conies, 305 
axiom, 32 
axiom of choice, 547, 549, 552, 557 
Azerbaijan, 58 
Aztecs, 69 

Baghdad, 34, 54, 57, 199, 332, 338 
Baire category theorem, 507 
Bakshali, 23, 404 
Bakshali Manuscript, 12, 404, 420 
Baltimore, 64, 88 
Banach-Tarski paradox, 551 

Banneker's Almanac, 64 
Barnard College, 75, 102 
barycentric coordinates, 368 
base, 113 
Bayes' rule, 539 
Bayesian, 528 
BBC, 38 
bees, 322 
begging the question, 294 
Beijing, 28 
Beijing Library, 32 
Belgian Academy of Sciences, 556 
bell-shaped curve, 518, 523, 531 
Bergama, 46 
Berkeley, 530 
Berlin, 89, 188, 193 
Berlin Academy of Sciences, 193 
Berlin Papyrus 6619, 400 
Bernoulli number, 194 
Bernoulli trials, 515-517 
Betti number, 384 
Bhagabati Sutra, 23, 212 
Bhagavad Gita, 421 
Bhaskara II, 184 
Bianchi identity, 385 
bias, 530 
Bibliotheca mathematica, 548 
bicylinder, 250 
Bijapur, 25 
binary operations, 141 
binomial distribution, 523 
binomial series, 501 
binomial theorem, 468, 472, 515 
Black Sea, 87 
Blessed Islands, 326 
block printing, 28 
blueprint, 4 
Bodhayana Sutra, 175, 257 
Bologna, 82, 98 
Bolzano-Weierstrass theorem, 391 
Bombay (Mumbai), 26 
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Ishango, 6, 14 
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Book on the Resolution of Doubts, 336 
Book on Unknown Arcs of a Sphere, 338 
Borel sets, 547 
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Boston Museum of Fine Arts, 34 
brachystochrone, 376, 479 
Brahmagupta's theorem, 262 
Brahman, 24 
Brahmasphutasiddhanta, 25, 54, 145, 177, 
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Brhatsamhita, 175 
Brianchon's theorem, 365, 369, 394 
Briers score, 531 
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bu, 249, 405 
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Burali-Forti's paradox, 553 
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c, 547 
Cairo, 34 
Caius College, 520 
calculation, 146 
calculators, 129, 145, 150 
calculus, 22, 187, 191 

foundational difficulties, 474 
fundamental theorem, 467, 470 
integral, 470 
priority dispute, 473 
rules, 471 

calculus of residues, 494 
calculus of variations, 469, 472 
Calcutta, 26 
calendar, 29, 32, 60, 122, 129 

Archimedes on, 301 
civil, 123 
Gregorian, 124, 157 
Hebrew, 124 
Julian, 123, 157 

revised, 128 
Julian day, 124 
lunar, 122, 123 
lunisolar, 122, 157 
Maya, 124 
Muslim, 54, 124 
revised Julian, 128 
solar, 122 

Calendar Round, 125, 128 
California State University, 65 
Cambridge, 71, 520, 526 
Cambridge University, 101, 171, 467 
Cambridge University Press, 96 
Cambridge, Massachusetts, 68 
Canada, 38, 330 
Canadian Federation, 66 
Canadian Journal of Mathematics, 73 
Canadian Mathematical Society, 73 
Canary Islands, 326 
cancellation law, 454 
Cantor-Bendixson theorem, 547 

Cardano formula, 431, 440 
cardinal number, 4, 187, 393, 412, 546 
cardinality, 546 
Carolingian Renaissance, 329 
Carthage, 299 
categoricity, 537 
cathedral schools, 58 
Cauchy convergence criterion, 502 
Cauchy integral formula, 494, 500 
Cauchy integral theorem, 494 
Cauchy sequence, 502 
Cauchy-Riemann equations, 493 
cause, 544 
Cavalieri's principle, 31, 250, 253, 302, 303, 

314, 465-466, 487,488 
Cavendish Laboratory, 526 
CBC, 38 
celestial equator, 261 
celestial sphere, 261 
center of curvature, 373 
center of gravity, 525 
Central America, 37 
central limit theorem, 518, 523 
Centrobaryca, 325 
Ceyuan Haijing, 418 
chambered nautilus, 9 
Chandahsutra, 23 
Chebyshev's inequality, 523, 532 
chi, 246, 248 
chi-square distribution, 529 
chi-square test, 87 
Chiliades, 287 
China, 23, 37, 40, 113, 139, 145, 197, 302, 

326, 338, 407, 420, 529 
Chinese algebra, 40 
Chinese remainder theorem, 173, 175, 180 
Ching (Manchu) Dynasty, 28 
ch'onwonsul (algebra), 418 
chord, 258 
circle, 8, 298, 329, 356, 418 

measurement, 301 
osculating, 374 
quadrature, 74, 257, 264 , 274-275, 290, 

312, 449 
Egyptian approximation, 236 

cissoid, 281 
citizenship, 139 
Civil War, American, 66 
Clark University, 67, 102 
closed set, 392 
clothing, 4 
Cnidus, 286 
code breaking, 150 
coin-tossing, 517 
Colour and Colour Theories, 102 
Columbia University, 159 
combination, 515 
combinatorics, 187, 212-214 
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combinatory product, 380 
comet, 521 
compactness, 391 
compass, 335 
Compendium, 471 
completeness, 537, 552, 555 
completing the square, 423 
complex number, 187 
composite number, 165 
composite ratio, 353 
compound interest, 403 
Comptes rendus, 550 
computer program, 4 
computers, 139 
computing, 146 
conchoid, 280-282 
conditional probability, 524 
conditioning, 8 
cone, 276 

frustum, 324 
volume, 298 

conformal mapping, 376, 380 
Confucianism, 28 
conic section, 46, 62, 304-310, 352, 394, 471 
conical projection, 327 
Conies, 55, 296, 315, 323, 335, 337 
conjugate points, 481 
connectedness, 390 
connectivity of a surface, 384 
conservation law, 475 
conservation of energy, 385 
consistency, 537, 552, 555 
Constantinople, 43, 303, 317 
constructivism, 547 
continuity, 390 

pointwise, 391 
uniform, 391 

continuum, 284, 390 
continuum hypothesis, 547 
convergence 

Abel-Poisson, 501 
coordinate system, 9 
coordinates 

barycentric, 368 
Cartesian, 327, 352 
homogeneous, 370 
line, 370 
point, 370 

Copenhagen, 208 
Copper Eskimo, 111 
Cordoba, 332 
corner (Egyptian square root), 400 
corner condition, 483 
cosecant, 260 
coset, 448 
cosine, 260, 268 
Cosmos, 86 
cotangent, 260 

countable set, 549 
counting, 3 
counting board, 51, 135, 146, 253, 413 
counting rods, 51, 135, 146, 198 
Courant Institute, 69 
Cours d'analyse, 498, 502 
Cramer's paradox, 356 
Cramer's rule, 356 
Crelle's Journal, 73 
Crete, 276 
Crimean War, 87 
cross-ratio, 356 
Croton, 271 
cube, 274, 275, 288 

doubling, 274-279,313, 314,433, 435, 449 
cube root, 414 
cubic equation, 202, 206, 401, 417, 425, 437 
cubit, 235, 239 
cun, 248 
cuneiform, 12, 13, 16, 35, 159, 265, 270 
currency conversion, 428 
curvature, 346, 469 

Gaussian, 377, 395 
geodesic, 379 

curvature of a surface, 375 
curves, homologous, 388 
curvilinear problem, 280 
Cutting Off of a Ratio, 305 
cybernetics, 67 
cycle, 460 
cyclic quadrilateral, 263, 268 
cycloid, 371, 465, 469 

area, 466 
tangent to, 465 

cycloidal pendulum, 372, 373 
Cyclops, 166 
cyclotomic equation, 447 
cylinder, 276, 303-304, 360 

area, 238 
volume, 298 

Cyzicus, 288 

Danish Academy of Sciences, 376 
Data, 45, 55, 296, 323, 337, 429 
De arte combinatoria, 214, 515 
De configurationibus qualitatum et motuum, 

331 
De divina proportione, 358 
De numeris datis, 429, 435 
De quadratra arithmetica circuit, 203 
De ratiociniis in ludo aletE, 514 
De revolutionibus, 338 
De Thiende, 144 
De triangulis omnimodis, 60, 331, 338 
decimal system, 143, 144, 146, 197 
declination, 261 
decumanus maximus, 327 
Dedekind cuts, 206 
Dedomena, 299 
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definition, 32 
Delia pictura, 61 
Delos, 276 
demotic, 116 
density, 291 
Department of Education, 105 
derivative, 463, 469, 473 

notation for, 469, 470 
derived set, 547 
Desargues' theorem, 323 
descriptive set theory, 393, 546 
determinant, 53, 419 
development of a function, 542 
diameters of conies, 305 
dice, 532 

Dictionary of Philosophy and Psychology, 
102 

Dictionary of Scientific Biography, 57 
difference engine, 150 
difference equation, 67 
differentiable manifold, 378 
differential, 470, 472 
differential equation, 67, 389, 472, 474 
differential geometry, 343 
difformly difform, 330 
dimension, 324, 353, 546 
Diophantine equation, 163, 175, 178, 188, 

410 

Dirichlet character, 193 
Dirichlet series, 193, 194 
Dirichlet's principle, 482 
Discourse on Method, 352 
discrimination, 530 
dispersion, 520 

Disquisitiones arithmetica;, 174, 192 
Disquisitiones generates circa superficies cur-

vas, 376 
distribution, 496 

binomial, 523 
chi-square, 529 
Gaussian, 522 
normal, 519, 522-524, 529, 531 
Poisson, 523 

divination, 10, 14, 29, 175, 210, 522 
Divine Comedy, 48 
divisibility, 168, 173 
division, Egyptian, 131 
Doctrine of Chances, 517 
dogs, perception of shape, 8 
domain of rationality, 451 
Doric, 277 

double difference, 246, 258 
double square umbrella, 250 
doubling, 5, 129 
doubling the cube, 274-279, 288, 313, 314, 

