

Innovation First, Inc.
Programming Reference Guide

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 2

Table of Contents

1. PBASIC Processor and Memory..3

1.1. Processors.. 3
1.2. PBASIC Program Memory ... 3
1.3. Default vs. Custom Programs.. 3
1.4. Programming Language and Windows Software.. 3

2. PBASIC Software Structure...4
2.1. Define the BS2-SX.. 5
2.2. Declare Variables .. 5
2.3. Define Aliases ... 6
2.4. Define Constants ... 6
2.5. Initialization... 6
2.6. Main Loop ... 7
2.7. Main Loop - SERIN Data Input .. 8
2.8. Main Loop - Perform Operations Here ... 8
2.9. Main Loop - SEROUT Data Output.. 9
2.10. Main Loop – Return to SERIN.. 10

3. Program Inputs ...10
3.1. Digital Inputs ... 10
3.2. Analog Inputs .. 11

4. Program Outputs...13
4.1. PWM Analog Outputs ... 13
4.2. Relay Digital Outputs .. 13
4.3. Oscillator Output (EDU-RC only) ... 14

5. Downloading to the Robot Controller ..14
5.1. Programming Steps ... 14
5.2. Write Protect Jumper (EDU-RC only) ... 14
5.3. DEF/USER Jumper (full-size RC only) ... 15
5.4. Basic Run (Green LED) .. 15
5.5. Basic Run Error (Red LED) .. 15
5.6. Basic Init Error (Red LED) ... 15

6. Additional PBASIC techniques..16
6.1. Debug Statements.. 16
6.2. Robot Feedback and User Mode ... 17
6.3. PB_Mode – Competition, Autonomous, and User.. 18
6.4. Scratch Pad .. 19
6.5. Delta_T.. 20
6.6. Multiple Program Banks ... 21

7. PBASIC Commands...21

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 3

1. PBASIC Processor and Memory

1.1. Processors

Each Robot Controller has three built-in microcontrollers. One of these microcontrollers, the Parallax
BS2-SX 50MHz microcontroller, uses memory that is programmable by the user. This programmability
allows customization of user controls, semi-automatic robot functions, and autonomous robot functions.
This user processor has access to all user control and robot sensor data, as well as control over the
analog and digital outputs used to control motors and relays.

1.2. PBASIC Program Memory

Each Robot Controller has one or two EEPROM memory chips used to store the PBASIC program.
This memory is non-volatile; meaning that is keeps its memory after power has been removed. The full-
size RC has two memory chips and a special DEF/USER jumper to select which one is being used. The
EDU-RC Motherboard has one memory chip located on the EDU Motherboard. This motherboard
location allows the robot program to remain in the robot while the Isaac16 EDU Robot Controller (black
box) can be removed to be used in multiple robots.

The program on either Robot Controller can be changed by downloading a new program into PBASIC
memory through the PROGRAM port (more details on page 14).

1.3. Default vs. Custom Programs

The Robot Controller is supplied with a “Default” program in order to help get the robot up and running
quickly. When more sophisticated control of the robot is desired, a custom program can be quickly
created by modifying the Default program. Default “Source Code” for the default programs are
provided at www.InnovationFirst.com. Both types of Robot Controllers are programmed in the same
manner, and the programs are interchangeable from one type to the other. We provide a different
default program for each type of Robot Controller, due to the different uses and the different number of
Inputs and Outputs available. Therefore, although the programs are interchangeable, the robots function
will change when the programs are changed.

1.4. Programming Language and Windows Software

All programs running on the Robot Controller must be written in PBASIC, a dialect of the BASIC
programming language. This language was selected because it is fairly easy to learn, use, and debug in

Master
Micro-

Controller

PBASIC
Micro-

Controller

Output
Micro-

Controller

Operator Interface Data Relay Output

PWM Output
Robot Digital Inputs
Robot Analog Inputs

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 4

a short period of time. With the exception of the source code for the default program, the programming
utility and manuals can be obtained via the Internet from Parallax, Inc. at www.parallaxinc.com.

Basic Stamp is the name of the Parallax Windows program used to edit, debug, and download PBASIC
programs. The latest version of the BASIC Stamp editor should be used. Check the Innovation First
web site for the latest version of the BASIC Stamp editor.

2. PBASIC Software Structure

The PBASIC program used in the Innovation First Robot Controllers must adhere to a pre-defined
structure. The structure does not limit the capability of your software; the structure ensures that data is
correctly input and output. This structure is described in the block diagram below.

Each block has a corresponding section describing it in detail. These examples provide a simplified
view of the way the Default code works.

You can refer to the Parallax BASIC Stamp Programming Manual for more information on PBASIC
commands. Section 7 details the command that work within the Innovation First Control System
structure.

M
ai

n
Pr

og
ra

m
 L

oo
p

Define Variables

Define the BS2SX

Define Aliases

Define Constants

Initialization

SERIN
Data Input

SEROUT
Data Output

Add Your
Code Here

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 5

2.1. Define the BS2-SX

The project file Definition line (below) must list the Processor Type being used. This Definition line is
intentionally commented out. The Definition line is the only case in PBASIC where commented
information is used by the compiler.

Commenting means that the text is for informational purposes to the reader only and is not processed by
the microcontroller. Lines are commented by placing a single quote (‘) before the comment text.

Refer to the Multi-Bank Program Example in the White papers section of www.InnovationFirst.com for
additional requirement for the Definition line when using Multi-Bank code.

Definition Line Example: The first line of the code below is completely commented (line starts with a single
quote) and used for information purposes. The second line is the PBASIC Definition line, defining the BS2-SX
as the target microcontroller for this code that will follow.

