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Introduction

As a student, and later, I have always needed a physical explanation for the mathe-
matics that I have had to learn. In [1] the author used a new approach to illustrate
Fourier transforms in their normally complex form that occur in everyday life in
radar systems. This book is completely general, though often dealing with time and
frequency relationships as an example, and extends the treatment to characteristic
functions in statistics. Note that two conventions are used: one with j = v/—1 and
the frequency convention for engineering uses, and i = v/—1 and the o convention
for statistics to be consistent with the existing literature.

Power engineering was part of the syllabus with its three phases and a rotating
voltage vector that can be made to describe a helix with time. The division of electri-
cal engineering into power engineering and light-current engineering has limited
the helical forms to 50 Hz, 60 Hz, and for high frequencies up to 400 Hz. The con-
cepts of power engineering are very useful to describe the amplitude and phase modula-
tion of carrier waves and signals that suffer a frequency shift such as radar echoes. The
formula for the Fourier transform contains the expressions exp(—j 27tf#), or exp(i § x) for
statistics, that are themselves helical functions so it is only reasonable to feature them as
such.

Charles Dodson, who taught mathematics at Oxford at the time when operational
mathematics was being developed, wrote Through the Looking-Glass using his pen-
name Lewis Carrol. Students, like Alice, learn to step through the looking-glass
separating, say, the time and spectral worlds and lose sight of the world that they
have left. Diagrams capable of showing functions and their Fourier transforms to-
gether have been developed to allow Alice to sit in her looking-glass and see both
worlds together.

Drawing spirals in three dimensions and placing them onto a flat page is ex-
tremely difficult to accomplish convincingly and luckily mathematics programs are
available for this: Maple V has been used for practically all the diagrams used in this
book.

Reference

Meikle, H.D., Modern Radar Systems, Norwood, Massachusetts: Artech House, 2001.
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Conventions

The conventions of Maple and a number of programming languages have been
used in the text. Generally round brackets are used to
Group expressions a(b+c);
Captions for equations  (30).
Square brackets are used for indices, ordered lists, and for references
Indices A[i, j], as an alternative to the algebraic form Ay;
Lists A_list := [red, blue, green] A_list[2] is blue;
References [10].
Curly brackets are reserved for sets

A_set := {red, blue, green} brown in A_set is false.
Two dots are used to indicate a range
A..B is the range from A to B.

The function exp(x) is used instead of ¢* to avoid small print.
The letters i and j are used for v/—1 in chapters where the omega, ®, and —f con-
ventions are used. In most chapters the Fourier transform and inverse are given by

F(f) = / f(t) exp(—j2nft) dt f(t) = / E(f) exp(+j2nft) df

To be consistent with the literature for mathematical statistics, the w convention
is used for Fourier transforms in Chapter 6 and is labelled by the use of i.

+o0 +oo
c®= [ pweptridr  p =L [ c(E) emp(-ing a

The European term Gaussian distribution is used for the term “normal distribu-
tion”, which is common in English texts.

Where Dirac’s d functions are shown in diagrams, their amplitude represents the
area under the Dirac 6 function.
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Symbols

XV

The symbols are sorted in the alphabetical orders of the Greek, Roman, and Russian
(Cyrillic) alphabets.

Symbol

a
a

p
B
P2
Y1
Y2
d(t)
6}’"”

'
w3
s’

Uqg

Meaning

A variable or constant
A constant used with Chebyshev tapering
A variable or constant
Pearson skewness
Pearson kurtosis
Fisher skewness
Fisher excess kurtosis
Dirac function
Kronecker delta function

O0,;m=1when m=n

O,m=0when m#n
Angle, radians
Wavelength (for antennae).
Population mean
First moment of area of the population
First moment of area of the population
about the origin,
Second moment of area of the population
about the mean, the variance
Second moment of area of the population
about the origin
Third moment of area of the population
about the mean
Third moment of area of the population
about the origin.
Fourth moment of area of the population
about the mean
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Section

Ch. 5 (21)

Thbl. 6.1
Ch. 6 (15)
Thl. 6.1
Sec. 6.1.1

Ch.5

Tbl. 6.1

Ch. 6 (15)



Meaning

Fourth moment of area of the population about
the origin.

r the moment about the origin

Variable in a characteristic function

3.14159...

Population standard deviation

Spacing of samples, seconds

Time of centre of pulse, seconds

Confluent hypergeometric or Kummer’s function
[1, Eq. 13.1.2, p. 504]

Hypergeometric function

Constant defining a Taylor tapering characteristic.

Constant

The constant part of a Fourier series

The mth cosine coefficient in a Fourier series
Constant

The mth sine coefficient in a Fourier series
Bandwidth, Hz

Characteristic function

The mth combined coefficient in a Fourier series
Characteristic function (alternative form)
Positive phase sequence component

Zero phase sequence component

Negative phase sequence component
Frequency, Hz

Fourier transform with f, Hz, as the frequency
variable

Discrete Fourier transform with counter n
Time waveform with t, seconds as the variable
Function of x

Fourier transform with variable f

Function of x

Fourier transform

A time function

v/=1 with +® convention

Moment of inertia

Imaginary part of z

v/—1 with —f convention

Bessel function of the first kind order n.

A counting variable

Bolzmann’s constant 1.38 x 1072 J/K
Quantisation noise

Sample mean

Section

Ch. 6 (17)
Ch. 6 (19)

Fig. 4.10
Ch 3. (40)
Sec. 6.3.5

Sec. 6.4.2
Ch.5

Ch. 3 (2)

Ch.7
Ch. 4 (25)
Ch. 6 (1)
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m S
B
£

P(x)
P(x)

q(x)
RS, T

Re(z)
SLL

Symbols

Meaning Section
Moment generating function Ch. 6 (16)
First moment of area of the sample Ch. 6 (4)

First moment of area of the sample about the origin=m;.
Second moment of area of the sample about the mean.
Second moment of area of the sample about the origin
Third moment of area of the sample about the mean.

Third moment of area of the sample about the origin

Fourth moment of area of the sample about the mean.
Fourth moment of area of the sample about the origin

nth moment Ch. 3 (80)
nth moment about the centre of gravity Ch. 3 (81)
rth moment about the mean Ch. 6 (11)
Number of columns Ch. 6 (2)
Number of samples Ch. 6 (1)
Number of samples Ch. 4 (3)
A number

Noise figure Ch.7 (4)
Control constant for Taylor tapering Ch. 5 (25)

The period of integration in a Fourier series
The cumulative gamma distribution
(or incomplete gamma) function [1, Eq. 6.5.1, p. 260].

x

P(a, x) = ﬁ/ exp(—t)t" ' dt
0

Probability distribution function of x.

Cumulative distribution function of x

Probability distribution function (alternative) of x.

Radius

Phases in a three-phase circuit Sec. 2.2
Resistance, O. Ch.7
Sidelobe voltage ratio Ch. 5 (19)
Real part of z

Sidelobe level, dB Ch. 5 (19)
Sample standard deviation Ch. 6 (6)
Parameter

Time, seconds

Pulse width, seconds Ch. 3 (28)
Temperature, K Ch.7 (1)
Chebyshev polynomial of the first kind order n. Ch.5 (17)
kth time sample Ch. 4 (3)
The kth weight in a Chebyshev tapering function. Ch. 5 (21)
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Symbols

Symbol Meaning Section

w Width of an antenna. Ch.5

x x coordinate;

X(k) variable in a probability distribution function Ch. 3 (12)
X Sample value Ch.6 (1)
y y coordinate

Ve Number in a column Ch. 6 (2)
z z coordinate

TI1(%) Repetition function Ch. 3 (99)

Acknowledgments
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made this book possible and the producers of WordPerfect 6.1 that was used for the
text and equations.
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1 Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1964.



1
The Fourier Transform and the Helix

The Fourier transform is a common tool in physics, engineering, and statistics.
Examples of Fourier transformations are

¢ Avoltage or current that varies with time into its frequency spectrum;
¢ The illumination function of an antenna into its pattern in sine space;
e The probability density function in statistics into the characteristic function.

The use of the Fourier transform has been introduced into a number of disci-
plines independently and unfortunately each uses its own convention. Other than
finding spectra, antenna patterns, and so on, the Fourier transforms of functions
are added or multiplied and then undergo an inverse Fourier transform to produce
the required results as in other forms of operational mathematics.

1.1
Fourier Transform Conventions

The conventions in physics, electrical engineering, and statistics are often different
and vary from country to country [1].

1.1.1
Fourier Transforms in Physics

As the fundamental unit of angle is the radian and of frequency radians/second, the
Fourier transform used in physics and given in mathematics programs (such as
Maple) uses the minus omega convention, —w, given by

F(o) = / £(t) exp(—iot) dt (1)

A New Twist to Fourier Transforms. Hamish D. Meikle
Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40441-4
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1 The Fourier Transform and the Helix

Where F(w) is the Fourier transform with variable w;
f(t) is a time function with variable ¢;
and  iisv/-1

The inverse transform used here is given by

+00
£y =L / F(o) exp(+iot) do )

This convention will not be used further in this book.

1.1.2
Fourier Transform in Electrical Engineering

Electrical engineers measure frequency in cycles or rotations per second (Hz) so
that o is replaced by 2xf to give Fourier transforms using the —f convention. The
Fourier transform which connects, among others, waveforms and their spectra can
be given by [1, p. 381, 4, p. 27]

+0o0

B = [ ) exp(—janfy 3

where F(f) is the Fourier transform with variable f;
f(t) is a time function with variable t;
and jis+v-—1.

The inverse transform used here is given by
+00
(0= [ ) eplrion) &f “
—00
Notice that this convention that is used in all chapters, except for Chapter 6, has

the convenient property the Fourier transform of the Fourier transform returns the
original function. The 1/27 in (2) is the result of the fact that df = dw/2s.

1.1.3
Fourier Transform in Statistics

In statistics the following form for the Fourier transform to obtain the characteristic
function is used to be consistent with other statistics texts in Chapter 6. This conven-
tion is called the +omega convention in this book.



1.2 The Fourier Transform and the Helical Functions

+00

c(E) = / p(x) exp(-+itx) dx )

—00

where C(§) is the characteristic function with variable ;
p(%) is a probability density function with variable x;
and  iis /1.
The inverse transform used here is given by

p) =k [ Clo) exp(-iz) a ©

1.2
The Fourier Transform and the Helical Functions

The Fourier transform used by electrical engineers contains the helical function
exp(—j 2mft) that interacts with the f(t) function. The function exp(+j 2mnfi) is
shown in Figure 1.1.

Figure 1.1 The helix Texp(j 27ft).

The coordinates in Figure 1.1 have been chosen to give positive upwards and to
the right when looking from the side (in this case a cosine wave) or from the top (in
this case a sine wave). Notice that this waveform is balanced, the vector traces a cir-
cle, and rotates in the direction called in electrical engineering positive phase
sequence. The helix in the Fourier transform in (3) has a negative phase sequence.

The function f(t) can be also a spatial spiral, so that the Fourier transform in
mathematics, engineering, and statistics becomes much easier to understand. The
Fourier transform is described in engineering form in Chapter 3, and later chapters,
and its use in statistics in Chapter 6.

The helix of radius A can be given by A exp(j 2mntft), in polar coordinates as A/2mft,
or may be expressed in Cartesian coordinates as

3
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x = Asin2naft
y = Acos2mnfi (7)

where A is the amplitude (voltage or current);
x is the horizontal component;
y is the vertical component;
fis the frequency, Hz;
tis time in seconds;
and  jisv/—1.

Pure helices occur in spiral springs and the position of a point on a rotating shaft
when plotted in three dimensions against time. This form of illustration may be
extended to other phenomena that occur in the distribution of electrical power or
signals where the cross-section is not purely circular, examples are

¢ The most common occurrence of a helical waveform is in the three-phase
power distribution used to distribute electricity throughout the world. The
voltages and currents in balanced three-phase electrical power circuits at a
fixed frequency, typically 50, 60, or 400 Hz may be represented by a single
rotating vector and is also true for any electrical system with more than two
phases. The phase angle, ¢, between the voltage and current vectors allows
the load factor, cos ¢ to be calculated. The load factor is the ratio of the real
power used to the product of voltage and current. When the voltages and cur-
rents are not equal the rotating vector no longer traces a circle and symmetri-
cal component theory is used (see Section 2.2). This is also true for radar and
sonar echo signals (Section 1.3).

e The modulation of (notional) carrier waves by two-phase quadrature ampli-
tude modulation (QAM) waveforms in communications and echo signals
received by radar and sonar from moving objects (Sections 1.3 to 1.5). The
vector representation of the waveform does not have a constant radius the
form is called in this book a spatial spiral.

e Circularly polarised waves (Section 1.7)

¢ Noise, discussed in Section 1.8, has the form of a random spatial spiral.

These waveforms are not able to be displayed on a normal oscilloscope, though
those from the individual phases may be. The use of helices to represent these and
alternating waveforms gives a physical explanation to the helical function in the
Fourier transform and allows their explanation to technicians.

The spatial spiral forms, their appearance in the physical world, calculation
methods, and the relationships to alternating functions are described in Chapter 2.

1.3
Radar and Sonar Echo Signals

The waves from radio-frequency transmitters are scattered or reflected by objects
they meet. The phase of the waves entering a receiver contain fine distance informa-



1.6 Communications

tion for the length of the path between transmitter and receiver. In a radar, a coher-
ent oscillator (COHO) is used as a common phase reference for both transmitter
and receiver so that differences in phase may be measured. If the scatterer moves
towards the radar, the phase angle will decrease with time so that vector detection
will give rise to a vector rotating at the Doppler frequency. For a receding scatterer
the phase of the vector rotates in the opposite sense, the negative phase sequence.
The filtering of such signals is the basis of the rejection of ground echoes that clutter
up the radar displays and would overload the equipment that extracts aircraft
echoes, for example. Radar (and sonar) echo signals contain a combination of back-
ground echo signals and echo signals from approaching and receding objects, that
is a direct voltage component and components with both phase sequences. The
method of symmetrical components is discussed in Chapter 2.

1.4
Colour Television Signals

The NTSC and PAL colour television systems use quadrature or Cartesian modula-
tion to modulate the two colour difference signals (R-Y and B-Y) onto a common
subcarrier. The reference phase is given by the colour burst signal that occurs after
the end of each line synchronisation pulse and this is used to keep the subcarrier
oscillator at the correct phase. The quadrature outputs of this oscillator are used in
the two synchronous detectors to recover the two colour difference signals.

1.5
Modulation and Demodulation

Signal vectors must be represented as two separate signals (normally considered to
be voltages) representing the two coordinate systems: Cartesian or polar (each
branch of electrical engineering uses different terminology that has changed with
time, hence the use of basic English here [2]). Both vector modulation and demodu-
lation may be carried out in terms of these coordinates and are shown in Figures 1.2
and 1.3 [3].

The two phase and amplitude modulation stages in Figure 1.2 may take place in
any order since the two processes are linear without any suppression of signals.

1.6
Communications

Digital communications over normal telephone lines is limited to approximately
1200 signal changes per second. To increase the amount of information transferred
in each element, a number of types of element must be used that carry more than
one bit. Examples are

5



6 | 1 The Fourier Transform and the Helix

X component or |
signal
|_><J Carrier Phase Amplitude
oscillator modulator  modulator
Carror cos 2mft Output
oscillator G— —— ‘ @ H H
sin 2mrft Qutput * *

»—@+ Phase Amplitude
y component or signal signal
Q signal

(a) Cartesian or quadrature amplitude modulator (QAM) (b) Polar modulator

Figure 1.2 Vector modulators.

Synchronous detector f scigrggionent or Amplitude detector Amplitude or

Local Reference output

Input cos 2mft  oscillator Input oscillator
—] —
sin 2mft

Phase

difference)
N - - -
y component or output
Synchronous detector Q signal Phase detector
(a) Cartesian or two phase (I and Q) demodulator (b) Polar demodulator

Figure 1.3  Vector demodulators or detectors.

(a) Four state (b) Eight state (c) Sixteen state

Figure 1.4 Signal space or constellation diagrams.

e  Phase modulation with more than two states
¢ Quadrature amplitude modulation (QAM).

In Figure 1.4(a), the four states may be obtained by phase modulation alone.
Amplitude and phase modulation are needed in parts (b) and (c ) in Figure 1.4. The
dots in the state diagram represent the states and the circles around them represent
the combined tolerances in the modulation, transmission, and demodulation pro-
cesses.



1.8 Noise

(a) Waveform with 4 states (b) Waveform with 8 states (c) Waveform with 16 states

Figure 1.5 The complex waveforms for the four, eight, and sixteen states in Figure 1.4.

The complex waveforms for modulating signals using these states are shown in
Figure 1.5. The four-state modulation uses simple phase modulation and the shape
of the complex waveform is a box. With more states the complex modulation and
when random characters are transmitted, the waveform becomes more like equally
distributed noise.

1.7
Circularly Polarised Waves

Circularly polarised electromagnetic waves are generated when either the electric or
magnetic component has its phase delayed by 90 degrees. These waves are used in
microwave communications to avoid polarisation alignment and radar to reduce
rain echoes.

1.8
Noise

The transformation from a recognisable modulation to a complex waveform similar
to noise can be heard when logging onto an Internet provider as the protocol tries

Real, in phase, or | axis 3 3

-2
-3
Imaginary,
quadrature,
or Q axis
Noise sample
number or time

Figure 1.6 Gaussian noise samples demodulated from a
(notional) carrier. [Source: Meikle, H.D., Modern Radar Systems,
Artech House, Norwood, Massachusetts, 2001]
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higher and higher transmission speeds. In contrast to communication systems
where each state is equally likely, Gaussian noise is normally (Gaussian) distributed
in the two Cartesian coordinates and looks like the shaggy bottlebrush in Figure 1.6.
Complex noise waveforms are discussed in Chapter 7.

1.9
Other Forms of the Fourier Transform

The Fourier transform in —f notation, discussed in Chapter 3, is the continuous Fou-
rier transform with the limits of integration being from the beginning to the end of
time. In real life time is limited and the finite transform is introduced in Chapter 4
together with the discrete Fourier transform for sampled waveforms that lend them-
selves to manipulation by digital logic and computers.

Erdélyi [4] and others describe the Fourier sine and cosine transforms that, being
flat functions, are not treated further. The transforms are

oo
Fourier sine transform = —L— / f(x) sin(xy) dx
0

N

Fourier cosine transform — —L— / f(x) cos dx
L [ 1 cose)
0

Notice that both these transforms are one-sided, the limits for integration are
from zero to infinity, in contrast to the exponential transforms elsewhere in this
book.

The sampling of signals over finite times, shorter than the length of the signal,
puts an unwanted modulation on the transform giving repetition and extra sidelobes
and these effects are described in Chapter 4. Chapter 5 shows ways of reducing the
sidelobes. Chapter 6 shows the Fourier transforms of probability distribution func-
tions used in statistics in three dimensions. Statistical signals and noise are treated
in Chapter 7.
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2
Spiral and Helical Functions

There are many functions that give a spiral on paper when they are plotted, some
examples are given below, though in the rest of the book only the spirals are often in
three dimensions called here spatial spirals.

Some spirals, in two dimensions, are

e Archimedes [1, p. 68] or arithmetic spiral radius is given by r = af.

¢ Circle involute [1, p. 251] was investigated by Huygens as a possible motion
to replace pendulums in ships chronometers. It is given by the parametric
equations
x = a(cost + tsint)
y = a(sint — tcost)

e Cornu spiral [1, p. 331] is used to describe the diffraction from the edge of a
half-plane. It is given in complex form by

t

B(z) = C(t) +jS(t) = [ exp(jnx’ /2)
0

where C(t) and S(t) are the Fresnel cosine and sine integrals respectively.

e Daisy [1, p. 397, phyllotaxes describe the arrangement of flower petals [1, p.
1355], that are much too numerous to illustrate here.

e Fermat’s spiral [1, p. 625] radius is r = a0z

e Hyperbolic spiral [1, p. 867] has a radius given by r = a/0

e Logarithmic spiral [1, p. 1097] radius is r = a exp(b0)

¢ Polygonal spiral [1, p. 1403] is formed by tracing the sides of concentric poly-
gons.

Examples of some of the spirals are shown in Figure 2.1.
Examples in three dimensions are:

¢ Conical spirals may be used to model sea shells [1, p. 307]. One form of the
parametric equations is
x = 2[1 — exp(u/6m)] cosu cos” (v/2)
y =2[—1+ exp(u/6m)] cos” (v/2) sinu
z=1—exp(u/3n) — sinv + exp(u/6m)
A New Twist to Fourier Transforms. Hamish D. Meikle

Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40441-4
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I
-/

Archimedes spiral Circle involute Cornu spiral
- "
.
“ o4 -
- :
%
“
2 o 3 3 T -8
w W

Fermat's spiral Hyperbolic spiral Logarithmic spiral

Figure 2.1 Some typical spirals in two dimensions.

e Spherical spirals [1, p. 1698] may describe the course of a ship from north to
south poles if it sails at a constant angle to the meridians. The parametric
equations are
X = Cost cosc
y = sint cosc
z = — sinc
¢ = arctan(at)

These are shown in Figure 2.2.
For the rest of this book only forms of the helix introduced in [3] and the often
irregular spatial spirals introduced in [2] are considered.

e Spiral spring or helix [1, p. 811] has the parametric equations

X =7 Cos t
y=rsint
z=ct

(a) Conical spiral (b) Spherical spiral

Figure 2.2 Conical and spherical spirals.



The curve is a helix going up and around the z axis that badly represents a poly-
phase voltage rotating in time [3, Figure 1]. The usual representation of alternating
or other waveforms has a horizontal time axis and the sequence of voltages is plotted
using the scale given by the vertical y axis. In order to give the same impression on
paper when a rotating or other complex function is plotted, the following parametric
equations are used

x=t
y=1Im f(t)
z=Re f(t)

where {{t) is the complex function that varies with time, ¢.

In order to conform to the left is minus convention the conventional axes are
modified" as shown in Figure 2.3(b). This allows the imaginary axis to be used for
the orthogonal plotting of frequency for spectra in the next chapter.

If the rotating voltage is constant, the result is a helix. This represents the con-
stant voltage vector present in a balanced polyphase power system.

In the general case, for example signals, the voltage may change in amplitude
and vary in phase over a range of 360 degrees (27t radians). The bandwidth of the
circuit limits the rate of change and thus the smallest pulse width. When the neigh-
bouring pulses occur at random we have noise (see Chapter 7). Such vector signals
may be modulated onto a (notional) carrier or may be carried by three or more con-
ductors at baseband. The signals on the conductors are either x and y Cartesian com-
ponents (also called I and Q phases) or r (amplitude) and 6 (phase) polar compo-
nents and both may use a common earth return.

Figure 2.3(b) is a powerful way of illustrating both cases and is independent of
the vector representation used and whether the processing is analogue or digital. A
normal oscillograph can only display the separate signals with time and does not
show the vector relationships in amplitude and phase.

A helix with unit amplitude is shown in Figure 2.3(b). If we look from — to +
along the imaginary axis, we see the projection of the spiral as a cosine wave and,

(a) Traditional helix and coordinates (b) Basic helix in the new coordinates (Section 1.2)

Figure 2.3 The coordinate system used in this book for helices.

1) When the program Maple V is used, the change
of coordinates may be accomodated by plots
[spacecurve]([t, Im(f(t)), Re(f(t))], t=start..end,
orientation=[—45, 45]), where tis time.

1



12| 2 Spiral and Helical Functions

similarly, along the real (vertical) axis we see a sine wave. Thus the complex repre-
sentation of the helix is

f(t) =r(cos 2nft + jsin 2mft) Cartesian form
= rexp(j 2mnft) Exponential form (1)
= r/2nft Polar form

Notice that the helix may be made to rotate to the right or to the left.

An example of polyphase equipment is the synchronous motor shown diagram-
matically in Figure 2.4. The synchronous motor has a rotor winding fed with direct
current through slip-rings to give fixed north and south poles. The stator is fed with
polyphase current that creates a rotating magnetic field vector and the rotor follows
this vector. Three or more stator windings are needed to provide this rotating mag-
netic field that will rotate, depending on the mains supply frequency, at 50 or 60
times a second (3000 or 3600 revolutions per minute). The speed of the motor may
be reduced to a fraction of these speeds by doubling, quadrupling, and so on, the
number of poles. The current passing through the stator windings depends on the
load. With load the rotor lags the rotating magnetic field and if the motor is used for
braking, the rotor leads the rotating field and current is generated. This behaviour
may be observed by using a stroboscope illuminating a mark on a disk (this is a case
of sampling).

The vectors are subject to the rules of normal complex arithmetic: addition and
subtraction are defined in Cartesian coordinates and multiplication and division are
defined in polar coordinates.

Phase 1
Phase 1
Phase 2
Phase 3
Phase 2 The points marked C are
connected together
(a) A two phase-motor (b) A three-phase motor

Figure 2.4 Examples of two- and three-phase synchronous motors.



2.1 Complex Arithmetic

2.1
Complex Arithmetic

A problem with complex arithmetic is that some functions are defined in Cartesian
coordinates and others in polar coordinates so that coordinate conversion during
calculations is a necessary evil.

2.1.1
Unary Operations

A unary operation is an operation on one number or symbol, in normal arithmetic
negation is the changing of the sign or multiplying by —1. Complex arithmetic has
the additional operation, the complex conjugate where the imaginary part only is
negated or the sign of the phase angle is changed (Table 2.1).

Table 2.1 Unary operations.

Operation Original function Operated function
Cartesian Polar Cartesian Polar

Negation a+jb rZe —a—jb r £ (6+ m)

Complex conjugate a+jb rZ0 a—jb r£-0

These processes are shown graphically in Figure 2.5.

atjb atjb

(b) Complex conjugate

Figure 2.5 Unary negation and the complex conjugate in complex arithmetic.

13



14| 2 Spiral and Helical Functions

In the calculation of polyphase electrical power, the voltage vector is multiplied by
the current vector with its sense of rotation reversed. The sense of rotation may be
reversed either by using a “negative” time or using the complex conjugate, namely

Vright rotation exp(lznﬂ) = COSZTEﬂ + jsinant (2)

The complex conjugate is obtained by changing the sign of the imaginary term only

cos2nft — jsin2mft = exp(j2nf(—t) ) = Vi rotation (3)
The factor -t in (3) leads to the expression “negative time”.

2.1.2
Vector Addition and Subtraction

Addition and subtraction are defined in Cartesian coordinates, namely

Addition (a+ jb) + (¢c+ jd) = a+c+ j(b+4d) *)
Subtraction (a+ jb) — (¢c+ jd) = a—c+ j(b—4d)

Addition and subraction are shown graphically in Figure 2.6.

The addition and subtraction of vectors occurs generally in physics. In electrical
engineering radar echoes, which exhibit a Doppler frequency shift, have a spatial
spiral form and the echo signals from a number of objects in a single range cell are
summed (Figure 2.7).

. —(ctjd)
atjb .
ctjd Difference | /
= // a+jb
~——" " Sum
(a) Vector addition (b) Vector subtraction

Figure 2.6 Vector addition and subtraction.

(a) Addition of spatial spiral (helical) components (b) Subtraction of spatial spiral (helical) components

Figure 2.7 The addition and subtraction of spatial spiral waveforms.



2.1 Complex Arithmetic

213
Vector Multiplication

Multiplication and division are defined in polar coordinates as in Figure 2.8, namely

Product=A /0 x B/f 5
=AB/a+p )

which may be expressed in Cartesian coordinates as

(a+jb) x (c+jd) = ac— bd+ j(ad+ bc) (6)

/ AB La+B

c+jd = B/B c+jd= BB
atjb=ALa atjp=ALla
S, AclaB
A\ B
(a) Vector multiplication (b) Vector division

Figure 2.8 Vector multiplication and division.

In direct current theory the power dissipated in a load is the product of the voltage
and the current. With alternating current, power is calculated as the product of the
voltage and the complex product of the current. For a root mean square voltage V
volts at a phase angle a to some reference and a root mean square current [ with a
phase angle f3 to the same reference

Electrical power = V /o x I/ —f W 7
= VI cos(a — P) )

In Cartesian coordinates for a voltage of a+jb and current of c+jd the electrical
power is

Electrical power = (a+jb) x (¢ —jd) = ac + bd + j(bc — ad) W (8)

Figure 2.9 shows the process to calculate the power dissipated in a load,
V x V¥/R, where V* is the complex conjugate of V. Note that both helical compo-
nents multiply to give a line representing the direct power.
Multiplication is used to calculate power or demodulate when the two wave-
forms are of the same frequency and for modulation or frequency changing when
the waveforms are of different frequencies.

2.1.3.1 Power
For polyphase waveforms the power is calculated by multiplying the voltage by the
complex conjugate of the current as shown in Figure 2.10. In the example shown 2V

15



16 | 2 Spiral and Helical Functions

I=ctjd=B/
/ F Power
V=atjp=Ala Vicos(a-B8) W

Reactive voltampéres
Visin(a-B8) VAR
Voltampéres

Complex conjugate VI=AB (a8 VA
c—jd = B/

Figure 2.9 The calculation of power with root mean square quantities.

(a) 2 volt and 1/2 ampére (b) 2 volt and 1/2 ampére, (c) Product is
complex conjugate of current 1 voltampére, VA
0.866 watt, W

0.5 voltampére reactive, VAR

Figure 2.10 Power in a balanced polyphase circuit.

is multiplied by /2 A with a phase angle of 30 degrees. The product is 1 VA, and
the power is 0.866 W. Notice that the power is constant and not pulsating as in alter-
nating current circuits.

Commonly in signal processing theory a voltage is multiplied by its complex con-
jugate to give the power that would be dissipated in one ohm. Figure 2.11 shows the
power from a 2 V signal. Note that the power factor is always unity with the complex
conjugate.

2.1.3.2 Demodulation
Figure 2.10 and Figure 2.11 show the effect of synchronous demodulation when a
polyphase waveform is “stopped” by its complex conjugate.

M~ - Power in one ohm, 4 W

Helix of amplitude 2 V with its
complex conjugate

Figure 211  The power developed in 1 ohm by 2 V.



2.1 Complex Arithmetic

2.1.3.3 Single-sideband modulation

A number of transmission systems use amplitude modulation with a suppressed
carrier wave. Examples are frequency division multiplex telephone transmission
where thousands of conversations pass over the same coaxial cable or microwave
radio link and short wave radio channels in the same waveband. Both systems use
electrical power to transmit the information only and have to replace the carrier
wave to demodulate or recover the information. Commonly filters are used but two-
phase modulation is used when narrow band filters are not appropriate, as shown in
Figure 2.12.

The path @@®® in Figure 2.12 may be described by the sine component in the
equation (1) and the path @@®®® by the cosine component in (1). When the signals
are added the difference frequency is available at the output. If the adding stage is
replaced by a subtractor the output is at the sum frequency. The process may be
described more simply using polyphase ideas as shown in Figure 2.13.

In some polyphase rotating machinery currents at frequencies that are the differ-
ence of the rotation frequency and power-supply frequency are generated, as in the
Schrage motor. The effect corresponds to the multiplication of helices and the result
is unambiguous and depends on the phase sequence of the spirals.

90 degree ® . Balanced | ®

phase shift . | modulator j
® . [e0degree] ! ®
Modulation w phase shift | Add Single sideband
input | | = output

O |
Carrier ———————# !

! Balanced | ®
@ 1 = |modulator |

Voltage in two phases

Figure 2.12 The phasing method of single sideband modulation.

(a) 2 Hz positive
phase sequence

(c) 1 Hz negative phase sequence (e) 1 Hz positive phase sequence

Figure 2.13 The effects of single-sideband modulation.

17
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2.2.1.4 Double sideband modulation
When two sine waveforms of different frequencies are passed through a multiplier,
the output consists of two signals at the sum and difference frequencies, namely

Asin2nfit x Bsin2mfyt = % (—cos(f; +f,) +cos(fy —f2) ) 9)

For two cosine waves

Acos2mfit X Bcos2mfyt = % (cos(fy +f;) +cos(fy — f,) ) (10)

The output from the perfect multiplier is two signals at the sum and difference
frequencies and the desired frequency is selected by filtering. Most modulation pro-
cesses are not so pure and remnants of both frequencies, harmonics, and cross-
modulation signal components are present at the output. Note that the sidebands in
amplitude modulation are complex conjugates of each other.

2.1.4
Division
Division is defined in polar coordinates as

Ala A
Bzﬁzﬁ/(a_ﬁ) (11)

Quotient =
There are no electrical components that perform pure division.

2.1.5
Powers of Vectors

The calculation of powers of a complex variable is an extension of multiplication,
namely

n power = (A /)" = A" / na

= A" (cosna + jsinna)  de Moivre (12)

Many semiconductor components are nonlinear and produce currents at the har-
monics or multiples of the frequency of the applied voltages and are the basis of
analogue frequency multipliers.

2.2
Unbalanced Polyphase Voltages and Currents

In polyphase power circuits there is not always the same voltage in each phase nor
is the load current the same in each phase. The vector representing voltage or cur-
rent no longer traces a circular path as in Figure 2.14.



2.2 Unbalanced Polyphase Voltages and Currents

(a) The voltages of the R, S, and T phases (b) The voltages in a two- or four-phase circuit

Figure 2.14 The voltage relationships in two-, three-, and four-phase circuits.

Positive phase
sequence

Positive phase
45 degrees sequence

Negative phase
/ sequence

-
-

0.5

A
N

0.2 0.4/0.6 0.8

-

Unbalanced

i result Unbalanced
Negative result
phase
sequence (a) 0.2 (b) 0.5 (c) 0.5 £ 45 degrees

Figure 2.15 The effect of the amplitude and phase of the negative phase sequence component.