433, 435, 449 
doubly periodic function, 493 
dozen, 114 

dram, 114 
Dresden Codex, 37 
Dublin, 452 
Diiren, 193 

e, 517 
transcendence, 197 

earth, 271 
Easter, 11, 129, 157 
eccentricity, 512 
eclipse, 32 

solar, predicted by Thales, 270 
Ecole Normale, 72, 448 
Ecole Polytechnique, 62, 72, 486 
edge law, 388 
Edict of Nantes, 517 
EDVAC, 153 

Egypt, 5, 13, 19, 37, 40-42, 113, 129, 139, 
145, 270, 271, 296, 317, 407, 409 

Egyptian Museum, 34 
elasticity, 379, 383 
electromagnetism, 85, 192 
element, 271 
Elements, 26, 32, 43, 44, 55, 58, 164, 169, 

269, 275, 284, 290, 301, 312, 319, 332, 
337, 429 

ellipse, 8, 9, 277, 314, 356 
definition, 306 
eccentricity, 8 
string property, 315 

elliptic function, 191, 194 
elliptic geometry, 349 
elliptic integral, 90, 450, 507 
emolumentum, 520 
Emperor Yu, 172 
Encyclopadie, 486 
energy, thermal, 525 
engineering, 129 
ENIAC, 150 
entropy, 523, 526 
envelope, 375, 376 
epanthema, 409, 429 
equation 

cubic, 55, 61, 202, 206, 401, 423, 425, 432, 
434, 437 
in two variables, 394 
resolvent, 432 

cyclotomic, 447 
differential, 474, 507 
Diophantine, 188, 404, 410 
gravitational, 385 
heat, 478 
Laplace's, 498 
Pell's, 181, 190 

quadratic, 235, 401, 407, 420, 423, 437, 
460 
applications, 434 
positive roots, 421 
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quartic, 431-432, 437, 442 
quintic, 446, 449 
solution by radicals, 431 
wave, 477, 497, 498, 507 

equations 
Frenet-Serret, 384 
Mainardi-Codazzi, 384 

equator, 326 
equidistant curve, 350 
equinox, 261 
ergodic theory, 67 
Essai sur une maniere de representer les 

quantites imaginaires dans les construc-
tions gaometriques, 209 

estimation, 524 
Euclidean algorithm, 136,164-165,174, 176, 

182, 184, 200, 250, 310, 460 
Euclides ab omni ç<åíï vindicatus, 339 
Euler characteristic, 386 
Euler constant, 204 
Euler </>-function, 189 
Euler's equation, 480 
Euler's formula, 388 
Europe, 168, 327 
European algebra, 40 
European mathematics, 41 
even number, 165, 200 
event, probability, 513 
events, 540 
evolute, 371 
evolution, 529 
existence, 537, 540 
expectation, 514 
exponent, 403 

integer, 430 
exponentials, 472 
exterior-angle principle, 296 
extremal 

strong, 483 
weak, 481 

face, 8 
faction, 437 
fairness, 139 
Fakhri, 412, 428 
falconry, 59 
false position, 399 
fang cheng, 405 
fathom, 114 
fen, 246 

Fermat prime, 188 
Fermat's last theorem, 3, 47, 83, 189, 390 

fourth powers, 187 
Fermat's little theorem, 189, 219 
Fermat's principle, 479 
Fibonacci Quarterly, 182 
Fibonacci sequence, 181-182, 185, 213 
field, 447, 548 
Fields Medals, 68, 71 

figurate numbers, 167-168 
figures, 8 
finger reckoning, 143 
finite group, 457-458 
fire, 271 
first category, 506 
five-line locus, 323 
flat manifold, 382 
flat surface, 375 
Flos, 428 
fluent, 469, 473 
fluxion, 468-469, 473, 474, 484 
Fluxions, 373, 476 
focal property, 308, 314 
foci, 314 
folium of Descartes, 465 
foot, 114 
Form, 44 
Formal Logic, 537, 540 
formula, well-formed, 557 
four-line locus, 323, 354 
Fourier coefficients, 499 
Fourier integral, 500 
Fourier inversion formula, 500 
Fourier series, 71, 499, 507 
fractional-linear transformation, 365, 455 
fractions, 30 

common, 139 
sexagesimal, 140 

France, 4, 323 
Franciscans, 37, 40 
French Revolution, 83 
Frenet-Serret equations, 384 
frequentist, 528, 538, 543 
frustum 

of a cone, 252, 301, 324 
of a pyramid, 248 

volume, 240, 244 
function 

absolutely continuous, 505 
analytic, 490 
automorphic, 455 
definition, 498 
development, 542 
doubly periodic, 493 
generalized, 496 
harmonic, 502, 505 
multivalued, 387, 494 

functional analysis, 507, 551 
fundamental group, 389 
fundamental theorem of algebra, 537 
furlong, 114 
furniture, 4 

Gottingen, 376 
Galois resolvent, 448 
Ganges, 119 
GAR, 241 
Gauss-Bonnet theorem, 379 
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Gaussian curvature, 192, 377, 395 
Gaussian distribution, 64, 522 
Gaussian domain, 458 
Gaussian elimination, 405 
Gaussian integers, 193, 458 
Gebilde, 495 
generalized function, 496 
Geneva, 86 
geodesic, 379, 383 
geodesic curvature, 379 
geodesy, 192 
Geography, 55, 327 
geography, 325 
Geometria, 329 
Geometria organica, 355 
geometria situs, 385 
Geometria: prima elementa, 342 
geometric algebra, 285 
geometric progression, 406 
Giomatrie, 202, 352, 360, 464 
geometry, 8, 26, 41 

analytic, 474 
Euclidean, 470 
hyperbolic, 378 
non-Euclidean, 350, 371, 378 
solid, 298 

George Szekeres Medal, 72 
German Mathematical Union, 451 
Gesetz der Kanten, 388 
GIMPS, 167, 195 
Girton College, 88, 93 
Goldbach conjecture, 190, 195 
golden number, 157 
Golden Ratio, 9, 39 
Golden Section, 298, 358 
Good Will Hunting, 217 
googol, 128 
googolplex, 128 
Gottingen, 72 

Gottingen Royal Society, 383 
Gottinger Nachrichten, 189 
gou, 245 
gougu theorem, 245, 248, 266 
gram, 532 
Grammelogia, 149 
graph theory, 9, 210 
gravitation, 218 
gravitational equation, 385 
Great Pyramid, 270, 310 
greatest common factor, 164, 169 
greatest common measure, 165 
Greece, 407 
Greek mathematics, 41 
Gregorian calendar, 124, 157 
Grolier Codex, 37 
gross, 114 
group, 447, 451 

Abelian, 447 

abstract, 454 
alternating, 459 
finite, 457-458 
fundamental, 389 
homology, 389 
locally compact Abelian, 551 
Monster, 458 
permutation, 459 
sporadic, 458 
symmetric, 459 

group representations, 456-457 
Grundgesetze der Arithmetik, 552 
Grundlagen der Geometrie, 348 
gu, 245 
Gwalior, 199 

Haab, 122, 125 
Hai Dao Suan Jing, 31, 51, 246 
Halle, 100 
Hamilton, Ontario, 68 
Hamming codes, 20 
Han Dynasty, 27, 30, 31, 119 

Western, 29, 405 
Handbook of Political Fallacies, 536 
Hannover, 376 
Hanoi, 326 
Harappa, 21 
harmonic analysis, 67 
harmonic function, 502, 505 
harmonic series, 475 
harpedonaptai, 235 
Harran, 56 
Harvard University, 67, 68, 101, 102, 453 
hau computations, 134 
Hausdorff space, 393 
heat equation, 478 
Hebrew calendar, 124 
Heidelberg, 89, 146 
Heine-Borel theorem, 392 
hekat, 134, 210, 239 
hemisphere, 42 

area, 238 
heptagon,55 
heptagonal number, 183 
Heron's formula, 263, 320 
hexagon,298 
hexagonal number, 168 
hieratic, 34, 116 
hieroglyphics, 34, 116, 154 
Hijra, 124 
Hubert basis theorem, 97 
Hindu mathematics, 32 
histogram, 87, 529 
historical ordering, 8 
holes, 8 
homogeneous coordinates, 370 
homologous curves, 388 
homology, 389 
homology group, 389 
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honeycomb, 322 
Horner's method, 415 
horocycle, 346 
Horologium oscillatorium, 371 
horosphere, 343, 346 
Horus, 123, 131 
Horus-eye parts, 131 
l'Hospital's rule, 473 
Howard University, 65 
Huguenots, 517 
Hundred Fowls Problem, 406 
Hungary, 60 
hyperbola, 277, 306 

rectangular, 425 
hyperbolic function, 341 
hyperbolic geometry, 340, 342, 378 
hyperbolic paraboloid, 395 

/ Ching, 10, 172, 522 
Iceland, 325 
icosahedron, 450 
Idea, 44 
ideal number, 459 
Iliad, 283 
Ilkhan, 58 
imaginary geometry, 345 
inclusion-exclusion principle, 513 
incommensurables, 202, 284-285, 287, 488 
incompleteness theorems, 552 
independent trials, 513 
India, 12, 37, 40, 58, 113, 143, 145, 197, 246, 

