
Part II
 Continuous Real-Time Signal Processing

Comparing Continuous cFFTs on the TigerSHARC and PowerPC

By Jeffry Milrod, BittWare and Chuck Millet, Analog Devices

November 2003

This is the second in a series of articles that explores the complex processor tradeoffs and evalua-

tions required to choose the most effective processor for continuous real-time signal processing

applications as typified by the 1024-pt complex Fast Fourier Transform (cFFT). Part I appeared in

the December 2002 issue of COTS Journal, and is available on their web site (www.cotsjournalon-

line.com).

The previous installment of this series provided
detailed overviews of the TigerSHARC (ADSP-
TS101) and the G4 PowerPC with Altivec
(MPC7410 & MPC7455) processors, along with a
discussion of the importance of I/O bandwidth and
the bandwidth-to-processing ratio (BPR) in real-
time signal processing applications. It was shown
that oft quoted peak performance benchmarks can
be misleading when used to infer real-world per-
formance, and that measuring sustained, or contin-
uous, algorithm performance is much more
indicative and informative regarding the compari-
son of these processors. Finally, it was proposed
that the continuous 1024-pt cFFT algorithm is an
excellent indicator of real-world performance, and
predictions were made for the performance of these
processors, both at the processor and board level.

For this article, continuous 1024-pt cFFT algorithm
benchmarks were actually coded, optimized, and
measured on the ADSP-TS101 at 250 MHz and on
the MPC7410 at 400 MHz. Unlike some other
“system-level” benchmarks, these implementa-
tions of the continuous cFFT benchmarks took
advantage of all the features of each processor that

could improve performance - since this approach is
more like what would be implemented by an engi-
neer designing a real system. The results are
reported in detail, along with extrapolations for
other variants and speeds, as well as board-level
implications.

1. TigerSHARC Implementation

The continuous cFFT algorithm was implemented
on a BittWare Tiger-PCI board (TSPC) that fea-
tures a cluster of four (4) ADSP-TS101 Tiger-
SHARCs running at 250 MHz. The benchmark
code was written in C and was developed using
Analog Devices' VisualDSP++; it was loaded on to
the board using BittWare's BittWorks toolkit.
Copyright 2003 BittWare, Inc. 1

Part II: Continuous Real-Time Signal Processing
Figure 1: TigerSHARC Continuous cFFT Data Flow on TSPC Board

As was shown in Part I, it is expected that running
continuous cFFTs on the TigerSHARC will be pro-
cessor limited, implying that the continuous
benchmark performance will be driven by the per-
formance of the cFFT algorithm itself. It is, there-
fore, critical that a highly optimized cFFT routine
be used for the benchmark. To that end, the bench-
mark implementation calls the 1024-pt cFFT func-
tion from the EZ-DSP TSlibs function library,
which is handcrafted and fully optimized in assem-
bly language.

The TigerSHARC boasts link ports which, as dis-
cussed in detail in Part I, provide a unique and bal-
anced data movement path, and this is the obvious

way to move data on and off the processor. There-
fore, as shown in Figure 1, a single TigerSHARC
(DSP0) was used to continuously perform cFFTs.
Two additional TigerSHARC were used as test
instrumentation to generate the input data (DSP3)
and receive the results (DSP1) via link ports. Note
that the link ports could also be used to move data
from/to other I/O devices such as FPGAs, using the
other TigerSHARCs on the TSPC board was simply
a convenience.

 Since the TigerSHARC can support I/O DMAs
from/to internal memory in background, dual
input and output buffers were used to implement a
ping-pong scheme shown graphically in Figure 2.