Electrical power engineers resolve unbalanced polyphase quantities into symmet-
rical components [4, 5]. The desired phase rotation is called the postive phase
sequence. If the vector traces an elliptical path, the deviation from the ideal circle
may be accommodated by a helical component with the opposite phase rotation,
called the negative phase sequence component (see Figure 2.15(a) and (b)). The
phase angle between the two components determines the direction of the ellipse as
shown in Figure 2.15(c).

Figure 2.15(c) also shows the form of the electric or magnetic field inside some
types of circular polariser during the process of circular polarisation or back. Figure
2.16 shows the effect of a direct voltage offset or the zero phase sequence compo-
nent.

The symmetrical components for N phases are calculated from the vector sums
4, p.112]
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Positive phase
sequence

/ 1

Negative phase
sequence 5

Zero phase
sequence
or offset

js 05 05 d
0.5
___ Unbalanced 5
result
(a) Negative phase sequence component 0.5 (b) Negative phase sequence component 0.5

direct voltage offset 0.2, 0.2.

Figure 2.16 The effect of the zero phase sequence component or offset.

E. —
7 N
N
E,+ A E,
E, = ZN (2.13)
N
E + 0 "E,
E 2

where A is the unit vector representing the phase angle between two adjacent
phases, that is

A= exp(%) = "4

Figure 2.17 shows the addition of an increasing negative phase sequence compo-
nent to give an alternating waveform when both are equal. Mathematically

cos2aft = exp(j 2mft) +2€Xp(—j 2nift)

(14)

Conversely an alternating function may be resolved into two contrarotating
helices for consideration inside the expression for the Fourier transform.

Analogue-to-digital converters are used to convert signals from receivers, for
example in Figure 1.3(a), into a form where they may be handled by digital signal
processing systems. Imbalance in the I and Q channels changes the possible circle
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(a) Positive phase sequence (b) Negative phse sequence (c) Sum of positive and
component component negative phase sequence
components

Figure 2.17 The effect of increasing the negative phase
sequence component until an alternating waveform occurs.

described by the signal vector into an ellipse, negative phase sequence or image fre-
quency components are generated. The offset represents the residual direct voltage
error that must be compensated.

In a polyphase system the phases of the currents in each phase, lead or lag, may
be different and this case is also covered by symmetrical components.
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3
Fourier Transforms

The Fourier transform is best known as the link between a waveform, f(t), and its spec-
trum, F(f). This chapter derives the Fourier transform from the Fourier series and dis-
cusses what happens when complex arithmetic or algebra is applied to Fourier trans-
forms. This approach is unusual and Table 3.1 contains a short cross-reference.

Table 3.1 Cross-reference with common terms

Common name Section in this chapter
Linearity 3.4.1
Scaling 3.4.1
Complex conjugate 3.4.1
Time or frequency shift 3.4.21
Modulation 3.4.21
Convolution 3.4.2.2
Cross-correlation 3.4.23
Autocorrelation 3.4.24
Differentiation 3.4.4
Parseval’s theorem 3.4.2.6

The Fourier transform is the form used by Woodward [1, p. 27] and is one of three
conventions namely,

+00

E(f) = / f(t) exp(—j 2m f t) dt Transform

+00

f(t) = / E(f) exp(+j 2m f t) df Inverse transform

—00

where f(t) is a time waveform with t in seconds;
E(f) is the spectrum with the variable f Hz;

jisv—1.

A New Twist to Fourier Transforms. Hamish D. Meikle
Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40441-4
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3 Fourier Transforms

The exponential function is recognisable as a helical function from Chapter 2 and
the train of ideas leading from the Fourier series to the Fourier transform is
described in the next section and the properties of Fourier transforms in the sections
that follow.

3.1
From Fourier Series to Fourier Transform

The Fourier series is used to describe non-sinusoidal periodic forms as a series of
sinusoidal waves [2, p. 6]. In Figure 3.1 the continuous waveform with period, P
seconds, is approximated by a number of sinusoidal waves, a Fourier series, with
frequencies 1/P, 2/P, etc., Hz.

Arbitrary waveform

. . =  One cycle in P seconds
Period = P seconds

Figure 3.1 An arbitrary waveform of period P seconds.

Further calculations may be made using the components of the Fourier series.

3.1.1
Fourier Series

If f(t) is a repeating time function where the magnitude is integrable over its period.
Then the Fourier series is given by

o0
f) = “_20 + Z (am cos% + b, sin%) (2)
m=1

where ay is the steady component of the Fourier series coefficients;
a,, are the cosine coefficients;
b,, are the sine coefficients;
m is an integer number of cycles in P seconds.
The values of the coefficients are found by multiplying both sides of (3.2) by
cos(2mwkt/P) and integrating symmetrically over one period from -P/2 to +P/2,
namely



3.1 From Fourier Series to Fourier Transform
+P/2 +P/2
/ f(¢) cos 27kt gy — / %0 (o5 27kt gy
p . 2 p
—P/2 —P/2
+P/2
+ Zum / cos% cosznTkt dt (3)
a —P/2
+P/2
b cos ZAME o5 27KE gy
* Z:l " / P P
"= —P/2

Using the orthogonality relations of sines and cosines during the period

+P/2

2 / sin 2Umt o5 20kt g, (a)
p P

+P/2

2 / sin 2t gip 270kE ) Oum (b) (4)
P P P

-P/2

+P/2
2 2nmt . 27kt
5 / cos% cos“T dt=29,, (¢
—p/2

where 0y, is the Kronecker delta function, namely

O, =1 whenk=m

or 0 otherwise (5)

Inserting Equations (3.4a) and (3.4b) into (3.3) gives
+P/2
a :% / £(t) cosznTkt dt,  k=0,1,2,.. (6)
-P/2

The sine coefficients by are found by multiplying both sides of Equation (2) by
sin(2mkt/ P), integrating over one period, and using Equations (4a) and (4c)

25



26| 3 Fourier Transforms
+P/2
-2 / £(t) sin2%kt dr Kk =0,1,2,... (7)
p P

~P/2
The Fourier series may be expressed in terms of exponential functions, as
exp(j0) = cosb + jsin® (8)
Rearranging we have

exp(j0) + exp(—j0) exp(j0) — exp(—j0)

cosf = 3 and sin® = % (9)
If 0 = 2mkt/P, and replacing the trigonometric functions in Equation (2) using
(3.9), then

a . .

£ = 2+ 1" (ay(expli0) + exp(—j0) + I (exp(0) — exp(0)))
k=1
a , , . ,
=24 23 (@ —jb)exp(0) + (&, +jb,)exp(—j0)) (10)

= Z — Jjsign( )b\k\ )exp(j0)

where the sign function is

sign(k) = 41, when k>0

= -1, k<0 (1)
If we define
1 .
X(k) = 3 (“\k| — jsign by ) (12)
then Equation (12) reduces to
+00
f(t) = > X(k) exp(j2mkt/P)  k=..,-2,-1,0,+1,+2, .. (13)
k=—0c0

The orthogonality conditions of Equations (4 a—c) apply to exponential functions,
namely

+P/2

% / exp(—j2mnkt/P) exp(—j2mmt/P) dt = 9, (14)
-P/2



3.1 From Fourier Series to Fourier Transform

Changing the summation index in Equation (13) from k to m and multiplying
both sides by exp(—j2mwtkt/P) and integrating over the period from —P/2 to +P/2 and
putting these into Equation (14), we have

+p)2
X(k) =1 / £(t) exp(—j2mkt/P) di (15)
)

where X(k) is a discrete series of complex quantities and plots of X(k) must be
shown in three dimensions.

3.1.2
Period of Integration for a Fourier Series

The integrals are taken over one period of the composite curve or waveform [2, p.
10]. If, for example, the curve is the sum of a 3 Hz and a 5 Hz sine wave then the
sum passes through a fixed chosen value each second (compare with Figure 3.1).

3.1.3
Fourier Transform

The Fourier series with complex coefficients in Equations (13) are given by the inte-
gral in (3.15) [2, p. 10]. Multiply both sides of Equation (15) by P to give
+P/2
PX(k) = / £(t) exp(—j2mkt/P) dt (16)
-P/2

Note that the frequency of the sinusoids with argument 2wkt/P is k/P. As P
becomes arbitrarily large, the spacing between the frequencies k/P and (k + 1)/P
becomes arbitrarily small, and the frequency becomes a continuous variable.

Thus the frequency may be defined as

. k
f = limitp_ P (17)

It is assumed that the left-hand side of Equation (16) is meaningful for all P and
we define

X(f) = limit, . PX(k) (18)

Combining Equations (16) and (18) we have

+00

X(f) = / £(t) exp(—j2nft) dt (19)
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3 Fourier Transforms

3.1.4
Inverse Transform

The signal f(t) may be recovered from its spectrum X(f) using the inverse Fourier
transform. The numerator and denominator of the Fourier series with complex coef-
ficients in Equation (13) are multiplied by P to give

f(t)= Y P X(k) exp(j2mkt/P) /P (20)

k=—00

As P tends to infinity, let the difference of frequencies k/P and (k+1)/P be defined
as df, that is

L k+1 k o 1
df = limitp_, 5 - limitp_ 7 (21)

The summation in Equation (20) becomes an integration as the spectral line sepa-
ration df becomes arbitrarily small. Thus with Equations (17) and (21)

+00

(1) = / X(f) exp(j2aft) df 22)

—00

3.2
Three of the Conventions for Fourier Transforms

The helical function is multiplied by the time function and integrated over all time
for each value of frequency, f, to give a plot of the spectrum. The inverse transform
“undoes” the helix in the Fourier transform to give the original time waveform. The
variable f gives the name f convention that is used with the symbol j for v/—1 and is
used in the greater part of this book.

There is another form which has [3, p. 381].

+00

E(f) = / f(t) exp(+j2m ft) dt Transform

(23)
+00

f(t) = / F(f) exp(—j2m f t) df Inverse transform

—00

Physicists, mathematicians, and statisticians use the w convention given by



3.2 Three of the Conventions for Fourier Transforms

+00
F(w) = / f(t) exp(+ i o t) dt Transform
e (24)
f(t) = ﬁ / F(w) exp(— i o t) do Inverse transform

where {(t) is a time waveform with ¢ in seconds;
F(w) is the spectrum with the variable w radians/second;
do =2m df
Pis v—1.

This convention is used in Chapter 6 for the characteristic functions, C(E), that
are the equivalent of spectra of the probability distributions, p(x), in statistics. The
symbol i is used for /=1 in this book where the +® convention is used. The term
1/2m in the inverse transform comes from the fact that df = dw/2m.

There is also an omega form with the signs of the exponential functions reversed.

In eastern Europe there is still another form used for Fourier transforms where
the scaling constant is divided between the transform and its inverse, namely [4, p.
591 and 5, p. 1148]

+o00
Flw) = \/% / f(t) exp (+j w t) dt  Transform
- (25)

+00
f(t) = \/% / F(w) exp (—j o t) do Inverse transform

Waveforms and their spectra, antenna illumination functions and their antenna
patterns, and so on, are linked by Fourier transforms. Students breathe a sigh of
relief when they have completed a transform, whereas in everyday life, both sides
have to be held in view together and are mostly complex (in two dimensions). If the
time and frequency domains are plotted orthogonally in three dimensions, both are

Waveform in time Spectrum of waveform

0 N

| | Real time
and

frequgncy

- + Frequency
Imaginary time

. - + Time
Imaginary frequency

Figure 3.2 The convention used to illustrate Fourier transform pairs.

29
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in view and may remembered at the same time also if the time waveform is complex
and not able to be displayed on an oscilloscope. The convention for this is shown in
Figure 3.2 and maintains mostly the same view as the separate plots with the capa-
bility of the illustration of complex waveforms and spectra.

Note that the direction and use of the axes has been changed from the conven-
tional form and that this form of projection has a quirk: for the conventional view of
the imaginary frequency plane, the plane must be viewed from underneath.

33
Fourier Transforms and Spatial Spirals

Equation (3.19) gave the mathematical definition of the Fourier transform com-
monly used in antenna theory and signal processing: Figure 3.3 describes what hap-
pens physically with a cosine wave f(t) = 2cos2nft with f = 3 Hz (Figure 3.3(a)).

(a) Cosine curve 2cos 2 w3 t (f) Spectral components are &
. (b) Resolve functions, scale represents area
the cosine
curve into two
spirals

(e) Integrate
the products

8

(c ) Multiply b ' Time
¢ ) Muldply by (d) Products of

(¢ ) Multiply by exp(j 2m 3 1) the spirals

exp(j 2m 3 f)

Figure 3.3  Stages in the calculation of the Fourier transform of cos 27 3 t.

The cosine function is plotted along the time axis (Figure 3.3(a)) and it is resolved
into two contrarotating helices in Figure 3.3(b), namely.

2cos2nft = exp(+j2nft) + exp(—j2nft) (26)

Using the rules in Section 2.1.3, the time functions are multiplied by a helix at
each frequency on the frequency axis (Figure 3.3(c)) and integrated. The sum of the
x and y components of the points around a complete circle is zero, as is the sum of
the points around a whole number of turns of a helix around its axis. The spatial
spirals when multiplied by a helix will only give a stationary result when the fre-
quency is the same and the rotation is opposite (see Section 2.1.3). This is represent-
ed by the shaded surfaces drawn through +3 and -3 on the frequency axis in Figure
3.3(d). When these surfaces are integrated from —oco to +eo in time (Figure 3.3(e)) a
function of infinite height, width approaching zero, and area unity occurs, the Dirac
function. The exponential function in the Fourier transform may be made to match
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the cosine function resolved into helices at two frequencies, here +3 Hz and
“~3 Hz". Note that there are no negative frequencies, only that one of the helices has
a negative phase sequence and that the Fourier transform convention used shows a
positive phase sequence as having a “positive” frequency. Conventional mathematics
speaks of othogonal functions where

b
/ f(x) gx) = 0 27)

where f(x) and g(x) are said to be orthogonal between the limits a and b. This is the
case with sine and cosine functions with the ambiguity that cos(x) = cos(-x) and
sin(x) = —sin(—x). In contrast, with spatial spirals there is no such ambiguity.

All the spectral lines are & functions

\ Aos 1

+3

-5

+1>‘
(a) Cosine spectrum (b) Cosine spectrum (c) Spectrum of cos(2m 3t -m/2)
of cos(21 3t) of cos(2m 3t — m/4) which is the sine spectrum

Note: The imaginary frequency plane is conventionally viewed from below

Figure 3.4 The effect of phase shift on cosine spectra to give the sine spectrum.

The cosine waveform is at a maximum at zero time. If the waveform passes
through zero time at a point given by a phase angle ¢, multiplication by the helix
gives a vector in the frequency domain. Figure 3.4 shows phase shifts of 45 degrees
(/4 radians) and 90 degrees (/2 radians), the Fourier transform of the sine curve.
The coordinate system used has a quirk: though the appearance of the real time and
frequency planes as is the imaginary time plane are normal looking from the front,
the imaginary frequency plane looks correct only when looking from underneath.
Readers will remember that the Fourier transform of a sine curve is a negative delta
function for positive phase sequences and a positive delta function for negative
phase sequences.

As an example of an event that happens once, a rectangular pulse may be exam-
ined of width unity, amplitude unity, and occurring around zero time shown in Fig-
ure 3.5.

The pulse is given by
o2 T?
f(¢)) = 1if t° < T (28)
= 0 otherwise

where T'is the width of the pulse. Its Fourier transform is
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+00 +7/2
B) = [ toesw-p di= [ 1o d
e -T)2
__ sinnfT
- (29)

A number of authors name the function rect(t) when T=1. The function sin (rtx)/
(tx) is so common that it is given the name sincx,

. sinmx
sincx =

when x = 0, sincx = 1 (30)
X
and is shown in Figure 3.5.
The sinc function has a number of oddities, for example

¢ The integral to infinity outside x = 0.6132 is zero;
e Asxappears in the denominator, the integrals for moments do not converge.

It has been mentioned previously that the integrals of spatial spirals with an inte-
gral number of turns are zero. In the case of the rectangular pulse for helices with a
frequency of less than 1 Hz the spatial spiral is an arc with equal positive and nega-
tive imaginary parts. Integrating over the width of the pulse (in Figure 3.6(a) the
pulse width is unity) thus gives a purely real result. At £f (here 1 Hz) the turn of the
spatial spiral is complete and the integral is zero. Between frequencies of n f Hz,
where n is an integer, the turns are not complete and positive and negative values
for the integral are possible, which can be seen in Figure 3.6(c).

x =0.6132
Inside this region the | Outside this region the
integral is unity | integral is zero

Figure 3.5 The sinc function [After: Meikle, H.D., Modern Radar
Systems, Artech House, Norwood, Massachusetts, 2001].



3.3 Fourier Transforms and Spatial Spirals | 33
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(a) Rectangular pulse (b) Multiply by spirals at f Hz (c ) Integrate to give spectrum

Figure 3.6 A rectangular pulse and intermediate steps to its Fourier transform.

The spectrum extends to plus and minus infinity in frequency, ever decreasing in
amplitude with higher frequency.

When the pulse does not occur at zero time, the Fourier transform may be
obtained by changing the limits of integration.

+T/2

F(f) = / 1 exp(—j2ft) dt

—T/2
Y (31)

= Sil;l;fr exp(—j 2mf1)

The result is the original spectrum multiplied by a helical term of pitch 1/t and
this is shown in Figure 3.7 (a) to (c).

2 2
Time Time
(a) Pulse centred on zero time (b) Pulse centred on +0.5 in time (c ) Pulse centred on +1 in time
Figure 3.7 Spectrum of a rectangular as it moves from zero.

[Source: Meikle, H.D., Modern Radar Systems, Artech House,
Norwood, Massachusetts, 2001]

Hlustrations in the form of Figures 3.2 and 3.7 are capable of showing phase
angle. Figure 3.8 represents the demodulated vector signal on a carrier where the
phase difference is ¢ as the waveform cuts zero time. The vectorial representation
of the Fourier transform shows a phase angle of ¢ at zero frequency.
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Figure 3.8 The effect of phase shift on the complex spectrum.

34
Properties of Fourier Transforms

Relatively few Fourier transforms are available directly and the properties of Fourier
transforms are used to build up Fourier transforms from simpler components.
These properties may be described in terms of how complex arithmetic or algebra
may be used to manipulate the spatial spiral functions in the Fourier transform.

The multiplication of the Fourier transforms of functions is used for convolution,
correlation, and the calculation of energies and are discussed generically under mul-
tiplication.

The following notation is used: time functions f{), g(t), and so on, and Fourier
transforms F(f), G(f), and so on.

3.4.1
Addition, Subtraction, and Scaling — Linearity

The transform of the sum of two functions is the sum of the Fourier transforms [6,
p- 104]

f(t) + g(t) has the Fourier transform F(f) + G(f) (32)

Similarly if the amplitude of a time waveform is multiplied by a factor a, then its
Fourier transform is multiplied by the same factor, namely

a f(t) transforms to aF(f) (33)
If Fourier transform of {(t) is F(f) then f(at) has the Fourier transform [6, p. 101]

1
f(at) has the Fourier transform il F ({;) (34)
Consequently changing the sign of the time function (see Section 2.1.1) alters the
sign of the frequency in the spectrum if a is negative in Equation (34) above.
The Fourier transform of the complex conjugate of a time waveform is given by
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when f(t) transforms to F(f)

then f*(t) transforms to F*(—f) (35)

The time waveform rotates in the opposite sense giving negative phase sequence
spectral components.

342
Multiplication of Transforms

The multiplication of Fourier transforms may be divided into

¢ Multiplication by the spectrum of a Dirac delta function or time shift;

e Multiplication of two transforms or convolution;

e Multiplication of a transform by the complex conjugate of another or correlation;
¢ Multiplication of a transform by its own complex conjugate or autocorrelation.

3.4.2.1 Multiplication by the Spectrum of a Dirac Delta Function — Modulation

The transform of a spatial spiral time waveform is a Dirac delta function at its fre-
quency and conversely a spatial spiral spectrum with pitch a=1/T is a delta function
at time T[6, p. 104].

f(t+ T) has the Fourier transform E(f) exp(£j2nfT)

F(f + a) has the (inverse) Fourier transform f(t) exp (£j2mta) (36)

The second function in Equation (36) is also known as single-sideband modula-
tion (see Section 2.1.3).

3.4.2.2 Multiplication of Two Transforms or Convolution
The product of the Fourier transforms of two functions, F(f) and G(f), is called con-
volution. The convolution integral is given by [6, p. 108 and 7, p. 327]

+00
H(f) = / F(u) g(t—u) du (37)
If F(f) G(f) = H(f) then taking the Fourier transform
H(f) = / h(t) exp(—j2afi) dt (38)
7:_00(: +00
= / < / f(u) g(t—u) du> exp(—j2mft) dt
+00

- / ( / F() g(t — u) exp(—2af (¢ — 1)) exp(—j2fis du) dt

—00

35
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Changing the order of integration H(f) becomes

+00

+oo
H) = [ ) expl-jonf) ( [ sle—w) exp(-janf(s- w) dt) du
- - (39)
= F(f)G(f)
This example uses Gaussian pulses for simplicity, given by (see Figure 3.9(a))
f(t) = exp(fn (%1;)2) (40)

where trepresents time in seconds;
T is the time of the centre of the pulse;
T is the pulse width in seconds.
Such Gaussian pulses centred on 3 and 6 time units are shown in Figure 3.9(a).

(c) Fourier transform (d) Convoluted

(a) Two Gaussian pulses (b) Fourier transforms T
of covolution function

Figure 3.9 The convolution of two Gaussian pulses, after [8].

The Fourier transforms of the Gaussian pulses are given by [10, p. A-12]
+00
F(f) = / (1) exp(~j2nft) dt (“1)
—00
= T exp(~j27f7) exp(~(fT)’)
Convolution is performed by multiplying the transforms, that is multiplying the

moduli and adding the angles to give

. 2 2
T, exp( —2nf (1 + ) ) exp( —af*(T1 + T3) ) 42)
Notice that the process of vector multiplication increases the number of turns per
Hz or slope at f=0. The slope is the sum of the slopes of the multiplicands.
The time function is the inverse Fourier transform

T T, exp <—J‘[ (t —T1 + 12)2> “3)

h(t) = ———2_
) VTI+T7 T} +T;
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Looking at the exponential function, the width of the Gaussian expression is the
root mean square sum of the original Gaussian pulse widths positioned at the sum
of the times in Figure 3.9 (a) (see also the sums of centroids and variances at the
end of this section).

Traditionally [2] and [6] the example for convolution in most textbooks uses two
negative exponential curves and the convolution curve may be obtained analytically.
The curves are given by

f(t) = aexp(—at) (44)

In Figure 3.10(a) the two curves are exp(-t) (a=1, 0=1) and 0.5 exp(-2t) (b=0.5, =2).

F(H G fEpko(f)

(a) Two exponential (b) Fourier transforms (c ) Product of the (d) Convolution
functions of the two functions Fourier transforms function

Figure 3.10 The convolution of two exponential functions.

The exponential functions have Fourier transforms of the form

a
F(f)=—2% 4
)= 427 (45)
The product is
a b ab (46)

o —jonf B —jonf  apranif?-janf (a—p)
The form of the convolution curve (the inverse Fourier transform) is available
using Campbell’s and Foster’s pair 448 [11]

exp(—at)—exp(—pt)
— )

Convolution function = ab

or directly using Equation (37)

37
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h(f) = / F()g(t—u) du— / F(t—u g (t) du

if f{t) is a negative exponential function, nex, of the form

nex(t) = aexp(—at) t > 0
=0 otherwise

Performing the convolution “on paper” using Equation (48)
+00
a nex(at) * b nex(—Pt) = ab [ nex(ou) nex(ft — pu) du (a)
t
= ab nex(Bt) [exp(au — Pu) du (b)
0

nex(at—pt)—1

= ab nex(pt) - (o)
. nex(—at)—nex(—ft)
=ab P (d)
The form of the result of convolution of a exp(-ox) and b exp(—fx) is shown in
Figure 3.11.
1
t—u Here
-« a=1, a=1
0.8 b=0.5, ﬁ =2
0.6

exp(-f)

0.4 Convolution curve

0.2

’\

02040608 1 12141618 2 22242628 3

Figure 3.11 The convolution of two negative exponential curves in the example above.

Notice that the smaller of the functions is folded about a vertical line, hence the
German term Faltung or folding. The convolution curve is a smeared or smoothed

version of the individual curves.
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The convolution theorem has a number of properties [6, p .110 and 7, p. 328]

¢ The Fourier transform of a convolution is the product of the Fourier trans-
forms of the individual functions,
H (£(t) * () = F(f) G(f)

¢ The transform of a product is the convolution of the Fourier transforms
H (f(t) g(t)) = F(f) * G(f)

¢ The convolution of two functions is the Fourier transform of the product of
their Fourier transforms
£(1) + g(t) = H(E() G(f))

e The product of two functions is the transform of the convolution of their
transforms.
f(t) g(t) = H(E(f) * G(f))

¢ Convolution follows the rules of multiplication [see 6, pp. 111 — 112]

fxg = g=xf — commutive
fx(gxh) = (fxg xh — associative
fx(g+h) = fx g+ g« h — distributive (51)

¢ The moments of the transforms may be used for checking the form of the
convolution curve. The “zeroth” moment or area (see Section 3.4.5) is the
product of the areas under the individual curves [7, p. 327], namely

/ £(8) + g(t) dt = / (F(w) g(t— ) du) dt
= / f(u) /g(t—u) dt| du (52)

I
—
=
E
o
S
—
@
a
N
o
&

The abcissas of the centres of gravities or centroids add [7, p. 327]. If <x> is the
expected value of x in statistics

/ < x (f(t)yxgt) > dt=< «f(t) > + < xg(t) > (53)
T e ar

where < x" f(t) > = =% _—
J () de



40| 3 Fourier Transforms

The variances add also [7, p. 327], as
oo
/ < X (fH*rglt)) > dt=< £ f(t) > + < « g(t) > (54)
—o0
Convolution involves a loss of detail and examples of convolution are
¢ Smoothing of data to remove spikiness;

¢ Misalignment of the angle between a light slit for the tone tracks on films or
the heads on tape recorders.

3.4.2.3 Multiplication of a Transform by the Complex Conjugate of Another or
Correlation

If one of the functions in the convolution integral has its sense reversed and
replaced by its complex conjugate, the correlation integral is obtained, namely

h(t) = £(t) « g(t)

I
-
*
S
I
-
N2
()}
B
N
o
S

A (55)
+00
- / Fu—1) g (u) du

The five-pointed star is used to denote correlation in contrast to the asterisk for convo-
lution or complex conjugate. The complex conjugate of a spatial spiral function is also
obtained by changing the sign of the time function (see Section 2.1.1), giving

Convolution h(y) =£() = g(t) = / f(t—u) g(u) du
Cross-correlation h(t) =1() = gt) = / f(t—u) g (u) du (56)
— / f(u+t) g(u) du

In terms of Fourier transforms [6, p. 46 and 7, p. 352]

h(t) = £(t) x g(t) = F (f) G(f) = F(-f) G(f) (57)

Correlation is the inverse of convolution in Section 3.3.2.2 instead of letting one
function spread another, correlation finds the measure of commonality between two
functions. Correlation may be cross-correlation, the commonality between two func-
tions, or auto-correlation, often used to find the energy in an undefined waveform.
Cross-correlation is related to convolution by
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£(1) = g(t) = f (1) * g(t) (58)
Repeating the Gaussian pulse example in Section 3.4.2.2, Figure 3.12 shows what
happens when the two pulses are correlated.
In contrast to the Fourier transform for convolution, that for correlation is

T, T, exp(—j2af (v, =) exp(—nf (11 + T3)) (59)

Note that the resultant Gaussian curve is centred on the difference of the timing
of the two original curves and the time difference or lag is directly available, and this
process is not reversible as is convolution. The time difference is given by the fact
that the slopes of the Fourier transforms of the multiplicands subtract.

Repeating the example in Section 3.4.2.2 with correlation, the process and results
for two functions of the form {{t) = a exp(-at) are shown in Figure 3.13.

Negative phase sequence

(a) Two Gaussian pulses (b) Fourier transforms (c) Fourier transform (d) Correlated
of correlation function

Figure 3.12 The cross-correlation of two Gaussian pulses.

(a) Two exponential (b) Fourier transforms (c) Product of complex (d) Cross-correlation
functions of the two functions conjugates function

Figure 3.13 The cross-correlation process with negative exponential curves.
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They have Fourier transforms of the form

a

a *
and the product is
a b ab (61)

o —jonf B+ janf  apranif2ijanf (a—p)
The form of the correlation curve (the inverse Fourier transform) is available
using Campbell’s and Foster’s pair 448.8

. . b
Correlation function = a——exp(—oat) t >0
a+f

ora exp(ft) t < 0 (62)

o+ P

The correlation function in time is available directly as in Section 3.4.2.2 and
shown also in Figure 3.14 [6, p. 29].

oo T
nneo
o8

N =

exp(-f)

0.6

0.5 exp(—2(t-u))

. 0.4
Correlation

curve
\ 02

-3 2 -1 1 2 3

Figure 3.14 The cross-correlation curve for the example in Equation (62).

Using the nex function from Equation (49) in Section 3.4.2.2
+00
a nex(—at) x bnex(ft) = ab [ nex(—a(u— 1)) nex(fu)) du (a)
+00
= abexp(at) [ exp(—(au — Pu))dut>0 (bl)

t

= abexp(at) [ exp(—(au — Pu))dut<0 (b2)
0

nex(—at) + nex(pt)

= ab Bta

(63)
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The nex function has the value zero when its parameter is less than zero, that is,
in contrast to the convolution function in Figure 3.3, the correlation function in Fig-
ure 3.6 has a peak at the centre and decays with the constant a to the left and 3 to
the right [6, p. 29].

Cross-correlation over longer time periods is used in selective voltmeters and,
over times corresponding to the inverse of the bandwidth, in synchronous detectors.

3.4.2.4 Multiplication of a Transform by its own Complex Conjugate or Autocorrelation
The autocorrelation function is used to find the energy in time waveforms or their
spectra and the width of the function is used where the moments of a function are
unruly.

Repeating the example in Section 3.4.2.2 for the Gaussian pulse in Equation
(3.40) has the Fourier transform

, )
F(f) = T exp(—jaf (20— §fT")) (64)
The product with its complex conjugate is
* 2,2
E(f) F (f) = exp(=2xf"T") (65)

The product has no imaginary part so that the autocorrelation function is sym-
metrical and centred on zero frequency, giving

it
exp (——Z>
o\ 2] (66)

Autocorrelation function = JiT

This process is shown in Figure 3.15.

(a) Gaussian pulse (b) Fourier transform and (c) Product of the (d) Autocorrelation
complex conjugate Fourier transforms function

Figure 3.15 The autocorrelation of a Gaussian pulse.

Repeating the example with an exponential waveform, f(t)=a exp(—at), in Section
3.4.2.2, the product of the Fourier transform with its own complex conjugate is

2
a a

a
o —j2af o+2nf o + 4n'f

(67)

product is

43
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As with the Gaussian function the product is real and symmetrical giving a corre-
lation curve peaked at the centre as in Figure 3.16.
Fourier
transform
F(f)
conjugate F*( f) F(f)F*(f)
(a) Exponential (b) Fourier transform and (c) Product (d) Autocorrelation
function complex conjugate function
Figure 3.16 The autocorrelation of a negative exponential waveform.
The autocorellation function may be obtained using Campbell and Foster pair 444
and is shown in Figure 3.17.
2
Autocorrelation function = %0 exp(—alt]) (67)
a
Here T
a=1, a=1
0.8
06
exp(-1)
4
exp(-{t)) o2

-3 -2 -1 1 x 2 3

Figure 3.17 An exponential function and its autocorrelation function.

In signal processing the autocorrelation function of a voltage waveform repre-
sents the energy dissipated in a resistive load of one ohm.

3.4.2.5 Widths of Functions

It is often useful to give a number representing the width of a function that is not
rectangular, for example it is difficult to measure the width of the curve in Figure
3.18 with dividers. Two measures are commonly employed

¢ The width of a rectangle with the same area and height;
¢ The root mean square width or second moment of area of the one that is the
equivalent of the standard deviation in statistics of a curve of unit height.
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Area equal to the area
under the curve
4 ———— Root mean square value

03

02

-3 -2 E x 2 3

Figure 3.18 The widths of the autocorrelation function in Figure 3.17.

The width of the rectangle with the same area is given by

+00

f
Area ,{o (x) dx 69
Height £(0) (9)

In the case on Figure 3.18, the area under the curve is unity so the rectangle
stretches from -1 to +1.

The root mean square width, o, is derived from the square root of second moment
of area divided by the height, namely

Second moment of area
Height B £(0)

2

+00
[ * f(x) dx
—= =0 (70)

It must be noted that the integral for the second moment of area for some shapes
does not converge, examples are the sinx/x function and the Cauchy distribution
1/(1+x%).

3.4.2.6 Energy and Power

Parseval established that the energy in one cycle may be represented by the sum of
the energies represented by its Fourier series [7, p. 1317] and this was extended by
Rayleigh [6, p. 112] to phenomena represented by Fourier transforms. Later, Plan-
cherel established the conditions under which the theorem is true. The name Parse-
val is mostly used but all three names are to be found in the literature.

If the voltage or current waveform or spectrum is multiplied by its complex con-
jugate (see Sections 2.1.3 and 3.4.2.6), the energy dissipated in one ohm is obtained.
The same is true if the absolute values are squared, called the Wiener-Khinchin the-
orem [7, p. 1942]. If the energy is calculated each second then the power is obtained.

