
Version 2.1

22
SOUND

 Includes Demonstration Program Sound

Introduction to Sound
On the Macintosh, the hardware and software aspects of producing and recording sounds
are very tightly integrated.

Audio Hardware

The audio hardware includes an internal speaker, a microphone, and one or more
integrated circuits that convert digital data to analog signals and analog signals to digital
data. The actual integrated circuits that perform these conversions vary between
different models of Macintosh computers.

Sound-Related System Software

The sound-related system software managers are as follows:

• The Sound Manager. The Sound Manager provides the ability to:

• Play sounds through the speaker.

• Manipulate sounds, that is, vary such characteristics as loudness, pitch,
timbre, and duration.

• Compress sounds so that they occupy less disk space.

The Sound Manager can work with sounds stored in resources or in a file’s data
fork. It can also play sounds that are generated dynamically, and not necessarily
stored on disk.

• The Sound Input Manager. The Sound Input Manager provides the ability to
record sounds through a microphone or other sound input device.

• The Speech Manager. The Speech Manager provides the ability to convert
written text into spoken words.

Sound Input and Output Capabilities

The basic audio hardware, together with the sound-related system software, provides for
the following sound input and output capabilities:

Sound 22-1

Version 2.1

• Playback of digitally recorded (that is, sampled) sounds.

• Playback of simple sequences of notes or of complex waveforms.

• Recording of sampled sounds.

• Conversion of text to spoken words.

• Mixing and synchronisation of multiple channels of sampled sounds.

• Compression and decompression of sound data to minimise storage space.

The basic audio hardware and system software also provide the ability to integrate and
synchronise sound production with the display of other types of information, such as
video and still images. For example, QuickTime uses the Sound Manager to handle all
the sound data in a QuickTime movie.

Monitors and Sound Control Panel. For playback, the user can select a sound output
device, and set certain characteristics of the selected device, using the Monitors and
Sound control panel. The Monitors and Sound control panel also allows the user to select
the input device for recording sounds.

Basic and Enhanced Sound Capabilities

It’s very easy for users to enhance the quality of the sounds they play back or record by
substituting different speakers and microphones for the ones built into a Macintosh
computer. Audio capabilities may be further enhanced by adding an expansion card
containing very high quality digital signal processing (DSP) circuitry, together with
sound input or output hardware. Another enhancement option is to add a MIDI
interface to one of the serial ports. Fig 1 illustrates the basic sound capabilities of the
Macintosh and how those capabilities may be further enhanced and extended.

22-2 Sound

Version 2.1

FIG 1 - SOUND CAPABILITIES OF MACINTOSH COMPUTERS

BUILT-IN
MICROPHONE

SOUND MANAGERSOUND INPUT MANAGER

SPEECH MANAGER INTERNAL
SPEAKER

EXTERNAL SPEAKERS

DIGITAL SOUND
COMPACT DISK

digital audio
data

SCSI PORT
MIDI MANAGER

DIGITAL SOUND
CARD

audio
SERIAL
PORT

MIDI CONVERTER

MIDI-CONTROLLED
INSTRUMENT

EXTERNAL
MICROPHONE

ENHANCED SOUND CAPABILITY

BASIC SOUND CAPABILITY

HIGH QUALITY SOUND CAPABILITY

DEVICE DRIVER

MIDI CONVERTER

MIDI (the Musical Instrument Digital Interface) is a standard protocol for sending audio data and
commands to digital devices. A user can connect any MIDI devices (such as synthesizers, drum

machines, or lighting controllers) to a Macintosh computer through a MIDI interface.

STEREO OUTPUT JACK

Sound Data

The Sound Manager can play sounds defined using one of three kinds of sound data:

• Square Wave Data. Square wave data is the simplest kind sound data Your
application can use square-wave data to play a simple sequence of sounds in which
each sound is described completely by three factors: frequency (or pitch);
amplitude (or volume); duration.

• Wave-Table Data. To produce more complex sounds than are possible using
square-wave data, your application can use wave-table data. Wave-table data is
based on a description of a single wave cycle. The wave cycle is represented as an
array of 512 bytes that describe the timbre (or tone) of a sound at any point in the
cycle.

• Sampled-Sound Data. You can use sampled-sound data to play back sounds that
have been digitally recorded (that is, sampled sounds). Sampled sounds are a
continuous list of relative voltages over time that allow the Sound Manager to
reconstruct an arbitrary analog wave form. They are typically used to play back
prerecorded sounds such as speech or special sound effects.

This chapter is oriented primarily towards the recording and playback of sampled
sounds.

About Sampled Sound

Two basic characteristics affect the quality of sampled sound. Those characteristics are
sample rate and sample size.