407, 463 
Indian Statistical Institute, 26 
Indiana, 236 
induction, 538, 540, 543 

transfinite, 547 
Indus River, 21 
infinite, 295, 421 
infinite precision, 7 
infinite series, 22 
infinitely divisible, 3 
infinitesimals, 470, 490 
infinity, 421 
inflection point, 374 
inheritance, 145 
Institute for Advanced Study, 100 
Institute for Scientific Computing, 179 
Institutiones calculi, 474 
Institutions de physique, 82 
insurance, 522, 543 
integral, 463, 473 

elliptic, 507 
Fourier, 500 
non-elementary, 474 
notation for, 469, 471 
Riemann, 502 

integral domain, 451 
integrating factor, 475 
integration, 440 

International Congress of Mathematicians, 
29, 68, 98, 195, 457 

Introductio in analysin infinitorum, 474, 490 
Introduction to Set Theory, 557 
involute, 371 
Ionia, 42 
Iran, 57 
Iraq, 54, 57, 143 
Ireland, 58 
irrational number, 199, 200 
Ishango, 6 
Ishango Bone, 14 
Isis, 123 
Isis and Osiris, 237 
isoperimetric inequality, 318, 348 
isoperimetric problem, 322 
isotherms, 379, 382 
Istituzioni analitiche, 474 
Italian Geographical Society, 86 
Italy, 3, 60, 285, 317 

Jacobi inversion problem, 493, 495 
Jainas, 209, 212 
Jainism, 21-22 
Japan, 3, 32, 420 
Japanese Mathematical Society, 73 
Jena, 552 
Jerusalem, 69 
Jesuits, 28, 32, 40 
Jinko-ki, 52, 180, 252 
Jiu Zhang Suanshu, 30, 31, 33, 35, 51, 145, 

156, 164, 249, 251, 266, 405, 413, 434 
Johns Hopkins University, 66, 68, 73, 88,101 
Jones polyomial, 71 
Josephus problem, 180-181 
Journal de VEcole Mormale Suparieure, 73 
Journal de VUcole Polytechnique, 73 
Journal de mathfynatiqy.es pures et appliquies, 

380 
Journal fur die reine und angewandte Math-

ematik, 73, 90, 446, 452 
Julian calendar, 123, 157 
Julian day calendar, 124 
Jupiter, 177 
jurisprudence, 543 

Kaballah, 11 
Kai Fukudai no Ho, 419 
Kaliningrad, 386 
karat, 114 
kardo maximus, 327 
Kattigara, 326 
Kazan' Physico-Mathematical Society, 344 
Kelvin temperature, 526 
Ketsugi-sho, 254 
khar, 239 
khet, 235 
Khorasan, 57 
Kievan Rus, 338 
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Kingdom of Wei, 31 
knitting, 9 
Kokon Sampd-ki, 53, 418 
Konigsberg, 60, 189, 483 

bridges of, 9, 386 
Korea, 27, 32, 50, 214 
Kuba, 9 
kuttaka, 175-177, 184, 198, 420 

L'invention nouvelle en I'algebre, 437 
La recherche, 71 
Lady's and Gentleman's Diary, 216 
Lambert quadrilateral, 333 
Laplace transform, 71 
Laplace's equation, 498 
Laplace—Beltrami operator, 385 
Latin square, 210, 216 
latitude, 325 
lotus rectum, 306, 313 
Laurent series, 494 
law of cosines, 332 
law of large numbers, 513, 516, 523 
law of sines, 331 
Laws, 45 
Laws of Thought, 540 
Le progres de Vest, 93 
league, 114 
least common multiple, 169 
least squares, 64, 192, 521 
leather roll, 34 
Lebesgue integral, 503 
Legons sur le calcul des fonctions, 490 
Legons sur les fonctions discontinues, 506 
Lectiones geometricae, 467 
legacy problems, 423-425, 434 
legislated value of ð, 236 
Leipzig, 60 
lemniscate, 450, 491, 492 
length, 3, 7, 12, 30, 503 
Let's Make a Deal, 16 
lever, Archimedes on, 301 
Leyden,352 
li, 246 
Liber abaci, 181, 210, 428, 430 
Liber de ludo, 513 
Liber quadratorum, 181, 211, 428 
Libya, 81 
Lie algebra, 455-456 
Lie bracket, 456 
Lie group, 455-456 
Life of Pythagoras, 271 
lightning, 13 
Lilavati, 25, 211 
line, 233, 271, 284 
line coordinates, 370 
line graph, 87 
linear algebra, 103 
Lisieux, 59 
Lives of Eminent Philosophers, 80, 270 

Loci, 296 
locus, 323, 352 

four-line, 306-310, 314 
three-line, 306, 314 
two-line, 314 

logarithm, 62, 147-149, 158, 472, 476, 517 
logic, 14, 67 

three-valued, 556 
The Logic of Chance, 542 
logicism, 553 
logistike, 412 
London, 149, 268, 529 
London Mathematical Society, 73 
Long Count, 125 
longitude, 325 
lottery, 18 
Louvre, 140, 401 
Lower Saxony, 376 
lunar calendar, 122 
lunes, 275 

quadrature, 312 
lunisolar calendar, 122, 157 
Luo-shu, 172 
Lyceum, 269, 293 

Maclaurin series, 476 
Madagascar, 10 
Madrid Codex, 37 
magic square, 172, 210 
Mahler Lectureship, 72 
Mainardi-Codazzi equations, 384 
Malagasy, 10, 11, 15 
Manchester University, 71 
Manchu (Ching) Dynasty, 28, 33 
Manchus, 28 
manifold, 382, 546 

flat, 382 
Maoris, 70 
map, 4, 325 
Maple, 154 
mapping, conformal, 376, 380 
Maragheh, 58 
Markov chain, 523 
Marxism, 29 
Massachusetts Institute of Technology, 69 
Matematicheskii Sbomik, 73 
Mathematica, 154, 250 
Mathematical Analysis of Logic, 539 
Mathematical Association of America, 63, 

105, 107 
Mathematical Correspondent, 63 
mathematical expectation, 514, 519, 523 
mathematical journals 

American, 73 
Canadian, 73 
French, 73 
German, 73 
Japanese, 53 
Swedish, 73 
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mathematical research, 73 
mathematics education, 154 
Mathematics Magazine, 188 
mathematikoi, 271 
Ëßáß/iematisc/ie Annalen, 88, 98 
Matlab, 154 
Mato Grosso, 113 
matrix, 405, 413, 451 

transition, 524 
maximum-likelihood, 524 
Maxwell's demon, 526 
Maya, 40, 69, 80, 197 
McGill University, 71 
mean and extreme ratio, 297, 358 
mean proportional, 312 
measure, 546 

Borel, 551 
measure of curvature, 377 
measure zero, 505 
measurement, 3 
Mecanique caleste, 66, 86 
Mecca, 54 
Medinet Habu, 122 
Melencolia, 214 
Memorandum for Friends, 180 
Menelaus' theorem, 362, 393 
Mengenlehre, 392 
Meno, 201 
Meroe, 326 
Mersenne prime, 167 
Merton College, 331 
Merton Rule, 331 

Meru Prastara (Pascal's triangle), 213 
Mesoamerica, 197 
Mesopotamia, 12, 13, 21, 41, 145, 197, 271, 

407, 409, 414 
metalanguage, 552, 555 
Method, 250, 301-304 
method of exhaustion, 290, 302, 465-467, 

470 
method of infinite descent, 187, 189, 218 
metric space, 392, 507 
metric, p-adic, 558 
Metrica, 303, 320 
Mexico, 37 
microgram, 533 
Miletus, 42, 270 
Ming Dynasty, 22, 28 
minimal polynomial, 434 
minimal surface, 376, 480 
minute, 114 
Mirifici logarithmorum canonis descriptio, 

62, 147 
Mobius band, 369, 388 
Mobius transformation, 365, 369, 455 
modus ponens, 544 
Mogul Empire, 22 
Mohenjo Daro, 21 

Mona Lisa, 4 
monads, 271 
monasteries, 58 
Mongol Empire, 28 
Mongols, 28, 58 
Monster, 458 
Montreal, 71 
de Morgan's laws, 538 
Moscow, 551 
Moscow Mathematical Society, 73 
Moscow Museum of Fine Arts, 34 
Moscow Papyrus, 238-240, 244, 248 
motion, 334 
Mozambique, 325 
mti, 405 
multilinear algebra, 380 
multiplication, 146-147 

Egyptian, 130 
multivalued function, 387, 494 
Mumbai (Bombay), 26 
music, 4 
Muslim algebra, 40 
Muslim calendar, 124 
Muslim mathematics, 41 
mutual-subtraction algorithm, 184, 250 
myriad, 114, 120 

Naples, 86 
National Council of Teachers of Mathemat-

ics, 63 
National Medal of Science, 69 
National Physical Laboratory, 71 
National Science Foundation, 105 
National University of Mexico, 69 
Nautical Almanac Office, 67, 68 
Naval Observatory, 68 
Navigator, 66 
negative number, 135, 187, 197, 434 

square root of, 62 
Nephthys, 123 
Neptune, 86 
von Neumann algebra, 71 
Neumann Prize, 72 
neusis, 281, 313, 425 
New South Wales, 70 
New Testament, 43 
New York Historical Society, 34 
New York Mathematical Society, 73 
New York University, 69, 78 
Newnham College, 93 
Nicomachean Ethics, 179 
Nile, 34, 128 

annual flood, 123 
Nine Symposium Books, 272 
Noetherian ring, 454 
non-Euclidean geometry, 296, 378 
nonagonal number, 183 
nonstandard analysis, 470 
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normal distribution, 64, 519, 522-524, 529, 
531 

normal subgroup, 449 
North America Act, 66 
North Carolina Central University, 65 
North China Herald, 174 
Northwestern University, 76 
notation, 432 
notebooks, Ramanujan's, 27 
nothing, 541 
Nova Scotia, 68 
number, 3 