The relationship may be expressed mathematically,

FRCARCEE) (1) dt = J F(F)I* df = JEOF @GS o

45
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343
Division

Though the division of one spectrum by another is possible, as far as the author is
aware, there is no known use.

3.4.4
Differentiation

The Fourier transforms of the derivatives of functions have the following properties:

¢ The smoother the function, the greater the number of number of continuous
derivatives of its Fourier transform;
e The first derivative of a Fourier transform gives the mean of the original func-

tion and the second moment with the standard deviation may be found from
the second derivative

The classical derivation of the Fourier transform of the differential of the time
function, f'(t), as the increment 8t tends to zero, is given by

/ £'(t) exp(—j2nft) d

Remembering that limit;,

+00
/ limitg, w exp(—j2mnft) dt
+o0
limit,, / @ exp(—j2afl) dt (72)
+00
— limitg, |, / % exp(—j2nft) dt
limit,, , exp(j2mf ot) 6Ft(f - F()
J20f E(f)

exp(]ZJ'gft ot)—1 -

If the differentiation is repeated n times, we have for the Fourier transform of f* ()

+00

/ £"(t) exp(—j2mfi)dt =

(j2nf)" F(f) (73)



3.4 Properties of Fourier Transforms

As an example, a rectangular pulse is shown in Figure 3.19(a). The rectangular
pulse may be given in terms of Heaviside steps by

f(t) = Heaviside(t — 0.5) — Heaviside(t — 1.5) (74)

The Heaviside step has the value zero when t < 0 and unity when ¢ > 0.

(a) Rectangular pulse  (b) Differentiated (c) Spectral components (d) Complete spectrum
and its spectrum pulse of (b)

Figure 3.19 Spectrum of the differential of a rectangular pulse.

The spectrum of the rectangular pulse, time function is
+3/2

F(f) = [ Lexp(—j2mfi) dt= S (2 (75)
+1/2 mf

The differential of the rectangular pulse is composed of two Dirac functions

%f(t) = d(t— 0.5) — d(t— 1.5) (76)

The spectra of the two Dirac functions are given by +exp(—jnf) — exp(—j3xnf),
extend to teo, and are shown separately in Figure 3.19(c) and their sum in Figure
3.19(d). Using the differentiation theorem, the spectrum is

ﬂnf% exp(—j2nf) = exp(—jnf) — exp(~j3nf) 77)

The Fourier transform of the derivative of the convolution f (t) * g(2) is [6, p. 119]
d )
(G (F0)+80)) = i2af (7)) )

alternatively the right hand side of Equation (78) may be parsed as

PfE(f) - G(f) = F(f 1)+ )

, 79
F(f) . j2nf G(f) = F(£®) +¢ (1))
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Thus the derivative of a convolution is the convolution of either of the functions
with the derivative of the other.

345
Moments

The idea of moments is used generally in physics and the nth moment, y’, about
the origin is defined as (the letter p is used to be the same symbol as is used in
statistics)

+00

w, = / x" f(x) dx (80)

—00

A number of examples in mechanics and statistics are shown in Table 3.2. In elec-
tricity a direct voltage is represented by the statistical mean and the power in an
alternating voltage by the variance. Higher-order moments are used in parametric
statistics to describe the shapes of probability distributions, often as a test to see
how near a distribution in practice is to the theoretical Gaussian or normal distribu-
tion. Many measures, such as variance, are the moments about the centre of gravity
or mean that are defined as

+00
W, = / (x — %)" f(x) dx (81)

where 1, is the nth moment about the centre of gravity;
x is the mean value of x, or the first moment divided by the area.
The zeroth moment or the integral of the time waveform is given as the value of
the Fourier transform at zero frequency, namely

+00

/ £(t) dt = / £(t) exp(—j2nft) di|,_, = F(0) (82)

A number of examples are shown in Figure 3.20 that have zero phase shift at the
origin. Examples of phase shift are shown in Section 3.3.

(a) Area = 2 (b) Area =1 (c) Area = 1/2 (d) Area = 1/3

Figure 3.20 The area under the time curve is the ordinate of the spectrum at f=0.
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Table 3.2 The use of moments

Examples

Moment  Mathematics Mechanics Statistics
0 Integral, p, Area Area
1 Wy Centroid = p; / 1o Mean= / uo
2 w, Moment of inertia  Variance, u, = ulz — u; :

’, ! o 1.3
3 w3 My = Wy = 3uu + 2(uy)

Skewness [7, p. 10] = W3 / w’5°

, ’ ! ! ’ 12 ’4

4 Wy M4 = M4 - 4“3 Ml + 6“2 “1 - 3“1

Kurtosis (peakedness [7, p. 15]) =, / ui

The areas under a number of selected functions are given in Table 3.3.

Table 3.3 Areas of selected functions

Integral from —oo to +o0 Integral from 0 to +eo

fit) F(0) fit) F(0)
sinc(at) 1/a Jo (at) 1/a
sinc?(at) 1/a J1 (at)/t 1/a
exp(fn(at)z) 1/a

8(a) 1/l

exp(j 1

where J,, (x) is a Bessel function of the first kind, order n [9, p. 360, Eq. 9.1.10].
Translation or shifting leaves the value at f = 0 unchanged, namely

The Fourier transfor m of f(t — a) |f:0 is exp(—j2afa) E(f) |f:0 = F(0) (83)

The first moment. [6, p. 138] The first moment, as mentioned in Table 3.2 is used
in mechanical engineering and statistics and is given by.

+00
w, = / t£(t) dt (84)

Taking the pulse of unit width displaced at +1 from Figure 3.21 as an example,
the position of the mean of the time waveform may be calculated from the Fourier
transform.
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First moment or mean

1
Standard deviation
Root mean square width

Figure 3.21 A rectangular pulse showing its mean and standard deviation.

The Fourier transform is, by definition

B = [ £ explojn) o (85)

Differentiating with respect to f

+00

F() = 4 / £(1) exp(—j2nft) dt

+0o0
= / —j2mt £(t) exp(—j2nft) dt (86)
: +00
= —j2=m / t £(t) exp(—j2nft) di
Setting f = 0 the equation becomes
+o0o
F0) = —j2n / t £(t) dt (87)

and the first moment y; is

M= Ton (88)

Extending Equation (88) to the nth moment about the origin, we have, generally
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+oo
/ n F" (0)
W= / e de = L0 (89)
I (—j2m)
where F"(x) is the nth differential of F(x).
For the example in Figure 3.21, the Fourier transform is
3/2
F(f) = [ 1exp(—j2nft) dt (90)
1/2
sin(ztf)

= exp(—j2nf)

The Fourier transform is composed of two parts: the sin(mx)/(rtx) form and the
helix exp(—j2mf) that represents the displacement or position of the mean. The first
derivative is

F(f) = (cos(a‘tf) sin(ztf) P sin(stf)

R |

Taking the limit as f approaches zero, F'(0) tends to —j 2x. When this is divided by

—j 2m the first moment is unity as shown in Figure 3.22 and Figure 3.23. The —j

shows that this is the angle between the curve and the plane through the imaginary
axis at f = 0.

) exp(—j2f) 1)

Slope atf=0

-0.4

a) Waveform and its Fourier transform b) Slope at f= 0 for mean

Figure 3.22 Time waveform, its spectrum, and pitch at f = 0.

Value atf=0
628318 X
Value at f=0
42.76829
a) First derivative of Fourier transform b) Second derivative of Fourier transform

Figure 3.23 Examples of the first and second derivatives.
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The centroid, the position of the centre of gravity, or the mean in statistics, is giv-
en by the first moment divided by the area, that is

W F (0)
Centroid=-—+ = ———~— 92
W, j2m F(0) 2

The first moment at f = 0 represents the pitch of the curve as it passes through
zero frequency.
Second moment. The second moment is given by

+00
W, = / £ £(t) dt (93)
Using the second differential of the Fourier transform

+o00

F () :% F () :% / £(t) exp(—j2nfl) dt

_ / (—j2r) # £(t) exp(—j2nft) dt
— 4 / £ £(1) exp(—j2oft) dt (94)

Again setting f = 0, the second moment about the origin is

/ F'(0)
W, = - 431:2 (95)

In mechanics, the second moment about the origin is the sum of the square of
the first moment plus the moment of inertia, I, squared,

/

2 2
Wy, = +1 (96)

Dividing by the areas, the second moment about the mean is

M/ u/ 2
2 1
= - (%) 97
P i
In statistics Y, is the variance that is the square of the standard deviation s and in
signal processing and antenna theory the value s represents the root mean square
bandwidth or beamwidth. Note that this is a one-sided value and the normal 3dB
widths are double-sided. In the example of the rectangular pulse the value of the

ordinate for f = 0 in Figure 3.23 is 42.768 giving a second moment u’, of 42.768/
47* = 1.0866. Taking out the first moment gives a variance of 1/12 giving a root
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mean square bandwidth, beamwidth, or standard deviation of 1/v/12 or 0.2887.
Another example is the spatial spiral spectrum generated by the waveform (t—a)
namely exp(27tfa). The nth moment of the spectrum is a" thus the first moment is a
and the second is a” — a> = 0, the variance of Dirac’s delta function. All higher
moments about the mean are also zero.

A further example is the function exp(—a((t —u,)/ s)z). The area is s and the first
moment is ;s giving a mean of ;. The second momentiss /2m + sui, and dividing
by the area s gives the variance as s™ /2.

A summary is given in Table 3.4.

Table 3.4 Summary of centroids and root mean square values

f(t) Mean or Variance (root F”(0) (0) (AY)?
centroid mean square)’
2 1
sinc ¢ 0 Oscillating 0 T —
3 12
2
sinc? t 0 oo ) _ oo
3
exp(-t)) 0 4 -167° o 1
1
0 oo oo -2
1+ x?
1 21 1
2 2
exp(—n XZ a ) 0 m F —2ma W

The variances of both the sinct and sinc®t functions may be calculated over limited
values of ¢ on each side. The moments become indeterminate as when sint/t is mul-
tiplied by t" to form the moments the expression diverges.

3.5
Special Functions used for Fourier Transforms

A number of extra functions have been proposed as shorthand to describe special
shapes and the repeating nature of some waveforms and spectra, for example the
rect(t) and the sinc(f) functions in Section 3.2. One of the first, Woodward [1, p. 28],
having invented the sinc function (Section 3.3), introduced the repetition function
in time shown in Figure 3.24, namely

—+00
rep, f(t) = > f(t—nP) (98)

n=—00

where tis the time variable;
P is the period of time for repetition;
n is an integer counter
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rep, f(f) is a train of f(f) functions
repeating over all time from — to
+= seconds

\ 2
3 One cycle or repetition
period, P seconds

Figure 3.24 The rep or repetition function.

A number of waveforms are defined for one cycle or repetition period only and
the rep function extends the definition over all time.

If O(t) is a Dirac delta function, then the repetition function becomes a comb
function as shown in Figure 3.25. A number of authors use different forms, namely
for integer values of n

+00
comb, = > 8(t—nP) [10p. A —83]

+oo
[ = > d(t—n) [6, p.78] (99)
+0o0
comby H(f) = Y H(nB) 8(f — nB) [7,p. 28]
Train of Dirac functions P EZ/’

extending over all time from
—o {0 += seconds

The height of the lines is
proportional to the areas of the
Dirac o functions.

2

3 One cycle or
repetition period,
P seconds

Figure 3.25 The comb or [T] function and its Fourier transform.

Comb of spectral lines extending
over all frequencies from — to +~ Hz
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Bracewell [6, p. 78] used the Cyrillic letter JTT (shah) to represent the comb of
delta functions with unit period. For other periods the scaling property is used

1= n
1(at) = — 6<t— —)
[N a (100)
[11 functions are illustrated in Figure 3.25.

Bracewell expresses Woodward’s comb function as

+00
1 n
w « Fg) = L5 o(r-2) « rg) (101)
n=—0c
Woodward used his comb function to represent a comb of spectral components
H(f) and convolution with the delta functions is used for the other forms. Other
functions used by Bracewell [6] are

IT for the rect function
A the triangle function
H Heaviside function
sign the signum function.

3.6

Summary of Fourier Transform Properties

Table 3.5 gives a summary of Fourier transform properties [2, p. 24] [6, p. 183].

Table 3.5 Summary of Fourier transform properties

Property In time domain, f{t) In frequency domain, F(f)
Linearity af(t) + bg(t) a F(f) + b G(f)
4 Lo(f
Scaling flat) Tl F <a>
Sign change f-t) F(-f)
Complex conjugation X*(t) F*(—f)
Time shift ft+a) exp(j 2 « fa) F(f)
Frequency shift" exp(j 2 7 fa) f(t) F(f* a)
Double-sideband modulation cos(2mat) f(t) 1/2[F(f+a) + F(f-a)]
Differentiation in time domain % () J2nf E(f)
Differentiation in frequency domain —j27ut £(t) % E(f)
Integration in time domain
j’ f(t) dt F—(f) + —F(O)é(f)
o J2nf 2
i s
Integration in the frequency domain _fj(z?tt + f (O)Zb(t) | F() df

1) Also called single-sideband modulation
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Property In time domain, f{t) In frequency domain, F(f)
Convolution in time domain () * g(¥) F(f) G(f)

Convolution in frequency domain f(t) g(1) E(f) * G(f)

Symmetry F(t) f(-H)

Delta function in time domain Ot — ty) exp(—j2nfty)

Delta function in frequency domain exp(—j2mfyt) S(f — fo)

Parseval’s, Rayleigh'’s, or Plancherel’s 400 +00

theorem [ @) d [ F@)F

3.7

Examples of Fourier Transforms

The purpose of this section is to show the shapes of selected waveforms in their
complex form. Accurate values may be calculated these days using commonly avail-
able computers. The scales on a number of diagrams show the area of Dirac’s 8
functions they contain as they have width approaching zero, height approaching

infinity.

Other tables of Fourier integrals or transforms are those of Campbell and Foster

[11], Erdélyi [12], Bracewell [6], and many other textbooks.

The basic waveform in this book is the polyphase voltage rotating with time
extending over all time shown in Figure 3.26.

L
A /
\ [\ 702 | ‘;417).6 5

To+ o

Figure 3.26 The transforms for helical waveforms and spectra.

Left-hand side of Figure 3.26

E(f) =d(f = fo)

From — 5
/ﬁ;{\:b m\ Frequency
/S VAR
Lot |

__—
The scale shows the area of the Dirac & functions

Right-hand side of Figure 3.26
f(t) = exp(j2mfyt) t = —ooto + 00 F(f) = exp(j2mtyf)f = —o0 to + o0

£(t) =0(t —t,)

When the spatial spiral does not cut the axis at zero, the phase angle is reflected

in the spectrum.
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3.7.1
Cosine and Sine Waveforms

Commonly cosine and sine waveforms are used to introduce Fourier series and
transforms and these are shown in Figure 3.27. Note that the choice of axes gives
the conventional view of the imaginary plane from below, namely the delta function
is positive for negative phase sequences; denoted by —f.

Frequency

(a) Cosine wave and spectrum (b) Sine wave and spectrum

Figure 3.27 The Fourier transforms of sine and cosine waves.

Left-hand side of Figure 3.27(a) Right-hand side of Figure 3.27(b)
f(t) =cos(2m,)t= —o0 .. +00 f(t) = sin(2m, f)t= —oo .. +00
E(f) = 8(f = f)/2 + 8(F + f)/2  E(f) = —0(f — £,)/2 + jo(f + f,)/2

A cosine half-wave is used as a tapering function in Section 5.2.3.

3.7.2
Rectangular Pulse

The common presentation of the Fourier transform of a rectangular pulse is shown
in Figure 3.28(a). The rectangular pulse of width T is given by
2
2 T
f(t) = whent < e then 0 (102)

else 1

Its Fourier transform may be obtained by integrating over the pulse width

F(f) = / exp(—j2ft) dt:% — T sinc(fT) (103)
T

2

The sinc notation is that of Woodward [1].
When the pulse is moved in time, t, the spectrum assumes the spatial spiral
forms of Figures 3.28(b) and 3.28(c).

B(f) = SOUD o (—ioafr) (104)

f
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(a) Pulse centred on zero time (b) Pulse centred on +0.5 in time (c ) Pulse centred on +1 in time

Figure 3.28 Spectrum of a rectangular pulse as it moves from
zero. [Source: Meikle, H.D., Modern Radar Systems, Artech
House, Norwood, Massachusetts, 2001.]

Representations of the rectangular function are given in Section 5.2 1.

3.7.3
Triangular Pulse

The other common function with linear sides is the triangular function that has the
Fourier transform

sin?n
F(f) = nz—f{T (105)
The curve is illustrated in Figure 3.29(a) and movement of the peak away from
zero time is shown in Figures 3.29(b) and (c). More exact diagrams for a centred
triangle are to be found in Section 5.2.1.

(a) Symmetrical about zero time (b) Peak at 0.5. (c) Peak at 1.0 2

Figure 3.29 The triangle function and its Fourier transform.
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3.7.4
Ramp Pulse

The linear ramp is an example of an odd function, that is f(-t) = —f{(#). Very many of
the Fourier transforms in everyday practice are complex and are calculated by
machine whereas in the text books they are divided into even, f(-t) = f(t), and odd
functions. Truly balanced odd functions have a Fourier transform that is purely
imaginary. The function occurring at various times is illustrated in Figure 3.30 and
a more exact treatment is to be found in [13, Appendix B].

(a) Zero crossing at zero (b) Zero crossing at +0.5 (c) Zero crossing at 1.0

Figure 3.30 Ramp functions and their Fourier transforms.

3.7.5
Gaussian Pulse

Many theoretical discussions and practical approximations use the Gaussian form
for simplicity, namely

f(t) = exp(—nt’)
2

F(f) = exp(—nf")

Notice that the Fourier transform of a Gaussian function is another Gaussian

function and the functions are shown in Figure 3.31 and with greater detail in Sec-
tions 5.2.6 and 6.3.2.

(106)

Frequency

2 2 Time

Figure 3.31 The Fourier transform of the Gaussian function.
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3.7.6
Unequally Spaced Samples

Until now Fourier transforms have been taken from equally spaced samples from
waveforms. An example where the samples may not be equally spaced is the moving
target indicator (MTI) processor is used by radar equipment to suppress the signals
coming from fixed echoes so that only echoes scattered back from moving objects
are displayed [13, Chapter 11]. The vector form of illustration gives a better insight
into how the characteristics are changed.

The radial component of velocity is responsible for a Doppler frequency shift in
the returned echo signals given by

Fooper = 2 Radlai\velocﬁy (107)

where fpoppler is the Doppler frequency Hz;
Radial velocity is in m/s;
M is the wavelength of the radar in metres.

The most common form of radar transmits pulses so that the echo signals are
pulses at the pulse repetition frequency of the radar. A typical moving target indica-
tor filter is shown in Figure 3.32 and the delay line has a delay equal to the time
between two transmitted pulses.

Input Output
— Delay line e

Figure 3.32 A single delay moving target indicator filter for radar.

The impulse response of the filter centred on zero time is
f(t) = d8(t— 1/2) — O(t + t/2) (108)

where §(t) is Dirac’s delta function;
T is the delay line delay or the time between two pulses.

Dirac’s delta function is used for simplicity as in real radars the pulses have a
near Gaussian shape giving a spectrum that is nearly Gaussian. From Chapter 3 the
Fourier transform of a delta function is a spiral. The frequency response is the Fou-
rier transform of Equation (108), given by



3.7 Examples of Fourier Transforms

+00

F(f) = / (B(t—1/2) — 8(t+7/2)) exp(—j2mft) dt (109)

= exp(jnft) — exp(—jnfT)
= j2sin(mfT)

The impulse response and its Fourier transform are shown in Figure 3.33. Note
that the convention for showing the imaginary frequency curve requires viewing
from underneath. In moving target indicator processing absolute values of the sig-
nals are used and most of the later diagrams will only show absolute values.

The curve is a continuous sine characteristic with a period of 2wft. In a typical
example of an S-band (A= 0.1 m) radar with a range of 60 nautical miles, the pulse
repetition frequency is 1000 Hz. The radial velocity for which the response is zero is
called the blind speed given by

The amplitude of the Dirac Time in terms of 7

functions represents their area

Figure 3.33 The impulse response of a single moving target indicator filter.

Frequencies
21 where ground
clutter is
present
o 154
B
3
s
©
5 M
o
(=)
5
S
0.5
0 0.2 04 06 0.8 1
Fraction of the pulse repetition frequency Hz
Fraction of the blind speed m/s

Figure 3.34 The shape of the frequency response (voltage) of a
single moving target indicator canceller.
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fi)rf A

Blind speed =
= 1000 x 01/2 = 50 m/s (110)

where fris the pulse repetition frequency and
M is the wavelength.

The velocity of 50 m/s is 180 km/h or 97 knots, whereas the radar expects to see
aircraft with a radial component of speed between zero and, say, half the speed of
sound (Mach 0.5 or 164 m/s).

In order to remove the echo signals from trees, other objects waving in the wind,
and ground vehicles, two consecutive stages are used giving a sine squared charac-
teristic with a wider notch, shown in Figure 3.35. Such moving target indicator can-
cellers are called double delay or three-pulse cancellers.

When the radial component of the aircraft velocity corresponds to the blind
speeds, the aircraft will not be seen on the displays of the controllers who are trying
to bring it in to land. Before coherent integrating filters were used, one solution was
to use unequal periods between the transmitter pulses, called pulse repetition fre-
quency staggering. If the stagger fraction is €, then the impulse response for a dual
delay or three pulse canceller is

h(t) = 6(t+ (1 — ¢)) + 28(t) — 8(t—=(1 + ¢)) (111)

Note when canceller stages are cascaded the effect is to give binomial weighting,

namely, —(1 — x)% or -1 + 2x — &%,

Radial velocities where the echoes are partially or completely suppressed by a double canceller

SR B R BV BRI RV P

Number of the blind
speed units or pulse
repetition frequencies

0 2 4 6 8
0" 100 200 300 400 Metres/second
0 200 400 00 800 1000 1200 1400 km/h
o 200 t 400 600 ? 800 Knots
Mach 0.5 Mach 1

Figure 3.35 The radial velocity for the double canceller in the example.
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The Fourier transform is the sum of two contrarotating helices of different fre-
quencies shown in Figure 3.36 and given by

+00

F(f) = / (8(t+1(1—¢)) + 20(f) — d(t— (1 +¢))) exp(—j2ft) dt

= —exp(j2aft(l — €)) + 2 — exp(—2nftr(1l + ¢)) (112)

The amplitude of the Dirac
functions represents their area

(a) Three pulses in time (b) Complex Fourier transform of the three pulses

Figure 3.36 The frequency characteristic of a staggered moving
target indicator filter (staggering fraction, e = 0.1).

The two contrarotating spirals in (112) with different frequencies (ratio 1 + € : 1 —€)
give a number of fingers that rotate around the constant 2. Instead of the character-
istic touching the frequency axis every blind speed in the unstaggered case, the fin-
gers nearer the frequency axis cause the minima when the modulus is plotted in
Figure 3.37. A real blind speed, in this example, first occurs at ten times the original
blind speed. This allows aircraft to be seen by the radar flying at all radial velocities
at least up to the speed of sound without blind notches.
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Moving target indicator characteristic with staggering (¢ = 0.1)

A H N H i

10
2 4 6 8 10 Number of
blind speeds
AW AN AWAWYSNANAWAR
| repetition

; ‘.\/ A v\/ A A \/"’ AR \\/ \/ frequencies
, Py LS O A L N
SR P AN INT ! ;

Response dB
>

-20 ;
30 i i i i i i i i ;
] A A
Blind sstggzgfir\:gthom Moving target indicator characteristic without staggering B"ns?ai)%i?’i(l"l:nh

Figure 3.37 Dual canceller moving target indicator characteris-
tics in the example radar without and with staggering (¢ = 0.1).
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4
Continuous, Finite, and Discrete Fourier Transforms

Chapter 3 introduced Fourier transforms as the link between a waveform and its
spectrum. Fourier transforms of continuous waves are relatively seldom in practice
(Figure 4.1(a)) as observation times are limited over a finite time or antennas exist
over a finite length (from -2.5 to +2.5 in Figure 4.1(b)). Digital computers require
the information to be a list of points along the waveform in order to produce a num-
ber of points representing the spectrum and some antenna arrays have discrete feed-
ing points. Discrete values existing between —2.5 and +2.5 are shown in Figure 4.1(c).

£14
£1.2

(a) Continuous cosine wave (b) Cosine wave between finite times  (c) Sampled waveform
(from 2.5 to +2.5)

Figure 4.1 Continuous, finite, and sampled waveforms.

To recapitulate from Chapter 3, the spectrum of the helical waveform with a fre-
quency of 0.5 Hz in Figure 4.2(a) is a delta function and is shown in Figure 4.2(b).
The equivalent cosine waveform is shown in Figure 4.3 with two spectral lines as a
cosine waveform may be resolved into two contrarotating helices.

A New Twist to Fourier Transforms. Hamish D. Meikle
Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40441-4
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& function

Frequency

(a) Continuous helical waveform (b) Spectrum of (a)

Figure 4.2 A helical waveform of frequency 0.5 Hz and its spectrum.

& functions

Frequency

(a) Continuous cosine waveform (b) Spectrum of (a)

Figure 43 A cosine waveform of frequency 0.5 Hz and its spectrum.

4.1
Finite Fourier Transforms — Limited in Time or Space

The time of observation is always limited and arrays of sensors or antenna elements
always have a limited size and this has an effect on their spectra and patterns. The
effects are discussed in terms of time and frequency spectra, although it applies
equally to the other fields where Fourier transforms are used.

A helix existing between —1/2 and +1/2 is shown together with its envelope in
Figure 4.4(a). The envelope may be considered to modulate the continuous helix in
Figure 4.2(a) and its spectrum in Figure 4.4(b) shows the effects of modulation (see
Section 3.2.4). Instead of a spectral line there are a number of peaks of decreasing
magnitude and opposite phase called sidebands in signal processing and sidelobes
in antenna array processing. The equivalent for a cosine pulse is shown in Figure
4.5. The spurious signals may be reduced by tapering functions, described more
fully in Chapter 5, at the cost of a lower signal gain or signal-to-noise ratio.
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Envelope of helix

Frequency

(a) Finite helical waveform (b) Spectrum of (a)

Figure 4.4 A 6 Hz finite, or time limited, helical waveform and its spectrum.

(a) Cosine wave between finite times (b) Spectrum of finite cosine wave
(between -0.5 and +0.5)

Figure 45 A 6 Hz finite, or time limited, cosine waveform and its spectrum.
The limits of integration of the Fourier transform are no longer from minus infi-
nity to plus infinity but from the starting to ending times of the event, namely
t=end
R = [ f0) epl(-jonf) a i
t=start

The shape of the curve depends on the length of the observation time. Repeating
Equation (16) of Chapter 3, for T'seconds the transform is

T
E(f) = / () exp(—j2nft) d = SPUHT E;;P(—JWJ‘T ) _ sinygchT) 2)

The width of the spectral “line” or array pattern is inversely proportional to the
observation time or array width and examples are shown in Figure 4.6.

The spectrum is unambiguous over all frequencies (from —eo to +e0) and does not
repeat itself as if the waveform was continuous. Figures 4.4 and 4.5 comply with the
integration span for the coefficients in the Fourier series, namely over one or more
complete cycles. Figure 4.7 shows what happens when the frequency is varied be-
tween 6 and 7 Hz, that is the sampling time does not contain an integral number of
cycles. For the spectrum to be unambiguous, notionally the waveform must be con-
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tinuous, as in Figure 4.7(a). The kinks caused by fractions of the number of cycles
are shown in Figure 4.7(b) and these increase the sidelobe level in the spectrum in
Figure 4.7(c) and 4.7(d). The sidelobe level for 6 Hz is the minimum line in Figure

4.7(d).

A

4W - . W Frequency, Hz

\
T=2 T=3 T =1 second

Figure 4.6 The shape of spectral lines for times of observation from one to five seconds.
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(b) Notional jumps in the waveform at the ends
with frequencies between 6 and 7 Hz

Figure 4.7 The existence of extra sidelobes in a finite Fourier

transform with frequencies between 6 Hz and 7 Hz.

(c) Spectra of finite cosine waves 6 — 7 Hz

(d) Sidelobe section (magnified)

The increase in line width of the spectrum with the decrease of the width of the
sampling time limits the accuracy of frequency measurement [1] and the sidelobes
hinder the interpretation of spectra, they allow the entry of spurious interfering sig-
nals into antennae. Sidelobes may be reduced by fading the waveform at its start
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and end by tapering the amplitude as in Figure 4.8(a). The sidelobes are reduced to
that of the tapering waveform and those caused by the misfitting of the number of
cycles are reduced also, note the higher magnification in Figure 4.8(d).

The reduction of sidelobes comes at a cost. The amount of energy integrated is
reduced by tapering, the peaks in Figure 4.8(c) are lower and wider reducing sensi-
tivity, accuracy of frequency estimation, and the resolution of two neighbouring sig-
nals. The interference of sidelobes into near by signals is called spectral leakage.
Tapering is discussed more fully in Chapter 5.

repeat to +e

(a) Tapered cosine waveform existing (c) Specitra of tapered finite
from -2 to +%2 cosine waves 6 —7 Hz
Aassgmed to M §0§ W
?epea_t:d | Tapering \% % zoj § %
rom .\\/ function \\: % Ei %\ /ﬂ
ar 14 |
/ ‘ Assumed to V8w T

Tapered cosine |

waveform “Faded” cosine
waveform

Compare with Figure 4.7 (b)

(b) There are no notional jumps in the
waveform at the ends

(d) Sidelobe section (magnified)

Figure 4.8 The reduction of spectrum peak and sidelobes with tapering.

4.2
Discrete Fourier Transforms

Section 3.1 described the sequence of ideas leading from the Fourier series to the
Fourier transform, namely the integration interval is increased from one cycle of a
repeating waveform to all time (—eo to +e0) and increased the number of points in
the Fourier series to give a continuous spectrum.

If the continuous spectrum repeats itself each B Hz, then this is the inverse of
the situation with the repeating waveform in Section 4.1. Inverting the spectrum
using the Fourier series formula gives a series of equally spaced time samples of
amplitude representing the values of the Fourier series as in Figure 4.9.

The row of time pulses is a sampled time waveform as used in digital processors
that use numbers for the amplitude taken at specific times. Signal processing takes
place, often in batches, quasi-continuously and this leads to the concept of a sam-
pling function existing over all time.
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One cycle of
Continuous spectrum extending spectrum B Hz /

over all frequencies, here

19/70 cos(2rrf) + 9/35 cos(4rf) + 17/70
cos(6mf) + 8/35 cos(8trf)

Multiple of 1/8 *
Figure 49 The invasion of a repeating spectrum to give a sampled times series.

The discrete Fourier transform algorithms are used on digital computers to com-
pute the list of points representing the Fourier transform. First, the values repre-
senting the waveform with time are selected, called sampling and described in the
next section, then the values are changed into digital form so that digital numerical
algorithms may be used to calculate the Fourier transform.

The arrays of N equally spaced sample values in time and (complex) voltage, #[n],
v[n], may be used in a discrete Fourier transform

N-1
Fk) =L > vl exp(—jZn%k) n=0,1,2,.N-1 3)
n=0

An example with purely real samples, balanced about zero time, is shown in Fig-
ure 4.10 and compared with the underlying finite Fourier transform.

(a) Single pulse (b) Fourier transform of single pulse in (a)
N samples Resolution 1/NT
i —
Spacing Cycle
-~ T i
(here 1/10)  (here 10)

(c) Sampled single pulse (d) Fourier transform of sampled single pulse in (c)

Figure 410 Comparison of the finite Fourier transform with an
equivalent discrete Fourier transform.
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In Figure 4.10(c) the pulse waveform sampled is at 1/10 second intervals and
these samples are summed for the Fourier transform. In Equation (3) the exponen-
tial is cyclic between —eo and +eo with a period N representing 1/t Hz. The resolu-
tion, as with the sampled waveform, is N points.

Commonly, the samples are not equally spaced about zero but start at zero time,
as in Figure 4.11, where a train of 21 pulses with unit spacing is set in a time frame
length 41. The spectrum is the Fourier transform from Equation (3) and Figure
4.11(b) shows the transform when n is continuous (over a finite interval) and when
n is confined to integer values (discrete). In this case the finite transform values
could be said to interpolate between the discrete values. The inverse transform is
given by

N=1

f(n)= Z F[K] exp(+j2n%k> k=0,1,2,..N—1 4)
k=0

is shown in Figure 4.11(b) and 4.11(c). In contrast to the forward transform, the
finite inverse transform in Figure 4.11(c) has wild excursions between the integer
values of time, showing that it may take any value waveform between the sampling
points represented by the dotted lines. Here, the intermediate values cannot be
taken to be interpolations. The time space in Figure 4.11(c) has been extended to
show the repeating feature of the inverse transform by the start of a repeated time
block by the dotted bar at the end of the time axis.

Finite transform
n continuous

Frequency /\

Discrete transform
n integer values only

W Time
(a) Train of samples (b) Spectra from discrete and finite (c ) Time waveforms from discrete and
in time Fourier transforms of (a) finite inverse Fourier transform of (b)

Figure 411 Time samples (a) with their discrete and finite
Fourier transforms in the frequency domain (b) and the inverse
transforms back into the time domain (c).