SharcFIN
Bridge/Interface

Chip

TigerSHARC

Performs
Continuous cFFTs

DSP0

SDRAM

64-bit, 66 MHz
PCI

Cl
us
ter
Bu
s

TigerSHARC

Receives cFFT
results from DSP0

DSP1

TigerSHARC

Creates &writes
input data to DSP0

DSP3

TigerSHARC

DSP2

Link Port @ 250 MB/sec

Link Port @ 250 MB/sec
Copyright 2003 BittWare, Inc. 2

Part II: Continuous Real-Time Signal Processing
While the cFFT routine is processing data from
input buffer A and writing the results to output
buffer A, the DMA engines are simultaneously
moving the data for the next cFFT in to input
buffer B from a link port while the results from the
previous cFFT are being written out the other link
port from output buffer B. After the cFFTs and
both DMAs complete, the ping-pong buffers are
swapped; the cFFT now processes out of/into buffer
B while the DMAs operate on buffer A.

Using this ping-pong scheme, the internal memory
of the TigerSHARC must hold the benchmark

code, as well as dual input and output buffers. It
was verified that how the buffers are placed in
memory could dramatically impact the benchmark
performance. As shown in Figure 3, the Tiger-
SHARC's internal memory consists of three (3)
banks of 2 Mbits each. Bank 1 is used for the pro-
gram code (with plenty of room to spare). Even
though both data buffers would easily fit in to a sin-
gle bank, it was found that for optimal perfor-
mance each input/output buffer set needed to be
placed in a separate bank; i.e. buffers A placed in
Bank 2, and buffers B placed in Bank 3.

Figure 2: Ping-Pong Buffer Scheme for TigerSHARC Implementation

64-bit, 66 MHz PCI

Output Buffer B
Results of cFFTn-1

Link Port DMA out

Input Buffer B
Data for cFFTn+1

Output Buffer A
Results of cFFTn

Link Port DMA inInput Buffer A
Data for cFFTn

1024-pt cFFT
Algorithm

Link Port DMA out

Link Port DMA in
Copyright 2003 BittWare, Inc. 3

Part II: Continuous Real-Time Signal Processing
Figure 3 Figure 3: TigerSHARC Block Diagram

 2. PowerPC Implementation

The continuous cFFT algorithm was implemented
on a Motorola PrPMC800 PMC that has a single
MPC7410 running at 400 MHz with a 100 MHz
front-side bus; the PMC board was placed on a PCI
carrier card for ease of use. The benchmark code
was written in C and assembly, and was compiled
using the GNU C compiler version 2.96; it was
loaded on to the board using the PPCBUG monitor
via a serial port.

As was shown in Part I, it is expected that running
continuous cFFTs on the G4 PowerPC with AltiVec
will be bandwidth limited, implying that the con-
tinuous benchmark performance will be limited by
I/O, not the performance of the cFFT algorithm
itself. Therefore, the optimization of the cFFT rou-
tine used for the benchmark is not critical since it
does not drive the performance. A public domain
1024-pt cFFT algorithm implementation was used
that offered good, but not stellar performance.

As with most PowerPC boards, the primary mecha-
nism for data movement on the PrPMC800 is
through the external node controller and PCI
bridge. The PrPMC800 uses Motorola's Harrier
chip that features a 64-bit, 66 MHz PCI interface, as
shown in Figure 4. Since the cFFT algorithm oper-
ates “in-place” (i.e. the input data buffer is over-
written with the results), only two buffers (one I/O,
one for cFFT) is required to implement a ping-
pong scheme. These buffers were placed in the
main memory. While a cFFT is performed on
buffer A, data output from the previous cFFT cal-
culation is written out via a DMA from buffer B to
the PCI bus; data for the next cFFT calculation is
then read in via a DMA from the PCI back into
buffer B. As with the TigerSHARC implementa-
tion, the buffers simply switch when the whole pro-
cess is complete. The two DMAs were combined
using a chained DMA, which allows a sequence of
DMA operations to be combined into a single
operation using a linked list of DMA descriptors