'---------- Define BS2-SX Project Files ---
' {$PBASIC 2.5}
' {$STAMP BS2SX}

2.2. Declare Variables

All variables used in the programs must be declared by name and type. The BS2-SX has 26 bytes of
variable space available. See the Scratch Pad section (page 19) for additional memory space. The
default program defines all the standard input and output variables. The unused variables in the Default
Code are commented (unused). Just comment or un-comment the Default Code variables as needed.
The names of the variables used in the default program can be changed; however, use caution since the
name is used throughout the default code and must be changed at every instance. Declare any additional
variables required.

Refer to the Multi-Bank Program Example in the White papers section of www.InnovationFirst.com for
additional requirement for the Definition line when using Multi-Bank code.

Declare Variables Example: The first line of the code below is completely commented (line starts with a single
quote) and used for information purposes. Each following line declares one variable. In this example the
variables are all bytes. After each variable there are comments on the use of the variable in this application. This
limited example only declares five (5) variables. The Default Code uses significantly more variables.

'========== DECLARE VARIABLES ===
p1_y VAR byte 'Port 1, X-axis on Joystick
oi_swA VAR byte 'OI Digital Switch Inputs 1 thru 8
rc_swA VAR byte 'OI Digital Switch Inputs 1 thru 8
relayA VAR byte 'RC Relay Output Byte, Relay Outputs 1 thru 4
Roller_Out VAR byte 'Custom variable: the roller connected to PWM7

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 6

2.3. Define Aliases

Aliases provide alternate names for variables and sub-divisions of variables. Aliases don't require any
additional memory. The default code uses Aliases to provide logical names for the Digital Inputs and
Relay Outputs.

Define Aliases Example: Each line declares one variable. In this example the variables are all bits. After each
variable there are comments on the use of the variable in this application. This limited example only declares
three (3) variables. The Default Code uses significantly more variables.

'---------- Aliases for each RC switch input --
p1_sw_trig VAR oi_swA.bit0 'Joystick Trigger Button, same as Port4 pin5
rc_sw1 VAR rc_swA.bit0 'Robot Controller Switch 1 input
relay1_fwd VAR RelayA.bit0 'Robot Controller Relay 1 Forward Command

2.4. Define Constants

Constants are fixed values with a name assigned to them. Constants do not require any memory or code
space. Constants provide a convenient means to organize, locate, and edit fixed values in the code.

Define Constants Example: The Line below assigns one constant. The Default Code has several examples of
constants.

'---------- Define Constants --
rollerSpeed CON 218 'PWM8 Roller Speed rc_sw1 is ON

2.5. Initialization

The Master micro-processor (uP) sends the data you select to the BS2SX PBASIC uP. The initialization
portion of the code is used to select the input data. There is more data available than there is memory to
store the data. You may select up to 26 constants, corresponding to 26 variables, from the 32 available
to you. Make sure that you have variables for all the bytes received in the SERIN command (see details
on page 8).

The constants below have a "c_" prefix, as compared to the variables that they will represent.
Step 1: Set the Constants below to 1 for each data byte you want to receive.
Step 2: Set the Constants below to 0 for the unneeded data bytes.
Step 3: Change the SERIN command to match the variables selected

Initialization Example: In this example, only p1_y, oi_swA, and rc_swA have been selected as input data. The
code below lists all 32 data available, and the selected data ahs been commented. The Default Code uses
significantly more Input Data.

'---------- Set the Initialization constants you want to read -------------------------------
c_p1_y CON 1 ' - Selected for Input
c_p2_y CON 0
c_p3_y CON 0

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 7

c_p4_y CON 0
c_p1_x CON 0
c_p2_x CON 0
c_p3_x CON 0
c_p4_x CON 0
c_p1_wheel CON 0
c_p2_wheel CON 0
c_p3_wheel CON 0
c_p4_wheel CON 0
c_p1_aux CON 0
c_p2_aux CON 0
c_p3_aux CON 0
c_p4_aux CON 0
c_oi_swA CON 1 ' - Selected for Input
c_oi_swB CON 0
c_sensor1 CON 0
c_sensor2 CON 0
c_sensor3 CON 0
c_sensor4 CON 0
c_sensor5 CON 0
c_sensor6 CON 0
c_sensor7 CON 0
c_batt_volt CON 0
c_rc_swA CON 1 ' - Selected for Input
c_rc_swB CON 0
c_delta_t CON 0
c_PB_mode CON 0
c_packet_num CON 0
c_res01 CON 0

Caution: Do not change the names of these initialization constants. Do not change any other portion of the
initialization code.

2.6. Main Loop

The core function of the PBASIC program is to run in a continuous loop that performs the following:

1. Read In the Input Data from the driver and on-board robot sensors
2. Perform specific functions based on the Input Data
3. Send Out the results to perform physical movement of the robots motors and valves.
4. Goto Step 1 (repeat).

M
ai

n
Pr

og
ra

m
 L

oo
p

SERIN
Data Input

SEROUT
Data Output

Add Your
Custom Code

Here

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 8

This loop structure ensures that 1) new inputs (joysticks, etc.) are continuously read in, and 2) the
outputs (motors, victors, spikes, etc.) continuously receive new commands. This loop repeats at a fixed
maximum speed of 38.168Hz (38.168 loops per second). This corresponds to 26.2 mSec (0.0262
seconds). The actual loop speed may be 1, 2, 3, or 4 times longer if extensively long and/or slow code is
written. Intermittent operation will result if the code takes longer than 5x to execute. See the Delta_T
section on page 20 for information on checking your software speed.

2.7. Main Loop - SERIN Data Input

The first part of the Main Loop is the SERIN command. The SERIN command reads a serial stream of
bytes from the Master Microprocessor.