4.2.1
Cyclic Nature of Discrete Transforms

The main use of Fourier transforms is to change a waveform into a spectrum, per-
form an operation on a spectrum, and change the result back into a time waveform.
Figures 4.9 to 4.11 show the cyclic nature of the transformed quantities. There
must be enough empty space around the waveform (N > 2k) in order to avoid inter-
ference [2, p. 362]. The cyclic nature is shown in Figure 4.12.
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(a) Discrete samples (b) Discrete transform

Figure 412 The circular nature of the discrete Fourier transform. After [2].

In both convolution and correlation, the samples representing time waveforms
are moved past each other, the components are multiplied and added, and the result
is plotted. Then one of the waveforms is moved to the next step and the process
repeats. The same applies in the frequeny domain where multiplication of the spec-
tra takes place. N must be chosen large enough so that the highest frequency com-
ponents are small enough not to cause noticeable interference in the next cycle.

4.2.2
Other Forms of the Discrete Fourier Transform

The Fourier transform is used extensively in signal processing, for example in radar
and sonar systems. Digital systems require inputs that are binary words represent-
ing numbers arranged in lists, arrays, or files and the computing power needed to
change these into spectra is considerable. The matrix representation of the discrete
Fourier transform leads to the development of the fast Fourier transform [3] that
reduces the numbers of operations from N” to N log, N with the restriction that
N = 2", where m is an integer. Other algorithms referred to as reduced multiplication
fast Fourier transforms (RMFFT) are referred to in [4, Chapter 5].

These transforms are discrete Fourier transforms and are not discussed further
here.

4.23
Summary of Properties

The result of summing a number of discrete values is different from that obtained
from an integral. Figure 4.13 shows the finite or continuous Fourier transforms of
rectangular pulses compared to their discrete Fourier transforms. As one would
expect, the higher the number of pulses or points, the smaller the differences be-
tween the continuous and discrete transforms become.
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(a) Plots of H(n) and H(f)
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(b) Difference between H(n) and H(f)

Figure 4.13  Differences between continuous and discrete rec-
tangular Fourier transforms [Source: Meikle, H.D., Modern Radar
Systems, Norwood, Massachusetts: Artech House, 2001].

Table 4.1 Correspondence between Fourier series and normal, finite, and discrete transforms

Type Formula
P

Series Jf(t)exp(—j2nnft) dt For each coefficient where n is the coef-
0 ficient number from 0 to N.
00

Transform J f(t)exp(—j2nft) dt Integrated over all time
—o0
t=end

Finite J f(t)exp(—j2nft)dt Integrated over limited time
t=start
1 n

Discrete N WZ::O v[n] exp(—jZn N k) Discrete data points

4.3

Sampling

The sampling process is similar to observing a disk on an electric motor shaft using
a flashing light or stroboscope, for example. Another example is the use of a strobo-
scope to look at the timing of a petrol engine. In both cases the stroboscope flashes
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may be timed either by an external generator, by mains, or the engine ignition. In
both cases nothing is known about the movement between the flashes and if the
shaft turns more than one complete revolution between the flashes we do not know.
If the motor runs at half the stroboscope speed, the markings will be seen twice so
that this effect is easily recognised.

Figure 4.14(a) shows a sine wave sampled at 8 times its frequency. A line drawn
through the samples allows the reconstruction of the original wave. If the sampling
frequency is reduced to double the sinewave frequency there will be two samples
per cycle. Only when the samples are taken at the positive and negative maxima,
can the original wave be reconstructed knowing that it was a sinewave. In other
cases the samples will not show the true amplitude and in an extreme case the sam-
ple may fall on the zero points, giving rise to the “blind phase” phenomenon.

Figure 4.14(b) shows sampling at 7/8ths of the sine waveform. When a line is
drawn through the sampled data, a negative sinewave appears, the equivalent of the
waggon wheels in old films rotating backwards. In Figure 4.15, this process is
repeated at 9/8 and 15/8 the frequency and the result is the same sine waves as in
Figures 4.14(a) and 4.14(b). This effect is called aliasing. The spectrum, drawn over a
number of ambiguous cycles, is shown in Figure 4.16.
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(a) Sine wave frequency=1, sampling frequency =8  (b) Sine wave frequency=7, sampling frequency =8

Figure 414 Sampling at 8 times and 7/8ths of the frequency of
a sine wave [Source: Meikle, H.D., Modern Radar Systems, Nor-
wood, Massachusetts: Artech House, 2001].
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(a) Sine wave frequency=8, sampling frequency =9  (b) Sine wave frequency=8, sampling frequency =15

Figure 4.15 Sampling at 9/8 times and 15/8ths of the frequency
of a sine wave [Source: Meikle, H.D., Modern Radar Systems,
Norwood, Massachusetts: Artech House, 2001].
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(a) Cosine wave sampled at 8 f (b) Spectrum of (a) and (c) (c) Cosine wave sampled at 7/8 f

Figure 416 The spectrum from two aliased waveforms sampled at frequencies of 8fand 7/8 f.

The frequencies of the sampled waveforms for a sampling rate of 1000 Hz are shown
in Figure 4.17. Up to a frequency of 500 Hz the frequency of the sampled wave is the
same as that of the original according to Shannon’s sampling theorem. Above 500 Hz
the effect of Figure 4.16(c) takes hold and with increasing input frequency the fre-
quency of the waveform represented by the samples falls. At 1000 Hz the process
repeats and the effect on frequencies up to 3000 Hz is shown in Figure 4.17.

Ambiguous frequency bands
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Figure 4.17  Aliasing with simple or single phase sampling
[Source: Meikle, H.D., Modern Radar Systems, Norwood,
Massachusetts: Artech House, 2001].

The sampling frequency is chosen to be at least twice the highest expected signal
frequency to obey the Nyquist criterion. Other signal components above half the
sampling frequency must be removed, even when they do not interfere directly, as
they add to the noise in the system. Such a filter, shown in Figure 4.18, is called an
anti-aliasing filter.
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Figure 4.18 The placement of the antialiasing filter.

The arrays of sample values in time and voltage, #[i], v[i], may be used in a discrete
Fourier transform

F(n) =3 vli exp(—jZn%t[H) (5)
k=1

Commonly it is assumed that the time interval between samples is exactly the
same and known, giving rise to
N-1

F(n) :% v[k] exp (—jZJ'L%k) (6)
k=0

In the case of a rectangular pulse having all samples unity the spectrum is given
in Figure 4.9(b).

Generally, the data taken at definite equal time steps is in the form of an array or
list. And the Fourier transform for unit samples becomes

N-1
Freet(n) = %Z 1 exp (—jZTE % k) discrete form (7)
k=0

1 — exp(—j27ntn)

-1 7 sum the geometric progression
N - exp(—jZnN)

= % ::1((:%)) exp (—jrm(l - %)) amplitude and phase

o . . 2nd
where 7 is ft in the case of signal processing or e sin(6 + o) for antennae.

Sampling hides the information between the samples and only values at the sam-
pling points may be trusted, as in Figure 4.11.
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Table 4.2 The relationships between discrete and continuous Fourier transform quantities [4 p. 52]

Discrete Fourier transform Fourier transform

Symbol Meaning Symbol Meaning

N=1 P

>0 sum of samples JOdt integration

n=0 0

N number of samples P observation time, s
k coefficient or frequency bin number f frequency, Hz

n sample number t time, s

x(n) sampled value of x(t) at =nT x(t) value of x(t) at time ¢

Table 4.3 Relationships between continuous and discrete variables [2, p. 358]

Continuous Discrete
Time t, S T, nT time steps
Frequency f Hz n/N

4.3.1
Sampling Errors

If the calculation of the Fourier transform assumes that the samples are equally
spaced in time, any error in timing gives a value with an error. The errors become
significant in processes that depend on the subtraction of large numbers.

4.3.2
Sampling of Polyphase Voltages

The outputs from vector detectors may be in one of two forms: polar (r, 0) or Carte-
sian (x, y). Commonly components for the Cartesian form are available so two phase
sampling is used when the waveform cannot be expressed as an alternating current
and the phase sequence of the samples is important. The use of a second phase
avoids the “blind phase” phenomenon with simple sampling. The complex values
from the list of data are used to calculate the Fourier transform in Equation (4) and
an example with a helical waveform is shown in Figure 4.19.

The waveform in Figure 4.19 has been redrawn about the origin in Figure 4.20(a)
to avoid the (helical) effects of being off-centre. The spectrum is therefore fully real
and is shown in Figure 4.20(b). There is a single peak at a frequency of +1.25 and no
twin peaks at £1.25 as in Figure 4.16(b).
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Figure 419 A helical waveform, its Cartesian components, and
complex sampling at 8 times its frequency [Source: Meikle,
H.D., Modern Radar Systems, Norwood, Massachusetts: Artech
House, 2001].

(a) Helical wave at 1/8 th of sampling frequency (b) Spectrum of (a)

Figure 420 Spectrum from the helical waveform in Figure 4.19 but drawn between £5.
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Figure 4.21 A helical waveform, its Cartesian components, and
complex sampling at 7/8 times its frequency [Source: Meikle,
H.D., Modern Radar Systems, Norwood, Massachusetts: Artech
House, 2001].
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When the frequency is raised to 7/8 of the sampling frequency in Figure 4.21, the
Q component is the negative of the Q component in Figure 4.19.

The negative Q component represents a negative phase sequence and the spec-
trum in Figure 4.22 has peaks at —1.25 and 8.75, representing the true frequency.

With this type of sampling the waggon wheels in black and white films do not
rotate backwards and the second phase doubles the number of samples allowing an
unambiguous frequency range up to the sampling frequency. The effects are shown
in Figure 4.23.

(a) Helical wave at 7/8 th of sampling frequency (b) Spectrum of (a)

Figure 422 Spectrum of a helical waveform at 7/8 of the sampling frequency.

Ambiguous frequency bands

3000 1 \ d
S |
3 L Input
2000 ‘ " frequency !
Input frequency 3 : :
1000 i | |
I i E
| | |
Negative y : . Positive
phase -3000 -2000 -1000 00 2000 3000 Hz  phase
sequence E 3 E ‘Aliased sequence
! ! ' frequencies Ambiguous frequency
| | ! -1000¢
: 7 input!
' < frequency ! -2000y
k ' ' -3000;

Ambiguous frequency bands

Figure 4.23 Aliasing with two phase sampling [Meikle, H.D.,
Modern Radar Systems, Norwood, Massachusetts: Artech House,
2001].



80

4 Continuous, Finite, and Discrete Fourier Transforms

The ambiguities caused by aliasing may be resolved by taking two or more looks
at the waveform with different sampling frequencies. Within the region up to the
smallest sampling frequency, the results from the different sampling frequencies
will be the same. In the region above, the spectrum at each sampling frequency will
be different. Algorithms such as the Chinese remainder theorem [5, p. 360] [6, p.
17.22][7, p. 242] may be used to estimate the centre frequency of the true spectrum.

4.4
Examples of Discrete Fourier Transforms

Discrete Fourier transforms, including fast Fourier transforms, are widely used and

a small number of examples are given in the sections that follow, namely:

¢ Finite impulse response filters
e Arrays of sensors
e Sampled synthesis of patterns

4.4.1
Finite Impulse Response Filters and Antennae

Time delays of 7, seconds

Weighting level

Tapering level

T—5—> Output

Figure 4.24 Block diagram of a vector finite impulse response (FIR) filter.

One of the most common occurrences of the fourier transform in signal process-

ing is in finite impulse response (FIR) filters, shown in Figure 4.24.

The dash and the label 2 on each connection indicate that the connections are

two- or polyphase, though single-phase versions also exist.

The incoming signals are delayed T4 seconds by each delay stage that may be delay
lines or digital storage elements. The signals in between are weighted (changed
either or both in amplitude and phase), tapered (see later in this section and Chapter

5), and summed for the output. Thus the output, neglecting tapering, is
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N-1

Output = Z s[n] W[n| (8)

n=0

where s[n] is the vector or complex signal delayed by nt4 seconds;
W[n] is the complex weighting factor for the nth stage.
The complex weighting factor, W[n], may be represented by

Wn] = [wn]| exp(jp[n] ) )

Rewriting Equation (8), we have

N-1

Output = 3™ sln] [wln]] exp(joln]) (10)

n=0

The signals in Figure 4.25 represent a sample of 11 pulses occurring one per sec-
ond passing through the filter in Figure 4.24 with the weighting and tapering con-
stants set to unity. The result is the discrete Fourier transform as in Equation (10)
that repeats itself each 1/t4 Hz, or the sampling frequency f;, as the outputs from
the delay lines are samples in time.

42 43 iy 2 3

(a) Train of 11 pulses (b) Vector Fourier transform of the 11 pulses (c) Absolute values of (b)

Figure 4.25 The Fourier transforms of a train of 11 pulses.

Figure 4.26 shows a sample of 11 pulses that are not a multiple of the sampling
frequency, for example echo signals with a Doppler frequency shift in radar or sonar,
the phase of each sample changes from sample to sample. If the vector sum of the
samples equally spaced in a circle is taken, the result is zero, the sum of the pulses
in Figure 4.26 is small. The spectra in Figure 4.26 show that the peak has moved
away from zero giving the difference of frequency with a multiple of the sampling
frequency.

When the signal s[n] and the weighting function, w{n] are complex conjugates in
phase, correlation or filtering takes place as shown in Figure 4.27. The output of the
filter is the sum of signals of the same phase and generally all phases are possible.
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1
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(a) Train of 11 pulses with (b) Vector Fourier transform of the 11 (c) Absolute values of (b)
phase shifts pulses

Figure 426 The Fourier transforms of a train of 11 pulses with phase shifts between pulses.

(a) 11 signal samples off (b) Weighting values (c) Signals for the sum for the output
frequency

Figure 4.27 The correlation of signals and a weighting function.

This type of filtering is used to select Doppler frequences in radar, sonar, and sim-
ilar signal processors either at a known single frequency or using a bank of adjoin-
ing filters as in a moving target detector processor.

Though the signal samples are at a single frequency, their limited extent in time
gives a sinx/x spectrum with a high first sidelobe. As with the Fourier transform, a
tapering function scaled over the list of s[n] between the values of —-1/2 to +1/2, pro-
vides an improvement, namely

N-1

Output = 3 <[l Tln] [w] exp(iln]) )

n=0

One such family of tapering functions, cosine to the power n, is shown in Figure
4.28 and other functions are discussed more fully in Chapter 5.

The best tapering function is a matter for compromise, normally the greater the
reduction of sidelobes has an accompanying widening of the main lobe. What hap-
pens with cosine to the power n tapering is shown in Figure 4.29.

Both the signal and the noise are shaped by the tapering function so that the
effective loss is the loss in signal-to-noise ratio, not the loss in signal alone as with
antennae. The tables in Chapter 5 show the loss as processing gain and loss in deci-
bels is always smaller than the coherent gain for antennae.
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cos® TTx
No tapering

Figure 429 The results of tapering using cosine to the power n functions.

Most fast signal processing still takes place using hardware and there are no two-
or polyphase semiconductor components. Commonly when the vector signal has
been detected, using synchronous detectors for each phase, the two separate phases
are processed in two separate channels as shown in Figure 4.30. Alternating voltage
signals only need either the I or the Q channel.

‘>‘ | channel processing }——

Absolute
INPUT Two-phase value
—m=— synchronous ——
detectors Y(12+Q?) OUTPUT

—»‘ Q channel processing }—»

Figure 430 Normal arrangement for vector signal processing with two phases.
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Other shapes of w[n] provide other types of filtering or correlation for code match-
ing, the sinc function for example may be used for high- and lowpass filtering as
well as bandpass and bandstop.

4.4.2
The z-transform

The outputs of the delay lines with equal delays in Figure 4.24 are of the form

Output _ ejZnﬁ 4 eerrf(t+Td) n ejan(t+2rd) i ejz:rf(t+3rd) 4
ejz;-[ﬁ (ejanrd i ej2nf2rd T e]'an}rd + ) (12)
ifz= ejznﬁd , then
Output = ¢ (1 bzt 42+ ) (13)

z-transforms are principally used as shorthand to simplify the use of exponential
functions into polynomials. They are described in texts such as [8] and further treat-
ment is outside the scope of this book.

443
Inverse Fourier Transforms, a Lowpass Filter

Finite impulse response filters work in real time and the weights in the frequency
selective filter described above are also calculated for real, never negative, time. The
time delay depends on the delay time, t4, and the number of taps that define how
close the discrete form approaches the finite form.

For a lowpass filter having the shape of characteristic in Figure 4.31(a), a weight-
ing function of the shape of a sinc function" is required. Since negative time is not
allowed [9], the frequency curve must be given a linear phase variation to shift the
sinc function into real time. The weights derived from the sinc function are samples
and the limited number of samples limits the shape of the filter.

A =3 seconds

(a) Lowpass filter characteristic (b) Filter characteristic in vector form (c) Envelope of weighting values

Figure 431 The vector frequency characteristic for a lowpass filter.

1) Sinc(x) = sin(x)/x. When x = 0, the sinc(0) = 1.



4.4 Examples of Discrete Fourier Transforms

If the time delay at the output of the filter is A seconds, the pitch of the spatial
spiral frequency characteristic is 2mfhty radian/Hz and is chosen so that n — A gives
a number of integer values about zero that is symmetric.

If the lowpass characteristic is from zero to the cutoff frequency f; , the negative phase
sequence components are necessary to create an alternating voltage from positive and
negative phase sequence components, then the inverse Fourier transform is

+fe
hip(n) = [ exp(2af(n—N)t,) df
—f
_j e (n ) exp(2af (=), (14

2nt(n—M)t,
sin(2xf. (n—M)1,)
n(n—ht,

Substituting f; for 1/t,; and multiplying both numerator and denominator by f;

hip(n) = sin (ZJ'EJ% (n—2») > p- (f_}\) (15)

The filter with N — 1 delays or uses N samples has the frequency response

*Nil n)exp| j J: n—
Hur(1) = 3 hur 0 p(ﬂnﬁ< x)) (16)

The constant A is chosen so that the central point n — A= 0, then for an odd num-
ber of points

Hip (f) =hyp(0)e +hyp(Ne
—j2nf (%—1) j2nf (?—1)
+ hip(1)e +hip (N —1e (17)
+ ..
+hyp <H> Pl
2
The exponential terms may be expressed, for a symmetrical response, as
N-1
NoT) . N-1 f
Hyp (f) = hyp ( - ) n znZZO:hLP(n)cos RT - n) anj (18)

_ I:zéhw(n)cos {(% ~n) ZEJJ; ]
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or for an unsymmetrical response

J;

As an example, if the cutoff frequency f; is f; /8 and there are 20 delays (N = 21
and A=10), then
_ sin(n m/4(n—10))
 nx(n—10)

Hip(f) = ;hw (n)sin {(% _ n) an (19)

hip(n) (20)

The weighting function in the example is shown in Table 4.4 and diagrammati-
cally in Figure 4.32.

Table 4.4 Weights for a lowpass filter, width f; /8

N° Weight N° Weight N° Weight
0 0.031831 7 0.075026 14 0.0

1 0.025009 8 0.159155 15 -0.045016
2 0.0 9 0.225079 16 -0.053052
3 -0.032154 10 0.25 17 -0.032154
4 -0.053052 11 0.225079 18 0.0

5 —0.045016 12 0.159155 19 0.025009
6 0.0 13 0.075026 20 0.031831

0.26 1 -

0.24

0.22 1 M M

0.2

0.18 1

0.16 1

0.14 1

0.12

0.1

0.08 1

0.06 1

0.04 1

"= 1 ny
002 ] 2 N N 6 8 10 12 14 N N 18 20
0.04 1
-0.06 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Weighting network number

Figure 432 Weights for the weighting networks for the lowpass filter in the example.

The frequency response of the filter is shown in Figure 4.33(a) in linear form
from zero to the sampling frequency. The response above half the the sampling fre-
quency shows the mirror effect up to the sampling frequency. Figure 14.33(b) shows
the traditional form in decibels up to half the sampling frequency.
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Frequency as a fraction of the sampling frequency
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(a) Lowpass characteristic - linear scale (b) Lowpass characteristic - decibel scale

Figure 433  Frequency characteristic of the lowpass filter in the example.

4.4.4
Inverse Fourier Transforms, a Highpass Filter

The centre frequency f; is zero for a lowpass filter and f;/2 for a highpass filter with
a cutoff frequency f; as illustrated in Figure 4.34 that shows the modulus of the filter
characteristic, its vector form, and the Fourier transform needed for the weighting
function.

A = 3 seconds

(a) Highpass filter characteristic  (b) Filter characteristic in vector form  (c) Envelope of weighting values

Figure 434 The modulus of a highpass filter characteristic, its
vector form, and the weighting function in time.

It can be shown [9] that the weighting function for the highpass filter is related to
that of the lowpass filter by

hyp(n) = hLP(n)cos(ans/Z (n—2») ‘cd)
= hypcos((n —A) m)

= hLP (*Uni)\ (21)

87



88

4 Continuous, Finite, and Discrete Fourier Transforms

where n—-A=0,+1,+2, +3, ..
The time weighting function for the highpass filter is that for the lowpass filter
(Table 4.4 and Figure 4.32) with alternating signs as shown in Figure 4.34.

4.4.5
Inverse Fourier Transforms, Bandpass and Bandstop Filters

The design formulae for the bandpass hpp and band stop hpg filters, band centre f,
and bandwidth 2 f; are

hgp (n) = 2cos <2nJJ;° n) hip(n) (22)

and for the bandstop filter
(23)

446
Arrays of Sensors, Linear Antennae

Arrays of sensors may be treated in a similar form to finite impulse response (FIR)
filters and a block diagram is shown as Figure 4.35. Sensor arrays are reciprocal
when they do not contain switches (three-dimensional stacked beam radar antennae
normally contain switches) so they may be used to receive or transmit signals. For

transmitting signals the summing network becomes a power divider and the direc-
tions of the signals are reversed.

Incoming or outgoing radiation
Sensor elements
Weighting level

Tapering level

Sum ¥

T—Z—> Output

Figure 4.35 The use of weighting with a linear sensor array.




4.4 Examples of Discrete Fourier Transforms

Instead of a time delay there is a defining distance, d, between the elements that
send or receive radiation of wavelength, A, both being measured in the same units.
For incident plane radiation when the wavefronts are parallel to the line of elements,
there is no phase difference in the signals received by the elements. Signals coming
from a source not at 90 degrees to the line of elements, coming in at an angle, 6,
have a phase difference of

Phase shift = 2%isin 0 (24)

Thus the angle off normal is mapped onto phase shift as the angle 6 is moved
from —gm/2 through zero to +m/2 (or -90 degrees through zero to +90 degrees) and
the value of sin® moves from -1 through zero to +1.

The weighting function level may be used to provide a progressive phase shift be-
tween elements to steer the beam off the normal to the surface. The tapering function
level is used to shape symmetrical beams, tapering functions are treated in Chapter 5.

4.4.7
Pattern Synthesis, the Woodward-Levinson Sampling Method

Radar antennae and filters do not always have symmetric characteristics and the
Woodward-Levinson method can be used to design them. An example with the ele-
vation angle coverage for an antenna for an air surveillance radar is shown in Figure
4.36. The antenna gain in part A is held small to reduce the echoes from the ground
and part B has maximum gain to maximise the range. Shaping is used in part C to
achieve an upper part of the characteristic that has a constant height.

Maximum
elevation
angle Maximum height ——_
\ Cone of c d
\ silence N
\ above the K

radar

Slant range, R B Maximum

Aircraft to be detected K
in this region g

Radar

Figure 436 Elevation angle coverage for an air surveillance radar.

The echo signal power from an aircraft is inversely proportional to the fourth
power of the range (1/R*). The influence of the antenna is during transmission and
reception so that antenna gain is proportional to the square of the maximum range.
Part C of the characteristic has a constant height, h, so that the range at an elevation
angle, 0, is cosecO requiring an antenna gain proportional to cosec’0, shown in Fig-
ure 4.37, plotted in decibels.
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Elevation angle degrees
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Figure 437 Required elevation pattern for constant height boundary.

The desired pattern is approximated by the peaks of a number of sinc curves
placed next to each other, that is the number of degrees of freedom, the number of
elements in an antenna or the number of taps of a finite impulse response filter, in
the example, 23 shown in Figure 4.38. The width of the sinc function is the recipro-
cal of the number of degrees of freedom and represents the pattern without shap-
ing.
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A

04 . 0.6
Sine of elevation angle
Figure 4.38 Elevation angle coverage expressed as sinc functions in sine space.
The sidelobes of the sinc function decrease at the rate of 6 dB/octave and those

from the sum of adjacent sinc functions in Figure 4.39 at 12 dB/octave giving the
very near approximation in Figure 4.40.
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Figure 4.39 The elevation coverage expressed as the sum of sinc functions.
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Figure 440 The desired and synthesized elevation patterns.

The approximated characteristic is shown in polar coordinates in Figure 4.40.

The inverse Fourier transform of each of the sinc functions is a simple helix over
the length of the antenna with a pitch depending on the position of the centre of the
sinc function in the characteristic. The individual inverse Fourier transforms from
each of the sinc functions and their sum are shown in vector form Figure 4.41.
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along
antenna

(a) Inverse Fourier transforms of the sample sinc functions (b) Sum of the functions in (a),
the illumination function

Figure 4.41 The individual inverse Fourier transforms and their
normalised sum, the illumination function.

Normalised length along the antenna
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//,, 2 N \‘
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-26 |
-28
lllumination level dB

Figure 4.42 The amplitude distribution along the aperture of the antenna.

The sum shows that the inverse Fourier transform curves rotate in unison near
the centre of Figure 4.41(a) and tend to cancel near the ends. The amplitude of the
illumination function is traditionally plotted in decibels in Figure 4.42.

The phase characteristic in Figure 4.41 shows that the centre of the beam is offset
from the normal to the antenna and the linear term may be reduced by mechani-
cally turning the antenna in elevation.
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4.5
Conversion of Analogue Signals to Digital Words

The first stage in digital processing is to convert the signals to digital form so that
there is as little distortion as possible. The number of binary bits chosen determines
the accuracy and dynamic range for the converter and the sampling interval deter-
mines its bandwidth.

4.5.1
Dynamic Range

The dynamic range of signals that can be converted depends on the number of char-
acters used in the word describing the number. The characters are normally binary
bits. As an example 8 bits can represent integers from 0 to 127. Negative values can
be obtained by offsetting the number representing zero, normally by letting the left
hand, or most significant bit (MSB) be used for the sign (normally 0 for positive and
1 for negative). There are two conventions for this, ones complement and twos com-
plement, and these are shown in Table 4.5 for numbers with three bits.

Table 4.5 Conventions for the representation of binary numbers

Binary representation  Integer value Ones complement Twos complement
with negative values  with negative values

011 3 3 3
010 2 2 2
001 1 1 1
000 0 +0 0
111 7 -0 -1
110 6 -1 -2
101 5 -2 -3
100 4 -3 —4
4.5.2

Dynamic Range in Vector Systems

Whereas the dynamic range for all signals in polar notation, (r, 8), is the same, the
space for vectors in Cartesian coordinates allows larger values in the corners of Fig-
ure 4.43 thus an extra bit may be necessary.

Figure 4.44 shows the staircase characteristic for the analogue to digital converter.
Obviously the smallest value that can be converted is determined by the size of the
step and the largest value by the number of steps. Errors occur when the steps are
not the same size or are, in extreme cases, missing. Signals do not have a real zero
value as they are contaminated with noise and their amplitude and quality is mea-
sured Dby their signal-to-noise ratio. There is always an error represented by the saw-
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tooth form at the bottom of Figure 4.44, where the amplitude is the step size. The
standard deviation is thus the step size divided by v/12.

Maximum signal allowed by a

Noise
level

Dynamic
range

two-dimensional (phase)
analogue-to-digital converter

Maximum echo signal with a
Doppler frequency shift

Figure 4.43 The dynamic range depends on the phase angle
with Cartesian vectors [Source: Meikle, H.D., Modern Radar
Systems, Norwood, Massachusetts: Artech House, 2001].

b

Output

Digital representation
of the input

Analogue

24 input
4 -2 2 4
Input
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i 41
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Error = digital output — input

Figure 4.44 The steps in the analogue to digital converter char-
acteristic and the additional noise [Source: Meikle, H.D., Modern
Radar Systems, Norwood, Massachusetts: Artech House, 2001].
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4.53
Quantisation Noise

The extra quantisation noise reduces the signal to noise ratio by

1
L =1+ — ; 25
quant Quantisation variance )

11

and this is shown in Figure 4.45.

0.4
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o 0.3\
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2 |
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B
1/12 2
Quantization 8 0.1
noise voltage H
S
0% 2 3 5 6 7 8

Number of least significant bits for noise

Figure 4.45 The loss of signal-to-noise ratio caused by quantis-
ing loss [Source: Meikle, H.D., Modern Radar Systems, Norwood,
Massachusetts: Artech House, 2001].

454
Conversion Errors

The principal errors for conversion for vector or two-phase systems are:

e The zero of each converter has an offset error;

¢ The gain in each channel is not the same for two-phase converters;

e There is a phase or timing error in the sampling so that the phases are not
exactly 90 degrees apart in a two-phase system.

There are a number of methods for finding the error and both parametric and
nonparametric methods are used. A constant alternating test signal is applied to
each converter that provides a large number of samples, N, the samples are added,
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and the mean is the offset voltage. In a two-phase converter this is carried out for
each phase [ and Q.

The first step is to remove the direct voltage offset or zero phase sequence compo-
nent shown in Figure 4.46.

Position of centreis 21, ZQ
N N

Figure 446 The estimation of the direct voltage error or zero phase sequence component.

Having found the direct voltage offset, it may be removed from the sums for each
quadrant, namely I' = I — I offset aNd Q/ = Q — O et
The corrected I’ and Q' values are grouped into sectors as shown in Figure 4.47.

Divide the measurements into sectors _ﬁ
)
Q Q
/ 2 1
/
2 i
1
/

\s )

Figure 4.47 The division of the I” and Q” values into sectors.

For two-phase converters differences in the gains in each channel distort a con-
stant rotating vector from a circle into an ellipse with an eccentricity &

=) - (21Q))?
82 _ ( | /|)2 ( |Q/|)2 (26)
)+ (=1el)
The phase error, ¢, is derived by the difference in the number of samples in the
diagonally opposite sectors in Figure 4.48(b).
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(a) Gain ratio, compare horizontal (/") and vertical (Q") samples (b) Orthogonality compare
diagonally opposite sectors

Figure 4.48 The division into sectors to estimate gain and orthogonality errors.

Nonparametric methods have taken hold as they use integers and need much less
calculating power and rely on the number and depend on the lengths of the arcs in
the four segments estimated from counts of the signs of the data. The test signal is
either a continuous rotating voltage or sampled Gaussian noise.

455
Image Frequency or Negative Phase Sequence Component Power

The image frequency or negative phase sequence power component is the sum of
the components caused by amplitude imbalance and lack of orthogonality between
the two phases, namely.

2 4 g2
Image frequency power ratio = e
4 o + ¢
=10 log,, (74 ) dB (27)

This component is responsible for extra detections in radar and sonar systems
and reduces the ability to reject clutter. In applications where the image frequency
signal is a problem, the parameters obtained by measuring € and ¢ may be used to
correct the signals before processing.
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5
Tapering Functions

This book uses the simple English expression tapering function, other names are:

e Apodization function — Greek?;
e Weighting function — from statistics;
e Windowing function — one sees only part of the outside through a window.

Common linear tapering functions are described in this chapter used to “clean
up” the Fourier transforms of limited samples. Though tapering functions may not
have a use in statistics, Table 5.1 has a statistics column for completeness (refer to
Chapter 6).

In electrical engineering, tapering functions are used, amongst others, for:

e The design of antenna patterns;
¢ The design of finite impulse response (FIR) filters;
e Spectral analysis.

The examples that follow were first published in book form in [1], extended in [2],
recalculated and plotted with greater accuracy by machine and extended in [3], and
here they are presented with less accuracy to fit the smaller page size. In contrast to
[1] and [3] that show circular and odd functions, only even linear functions are treat-
ed here.

Tapering functions shown here are purely real and do not benefit from the vector
representation used elsewhere in this book. Taylor and others derived a number of
general rules [4, p. 698] for tapering functions, namely

e Symmetric distributions give lower sidelobes;

¢ H(q) should be an even entire function of ¢’;

e A distribution with a pedestal produces a sidelobe envelope falling off as 1/4
and is more efficient;

e A distribution going linearly to zero produces a far sidelobe envelope falling
off as 1/g%

Tapering functions are used so widely, so that for general use common conven-
tions and normalisation must be used.

A New Twist to Fourier Transforms. Hamish D. Meikle
Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40441-4
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5.1
Conventions and Normalisation

The notation used is similar to that in [1, 3] and uses the —f convention. The neutral

notation used is
+00

H(g) = / h(p) exp(—j2npq) dp 1)

—00

and the inverse is

+00

h(p) = / H(q) exp(+j2mtpq) dq )

—00

The normalised variables are shown with primes so that

+00

H(q) = / h(p) exp(—j2mp q ) dp' (3)

and its inverse is

+00

! B !/ !
hy) = [ H) espltiznp'e) da “
Tapering functions arose from the wish to “clean up” the results of Fourier trans-
forms (for example von Hann or Hanning) and were applied to the design of the
highly directional antennae for radars, amongst others. Approximations to the taper-
ing functions used are:

o (1-4pH"illumination;

e cosine to the power n illumination;
e Cosine on a pedestal;

e Truncated Gaussian.

Planar arrays gave the opportunity to control the illumination from a surface
more accurately using numerically controlled machines to cut the radiating slots.
Examples are Hamming, Blackman, and Blackman-Harris tapering.