M0
2 Mb

M1
2 Mb

M2
2 Mb

Sequencer
128-entry

BTB

128b

J ALU

J-RF
0

31

128b

128b

K ALU

K-RF
0

31

128b

Comp Block
Y

R
F

0

31

ALU

Mult

Shift

Comp Block
X

R
F

0

31

ALU

Mult

Shift

External
Port

DMA

Peripherals

Link Ports

C
lu

st
er

 B
u

s

Copyright 2003 BittWare, Inc. 4

Part II: Continuous Real-Time Signal Processing
Figure 4: PrPMC800 PowerPC Board Block Diagram

 Most programmers use an operating system when
programming the PowerPC due to the complexity
and difficulty of creating stand-alone programs.
However, since the overhead of an operating system
could reduce the benchmark performance, the
implementation configured the PowerPC manually,
including managing the cache, MMU, and DMA
engine on the external node controller.

Since the PowerPC is bandwidth limited and uses
cache to speed access to data, cache management
was considered critical in the algorithm implemen-
tation. Note that the cache is not addressable mem-
ory, it is merely a fast buffer holding a copy of
portions of the memory and is controlled by the
cache manager. Once a memory address range (in
this case, an I/O buffer) has been accessed by the
processor, it will be “cached” for quicker subse-
quent accesses. Therefore, input data that is read in
from the PCI bus into memory is not necessarily

the same data that the processor sees when it
attempts to access the data – because the PowerPC
will look to the copy of data that is stored in cache
rather than the copy that is in memory. One way to
eliminate this problem is to enable “snooping”,
which causes the hardware to keep the contents of
cache and main memory coherent. But because
snooping can severely hinder performance, the
cache was managed manually by 'invalidating' the
address range containing the data received via
DMA.

An “invalidate” operation forces the cache to reload
the data in the invalidated address range from
memory the next time it is accessed, causing the
data in cache to be consistent with the data in
memory. Likewise, when the cFFT writes its results
into an output buffer, this buffer is located in cache
rather than in memory. It must then be 'flushed'
from cache to memory before a DMA is performed;

Main Memory
(ECC SDRAM)

Harrier
Controller/Bridge

Chip

MPC7410

64-bit @ 100 MHz

L2 Cache

64-bit @ 200 MHz

64-bit, 66 MHz PCI
Copyright 2003 BittWare, Inc. 5

Part II: Continuous Real-Time Signal Processing
otherwise the DMA engine will move stale data
located in memory rather than the results of the
calculations that are stored in cache.

3. Discussion of Results

Table 1 shows the specifications of the processors,
and the predictions made for the performance of

the continuous 1024-pt cFFT implementation on
the TigerSHARC and the PowerPC from Part I;
Table 2 shows the actual results of the benchmarks
tests. While neither processor did as well as pre-
dicted, the TigerSHARC dramatically outper-
formed the PowerPC.

Further examination of the TigerSHARC results
and implementations revealed that the prediction
made in Part I neglected to allow for any DMA
management overhead. Setting up the link port
DMAs, handling the DMA done interrupts, and
checking for DMA completion adds an overhead of
approximately 10% that accounts for the perfor-
mance difference. For the sake of convenience the
DMA management code was written in straightfor-
ward C, and since the improvement of the overall

benchmark would be small (10% at best), no
attempt was made to minimize this overhead.

Evidently, the PowerPC overhead is much more sig-
nificant. Although the benchmark tests were only
performed on a 400 MHz processor, the results are
approximately a factor of three (3) less than pre-
dicted. This was somewhat anticipated, however,
and gave rise to the asterisked note that the effects
of cache and data movement overheads were

Table 1: Processor Specifications and Performance Predictions from Part I

TigerSHARC PowerPC

Parameter ADSP-TS101S MPC7410 MPC7455

 Core Clock 250 MHz 500 MHz 1,000 MHz

 Peak Floating-pt Performance 1,500 MFLOPS 4,000 MFLOPS 8,000 MFLOPS

 Memory Bus Size/Speed 64-bit/100 MHz 64-bit/125 MHz 64-bit/133 MHz

 External Link Ports 4@250 MB/Sec None None

 I/O Bandwidth (inc. memory) 1,800 MB/Sec 1,000 MB/Sec 1,064 MB/sec

 Bandwidth-to-Processing Ratio 1.20 B/FLOP 0.25 B/FLOP 0.13 B/FLOP

 1024-pt cFFT Benchmark 39 µsec 22 µsec 13 µsec (est.)