Sound 22-3

Version 2.1

Sample Rate

Sample rate, or the rate at which voltage samples are taken, determines the highest
possible frequency that can be recorded. Specifically, for a given sample rate, sounds
can be sampled up to half that frequency. For example, if the sample rate is 22,254
samples per second (that is, 22,254 hertz, or Hz), the highest frequency that can be
recorded is about 11,000 Hz. A commercial compact disc is sampled at 44,100 Hz,
providing a frequency response of up to about 20,000 Hz, which is the limit of human
hearing.

Sample Size

Sample size, or quantisation, determines the dynamic range of the recording (the
difference between the quietest and the loudest sound). If the sample size is eight bits,
256 discrete voltage levels can be recorded. This provides approximately 48 decibels
(dB) of dynamic range. A compact disc’s sample size is 16 bits, which provides about 96
dB of dynamic range. (Humans with good hearing are sensitive to ranges greater than
100 dB.)

Sound Manager Capabilities

The current Sound Manager supports 16-bit stereo audio samples with sample rates up
to 64kHz, which allows your application to produce CD-quality sound. On Macintosh
models which do not have the hardware to output 16-bit sound, the Sound Manager
automatically converts 16-bit samples to 8-bit samples.

Storing Sampled Sounds

Sampled-sound data is made up of a series of sample frames, which are stored
contiguously in order of increasing time. You can use the Sound Manager to store
sampled sounds in one of two ways, either in sound resources or in sound files.

Sound Components

The Sound Manager supports arbitrary modifications of sound data using stand-alone
code resources known as sound components. A sound component can perform one or
more signal-processing operations on sound data. For example, the Sound Manager
includes sound components for compressing and decompressing sound data and for
converting sample rates. Sound components may be hooked together in series to
perform complex tasks, as shown in the example at Fig 2.

FIG 2 - A TYPICAL SOUND COMPONENT CHAIN

APPLICATION

OUTPUT DEVICE
COMPONENT (APPLE
SOUND CHIP DRIVER)

AUDIO
HARDWARE

11kHz compressed sound
'snd ' resource

Decompressed
audio samples

22 kHz audio
samples

22 kHz decompressed
sound

APPLE MIXER
RATE

CONVERSION
COMPONENT

SOUND
MANAGER SOURCE

Expand compressed
data into audio

samples
Convert the

samples from 11
kHz to 22kHz

Mix the samples with
any other sounds that

are playing
Send the mixed samples
to the available audio

hardware

EXPANSION
COMPONENT

Compression/Decompression Components. Components which compress and
decompress sound are called codecs (compression/decompression components). Apple
Computer supplies codecs that can handle 3:1 and 6:1 compression and expansion, which
are suitable for most audio requirements. The Sound Manager can use any available
codec to handle compression and expansion of audio data.1

1A term closely associated with the subject of codecs is MACE (Macintosh Audio Compression and Expansion).
MACE is a collection of Sound Manager functions which provide audio data compression and expansion capabilities in
ratios of either 3:1 or 6:1. The Sound Manager uses codecs to handle the MACE capabilities.

22-4 Sound

Version 2.1

In general, your application is unaware of the sound component chain required to
produce a sound on the current sound output device. The Sound Manager keeps track of
which sound output device the user has selected and constructs a component chain
suitable for producing the desired quality of sound on that device. Accordingly, even
though the capabilities of the available sound output hardware can vary greatly from one
Macintosh to another, the Sound Manager ensures that a given chunk of audio data
always sounds as good as possible on the available sound hardware. This means that you
can use the same code to play sounds regardless of the actual sound-producing hardware
available on a particular machine.

Sound Resources and Sound Files

Sound Resources

A sound resource is a resource of type 'snd ' that contains sound commands (see below)
and possibly also sound data. Sound resources are widely used by Macintosh
applications that produce sound and provide a simple and portable way for you to
incorporate sounds into your application.

Sound Files

Although most sampled sounds that you want your application to produce can be stored
as sound resources, there are times when it is preferable to store sounds in sound files.
Some reasons for using sound files rather than sound resources are as follows:

• You want your application to play a sampled sound created by another application,
or you want other applications to be able to play a sampled sound created by your
application. (It is usually easier for different applications to share files than it is to
share resources.)

• If you have a very large sampled sound, it might not be possible to create a
resource large enough to hold all the audio data.2 If the sound occupies more than
about a half megabyte of space, you should probably store it as a file.

Sound File Formats. Apple and several third-party developers have defined two
sampled-sound file formats, known as the Audio Interchange File Format (AIFF) and
the Audio Interchange File Format Extension for Compression (AIFF-C). The main
difference between the AIFF and AIFF-C formats is that AIFF-C allows you to store either
compressed or noncompressed audio data, whereas AIFF allows you to store
noncompressed audio data only.3

The Sound Manager includes play-from-disk functions that allow you to play AIFF and
AIFF-C files continuously from disk even while other tasks are executing.