Construct the SERIN command using the following rules:

1. There must be one variable for every input defined in the Initialization section.
2. The order must match the order in the example SERIN command below.
3. The total number of all variables may not exceed 26.
4. Only use one SERIN command.
5. The SERIN command must occupy only one line.

If you see a BASIC INIT Error on the Robot Controller after programming and pressing RESET, then
there is a problem with the SERIN command line. Check the number of variables. A BASIC INIT
Error will not occur if you have the variables in the wrong order, however your code will not work
correctly.

SERIN Order Example: The SERIN line below defines the order that variables are read in. This sample line
violates the 26 variable limit. This sample line also violates the “must be on one line” rule. This sample line is
located in the Default Code for convenience.

Serin COMA\COMB, INBAUD, [oi_swA,oi_swB,rc_swA,rc_swB,p2_x,p1_x,p4_x,p3_x,PB_mode,packet_num,
sensor1,sensor2,p2_y,p1_y,sensor3,sensor4,p4_y,p3_y,sensor5,sensor6,p2_wheel,p1_wheel,
sensor7,sensor8,p4_wheel,p3_wheel,p2_aux,p1_aux,p4_aux,p3_aux,delta_t,res01]

Initialization Example: In the example below, only p1_y, oi_swA,and rc_swA have been selected in the
initialization, therefore we must input those three variables in the same order as the SERIN Order Example above.
The Default Code uses significantly more Input Data. The MainLoop: line marks the beginning of the Main
Loop.

MainLoop:

'---------- Serin Command - Get Data from Master uP ---
Serin COMA\COMB, INBAUD, [oi_swA ,rc_swA, p1_y]

2.8. Main Loop - Perform Operations Here

This section of the code is where all the custom programming occurs. This is where you make your
robot act the way you want, respond to your joystick and button commands, and react to the sensor
inputs.

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 9

Perform Operations Example: The main loop below is just an example. Refer to the Default Code for a more
complete example. The code below performs the following functions:
1. Port 1 Y axis linked to PWM1. There is no code needed for this. See the SEROUT line below.
2. Port 1 Trigger activates Relay 1 in the Forward Direction. See the PWM Outputs on page 13.
3. Robot sw1 automatically activates the roller forward at the speed set by constant rollerSpeed.

'========== PERFORM OPERATIONS ==

'---------- Button to Relay ---
relay1_fwd = p1_sw_trig 'Port 1 Trigger = Relay 1 Forward
 'relay1_fwd is an Alias to the relayA byte

'---------- Roller Code ---
if rc_sw1 = 1 then turn_roller_on: 'sw1 = 1 when activated, so goto turn_roller_on
 Roller_Out = 127 'sw1 must be 0, so turn Roller_Out Off (127 is Off)
Goto exit_roller

turn_roller_on:
 Roller_Out = rollerSpeed
exit_roller:

2.9. Main Loop - SEROUT Data Output

The final part of the Main Loop is the SEROUT command. The SEROUT command sends a serial
stream of bytes to the Output Microcontroller. The Output Microcontroller passes this to each PWM
and Relay output. The Output Microcontroller will not output data if there is no communication with
the Operator Interface or if the Competition Mode is Disabled. Do not delete any elements from the
SEROUT command line. Set unused PWM outputs to 127. Set unused relay outputs to 0.

The last byte of the SEROUT command also passes a special Oscillator command to the Output
Microcontroller for the EDU Robot Controller only (see the Oscillator Output section on page 14).

SEROUT Order Definition: The SEROUT line below defines the order that variables must be sent out. This
sample line is located in the Default Code for convenience.

Serout USERCPU, OUTBAUD, [255,255,(PWM1),relayA,(PWM2),relayB,(PWM3),(PWM4),(PWM5),(PWM6),
(PWM7),(PWM8),(PWM9),(PWM10),(PWM11),(PWM12),(PWM13),(PWM14),(PWM15),(PWM16), (OSC)]

SEROUT Example: In the example below, we want to control PWM1, PWM7, and Relay 1(part of the RelayA
byte). The variables p1_y, relayA, and Roller_out have been placed in the SEROUT line in the correct order.
The Default Code uses significantly more Output Data. Notice the p1_y is in the PWM1 slot, relayA is in the first
relay slot, and Roller_Out is in the PWM7 slot. The location of these variables is directly related to the robot
wiring. In this case, the Roller is wired to a Speed Controller that is connected to PWM7.

'========== OUTPUT DATA ===
Serout USERCPU, OUTBAUD, [255,255,p1_y,relayA,127,0,127,127,127,127,Roller_Out]

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 10

2.10. Main Loop – Return to SERIN

The Main Loop is now complete. The Goto line below sends the program back to just before the
MainLoop: marker just before the SERIN line so it can start again.

Return to SERIN Example: This line must be located after the SEROUT command.

Goto MainLoop:

3. Program Inputs

The following sections describe the types of data input to the PBASIC program. The PBASIC program
receives Input data from the Master Processor inside the Robot Controller. This Master Processor
collects all the data from the Operator Interface via the RS-422 Radio Modem and all the Robot
Controller sensor Inputs. The Master Processor then transfers the desired data to the PBASIC processor
through a serial input (SERIN) command. See the Initialization section (page 6) for details on selecting
the input data you want. Each piece of data is read into variables. See the SERIN section (page 8) for
more details.

3.1. Digital Inputs

Digital Inputs are defined as inputs that are either ON or OFF. Buttons and switches are the most
common form of digital inputs. In software a digital input is either a zero (0 = OFF) or a one (1 = ON).
If a digital input is open or not connected, the digital input is OFF. If a digital input is connected is
ground, the input is ON. Only connect digital inputs to ground and not to any positive voltage. The
buttons on the joysticks are an example of digital inputs to the Operator Interface.