A major improvement in reducing sidelobe levels came with Dolph’s use of Che-
byshev polynomials for antenna design (see Section 5.2.7). Though a significant de-
velopment for discrete arrays, the reduced sidelobes are constant and extend, theore-
tically, to tee. Taylor combined the Dolph-Chebyshev pattern with a sinx/x pattern
for a continuous array illumination with still smaller distant sidelobes.

Radio transmitters work most efficiently at full power and as sideband control in
radar transmitter waveforms became important to reduce interference to other users
of the frequency band shaping the pulse became important. The simplest for pulse
transmitters, is trapezoidal shaping followed by cosine and sine squared pulse flanks
that have too many parameters to be able to be shown with a small number of curves.
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Table 5.1 Conventions and symbols

Antenna Waveform Spectrum Statistics
fconvention —M + convention
Width w, m 1,8 B, Hz o
w T T B B
idth limit e = —= . += -—= . +=
Width limits 5 + 5 + 5 5 5
p xm ts f Hz x
, ’ ’ X / ’ t ’ / f
= == -t == —f =L
p po=x = p - p=f=%
Functions g(x), g(x) h(t), h(t) H(f), H(f") p(x)
... transform to ...
q u,m™ f,Hz t s g
q q, =4 = wu qg=f" =ft q=1t=tB
q/ = u = = sind
Functions F(u), F() H(f), H(f) h (4, h(t) C®)

With tapering, the energy is partially used in order to achieve lower sidelobes, for
example, and results in lower gain. Other effects, such as wider main lobe are dis-
cussed in the next section.

5.2
Parameters used with Tapering Functions

The parameters are discussed in terms of antenna and signal processing theory,
principally used in communications and radar. They are given here as normalised
ratios and in decibels.

5.2.1
Parameters A and C

Parameters A and C represent the (loss of) gain when a tapering is used.
Parameter A is the effective length of an antenna after tapering (the vector sum or
integral of the voltages along an antenna) or the coherent voltage gain (vector sum) in

a finite impulse response (FIR) filter, as examples. In terms of normalised variables
1

i

A= / h(p) dp’ (5)
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Parameter C is the sum of the powers along the length of an antenna or at the
summing point of a finite impulse response filter, or incoherent power gain, namely

+1
2

c = / (n) )2 dy (6)

1

2
The equation also represents the sum of noise powers.

5.2.2
Efficiency Parameter 1

The efficiency of an antenna or the processing gain of a filter, ), is the ratio of the
square of the sum of the voltages divided by the sum of the powers.

A2
n = el (7)
5.2.3
Noise Width

When tapering is used in a filter, both the signal power and the noise power are
reduced by filtering to affect the signal-to-noise ratio by the factor

C
env s Bn = E (8)
5.2.4
Half-power Width
-0 8 6 4 2 4 6 8 10 2 -1 1 2
Beamwidths 2 q
3dB™/ 4
! : 5
First 6
sidelobe 4B 1':
o level dB 0
o 14
o8 First 16
Fall-off in sidelobe 18
o dBJoctave 20
or -22
0 dB/decade ﬂ (\ :z;
JA /\ [\ /\ ﬂ 28
-10’4}/_6\/4\/.V \f\/‘\'ﬁ\,ﬁ\{o /l\/{m A5 {\(\/\ 30 df
-0} 9
(a) sin TTq"/Tq” voltage characteristic (b) Plot of (a) in decibels (c) Centre part of (b).

Figure 5.1 Sidelobes and fall-off for a sinc(mtq”) function.

This is the traditional measure of an antenna beamwidth and is also used for filters
(Figure 5.1). The value is measured or found by solving the equation the voltage
pattern or characteristic at the square root of two points or the equation for the
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power characteristic at the 3 dB points. The width is from one side of the character-
istic to the same point on the other side.

5.2.5
Parameters D and G

The accuracy in estimating the angle of signals entering an antenna or the position
in time of a pulse depends on the standard deviation of the characteristic [5] or the
root mean square (rms) width. The parameters D and G are used in calculation.

+ o
1<dp > p o)
+l
2
/ \2 47
G = /(ph(p)) dp (10)
1
2

5.2.6
Root Mean Square (rms) Width in Terms of p’

The root mean square width of the original function is given by

D
S) Bims = /= 11
Y Trms I rms C ( )

5.2.7
Root Mean Square (rms) Width in Terms of q’

The root mean square width of the Fourier transform is

¢ = 2n\/§ (12)

5.2.8
First Sidelobe or Sideband Height

The first sidelobe or sideband height is the ratio of the height of the main lobe to the
first sidelobe. This factor is critical to discriminate between a large spectral compo-
nent and a smaller component near it.
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5.2.9
Fall-off

When a line is drawn along the peaks of the far sidelobes, its slope in terms of decibels per
octave or decade (in frequency) is a measure of the response to far sidelobes (Figure 5.1).

Fourier transform with no taper X fr or bins
Processing -4 -2 2 4
or minimum
Relative tapering
coherent loss Mean
gain tapering
. loss
Maximum
scalloping
loss
Fourier
_— transform
of tapering
function
AR fr or bins
-18
NMAS R % | I
0.1 1 -20
\Function
X )
0.2 1 without
tapering

Linear scales, single filter Decibel scale, neighboring filters

Figure 5.2 Gains and losses with adjacent filters using tapering
functions. [Source: Meikle, H.D., Modern Radar Systems, Artech
House, Norwood, Massachusetts, 2001.]

5.2.10
Scalloping and Worst Case Processing Losses

When a bank of filters are used for filtering and are spaced at the resolution width of the
filters, the signals falling between the centre frequencies of the filters are subject to an
additional loss. The shape of this characteristic is similar to the outside of a scallop shell
(used as a trademark by Shell), hence its name. When the scalloping loss at the mini-
mum point is added to the processing loss it becomes the worst case processing loss.

5.2.11
Spectral Leakage or Two-tone Characteristics

When a discrete transform is used not all frequency components fit the bin frequen-
cies (see also Section 4.1). Later in this chapter examples are shown for indication
when there are two signals with the major signal being moved between the 10th and
11th bin and a minor signal in the 16th bin in a filter having 100 bins. The examples
are for two amplitude ratios: 20 dB and 40 dB to be consistent with [2].
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Other names for tapering functions

Tapering functions are used in many branches of learning with a number of them
being called different names shown in Table 5.2.

Table 5.2 Other names used for tapering functions

Name Used here Section
Bartlet Triangular 5.2.1
Blackman 5.2.5
Blackman-Harris 5.2.5
Bochner Parabolic 5.2.2
Chebyshev Dolph-Chebyshev 5.2.7
Dirichlet Rectangular 5.2.1
Frejer Triangular 5.2.1
Hamming 5.2.3
von Hann Cos? 5.2.3
Hanning Cos® 5.2.3
Parzen Parabolic 5.2.2
Raised cosine Cosine on pedestal 5.2.4
Riesz Parabolic 5.2.2
Weierstrass Gaussian 5.2.6
5.4

Tapering Functions

5.4.1
Trapezoidal Tapering

Trapezoidal tapering is a simple form of tapering to reduce the sidelobes of an
antenna or to reduce the sidebands of a pulse transmitter. The parameter k is the
flat portion of the tapering over half the antenna length or the transmitter pulse
time. Thus k= 0 is for triangular tapering and k= 0.5 for uniform tapering.

+1

-0.5 +0.5

Figure 5.3 Trapezoidal function. [Source: Meikle, H.D., Modern
Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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The trapezoidal function is given by

/
+0.5 /
h(p) =2 when p <k
P)=G55-% P
2 2
1 when p” <k (13)
0.5—p/ /
whenp >k
05—k P
The closed form for the Fourier transform is
/ sin[m ¢ (0.5 + k)] sin[m g (0.5 — k)]
H(g) = ; 7 (14)
nq (0.5+k) wq (0.5—k)
The principal parameters are shown in Table 5.3.
Table 5.3 Table of values for trapezoidal tapering
Values of k
0.0 0.1 0.2 0.3 0.4 0.5
Triangular Uniform
A, effective length, coherent gain 0.50 0.60 0.70 0.80 0.90 1.00
A, dB —6.02 —4.44 -3.10 -1.94 —-0.92 0.00
C, eftective power, power gain 0.33 0.47 0.60 0.73 0.87 1.00
C,dB -4.77 -3.31 -2.22 -1.35 —0.62 0.00
D 4.00 5.00 6.67 10.00 20.00 0.00
G 0.01 0.01 0.02 0.03 0.05 0.08
Efficiency m, processing gain 0.75 0.77 0.82 0.87 0.93 1.00
Efficiency v, processing gain, dB -1.25 -1.13 -0.88 -0.59 -0.29 0.00
Noise beamwidth 1.33 1.30 1.22 1.15 1.07 1.00
Half-power beamwidth 1.28 1.25 1.17 1.08 0.98 0.89
RMS beamwidth 3.46 3.27 3.33 3.69 4.80 0.00
RMS aperture 0.99 1.05 1.18 1.36 1.58 1.81
First sidelobe, dB -26.52 -28.76 -1899 -15.13 -13.62 -13.26
Falloff dB/octave -12.00 -6.00
Scalloping loss 0.81 0.80 0.78 0.74 0.70 0.64
Scalloping loss, dB -1.82 -1.91 -2.15 -2.56 -3.15 -3.92
Worst case loss 0.70 0.71 0.71 0.70 0.67 0.64
Worst case loss, dB -3.07 -3.03 -3.03 -3.15 -3.44 -3.92
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Triangular

k=0 k=0.1 k=0.2 k=0.3 k=0.4
1

k=0.5
1 Uniform

0.9

0.8

0.7

0.6

h(p')

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5

p

Figure 5.4 The trapeziodal tapering functions for k= 0 for
triangular tapering to k = 0.5 for uniform tapering. [Source:
Meikle, H.D., Modern Radar Systems, Artech House, Norwood,
Massachusetts, 2001.]
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Figure 5.5 The Fourier transforms for trapezoidal tapering for
k = 0 for triangular tapering, k =0.1, 0.2, 0.3, 0.4, and k= 0.5 for
uniform tapering. [Source: Meikle, H.D., Modern Radar Systems,
Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.6 The Fourier transforms in decibels for trapezoidal
tapering for k = 0 for triangular tapering, k=0.1, 0.2, 0.3, 0.4,
and k = 0.5 for uniform tapering. [Source: Meikle, H.D., Modern
Radar Systems, Artech House, Norwood, Massachusetts, 2001.]

Uniform or
no tapering

Figure 5.7 Examples of the spectral leakage or two-tone charac-
teristics for a 100 sample filter as the major signal frequency is
varied from bin 10 to bin 11. The minor signal, 20 dB or 40 dB
smaller, is in bin 16. [Source: Meikle, H.D., Modern Radar Sys-
tems, Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.7 shows an example of the effects of sampling on spectral leakage or
two-tone characteristics when the discrete Fourier transform is used for 100 sam-
ples. The minor signal has a frequency corresponding to the 16th bin, and the major
signal has its frequency varied between the 10th and 11th bins.

The worst case occurs when the major signal has a frequency corresponding to
10.5 bins, in Figure 5.7. This case is illustrated in Figure 5.8.

Uniform or no tapering Triangular tapering

10 20 30 40 50 1 20 0 4 50

1
1
\l

N

===

60

Figure 5.8 Worst case masking of the minor signal with
uniform or no weighting and triangular weighting. [Source:
Meikle, H.D., Modern Radar Systems, Artech House, Norwood,
Massachusetts, 2001.]
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5.4.2
(1 - 4p"™)" Tapering

The tapering function is given by h (p') = (1 — 4p™*)" and examples are shown in

Table 5.4 and Figure 5.9.

Table 5.4 Table of values for (1 —4p"?)" tapering

Power of n
0 1 2 3 4 5
Uniform Parabolic
A, effective length, coherent gain 1.00 0.67 0.53 0.46 0.41 0.37
A, dB 0.00 -3.52 546 -6.80 -7.82 -8.65
C, effective power, incoherent power gain 1.00 0.53 0.41 0.34 0.30 0.27
C,dB 0.00 -2.73  -391 —4.67 524 -5.68
D (see Section 5.1) 0.00 5.33 4.88 5.32 5.82 6.31
G (see Section 5.1) 0.08 0.02 0.01 0.01 0.00 0.00
Efficiency m, processing gain 1.00 0.83 0.70 0.61 0.55 0.50
Efficiency m, processing gain, dB 0.00 -0.79 -1.55 -213  -259 -297
Noise beamwidth 1.00 1.20 1.43 1.63 1.81 1.98
Half-power beamwidth 0.89 1.16 1.37 1.56 1.73 1.89
RMS beamwidth 0.00 3.16 3.46 3.95 441 4.83
RMS aperture 1.81 1.19 0.95 0.81 0.72 0.66
First sidelobe dB -13.26  -21.29 -27.72  -33.35 -38.48 -43.27
Falloff dB/octave -6.00 -12.00 -18.00 -24.00 -30.00 -36.00
Scalloping loss 0.64 0.77 0.84 0.87 0.89 0.91
Scalloping loss dB -3.92 -222  -1.56 -1.21 -098 -0.83
Worst case loss 0.64 0.71 0.70 0.68 0.66 0.65
Worst case loss, dB -3.92 -3.02 -3.11 -3.33 357 -3.80

Closed forms for the Fourier transform are shown in Table 5.5.

Table 5.5 Closed forms for the Fourier transforms for the first three values of n for (1 — 4p™)"

tapering

Tapering function

Fourier transform

(-

sin(ntg)
nq

cos(mg g —sin(nq')
3

-2
n3q

Qsin(nq')nzq’ 2+3cos(nq/)nq'73sin(nq’)
_8 =

g
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Figure 5.9 (1 —4p’)" tapering functions for n from 0 to 5. [Source: Meikle, H.D., Modern Radar
Systems, Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.10  Fourier transforms for (1 — 4p’®)" tapering for n from 0 to 5. [Source: Meikle, H.D.,
Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.11

2001]

)

Figure 5.12 Examples of the spectral leakage or two-tone characteristics for a 100 sample

filter as the major signal frequency is varied from bin 10 to bin 11. The minor signal, 20 dB

or 40 dB smaller, is in bin 16. [Source: Meikle, H.D., Modern Radar Systems, Artech House,

Norwood, Massachusetts, 2001.]
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Figure 5.12 shows an example of the effects of sampling on spectral leakage, or
two-tone characteristics, when the discrete Fourier transform is used for 100 sam-
ples. The minor signal has a frequency corresponding to the 16th bin, and the major
signal has its frequency varied between the 10th and 11th bins.

1-4p"2 or parabolic tapering (1-4p2y?
0 0

10 20 0 40 50 10 2

1
1
yim\ ; i\

-7

Figure 5.13  Worst case masking of the minor signal with para-
bolic and (1 — 4p’%)? tapering. [Source: Meikle, H.D., Modern
Radar Systems, Artech House, Norwood, Massachusetts, 2001.]

543
Cosine to the Power n Tapering

The tapering function is cos"np’, and examples are shown in Figure 5.14 and Table 5.6.
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Figure 5.14 Cosine to the power n tapering functions forn =0, 1, 2, 3, 4, and 5. [Source: Meikle,
H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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Table 5.6 Table of values for cosine to the power n tapering

Power of n
0 1 2 3 4 5

Uniform Cosine Cosine?, Cosine®>  Cosine*  Cosine®

von Hann,

Hanning
A, effective length, coherent gain 1.00 0.64 0.50 0.42 0.38 0.3
A, dB 0.00 -3.92 —6.02 -7.44 -8.52 9.4
C, effective power, incoherent 1.00 0.50 0.38 0.31 0.27 0.2

power gain

C,dB 0.00 -3.01 —4.26 -5.05 -5.63 6.1
D (see Section 5.1) 0.00 4.93 4.93 5.55 6.17 6.7
G (see Section 5.1) 0.08 0.02 0.01 0.00 0.00 0.0
Efficiency v, processing gain 1.00 0.81 0.67 0.58 0.51 0.5
Efficiency v, processing gain, dB 0.00 -0.91 -1.76 -2.39 -2.89 -3.3
Noise beamwidth 1.00 1.23 1.50 1.73 1.94 2.1
Half-power beamwidth 0.89 1.19 1.44 1.66 1.85 2.0
RMS beamwidth 0.00 3.14 3.63 4.21 4.75 5.2
RMS aperture 1.81 1.14 0.89 0.75 0.67 0.6
First sidelobe, dB -13.26 —-23.00 -31.47 -39.30 —46.74 =539
Falloff dB/octave -6 -12 -18 24 -30 -36
Scalloping loss 0.64 0.79 0.85 0.88 0.91 0.9
Scalloping loss dB -3.92 -2.10 —-1.42 -1.08 -0.86 -0.7
Worst case loss 0.64 0.71 0.69 0.67 0.65 0.6
Worst case loss, dB -3.92 -3.01 -3.18 -3.47 -3.75 —4.0

Closed forms for the Fourier transform are given in Table 5.7.

Table 5.7 Fourier transforms for cosine to the power n tapering.

Tapering function Fourier transform
0 sin(q)
cos’ mp v
q
1 cos(q')
cos Tp q, 5
1- <2'i>
e
. /
cos J'Ep/ sm(/q) 1 -
T ()
1
/
cossnp/ : 9 cos(q ), ,
16('1) — 40 ‘1—) +9
T T



5.4 Tapering Functions | 115

Tapering function Fourier transform
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Figure 5.15  Fourier transforms of the cosine to the power n
tapering functions forn=0, 1, 2, 3, 4, and 5. [Source: Meikle,
H.D., Modern Radar Systems, Artech House, Norwood, Massa-
chusetts, 2001.]
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Figure 5.16  Fourier transform in decibels for cosine to the power n tapering forn=0, 1, 2, 3, 4,
and 5. [Source: Meikle, H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts,
2001]

Cosine Cosine squared

Figure 5.17 Examples of the spectral leakage or two-tone characteristics for a 100 sample filter
as the major signal frequency is varied from bin 10 to bin 11. The minor signal, 20 dB or 40 dB
smaller, is in bin 16. [Source: Meikle, H.D., Modern Radar Systems, Artech House, Norwood,
Massachusetts, 2001.]



Figure 5.17 shows an example of the effects of sampling on spectral leakage, or
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two-tone characteristics, when the discrete Fourier transform is used for 100 sam-

ples. The minor signal has a frequency corresponding to the 16th bin, and the major
signal has its frequency varied between the 10th and 11th bins.

The worst cases occur with the major signal at the bin frequency, and the worst
cases in Figure 5.16 are shown in Figure 5.18.

Cosine tapering

20 40

"

Cosine squared tapering

20

4

Figure5.18 Worst case masking of the minor signal with cosine and cosine squared tapering. [Source:

Meikle, H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]

5.4.4
Cosine on a Pedestal Tapering

The tapering function is given by the edge value k in the function k + (1 - k)cosm p’
and shown in Figure 5.19 with the calculated values in Table 5.8.

Table 5.8 Table of values for cosine on a pedestal tapering

Edge value 0.5 0.3 0.2 0.1 0.05 0.03
Edge value, dB -6.00 -10.50 -14.00 -20.00 -26.00 -30.50
A, effective length, coherent gain 0.82 0.75 0.71 0.67 0.65 0.65
A, dB -1.74 -2.55 -2.98 -3.44 -3.68 -3.77
C, effective power, incoherent power gain 0.69 0.60 0.56 0.53 0.51 0.51
C,dB -1.59 -2.20 -2.49 -2.76 -2.89 -2.94
D (see Section 5.1) 1.23 2.42 3.16 4.00 4.45 4.64
G (see Section 5.1) 0.04 0.03 0.02 0.02 0.02 0.02
Efficiency m, processing gain 0.97 0.92 0.89 0.86 0.83 0.82
Efficiency v, processing gain, dB -0.15 -035 049 -0.68 -0.79 -0.84
Noise beamwidth 1.04 1.08 1.12 1.17 1.20 1.21
Half-power beamwidth 0.98 1.04 1.08 1.13 1.16 1.17
RMS beamwidth 1.33 2.00 2.37 2.75 2.94 3.02
RMS aperture 1.51 1.36 1.28 1.21 1.17 1.16
First sidelobe, dB -17.65 -20.29 -21.65 -22.72 -2299 -23.03
Falloff dB/octave -10.00 -12.00
Scalloping loss 0.69 0.73 0.74 0.76 0.77 0.78
Scalloping loss, dB -317 -2.79 258 235 222 217
Worst case loss 0.68 0.70 0.70 0.71 0.71 0.71
Worst case loss, dB -3.32 -3.14 -3.07 -3.03 -3.01 -3.01

17
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Figure 5.19 Cosine on pedestal tapering with edge values k from 0.5 to 0.03. [Source: Meikle,
H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.21 Fourier transforms in decibels for cosine on pedes-
tal tapering with edge values k from 0.5 to 0.03. [Source:
Meikle, H.D., Modern Radar Systems, Artech House, Norwood,
Massachusetts, 2001.]
The closed form for the Fourier transform is
7 . / . / / / / /
/ 4kq” sin(mq ) — k sin(ng ) + 2kq cos(mq ) — 2q cos(mq )
H(q) = p (15)

wq (4q” = 1) (k> = =)
T T
Figure 5.22 shows an example of the effects of sampling on spectral leakage, or
two-tone characteristics, when the discrete Fourier transform is used for 100 sam-
ples. The minor signal has a frequency corresponding to the 16th bin, and the major
signal has its frequency varied between the 10th and 11th bins.
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Cosine on a pedestal with
an edge value of 0.5

S888885 .
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Figure 5.22 Examples of the spectral leakage or two-tone char-
acteristics for a 100 sample filter as the major signal frequency
is varied from bin 10 to bin 11. The minor signal, 20 dB or 40 dB
smaller, is in bin 16. [Source: Meikle, H.D., Modern Radar
Systems, Artech House, Norwood, Massachusetts, 2001.]

5.4.5
Hamming, Blackman, and Blackman-Harris Tapering

These functions look like truncated Gaussian functions on a pedestal and the Fouri-
er transforms all have closed forms with low sidelobes. The aperture functions are

given in Figure 5.23, Tables 5.9 and 5.11 [2] [6, Appendix B].

Table 5.9  The aperture functions for Hamming and Blackman tapering

Name Aperture function

Hamming h(p)) = 0.54 + 046 cos(2mp)

Exact Hamming h(p) = % + % cos(2mp)

Blackman h(p) = 042 + 05cos2np) + 088 cos(4mp)
Exact Blackman h(p/) = % +% cos(2mp) +% cos(4 m 7)




Table 5.10 The aperture functions for Blackman-Harris tapering
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Name Aperture function

Blackman-Harris h(p )
2 terms

Blackman-Harris  h(p)
3 terms, 67 dB
Blackman-Harris  h(p)
3 terms, 61 dB
Blackman-Harris  h(p )
4 terms, 92 dB
Blackman-Harris  h(p)
4 terms, 74 dB

0.5386 + 0.4614 cos(2 7t p)

= 0.4232+0.4976 cos(2 7w p') + 0.07922 cos(4 7 p')

0.4496 + 0.4936 cos(2 7 p') + 0.05677 cos(4 7 p')

0.3588 + 0.4883 cos(2 7 p') + 0.1413 cos(4 7 p') + 0.01168 cos(6 7t p)

= 0.4024 + 0.4980 cos(2 7 p') + 0.09831 cos(4 7 p') + 0.00122 cos(6 7 p')

Values calculated from the aperture functions in Tables 5.9 and 5.10 are shown in

Table 5.11.

Table 5.11 Table of values for Hamming, Blackman, and Blackman-Harris tapering

Hamming Blackman Blackman-Harris
2 term 3 terms 4 terms

Exact Exact 67dB 61dB 92dB 74dB
A, effective length, 054 054 042 043 054 042 045 036 040
coherent gain
A, dB -5.35 -530 -7.54 -7.40 -5.38 -7.47 -6.94 -890 -7.91
C, effective power gain, 040 040 030 0.31 040 0.31 0.33 0.26 0.29
incoherent gain
C,dB —4.01 -398 -5.16 -5.11 -4.02 -5.14 -4.87 -5.88 -5.36
D (see Section 5.1) 418 411 544 533 420 538 506 631 5.66
G (see Section 5.1) 0.01 001 000 000 001 000 001 0.00 0.00
Efficiency, n, processing 073 074 058 059 073 059 062 050 056
gain
Efficiency, m, processing -1.34 -1.31 -2.37 -229 -1.36 -2.33 -2.07 -3.02 -2.54
gain, dB
Noise beamwidth 136 135 173 169 137 171 161 200 1.80
Half-power beamwidth 130 129 164 161 131 1.62 153 190 171
RMS beamwidth 324 321 423 416 326 419 394 494 441
RMS aperture 096 097 075 076 096 0.75 0.80 0.64 0.71
First sidelobe dB —44.04 —46.01 -58.11 —69.41 —43.29 -70.83 -74.52 -92.01 —-66.42
Maximum sidelobe, dB —42.68 —41.69 -58.11 -68.24 —43.12 -70.83 —62.05 -92.01 —66.42
Falloff dB/octave -6.00 -6.00 -18.00 -6.00 —6.00 —6.00 —-6.00 -6.00 —-6.00
Scalloping loss 082 081 088 08 082 08 08 091 0.8
Scalloping loss dB -1.75 -1.78 -110 -115 -1.74 -1.13 -1.27 -0.83 -1.02
Worst case loss 070 070 067 067 070 0.67 0.68 0.64 0.66
Worst case loss, dB -3.10 -3.09 -3.47 -3.44 -310 -345 -334 -385 -3.56
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Figure 5.23 Hamming, exact Hamming, and Blackman-Harris tapering function with two terms.
[Source: Meikle, H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.24 Hamming, exact Hamming, and two term Blackman-Harris Fourier transforms.
The curves are too close to separate. [Source: Meikle, H.D., Modern Radar Systems, Artech House,
Norwood, Massachusetts, 2001.]
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Figure 5.25 Hamming, exact Hamming, and two term Black-
man-Harris Fourier transforms in decibels. [Source:

Meikle, H.D., Modern Radar Systems, Artech House, Norwood,
Massachusetts, 2001.]

The closed forms for the Fourier transforms are given in Table 5.12.

Table 5.12  Fourier transforms for the Hamming, exact Hamming, and two term Blackman-Harris
aperture functions

Aperture function Fourier transform
2 . /
Hamming H() = 72(0.0127311, 7(,).208594) sin(m q )
q (¢ -1
qu 25 ) ,
-2 (——+— ) sin(mq)
Exact Hamming H(q) = 23/ 92/2
mq (g 1)
2 . /
Two term Blackman-Harris H(q) = =2 (70'01227? (tg'og)sn) sin( )
q(q -1

Figure 5.26 shows an example of the effects of sampling on spectral leakage, or
two-tone characteristics, when the discrete Fourier transform is used for 100 sam-
ples. The minor signal has a frequency corresponding to the 16th bin, and the major
signal has its frequency varied between the 10th and 11th bins.
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Hamming tapering
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Figure 5.26 Examples of the spectral leakage, or two-tone characteristics, for a 100 sample filter
with Hamming tapering as the major signal frequency is varied from bin 10 to bin 11. The minor
signal, 20 dB or 40 dB smaller, is in bin 16. [Source: Meikle, H.D., Modern Radar Systems, Artech
House, Norwood, Massachusetts, 2001.]

5.4.5.1 Blackman and Exact Blackman

0.9

0.8

0.7

0.6

0.5

h(p’)

0.4

0.3

Exact
0.2 Blackman

0.1

0 0.1 0.2 0.3 0.4 0.5
P

Blackman

Figure 5.27 Blackman and exact Blackman tapering functions. [Source: Meikle, H.D.,
Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.28 Blackman and exact Blackman Fourier transforms. The curves are too close to sepa-
rate. [Source: Meikle, H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.29 Blackman and exact Blackman Fourier transforms in decibels. [Source: Meikle, H.D.,
Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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Blackman tapering

Worst case

Figure 5.30 Examples of the spectral leakage, or two-tone characteristics, for a 100 sample filter
with Blackman tapering as the major signal frequency is varied from bin 10 to bin 11. The minor
signal, 20 dB or 40 dB smaller, is in bin 16. [Source: Meikle, H.D., Modern Radar Systems, Artech
House, Norwood, Massachusetts, 2001.]

Exact Blackman tapering

N
S
&

Worst case

Figure 5.31 Examples of the spectral leakage, or two-tone characteristics, for a 100 sample filter
with exact Blackman tapering as the major signal frequency is varied from bin 10 to bin 11. The
minor signal, 20 dB or 40 dB smaller, is in bin 16. [Source: Meikle, H.D., Modern Radar Systems,
Artech House, Norwood, Massachusetts, 2001.]
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Figures 5.30 and 5.31 show an example of the effects of sampling on spectral leak-
age, or two-tone characteristics, when the discrete Fourier transform is used for 100
samples. The minor signal has a frequency corresponding to the 16th bin, and the
major signal has its frequency varied between the 10th and 11th bins.

Closed forms for the Fourier transforms are given in Table 5.12.

Table 5.13  Fourier transforms for Blackman and exact Blackman tapering

Name Fourier transform

2 . /
Blackman H() = -2 (0.0286/52 - 042/6274) sin(m q)
-4 @ -1

/

q (4

14 2
4q 130g 3969 . /
—2(—+———sin(nq)
1163 1163 4652
— 1)

Exact Blackman H(g) = 2 2
nqg (@ —4) (@

5.4.5.2 Blackman-Harris tapering

1 I~
0.9 \ﬁk
0.8
07 Blackman-Harris
0.6 three terms 67 dB
:E 0.5 three terms 61 dB
= four terms 74 dB
0.4
four terms 92 dB
0.3
0.2
0.1
0 EEm=S=========
0.1 0.2 0.3 0.4 0.5

p

Figure 5.32  Blackman-Harris tapering functions. [Source:
Meikle, H.D., Modern Radar Systems, Artech House, Norwood,
Massachusetts, 2001.]
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Figure 5.33  Blackman-Harris Fourier transforms. [Source: Meikle, H.D., Modern Radar Systems,
Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.34 Blackman-Harris Fourier transforms in decibels. [Source: Meikle, H.D., Modern Radar
Systems, Artech House, Norwood, Massachusetts, 2001.]

Figures 5.35 and 5.36 show an example of the effects of sampling on spectral leak-
age, or two-tone characteristics, when the discrete Fourier transform is used for 100
samples. The minor signal has a frequency corresponding to the 16th bin, and the
major signal has its frequency varied between the 10th and 11th bins.
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Three term Blackman-Harris tapering (61 dB)

=
cl
=

3

AR E =

Worst case

* Signal ratio 40 dB
Figure 5.35 Examples of the spectral leakage, or two-tone characteristics, for a 100 sample filter
with three term Blackman-Harris 61 dB sidelobe tapering as the major signal frequency is varied
from bin 10 to bin 11. The minor signal, 20 dB or 40 dB smaller, is in bin 16. [Source: Meikle, H.D.,

Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]

Four term Blackman-Harris tapering (92 dB)

Worst case

Figure 5.36 Examples of the spectral leakage, or two tone-characteristics, for a 100 sample filter
with four term Blackman-Harris 92 dB sidelobe tapering as the major signal frequency is varied
from bin 10 to bin 11. The minor signal, 20 dB or 40 dB smaller, is in bin 16. [Source: Meikle, H.D.,
Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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Closed forms for the Fourier transforms are shown in Table 5.13, more accurate
forms are available in [6, Appendix B].

Table 5.14  Fourier transforms of examples of Blackman-Harris functions

Function name

Fourier transform

Blackman-Harris
three terms 67 dB

Blackman-Harris
three terms 61 dB

Blackman-Harris
four terms 92 dB

Blackman-Harris
four terms 74 dB

H(q) = —2(—0.0007799¢"* +0.032654 —0.2694) sin(n q')

q (4" -4 -1)

H(q) = —2 (—0.002024¢"* +0.05255¢ —0.2862) sin(n q')

q (4" 4" -1)

H(q) = —2.(—0.0000095494"° +-0.0046364™* —0.19494 +2.0555) sin(m q')

q (4" -4 -1 -9

H(q) = —2(—0.0002355¢°+0.02172¢"* —0.42494 +2.3056) sin(n q)

R A )

5.4.6

Truncated Gaussian tapering

The tapering function is exp (-2 In(2) (n p')*) and examples are shown in Figure 5.37.

Table 5.15 Table of values for a number of truncated Gaussian tapering functions

Value of n
1 1.7 2.4 2.8 3.2
Edge illumination, dB -3.01 -8.70 -17.34 -23.60 -30.83
A, effective length, coherent gain 0.90 0.75 0.60 0.53 0.47
A, dB -0.96 -2.54 —4.46 -5.56 —6.62
C, effective power, incoherent power gain 0.81 0.60 0.44 0.38 0.33
C,dB -0.92 -2.23 -3.55 —4.20 —4.78
D (see Section 5.1) 0.43 1.85 3.38 4.08 4.71
G (see Section 5.1) 0.06 0.03 0.01 0.01 0.01
Efficiency n, processing gain 0.99 0.93 0.81 0.73 0.66
Efficiency 1, processing gain, dB -0.04 -0.30 -0.91 -1.36 -1.84
Noise beamwidth 1.01 1.07 1.23 1.37 1.53
Half-power beamwidth 0.93 1.02 1.18 1.30 1.45
RMS beamwidth 0.73 1.76 2.77 3.28 3.76
RMS aperture 1.65 1.38 1.09 0.95 0.83
First sidelobe, dB -15.43 -20.70 -31.86 -39.15 -
Falloff dB/octave -6.00 -6.00 -6.00 -6.00 -6.00
Scalloping loss 0.67 0.72 0.78 0.82 0.85
Scalloping loss, dB -3.51 -2.86 -2.13 -1.75 -1.43
Worst case loss 0.66 0.69 0.71 0.70 0.69

Worst case loss, dB

-3.56 -3.17 -3.04 -3.11 -3.26




5.4 Tapering Functions

2 In(2) = 1.386 is the scaling factor to make the tip of a Gaussian approximate to a
sinx/x function with the same half-power beamwidth.