Sound Production

Sound Channels

A Macintosh produces sound when the Sound Manager sends some data through a
sound channel to the available audio hardware. A sound channel is a queue of sound
commands (see below), together with other information about the sounds to be played

2Resources are limited in size by the structure of resource files and, in particular, because offsets to resource data are
stored as 24-bit quantities.
3Do not confuse AIFF and AIFF-C files (referred to in this chapter as sound files) with Finder sound files. A Finder
sound file contains a sound resource that plays when the user double clicks on the file in the Finder. You can create a
Finder sound file by creating a file of type 'sfil' with a creator of 'movr' and placing in the file a single sound resource. You
can play such a file by using Resource Manager functions to open the Finder sound file and then by using the SndPlay
function to play the single sound resource contained in it.

Sound 22-5

Version 2.1

in that channel. The commands placed into the channel might originate from an
application or from the Sound Manager itself.

The Sound Manager uses the SndChannel data type to define a sound channel:
type

SndChannel = PACKED RECORD
nextChan: SndChannelPtr; { Pointer to next channel. }
firstMod: Ptr; { (Used internally.) }
callBack: SndCallBackUPP; { Pointer to callback function. }
userInfo: LONGINT; { Free for application's use. }
wait: LONGINT; { (Used internally.) }
cmdInProgress: SndCommand; { (Used internally.) }
flags: INTEGER; { (Used internally.) }
qLength: INTEGER; { (Used internally.) }
qHead: INTEGER; { (Used internally.) }
qTail: INTEGER; { (Used internally.) }
queue: ARRAY [0..127] OF SndCommand; { (Used internally.) }
END;

SndChannelPtr = ^SndChannel;

Multiple Sound Channels

It is possible to have several channels of sound open at one time. The Sound Manager
(using the Apple Mixer sound component) mixes together the data coming from all open
sound channels and sends a single stream of sound data to the current sound output
device. This allows a single application to play two or more sounds at once. It also
allows multiple applications to play sounds at the same time.

Sound Commands

When you call the appropriate Sound Manager function to play a sound, the Sound
Manager issues one or more sound commands to the audio hardware. A sound command
is an instruction to produce sound, modify sound, or otherwise assist in the overall
process of sound production. The structure of a sound command is defined by the
SndCommand data type:

type

SndCommand = PACKED RECORD
cmd: Uint16; { Command number. }
param1: INTEGER; { First parameter. }
param2: LONGINT; { Second parameter }
END;

SndCommandPtr = ^SndCommand;

The Sound Manager provides a rich set of sound commands, which are defined by
constants. Some examples are as follows:

quietCmd = 3 Stop the sound currently playing.
flushCmd = 4 Remove all commands currently queued in specified sound channel.
syncCmd = 14 Synchronise multiple channels of sound.
freqCmd = 42 Change the frequency of the sound. If the sound is not currently

playing, begin playing at the frequency specified in param2.
ampCmd = 43 Change the amplitude of the sound.
soundCmd = 80 Install a sampled sound as a voice in a channel.
bufferCmd = 81 Play a buffer of sampled-sound data.
rateCmd = 82 Set the pitch of a sampled sound.

Sound Commands In 'snd ' Resources

A simple way to issue sound commands is to call the function SndPlay, specifying a sound
resource of type 'snd ' that contains the sound commands you want to issue. A sound
resource can contain any number of sound commands. As a result, you might be able to
satisfy your sound-related requirements simply by creating sound resources and calling
SndPlay.

22-6 Sound

Version 2.1

Often, a 'snd ' resource consists only of a single sound command (usually the bufferCmd
command) together with data that describes a sampled sound to be played. The
following is an example of such a 'snd ' resource, shown in the form of the output of the
MPW tool DeRez when applied to the resource:

data 'snd ' (19068,"Looped sound",purgeable)
{

/* Sound resource header */
$"0001" /* Format type. */
$"0001" /* Number of data types. */
$"0005" /* Sampled-sound data. */
$"00000080" /* Initialisation option: initMono. */

/* Sound commands */
$"0001" /* Number of sound commands that follow (1). */
$"8051" /* Command 1 (bufferCmd). */
$"0000" /* param1 = 0. */
$"00000014" /* param2 = offset to sound header (20 bytes). */

/* Sampled sound header (Standard sound header)*/
$"00000000" /* samplePtr Pointer to data (it follows immediately). */
$"00000BB8" /* length Number of bytes in sample (3000 bytes). */
$"56EE8BA3" /* sampleRate Sampling rate of this sound (22 kHz). */
$"000007D0" /* loopStart Starting of the sample's loop point. */
$"00000898" /* loopEnd Ending of the sample's loop point. */
$"00" /* encode Standard sample encoding. */
$"3C" /* baseFrequency BaseFrequency at which sample was taken. */

/* sampleArea[] Sampled sound data */
$"80 80 81 81 81 81 81 81 80 80 80 80 80 81 82 82"
$"82 83 82 82 81 80 80 7F 7F 7F 7E 7D 7D 7D 7C 7C"
(Rest of sampled sound data.)