Operator Interface Digital Inputs
Refer to the Operator Interface Reference Manual for details on the Digital Inputs. The sixteen (16)
Digital Inputs from the Operator Interface are grouped into two bytes, OI_SWA and OI_SWB. These
input variables are aliased into more meaningful names such as p1_sw_trig which refers to the
Joystick Trigger connected to Port 1.

Digital Inputs: The Operator Interface Digital Input variables are found in the Default Code.

'---------- Operator Interface - Digital Inputs ---
oi_swA VAR byte 'OI Digital Switch Inputs 1 thru 8
oi_swB VAR byte 'OI Digital Switch Inputs 9 thru 16

'---------- Aliases for each OI switch input --
p1_sw_trig VAR oi_swA.bit0 'Joystick Trigger Button, same as Port4 pin5
p1_sw_top VAR oi_swA.bit1 'Joystick Top Button, same as Port4 pin8
p1_sw_aux1 VAR oi_swA.bit2 'Aux input, same as Port4 pin9
p1_sw_aux2 VAR oi_swA.bit3 'Aux input, same as Port4 pin15

p3_sw_trig VAR oi_swA.bit4 'Joystick Trigger Button, same as Port2 pin5
p3_sw_top VAR oi_swA.bit5 'Joystick Top Button, same as Port2 pin8
p3_sw_aux1 VAR oi_swA.bit6 'Aux input, same as Port2 pin9

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 11

p3_sw_aux2 VAR oi_swA.bit7 'Aux input, same as Port2 pin15

p2_sw_trig VAR oi_swB.bit0 'Joystick Trigger Button
p2_sw_top VAR oi_swB.bit1 'Joystick Top Button
p2_sw_aux1 VAR oi_swB.bit2 'Aux input
p2_sw_aux2 VAR oi_swB.bit3 'Aux input

p4_sw_trig VAR oi_swB.bit4 'Joystick Trigger Button
p4_sw_top VAR oi_swB.bit5 'Joystick Top Button
p4_sw_aux1 VAR oi_swB.bit6 'Aux input
p4_sw_aux2 VAR oi_swB.bit7 'Aux input

Robot Controller Digital Inputs
Refer to the appropriate Robot Controller Reference Manual for details on the number and location of
the Digital Inputs. The Digital Inputs from the Robot Controller are grouped into two bytes, RC_SWA
and RC_SWB. These input variables are aliased into more meaningful names such as rc_sw2 which
refers to the Switch 2 on the Robot Controller.

Digital Inputs: The Robot Controller Digital Input variables are found in the Default Code.

'---------- Robot Controller - Digital Inputs ---
rc_swA VAR byte 'RC Digital Inputs 1 thru 8
rc_swB VAR byte 'RC Digital Inputs 9 thru 16 (full-size RC only)

'---------- Aliases for each RC switch input --
rc_sw1 VAR rc_swA.bit0
rc_sw2 VAR rc_swA.bit1
rc_sw3 VAR rc_swA.bit2
rc_sw4 VAR rc_swA.bit3
rc_sw5 VAR rc_swA.bit4
rc_sw6 VAR rc_swA.bit5
rc_sw7 VAR rc_swA.bit6
rc_sw8 VAR rc_swA.bit7
rc_sw9 VAR rc_swB.bit0 '(full-size RC only)
rc_sw10 VAR rc_swB.bit1 '(full-size RC only)
rc_sw11 VAR rc_swB.bit2 '(full-size RC only)
rc_sw12 VAR rc_swB.bit3 '(full-size RC only)
rc_sw13 VAR rc_swB.bit4 '(full-size RC only)
rc_sw14 VAR rc_swB.bit5 '(full-size RC only)
rc_sw15 VAR rc_swB.bit6 '(full-size RC only)
rc_sw16 VAR rc_swB.bit7 '(full-size RC only)

3.2. Analog Inputs

Analog Inputs are defined as inputs that are continuously changing, not just ON or OFF. Joystick axis
are the most common form of analog inputs. Potentiometers and Gryo sensors are also Analog inputs.
The CH FlightStick joystick has three analog inputs per joystick, the X axis, the Y axis, and the Wheel.

In software, an analog input is represented as a number from 0 to 254. The table below shows how an
Analog Input varies as the joystick is moved. The Analog Inputs correspond directly to the Analog
Outputs without modification (see Analog Outputs on page 13).

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 12

Joystick Function Position and Analog Input Value
Y Axis Full Forward = 254 Neutral = 127 Full Back = 0 – 25*
X Axis Full Left = 254 Neutral = 127 Full Right = 0 – 25*
Wheel Full Forward = 254 Neutral = 127 Full Back = 0 – 25*

* Note: The joystick axis rarely go all the way to zero. This is normal. See the PWM section on page 13.

Operator Interface Analog Inputs
Refer to the Operator Interface Reference Manual for details on the Analog Inputs. The sixteen (16)
Analog Inputs from the Operator Interface are each stored in bytes, such as p1_x and p1_y
corresponding to the X and Y Joystick axis connected to Port 1.

Analog Inputs: The Operator Interface Digital Input variables are found in the Default Code.