The closed form for the Fourier transform is
2 n

_—q / 2 / 2
2 21tq + In(2)n j2ng — In(2)n
Ve TP {erf (J—> —erf <—)}
H(q/) _ 2 ny/21n(2) 2 n4/21n(2) (16)

ny/2 1n(2)

2
where erf(x) denotes the Gaussian error function, [¢ = dx.

x

1 1 e S e e S =
0.9 ==
0.8
0.7 =1
0.6
S 05
N -
0.4
n=1.7
0.3
0.2
n=2.4
0.1
N ~ n=2.8
T n=3.2
0 01 0.2 0.3 0.4 0.5

0
Figure 5.37 Truncated Gaussian tapering function. [Source:
Meikle, H.D., Modern Radar Systems, Artech House, Norwood,
Massachusetts, 2001.]
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Figure 5.38 Fourier transforms for truncated Gaussian tapering forn=1,1.7,2.4, 2.8, 3.2.

(b)H ap ‘(bH

3.2. [Source: Meikle, H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]

Figure 5.39  Fourier transforms in decibels for truncated Gaussian tapering forn=1,1.7, 2.4, 2.8,
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Figure 5.40 shows an example of the effects of sampling on spectral leakage, or
two-tone characteristics, when the discrete Fourier transform is used for 100 sam-
ples. The minor signal has a frequency corresponding to the 16th bin and the major
signal has its frequency varied between the 10th and 11th bins.

Truncated Gaussian tapering n=2.4 Truncated Gaussian tapering n=3.2

Figure 5.40 Examples of the spectral leakage, or two-tone characteristics for a 100 sample
filter as the major signal frequency is varied from bin 10 to bin 11. The minor signal, 20 dB
or 40 dB smaller, is in bin 16. [Source: Meikle, H.D., Modern Radar Systems, Artech House,
Norwood, Massachusetts, 2001.]

Truncated Gaussian tapering n=2.4 Truncated Gaussian tapering n=3.2

7

Figure 5.41 Worst case masking of the minor signal with two
cases of truncated Gaussian tapering. [Source: Meikle, H.D.,
Modern Radar Systems, Artech House, Norwood, Massachusetts,
2001]
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5.4.7
Dolph-Chebyshev Tapering with 10 Discrete Samples

A use of Chebyshev (Yegpmres) polynomials is to economise expressions for the
calculation of functions. The function is scaled to lie between 1 and the error has a
constant ripple within this region. Chebyshev polynomials of the first kind, order »n
are given by [6, p.537]

—1" cosh(n arccosh|x|) x<-1
Th(x) = cos(n arccos x) -1<x<1 (17)
cosh(n arccosh x) x>1

The first seven polynomials are plotted in Figure 5.42.
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|
3] |
357 |

Sidelobes are mapped  Main lobe is mapped
into this region into this region

Figure 5.42  Plots of the first seven Chebyshev polynomials of
the first kind. [Source: Meikle, H.D., Modern Radar Systems,
Artech House, Norwood, Massachusetts, 2001.]

Considering discrete antenna arrays with N elements, Dolph mapped the side-
lobes into the region 0 to 1 where the Chebyshev polynomial of order N-1 oscillates
between +1, and the main lobe beyond +1 where the polynomial increases almost
exponentially. Equating the peak of the main lobe to unity, the oscillating polyno-
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mial between 0 and 1 represents the sidelobe level with n — 1 peaks between 1. The
abscissa xg is found by solving for x in Equation (17) with the right-hand side equa-
ted to the voltage sidelobe level ratio, R, namely

arccosh R
= h —— 18
g = cosh E (18)
R is usually expressed as the sidelobe level, SLL, in decibels
SLL
R = 10% (19)

The characteristic, in the case of antennae, the voltage pattern, H(q') is given by

!/

H(q) = Ty_1(q coan,)

= cos((N — 1) arccos(g, cos nql)) (20)
where q/ = ¥ sin 0;
w is the width of the antenna;
M is the wavelength in the same units;
0 is the angle to the normal of the antenna.
The tapering values for each element are found from the inverse transform, one
version is [7] [3, Appendix B]
k-2 S+1
— 2N = K)!
WIK] N-—1 (K=2)(N—-K)la

B (1)
N-—K&sl (K=2=8)! (S+1)! (N-—K—S—1)!

2
_ arccosh(R) | .
where a = [tanh ﬁ} ;

WI[1] = WIK]

N is the number of samples or elements.

The tapering values for each element, or weights, are normalised to unity at the
centre in Figure 5.43.

The same applies to finite impulse response filters that use the sum of N tapered
signals.
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Figure 5.43 The points show the weights for Dolph-Chebyshev
tapering with 10 discrete samples. [Source: Meikle, H.D.,
Modern Radar Systems, Artech House, Norwood, Massachusetts,
2001
Table 5.16 Table of values for Chebyshev tapering with 10 elements
Sidelobe level, dB
200 250 300 350 400  45.0
A, effective length, coherent gain 0.79 0.70 0.65 0.60 0.57 0.55
A, dB -2.08 -3.05 -3.78 —4.37 —4.85 -5.25
C, effective power, incoherent power gain 0.64 0.55 0.49 0.46 0.43 0.41
C,dB -1.91 -2.61 -3.06 -3.39 -3.65 -3.87
D (see Section 5.1) - - - - - -
G (see Section 5.1) - - - - - -
Efficiency v, processing gain 0.96 0.90 0.85 0.80 0.76 0.73
Efficiency v, processing gain, dB -0.17 -043 -0.72 -098 -1.20 -1.39
Noise beamwidth 1.04 1.11 1.18 1.25 1.32 1.38
Half-power beamwidth 0.97 1.06 1.14 1.20 1.26 1.32
RMS beamwidth - - - - - -
RMS aperture - - - - - -
First sidelobe, dB 19.73 2491 29.97 34.99 40.00 45.00
Falloff dB/octave 0.00 0.00 0.00 0.00 0.00 0.00
Scalloping loss 0.69 0.74 0.77 0.79 0.81 0.82
Scalloping loss, dB -318 -2.67 -231 206 -18 -1.71
Worst case loss 0.68 0.70 0.71 0.71 0.70 0.70
Worst case loss, dB -335 -310 -3.03 -3.03 -3.06 -3.10
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Figure 5.44  Fourier transform for Dolph-Chebyshev tapering with discrete 10 elements.
[Source: Meikle, H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.45 Fourier transform decibels for Dolph-Chebyshev tapering with discrete 10 elements.
[Source: Meikle, H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
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Figure 5.46 shows an example of the effects of sampling on spectral leakage, or
two-tone characteristics, when the discrete Fourier transform is used for 100 sam-
ples. The minor signal has a frequency corresponding to the 16th bin, and the major
signal has its frequency varied between the 10th and 11th bins.

Chebyshev tapering
sidelobe level 50dB

97

4
20 dB signal

e ratio

40t

JANI| N[} T T

Worst case

Figure 5.46 Examples of the spectral leakage or two-tone char-
acteristics for a 100 sample filter as the major signal frequency
is varied from bin 10 to bin 11. The minor signal, 20 dB or 40 dB
smaller, is in bin 16. [Source: Meikle, H.D., Modern Radar Sys-
tems, Artech House, Norwood, Massachusetts, 2001.]

5.4.8
Taylor Tapering

Taylor extended the Dolph-Chebyshev tapering to continuous functions by model-
ling the near sidelobes, SLL dB, on the Chebyshev characteristic and the far side-
lobes on the sinc function (sinx/x) [6, p. 543] [4, p. 719]. Figure 5.47 shows a compar-
ison of sinc(mq’), Chebyshev, and Taylor characteristics.

Figure 5.47 shows that the Chebyshev sidelobes do not have the same number
and positions as the sinc(mx) function. So that the two types of characteristic ‘fit’,
Taylor changed the modelling expression to
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\ Chebyshev with
— — sidelobe level 30 dB

-40 dB

Taylor sidelobes a 1/q"}  Taylor sidelobes nearly equal | Taylor sidelobes a 1/
n n

Figure 5.47 A comparison between sinc 1tq’, Chebyshev, and Taylor patterns.

H(d) = cosh(m/Af —q/2> for ¢ < A main beam
or cos (m/q,2 - Atz) forq > A sidelobe (22)

where ¢ is the variable and, for antennae, § = ¥ sin0;
wis the antenna width;
M is the wavelength in the same units;
A, is a constant controlling the characteristic and is defined later.

The value of A, , as with the Chebyshev characteristic, has the value of H(q') when
q'= 0, namely

h(R
R = coshmA, or A = %S() (23)
where, as with Chebyshev tapering, the sidelobe voltage ratio, R, is
SIL
R = 10%° voltage ratio

(24)

The zeroes for the sinc mg'part of the characteristic occur at integer values of
q’and the last zero of the inner characteristic must occur at an integer value, or ¢’=n.
The smallest value of 7 is found from

_ 2 1

" minimum = 240 + E (25)
For the Taylor sidelobe characteristic with a sidelobe level of 30 dB in Figure 5.47,

R =+/10000, A; = 1.32, and Aminimum = 3.98 that forces # to at least 4. The value o,
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the dilation factor, is used to scale g’ so that when g'= n the zeroes of both character-
istics coincide. The zeroes occur at

/ 2
z(n) = to At2+<nf%) for1 <

<n<n
= +n forn < n< © (26)
where n is an integer.
At the points of the common zero z(n) = 1, so that
o, z @7)

- VAL + (1 - 05)

The tapering function is found by the inverse Fourier transform, one form is giv-
en by the Fourier series and illustrated in Figure 5.48 [4, p. 721].

il
hip) = 1 + ZZFn cos(2mnp) (28)
n=1
2
nng) ' 0
/. sin(m z(n
H(g) =T 25 (29)
JT/q n=1 l—q—
2
n
where
i1
_ [ -1’ o
F"_(ﬁ71+n)!(ﬁflfn)!y£[11 2 (30)
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Figure 5.48 Taylor tapering functions for sidelobe levels from 20 dB to 45 dB. [Source:
Meikle, H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts, 2001.]
Table 5.17 Table of values for examples of Taylor tapering
Sidelobe level, dB
20 25 30 35 40 45
n 2 3 4 5 6 8
A, effective length, coherent gain 0.76 0.69 0.64 0.60 0.57 0.54
A, dB -240 =319 -3.85 —4.43 -4.94 =540
C, effective power, incoherent power gain 0.60 0.53 0.48 0.45 0.42 0.39
C,dB -2.18 -2.74 316 -350 -3.79 —-4.05
D (see Section 5.1) - - - - - -
G (see Section 5.1) 0.03 0.02 0.02 0.01 0.01 0.01
Efficiency v, processing gain 0.95 0.90 0.85 0.81 0.77 0.73
Efficiency v, processing gain, dB -0.21 -045 -0.69 -093 -1.15 -1.36
Noise beamwidth 1.05 1.11 1.17 1.24 1.30 1.37
Half-power beamwidth 0.99 1.06 1.12 1.19 1.25 1.31
RMS beamwidth - - - - - -
RMS aperture 1.45 1.29 1.17 1.08 1.01 0.96
First sidelobe, dB -20.70 -25.46 -30.31 -35.22 -40.16 —45.13
Falloff dB/octave - - - - - -
Scalloping loss 0.70 0.74 0.76 0.78 0.80 0.82
Scalloping loss, dB -3.05 -2.66 -2.36 -2.11 -1.91 -1.74
Worst case loss 0.69 0.70 0.70 0.70 0.70 0.70
Worst case loss dB -326 -311 305 -3.04 -3.06 -3.10
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Figure 5.49 Fourier transforms for Taylor tapering functions with sidelobe levels between 20 dB
and 45 dB. [Source: Meikle, H.D., Modern Radar Systems, Artech House, Norwood, Massachusetts,

2001.]
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Figure 5.50 Fourier transforms in decibels for Taylor tapering functions with sidelobe levels
between 20 dB and 45 dB. [Source: Meikle, H.D., Modern Radar Systems, Artech House, Norwood,
Massachusetts, 2001.]
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Figure 5.51 shows an example of the effects of sampling on spectral leakage or
two-tone characteristics when the discrete Fourier transform is used for 100 sam-
ples. The minor signal has a frequency corresponding to the 16th bin, and the major
signal has its frequency varied between the 10th and 11th bins.

Taylor tapering

Sidelobe ratio

Sidelobe ratio

Voo
""'

Y e
g 277k
L
iy

A
il
7 ‘ ‘/’;i,,;,‘i‘—-_.

7 <
| 7
A"“ i

7
Figure 5.51 Examples of the spectral leakage, or two-tone char-
acteristics, for a 100 sample filter as the major signal frequency

Wiy,
301
is varied from bin 10 to bin 11. The minor signal, 20 dB or 40 dB

" signal ratio 40 dB
smaller, is in bin 16. [Source: Meikle, H.D., Modern Radar
Systems, Artech House, Norwood, Massachusetts, 2001.]

Sidelobe ratio 55 dB

Sidelobe ratio 45 dB

1 20 3 4 50 1 2 4
0

T

-7

Figure 5.52  Worst case masking of the minor signal with two
cases of Taylor tapering. [Source: Meikle, H.D., Modern Radar
Systems, Artech House, Norwood, Massachusetts, 2001.]
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6
Fourier Transforms in Statistics

The primary use of Fourier transforms in statistics is to find what happens to the
sums of samples taken from different probability distributions. Examples are the
probability distribution of signal plus noise in communications and the total waiting
time for a number of queues in queueing theory. Fourier transforms, being integrals
of complex functions, are difficult to visualise and statisticians have tried to avoid
them, there being no physical example of the spatial spiral functions involved. This
chapter describes the concepts of probability distribution functions, the moments of
probability distribution functions, moment generating functions, and the relation-
ships leading to Fourier transforms.

Statisticians use the +omega convention for Fourier transforms as mentioned in
Section 3.2. In this chapter the symbol i is used for \/—1 to indicate that the +omega con-
vention is used.

6.1
Basic Statistics

When, for example, the lengths of parts after a manufacturing process are measured
all will have a slightly different length. Quality may be controlled by making a cross
corresponding to the length found on a chart shown in Figure 6.1. If the part is
supposed to be 10 cm long and the abscissa is in tenths of a centimetre, it can be
seen that the greatest number of the crosses occur at 10.2 cm. Obviously there is a
systematic error occurring and the other problem is the accuracy of the cutting pro-
cess that is given by the width of the heap. Statisticians have developed methods of
measuring the positions and shapes of these heaps that are the basic definitions in
statistics.

The first step is to find the average error of the 127 parts measured in Figure 6.1.
At school we learn to add all the lengths, x; together and divide by the number of
lengths, N, or mathematically

Zx

=Tk (1)

Average, m =
verage, m N

A New Twist to Fourier Transforms. Hamish D. Meikle
Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40441-4
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POPULATION
Mean, uy

Standard Q\
deviation, o SAMPLE

Mean, m

Standard

deviation, s

10

g Crosses showing the
7] number of times each
2 8 | X X measurement occurred
G
u—
6 X
[9]
'o .
€ Curve representing the
3 4 theoretical probability
z distribution
2
1 To ) '
10.1 10.2 10. 10.4 10. X
3 5
<::| Many independent
measurements of length
|
10.0
cm

Figure 6.1 The results of collecting the measurements of
lengths after a manufacturing process [After: Meikle, H.D.,
Modern Radar Systems, Norwood, Massachusetts: Artech House,
2001]

In Figure 6.1 the sum for each column of crosses may be found by multiplying
the number of crosses in the kth column, y; (representing the area of the column)
by the length x;, represented by the column, say y; x;. The average becomes

n
> N
A =1 2
verage, m N (2)

where n is the number of columns.
The total number of points comprising the area under the histogram is

N=Y"y, (3)
k=1

So that the average may be expressed as
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n
DA
Average, m; ==L (4)
2 %
k=1
If the column widths of the histogram approach dx that approaches zero, the his-
togram becomes a smooth curve and the average becomes

_ [xydx

Population average, u; = Tydx (5)
where the integration takes place over all valid values of x.

For those who are familiar with mechanics, the expression above will be recog-
nised as that for the centre of gravity or first moment of area.

The cumulative diagram, for example Figure 6.2, is often used to estimate the
ranges of the measured parts in the sample. The first quarter is called the first quar-
tile, the half-way point is named the median, the 80% point is the 80th percentile,
and so on.

A histogram is often called the distribution of the frequencies of occurrences of
the individual measurement values, or frequency distribution. When the y scale is

changed so that >_y, = lor [y dx = 1, then the y scale represents the probabil-

k=1
ity of that measurement occurring and the curve becomes the probability distribu-
tion. Its mathematical representation its the probability distribution function (often
abbreviated to p.d.f).

Curve representing the
theoretical cumulative
distribution function

4 P
80% of sample
c i1 Crosses showing the
_% number of times the
) abcissa value has
8_ 50% of sample exceeded the
o) measurement
=
o 1
1/4 of sample
—T |
ir 4r ir Abscissa
First quartile  Median 80th percentile

Figure 6.2 The cumulative plot of Figure 6.1 showing a quartile,
the median, and a percentile [After: Meikle, H.D., Modern Radar
Systems, Norwood, Massachusetts: Artech House, 2001].
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Thus the average of a small number of samples is an estimate of the average of
the population. In the rest of the text Roman letters are used for sample estimates
and Greek letters for the population parameters.

The estimate of the width of the pile is more difficult as the sum of the differ-
ences of the measurements from the mean is zero. The positive and negative signs
may be eliminated by taking the squares of these differences, namely

: 2 ‘ 2
Z (xkfm) Yk Z (Xk 7141) Yk
Variance, s = &1 =kl (6)
N n
2N
k=1

The positive square root of the variance is called the standard deviation in the lit-
erature in English. In other languages the variance is sometimes mentioned as +s.

02
04+ o
u |
037 Area = [ p(x)dx
X
021
o1+t p(x)
/ p(x)dx
: Ty 1 2 3 4 5

x

Figure 6.3 The first two moments of a Gaussian distribution
[Source: Meikle, H.D., Modern Radar Systems, Norwood, Massa-
chusetts: Artech House, 2001]

Expanding Equation (6)

F =L (-2 )

1 22

= Nzxk Yo —m
The expression shows that the sum of the squares of the differences is at a mini-
mum when taken from the mean. As with the average, this is analogous to the

moment of inertia and the second moment of area in mechanics. The common
expression to calculate the variance from sample data is

(7)



6.1 Basic Statistics

(®)

The calculated mean has an error when compared to the population mean (see
Figure 6.1) and the N-1 in the denominator corrects (increases) the value of the var-
iance to reflect this error.

The variance and standard deviation of the sample mean, s,,, is given by [1, p. 146]

2

ﬁ:%mszﬁ 9)
Chebyshev’s inequality [1, p. 148] [2, p. 226] [4, p. 32] gives an outside limit for the
estimates of the mean, regardless of the probability distribution

Probability that (|m; —p,| < ho) > 1 _hiz (10)

where h>0 and preferably h>1.
For example, the probability that m; will be within three standard deviations of
the true mean y, is better than 88.89%.

6.1.1
Higher Moments

In their quest to find numbers as measurements of the shapes of statistical heaps

(or distributions), statisticians use the higher moments. The rth moment about the
mean, my, is given by

m, =

Z|=

N
> g —my) (11)
k=1

Table 6.1 Measures of skewness

Name Equation Reference

. o

Fisher Y, = 3 [3, p. 650]
o
Uy 2 2

Pearson B, = 3| =7 [3, p- 1652]
o

mean— mode
Pearson mode _— 4,p.15
standard deviation (4. p- 15]
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Statisticians use the third moment as a measure of the skewness of a probability
distribution. Skewness is relatively rarely used and a number of statisticians have
given their names to the measures, some of which are shown in Table 6.1. Luckily
the notation is relatively standard.

The spikiness of the heap is called the kurtosis. Pearson [3 p. 1009][5, p. 46] gives
kurtosis as

H, _u
B, =g ="u (14)
"
Fisher [3, p. 1009] gives an excess kurtosis as y, = f
word excess is omitted.
Commonly only the first four moments of a distribution are used to measure the

Q

, — 3, but sometimes the

position, width, and shape of a distribution and the remaining moments are not
used.

6.1.2
Moment Generating Functions

The moment generating function (often abbreviated to m.g.f) may be considered to
be an expression containing all the moments of a probability distribution function,
p(x). The moment generating function about the origin is a function of t [4, p. 86]

M(t) = /p(x) ¢ dx (16)

where the integration takes place over all valid values of x.
If the exponential function is expanded as a Maclaurin series

7,2 7,3
uzt +M3t

/
Mo(t):1+Mlt+ o T

(17)
where p,/r = [« p(x) dx is the rth moment about the origin and the integration
takes place over all valid values of x.

The moment generating function about a point a is given by

M) = [ p(x) ¢ d
'/p x)e x s

= e "My(1)
Nevertheless the moment generating function does not define a probability distri-

bution function uniquely as does the Fourier transform, conventionally called the
characteristic function in statistics, C() given by
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+o0o
C® = [ pl) explriy) de (19)

where x is the variable for the probability distribution function;
p(%) is the probability distribution function;
€ is the variable in the characteristic function;
C(&) is the characteristic function;
i is v/—1 to be compatible with statistics texts.
Where the distribution only exists between two values of x then the limits of inte-
gration are set to these values.
The inverse Fourier transform, also called the anticharacteristic function in statis-
tics, is given by (omega convention)

P =k [ O exp(-izv) (20

The range of € in characteristic functions extends from minus to plus infinity.

The relationships between the moments and the derivatives of the Fourier trans-
form using the f convention was discussed in Section 3.4.5. Repeating Equation (85)
of Chapter 3 and differentiating Equation (19) with respect to §

cio-4 / p(x) exp(+ixE) dx

(21)
= i/ x p(x) exp(+ixE) dx
where the integration takes place over all valid values of x.
Setting £= 0 the derivative becomes
c'(0) = i/x p(x) dx (22)
and the first moment about the origin is
c(o
i =<9 (23)

i
Notice that when the +omega convention is used there is no power of 27 in the
divisor (see Section 3.4.5) and the moment is given directly. Extending to the rth
moment
rC(0)

w, = i (24)

Taking an example with a Gaussian or normal probability density function with a
mean of 2 and a standard deviation of unity in Figure 6.4(a),

p(x) =\/% exp ( (x ;2) > (25)
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its Fourier transform using the omega convention is shown in Figure 6.4(b).

2
C(8) =exp 25— %

c0) =1

where C(0) is the area under the probability distribution function curve.

(a) Gaussian or normal distribution (b) Fourier transform of the Gaussian
Mean = 2 distribution in (a)
Standard deviation = 1

Figure 6.4 The Gaussian or normal distribution and its characteristic function used in the example.

(a) First differential (c) Third differential

C'0)=43

Figure 6.5 The first four derivatives of the characteristic function.
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The first derivative is

(&)= (28 exp (iza - %)

/

c'(0)=2i

(27)

The first differential in the € = 0 plane represents the number of turns per unit
that locates the mean. Vector multiplication rules give the turns per unit of the prod-
uct of two characteristic functions as the sum of the turns per unit of the two factors.
Taking anti—characteristic functions the mean of the combined probability distribu-
tion function is the sum of the means of the individual probability distribution func-
tions.

Similarly, the higher derivatives represent accelerations of the numbers of turns
per unit. These also add to give the sums of higher moments as shown in the exam-
ple at the end of the chapter.

The expressions for the higher derivatives are too large for these pages. Summar-
ising

1 !

C(O):—S m2:5
c"(0)=—14i  mj =14 (28)
cto) =43 my = 43

The moments about the mean, skew, and kurtosis may be calculated from Table
3.2

1\2

!
w, =u, — ()
=5-2"=1
/ ! 1.3
Wy = U3 — 3“2““1 + (uﬂ) (29)
=14-3x5%x2+2x8=0
/ /A ! /\2 /I \4
W, = W, — 4l + 6, (ug)” — 3(uy)
=43 —4x14x24+6%x5%x4—-3x16=3
The skew and kurtosis are
SkEW:LZ:%—O
(l:f) (30)
Kurtosis = 42 :%
(1)

The values obtained in Equation (29) are those to be expected from a Gaussian or
normal distribution.
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6.2

Properties of Characteristic Functions

Section 3.4 describes the properties of Fourier transforms using the f convention
and this section describes them for characteristic functions, Fourier transforms
using the omega convention.

6.2.1

Linearity — Addition, Subtraction, and Scaling

Linearity does not change with the convention, namely

6.2.2

Addition

P(x) + q(x) has the characteristic function C(E) + D(E)
Multiplication by a constant

a p(x) has the characteristic function aC(&)

Scaling £

1
p(a x) has the characteristic function ﬂ C (—)
a a

Multiplication

Multiplication, as in Section 3.4, is of three types

Multiplication of the characteristic function with a helix to shift the mean.
p(x = m) has the characteristic function C(§) exp(+ i & m)

The converse of multiplying the probability distribution function by a helix
does not occur as probability distribution functions are purely real.
Multiplication of the characteristic functions — convolution

Convolution is the most common use of the Fourier transform, or character-
istic function, in statistics. Convolution is used to find the probability distri-
bution functions of the sums of random processes and an example is given
at the end of this chapter.

After multiplication the inverse transform can be found to calculate the
mean, standard deviation, and the percentiles.

Multiplication with a complex conjugate — correlation

Figure 3.12 shows the correlation of two Gaussian distributions. The remain-
ing curve is displaced by the lag, or the difference in means. Normally the
means of the two distributions are known and it is much easier to subtract
them directly.

Table 6.2 gives a summary of characteristic function properties [4, p. 24 ]



6.3 Characteristic Functions of Some Continuous Distributions

Table 6.2 Summary of properties of characteristic functions

Property Probability function ~ Characteristic function
domain, p(x) domain, C(E)

Linearity ap(x) +bqx) a C(€) + D)

Scaling p(ax) |}T‘ C (%)

Sign change p(x) C(-§)

Complex conjugation P*(*) C*(-§)

Shift of mean p(xtm) exp(* mE) C(§)

Differentiation in probability function domain % p(x) iEC(E)

Differentiation in characteristic function domain i x p(x) dii C(§)

Convolution in probability function domain p(x) * q(x) C(E)D(E)

Convolution in characteristic function domain P(*) q(%) C(E) * D(§)

6.3
Characteristic Functions of Some Continuous Distributions

Unlike spectra and antenna patterns, characteristic functions look very similar and
are not useful for statistical estimations: their only use is a stepping stone in convo-
lution. The distributions are treated, where possible in families.

6.3.1
Uniform Distribution

The uniform distribution is the chance that particular numbers are drawn from a
drum containing one ball for each number, as in lotteries [2, p. 220]. Examples of
the distribution are shown in Figure 6.6 and are given by
(x) = 1 wherea < x < b
P b—a
0

elsewhere

The characteristic function, an example is shown in Figure 6.7, is

. b—a
exp(ibE) — exp(igE) 2SI —— € .a+b
e = e oo(77Y) .

CE =
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X

Figure 6.6 Three examples of the uniform probability distribution function.

08

08

0.4

0.2

o 02 04 06 08 12 14 x186 18 22 24 26 28 3

(a) Probability distribution function (b) Characteristic function
Uniform distribution a=1, b=2

Figure 6.7 A uniform probability distribution function and its characteristic function.

The moment generating function is

th  ta
e —e

M(t) = Hh—a) (33)

The moments may be obtained either directly or from the characteristic function.
The central moments, about the mean, are

Mean = m; = aTH)
2
Variance = m, = (b=2) (34)
. 12
Standard deviation = s = -2
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The skew and kurtosis are

Skew

v o (=]

(35)

Kurtosis = = 1.80

Note that the excess kurtosis is 1.8 — 3 = -1.2.

6.3.2
Gaussian or Normal Distribution Family

The Gaussian distribution is so common that it is called the normal distribution in
many English texts [example 2, p. 220] and examples are illustrated in Figure 6.8.
When the mean is p and the standard deviation is o, it is given by

2
p(x) = ! exp( x2 > > where 6 > 0 (30)
o

oV 2T

04

Mean 0
Standard deviation 1

Mean 2
Standard deviation 1

Mean 0

Standard deviation 2 014

+4 2 U 2 4
X

Figure 6.8 Examples of Gaussian or normal probability distribution functions.

The characteristic function, see Figure 6.9, is

2 2
. o
ce) = ew (m& -7 ) @)
The moment generating function is
o
M(t) = exp (tu + T) (38)

The moments may be obtained either directly or from the characteristic function.
The first two central moments, u and o define the distribution. The skew is zero and
the kurtosis is 3.
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04
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(a) Gaussian or normal distribution =1, o=1 (b) Characteristic function of (a)

Figure 6.9 An example of a Gaussian or normal probability
distribution function and its characteristic function.

Related distributions are:

e Log-normal [5, p. 99], Distribution of the product of Gaussian random vari-
ables
¢ Rayleigh [5, p. 100] and Rice distributions described in the next paragraphs.

6.3.2.1 Rayleigh Distribution

If two Gaussian distributions are taken in two orthogonal dimensions, their product
is the joint probability and looks like the heap shown in Figure 6.10. The mathema-
tical expression is

1 1 /x\2 1 /y\2
p(x,y) = Py eXP( 2(0) >eXP< 2(0) >
1 x2+Y2 (39)
~ 2n0° P 20°

where x is the variable along the x axis;
y is the variable along the y axis;
o is the standard deviation of both distributions

The Rayleigh distribution is the probability distribution taken along a radius in
Figure 6.10, that is in polar coordinates. Changing to polar coordinates, r* = x* + y?,
and integrating the elements over a circle of radius r, we have

21

pRayleigh(r) = /T’p(}’) 0.do

2
r r

= 7 exp (‘ 2) (40)
o 20

(=]
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. Rayleigh
Normal or Gaussian yleig
distribution in two distribution
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0.34
0.2+
<<
<25 >

SISISIS SST> T
" — ST

S SSISIS2S2S

= SIS

><2=7] SSISISISISS>S

- =225 e
=527 P e e
SIS > TS
>SS 7> SSISISIS2S 1
SSSS2STS SISTSISS>
2SS SIS
-2 525 IS5 5
S >
J

Figure 6.10 The shape of the joint probability distribution of
two orthogonal Gaussian distributions. [Source: Meikle, H.D.,
Modern Radar Systems, Norwood, Massachusetts: Artech House,
2001]

Maple calculates the characteristic function as

=1+ oy Fe( ) (14 wr(2) )

where § is the variable

iis v—1.
erf(x) = \/Lﬁ/exp(—tz) dt
0
An example is shown in Figure 6.11.

08
0.5
04
03

02

01

o 1 F] 3 4
(a) Rayleigh distribution, o= 1 (b) Characteristic function of (a)

Figure 6.11  An example of the Rayleigh probability density function and its characteristic function.
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The moments of the Rayleigh distribution may be obtained from the characteris-

tic function or directly. If o is the standard deviation of the component Gaussian dis-
tributions then

pdf units/sigma - cdf proportion

T

W=4/30°

. 2 .
variance = 20~ about the origin

W, = (2 —g) o° about the mean

\/g 42)

skewness =

N a
w Qw|'—‘

N /—\ oo | W

kurtosis =

Some of these are shown in Figure 6.12 that has an abscissa in terms of o.

Cumulative
distribution
function
. Mean (cdf)
Standard deviation 1.253 ¢
0.655 0 |
I
!
Mode |
1.00 I
——————————— i
(I
[
1 L
|
P!
[
i Probability
| distribution
1 | function
Medi Il r.m.s. value d
Yl Tt N\
|
|

Multiples of sigma

Figure 6.12 The Rayleigh distribution [Source: Meikle, H.D.,

M

odern Radar Systems, Norwood, Massachusetts: Artech House,

2001].
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The Rayleigh probability distribution function is a special form of the Weibull dis-

tribution with 1= 1 and o is scaled by v/2
The cumulative distribution is

2
P(r) = 1 — exp<fr—2) forr> 0
20

=0 elsewhere

Many phenomena follow the Rayleigh distribution and for some the distribution
is required in terms of power ratio or X = r*/20%. Substituting we have

p(r) dr = exp(—X) d(X) (44)

remembering that dr/dX = r/o® This is a negative exponential distribution or a
gamma distribution with a shape factor, 1, of unity (see Section 6.3.4).

6.3.2.2 Rice Distribution

The Rice distribution is a Rayleigh distribution offset from the origin by the
amounts W, and u, as shown in Figure 6.13.