};

This resource indicates that the sound is defined using sampled-sound data and includes
a call to a single sound command (the bufferCmd command). The offset bit of the command
number is set to indicate that the sound data is contained within the resource itself.
(Data can can also be stored in a buffer separate from a sound resource.) The second
parameter to the bufferCmd command indicates the offset from the beginning of the
resource to the sampled sound header4, which immediately follows the command and
its two parameters. Note that the first part of the sampled sound header contains
important information about the sample and that the sampled sound data is itself part of
the sampled sound header. Note also the loopStart and loopEnd fields of the sampled sound
header, which are central to the matter of looping a sound indefinitely.

Sending Sound Commands Directly From
the Application

You can also send sound commands one at a time into a sound channel by repeatedly
calling the SndDoCommand function. The commands are held in a queue and processed in a
first-in, first-out order. Alternatively, you can bypass a sound queue altogether by calling
the SndDoImmediate function

Synchronous and Asynchronous Sound

You can play sounds either synchronously or asynchronously.

Synchronous Sound

When you play a sound synchronously, the Sound Manager alone has control over the
CPU while it executes commands in a sound channel. Your application does not continue
executing until the sound has finished playing.

4The sampled sound header shown is a standard sound header, which can reference only buffers of monophonic 8-bit
sound. The extended sound header is used for 8-bit or 16-bit stereo sound data as well as monophonic sound data. The
compressed sound header is used to describe compressed sound data, whether monophonic or stereo.

Sound 22-7

Version 2.1

Asynchronous Sound

When you play a sound asynchronously, your application can continue other processing
while the sound is playing. From a programming standpoint, asynchronous sound
production is considerably more complex than synchronous sound production.

Playing a Sound

Playing a Sound Resource

You can load a sound resource into memory and then play it using the SndPlay function. As
previously stated, a 'snd ' resource contains sound commands that play the desired sound
and might also contain sound data. If it does contain sound data, that data might be
either compressed or noncompressed. SndPlay decompresses the data, if necessary, to
play the sound.

Channel Allocation. When you pass SndPlay a NULL sound channel pointer in its first
parameter, the Sound Manager automatically allocates a sound channel for the sound
and then disposes of the channel when the sound has completed playing. The sound
channel is allocated in the application's heap.

Playing a Sound File

You can play a sampled sound stored in a file of type AIFF or AIFF-C by opening the file
and passing its file reference number to the SndStartFilePlay function.

The SndStartFilePlay function works like the SndPlay function but does not require the entire
sound to be in RAM at one time. Instead, the Sound Manager uses two buffers, each of
which is smaller than the sound itself. The Sound Manager plays one buffer of sound
while filling the other with data from disk. After it finishes playing the first buffer, the
Sound Manager switches buffers, and plays data in the second while refilling the first.
This double-buffering technique minimises RAM usage (at the expense of additional disk
overhead). SndStartFilePlay is thus ideal for playing very large sounds.

Channel Allocation. When you pass SndStartFilePlay a NULL sound channel pointer in the
first parameter, the Sound Manager automatically allocates a sound channel for the
sound.

Checking For Play-From-Disk Capability. The Sound Manager supports play-from-disk
only on certain Macintosh computers. Accordingly, you should use the Gestalt function
(see Chapter 23 — Miscellany) to check for this capability before calling SndStartFilePlay.

Playing Sounds Asynchronously

The Sound Manager allows you to play sounds asynchronously only if you allocate sound
channels yourself. If you use such a technique, your application will need to dispose of a
sound channel whenever the application finishes playing a sound. In addition, your
application might need to release a sound resource that you played on a sound channel.

The Sound Manager provides certain mechanisms that allow your application to ascertain
when a sound finishes playing, so that it can arrange to dispose of, firstly, a sound
channel no longer being used and, secondly, other data (such as a sound resource) that
you no longer need after disposing of the channel. Despite the existence of these
mechanisms, the programming aspects of asynchronous sound remain rather complex.
For that reason, the demonstration program files associated with this chapter include a
library, called AsynchSoundLib (AsynchSoundLib68K for the 680x0 version or
AsynchSoundLibPPC for thePowerPC version), which support asynchronous sound
playback and which eliminates the necessity for your application to itself include source
code relating to the more complex aspects of asynchronous sound management.