'---------- Operator Interface (OI) - Analog Inputs ---
p1_x VAR byte 'Port 1, X-axis on Joystick
p2_x VAR byte 'Port 2, X-axis on Joystick
p3_x VAR byte 'Port 3, X-axis on Joystick
p4_x VAR byte 'Port 4, X-axis on Joystick

p1_y VAR byte 'Port 1, Y-axis on Joystick
p2_y VAR byte 'Port 2, Y-axis on Joystick
p3_y VAR byte 'Port 3, Y-axis on Joystick
p4_y VAR byte 'Port 4, Y-axis on Joystick

p1_wheel VAR byte 'Port 1, Wheel on Joystick
p2_wheel VAR byte 'Port 2, Wheel on Joystick
p3_wheel VAR byte 'Port 3, Wheel on Joystick
p4_wheel VAR byte 'Port 4, Wheel on Joystick

'p1_aux VAR byte 'Port 1, Aux (not available on CH Joystick)
'p2_aux VAR byte 'Port 2, Aux (not available on CH Joystick)
'p3_aux VAR byte 'Port 3, Aux (not available on CH Joystick)
'p4_aux VAR byte 'Port 4, Aux (not available on CH Joystick)

Robot Controller Analog Inputs
Refer to the appropriate Robot Controller Reference Manual for details on the number and location of
the Analog Inputs. The Analog Inputs from the Robot Controller are each stored in bytes, such as
sensor2 corresponding to pin 16 on the Robot Controller’s Analog Input Port.

Analog Inputs: The Robot Controller Digital Input variables are found in the Default Code.

'---------- Robot Controller (RC) - Analog Inputs ---
'sensor1 VAR byte 'RC Analog Input 1, connector pin 2
'sensor2 VAR byte 'RC Analog Input 2, connector pin 16
'sensor3 VAR byte 'RC Analog Input 3, connector pin 5
'sensor4 VAR byte 'RC Analog Input 4, connector pin 19
'sensor5 VAR byte 'RC Analog Input 5, connector pin 8
'sensor6 VAR byte 'RC Analog Input 6, connector pin 22
'sensor7 VAR byte 'RC Analog Input 7, connector pin 11
'bat_volt VAR byte 'RC Analog Input 8, hardwired to the Battery

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 13

4. Program Outputs

The following sections describe the types of data output from the PBASIC program. The PBASIC
program sends Output data to the Output Processor inside the Robot Controller. This Output Processor
collects all the data from the PBASIC Program and sends corresponding electrical commands to the
PWM and RELAY ports. The PBASIC Program transfers the desired data to the Output Processor
through a serial output (SEROUT) command. See the SEROUT section (page 9) for more details.

4.1. PWM Analog Outputs

The PWM Output Ports on the Robot Controllers are all controlled by PBASIC software. Each PWM
output provides variable speed control for a motor in both Forward and Reverse.

PWM stands for Pulse Width Modulation and is the type of signal commonly used to control Speed
Controllers such as the Victor 883. This PWM signal is the standard R/C type used on model airplane
controls. This PWM is not the square wave type output by most microcontrollers. The signal is created
by the Output processor in the Robot Controller. The PBASIC processor commands the Output
processor to create the signal based on a byte (0-254) of data in the SEROUT command (SEROUT
details on page 9).

The most common method of controlling a PWM output is via the joystick Analog Input. By sending a
joystick Analog Input to a PWM output, a motor connected to the PWM port will act as follow:

Action Function and Analog Value
PWM Speed Controller Full Forward = 254-227 Neutral = 136-123 Full Reverse = 0 – 37
Joystick Y Axis Full Forward = 254 Neutral = 127 Full Back = 0 – 25
Joystick X Axis Full Left = 254 Neutral = 127 Full Right = 0 – 25
Joystick Wheel Full Forward = 254 Neutral = 127 Full Back = 0 – 25

Refer to the appropriate Robot Controller or Operator Interface Reference Manual for details on the
number and location of the PWM Outputs.

Example (using the default software): Move the Y axis on the Port 1 Joystick forward to make a motor
connected to PWM1 turn. The further you push the joystick, the faster the motor turns. From a neutral
position move the Y axis on the Port 1 Joystick backwards to make a motor connected to PWM1 turn
the other direction. Again, the further you push the joystick, the faster the motor turns.

4.2. Relay Digital Outputs

The Relay ports on the Robot Controllers are all controlled by PBASIC software. The Relay outputs
provide ON or OFF control for motors and other devices. Each relay port has 2 digital outputs. These 2
digital outputs provide Full Forward, OFF, and Full Reverse control only. Refer to the appropriate
Robot Controller or Operator Interface Reference Manual for details on the number and location of the
Relay Outputs.

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 14

Example (using the default software): Press the Trigger button on the Port 1 Joystick to make a motor
connected to RLY1 rotate. Press the Top button on the Port 1 Joystick to make a motor connected to
RLY1 rotate in the opposite direction.

4.3. Oscillator Output (EDU-RC only)

The oscillator output is set by the default code to output a 40 KHz signal at about a 50% duty cycle.
This frequency can be controlled by the 17th PWM byte in the SEROUT command in the PBASIC code.
As the 17th byte varies from 2 – 254, the OSC Output frequency will vary from 19.6 KHz to 1.66 MHz.
The 17th byte only needs to be sent out 1 time to set the frequency. The 17th byte does not need to be
sent out again until the frequency needs to be changed.

The formula for the frequency is:

1/((PWM value + 1) * 4 * 0.00000005) Note: Valid PWM range is 2 – 254.

5. Downloading to the Robot Controller

5.1. Programming Steps

The Robot Controller programming steps are as follows:

1. Power ON the Robot Controller.
2. Connect a DB9 Male-to-Female Pin-to-Pin cable (maximum length 6 ft.) from the PROGRAM

port on the Robot Controller to PC’s serial port.
3. Set the Program Jumper to USER or DEF as desired (full-size RC only) (details below)
4. Be sure the Write Protect Jumper is installed (EDU-RC only) (details below)
5. Run Parallax, Inc. BASIC Stamp Version 1.33 or higher.
6. Open the desired program with the BASIC Stamp program.
7. Press CTRL-R to download the program.
8. Some older full-size Robot Controllers require the user to press RESET after downloading a

program.