%
y

g: 12 [g ‘\\

g TN

2 N
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RIS

"
&
\

§
S
5
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&

Figure 6.13 The derivation of the Rician distribution.
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The distribution is thus the joint probability of two orthogonal Gaussian distribu-
tions, namely

I NN A 9 TAT RN
P ¥) = o eXP( 2( 5 ))m( 2( 5 )
45
1 < x2+yz—2(xux+wy)+ui+u§> )
= 7 €Xp| — )
2mo 20

Converting to polar coordinates centred at the origin we replace x with r cos 6, y
with r sin 0, u*+ p,” with S* and we have

1 r —2r(uxc056+uysin9)+52
p(r) = S5—— exp|( - 2
2nto 20
1 r’+8 2r .
= 7 exp| ———— | exp|— (n,cosO + u sind) (46)
2710 20 o Y

The expression |, cos 0+ |, sin O may be rewritten as ‘/ui + ui cos(B0+ a) or
S cos(0 + o) with o = arctan (u, /i)

1 T rScos(0+a
p(r) = Pyl exp ( 2 ) €xp (7(2 )> (47)
o 20 o

The Rician distribution is given by the probability taken over a whole circle of
radius r, it is immaterial where the circle starts and finishes (o), namely [6, Eq. 3.10-
11]

21
PRice () _/ rp(r) 6 d6
0 2n
2, @ S
=1 > exp<—r +2 ) / exp(r—zcos(e—l—a))de (48)
2no 20 o

0
e TS (S
T P 20 g

using the Bessel function [7, Eq. 9.6.16, p. 376] I, (z) =

©— 1

exp(tzcosB) do.

alm

Examples of the Rice distribution are shown in Figure 6.14, note that when S =0
then this is the Rayleigh distribution.

More commonly the Rice distribution is used in electrical engineering in terms
of electrical power, X replaces r*/20%, R replaces S?/20%, and the Jacobean is r/o”.
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S = 0 (Rayleigh)
0.6 1

051
S=2 S=4 s=5
04
03

0.2 4

0.1+

(U 1 2 3 4 5 6 7 8

Figure 6.14 Examples of the Rice distribution with 6 =1.

p(X) = exp(—(X+R)) I,(V4XR) (49)
It has the characteristic function, an example is shown in Figure 6.15.
)
1 eXp __E
C = —\ "/ 50
® g (50

<
Figure 6.15 An example of the characteristic function of a Rice distribution in terms of power (X=3).

The first two moments (either directly or using the characteristic function) are

First moment = 1 + X X
Second moment = 2 + 4X+ X (51)
Variance = 1 + 2X

The higher moments are outside the scope of this book.
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6.3.3
Cauchy Distribution

The Cauchy distribution [5, p. 101] has long tails and is the distribution of the quoti-
ents of Gaussian variables. An example is shown in Figure 6.16 and is given by

p(x) = ! ) ) where 6 > 0 (52)

o\ 2
o (1 + (—M
o

where p is the median and also the mode;
o is half the width where p(x) is half the peak value
The integrals for the moments do not converge so that the terms mean and stan-
dard deviation are not appropriate and there are no higher moments.
The characteristic function is given by [3, p. 207] and an example is shown in Fig-
ure 6.16.

+00
C(E) = / p(x) exp(ixg) dx
. +00
(g [ cos(oxE)
. / o (53)

= exp(—ing — ofg|)

Half-width at half height = 1

Figure 6.16 An example of the Cauchy probability distribution function with p=2 and o= 1.
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6.3.4
Gamma Family

The gamma family [2, p. 220] [5, p. 83] contains a number of distributions based on

the gamma distribution, given by

where 1) is the shape factor;
M is the scale factor
Examples of gamma distribution curves are shown in Figure 6.17.
The characteristic function is given by, an example is shown in Figure 6.18.

c@=(1-5)

124 | 4=0.5 ! =4 =

1 A=1 08
os 06 =3
06 =1

04 =2
04 =2
= 4 _

0.2 02 -

’ ! 2 i 4 5 6 0 7 % 3 7 5

(54)

(55)

Figure 6.17 Examples of the gamma probability distribution function.

0.36
0.34
0.32
0.3
0.28
026
024
0.22
0.2
0.18
0.16
0.14
0.12
01
0.08
0.08
0.04
0.02

x

0.6

(a) Gamma probability density function n=1, A=1 (b) Characteristic function of (a)

Figure 6.18 An example of the gamma probability distribution
function and its characteristic function.
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From an inspection of the form of the characteristic function it can be seen that
the result of the addition of gamma variates with the same scale factor, A, is a
gamma variate with a form factor, 1), that is the sum of the individual form factors.

The moment generating function is given by

B\
M(t) = (1 - X) (56)
The central moments may be obtained from the characteristic function or directly
n
M = = —
ean my A
Variance = m, = ;\1—2 (57)
Standard deviation = %
and the higher moments, skew and kurtosis, are
Skew = \/iﬁ
(58)
Kurtosis = 3(n+2)
M
The mode is 1— !
The moment generating function is given by
£y
M(t) = (1 - X) (59)

In an alternative form of the gamma distribution, the scale factor A is replaced by
1/b which is useful as b corresponds to signal-to-noise ratios, for example. Then the
probability distribution and characteristic functions are given by

p(x) = %(n) (%)nl exp (— %) (60)

where b= 1/\.
The characteristic function is

CE = (1 — g (61)

Other members of the gamma distribution family are [5, p.90]
¢ Negative exponential distribution

This is a gamma distribution with = 1 and is given by
p(x) = hexp(—hx) (62)
It has a simple cumulative distribution function

P(x) = 1 — exp(—Ax) (63)
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and characteristic function

CE = % (64)

e The Erlangian distribution is used in queueing theory, for example, in tele-
phone exchanges and is a gamma distribution where 1 is restricted to inte-
gers, n.

o The chi-square distribution [2, p. 181] is a special case with A = 1/20% and
n= 21, an integer called the number of degrees of freedom, namely,

Y 2
p(x) = V; x? exp<—2x—2> when x > 0 (65)
25517 () o
2°0 F(Z)
The characteristic function is
1
cE = ——— (66)
(1 — 20°E )2
6.3.5
Beta Family

The beta distribution of the first kind [5, p. 91] is limited to the range zero to unity.
The scale is limited and many shapes are possible with the two shape parameters 1)
and vy as shown in Figures 6.19 and 6.20. The beta probability distribution function
is given by

I'(y + ~1 -1
p(x) = % ¥ (1-x)"" whenx> 0
=0 elsewhere
where y and 1) are the shape factors and both are greater than zero.
n=y=5 n=2, y=5 B=n=2,gamma=1/1..1/4
’ =y=3
=2, y=tia T2V=5
=y=1
; ™ e =2, y=1
3 [ mam— & = of 3 e 3 1 or = [ e @ 3
(a) Equalnand y (b) n=2, y values from 1 to 5 (c) n=2, y values 1, 1/2, 1/3, &1/4

Figure 6.19 Examples of the beta probability distribution function.
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The characteristic function is given by [3, p. 125]

CE€) = 1F(y, y+nm, i§) (68)

where {Fi(a, b; x) is the confluent hypergeometric or Kummer’s function of the first
kind [3, p. 297] [7, p. 504] given by

L a a(a+1) é
Bl by 2) =140 24 ey 5

(69)

A more interesting example with 1 =y = 0.5 is shown in Figure 6.20. The curve is

given by ], (%) exp (—i%).

(a) Beta probability distribution function = y= 0.5 (b) Characteristic function of (a) n =y =0.5

Figure 6.20 An example of the beta probability distribution function and its characteristic function.

The central moments may be obtained from the characteristic function or directly
and are given by

Mean = T]YTY
70
Variance = ;]—Y 70)
(M+v)” (+v+1)

The skew and kurtosis are [5, p. 128]

Skew — 2=¥)v/(ntv+1)
Viv(n+y+2)
(71)
3(n+y+1) (201+) +nv(n+v-6))
ny(+y+2)(M+y+3)

The mode occurs at [3, p. 125] L B

n+y-—2
The distributions shown below are also members of the beta distribution family

Kurtosis =

¢ Uniform distribution n=y=1.
e Parabolic distribution n =y = 2.
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The beta probability density function of the second kind [4, p. 156] is given by

Cytn)  «
L(v) T() (14x)""
where x is in the range from zero to infinity with y and 1 as parameters. An example

is shown in Figure 6.21.
The characteristic function is given by [using Maple V]

p(x) = (72)

) T e it
CE) = & T(y) T(n) (i&)" 1Fy(y+m; n+1; i§) (73)

An example is shown in Figure 6.21.

Beta distribution of the second kind, y=1,n=2

o 2 ] [ [ 19 12 1 18 18 20

Figure 6.21 An example of the beta probability distribution
function of the second kind y = 1 and 1 = 2 with its characteris-
tic function.

The rth moment about the origin may be obtained from the characteristic func-
tion or directly and is given by

r_T(n=r) T(r+y)

=—_<c 74
T T 7
and the first four moments about the origin are
By = 1
AR O
Ml - n_17
ro_ v (D)

LT G wn 7
. Y (v+1) (v+2)

’ (m=3) 1-2) (n-1)

. Y (v+1) (v+2) (v+3)

4

(n—4) M—3) n-2) (n—-1)

The mean and variance are
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Variance = p, Lﬂ_l)z

(M-2) (n-1)
The third moment about the mean is
o= 2 (2Y2+3Y71—3Y+712—23ﬂ+1) o)
’ (m=3) 1-2) (n-1)
and the skew is

3 2

Skew — 2(n-1)" n-2)" 2y+n-1) (78)

2 2

Y (vn—1)" (n-3)

The expression for the kurtosis is too large for the page.
Both ‘Student’s’ t distribution function and Fisher’s F distribution function are

beta functions of the second kind.

e ‘Student’s’ t distribution [2, p. 180] [3, p. 1751] [4, p. 186]
The expression x°/v is a beta probability density function of the second kind
(B2 (1/2, v/2)) and may be found by substituting y = /2, = v/2 in Equation
(73). The symbol v is the number of degrees of freedom, an integer. When
v=1 this is the Cauchy distribution.

(x) = r(vzi) ! when x > 0 79
" () ”

e Fisher’s F distribution [3, p. 651] [4, p. 199]
The expression for x = v; F / v, is a beta probability distribution function of
the second kind ( B, (*/2vy, /2 v,)) that may be found by substituting
Y =v; /2 and n = v, /2. The symbols v; and v, are the numbers of degrees of

freedom.
T (v1 +vz> xvl /21

p(x) o r(v;l) i‘(%) (1+x)(v1+vz)/2 (80)

6.3.6
Weibull Distribution

The Weibull distribution [5, p. 108] is used as a model in the science of life testing
and as a model of radar clutter. The Weibull probability distribution function is
given by

p(x) = g(g)fkl exp(—(%)n) when x > 0 1)

=0 elsewhere

Examples are shown in Figure 6.22.
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0.8
0.6

0.4

0 7 2 3 4 5 6 0 1 2 K 4 5 6

Weibull n =1..4, 0 =1 Weibull n =2, a = 1..4

Figure 6.22 Examples of the Weibull probability distribution function.
The cumulative distribution function is given by [5, p. 109]
X\ "M
P(x) = 1 — exp (— (—) ) where x > 0 (82)
o

The characteristic function in Figure 6.23 has been obtained by numerical inte-
gration.

06
04

03

02

01

o 1 g 3 3
(a) Weibull distribution n = 2, 0 =v2 (b) Characteristic function of (a)

Figure 6.23 An example of the Weibull probability density function and its characteristic function.

The central moments may be obtained from the characteristic function or directly
and are

Mean = 0F<1 + 1)
n

e = (15 1) = (15 )) )

The expressions for skew and kurtosis are too large for this page see [5, p. 132].

(83)
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6.3.6.1.2 Rayleigh distribution
The Rayleigh probability distribution function is a special form of the Weibull distri-
bution with ) = 1 and o is scaled by v/2, namely

2
p(x) = G_xz exp (—2%) (84)

The cumulative distribution is

2
P(x) =1 — exp(—202 forx> 0 (85)

=0 elswhere

Maple calculates the characteristic function as

CE =1+ igf/\—z/ﬁ exp (2202> (1 + erf(%)) (86)

6.4
Characteristic Functions of Some Discrete Distributions

Discrete probability distribution functions are valid only at integer values of x. The
characteristic function is the discrete Fourier transform

CE) = > plx) exp(ixg) (87)

where C(E) is the characteristic function with variable &;
p(x) is the probability distribution function;
x is an integer and the sum is for all valid values of x;
pis v—1.

The use of a sum and unity spacing for the values of x gives an unambiguous
range for the characteristic function of £ 7 about the § axis. Beyond + =t the charac-
teristic function curve repeats itself each 2m as would be expected if the omega con-
vention was used in Section 4.2. For this reason, the characteristic functions of dis-
crete probability distributions are shown only between the limits * 7.

This section discusses a number of discrete probability distributions and their
characteristic functions. The literature uses a number of different conventions, one
of which is used here. As the letter p is used for probability function, in this section,
the variable q is used for the probability of an individual trial.

6.4.1
Binomial Distribution

The binomial distribution [2, p. 179] [3, p. 138] [5, p. 138] is the probability distribu-
tion function of the results of n samples or trials with alternative outcomes each
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having an individual probability g (note that q is used as the parameter to avoid con-
fusion with the function p). The value of n is small compared with the population
size and the sampling takes place with replacement. An example with g= 0.75 and
n= 10 is shown in Figure 6.24(a) It is given by

n! n—

p(x) = ! g 1-¢" "x=1,2, .., n (88)

x!(n—x)

The sample drawn at random must be replaced before the next draw.
The characteristic function is |[2, p. 218][ [3, p. 138][7, p. 929]

CE) = @exp(i® +1 - q)" (89)
An example is shown in Figure 6.24(b).

0.28
0.26
0.24
022

02
0.18
0.16
0.14
0.12

01
0.08
0.06
0.04
0.02

0 2 4 8 10

Binomial distribution, n=10, g=0.75

Figure 6.24 An example of the probability distribution function
of the binomial distribution and its characteristic function.

The moment generating function is [2, p. 218] [3, p. 138] [7, p. 929]

M(t) = (qexp(t) + 1 — q)" (90)

The moments about the origin may be obtained from the characteristic function
or directly and are

Mean = ngq

Variance = nq(1l —q) 1)
The skewness and kurtosis are given by
1-2
SkeW = 717
ng(1 —q) o)
Kurtosis = 3 + L(l—q)
nq(1 — q)

The Bernoulli distribution is a special case of the binomial distribution with n= 1
2, p. 167][5, p. 167.
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6.4.2
Hypergeometric Distribution

The hypergeometric distribution [2, p. 218] [S, p. 151] is the probability distribution
function of drawing exactly x white balls in » trials from a population of size N of
mixed black and white balls with k white balls. The value of n need not be small
compared with the population size. The probability distribution function is given by

M (N—F)! 1
PE) = Gl (el (N—R)— () " ©3)
n!(N—n)!

where x <k;
n—-x<N-k;
the value g in the binomial distribution is given by g=k/N.
Figure 6.25 shows the probability of finding x bad units in a sample of 10 when it
is known that there are 8 bad units in the population of 25.

0.32

0.3
0.28
0.26
0.24
0.22

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02 |

0 x

0 2 4 6 8
(a) An example of the hypergeometric distribution (b) The characteristic function of (a)

Figure 6.25 An example of the hypergeometric distribution for a
sample of 10 in a population of 25 units where 8 are bad, and its
characteristic function.

The characteristic function is given by [3, p. 972]

CE) = i Rk Nkl ep(E) (04

where the function ,F(a, b; ¢; 2) is the hypergeometric function [3, p. 873] [7, p.
555].

ab a(a+1) b(b+1) 2

e 2T T 2e(er 1) ©3)

An example is shown for k=8, n=10, and N = 25 in Figure 6.25(b).
The central moments may be obtained from the characteristic function or directly.
The mean and variance are
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Mean = n_k
o (96)
Variance = "H—R)(N=n)
N*(N-1)
The skew is
Skew — (N-2k) (N=-2n) vVN-1 97)

(N-2) \/nk(N—k) (N—n)

The expression for kurtosis is too large for the page.

6.4.3
Pascal, Negative Binomial, and Geometric Distributions

The Pascal probability distribution [5, p. 154] is the probability of having exactly x
failures preceding the sth success in x+s trials. It is given by

(x+s—1)!

p(x) = oD g 1—q)" x=0,1,2, .. (98)

An example with s= 5 and g= 0.3 is shown in Figure 6.26.
The characteristic function is [2, p. 218] [3, p. 1221] [7, p. 929]

_ g\
ce) = ( - 1q)ei%> (99)

An example of the characteristic function with s=5 and g= 0.3 is shown in Figure
6.26.

0.07
0.06
g=03, s=5
0.05

0.04

0.03

0.02
0.01 |
0||, | AR EEN |||||I|

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(a) An example of the Pascal distribution (b) The characteristic function of (a)

Figure 6.26 An example of the Pascal distribution with s =5
and g = 0.3 and its characteristic function.

The moment generating function is [2, p. 218] [3, p. 1221] [7, p. 929]

M(t) = (ﬁ)s (100)
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The central moments may be obtained from the characteristic function or directly,
the mean and variance are

Mean = s1=49)
q
a (101)
Variance = u
p
The skewness and kurtosis are
Skew — —2-4
s(1—q)
> — 6q+ 6 (102)
Kurtosis = 4 —%7° + 3
s(1 - q)

Some authors, for example [5, p. 154] give the negative binomial distribution as
the generalisation of the Pascal distribution with the factorials replaced by gamma
functions to give a distribution similar to Poisson distribution when events do not
occur at a constant rate. The occurrence rate is a gamma distributed random vari-
able.

plx) = r(al;(rxfj)?(s) g 1-q x=01, .. (103)

The geometric probability distribution [2, p. 179] [3, p. 781] [5, p. 152] is the prob-
ability of having x binomial trials before the first success is achieved. That is there
are x—1 failures before this, success occurs at the xth trial and is an example of the
Pascal distribution with s = 1 and x trials (not x+1). The geometric distribution is
given by

)xfl

p(x) =q(1—q (104)

An example of the geometric distribution with q= 0.5 is given in Figure 6.27(a).

0.1

o 2 4 6 [] 10

(a) Geometric distribution, p=0.5 (b) Characteristic function of (a)

Figure 6.27 An example of the geometric distribution with g = 0.5 and its characteristic function.
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The characteristic function is given by [2, p. 218] [3, p. 781]
i
qe
cg = (105)
1—(1-g)e"
An example of the characteristic function with g= 0.5 is shown in Figure 6.27(b).
The moment generating function is [2, p. 218] [3, p. 781]

g
M) = i (106

The central moments may be obtained from the characteristic function or directly,
the mean and variance are

Mean = 1
? - (107)
Variance = — 9
q
The skew and kurtosis are
Skew = 2-4
1-9¢
2 9,409 (108)
Kurtosis = -29+7
1-¢

6.4.4
Poisson Distribution

The Poisson probability distribution [2, p. 53] [3, p. 1388] [5, p. 154] is the probability
of exactly x independent occurrences during a period of time if events take place
independently at a constant rate, A. The Poisson distribution is given by
.
xX) = e — X = 17 2,
p(x) " (109

= 0 otherwise

An example with A =5 is shown in Figure 6.28(a).

The Poisson distribution may be derived from the binomial distribution by setting
A = ng, using the Stirling formula for n! (namely n! = /2an n" exp(—n) ), and let-
ting »n tend to infinity [4, p. 63]

The characteristic function is given by [2, p. 218][3, p. 1388] [7, p. 929]

cE) = exp<x (eiE—l)) (110

The characteristic function for =5 is shown in Figure 6.28(b).
The moment generating function is [2, p. 218] [3, p. 1388] [7, p. 929]
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o 2 8 10 12 14 16 18 20

(a) Poisson distribution, A=5 (b) Characteristic function of (a)

Figure 6.28 An example of the Poisson probability distribution
function and its characteristic function.

M(t) = exp(Me‘ - 1)) (111)

The central moments may be obtained from the characteristic function or directly.
The mean and variance are both A and the skew and kurtosis are

1
Skew = —~
T (112)
143
Kurtosis = n

6.5
An Example from Operational Research

There is an example in [5, p. 227] that can be used to illustrate the use of convolution
to estimate the distribution of sums of random variables.
Equipment for repair passes through six stages in a repair facility and records
show the statistical distributions of the time taken in hours are those in Table 6.3.
The probability distribution functions and their characteristic functions are
shown in Figure 6.29.
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Table 6.3 The distribution of test and repair times in each of the six stages

Stage and Distribution function Characteristic function
distribution

. 1 (x10)2> < §2>
1 Gaussian, p,(x) = —— exp (— C,(E) = exp| i105 — =
u=10,0=1 ' \/E 2 2

. 1 (x—20)* . 2
2 Gaussian, p,(x) = NN (— > C,(§) = exp (1205 -g >
2m\/2 2
u=20,0= \/Z
6 s —10077696
3 Gamma, p;(x) = Wx exp(—6x) G (&) = m
N=9,A=6
1 o 1
4 Gamma, P, (x) = =—=x exp(—x) C(8)=—1p
N=10,A=1 I'(10) (—1+i8)
5 Exponential, Ps(x¥) =5 exp(—5x) Cs(B) = _%—H‘E
A=5
. 1 9 X 1
6 Chi-square, Pe (%) == x exp(— —) G =—"=
=10 2’ T'(5) 2 (=1+i28)

To find the distribution of the total times for equipment to pass through the facil-
ity, the characteristic functions are multiplied as in Equation (114) and the result is
shown in Figure 6.30.

Croral (§) = C1(8) C1(E) C3(E) C4(E) C5(E) C4(E)
(114)

The probability distribution of the total time is found by taking the anticharacter-
istic function

P () = 3 [ Co(9) exp(—x8) o (119

The result has been obtained numerically and is shown in Figure 6.30(b).

The central moments are shown in Table 6.4 with the sums of the moments in
the right-hand column.

Figure 6.30(b) shows that the final distribution is skewed and the moments give
the skew as 100.10/33.29%/% = 0.521. The final distribution has a sharper spike than
a Gaussian or normal distribution and has a kurtosis of 2055.24/33.29% = 1.855,
namely less than the value of 3 for a Gaussian or normal distribution.
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Figure 6.29 The probability distribution functions and their
characteristic functions for each of the six test and repair stages.
Note that the scales are not uniform.
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Probability

o 20 40 6 80 100

Hours

(a) The product of the six characteristic functions (b) The anticharacteristic function of (a)

Figure 6.30 The combined characteristic function for the sum
of the times and its anticharacteristic function.

Table 6.4 Table of moments about the mean.

Moment Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Total
Area 1 1 1 1 1 1 1
Mean 10 20 1.5 10 0.2 10 51.7
Uy 1 2 0.25 10 0.04 20 33.29
U3 0 0 0.08 20 0.02 80 100.1
Uy 3 12 0.23 360 0.01 1680 2055.24

Often the values of the percentiles are required, for example, how much time is
required for 90% of the throughput. The cumulative distribution function provides
the answer, and is given by

q
P(x) = /pmtal(x) dx (116)
0

The cumulative distribution is illustrated in Figure 6.31 and shown as Table 6.5.
The table shows that 90% of the throughput is completed in less than 59.3 hours.
The median, or 50% point is 51.2 hours.

Table 6.5 Distribution of total time.

Per cent Time, hours Per cent Time, hours Per cent Time, hours
5% 43.126 40% 49.814 75% 55.246

10% 44.725 45% 50.510 80% 56.321

15% 45.859 50% 51.211 85% 57.614

20% 46.794 55% 51.928 90% 59.303

25% 47.621 60% 52.672 95% 61.941

30% 48.384 65% 53.458 99% 67.346

35% 49.109 70% 54.307 99.5% 69.483
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0.6
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O0T36 38 40 42 44 46 48 50

52 54 56 58 60 62

64 66 68 70

Hours

Figure 6.31
and repair times.
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7
Noise and Pseudo-random Signals

Noise is present in the signals at the outputs of receivers. The noise signals may
have entered at the input or been generated in the receiver itself, generally the first
stage, as shown in Figure 7.1.

Cosmic noise Interfering noise signals from the environment
First Remaining Bandpass
amplifier amplifiers filter Detector Lowpass

filter

>—>I>—>§—>> =~ & > Output

Refrence
oscillator

Figure 7.1 A block diagram of a typical receiving system.

The noise at the input is made up of noise from local interfering sources (for
example the series commutator motors in vacuum cleaners and electric drills) and
cosmic noise from outer space (for example from the sun). Noise generated by the
first amplifier is often the limiting factor in the most sensitive of receivers used in
radios, radars, and in radio astronomy [1, Chapter 7].

To eliminate outside sources, a resistor matched to the input resistance of the
receiver is connected across the input. The noise power generated within a band-
width B Hz, is

Noise power at input = kT B W (1)

where k is Boltzmann’s constant 1.38 x 1072 J/K;
T is the absolute temperature of the resistor in K;
B is the noise bandwidth in Hz.

A New Twist to Fourier Transforms. Hamish D. Meikle
Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40441-4
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The root mean square voltage of the noise across the resistor, R , is
Noise voltage across the input = vk T BRV (2)

It is assumed that the filter in the receiver limits the bandwidth to B Hz. When
the filter has to reject signal, interference, or noise components that might overload
one of the stages, the filter is placed earlier in the train of stages. The amplifiers are
not perfect and add their own, internally generated, noise that is greater than the
input noise from a resistor, temperature T;, multiplied by the amplification factor,
A. The expected amplified output noise power from an input resistor at a tempera-
ture of T Kis

Output noise power = Amplified input noise 3
AkT, B (3)

In practice the noise power is greater than this and the degradation is accounted
for by the noise figure NF defined in reference [2] as
— Noise power out

NF = — : . N (4)
Gain x Noise power in when the input is terminated at 290 K

When all quantities are referred to the input then
NF kT, BA = kT, BA + kT,; BA (5)

where T, is the temperature of the input resistor, by definition at the standard
reference temperature, 290 K [2];
Tof is the effective system temperature referred to the input
Rearranging Equation (7.5) the amplifier has the equivalent temperature T.g
referred to the standard input, namely

T = T, (NF — 1) (6)

€

Noise figures are often given in decibels and typical examples are given in Table 7.1.

Table 7.1  Examples of equivalent noise temperatures, T ¢ at the inputs of receivers

Noise figure Tg K Example

dB Linear

10.0 10 2610 Crystal diode mixer
3.0 2 290 Transistor amplifier after a transmit-receive switch
0.3 1.07 20.7 Radio astronomy, modern satellite receiver

The amplifier noise dominates in the 10dB and 3dB cases when the receiver is
connected to an antenna, whereas galactic noise will dominate in the 0.3 dB case
used for radio astronomy.
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If n stages of gain A, and noise figure NF, are cascaded, the equivalent noise tem-
perature at the output referred to the input is

T, (NF, — 1)

Tg = To + Ty (NF, — 1) + A (7)

e
1

As long as A; is sufficiently large, the noise contribution of the second and
remaining stages is small.

The signals in the receiver are alternating current signals at frequencies around a
centre frequency fy Hz, extending from fy — B/2 to fy + B/2. Alternatively a notional
carrier signal at the frequency fy Hz is modulated with a vector by a vector signal. In
the case of noise, the Cartesian, or x and y, coordinates of the vectors have a Gaus-
sian probability density function as shown in Figure 7.2 and this is, loosely, what is
seen on an oscilloscope. Though the noise, just described, has equal statistical power
density within the bandwidth, called white noise (after white light), there are excep-
tions, such as noise with an amplitude proportional to 1/fin the case of transistor
audio and video amplifiers. This type of noise is sometimes called pink noise.

The minimum duration of the noise pulses is limited by the bandpass filter before
the detector and the maximum duration by the nature of the signal. In systems where
the content from one pulse width to the next is uncorrelated (radar, digital communica-
tions, and so on), the pulse width and thus the bandwidth are defined.

In order to extract the vector value of the modulating signal, its phase is compared
to the phase of a reference oscillator (the carrier reinsertion oscillator is used in sin-
gle-sideband receivers or the coherent oscillator in radars). The output signals may
be in Cartesian or polar form shown in Figure 1.3.

Real, in phase, or | axis 3 3

72
Imaginary, /Q,/ﬁ// 7
quadrature,
or Q axis
Noise sample
number or time

Figure 7.2 Gaussian noise samples demodulated from a
(notional) carrier. [Source: Meikle, H.D., Modern Radar Systems,
Norwood, Massachusetts: Artech House, 2001.]

The Cartesian components of thermal noise have a Gaussian distribution (see
Equation (37) in Section 6.3.2].

185



186

7 Noise and Pseudo-random Signals

xZ
exp —E
= ——>—< Gaussian distributi 8
p(x) o aussian distribution (8)
where x is the variable;
the mean is zero (does not appear)
0 is the standard deviation or the root mean square voltage.
In polar form the probability distribution for the amplitude, r, is a Rayleigh distri-
bution (see Section 6.3.2) and the probability distribution for the phase, 6, is uni-

form over a circle, from zero to 27 radians or 360 degrees.

2
p(r) = Lz exp (_r_z> Rayleigh distribution
o 20
p(0) =1 Uniform distribution 0 > 0 > 2n

where ris the amplitude measured along a radius;
0 is the phase angle from the phase detector;
o is the standard deviation of one Cartesian component.

A number of such independent noise samples may be plotted in polar vector
form and are the same as those in Figure 7.2. The noise is plotted as a vector bar
graph of noise samples as the lines joining the noise signals tend to dominate in
any illustration. The result is a shaggy bottlebrush [1].

The power in the complex or vector noise waveform may be obtained by multiply-
ing by the complex conjugate, giving the probability distribution function

p(r) = exp(—X) (10)

where X = */20°.

(a) Gaussian or

] P - . .
bottlebrush noise (b) Complex conjugate of (a) (c) Power = Gaussian noise x

complex conjugate

Negative exponential distribution

Figure 7.3 The multiplication of a vector noise pulse sequence
by its complex conjugate to calculate the power. [Source: Meikle,
H.D., Another way of representing echo signals, their spectra,
and their statistics, Proceedings of the German Radar Symposium
GRS 2002, Bonn, Germany, 5th to 9th of September 2002,

pp. 509-513].

The main characteristics of Gaussian and Rayleigh noise are shown in Table 7.2.
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The original vectors in the illustrations of the bottlebrush are generated from
streams of random numbers with a Gaussian distribution, namely

Vector[n;] = Rand[n] + jRand[n + 1] (11)

where Rand[n] is a number drawn from a list of Gaussian distributed random num-
bers with zero mean and a standard deviation of unity.

Table 7.2 Comparison of parameters in the Gaussian and Rayleigh distributions

Parameter Gaussian distribution Rayleigh distribution

Mean, p about zero Here u=0

Root mean square about zero ¢ V20

Mode 0 o

Mean radial error 0 \/go = 12533 ¢
Variance (about mean) o’ 2 - m/2) ¢

Standard deviation o V(2 = w/2) 6 = 0.6550
Median Here 0 V2In20 = 11774 ¢

For convenience in taking Fourier transforms, the vectors are plotted as bar graph
lines in the time domain about epoch zero. The power in one ohm is calculated by
multiplying the voltage by its complex conjugate. All sense of phase has been lost to
give real power values with a negative exponential distribution

p(x) = XLeXp (— Xi> (12)

0 0

where the mean power X;in 1 Q is 2 W.

It must be remembered that the above calculation is for the total power in a two-
phase circuit with two 1 Q resistors as a load shown in Figure 7.4.

The power in each phase may be calculated knowing that the root mean square
voltage in each phase here is unity (otherwise o) to dissipate 1 W in each resistor. If
the square root of the power is plotted, or the modulus value of the Gaussian vec-
tors, the result is a Rayleigh distribution with a root mean square value of /2.
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Resistive load
Phase Q

Neutral

Figure 7.4 A two-phase circuit with Gaussian noise generators, G, and load resistors, R.

7.1
The Fourier Transform of Noise

Noise also has a spectrum. If the noise vector samples are taken each second, then a
discrete Fourier transform gives a voltage spectrum valid over 1 Hz. The result is, as
in the time domain, a bottlebrush with a Gaussian probability distribution. Each
point in the voltage spectrum is the result of the vector sum of twisted Gaussian
vectors with a Gaussian distribution in two dimensions as shown in Figure 7.5. By
the central limit theorem, these sums also have Gaussian distributions in both di-
mensions. The power spectrum may be obtained again by multiplying by the com-
plex conjugate of the voltage vector spectrum and the modulus of the voltage spec-
trum may be found by taking the square root, as in the time domain. If all the points
of the discrete power spectrum are added (integrated), the sum is again 2 W to give
a spectral density of 2 W/Hz. As in the time domain case, the power spectrum has a
negative exponential probability distribution and the voltage spectrum has a Ray-
leigh distribution.

In order to be able to see individual vectors, a small number of samples, which
may or may not be representative, has been shown. When either or both large num-
bers of samples are considered or more trials are overlaid on each other, the bottle-
brushes may be represented by their statistical values as shown in Figure 7.6.
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(b)Vector time plot - noise, complex conjugate
(f) Fourier transform, voltage, complex conjugate
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(e) Fourier transform, voltage
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Figure 7.5 Vector representation of noise voltages, their
spectra, and the powers in the waveform and spectrum.
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(a) Vector time plot - noise (b) Statistical values in time (c) Noise power vs time

T~

Fourler transform

@ Inverse Fourier transform

(d) Fourier transform, voltage (e) Statistical values of spectrum (f) Nolse spectrum power

Figure 7.6 The representation of noise samples and their spectra by statistical values.

7.1.1
Optimum Filtering of Signals and Noise

With the use of receivers for radio waves for signals other than voices, music, or
television pictures, other methods for determining the best way to filter out noise
had to be found. Up to this time the filter width was varied to give the best match
for quality or intelligibility. With the advent of radar, the echo signals are copies of
the transmitted signal (maybe with a small Doppler frequency shift). Radar trans-
mitters send pulses, normally of constant amplitude, that do not have a simple fre-
quency spectrum for filtering so that mismatch occurs and the problem is to find
the shape of filter with the least echo signal loss. One example is given here and
others are to be found in references [1, 3, 4].