22-8 Sound

Version 2.1

AsynchSoundLib, which may be used by any application that requires a straightforward
and uncomplicated interface for asynchronous sound playback, is documented following
the Constants, Data Types, and Functions section of this chapter.

Sound Recording
The Sound Input Manager provides the ability to record and digitally store sounds in a
device-independent manner, and provides two high-level functions that allow your
application to record sounds from the user and store them in memory or in a file. When
you call these functions, the Sound Input Manager presents the sound recording dialog
box shown at Fig 3.

FIG 3 - SOUND RECORDING DIALOG

Recording a Sound Resource

You can record sounds from the current input device using the SndRecord function. When
calling SndRecord, you can pass a handle to a block of memory as the fourth parameter.
The incoming data will then be stored in that block, the size of which determines the
recording time available. If you pass NULL as the fourth parameter, the Sound Input
Manager allocates the largest possible block in the application heap. Either way, the
Sound Input Manager resizes the block when the user clicks the Save button.

When you have recorded a sound, you can play it back by calling SndPlay and passing it the
handle to the block of memory in which the sound data is stored. That block has the
structure of a 'snd ' resource, but its handle is not a handle to an existing resource. To
save the recorded data as a resource, you can use the appropriate Resource Manager
functions in the usual way.

Recording a Sound File

To record a sound directly into a file, you can call the SndRecordToFile function, which works
exactly like SndRecord except that you pass it the file reference number of an open file
instead of a handle to a block of memory. When SndRecordToFile exits successfully, that file
contains the recorded audio data in AIFF or AIFF-C format. You can then play the
recorded sound by passing that file reference number to the SndStartFilePlay function.

Recording Quality

One of the following constants should be passed in the third parameter of both the
SndRecord and the SndRecordToFile call so as to specify the recording quality required:

Sound 22-9

Version 2.1

Constant Value Meaning
siCDQuality 'cd ' 44.1kHz, stereo, 16 bit.
siBestQuality 'best' 22kHz, mono, 8 bit.
siBetterQuality 'betr' 22kHz, mono, 3:1

compression.
siGoodQuality 'good' 22KHz, mono, 6:1

compression

The highest quality sound naturally requires the greatest storage space. Accordingly, be
aware that, for most voice recording, you should specify siGoodQuality.

As an example of the storage space required for sounds, one minute of monophonic
sound recorded with the fidelity you would expect from a commercial compact disc
occupies about 5.3 MB of disk space. Even one minute of telephone-quality speech takes
up more than half a megabyte.

Checking For Sound Recording Equipment

Not all Macintosh models support sound recording. Accordingly, before calling SndRecord
or SndRecordToFile, you must use the Gestalt function to determine whether sound-recording
hardware and software are installed.

Speech
The Speech Manager converts text into sound data, which it passes to the Sound
Manager to play through the current sound output device. The Speech Manager’s
interaction with the Sound Manager is transparent to your application, so you do not
need to be familiar with the Sound Manager to take advantage of the Speech Manager’s
capabilities.

Your application can initiate speech generation by passing a string or a buffer of text to
the Speech Manager. The Speech Manager is responsible for sending the text to a
speech synthesiser, a component that contains executable code that manages all
communication between the Speech Manager and the Sound Manager. A synthesiser is
usually contained in a resource in a file within the System folder. A speech synthesiser
can include one or more voices, each of which may have different tonal qualities.

Generating Speech From a String

The SpeakString function is used to convert a text string into speech. SpeakString automatically
allocates a speech channel, uses that channel to produce speech, and then disposes of
the speech channel.

Asynchronous Speech

Speech generation is asynchronous, that is, control returns to your application before
SpeakString finishes speaking the string. However, because SpeakString copies the string you
pass it into an internal buffer, you are free to release the memory you allocated for the
string as soon as SpeakString returns.

Synchronous Speech

If you wish to generate speech synchronously, you can use SpeakString in conjunction with
the SpeechBusy function, which returns the number of active speech channels, including the
speech channel created by the SpeakString function.

22-10 Sound

Version 2.1

Checking For Speech Capabilities

Because the Speech Manager is not available in all system software versions, your
application should always check for speech capabilities, using the Gestalt function, before
calling SpeakString or SpeechBusy.