 Approx Cycles for 1024-pt cFFT 9,750 cycles 11,000 cycles 13,000 cycles

 Predicted 1024-pt cFFTs/chip 25,641 per Sec 26,053* per Sec 64,941* per Sec

*. Assumes 100% of peak I/O used for continuous cFFTs, and neglects cache & data movement overheads
due to inability to predict - real-world performance could be much less.

Table 2: Results of Continuous 1024-pt cFFT Benchmark Implementation

Parameter
TigerSHARC
ADSP-TS101S

PowerPC
MPC7410

 Core Clock 250 MHz 400 MHz

 Actual 1024-pt cFFTs/chip 22,923 per sec 7,899 per sec
Copyright 2003 BittWare, Inc. 6

Part II: Continuous Real-Time Signal Processing
neglected and the associated warning that real-
world performance could be much worse. This
concern proved warranted.

To ensure accurate and optimized results, several
variants of the full benchmark implementation
were run on the PowerPC. As expected, with the
cache disabled, performance decreased by about an
order of magnitude. Benchmarks were also run
with the cFFT disabled, and it was discovered that
just moving the data in and out, as well as manag-
ing the cache and MMU, resulted in no perfor-
mance improvement at all! This clearly indicates
that even if a considerably faster cFFT algorithm
were used, there would be no performance
improvement of the continuous cFFT benchmark.
Similarly, eliminating the chained DMAs and forc-
ing all data movement over PCI to be writes could
possibly result in a small, but relatively insignificant
improvement.

More complicated yet, is the possible impact of an
operating system to manage the cache and MMU. It
is assumed that the overhead would be increased,
however, this may be a false assumption - it is pos-
sible that commercial operating systems could pro-
vide an improvement over this manual
implementation, but it seems unlikely due to the
inefficiencies and cache overhead associated with
the OS services and context switches.

Despite best efforts, this benchmark implementa-
tion on the PowerPC might be proven to be non-
optimal and thus not truly indicative of the real-
time signal processing capabilities of the PowerPC.
However, unless and until a greatly improved
implementation is provided, it must be concluded
that the TigerSHARC is far superior at processing
continuous cFFTs and is, therefore, a better real-
time signal processor.

4. Extrapolations and Board Level
Implementations

Since it is processor limited, the TigerSHARC
benchmark results should scale linearly with pro-
cessor speed as long as the I/O bandwidth remains
balanced (i.e. the link port bandwidth also
increases linearly). Thus extrapolation for the faster
ADSP-TS201S is straightforward.

This is not the case for the PowerPC, as this proces-
sor is bandwidth limited. Further, the cache man-
agement issues dominate the performance of
continuous cFFTs. Thus, the speed of the front-side
memory bus is more indicative of continuous cFFT
performance than processor speed. Increasing pro-
cessor speed of a MPC7410 from 400 MHz to 500
MHz, without increasing the speed of the front-
side memory bus, will have little or no effect on the
benchmark. Oddly, the speed of the front-side
memory bus is typically not specified on COTS
boards, but in practice, all seem to run at 100 MHz
(possibly due to the external controller/bridges), as
did the PrPMC800 used for the testing.

Since other PowerPC versions used on COTS
boards (MPC7455, MPC7447) have different data
movement and cache schemes than the MPC7410,
it's difficult to directly infer their performance
from these results. However, it seems reasonable to
infer that the performance of these processors and
boards will be similarly limited by the cache and
front-side memory bus speed in addition to the
bandwidth limitations discussed in Part I.

