
Copyright 2007 BittWare, Inc.

Trident Multiprocessor Operating
Environment

Supporting Multiprocessor Embedded Systems Development

By Dr. Kenny Adamson, BittWare, Inc.

January, 2007

In general, the use of tools such as an RTOS and a multiprocessor operating environment will pro-

vide for a more reliable programming methodology, higher real-time predictability, and shorter

development time. This is especially true when targeting the parallel hybrid solutions called for by

today’s complex applications. This article explores the software requirements of embedded appli-

cations and discusses how vendor-supplied tools assist developers in attaining optimal computing

solutions with specific reference to BittWare’s family of hybrid COTS boards.

The Ever-Changing Face of Embedded
Applications
Modern high-performance COTS environments
typically marry a modular processing core to
industry-standard bus interfaces such as VME,
cPCI, PMC and PC/104. Along with the core pro-
cessing elements pro-
vided within most
COTS architectures,
there is an ever
increasing propor-
tion of the processing
being located within
at least one associ-
ated large FPGA. For
example, the process-
ing core of BittWare's
GT family combines
the raw performance
of 4 Analog Devices
processors with an
Altera Stratix II GX
FPGA (as shown to
the right). Such hybrid (processor + FPGA) archi-

tectures have the potential to provide unparalleled
performance thanks to numerous processing ele-
ments that can act concurrently; however, the suc-
cess of any application is dependent on the
developer's ability to program such an environ-
ment efficiently.

Embedded Software
Challenges
DSPs began as simple
devices designed to pro-
cess single streams of data
with fixed data-rates. They
have since matured into
much more powerful
devices capable of process-
ing multiple data streams
with differing data-rates
across multiple channels.
The first devices were
rudimentary and the early
signal processing applica-
tions were programmed

using assembler or C code to directly interface with

Trident Multiprocessor Operating Environment

Copyright 2007 BittWare, Inc.

the hardware. The growth in processing capability
has led to an increase in the sophistication of sig-
nal-processing applications as well as the overheads
necessary to maintain the state of such devices. A
moderately complex application must manage the
underlying hardware as well as undertake the task
for which it was designed. In practice this means
maintaining a finite-state representation of the pro-
cessor and 'time slicing' the execution of each task.
This becomes even more difficult if tasks are faced
with delays or have uneven durations. Add to this
the problem of managing a number of separate
processors concurrently to allow the seamless com-
munication of information and control signals in
an efficient and transparent manner, and you are
faced with a non-trivial system before the applica-
tion is actually coded. Developers are either faced
with the prospect of doing it all themselves or using
a tried-and-tested vendor tool.

How do Operating Systems Help?
An operating system kernel supports sophisticated
applications by directly managing the state of the
underlying hardware. The developer uses a more
simplistic model for software development based
on the concept of a thread. This is a single stream of
control that undertakes a specific job; typically
there are a number of them within an application.
Each thread can be thought of as working indepen-
dently and it is the job of the kernel to interact with
the hardware and to ensure that each thread is
granted sufficient execution time whilst masking
any latency within the system from the developer.
Threads seldom exist on their own therefore the
kernel must also provide prioritization mecha-
nisms and thread synchronization primitives. The
threaded development model vastly simplifies the
process of creating and maintaining new applica-
tions as well as porting them to other platforms.

There are a wide variety of commercial and open-
source operating systems in existence though
embedded applications favor the use of a specific
type called Real-Time Operating Systems (RTOS).
These provide a much more specialized environ-
ment than that of a general purpose operating sys-
tem, such as Microsoft Windows or Linux. In an
RTOS, the time taken to perform an action is as
important as the results of the action itself. Such

systems can be further categorized into soft real-
time systems, where a late result can be tolerated,
and hard real-time, where a late result can be cata-
strophic. It is imperative that such systems are pre-
dictable.

Real-time systems respond to stimuli occurring at
different times, which is impractical to handle
using purely sequential programming techniques.
Consequently, real-time systems are typically
designed as a set of concurrent, cooperating pro-
cesses. It is very important to fully support the
management of these processes and provision of an
execution platform is a huge benefit. In any case we
have a number of common problems that must be
resolved. Task scheduling, which decides when and
why tasks should be run; policing of the use of
resources to prevent damage and corruption
(mutual exclusion); and we need task communica-
tions facilities (synchronization and data transfer).
The design environment therefore should remove
the burden from the developer and screen the com-
plexity of the hardware system from the program-
mer.

The DSP processor within BittWare's GT family is
the Analog Devices ADSP-TS201. There are only
two RTOS' in existence for this processor including
Visual DSP++ Kernel (VDK). This is a real-time
kernel provided by Analog Devices across their
family of digital signal processors. Complex appli-
cations are represented as a series of concurrently
operating tasks, or threads. A thread possesses its
own stack(s) and can share resources or synchro-
nize with other threads through the use of kernel
signaling mechanisms such as semaphores, events,
messages and a device flag. Each thread has a prior-
ity that the kernel uses to determine execution time
on the processor. At run time the thread with the
highest priority that is capable of running is given
time on the processor until it explicitly relinquishes
it's time or a higher-priority thread becomes avail-
able (as a result of a hardware event).

Crossing the Processor Threshold - the
Multiprocessor Operating Environment
VDK provides an efficient and effective means of
writing threaded applications on a single processor;
however, communication between processors is not

Trident Multiprocessor Operating Environment

Copyright 2007 BittWare, Inc.

explicitly supported. Multi-processor software
development adds another level of complexity to
the problem, requiring application developers to
address issues such as how the processors are inter-
connected, how threads on different processors
should be addressed and how to route information
between them efficiently. BittWare's hybrid archi-
tecture COTS boards with their ATLANTiS tech-
nology provide unparalleled multiprocessing
performance and I/O capabilities. VDK provides a
real-time operating system for applications devel-
opment on a single processor, but this picture lacks
a software technology for 'gluing' multiple proces-
sors together, either on the same board or across
multiple boards.