Relevant Constants, Data Types, and Functions

Constants

Gestalt Sound Attributes Selector and Response Bits

gestaltSoundAttr 'snd ' Sound attributes.
gestaltStereoCapability = 0 Sound hardware has stereo capability.
gestaltStereoMixing = 1 Stereo mixing on external speaker.
gestaltSoundIOMgrPresent = 3 Sound I/O Manager is present.
gestaltBuiltInSoundInput = 4 Built-in Sound Input hardware is present.
gestaltHasSoundInputDevice = 5 Sound Input device available.
gestaltPlayAndRecord = 6 Built-in hardware can play & record simultaneously.
gestalt16BitSoundIO = 7 Sound hardware can play and record 16-bit samples.
gestaltStereoInput = 8 Sound hardware can record stereo.
gestaltLineLevelInput = 9 Sound input port requires line level.
gestaltSndPlayDoubleBuffer = 10 SndPlayDoubleBuffer available.
gestaltMultiChannels = 11 Multiple channel support.
gestalt16BitAudioSupport = 12 16 bit audio data supported.

gestaltSpeechAttr 'ttsc' Speech Manager attributes.
gestaltSpeechMgrPresent = 0 Speech Manager exists.
gestaltSpeechHasPPCGlue = 1 Native PPC glue for Speech Manager API exists.

Recording Qualities

siCDQuality = 'cd ' 44.1kHz, stereo, 16 bit.
siBestQuality = 'best' 22kHz, mono, 8 bit.
siBetterQuality = 'betr' 22kHz, mono, MACE 3:1.
siGoodQuality = 'good' 22kHz, mono, MACE 6:1.

Typical Sound Commands

quietCmd = 3 Stop the sound currently playing.
flushCmd = 4 Remove all commands currently queued in the specified sound channel.
syncCmd = 14 Synchronise multiple channels of sound.
freqCmd = 42 Change the frequency of the sound. If the sound is not currently playing,

begin playing indefinitely at the frequency specified in param2.
ampCmd = 43 Change the amplitude of the sound.
soundCmd = 80 Install a sampled sound as a voice in a channel.
bufferCmd = 81 Play a buffer of sampled-sound data.
rateCmd = 82 Set the pitch of a sampled sound.

Data Types

Sound Channel Structure

SndChannel = PACKED RECORD
nextChan: SndChannelPtr; { Pointer to next channel. }
firstMod: Ptr; { (Used internally.) }
callBack: SndCallBackUPP; { Pointer to callback function. }
userInfo: LONGINT; { Free for application's use. }
wait: LONGINT; { (Used internally.) }
cmdInProgress: SndCommand; { (Used internally.) }
flags: INTEGER; { (Used internally.) }
qLength: INTEGER; { (Used internally.) }
qHead: INTEGER; { (Used internally.) }
qTail: INTEGER; { (Used internally.) }
queue: ARRAY [0..127] OF SndCommand; { (Used internally.) }
END;

SndChannelPtr = ^SndChannel;

Sound 22-11

Version 2.1

Sound Command Structure

SndCommand = PACKED RECORD
cmd: Uint16; { Command number. }
param1: INTEGER; { First parameter. }
param2: LONGINT; { Second parameter }
END;

SndCommandPtr = ^SndCommand;

Functions

Playing Sound Resources

PROCEDURE SysBeep(duration: INTEGER);
FUNCTION SndPlay(chan: SndChannelPtr; sndHandle: SndListHandle; async: BOOLEAN): OSErr;

Playing From Disk

FUNCTION SndStartFilePlay(chan: SndChannelPtr; fRefNum: INTEGER; resNum: INTEGER;
bufferSize: LONGINT; theBuffer: UNIV Ptr; theSelection: AudioSelectionPtr;
theCompletion: FilePlayCompletionUPP; async: BOOLEAN): OSErr;

FUNCTION SndPauseFilePlay(chan: SndChannelPtr): OSErr;
FUNCTION SndStopFilePlay(chan: SndChannelPtr; quietNow: BOOLEAN): OSErr;

Allocating and Releasing Sound Channels

FUNCTION SndNewChannel(VAR chan: SndChannelPtr; synth: INTEGER; init: LONGINT;
userRoutine: SndCallBackUPP): OSErr;

FUNCTION SndDisposeChannel(chan: SndChannelPtr; quietNow: BOOLEAN): OSErr;

Sending Commands to a Sound Channel

FUNCTION SndDoCommand(chan: SndChannelPtr; {CONST}VAR cmd: SndCommand;
noWait: BOOLEAN): OSErr;

FUNCTION SndDoImmediate(chan: SndChannelPtr; {CONST}VAR cmd: SndCommand): OSErr;

Recording Sounds

FUNCTION SndRecord(filterProc: ModalFilterUPP; corner: Point; quality: OSType;
VAR sndHandle: SndListHandle): OSErr;

FUNCTION SndRecordToFile(filterProc: ModalFilterUPP; corner: Point; quality: OSType;
fRefNum: INTEGER): OSErr;

Generating Speech

FUNCTION SpeakString(textToBeSpoken: Str255): OSErr;
FUNCTION SpeechBusy: INTEGER;

The AsynchSoundLib Library
The AsynchSoundLib library is intended to provide a straightforward and uncomplicated
interface for asynchronous sound playback.