Avogadro, 532 
Bernoulli, 194 
cardinal, 187, 393, 412, 546 
complex, 187, 490, 498 
composite, 165 
deficient, 166 
Fermat, 188, 557 
figurate, 167-168 
golden, 157 
heptagonal, 183 
hexagonal, 168 
ideal, 459 
imaginary, 490 

interpretation, 208 
irrational, 199, 200, 557 
negative, 187, 197, 430, 434, 490 
nonagonal, 183 
octagonal, 183 
ordinal, 187, 210, 393, 545, 553 
pentagonal, 168 
perfect, 166, 168, 170, 179, 183 
prime, 165, 193, 556 

regular, 196 
rational, 159, 187, 429, 557 
real, 187 
square, 168 
superabundant, 166 
transcendental, 203, 449 
triangular, 168 

number theory, 41 
Pythagorean, 298 

numbers 
amicable, 179, 185 
relatively prime, 165, 169 

numerals 
Hindu-Arabic, 59 

numerology, 15 
Niirnberg, 60 

octagonal number, 183 
odd number, 165, 200 
Odyssey, 166 
Oedipus the King, 276 
otfcumene, 326 
On Burning Mirrors, 318 
On Exile, 275 
On Isoperimetric Figures, 318 

On Socrates' Daemon, 288 
one-sided surface, 388 
open set, 392 
Optics, 45, 296 
optics, 55 

Archimedes on, 301 
order, 361 
ordering, 546 
ordinal number, 4, 187, 210, 393, 545, 553 
ordinate, 476 
ornamental geometry, 54 
orthotomi, 277 
osculating circle, 374 
Osiris, 123 
Ottoman Empire, 50 
outer product, 380 
Oxford University, 101, 331 
oxytome, 277 

Pacific Journal of Mathematics, 458 
Pakistan, 21, 25 
Palermo, 384 
palm reading, 15 
Papal States, 82 
Pappus' principle, 249 
Pappus' theorem, 324, 349 
Papyrus 

Ahmose, 34, 156, 239, 247 
Moscow, 238-240 
Reisner, 34 

parabola, 277, 306 
quadrature, 301 
tangent to, 464-465 

paradox 
Banach-Tarski, 551 
Burali-Forti's, 553 
Petersburg, 519 
Russell's, 549, 553, 554, 556 
Zeno's, 283-284, 310 

Achilles, 283 
arrow, 284 
dichotomy, 283 
stadium, 284 

paradox curve, 281 
parallel lines, 294 
parallel postulate, 16, 55, 333-338, 350 
parameterized surface, 375 
Paris, 514 
Paris Academy of Sciences, 190, 384, 448, 

494 
Paris Codex, 37 
Parmenides, 293 
partial fractions, 440 
partial reinforcement, 13 
parts (unit fractions), 129 

table of doubles, 132 
Pascal's theorem, 365 
Pascal's triangle, 213, 515 
Pataliputra, 24 
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Patna, 24 
Paulisha Siddhanta, 24 
pedagogical ordering, 8 
pedagogy, 31 
Pell's equation, 181, 190 
Peloponnesian War, 275, 285 
pendulum, 474 
Pensees, 364 
pentagon, 9, 298 
pentagonal number, 168 
pentakaidecagon, 298 
perfect number, 168, 170, 179, 183 
perfect set, 547 
Perga, 305 
Pergamum, 46 
Period of Warring States, 27 
permutation, 215, 445, 515 
permutation group, 459 
Persia, 57, 58 
perspective, 85, 356, 358 
Peshawar, 23, 404 
pesu, 134, 138, 235 
Petersburg, 188 
Petersburg Academy of Sciences, 73 
Petersburg paradox, 519 
Phenomena, 45, 55, 296 
Philosophical Transactions of the Royal So-

ciety, 525 
philosophy, 329 
Physical Geography, 86 
Physics, 283, 290 
physikoi, 271 
Physique social, 525 
ð, 233, 247, 257, 263, 449 

"biblical" value, 236 
irrationality, 341 
legislated value, 236 
transcendence, 197, 203 

pie chart, 87 
pigeons, 13 
Piraeus, 288 
Pisa, 73 
place-value system, 113 
planar problem, 280 
plane, 271 
plane trigonometry, 338 
Platonicus, 276 
Playfair's axiom, 85 
Plimpton 322, 182 
Poincare conjecture, 390 
point, 284 
point coordinates, 370 
pointwise continuity, 391 
Poisson distribution, 523 
polygon 

17-sided, 192, 447, 450 
circumscribed, 298 
inscribed, 298 

polyhedron, 271, 388 
polynomial 

Jones, 71 
symmetric, 460 

Porisms, 296 
Portugal, 33 
postulate, 32 
pound,114 
power series, 474, 486, 489, 503 
Practical Geometry, 329 
Prague Scientific Society, 446 
Prasum, 325 
predicate, 294 
predicate calculus, 552 
premier (unknown), 430 
prime, 460 

Mersenne, 167 
prime decomposition, 180 
prime number, 165, 556 
prime number theorem, 219 
prime numbers, infinitude, 169 
Princeton University, 63, 70, 100, 153, 454 
Principia, 63, 66, 82, 373, 468, 469, 479 
Principia mathematica, 554 
Principles of Mathematics, 553 
Prior Analytics, 293 
prism, hexagonal, 323 
probability, 67, 210, 472, 503, 532, 538-540 

conditional, 524 
of an event, 513 

progression 
arithmetic, 406 
geometric, 406 

projection, 62, 385 
proof by contradiction, 556 
proper class, 556 
proportion, 14, 30, 270, 297, 301 

Eudoxan theory, 298, 324 
proposition, 32 
propositional calculus, 537 
prosthaphaeresis, 146-147, 158 
protomathematics, 3 
Prussian Academy of Sciences, 188 
Psammites, 120 
pseudosphere, 384, 395 
Ptolemais, 81 
Pulkovo Observatory, 344 
Putnam Examination, 107 
pyramid, 42, 301, 310 

frustum, volume, 248, 263, 264 
Pythagorean comma, 18 
Pythagorean theorem, 31, 111, 159, 237, 238, 

242, 245, 248, 257, 271, 297, 310, 343, 
349, 400, 418 

generalizations, 298, 322, 334 
Pythagorean triples, 175, 177, 312 
Pythagoreans, 11, 20, 43, 45, 80, 164, 275, 

287, 297, 536 
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Qin Dynasty, 27 
quadratic equation, 235, 401, 407, 420, 437, 

460 
positive roots, 421 

quadratic formula, 416 
quadratic incommensurables, 297 
quadratic reciprocity, 192, 219 
quadratrix, 275, 280, 281, 310, 353 
Quadrature of the Parabola, 324 
quadrilateral, 262 

area, 263, 268 
cyclic, 263, 268 
Lambert, 333 
Saccheri, 333, 350 
Thabit, 333, 338, 339, 350 

quadrivium, 19, 26, 48, 58 
quantum field theory, 71 
quantum mechanics, 67 
Quarterly Journal, 452 
quartic equation, 417, 437, 442 
quaternion, 452, 453, 460 
quinquenove, 515 
quintic equation, 446, 449 

Radcliffe College, 102 
radium-228, 532 
radius of curvature, 373 
rainbow, 55 
random variable, 512, 523 
ratio, 291 

composite, 292, 324, 353 
duplicate, 292 
mean and extreme, 297 

rational number, 159, 187, 429 
ratios, first and last, 469 
Real and Complex Analysis, 489 
real number, 187 
Recherches sur la probabilita des jugemens, 

522 
reciprocals, 140 
reciprocity, 459 
rectangle, 235, 333 
rectangular hyperbola, 425 
regular solids, 298, 299, 357 

Archimedes on, 301 
Reisner Papyrus, 34 
relative rate, 469 
relatively prime, 161, 165, 169, 186, 557 
relativity, 67, 383 
Renaissance, 357 

Carolingian, 329 
Republic, 19, 286, 312 
residue, 189 
resolvent, 441 

Galois, 448 
retrograde motion, 305 
Review of Modern Physics, 38 
revised Julian calendar, 128 
Revolution 

American, 64 
French, 72 

Revue scientifique, 93 
Rhind Papyrus, 13, 129-135 
Rhodes, 327 
Riemann hypothesis, 195 
Riemann integral, 502 
Riemann mapping theorem, 482 
Riemann surface, 387, 494 
Riemann zeta function, 194 
Riemann-Roch theorem, 495 
Riemannian manifold, 385 
rigid body motion, 90 
rigle des premiers, 430 
ring, 460 

Noetherian, 454 
ring of sets, 393 
Rolle's theorem, 391 
Roman Empire, 317 
Roman numerals, 119, 143 
Rome, 236, 299 
Room squares, 71, 210 
root of an equation, 423, 437 
rope fixers (surveyors), 237 
Rough Draft, 362 
row reduction, 405 
Royal Astronomical Society, 86 
Royal Irish Academy, 86 
Royal Society, 66, 468, 473 
RSA codes, 189 
Rubaiyat, 57 
Rule of Three, 134, 135, 140, 155, 428 
Russell's paradox, 549, 553, 554, 556 
Russia, 3, 73 
Russian Academy of Sciences, 188 
Russian, number words, 127 

Sabians, 56 
Saccheri quadrilateral, 333, 350 
Sachsische Landesbibliothek, 37 
Saint Andrew's University, 94 
Saint Gerald, 59 
Sakhalin, 115 
Salem, Massachusetts, 65 
Samarkand, 55, 332 
Samos, 42 