As discussed in Part I, multi-processor COTS
boards are readily available with TigerSHARCs and
PowerPCs. The original board-level predictions
accounted for the I/O bandwidth scalability of the
TigerSHARC, and further bandwidth limits
imposed for the PowerPC boards. However, the
reduced processor benchmark performance of the
PowerPC indicates that the boards should no
longer further limit the I/O required to keep all the
PowerPCs feed when running continuous cFFTs.
Therefore, as shown in Table 3, the board level per-
formance is projected to simply be the number of
continuous cFFTs per processor multiplied by the
number of processors per board. It was originally
projected that an Octal TigerSHARC board (ADSP-
TS101S @ 250 MHz) could perform three times as
many continuous cFFTs as a quad PowerPC board
(MPC7410 @ 500 MHz). The results of this study
indicate that the TigerSHARC board will actually
outperform the PowerPC board by more than
seven times, and that the new TigerSHARC (ADSP-
TS201S) will outperform the PowerPC boards by a
factor of 15!
Copyright 2003 BittWare, Inc. 7

Part II: Continuous Real-Time Signal Processing

 5. Original Conclusions Supported

The benchmark implementations and testing sup-
ported the conclusions from Part I that the Tiger-
SHARC is a superior real-time signal processor. In
fact, the results make them even more emphatic,
such that they bear repeating:

“If the application requires a lot of number crunch-
ing with little data movement, typical of so-called
back-end data processing, then the PowerPC’s
higher clock rate and more powerful core will
probably be more effective. For continuous real-
time signal processing such as imaging, radar,
sonar, sigint, and other applications that require
high data flow or throughput, however, the Tiger-
SHARC can dramatically outperform the PowerPC
and is probably the preferred choice.”

Clearly these processors are designed and opti-
mized for different applications. In the case of the
TigerSHARC, virtually all data movement is done
in background and the performance is driven by
algorithmic speed; in the case of the PowerPC, liter-
ally all of the processing is done in background for
this application, and the performance was driven
by I/O and cache overhead.

Table 3: Board-Level Implications and Extrapolations

TigerSHARC PowerPC

Parameter ADSP-TS101S ADSP-TS201S MPC7410

 Core Clock 250 MHz 500 MHz 500 MHz

 Typical # Processors/Board 8 8 4

 Peak FLOPS/Board 12 GFLOPS 24 GFLOPS 16 GFLOPS

 Memory Bus Size/Speed 64-bit/83.3 MHz 64-bit/100 MHz 64-bit/100 MHz

 Typical Off-board I/O 2 PMC + 16 Links 2 PMC + 16 Links 2 PMCs

 Peak Off-board I/O (not back-
plane)

5,056 MB/Sec 9,056 MB/Sec 1,056 MB/Sec

 Bandwidth-to-Processing Ratio 0.42 B/FLOP 0.38 B/FLOP 0.07 B/FLOP

Projected 1024-pt cFFT/Board 180,000* per Sec 360,000* per Sec 24,000* per Sec

*. Estimated based on previous results
Copyright 2003 BittWare, Inc. 8

	1. TigerSHARC Implementation
	Figure 1 : TigerSHARC Continuous cFFT Data Flow on TSPC Board
	Figure 2 : Ping-Pong Buffer Scheme for TigerSHARC Implementation
	Figure 3 Figure 3: TigerSHARC Block Diagram

	2. PowerPC Implementation
	Figure 4 : PrPMC800 PowerPC Board Block Diagram

	3. Discussion of Results
	Table 1: Processor Specifications and Performance Predictions from Part I
	Table 2: Results of Continuous 1024-pt cFFT Benchmark Implementation

	4. Extrapolations and Board Level Implementations
	Table 3: Board-Level Implications and Extrapolations

	5. Original Conclusions Supported