AsynchSoundLib requires that you include a global "attention" flag in your application.
At startup, your application must call AsynchSoundLib's initialisation function and
provide the address of this attention flag. Thereafter, the application must continually
check the attention flag within its main event loop.

AsynchSoundLib's main function is to spawn asynchronous sound tasks, and
communication between your application and AsynchSoundLib is carried out on an as-
required basis. The basic phases of communication for a typical sound playback
sequence are as follows.

• Your application tells AsynchSoundLib to play some sound.

22-12 Sound

Version 2.1

• AsynchSoundLib uses the Sound Manager to allocate a sound channel and begins
asynchronous playback of your sound.

• The application continues executing, with the sound playing asynchronously in the
background.

• The sound completes playback. AsynchSoundLib has set up a sound command that
causes it (AsynchSoundLib) to be informed immediately upon completion of
playback. When playback ceases, AsynchSoundLib sets the application’s global
attention flag.

• The next time through your application’s event loop, the application notices that
the attention flag is set and calls AsynchSoundLib to free up the sound channel.

When your application terminates, it must call AsynchSoundLib to stop any asynchronous
playback in progress at the time.

AsynchSoundLib's method of communication with the application minimises processing
overhead. By using the attention flag scheme, your application calls AsynchSoundLib's
cleanup function only when it is really necessary.

AsynchSoundLib Functions

The following documents those AsynchSoundLib functions that may be called from an
application.

To facilitate an understanding of the following, it is necessary to be aware that
AsynchSoundLib associates a data structure, referred to in the following as an
ASStructure, with each channel. Each ASStructure includes the following fields:

channel : SndChannel; { The sound channel. }
refNum : SInt32; { Reference number. }
sound : Handle;{ The sound. }
handleState : UInt8; { State to which to restore the sound handle. }
inUse : Boolean; { Is this ASStructure currently in use? }

function AS_Initialise (attnFlag,numChannels) : OSErr;

var attnFlag : Boolean; Application's "attention" flag global variable.
numChannels : SInt16; Number of channels required to be open simultaneously. If 0 is

specified, numChannels defaults to 4.

Returns: 0 No errors.
Non-zero results of MemError call.

This function stores the address of the application's "attention" flag global variable and then
allocates memory for a number of ASStructures equal to the requested number of sound
channels.

function AS_PlayID (resID,refNum) : OSErr;

resID : SInt16; Resource ID of the 'snd ' resource.
var refNum : SInt32; A pointer to a reference number storage variable. Optional.

Returns: 0 No errors.
1 No channels available.
Non-zero results of ResError call.
Non-zero results of SndNewChannel call.
Non-zero results of SndPlay call.

This function initiates asynchronous playback of the 'snd ' resource with ID resID.

Note: If you pass a pointer to a variable in their refNum parameters, AS_PlayID and its
sister function AS_PlayHandle (see below) return a reference number in that parameter.
As will be seen, this reference number may be used to gain more control over the

Sound 22-13

Version 2.1

playback process. However, if you simply want to trigger a sound and let it to run to
completion, with no further control over the playback process, you can pass NULL in
the refNum parameter. In this case, a reference number will not be returned.

First, AS_PlayID attempts to load the specified 'snd ' resource. If successful, the handle state is
saved for later restoration, and the handle is made unpurgeable. The function then gets a
reference number and a pointer to the next free ASStructure. A sound channel is then allocated
via a call to SndNewChannel and the associated ASStructure is initialised. HLockHi is then called to
move the sound handle high in the heap and lock it. SndPlay is then called to start the sound
playing, playing, the channel.userInfo field is set to indicate that the sound is playing, and a callback
function is queued so that AsynchSoundLib will know when the sound has stopped playing. If all
this is successful, AS_PlayID returns the reference number associated with the channel (if the
caller wants it).

function AS_PlayHandle(sound,refNum) : OSErr;

sound : Handle; A handle to the sound to be played.
var refNum : SInt32; A pointer to a reference number storage variable. Optional.

Returns: 0 If no errors.
1 No channels available.
Non-zero results of SndNewChannel call.
Non-zero results of SndPlay call.

This function initiates asynchronous playback of the sound referred to by sound.

Note: The AS_PlayHandle function is similar to AS_PlayID, except that it supports a special
case: You can pass AS_PlayHandle a nil handle. This causes AS_PlayHandle to open a
sound channel but not call SndPlay. Normally, you do this when you want to get a
sound channel and then send sound commands directly to that channel yourself. (See
AS_GetChannel, below.)