A pulsed radar signal has a rectangular envelope and, without additional modula-
tion, has a sin x/x shaped spectrum of the form

Pulse_spectrum(f) = % (Voltage) (13)

where T is the width of the rectangular pulse.
The rectangular pulse and its spectrum are shown together in Figure 7.7(a).
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(a) Rectangular pulse and spectrum

(b) Gaussian filter characteristic

(d) Filtered (and stretched) output pulse ~ Ta0

Figure 7.7 A rectangular pulse, its spectrum, and the effects of filtering on the output pulse.

In early British radars the intermediate frequency stages were derived from televi-
sion receivers with a flat response centred on 45 MHz, the frequency of the BBC’s
first television transmitter. The problem studied [3 and 4, for example] was the prob-
lem to find the optimum rectangular bandpass to give the minimum signal loss for
the minimum amount of noise after filtering, or the best signal-to-noise ratio. Later
it was found that a filter with a Gaussian shape gave a better compromise of the
form, see Figure 7.7(b).

2 2
Filter_characteristic(f) = exp (—Jw

) (Voltage) (14)
The spectrum of the signal having passed through the filter is the product of the
spectrum and the filter characteristic is shown in Figure 7.7(c), namely

. 2 2
Filter_output(f) = sin(7fv) exp <—f i ZZln(2)> (Voltage) (15)
af B

The inverse Fourier transform has been calculated numerically and the pulse
shape after filtering is shown in Figure 7.7(d).

The statistical value of the noise spectrum is initially considered to be flat as in
Figure 7.6(e) and wider than the significant part of the filter characteristic, so that
the output is the same as the filter characteristic. The signal-to-noise ratio is then

[egon( 252

Ik [nexp( f ;m( )>} df

Signal — to — noise ratio = Power) (16)

—0o0

If the signal-to-noise ratio is plotted against the bandwidth, B, for a pulse of unity
width, then the results are shown in Figure 7.8. The minimum loss of signal-to-noise
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ratio occurs when the 3 dB bandwidth is 0.742/t and the signal energy is reduced to
0.890 of the input energy or a loss of 0.506 dB. In addition to the loss of signal energy,
the pulse s stretched, leading to a reduction of range resolution in a radar.

28
26

22

1.8
16

0.6

14
12

Filtering gain
Filtering loss dB

08
06
04
02

0 02 [ 06 08 1 12 14 o 02 04 056 0% 7 12 1

Bandwidth in terms of 1/7 Bandwidth in terms of 1/7

Figure 7.8 The effect of filter bandwidth on signal-to-noise
ratio. [Source: Meikle, H.D., Modern Radar Systems, Norwood,
Massachusetts: Artech House, 2001]

The above is the classical treatment of a matching filter without time delay. In real life
the signal takes time to build up and then pass to the output of the filter giving a delay as
described for finite impulse response filters in Sections 4.4.3 and 4.4.4. Instead of the
purely real filter characteristic, the filter characteristic shown in Figure 7.9(b) is vector
multiplied by the function representing the delay, namely exp(—j2mntft4 ), to give the form
in Figure 7.9(c). This is similar to the curves in Section 6.3.2, Figure 6.8 for the Fourier
transform of a Gaussian distribution with a finite mean.

(a) Rectangular pulse (b) Gaussian filter characteristic
and spectrum

(c) Gaussian filter characteristic
with time delay (1)

(d) Signal spectrum having
passed through the filter
(a)x (c)

2

(e) Shape of filtered pulse 3

Figure 7.9 The rectangular pulse from Figure 7.7 passing through a Gaussian filter with delay.



7.2 Auto- and Cross-correlation Functions

When the spectrum in Figure 7.9(a) is multiplied by the filter characteristic in
Figure 7.9(c), the spectrum at the output of the filter is shown in Figure 7.9(d). The
waveform is obtained from the inverse Fourier transform and is shown in Figure
7.9(e) as a delayed, almost Gaussian, hump.

7.2
Auto- and Cross-correlation Functions

The traditional form of the auto-correlation function for a polyphase voltage is
shown in Figure 7.10 [1, Fig 2.11]. For unwieldy waveforms, such as noise, power is
computed from the peak of the auto-correlation function, shown in many texts as a
triangle.

Auto-correlation function is formed as this
waveform is drawn past its complex conjugate

Modulus of the
auto-correlation
function

|
|
Power |
|
!

4

Auto-correlation function
(as a function of displacement x)

Figure 7.10  The auto-correlation function of a polyphase or
spatial spiral voltage. [After: Meikle, H.D., Modern Radar
Systems, Norwood, Massachusetts: Artech House, 2001].

In the case of noise, Figure 7.11(a) shows a train of noise samples and Figure
7.11(b) the complex conjugate. The product of (a) and (b) at each frequency is shown
in vector form in Figure 7.11(c), where the scale has been omitted for clarity, and the
absolute values in Figure 7.11(d).
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(c) Vector auto-correlation (d) Absolute values of (c)
function of (a) and (b)
(b) Complex conjugate of (a)
Figure 7.11  The autocorrelation of a train of Gaussian noise pulses.
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Figure 7.12  The absolute values of the autocorrelation function.

The centre peak is narrow and is shown in detail in Figure 7.12.

With an irregular or stochastic waveform the central peak can be narrow with res-
idues (often called sidelobes) on both sides. The time delay inherent in the filter or
correlator avoids the term before and after.

A purely real filter characteristic and its complex conjugate are the same. In Section
7.1 there was a purely real signal spectrum with a purely real filter and thus the pro-
cesses of convolution and correlation are the same. In real life filters can only be de-
signed with time delays, see the lowpass filter in Section 4.4.3 and the use of complex
conjugates in the weighting function separate correlation and convolution. In pulse
compression radar the rectangular radar pulse is modulated and the echoes signals are
multiplied (or weighted) by the complex conjugate of the transmitter pulse modulation
signal and the compressed pulse afterward has the form of Figure 7.12. A more com-
plete treatment is given in [1 Section 8.2.1]. Any negative phase sequence components
do not correlate but are convolved to add to the sidelobes around the wanted signal.
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When a computer modem on an analogue line logs into an Internet provider, the
user hears that it starts with a low speed protocol and the speed either increases to
the maximum or the maximum that the line distortion and echoes allow. With the
switching to 9600 baud noise is heard that is the result if cyphering the data on the
line with a standard key. The cyphering avoids abrupt changes from a train of zeroes
to a train of ones that can occur in data transmission. The characteristics of the sig-
nals are modelled to be as close as possible to noise and may be treated statistically
as such.

Correlation with near copies of wanted signals is used in selective voltmeters for
sine wave signals.

Pseudo-random waveforms are used in a military situations to hide the nature of
the signal either by spreading it in time or in frequency. Both methods reduce the
spectral density making it more difficult for a receiver not having a filter that has
the characteristic of the complex conjugate of the signal modulation. Systems using
this method are called low probability of intercept (LPI) systems.

7.4
Example of the Convolution of Radar Echo Signals and Noise

An important example of the convolution of noise with signals occurs with the cal-
culation of the echo signal-to-noise ratio to give a required probability of detection.
The mathematics used has been explained in a number of publications by Marcum
[5], Swerling [6], [7, Chapters 9 to 11], and for Swerling cases I and II [8], cases III
and IV [8], and frequency diversity [9, 10]. In each case a number of echo signals are
added together and a decision is taken as to whether this sum represents the echo
signals from an object. In this chapter signal strengths are represented by their
powers and the —f convention is used for Fourier transforms.

7.4.1
False Alarm Probability with N Noise Samples

A radar operator has to have confidence in his equipment: an indication of an echo
signal must represent an object that has been seen and not an unfortunate sum of
noise spikes. The probability distribution of noise power is a negative exponential
distribution (see Section 6.3.4, Figure 6.17, Equation (63) in Chapter 6, and Figure
7.13(a)) and has a characteristic function represented by a single loop, shown in Fig-
ure 7.13(b).

The probability distribution function for the noise samples of mean power unity
is (see Section 6.3.4)

p(x) = exp(—x) (17)
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It has the characteristic function

1

CE) = ——— 18
® 1 + j2mE (18)
osjf Mean = 1 I
el Mean =10
by Multiply the
o o ¢ phgge hreshold
= angles by 10
(Parsival)
o > x
(a) Probability (b) Characteristic (c ) Characteristic function for (d) Anticharacteristic
distribution for one function for (a) the sum of 10 samples of  function or probability
sample of Baylelgh noise distribution for the sum
(power) noise of 10 samples of noise.

Figure 7.13  The probability distributions of one and ten sam-
ples of noise [After: Meikle, H.D., Another way of representing
echo signals, their spectra, and their statistics, Proceedings of the
German Radar Symposium GRS 2002, Bonn, Germany: DGON,
5th to 9th of September 2002, pp. 509-513.]

If, for example, N noise samples are added together the characteristic function of
the sum is the characteristic function to the power N, C(E)", as shown in Figure
7.13(c). Note that the range of the § axis is one tenth of that in Figure 7.13(b).

c®’ = —— (19)

(1 +j2nE)"

The anticharacteristic function is a gamma distribution (Section 6.3.4) with n= N

that has a mode at N -1 and is shown in Figure 7.13(d).

x" Texp(—x)

TN (20)

p(x) =

The area under the curve in Figure 7.13(d) to the right of an abscissa value repre-
senting a threshold gives the false alarm probability, 10 in Figure 7.13(d). If Y is
the threshold level, then the false alarm probability is

N1
p(False alarm) = / %}55_’6) dx (21)
Y,

The threshold for a false alarm probability of 107 for the sum of 10 noise pulses
in Figure 7.13(d) is 32.71.
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7.4.2
Probability of Detection with Signal Plus Noise

Classical radar theory envisages the five possible radar models in Table 7.3. The
probability distribution for the Marcum, or the steady signal case, may be obtained

directly as in Section 6.3.2 and the Swerling cases [3, 6] by convolution.

Table 7.3  Classical forms of echo signal fluctuation in radar

Model Cases Fluctuation (power) Use
Marcum None Steady echoes from spheres, etc.
Swerling Tand IT XL exp <7 %) Single frequency Rayleigh distributed echo
" " signals.
. 4X X . .
Swerling Il and IV o &P <—2 X_) Single frequency chi-squared (gamma)
m m

Rayleigh distributed echo signals.

where X is the power variable, the noise power is assumed to be unity, and X,,, is the
mean signal power or signal to noise ratio, R.

The Marcum, or steady signal case, has been obtained directly from the Rice dis-
tribution (see Section 6.3.2) and is repeated here for completeness. The characteris-
tic function for the Rice distribution in the —f notation is from Equation (50) in
Chapter 6 [3, Eq. 10.4-12b]

er( %)
Crice(8) = Tnli] (22)

where & is the variable, here using the —f notation;
R is the signal-to-noise ratio;
j  is the square root of minus one.

For N independent samples the characteristic function is (Cpice(€))" and has the
anticharacteristic function from Campbell and Foster’s pair 650.0 to give the prob-
ability distribution function

N-1

ply) = (ﬁ)Texp(—y — NR) Iy_,(v/4NRy) Marcum (23)

where y is the variable;
I,(2) is a modified Bessel function of the first kind, order n, with imaginary
argument [12, 9.6.3 p. 375].

For comparison with the Swerling cases later, a threshold of 32.71 from Figure
7.13(d) is required for a false alarm probability of 107 with 10 integrated pulses and
a signal-to-noise ratio of 3 with 10 pulses gives a probability of detection of 80.5%.

The Swerling cases deal with echoes that fade with the probability distributions in
Table 7.3. The odd numbered cases (I and III) may be simulated by taking a random
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number from the distribution and using the same value for each of the N echoes,
the echo signals are said to be correlated. In contrast, the noise samples are different
from pulse to pulse and are uncorrelated. In the even numbered cases, the radar
changes frequency from pulse to pulse so that both the echo signal pulses and noise
are uncorrelated from pulse to pulse.

In the past mathematicians had to steer their mathematics to lead to solutions
where tabulated values were available. The availability of computers and mathemati-
cal programs for them, some examples are (the registered names) Maple, Mathema-
tica, MathCad, and so on, gamma distributions may be calculated directly and this
allows a simpler, more unified treatment. If the alternate form of the gamma distri-
bution is taken from Equation (61) in Section 6.3.4 with the appropriate substitu-
tions

N-1

where X is the echo signal power variable;
N is the shape factor;
R isthe signal-to-noise ratio.
The shape factor, N, corresponds to the number of independent pulses integrated
in the Swerling models are given in Table 7.3. In the example there are 10 pulses
with a signal- to-noise ratio of 3.

Table 7.4 The values of N and R in the example for 10 pulses and a signal-to-noise ratio of 3.

Swerling case Shape factor N Signal-to-noise ratio R
I 1 30
11 10 1
111 1 30
I\Y% 10 1

The characteristic function of the echo signal is multiplied with the characteristic
function of the receiver noise to obtain the characteristic function of signal plus
noise. The characteristic functions and their products for the four Swerling models
are given in Table 7.5 and illustrated in Figure 7.14.
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Figure 7.14 The adding of echo signal and noise (convolution)
for the four Swerling cases with N=10and R =3.
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Many air traffic control radars use two separate transmitter and receiver combina-
tions with common antenna. It is to be noted that the convolution of two uncorre-

lated echo signals following the Swerling case I model gives a probability distribu-
tion corresponding to Swerling case III and is only the case when the video signals
are summed before the threshold. Using the figures from Figure 7.13 the probabilities
of detection for 10 pulses with a signal-to-noise ratio of 3 are shown in Table 7.6.

Table 7.6 The probabilities of detection for N =10 and R = 3.

Swerling case Probability

of detection

Combination

Combined probability
of detection

Swerling case I 46.76% Each channel 46.76% for each channel
AND. 22.81%
.OR. 77.19%

Swerling case I11 Signal sum 73.81%

For triple diversity with Swerling case I fading, the probability distribution of the
sum of the echoes on three frequencies is p,(X, 3, NR/3) and other cases are shown

in references [9, 10].

References

1 Meikle, H.D., Modern Radar Systems, Artech
House, Norwood, Massachusetts, 2001.

2 [EEE, The New IEEE Standard Dictionary of
Electrical and Electronics Terms, IEEE Standard
100, Institute of Electrical and Electronic
Engineers, New York.

3 di Franco, J.V., and W.L. Rubin, Radar Detec-
tion, Artech House, Dedham, Massachusetts,
1980.

4 Lawson, J.L., and G.E. Uhlenbeck, Threshold
Signals, MIT Radiation Laboratory Series, Vol.
24, McGraw-Hill, New York, 1950.

5 Marcum, J.I., A Statistical Theory of Target
Detection by Pulsed Radar, Rand Corporation
Research Memorandum RM-754, Santa Mon-
ica, California, Reissued 25 April 1952.

6 Swerling P., Probability of Detection for Fluctu-
ating Targets, Rand Corporation, RM-1217,
March 1954.

7 Bijvoet, J.A., Standard Methods for Predicting
and Specifying Performance of Air Surveillance
Radar Systems, SHAPE Technical Centre, The
Hague, report TR-50-U, April 1969.

8 Eendebak J., Detectability Curves for Swerling
Cases 111 and IV Target Models, SHAPE Tech-
nical Centre, The Hague, Supplement 1 to
Report TR-50-U, April 1970.

9 Poelman, A.]., Performance Evaluation of Fre-
quency Diversity Radars, SHAPE Technical
Centre, The Hague, Supplement 2 to Report
TR-50-U, April 1970.

10 Poelman, A.]. and E.]. Benée, Further Notes
on Performance Evaluation of Frequency Diver-
sity Radars, SHAPE Technical Centre, The
Hague, Supplement 3 to Report TR-50-U,
May 1973.

11 Campbell, G.A. and R.M. Foster, Fourier Inte-
grals for Practical Applications,D. van Nostrand
Company, Princeton, New Jersey, 1948. This
book replaces the paper The Practical Applica-
tion of the Fourier Integral, Bell System Tech-
nical Journal, October 1928, pp. 639-707.

12 Abramowitz, M. and I.A. Stegun, Handbook
of Mathematical Functions, Dover, New York,
1964.






Appendix A

Glossary

In order to embrace the ideas of spiral functions, a number of new terms are used,
some taken from [1], that are included in the list below in italics. The main new
terms are rotating voltage taken from the German Drehstrom and spatial spiral.

O — see Delta

Antenna is the component that sends waves from a transmitter into space or
receives waves from space. Not all antennae radiate equally in all directions (iso-
tropic) and some radiate in a directional pattern.

Anticharacteristic function The inverse Fourier transform of a characteristic func-
tion C(&).

P =k [ e e

Apodize The word taper is used here — see Chapter 5.

Baseband The band of frequencies occupied by the signal used to modulate a carrier
wave [3].
B.B.C. The British Broadcasting Corporation.

c.d.f. see cumulative distribution function.

Carrier wave An alternating voltage used to “carry” information (modulation) either
for radiation as in wireless transmission or for frequency division multiplex
transmission [3].

Cartesian detector [1] A form of vector detector that gives the x and y components of
the modulation, also called the I and Q components.

A New Twist to Fourier Transforms. Hamish D. Meikle
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Characteristic function The Fourier transform of a probability distribution function
P(¥).

cE = / p(x) & dx

Continuous Fourier transform is the term in this book used for transforms taken
between the limits of plus and minus infinity, namely in the fand w conventions

+00

F(f) = / £(t) exp(—j2mft) dt

+o0

cE = / p(x)exp(+igx) dx

—o0

Cumulative distribution function is the integral of the probability distribution func-
tion.

Delta () function, Dirac [2], notation d(x)

1 sin[(nJr}) x]
O(x) = limit, ., — ——¥—= The Dirichlet kernel
2% sin (—)
2
+00
or = limit,_,, % = ﬁ / ¢ dk=  Fourier transform of unity

O(x) is a pulse of unit area and width approaching zero at the point x.
Delta (9) is used for a small increment, example 6x

Delta (3) function, Kronecker [2], notation d;

S

i 1 wheni= j

=0 it
The Kronecker delta function has a width approaching zero.

Discrete Fourier transform is the term used in this book for the spectra from lists of
equally spaced time samples, namely using the f convention

F(k) = %] i £l exp(—jZn% k)
n=0

The discrete Fourier transform in this book is sometimes called a finite Fourier
transform.



Glossary

Electrical analogue, an analogy with three-phase electrical power, “rotating voltage
etc” as with the German Drehstrom.

Fast Fourier transform is the name given to the Cooley and Tukey [4] and other fast
algorithms for discrete Fourier transforms.

Finite Fourier transform is the term in this book used for transforms taken between
finite limits, start and end, namely in the fand o conventions

end

E(f) = / f(t) exp(—j2nfi) dt

start

end

cE = / p(x) exp(itx) dx

start
This term is sometimes used for the discrete Fourier transform.

Finite impulse response filter is a filter that has no feedback and gives a finite
response to a needle pulse at the input.

FIR is the abbreviation for finite impulse response.

Frequency distribution is sometimes called a histogram and has the same form as
the probability distribution function. Since the ordinates are counts the area
under the curve is not unity.

Gaussian distribution is usually called the normal distribution in the literature in
English as it is the most common. It is given by

o) = g on(-(52))

where  is the mean and o is the standard deviation.
The area under the curve is unity.

Gaussian function is used in this book for its simplicity and is given by

exp <frc(ax)2)

The area is 1/a, the second moment is 1/(2 @ ), variance is 1/(27 a*), and root
mean square width 1/(v/2ma).

Heaviside function has the value zero when t < 0 and unity when ¢ > 0.

LPI is the abbreviation for low probability of intercept.

LSB see least significant bit

m.g.f. see moment generating function.
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Median is the 50% point on the ordinate of a cumulative distribution function
Mode is the position of the peak of a probability distribution.

Moment generating function is the function

400
M(t) = / p(x) exp(tx) dx  continuous distribution
= Zp(x) exp(tx) discrete distribution

Most significant bit The bit representing the greatest increment in a word represent-
ing a number, normally the bit on the left.

Moving target indicator (MTTI) is a form of signal processing in radar that suppresses
echo signals from stationary scatterers such as ground clutter.

MSB, see most significant bit
MTI, see moving target indicator.

Negative phase sequence The sequence of phases opposite to the principal phase
rotation [3].

Negative phase sequence component A rotating voltage or current representing
imbalance in a polyphase circuit [3].

Normal distribution is used in the English literature, Gaussian distribution is used in
other languages and in this book -see Gaussian distribution.

Offset The origin for rotating voltages or currents
p-d.f., see probability distribution function.

Percentile The nth percentile the point where the curve on a cumulative distribution
crosses the n% point on the ordinate.

Polar detector [1]. A form of vector detector that gives the amplitude, r, and phase, ¢,
of the modulation.

Positive phase sequence component The principal or working component in a poly-
phase circuit [3].
Positive phase sequence The conventional sequence of the rotation of the phases or

the sequence in which each phase reaches its maximum [3].

Probability distribution function With a statistical distribution it is the probability
that a certain point on the abscissa has that value.

Quartile The first, second, and third quartiles are the points where the cumulative
distribution function cuts the 25%, 50% (median), and 75% points on the ordi-
nate.
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Rotating current The rotating current vector in a polyphase circuit and is a literal
translation of the German word Drehstrom.

Rotating voltage This term is used for the voltage vector in a polyphase circuit and is
an analogy with the German term Drehspannung.

Sideband The spectral components not at the carrier frequency representing the
modulation of the carrier wave.

Sidelobe Used mainly for antenna patterns as secondary lobes away from the direc-
tion of the main lobe. This term is used figuratively for secondary responses pres-
ent in Fourier transforms.

Spiral A curve of increasing radius in two dimensions. By analogy to spherical spir-
als in Figure 2.2(b), curves of varying radius and pitch are called spatial spirals.

Spatial spiral A curve similar to a helix that does not have to have a constant radius
and pitch.

Standard deviation is the square root of the variance, often denoted by s or o.
Variance is the second moment about the mean, often denoted by s* or ¢°.
Vector voltage A voltage expressed in two dimensions, either Cartesian or polar.

Vector detector [1]. A detector used to recover both the amplitude and phase compo-
nents of modulation on a carrier wave. Cartesian and polar forms are possible.

Weighting The word taper is used here — see Chapter 5.
Window The word taper is used here — see Chapter 5.

Zero phase sequence component This is the constant direct voltage or current repre-
senting the centre point of the circle or ellipse of the positive and negative phase
sequence components [3].
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Maple Graphical Expressions

Technical graphics in three dimensions are notoriously difficult to draw by hand.
Luckily a number of mathematics programs are available to do the calculations and
produce convincing illustrations. The Maple program has been used extensively to
produce the diagrams in [1] and this book and this appendix shows some of the
expressions used.

Other mathematics programs also have graphics outputs and there are a num-
ber of computer programs that can translate from one language to another.

B.1
Fourier Transforms

The form of the Fourier transform used by Woodward [2] for signal analysis is
+00
F(f) = / f(t)exp(—j2mft) dt 1)

where F(f) is the spectrum of the time function, frequency variable f;
f(t)  is the time function, time variable t;
j is v/~ 1.

The Maple expression for a function expressing (1) is

F := (£, remaining parameters)
-> int ( £ (t, remaining parameters) *exp (-I*2*Pi*f*t),
t=-infinity..+infinity);

Where remaining parameters are any parameters that are needed to be passed
into the function F(f).
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The inverse transform is
+oo

f@)-‘/ F(f)exp(+2nft) df @

—00

giving the Maple expression

f := (t, remaining parameters)
->int ( F (£, remaining parameters) *exp (+I*2*Pi*f*t),
f=-infinity..+infinity);

Chapter 6 uses the omega convention with the functions p(x) for probability dis-
tributions and C(§) for characteristic functions, namely

cE®) = / p(x)exp(itx) dx
=5 g
p) = L [ c(e) exp(-in) a

where p(x) is the probability distribution function, variable x;
C(&) is the characteristic function of the probability distribution, variable &;
iis v—1.

The Maple expressions for the transform is

C := (x1i, remaining parameters)
->int ( p(x, remaining parameters) *exp (I*xi*x),
x=-infinity..+infinity) ;

and its inverse is
p := (x, remaining parameters)
->1int ( C(x1i, remaining parameters) *exp (-I*xi*x),

xi=-infinity..+infinity) /2/Pi;

The Fourier transforms that are part of Maple use the omega convention with a
negative exponential, namely

Flo) = / f(t) exp(—iot) dt (“4)
() = L / F(o) exp(+iot) df

and are called by



B.2 Plotting Expressions

F := (£, remaining parameters)
->inttrans[fourier] ( £ (t, remaining parameters) , t, o) ;

and its inverse is

f := (t, remaining parameters)
->inttrans[invfourier] (F (w, remaining parameters) , ®, t) ;

B.2
Plotting Expressions

As described in Chapter 3, a new convention [1] is used to display time waveforms,

which may be complex, and their spectra orthogonally in three dimensions as
shown in Figure B.1. The time and frequency plots must be generated separately.

Waveform in time Spectrum of waveform

vﬁFW Real time
and

frequgncy

- + Frequency
Imaginary time
. - + Time
Imaginary frequency

Figure B.1 The common display of time waveforms and their spectra.

B.2.1
Time Plot

The coordinate system is not the default Cartesian system provided by Maple. The
Maple plot option orientation=[-45, 45] is used to turn the representation to
the proper aspect. Thus a time plot is given in Maple by

plot_t :=plots[spacecurve] ([t, Im(Time expression) ,
Re (Time expression) 1, t=start. .end, orientation=[-45, 45],
colour=black, numpoints = number of points) :

Often it is necessary to increase the number of points from the default 25 for
adaptive plotting to create smooth curves.
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The plot is assigned to a variable and the expression ends with a colon so that no
list of plotting values is displayed. If necessary plot_t may be defined as a func-
tion to allow parameters to be passed. An example is shown in Figure B.2.

1

10.8
10.6
0.4

L 0.8
0.2 0.6

. -0.2 1 k
2 3 Time

Figure B.2 The time function.

B.2.2
Frequency Plot, Spectrum, or Characteristic Function

In the frequency domain the Maple expression is
plot_f :=plots[spacecurve] ( [Im (Frequency expression), £,
Re ( Frequency expression) 1, f=start..end, orientation=[-45, 45],

colour=black, numpoints=number of points) :

An example of a complex frequency plot on an orthogonal axis is shown in Figure
B.3.

Frequency

Figure B.3 A frequency plot, spectrum, or characteristic function in statistics..
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B.2.3
Combined Plots

The plots in the time and spectral domains may be brought together using the
Maple function plots[display] ([plot_t, plot_£, ..]) asin Figure B.4.

Frequency

Time

Figure B.4 A combined time and frequency plot.

B.2.4
Exporting Plots

Plots may be copied directly from the screen as bitmaps. For better quality and to be
able to add text to the diagrams it is better to export them to file in a vector format,
for example Hewlett-Packard Graphics Language (*.PGL) or encapsulated PostScript
(*.EPS) format, that can be read by a graphics program. The expressions for this are
plotsetup ( hpgl, plotoutput = “drive:\\file.pgl”); for Hewlett-
Packard, and plotsetup( ps , plotoutput = “drive:\\ file .eps”);
for PostScript files (do not omit the double \\ or Maple will strike). No options are
specified as it is easier to turn, size, and maybe edit the diagrams using a graphics
program, for example, often the lines need to be thickened for publication.

Do not forget to return the display function back to the monitor screen with the
plotsetup (inline) ; function.

B.2.5
Stereographic Pairs

Plots may be displayed on a monitor screen at slightly different aspects as seen by
the left and right eyes by changing the orientation in the plots[display] func-
tion. Though the space curves may be coloured almost at will, the axes remain
black.

When the stereographic pairs are edited using a graphics program, the colours
for the left and right eyes may be changed to match the coloured spectacles needed
to view them. After this the images may be superimposed for printing or display
using the graphics program, as in Figure B.5.
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Figure B.5 A red and green stereographic pair with coloured axes.

B.3
Other Types of Plots in Three Dimensions

The use of Maple or other mathematics programs is not limited to complex wave-
forms and their Fourier transforms and there are other examples in [1]. An example
is the Wien bridge shown in Figure B.6.

Lamp to
stabilise the
gain at 3

Figure B.6 A Wien bridge oscillator [Source: Meikle, H.D.,
Modern Radar Systems, Norwood, Massachusetts: Artech
House, 2001.

The working point at the point A, referenced to zero by subtracting the network
attenuation factor, is given by
R 1
Working point = : - ~3 (5)
(j2wfCR + 1) (R +—+ )

afc  jamfCR+1
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When the phase at point A is the same as that at the output, positive feedback
occurs, and the circuit oscillates and the frequency of oscillation as

1

2nCR (©)

Working frequency =

In this example R is 1000 ©, and Cis 1 uF, so that the oscillating frequency, f, is
159.1549 Hz. The phase change varies with frequency continuously and the oscilla-
tion point is shown in Figure B.7. Standard Bode diagrams show a phase jump of
180 degrees, or discontinuity, at this point. In Figure B.7 the oscillation point is part
of a continuum.

10° Frequency Hz

Imaginary axis

Oscillating
frequency
159 Hz

0.1

0.2
Real axis
0.3

0.4

Figure B.7 The complex working point for the Wien bridge
oscillator [Source: Meikle, H.D., Modern Radar Systems,
Norwood, Massachusetts: Artech House, 2001].
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9, Kronecker delta function 25, 204
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A function 55

IT function 55
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Antenna arrays, linear 88
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Bandpass filter 88
Bandstop filter 88
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Bottlebrush noise 8, 186

c
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Characteristic function 150, 204
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Chebyshev’s inequality 149
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Double-sideband modulation 18
Dynamic range 93

e

Echo signals, radar and sonar 4,5
Electrical power 15

Energy 45

Errors, analogue to digital conversion 95

f

False alarm probability 195

Filter
Gaussian 191
lowpass 84

Finite impulse response filters 80
Fisher skewness 149
Fourier series 24
period of integration 27
Fourier transform
addition, subtraction 34
continuous 65
convolution 35
cosine 8
cyclic nature 71
discrete 65, 69
discrete, examples 80
division 46
drawing convention 29
electrical engineering 2
finite 65, 66
inverse 84,87, 88
multiplication 35
noise 188
physics 1
properties 34
rectangular pulse 33
scaling 34
sine 8
statistics 2
Frequency division multiplex 17
Functions
A 55
IT 55
comb 54
Gaussian 205
Heaviside 205
rep 53
sinc 32
sinc 84
tapering 99
111 54

g

Gaussian pulse 59
Gaussian filter 191

Graphical expressions, Maple 209

h

Helical function 3
Helix 10, 11
Highpass filter 87
Histogram 146, 147

i
Image frequency 97

Inverse Fourier transform 2,3

k
Kurtosis 150

1
Linear arrays 88
Lowpass filter 84

m

Matching filters 190

Mean 145

Median 147, 206

Mode 206

Modulation
double-sideband 18
phase and amplitude 6
single-sideband 17
vector 5

Moment generating functions

Moments 39, 48, 151
first 50
higher 149
second 52

150, 206

Moving target indicator 60, 206

MTI 60
Multiplication, vector 15

n
Negation 13

Negative phase sequence 3, 20, 97, 206

Noise 7
bottlebrush 8
Noise power 183

o

Offset, direct voltage 96
Omega convention 145
Operation, unary 13
Operational research 178



p
Pattern synthesis 89

Pearson skewness 149
Pearson mode 149
Percentile 147, 206
Phase sequence 3
Phase modulation 6
Plots

combined 213

exporting 213

frequency, spectrum, characteristic

function 212

time 211
Plotting expressions, Maple 211
Polarisation, circular 7
Polyphase

motor 12

power 14,15

unbalanced 18
Positive phase sequence 3, 206
Power, electrical 15
Power 45
Probability distribution function 150, 206
Probability of detection 197
Pseudo-random signals 195

Pulse
Gaussian 59
ramp 59

rectangular 57
triangular 58

q
Quadrature amplitude modulation (QAM)

Quantisation noise 95
Quartile 147, 206

r

Ramp pulse 59

Random spatial spiral 4
Rectangular pulse 57

rep function 53

Rotating voltage, current 11, 207

S
Sample values 70
Sampling 73
errors 77
Sideband 206
Sidelobe 206
Sinc function 32
Sine and cosine waveforms 57
Single-sideband modulation 17
Smoothing 40

Spatial spiral 3, 4,9, 206
Spiral spring 10
Spirals

Archimedes 9

conical 9

Cornu 9

daisy 9

Fermat’s 9

hyperbolic 9

involute 9

logarithmic 9

phyllotaxes 9

polygon 9

spherical 9
Standard deviation 148
Stereographic pairs 213
Subtraction, vector 14
Symmetrical components 19
Synchronous motor 12

t
Tapering functions
(1-4p%)" 110
Bartlett 105
Blackman 120
Blackman-Harris 120, 127
Bochner 105
Chebyshev 105
cosine on pedestal 117
cosine to the power n 113
Dirichlet 105
Dolph-Chebyshev 134
Exact Blackman 120
Hamming 120
Hann, von 114
Hanning 114
parabolic 110
Parzen 105
Riesz 105
Taylor 138
trapezoidal 105
truncated Gaussian 130
uniform 110, 114
Weierstrass 105
Television, colour 5
Three phase power 4
Triangular 58

u
Unary operation 13
Unequally spaced samples 60

Index
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v Wien bridge 214
Variance 148 Woodward-Levinson method 89
Vector
detector 206 z
division 18 z-transform 84
modulation, single sideband 17 Zero phase sequence component 96, 206
modulation and demodulation 5
powers 18 m
voltage 206 111 function 54
w

Weighting functions, see tapering functions
Widths of functions 44
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