Sampo Ketsugi-sho, 53 
sanbob (abacus), 51 
Sand-reckoner, 120 
sangaku, 52, 252, 417 
Sanskrit, 21, 23, 112, 118, 212, 233, 330, 422 
Saturn, 176 
Saxony, 37 
scale, musical, 216 
schema, 554 
Science, 530 
Scotland, 325 
scroll, 360 
Scuola Normale Superiore, 73 
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Scythians, 325 
secant, 260, 298, 330 
second, 114 
second category, 506 
second law of thermodynamics, 525 
Second Punic War, 46, 299 
seked, 235 
semantics, 537, 554 
semicircle, 275, 329 
semidifference, 141, 159, 297, 401 
semiregular solids, 358 
Senkereh tablets, 140 
sequence, arithmetic, 193 
Seres, 326 
series, 254, 463, 468, 469, 474 

binomial, 501 
Dirichlet, 193 
Fourier, 499, 507 
geometric, 558 
Laurent, 494 
Maclaurin, 474, 531 
power, 474, 486, 489, 503 
Taylor, 472, 496, 501 
trigonometric, 477, 489, 502 

set 
countable, 549 
uncountable, 549 

set theory, 96, 187 
descriptive, 393, 546 

Seth, 123 
Sevastopol, 87 
Seven Years War, 22 
sexagesimal system, 116, 121, 143, 144, 197, 

270 
sexual harassment, 79 
Shang Dynasty, 27, 29 
Shang numerals, 135 
Shanghai, 326 
shape, 3 
Sheikh Abd el-Qurna, 234 
Shetland Islands, 325 
Shimura-Taniyama conjecture, 171 
Shogun, 53 
Shogunate Observatory, 73 
Shushu Jiyi, 172 
Sicily, 59, 285, 299 
Siddhanta Siromani, 25 
sieve of Eratosthenes, 166 
simply connected surface, 387 
Simpson's paradox, 530, 533 
Sind, 25 
sine, 259, 267, 330 
Sirius, 122 
six-line locus, 323 
slide rule, 148-150 

circular, 149 
slope, 235, 464 

of pyramids, 235 

Snell's law, 335 
Society de Physique et d'Histoire Naturelle, 

86 
Society for Industrial and Applied Mathe-

matics, 63 
software, 146 
solar calendar, 122 
solid of revolution, 249 
solid problem, 280 
Song Dynasty, 28 
Sopdit, 122 
soroban (abacus), 51 
Sothic cycle, 123 
South Africa, 53 
space, 3 

Hausdorff, 393 
metric, 392 

complete, 507 
topological, 393 

Spain, 4, 33, 43, 54 
sphere, 329, 343, 387 

area, 267, 301-304, 312 
segment, volume, 247 
volume, 249, 253, 257, 301-304 

spherical mapping, 376 
spherical trigonometry, 335 
spiral, 281, 301, 353, 469 
sporadic group, 458 
square, 9 
square number, 168 
square root, 129, 137, 140, 200, 298, 400, 

417, 430 
approximation, 141 

squaring the circle, 264, 274-275, 290, 449 
standard deviation, 87, 529 
standard length, 128 
statics, 59 
Statistical Society, 87 
statistics, 14, 515 
Steinmetz solid, 250 
Stetigkeit una irrationale Zahlen, 204 
Sthananga Sutra, 23 
Stonehenge, 122 
string property, 315 
strong extremal, 483 
Sturm-Liouville problem, 499, 507 
Suan Fa Tong Zong, 32, 33, 51, 52 
Suan Jing Shishu, 29 
suan pan (abacus), 51 
Suan Shu Chimeng, 32, 52, 119 
subgroup, 449 
subject, 294 
subtangent, 464, 476 
subtraction, 5 
successor, 552 
Suda, 81 
Sulva Sutras, 175, 257 
sum of sines, 467 
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Summa de arithmetica, 60, 429 
Sun Zi Suan Jing, 51, 135, 137, 145, 156, 

164, 172, 210 
Sun, altitude, 246, 261, 266, 268 
surface, 8 

flat, 375 
minimal, 376 
one-sided, 388 
parameterized, 375 
simply connected, 387 

surveying, 30, 129, 233, 246, 260, 271, 327-
329 

Surya Siddhanta, 23 
Sushu Jiu Zhang, 415 
symbol, 3, 410 
symbolic logic, 452 
symmetric group, 459 
symmetric polynomial, 440, 460 
Symposium Discourses, 286 
Synagoge, 47, 142, 280, 296, 320, 322, 351 
syntax, 537, 554 
Syntaxis, 47, 55 
Syracuse, 46, 285, 299 

Taisei Sankyo, 53 
Taiwan, 28 
Tang Dynasty, 28 
tangent, 260, 298, 330, 469 

Fermat's construction, 464-465 
tarot, 15 
Tata Institute, 26 
tatamu, 419 
taxation, 157 
taxes, 139 
Taylor series, 476, 496, 501 
Taylor's theorem, 486, 494, 539 
telegraph, 192 
tengen jutsu (algebra), 418 
tensor analysis, 385 
tensor product, 380 
tetrahedron, volume, 257 
Thabit quadrilateral, 333, 338, 339, 350 
The Analyst, 63 
The Connection of the Physical Sciences, 86 
The Enfranchisement of Women, 86 
The Fable of the Bees, 82 
The Subjugation of Women, 86 
The Utility of Mathematics, 276 
The Woman Inventor, 79 
Theatetus, 199 
Thebes, 234 
theorema egregium, 378 
Thiorie analytique de chaleur, 499 
Thiorie analytique des probabilites, 520 
Theorie des fonctions analytiques, 490 
Thiorie des nombres, 191 
Theory of Functions of a Real Variable, 504 
thermal energy, 525 
thermodynamics, 523, 525-527 

second law, 525 
Thoiile, 325 
three-line locus, 323, 354 
thunder, 13 
tian yuan (celestial element), 418 
Timaeus, 168 
time, 3, 7, 330, 476-477 

measurement, 128 
topology, 8, 15, 546, 551 
torus, 276, 387 
total curvature, 377 
Toulouse, 187, 514 
Tractatus de latitudinibus formarum, 330 
tractrix, 343, 347, 395 
Transactions of the Royal Irish Academy, 

446 
transcendental number, 203, 449 
transfinite, 546 
transfinite induction, 547 
transformation groups, 54 
trapezoid, 235, 266, 329 
Trattato d'algebra, 429 
Treatise on Optics, 335 
Treatise on the Projective Properties of Fig-

ures, 367 
Treviso, 144 
triangle, 235, 262, 329 

angle sum, 272 
triangular number, 168 
Trigonometries, 331 
trigonometric functions, 259, 338, 472 
trigonometric series, 477, 489, 502, 503 
trigonometry, 22, 58, 60, 145, 233, 258-262, 

330, 331, 341, 348, 417, 463, 474 
plane, 60, 338 
spherical, 60, 335, 338 

Trinity College, Cambridge, 112 
Triparty, 60, 430 
Tripos Examination, 88, 94 
trisection, 55, 274, 279-282, 313, 332, 335, 

425, 433, 435, 449 
trochoid, 355 
Troy, 283 
truncated icosahedron, 358 
truth tables, 537 
Tschirnhaus transformation, 442, 450 
Turin, 190 
Turing machine, 152 
Turkey, 56, 270 
two mean proportionals, 276, 286, 313, 314, 

433, 435 
Tzolkin, 38, 125, 128 

Umayyad Empire, 22, 54 
uncountable set, 549 
undecidable, 552, 559 
unicursal graph, 9, 15 
uniform continuity, 391 
uniform motion, 330 
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uniformly difform motion, 330 
unique factorization, 200 
unique factorization domain. 458 
unit, 3, 30, 341 
unit price, 138 
United Nations, 28 
United States, 38 
United States Military Academy, 62 
universe, 541 
University College, 529 
University of Adelaide, 70 
University of Amsterdam, 555 
University of Auckland, 70, 71 
University of Berlin, 72 
University of Bologna, 83 
University of Bonn, 369 
University of Breslau, 193 
University of California, 530 
University of Canterbury, 71 
University of Chicago, 67, 103 
University of Erlangen, 97 
University of Gottingen, 77, 94, 97, 192, 386 
University of Helmstedt, 192 
University of Iowa, 102 
University of Jena, 90 
University of Kazan', 344 
University of London, 29, 77, 88 
University of Melbourne, 70 
University of Michigan, 65, 67 
University of Moscow, 73, 504 
University of Otago, 71 
University of Padua, 61 
University of Pavia, 339 
University of Pennsylvania, 100 
University of South Dakota, 102 
University of St. Petersburg, 73 
University of Stockholm, 73 
University of Sydney, 70 
University of Tasmania, 71 
University of Toronto, 68 
University of Virginia, 101 
University of Wisconsin, 300 
Uranus, 86 
urn model, 516, 526, 539 
utility, 532 
Uzbekistan, 55 

Valmiki Ramayana, 114 
Vandermonde determinant, 444 
vanishing point, 358 
variable, random, 523 
variance, 520 
variety, 389 
Vassar College, 101 
vector, 452 
vector calculus, 453 
Vedas, 21, 22 
Vega, 344 
velocity, 330, 469 

Venus, 37, 38, 125 
Veronice, 6 
vibrating membrane, 383, 480 
vibrating string, 480, 496-497 
Victoria University, 71 
Vienna, 37, 60, 89 
Viet Nam, 27, 50 
vigesimal system, 121 
Vija Ganita, 25, 178, 184, 421 
vikalpa, 212-214 
Vikings, 58 
virtual certainty, 516 
volume, 3, 7, 31, 129, 301 

wall paintings, 4 
War and Peace, 78 
wasan, 51, 57, 252, 267 
Washington, D.C., 68 
water, 271 
wave equation, 477, 497, 498, 507 
weak extremal, 481 
weather forecasting, 531 
weaving, 9 
wedge product, 380 
Weierstrass approximation theorem, 505, 506 
Weierstrass M-test, 503 
weight, 3, 7 
well ordered, 549 
Wellesley College, 103 
Wesleyan Academy, 101 
West Point, 62 
Western Han Dynasty, 29, 405 
Western Zhou dynasty, 29 
width, 12 
Wilson's theorem, 191 
wolf bone, 6 
Woolwich, 67 
Worcester, Massachusetts, 67 
World War I, 96 
World War II, 96 

XFL Football League, 216 
xian (bowstring), 245 
Xiangjie Jiuzhang Suan Fa, 31, 213 
Xugu Suanjing, 414 
Xugu Zhaiqi Suanfa, 214 