Note: Before the PBASIC program will start executing, the Robot Controller must have a Valid RX
(link) to an OI or the RC must be in Autonomous Mode.

5.2. Write Protect Jumper (EDU-RC only)

The Write Protect jumper on the Isaac16 EDU Motherboard is used to allow or disallow writing to the
PBASIC program memory chip. The PBASIC program memory chip is located on the bottom side of
the Motherboard. The full-size Robot Controller does not have a user accessible write protect jumper.
• The PBASIC program can be changed when the jumper is installed (Write Protect OFF).
• The PBASIC program cannot be changed when the jumper is not installed (Write Protect ON).

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 15

5.3. DEF/USER Jumper (full-size RC only)

The full-size Robot Controller has two memory chips, USER and DEFAULT. A Program Jumper on
the Robot Controller is used to select which control program (default or user) is running. Both program
chips contain the Default Code when shipped from the factory. The user can change the program in one
or both memory chips. When starting out, it is best to keep the Default Code in the DEFAULT location
to aid in troubleshooting.
• Install a jumper across the upper two pins to run and/or download to the DEFAULT program.
• Install a jumper across the lower two pins to run and/or download to the USER program.
• After changing the jumper, press RESET or Power Cycle the Robot Controller.

5.4. Basic Run (Green LED)

After programming the Robot Controller, after pressing RESET on the Robot Controller if needed, and
after the Robot Controller is communicating with an Operator Interface, you should see the BASIC
RUN LED flashing. This BASIC RUN LED indicates that the new program is running. The PBASIC
program has controls of this light, and therefore, may not blink if the programmer changes that portion
of the code.

5.5. Basic Run Error (Red LED)

If after programming and resetting the Robot Controller, the BASIC RUN ERR LED is ON, then the
basic code has no output. This means that the code is not running properly. Check for errors in the
code. The most common problems are “infinite loops” or “pause” commands. The BASIC RUN ERR
light is controlled by the Output microprocessor. Debug statements (page 16) and PB_Mode (page 18)
may be helpful in locating the problem.

5.6. Basic Init Error (Red LED)

If after programming and resetting the Robot Controller, the BASIC INIT ERR LED is ON, then the
basic code did not properly initialize the data packet structure with the master microprocessor. Check
the initialization part of the code for errors. A common mistake is having a different number of
variables in the SERIN command, as compared to the requested data setup in the “Set the Initialization

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 16

constants you want to read” section of the code. The BASIC INIT ERR light is controlled by the Master
microprocessor.

6. Additional PBASIC techniques

6.1. Debug Statements

Debug provides a convenient way for your PBASIC program to send messages to the PC screen while
running. The name "debug" suggests its most popular use; debugging programs by showing you the
value of a variable or expression, or by indicating what portion of a program is currently executing.

Debug will display information on the PC screen within the BASIC Stamp editor program. This
command can be used to display text or numbers in various formats on the PC screen in order to follow
program flow (called debugging). If you close your debug window, quit and reboot the BASIC Stamp
Editor.

There are many more ways to use the Debug command. Reference the BASIC Stamp Programming
Manual 2.0c for more information. Below are a few examples to get you started.

Syntax: DEBUG OutputData {,OutputData}

OutputData is a variable/constant/expression (0 - 65535) that specifies the information to output. Valid data can be ASCII characters (text strings and
control characters), decimal numbers (0 - 65535), hexadecimal numbers ($0000 - $FFFF) or binary numbers (up to %1111111111111111).

Debug Example #1: The following example demonstrates using the debug command to send the text string
message "Innovation First!".

'---------- Somewhere in the Main Loop ---
debug "Innovation First!",CR 'Test Message

After you add this one line somewhere in the main loop, and after downloading, the BASIC Stamp Editor will
open a Debug Terminal on your PC screen and wait for a response from the BASIC Stamp. A moment later, the
phrase " Innovation First!" will appear. The CR symbol will cause the Debug Terminal to start a new line
(carriage return). The line will repeat every loop of the code. Note that if you close the Debug Terminal, your
program keeps executing, but you can't see the debug data anymore.

Debug Example #2: Multiple pieces of data can be sent with one debug command by separating the data with
commas (,). The following example produces exactly the same results as the example above.

'---------- Somewhere in the Main Loop ---
debug "Innovation ", "First!", cr 'Test Message

After you add this one line somewhere in the main loop, and after downloading, the BASIC Stamp Editor will
open a Debug Terminal on your PC screen and wait for a response from the BASIC Stamp. A moment later, the
phrase " Innovation First!" will appear. The CR symbol will cause the Debug Terminal to start a new line
(carriage return). The line will repeat every loop of the code. Note that if you close the Debug Terminal, your
program keeps executing, but you can't see the debug data anymore.

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 17

Debug Example #3: Debug can also print and format numbers (values) from both constants and
variables. The (?) formatter always displays data in the form "symbol = value" (followed by a carriage
return). In addition, it defaults to displaying in decimal. It's important to note that the "symbol" it
displays is taken directly from what appears to the right of the “?”.

'---------- Somewhere in the Main Loop ---
Debug ?p1_y 'display Port 1 “Y” variable

The above example will display the port 1 “Y” axis variable in the debug window, when using Default
Code, in the format “p1_y = 127”. Move the Port 1 joystick and the value on the screen will change.