Trident is BittWare's proprietary Multiprocessor
Operating Environment designed to support all the
processing elements found within their hybrid
COTS technology. It incorporates VDK's preemp-
tive scheduler and has been designed to integrate
fully with the operating system. Trident consists of
a number of embedded libraries, plus a plug-in for
the Analog Devices VisualDSP++ development
environment.

Trident's embedded structure is illustrated in the
figure . It has a layered, modular design consisting
of a number of components whose sizes are config-
urable to ensure that they maintain a minimal foot-
print within TigerSHARC memory. The lowest
layer consists of the device drivers that govern the
processor hardware. The upper layers of Trident
interact with the device-drivers for inter-processor
communication. Direct access of the hardware by
the developer is unnecessary. The next layer con-
sists of the Trident framework. This is the central
component that provides the core messaging and
mapping services across all processors in the net-

work. It is also responsible for synchronizing the
system when Trident first boots up, and managing
all other services. The underlying inter-process
communication supporting each Trident module
occurs across high-performance link-ports, either
directly connected or configured via a technology
such as ATLANTiS. Messages are based on small
quad-word transfers with optimal DMA-based
transfers for memory blocks, which results in a fast,
robust, and extremely adaptable message-passing
framework capable of supporting a potential net-
work of 65,000 processors.

The Trident framework builds an abstraction of the
distributed network and calculates optimal routing
paths across it that the other modules communi-
cate with. All of this work is hidden from the devel-
oper and the modules and applications that use it
can be reconfigured for different network topolo-
gies without having to be rewritten. This feature
ensures that applications based on Trident are
transparently scalable. Trident provides a multipro-
cessor operating environment within which boards
and processors are interconnected and threads
positioned to provide optimal data-flow solutions,
thereby allowing the developer to concentrate on
partitioning the application at a functional level.

On top of the framework are a number of services,
or modules, that user-applications are built upon.
Three modules are initially supported: Multipro-
cessor Synchronization (MPSync), Multiprocessor
Message Queues (MPMQ), and Continuous Data
Flows (CDF). Each of these APIs can be run within
the processor network without explicit knowledge
of the underlying network configuration, which is
built using the host-side tools at design time.

The final result from Trident is a build which con-
sists of all of the elements required to configure a
project to work within a multiprocessor environ-
ment. This build will address topological configu-
ration, which provides a description of the
embedded network of processors and how they are
interconnected; Trident Object creation, declaring
the objects to be used in the application; and the
creation of Trident projects; which will generate the
VDK projects containing Trident-enabled threads,
the processors they are located on, and the objects
they will use. Synchronization is an essential activ-

Device Driver Layer

Bitt Framework Core

End-User API

Modules: MP
Sync, MP
Message
Queues, etc.

Trident Multiprocessor Operating Environment

Copyright 2007 BittWare, Inc.

ity within a multiprocessor environment; therefore,
Trident's MPSync module is mandatory, along with
the framework and device drivers. The other mod-
ules are optional and can be omitted to reduce Tri-
dent's memory requirements. The plug-in
determines which modules are required based on
the objects within the build and adjusts the VDK
project to add the appropriate libraries and header
files.

Putting it All Together
The tight integration between the VisualDSP++
environment, the VDK, and Trident, facilitates
rapid application development (RAD). This offers
huge commercial time-saving and code re-use ben-
efits avoiding the need for the hand creation of all
of the control code. The use of automatic code gen-
eration allows the developer to concentrate on the
algorithms and the desired control flow rather than
on the implementation details. The environment
supports the use of C, C++, and assembly language,
and BittWare also provide an extensive range of
hand optimized libraries (TS-Libs) which integrate
within this development environment. This
encourages and supports the development of
highly readable and maintainable code. BittWare's
Trident allows a thread to control and interact with
a device in a portable and hardware abstracted
manner through a standard set of APIs. Trident
provides all the communication mechanisms using
a single API which means that the application
developer no longer has any need to develop these
low-level facilities themselves. No ISRs, no reading/
routing threads - just Trident.

Conclusion
It is clear that the embedded marketplace is charac-
terized by an irrevocable trend towards greater soft-
ware complexity. These complexities not only
complicate the world of embedded software devel-
opers, but also create financial pressures to com-
plete designs on time, meet design expectations,
and meet product windows of opportunity. Soft-
ware development as a process for embedded sys-
tem design has changed very little over recent years.
The advent of object-oriented languages, tools, and
related design techniques have enabled greater
reuse of software. However, their use in embedded
design has been limited due to real-time require-

ments and the need to program as close to the
hardware as possible. The most significant
improvements in embedded software have been
associated with the software tools evolution. The
selection of supporting tools has broad implica-
tions in determining the total product cost and
time-to-market. In general, the use of tools such as
an RTOS and an MP Operating Environment will
provide for a more reliable programming method-
ology, higher real-time predictability, and shorter
development time. This is especially true when tar-
geting the parallel hybrid solutions called for by
today's complex applications. Trident, created to
ease the development of MP applications, handles
all of this complexity while also providing a com-
mon development platform essential for team
development. This unique transparent multi-pro-
cessing operating environment, coupled with ven-
dor support, software design tools, and
documentation, allows for the most beneficial use
of strategic engineering resources.