Yale Babylonian Collection, 36, 243 
Yale University, 65 
yang, 11 
Yang Hui Suan Fa, 31 
Yangtze River, 246 
yard,114 
year, 15 

sidereal, 127 
tropical, 127 

Yellow River, 246 
yenri (circle theory), 254 
ying, 11 
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Yuan Dynasty, 28 

Zahlkorper, 451 
Zahlring, 451 
Zaire, 9 
zero, 135, 187, 421 

cancellation, 422 
zero divisor, 451 

ZetaGrid, 195 
zetetics, 433 
zhang, 248 
Zhou Bi Suan Jing, 51, 247, 266, 405 
Zhou Dynasty, 27 
Zhui Shu, 31 
Zurich, 98 
Zurich Polytechnikum, 204 
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Anne (British queen), 525 
Antiphon, 290 
Apepi I, 35 
Apollodorus, 271 
Apollonius, 41, 46, 249, 270, 296, 314, 317, 

323, 335, 351 
Arbuthnott, John, 525, 529 
Archimedes, 33, 42, 43, 46, 52, 59, 84, 120, 

249, 250, 269, 276, 290, 313, 317, 320, 
324, 335, 353 

Archytas, 269, 276 
Argand, Jean, 209 
Aristaeus, 304, 314 
Aristarchus, 121 
Aristotle, 42, 43, 179, 201, 269, 271, 275, 

283, 290, 297, 319, 511 
Arjuna, 421 

Artin, Emil, 98 
Aryabhata I, 45, 118, 126, 198, 267, 420 
Ascher, Marcia, 9, 10 
Athelhard of Bath, 329 
Avogadro, Amadeo, 532 
Ayoub, Raymond, 446 
Azulai, Abraham, 180 

Babbage, Charles, 150 
Bagheri, Mohammad, 55 
Baigozhina, G. O., 179 
Baire, Rene, 506, 535, 550 
Baker, J. N. L., 86 
Ball, W. W. Rouse, 94 
Baltzer, R., 368 
Banach, Stefan, 551 
Banneker, Benjamin, 64-65 
Baron, George, 63 
Barrow, Isaac, 467, 473 
Bartels, Johann, 345 
Barzin, M., 556 
Bashmakova, I. G., 412 
Bayes, Thomas, 524 
Bell, Eric Temple (John Taine), 452 
Beltrami, Eugenio, 346, 384 
Belyi, Andrei, 506 
Beman, W. W., 283 
Bendixson, Ivar, 547 
Benedict XIV, 83 
Bentham, Jeremy, 536 
Berggren, J. L., 55, 335 
Berkeley, George, 473, 474, 484, 488 
Bernal, Martin, 42 
Bernays, Paul, 348, 557 
Berndt, Bruce, 27 
Bernoulli, Daniel, 477, 496, 519, 532 
Bernoulli, Jakob, 472, 517, 519, 523, 524 
Bernoulli, Johann, 472, 473, 476, 479, 548 
Bernoulli, Niklaus I, 440 
Bernoulli, Niklaus II, 519 
Bessel, Friedrich Wilhelm, 342, 344 
de Bessy, Bernard Frinicle, 189 
Betti, Enrico, 194, 384, 449 
Bozout, Etienne, 394, 442 
Bhaskara II, 45, 198, 211, 428 
Bhau Daji, 24 
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Bianchi, Luigi, 385 
Bienayme, Irenee-Jules, 523 
Biggs, N. L., 212, 214 
Birkhoff, George David, 67 
al-Biruni, 24, 57, 320 
Bocher, Maxime, 103 
Bochner, Salomon, 454 
Boethius, 48, 168, 328 
Boethius, pseudo-, 328 
Bolyai, Farkas, 342 
Bolyai, Janos, 343, 346, 371 
Bolzano, Bernard, 209, 391, 504 
Bombelli, Rafael, 61, 206, 412 
Boncompagni, Baldassare, 59, 428 
Bonnet, Ossian, 379 
Boole, George, 535, 537, 539, 542, 554 
Borel, Emile, 391, 503, 535, 546, 550 
Bosse, Abraham, 362 
Bottazzini, Umberto, 441, 498, 503, 504 
Bourbaki, Nicolas, 393 
Bouvelles, Charles, 465 
Bouvet, Joachim, 33 
Bowditch, Nathaniel, 64-66, 86 
Boyer, Carl, 463 
Bragg, William Henry, 71 
Bragg, William Lawrence, 71 
Brahe, Tycho, 147 
Brahmagupta, 12, 118, 139, 145, 155, 187, 

198, 211, 262, 266, 428 
Brandt, Heinrich, 100 
Brauer, Richard, 457 
Bravais, Auguste, 39 
Bravais, Louis, 39 
Brentjes, Sonja, 180 
de Breteuil, Gabrielle-Emilie le Tonnelier, 82 
Bretschneider, Carl Anton, 242 
Brianchon, Charles, 365 
Briggs, Henry, 149 
Brouwer, Luitzen Egbertus Jan, 555, 558 
Brown, Marjorie Lee, 65 
Bruins, Evert Marie, 402 
Buck, R. C , 163 
Buddha, 21 
Bugaev, Nikolai Vasilevich, 506 
al-Buni, 214 
Burali-Forti, Cesare, 553 
Biirgi, Jobst, 332 
Burington, Richard, 153 
al-Buzjani, Mohammed, 423 

Caesar, Julius, 317 
Campbell, Paul, 103 
Cantor, Georg, 210, 392, 496, 505, 535, 536, 

544, 548, 553, 557 
Cantor, Moritz, 180, 237 
Cardano, Girolamo, 61, 399, 439, 513, 523, 

531 
Carleson, Lennart, 504 

Carslaw, H. S., 71 
Cartan, Elie, 455 
Cassiodorus, Magnus Aurelius, 328 
Catalan, Eugene, Charles, 179 
Cauchy, Augustin-Louis, 72, 84, 368, 387, 

446, 451, 459, 478, 486, 498, 500 
Cavalieri, Bonaventura, 325, 466, 467, 473 
Cavendish, Henry, 218 
Cayley, Arthur, 88, 93, 451 
de Champlain, Samuel, 330 
Chandrasekharan, Komaravolu, 26 
Charlemagne, 58 
Charles II, 467 
Charles V, 37 
Chasles, Michel, 356 
du Chatelet, Marquise, 77, 82 
Chaucer, Geoffrey, 126 
Chebyshev, Pafnutii L'vovich, 196, 219, 523 
Cheng Dawei, 32, 51 
Chevalley, Claude, 455 
Chiang Kai-Shek, 28 
Christianidis, Jean, 172 
Chuquet, Nicolas, 147, 430 
Cicero, 42 
Clagett, Marshall, 300, 331 
Clark, Walter Eugene, 257 
Clavius, Christopher, 32 
Clayton, Peter, 123 
Cleopatra, 317 
Closs, Michael, 37, 80, 111 
Codazzi, Delfino, 384 
Coe, Michael, 37 
Cohen, Paul, 547 
Colebrooke, Henry Thomas, 24, 25, 54, 140, 

176, 198, 211, 262, 420 
Coleridge, Samuel Taylor, 452 
Collins, James, 473 
Colson, F. H., 126 
Colson, John, 83 
Columbus, Christopher, 74 
Confucius, 27 
Conon, 300 
Constantine, 317 
Coolidge, Julian Lowell, 345, 357, 365, 371, 

375 
Copernicus, 338 
Cossali, Pietro, 422 
Cotes, Roger, 472, 518 
Courant, Richard, 98 
Cox, Elbert, 65 
Coxeter, Harold Scott MacDonald, 68 
Cramer, Gabriel, 356 
Crelle, August Leopold, 73 
Croesus, 270 
Crossley, John N., 422 
Cullen, Christopher, 29, 245 
Cyril, 81 
Cyrus of Novgorod, 157 
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al-Daffa, Abu AH, 143, 199 
Dahan-Dalmedico, Amy, 84 
Dante, 48, 74 
Darboux, Gaston, 498 
Darwin, Charles, 529 
Dauben, Joseph, 69 
David, Ç. Á.. 530 
Davis, Philip, 352 
Deakin, Michael, 81 
Dean, Nathaniel, 65 

Dedekind, Richard, 204, 390, 451, 457, 546, 
548 

Degen, Ferdinand, 446 
Delamain, Richard, 149 
Demosthenes, 42 
Denjoy, Arnaud, 503 
Desargues, Girard, 62, 323, 360 
Descartes, Rene, 56, 72, 82, 202, 207, 218, 

310, 335, 351, 360, 364, 386, 393, 465, 
473, 479, 496, 548 

Detlefsen, Michael, 11, 552 
Dick, Auguste, 77 
Dickson, L. E., 167, 174, 177, 179, 187, 447 
Diels, Hermann, 44 
Dijksterhuis, E. J., 320 
Dilke, O. A. W., 326, 328 
Dinostratus, 275, 280 
Diocles, 318 
Diocletian, 317 
Diogenes Laertius, 43, 80, 270, 271, 280 
Dion, 285 
Dion Cassius, 126 
Dionysus I, 285 
Diophantus, 12, 47, 61, 62, 176, 181, 187, 

404, 409, 423, 428, 433 
Dirichlet, Peter, 193, 391, 457, 499, 502 
Donaldson, Simon, 71 
Dorofeeva, Á. V., 481 
Dositheus, 300, 301 
Du Bois-Reymond, Paul, 506 
Du Shiran, 31-33, 172, 198, 214, 245, 405, 

413 
Du Zhigeng, 32 
Dudley, John, 335 
Dudley, Underwood, 180 
Duillier, Nicolas Fatio de, 473 
Dummit, David, 450 
Dunaij, Cecilia Krieger, 78 
Dunaij, Cypra, 68 
Dupin, Pierre, 375 
Durer, Albrecht, 214, 356, 373 
von Dyck, Walther, 451 
Dzielska, Maria, 81 