6.2. Robot Feedback and User Mode

The Robot Controller has the ability to send data back to the Operator interface. The Robot Controller
can send one byte (8 bits) every loop of the code. The data is available on the Operator Interface in
three ways: 1) On the eight Robot Feedback LEDs, 2) on the multi-segment display when in user mode,
and 3) on a PC connected to the Dashboard Port. See the PB_Mode section (page 18) for writing code
that can display numbers on the multi-segment display.

The Robot Feedback byte is passed from the PBASIC microcontroller to the Master microcontroller
eight bits at a time. The Master microcontroller then sends the data to the Operator interface via the
Radio Modems. You change the Feedback bits one at a time.

Robot Feedback Example: The Default Code assigns the eight output pins on the PBASIC microcontroller as
outputs (shown below). The user can change these bits directly (also shown below).

'---------- Input & Output Declarations --------------------------------------
Output 8 'define Robot Feedback LED => out8 => PWM1 Green
Output 9 'define Robot Feedback LED => out9 => PWM1 Red
Output 10 'define Robot Feedback LED => out10 => PWM2 Green
Output 11 'define Robot Feedback LED => out11 => PWM2 Red
Output 12 'define Robot Feedback LED => out12 => Relay1 Red
Output 13 'define Robot Feedback LED => out13 => Relay1 Green
Output 14 'define Robot Feedback LED => out14 => Relay2 Red
Output 15 'define Robot Feedback LED => out15 => Relay2 Green

'========== PERFORM OPERATIONS section ==
Out13 = relay1_fwd 'The Relay1 Green LED is ON when Relay 1 is Forward (1)
out11 = my_Bit_Variable 'The PWM2 Red LED is ON when my_Bit_Variable is 1

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 18

6.3. PB_Mode – Competition, Autonomous, and User

PB_Mode is a byte accessible through the SERIN command. The Competition Mode, Autonomous
Mode, and User Mode are all available in this byte. The Default Code already contains all the code
needed to use these modes.

Competition Mode
Bit 7 of the PB_mode byte (aliased as comp_mode below) indicates the status of the Competition
Control, either Enabled or Disabled. This indicates the starting and stopping of rounds at the
competitions. Comp_mode is indicated by a solid "Disabled" LED on the Operator Interface.
Comp_mode = 1 for Enabled, 0 for Disabled.

Autonomous Mode
Bit 6 of the PB_mode byte (aliased as auton_mode below) indicates the status of the Autonomous Mode,
either Autonomous or Normal. This indicates when the robot must run on its own programming. When
in Autonomous Mode, all OI analog inputs are set to 127 and all OI switch inputs are set to 0 (zero).
Auton_mode is indicated by a blinking "Disabled" LED on the Operator Interface.
Auton_mode = 1 for Autonomous, 0 for Normal.

Autonomous Mode can be turned ON by setting the RC to Team 0 (zero) and power cycling the RC unit.

User Mode
Bit 5 of the PB_mode byte (aliased as user_display_mode below) indicates when the user selects the
"User Mode" on the OI. PB_mode.bit5 is set to 1 in "User Mode". When the user selects channel, team
number, or voltage, PB_mode.bit5 is set to 0. When in "User Mode", the eight Robot Feedback LED
are turned OFF and the Out 8 – Out 15 of the PBACIS processor are sent to the OI multi-segment
display.

Note: "User Mode" is identified by the letter “u” in the left digit (for 4 digit OI's)
Note: "User Mode" is identified by decimal places on the right two digits (for 3 digit OI's)
The Default Code sends Port 1 Y-Axis to the display when in User Mode.

Autonomous _Mode Example: This example shows portions of the code that reference PB_Mode. The Perform
Operations Section below uses aliases based on PB_Mode bits to execute different sections of code.

'---------- Declare Miscellaneous Variables ---
PB_mode VAR byte

'---------- Aliases for the Pbasic Mode Byte (PB_mode) --------------------------------------
comp_mode VAR PB_mode.bit7
auton_mode VAR PB_mode.bit6
user_display_mode VAR PB_mode.bit5

'========== PERFORM OPERATIONS section ==
if auton_mode = 1 then do_autonomous_stuff

'Insert your normal driver mode code here
goto end_of_autonomous

do_autonomous_stuff:

'Insert your autonomous mode code here
end_of_autonomous:

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 19

User Mode Example: This example shows the Default Code that changes the data sent to the Operator Interface
when the user sets the Operator Interface to User Mode.

'---------- Feedback LEDs -------------------------------------
if user_display_mode = 1 then user_mode
 Out8 = p1_y/216 'LED is ON when Victor883 full forward (default CAL)
 Out9 = ~(p1_y/56 max 1) 'LED is ON when Victor883 full reverse (default CAL)
 Out10 = p2_y/216 'LED is ON when Victor883 full forward (default CAL)
 Out11 = ~(p2_y/56 max 1) 'LED is ON when Victor883 full reverse (default CAL)
 Out13 = relay1_fwd 'LED is ON when Relay 1 is Forward
 Out12 = relay1_rev 'LED is ON when Relay 1 is Reverse
 Out15 = relay2_fwd 'LED is ON when Relay 2 is Forward
 Out14 = relay2_rev 'LED is ON when Relay 2 is Reverse
goto display_done

user_mode: 'Send p1_y to multi-segment display when in User mode
 out8 = p1_y.bit0
 out9 = p1_y.bit1
 out10 = p1_y.bit2
 out11 = p1_y.bit3
 out12 = p1_y.bit4
 out13 = p1_y.bit5
 out14 = p1_y.bit6
 out15 = p1_y.bit7
display_done:

6.4. Scratch Pad

Scratch Pad RAM is useful for additional workspace and for passing data to programs in other program
slots. It is different than regular RAM in that symbol names cannot be assigned directly to locations and
each location is always configured as a byte only. The Scratch Pad RAM is accessed using the PUT and
GET command.