Edward VI, 432 
Edwards, A. W. F., 530 
Edwards, Harold, 459 
Egorov, Dmitrii Fyodorovich, 506 
Ehrman, Esther, 82 

Einstein, Albert, 98, 383, 527 
Eisenstein, Ferdinand, 449 
Ellicott family, 64 
Emperor Yu, 245 
Eratosthenes, 166, 269, 276, 300, 303, 325 
Erdmann, G., 483 
Erdos, Pal, 180 
Errera, Á., 556 
Esau, 180 
Escher, Maurits, 68 
Euclid, 12, 16, 26, 32, 34, 43-45, 48, 58, 85, 

164, 166, 168, 179, 202, 249, 257, 269, 
300, 304, 314, 317, 332-338, 348, 354, 
357, 409, 429, 556 

Eudemus, 43, 269, 273, 275, 305 
Eudoxus, 41, 46, 269, 286, 299, 488 
Euler, Leonhard, 9, 83, 167, 183, 188, 191, 

203, 208, 256, 377, 383, 474, 477, 489, 
490, 496, 517, 542 

Eutocius, 43, 276, 286, 300, 305, 320 

di Fagnano, Giulio de' Toschi, 491 
al-Farisi, Kamal al-Din, 180 
Farr, William, 87 
Farrar, John, 85 
Fawcett, Philippa, 94 
Feigenbaum, L., 476 
Feingold, Mordechai, 473 
Feit, Walter, 29, 458 
Feller, William, 528 

de Fermat, Pierre, 171, 187, 191, 202, 310, 
351, 464-466, 473, 514, 515, 557 

Ferrari, Ludovico, 61, 431 
Ferreiros, Jose, 546 
del Ferro, Scipione, 61 
Fibonacci, 57, 59, 144, 181, 185, 210, 330, 

357, 425 
Field, J. V., 364 
Fields, John Charles, 68 
Fior, Antonio Maria, 61 
Fischer, Ernst, 98 
Fletcher, Colin, 180 
Folkerts, Menso, 329 
Fontana, Niccolo (Tartaglia), 61 
de Fontenelle, Bernard Lebouyer, 486 
Forstemann, Ernst, 38 
Fourier, Joseph, 84, 190, 379, 478, 498, 500 
Fowler, David, 285 
Fraenkel, Adolf, 451, 557 
della Francesca, Piero, 357 
Franchella, Miriam, 555 
Franci, Rafaella, 429 
Franklin, Benjamin, 63 
Eraser, Craig, 481, 486 
Frechet, Maurice, 392 
Frederick I, 59 
Frederick II of Prussia, 188 
Frederick II of Sicily, 59, 181 
Frege, Gottlob, 544, 552 
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Frenet, Jean, 384 
Friberg, Joran, 162 
von Frisch, Karl, 8 
von Fritz, Kurt, 201 
Frobenius, Ferdinand Georg, 457 
Fukagawa Hidetoshi, 52, 252 
Fuson, Karen, 5, 112 

Galileo, 465, 466 
Galois, Evariste, 451, 455 
Galton, Francis, 519, 527 
Garber, David, 236 
Garciadiego, Alejandro, 69 
Gardner, Milo, 35 
al-Gauhari, 333 
Gauss, Carl Friedrich, 52, 83, 174, 192, 194, 

209, 345, 346, 371, 381, 523, 537, 544 
Gellius, Aulus, 271, 317 
Gelon, 300 
Geminus, 305, 320 
Genghis Khan, 22, 28, 58 
George I, 376 
George IV, 376 
Gerbert, 48, 144, 329 
Gerbillon, Jean-Frangois, 33 
Gerdes, Paulus, 237 
Gergonne, Joseph, 368 
Gerhardt, C. I., 476 
Gerling, Christian Ludwig, 342 
Germain, Sophie, 77, 83-85, 106, 379 
Gibbon, Edward, 81 
Gibbs, Josiah Willard, 453 
Gillings, Richard, 132, 199, 237, 240, 400 
Ginsburg, Jekuthiel, 115 
Glashan, J.G., 68 
Glaucon, 19 

Glivenko, Valerii Ivanovich, 556 
Goddard, William, 64 
Godel, Kurt, 547, 552 
Goetze, Johann Christian, 37 
Goldbach, Christian, 190 
Goldstine, Herman, 153, 478 
Golenishchev, Vladimir Semenovich, 34 
Goodwin, Edwin J., 236 
Gordan, Paul, 97 
Gorenstein, Daniel, 457 
Gould, Carol Grant, 8 
Gould, James L., 8 
Gow, James, 47, 111 
Grabiner, Judith, 487 
Granville, Evelyn Boyd, 65 
Grassmann, Hermann, 453 
Grattan-Guinness, Ivor, 93, 499, 539, 544, 

546, 548, 553, 554 
Gray, J. J., 274, 285, 333, 338, 346, 364 
Green, George, 494 
Greenleaf, Benjamin, 145 
Gregory VII, 59 

Gregory, James, 467, 469 
Grinstein, Louise, 103 
Grosholz, Emily, 475 
Guizal, Brahim, 335 
Guldin, Habakuk Paul, 325 
Guo Shuchun, 30 

Hadamard, Jacques, 197, 550 
Hairetdinova, N. G., 338 
Halayudha, 212 
Hall, G. Stanley, 102 
Halley, Edmund, 305 
Hamilton, William Rowan, 385, 446, 452 
Hamming, R. W., 20, 21, 38 
Hankel, Hermann, 506 
Hardy, G. H., 20, 27, 38 
Harish-Chandra, 26, 455 
Harnack, Axel, 503 
Harriot, Thomas, 479 
Hart, David S., 63 
Hausdorff, Felix, 392 
Hawkins, Thomas, 454 
Hayashi Takao, 175 
ibn al-Haytham, 179, 191, 333, 341, 350, 479 
He Chengtian, 250 
Heath, T. L., 46, 50, 304, 320, 411 
Hector, 283 
Heiberg, Johann Ludwig, 302 
Heine, Eduard, 391 
de Heinzelin de Braucourt, Jean, 6 
Helicon, 288 
Henri IV, 62, 433, 517 
Henrion, Claudia, 104 
Henry, Alan S., 422 
Hensel, Kurt, 558 
Heracleides, 300, 305 
Heraclitus, 44 
Herbart, Johann Friedrich, 367, 381 
Hermes, Johann, 189, 450 
Hermite, Charles, 204, 450 
Herodotus, 234, 270 
Heron, 303, 325, 409 
Herschel, John Frederick, 124 
Hersh, Reuben, 352, 536 
Heytesbury, William, 331 
Hideyoshi, 51 
Hieron II, 299, 300 
Hubert, David, 77, 103, 195, 348, 451, 548, 

554 
Hill, George William, 67 
Hipparchus, 41, 325 
Hippasus, 201, 271 
Hippias, 275, 280, 310 
Hippocrates, 275, 276, 312 
Hobson, E. W., 504 
Hogendijk, Jan, 180, 250, 426 
Homann, Frederick, 63, 329 
Homer, 283 
Horner, William, 415 
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de l'Hospital, Marquis, 472, 473, 485 
Hayrup, Jens, 140 
Hugh of St. Victor, 329 
Hughes, Barnabas, 213, 429 
Hulegu, 58 
von Humboldt, Alexander, 86 
Hume, David, 543 
Hutton, Charles, 67 
Huygens, Christiaan, 385, 514, 519 
Hypatia, 47, 81, 105, 170 

Iamblichus, 43, 179, 201, 271 
Inhelder, Barbel, 8 
Innocent III, 59 
Isodorus, 81 
Isomura Kittoku, 53, 254 
Isomura Yoshinori, 53 

Jacob, 180 
Jacobi, Carl Gustav, 90, 168, 194, 385, 450, 

481, 492 
James, Portia, 65 
Jami, Catherine, 33 
Jartoux, Pierre, 256 
al-Jayyani, 338 
Jerome, 43 
Jevons, William Stanley, 535, 544 
Jia Xian, 414 
John of Palermo, 181 
Jones, Alexander, 41 
Jones, V. F. R., 71 
Jordan, Camille, 454 
Jordanus Nemorarius, 59, 213, 435 
Julius Caesar, 42 
Justinian, 317 
Jyeshtadeva, 463, 469, 487 

Kang Xi, 33 
Kant, Immanuel, 488 
al-Karaji, 412, 428 
al-Karkhi, 412, 428 
al-Kashi, 28, 55, 143 
Kasir, Daoud, 57, 425 
Kasner, Edward, 128 
Kazdan, Jerry L., 33 
Keith, Natasha, 79 
Keith, Sandra, 79 
Kelvin, Lord (William Thomson), 526 
Kepler, Johannes, 367, 487, 512 
Khafre, 236 
Khayyam, Omar, 202, 336 
Khinchin, Aleksandr Yakovlevich, 556 
al-Khwarizmi, 54, 56, 422, 429, 434 
Killing, Wilhelm, 455 
King, R. Bruce, 450 
Kingsley, Charles, 81 
Kirkman, Thomas, 216 
Kiro, S. N., 344 

Klein, Felix, 93, 94, 282, 342, 343, 347, 366, 
369, 378, 381, 385, 446, 450, 451, 453, 
459, 493, 548 

Klein, Jacob, 412 
Knapp, Mary, 9 
Kneser, Adolf, 481 
Knorr, Wilbur, 200, 285 
Kobayashi Shoshichi, 54 
Koblitz, Neal, 50 
Koehler, O., 5 
Kovalevskaya, Sof'ya Vasilevna, 77, 83, 89-

93, 105, 453, 478 
Kovalevskii, Vladimir Onufrevich, 89 
Kowalewski, Gerhard, 64, 97 
Kreyszig, Erwin, 478 
Krishna, 421 
Kronecker, Leopold, 451, 536, 546, 547 
Kublai Khan, 28 
al-Kuhi, 335 
Kummer, Ernst Eduard, 196, 459, 546 

Ladd-Franklin, Christine, 77, 100-102 
Lagrange, Joseph-Louis, 83, 177, 191, 441, 

444, 448, 451, 477, 480, 486, 490, 505, 
539 

Lam Lay-Yong, 30, 135, 248 
Lambert, Johann, 333 
Lame, Gabriel, 195, 379 
de Landa, Diego, 37, 40 
Langevin, Abbe, 68 
Lao-Tzu, 27 
Laplace, Pierre-Simon, 66, 86, 498, 500, 523, 

542 
Lasserre, Frangois, 45, 286 
Laugwitz, Detlef, 381, 487 
Laurent, Pierre, 494 
Lebesgue, Henri, 392, 503, 535, 550 
Lebesgue, Victor-Amedee, 167, 183 
Lefschetz, Solomon, 70 
Legendre, Adrien-Marie, 83, 191, 194, 196, 

219, 341, 481, 492 
Leibniz, Gottfried, 72, 82, 149, 203, 214, 

216, 364, 438, 475, 483, 488, 490, 515, 
531, 535, 536, 553 

Leon, 170 
Leonardo of Pisa (Fibonacci), 57, 59, 144, 

181, 185, 210, 330, 357, 425, 430 
Levey, Martin, 428 
Levi-Civita, Tullio, 385 
Li Ang, 413 
Li Rui, 434 
Li Shanlan, 33 
Li Yan, 31-33, 172, 198, 214, 245, 405 
Li Ye, 418 
Libbrecht, Ulrich, 416, 418 
Lie, Sophus, 454 
Liebmann, Heinrich, 345 
Lincoln, Abraham, 14 
Lindemann, Ferdinand, 204, 449 
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Liouville, Joseph, 379, 499 
Lipschitz, Rudolf, 205 
Listing, Johann Benedict, 385 
Liu Hui, 31, 246, 247, 252 
Lobachevskii, Nikolai Ivanovich, 346, 371 
Loomis, Elias, 33 
Loria, Gino, 93, 96, 106 
Louis Napoleon, 69 
Louis XIV, 33, 82, 517 
Lovelace, Augusta Ada, 153 
Lull, Ramon, 11, 216, 352 
Luzin, Nikolai Nikolaevich, 504, 547, 551 

Mackay, Alan L., 39, 77 
Maclaurin, Colin, 355, 394, 474, 476 
Maddison, Isabel, 94 
Madhava, 463, 487 
Mahavira, 21 
Mahler, Kurt, 72 
Mainardi, Gaspare, 384 
al-Majriti, 180 
Maltby, Margaret Eliza, 94 
al-Mamun, 54, 56, 422 
Mancosu, Paolo, 483 
Manheim, Jerome, 391 
Mann, Thomas, 500 
al-Mansur, 54, 143 
Marcellus, 299 
Marco Polo, 28 
Marcus Aurelius, 317 
Marinus of Tyre, 325 
Mark Antony, 317 
Markov, Andrei Andreevich, 523 
Martzloff, Jean-Claude, 32, 33, 50 
Mathieu, Emil, 458 
Matsunaga Ryohitsu, 181, 185 
Matvievskaya, G. P., 332 
Maximilian, 69 
Maxwell, James Clerk, 526 
Mayer, Adolf, 456 
Mayer, Tobias, 64 
de' Mazzinghi, Antonio, 429 
McHenry, James, 64 
Melville, Duncan, 36 
Menaechmus, 269, 277 
Mencius, 27 
Mendelssohn, Fanny, 193 
Mendelssohn, Felix, 193 
Mendelssohn, Rebekah, 193 
Menelaus, 280, 357 
Menna, 234 
Menninger, Karl, 111, 115 
Mere, Chevalier de, 513 
Mermin, Norman David, 38 
Mersenne, Marin, 167, 189, 364, 464 
Mihailescu, Predhu, 179 
Mikami Yoshio, 32, 50, 254, 267, 405, 406, 

413, 418 

Mill, John Stuart, 86 
Minding, Ferdinand, 343 
Ming Antu, 33 
Minos, 276 
Mitchell, Maria, 101 
Mittag-Leffler, Gosta, 90 
Mobius, August Ferdinand, 365 
de Moivre, Abraham, 523, 531 
Monbu, 51 
Monge, Gaspard, 375 
Monk, J. Donald, 557 
Montet, Pierre, 122 
Moore, Eliakim Hastings, 103, 451 
Moore, Gregory, 549 
de Mora-Charles, S., 515 
Morawetz, Cathleen Synge, 69, 78 
de Morgan, Augustus, 33, 528, 535, 536, 542, 

554 
Mori Kambei, 51 
Mori Shigeyoshi, 51, 53 
Moschopoulos, Manuel, 214 
Muir, Thomas, 53 
Miiller, Johann (Regiomontanus), 60 
Murata Tamotsu, 50, 53, 74, 257, 267 

Nachshon, Rau, 180 
Napier, John, 62, 147, 149 
Napoleon, 73 
Narasimhan, Raghavan, 383 
Needham, J., 212 
Nehru, Jawaharlal, 26 
Nero, 271 
Nesselmann, G. H. F., 411 
Neugebauer, Otto, 36, 44, 239, 241, 244, 

401, 409 
Neumann, Bernhard, 72 
Neumann, Hannah, 72 
von Neumann, John, 153 
Newcomb, Simon, 68 
Newton, Isaac, 43, 52, 63, 72, 73, 82, 83, 

202, 218, 256, 350, 355, 479, 518 
Nicomachus, 48, 164, 179 
Nicomedes, 280 
Nightingale, Florence, 86-87 
Nilakanta, 463 
Nipsus, M. Iunius, 328 
Noether, Emmy, 77, 97-100, 454 
Noether, Fritz, 97 
Noether, Max, 88, 97 

Octavian, 317 
Oldenburg, Henry, 438, 468 
Omar Khayyam, 57, 425 
Opolka, Hans, 191 
d'Oresme, Nicole, 56, 59, 202, 429, 475 
Orestes, 81 
Osgood, William Fogg, 102 
Ostrogradskii, Mikhail Vasilevich, 494 
Oughtred, William, 149 
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Ozdural, Alpay. 54 

Pacioli, Luca, 60, 357, 429 
Pamphila, 271 
Panini, 23 
Pappus, 43, 47, 142, 280, 296, 300, 304, 305, 

310, 314, 351, 353, 425 
Parmenides, 44 
Parshall, Karen Hunger, 63, 67, 452 
Pascal, Blaise, 72, 149, 213, 364, 467, 473, 

514, 515, 531 
Patterson, S. J., 449 
Pavlov, Ivan Petrovich, 8, 13, 522 
Peacock, George, 535 
Peano, Giuseppe, 552 
Pearson, Karl, 517, 529, 530 
Pedoe, D., 52, 252 
Peet, Ô. E., 239 
Peirce, Benjamin, 453 
Peirce, Charles Sanders, 101, 457, 535, 536 
Pell, Alexander, 103 
Pell, John, 177 
Pepper, Echo Dolores, 454 
Pericles, 275, 276 
Perminov, V. Ya., 13, 16 
Perott, Joseph, 219 
Perron, Oskar, 503 
Pesic, Peter, 399 
Pestalozzi, Johann Heinrich, 367 
Peter 1, 188 
Peter, F., 457 
Phili, Christine, 50 
Philolaus, 44, 285 
Piaget, Jean, 8 
Pincherle, Salvatore, 504 
Pingala, 23, 212 

Pitiscus, Bartholomeus, 146, 332 
Pitt, William, 65 
Planudes, Maximus, 50, 172, 214 
Plato, 19, 21, 38, 40, 42, 43, 168, 199, 201, 

269, 297, 352, 511 
Playfair, John, 85 
Plutarch, 42, 237, 270, 288, 299, 300, 317 
Poincare, Henri, 67, 195, 347, 384, 548 
Poisson, Simeon-Denis, 84, 379, 500, 522, 

523, 542 
Polybius, 325 
Pompey, 317 
Poncelet, Jean-Victor, 367 
Price, D. J., 161 
Price, Richard, 524 
Prieto, Sotero, 69 
Pringsheim, Alfred, 500 
Proclus, 43, 44, 168, 269, 272, 273, 280, 294, 

300, 312, 320 
Prudhomme, Sully (Rene Frangois Armand), 

18 
Psellus, Michael, 409 
Ptolemy (Egyptian ruler), 276 

Ptolemy Euergetes, 305 
Ptolemy Soter, 45, 317 
Ptolemy, Claudius, 41, 43, 47, 54, 58, 60, 74, 

258, 270, 294, 305, 325, 335, 338, 341 
Puiseux, Victor, 387, 494 
Pythagoras, 3, 42, 43, 80, 179, 201, 271 
Pytheas, 325 

Qin Jiushao, 415 
Quetelet, Lambert, 525, 542 
ibn-Qurra, Thabit, 56, 179, 180, 185, 333, 

341, 349 

Rajagopal, P., 463 
Ramanujan, Srinivasa, 26, 33 
Ramesses III, 122 
Rashed, Roshdi, 335 
R^ashid, Rushd i, 57 
Recorde, Robert, 144, 432 
Regiomontanus, 60, 331, 338 
Reich, Karen, 521 
Reisner, George Andrew, 34 
Rhind, Alexander Henry, 34 
Riccati, Jacopo, 83 
Ricci, Matteo, 28, 32, 40 
Ricci-Curbastro, Gregorio, 385 
Richards, Joan, 537 
Rickey, V. Fred, 63 
Riemann, Bernhard, 72, 296, 346, 367, 371, 

378, 384, 482, 488, 494, 502, 544 
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