Scratch Pad RAM locations are from 0 – 63 and most are available for general use. The highest location,
63 is a special, read-only, location that always contains the number of the currently running program
slot. The Scratch Pad is organized as bytes only.

Scratch Pad Example: The following code defines a Variable Byte called temp, writes the value 100 to location
25 with PUT, reads it back out with GET, stores it in a variable called temp and finally displays it with a Debug
statement.

'---------- Declare Miscellaneous Variables ---
temp VAR Byte

'---------- Define Constants --
my_eeprom_data = 25

'========== PERFORM OPERATIONS section ==
Main:
 PUT my_eeprom_data, 100
 GET my_eeprom_data, temp
 DEBUG ?temp
 END

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 20

6.5. Delta_T

The Delta_T variable in the Default Code can be used to determine if the user/custom code you have
written is running slowly. Your User program should be updated with new packets of data every time
the Main Loop executes, about every 26 ms. If your custom program has too many lines of code that
must be executed for each loop, you will begin to miss every other new packet of data (or worse). If you
miss more than 5 packets of data in a row, the BASIC RUN ERR LED will be illuminated on the Robot
Controller. The Delta_t variable will indicate if your code is missing packets of data. Missing every
other packet is acceptable, but you will begin to notice “sluggish” control if you miss several packets.

Do not use the Debug command to monitor this variable because the added execution time to perform
the Debug command itself, can cause the Detla_t value to show missed packets that would not have
otherwise occured. The Delta_t value will equal 0 when there are no missed data packets. When data
packets are being missed, Delta-t will increment and show the total number of data packets that are
being missed. The best way to look at the Delta_t value is using the USER MODE on the Operator
Interface displays.

Delta_t Example: The corresponding changes to the Default Code must be made to enable Delta_t to be
displayed on the Operator Interface. Also, the Operator Interface must be in User Mode.

'---------- Declare Miscellaneous Variables ---
delta_t VAR byte

'---------- Set the Initialization constants you want to read -------------------------------
c_delta_t CON 1

MainLoop:
'---------- Serin Command - Get Data from Master uP ---
Serin COMA\COMB, INBAUD, [. . . ,delta_t, . . .]

'========== PERFORM OPERATIONS section ==

'---------- Feedback LEDs -------------------------------------
if user_display_mode = 1 then user_mode
 (normal display code here)
goto display_done

user_mode: 'Send delta_t to multi-segment display when in User mode
 out8 = delta_t.bit0 'Add these lines of code just before the OUTPUT DATA
 out9 = delta_t.bit1 'section of code.
 out10 = delta_t.bit2
 out11 = delta_t.bit3
 out12 = delta_t.bit4
 out13 = detla_t.bit5
 out14 = delta_t.bit6
 out15 = delta_t.bit7
display_done:

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 21

6.6. Multiple Program Banks

See the example code at www.InnovationFirst.com.

7. PBASIC Commands
Not all PBASIC commands can be used with the Innovation First Control System. The valid PBASIC
Commands for the Innovation First Control System are shown below. In addition to these commands,
all the Unary Operators and Binary Operators will work with the Innovation First Control Systems.
These include the basic logic operations, i.e. ADD (+), SUBSTRACT (-), MULTIPLY (*), etc.
Reference the BASIC Stamp Programming Manual 2.0c for more information.

BRANCHING / PROGRAM CONTROL
 IF …THEN IF Condition THEN Address
 BRANCH BRANCH Offset,[Address1, Address2, ...AddressN]
 GOTO GOTO Address
 GOSUB GOSUB Address
 RETURN RETURN
 RUN RUN ProgramSlot
 IF-THEN-ELSE IF Condition THEN
 Statement(s)
 ELSE
 Statement(s)
 ENDIF
 DO-LOOP DO
 Statement(s)
 LOOP
 SELECT-CASE SELECT Expression
 CASE Condition
 Statement(s)
 CASE Condition
 Statement(s)
 CASE ELSE Condition
 Statement(s)
 ENDSELECT

LOOPING
 FOR…NEXT FOR Counter = StartValue TO EndValue {STEP StepValue} ... NEXT

EEPROM DATA
 DATA {Symbol} DATA DataItem {, DataItem, ...}
 READ READ Location, Variable
 WRITE WRITE Location, DateItem

CAUTION: Do Not WRITE to EEPROM in every loop of your code. This will
cause the EEPROM to fail. The EEPROM cycle life is only about 100K.

RAM ACCESS
 GET GET Location, Variable
 PUT PUT Location, Value

NUMERICS
 LOOKUP LOOKUP Index, [Value0, Value1, ...ValueN], Variable
 LOOKDOWN LOOKDOWN Target, {ComparisonOp} [Value0, Value1, ...ValueN], Variable
 RANDOM RANDOM Variable

DIGITAL I/O
 INPUT INPUT Pin
 OUTPUT OUTPUT Pin
 LOW LOW Pin

 Innovation First, Inc. Programming Reference Guide
 1.3.2003 www.InnovationFirst.com Page 22

 HIGH HIGH Pin
 TOGGLE TOGGLE Pin

ASYNCHRONOUS I/0
 SERIN SERIN Rpin {\Fpin},Baudmode,{Plabel,}{Timeout, Tlabel,} [InputData]
 SEROUT SEROUT Tpin {\Fpin},Baudmode,{Pace,} {Timeout, Tlabel,} [OutputData]

TIME
 PAUSE PAUSE Period

CAUTION: A PAUSE that creates a long delay can cause the robots movement
to become intermittent.

PROGRAM DEBUGGING
 DEBUG DEBUG (OutputData {, OutputData})