If a handle is provided, its current state is saved for later restoration before it is made
unpurgeable. AS_PlayHandle then gets a reference number and a pointer to a free ASStructure. A
sound channel is then allocated via a call to SndNewChannel and the associated ASStructure is
initialised. Then, if a handle was provided, HLockHi is called to move the sound handle high in the
heap and lock it, following which SndPlay is called to start the sound playing, the channel.userInfo
field is set to indicate that the sound is playing, and a callback function is queued so that
AsynchSoundLib will know when the sound has stopped playing. Finally, the reference number
associated with the channel is returned (if the caller wants it).

function AS_GetChannel(refNum,channel) : OSErr;

refNum : SInt32 Reference number.
var channel : SndChannelPtr A pointer to a SoundChannelPtr.

Returns: 0 No errors.
2 If refNum does not refer to any current ASStructure.

This function searches for the ASStructure associated with refNum. If one is found, a pointer to
the associated sound channel is retuned in the channel parameter.

AS_GetChannel is provided so as to allow an application to gain access to the sound channel
associated with a specified reference number and thus gain the potential for more control over
the playback process. It allows an application to use AsynchSoundLib to handle sound channel
management while at the same time retaining the ability to send sound commands to the
channel. This is most commonly done to play looped continuous music, for which you will need
to provide a sound resource with a loop and a sound command to install the music as a voice.
First, you open a channel by calling AS_PlayHandle, specifying nil in the first parameter. (This
causes AS_PlayHandle to open a sound channel but not call SndPlay.) Armed with the returned
reference number associated with that channel, you then call AS_GetChannel to get the
SndChannelPtr, which you then pass as the first parameter in a call to SndPlay. Finally, you send a
freqCmd command to the channel to start the music playing. The playback will keep looping until
you send a quietCmd command to the channel.

22-14 Sound

Version 2.1

procedure AS_CloseChannel;

This function is called from the application's event loop if the application's "attention" flag is set.
It clears the "attention" flag and then performs playback cleanup by iterating through the
ASStructures looking for structures which are both in use (that is, the inUse field contains true)
and complete (that is, the channel.userInfo field has been set by AsyncSoundLib's callback function
to indicate that the sound has stopped playing). It frees up such structures for later use and
closes the associated sound channel.

procedure AS_CloseDown;

AS_CloseDown checks that AsynchSoundLib was previously initialised, stops all current playback,
calls AS_CloseChannel to close open sound channels, and disposes of the associated
ASStructures.

Demonstration Program
{ ◊◊
// SoundDemo.p
// ◊◊
//
// This program opens a modal dialog containing eight bevel button controls arranged in
// two groups, namely, a synchronous sound group and an asynchronous sound group.
// Clicking on the bevel buttons causes sound to be played back or recorded as follows:
//
// • Synchronous group:
//
// • Play sound resource.
//
// • Play sound file.
//
// • Record sound resource.
//
// • Record sound file.
//
// • Speak text string.
//
// • Asynchronous group:
//
// • Start and stop looped sound playback.
//
// • Play unlooped sound.
//
// • Speak text string.
//
// At startup, the program checks for play-from-disk, sound recording capability, speech
// capability, and multi-channel capability. If these are not available, the relevant
// buttons are disabled.
//
// The asynchronous sound sections of the program utilise a special library called
// AsyncSoundLib, which must be included in the CodeWarrior project (AsyncSoundLib68K for
// 68$0 projects and AsyncSoundLibPPC for PowerPC projects).
//
// The program utilises the following resources:
//
// • 'MBAR' and 'MENU' resources (preload, non-purgeable).
//
// • A 'DLOG' resource and associated 'DITL', 'dlgx', and 'dftb' resources (all
// purgeable).
//
// • 'CNTL' resources (purgeable) for the controls within the dialog.
//
// • Three 'snd ' resources, one for synchronous playback (purgeable), one for looped
// asynchronous playback (unpurgeable), and one for unlooped asynchronous playback
// (purgeable).
//
// • Four 'cicn' resources (purgeable). Two are used to provide an animated display
// which halts during synchronous playback and continues during asynchronous playback.
// The remaining two are used by the bevel button controls.
//
// • Three 'STR#' resources containing error message strings and 'speak text' strings
// (all purgeable).

Sound 22-15

Version 2.1

//
// • Two 'ALRT' resources and associated 'DITL', 'alrx', and 'dftb' resources
// (all purgeable) for displaying error messages.
//
// • 'hrct' and 'hwin' resources (purgeable) for balloon help.
//
// In addition, the function DoPlayFile utilises the file 'soundfile.aiff'.
//
// Each time is is invoked, the function DoRecordResource creates a new 'snd' resource
// with a unique ID in the application's resource fork.
//
// When first invoked, the function DoRecordFile creates the file 'test.aiff' in the
// parent folder. All subsequent record-to-file is to this file.
//
// ◊◊ }

program SoundDemo;

//
……
……………………………………… includes

uses

{ Universal Interfaces }
Appearance, Devices, Dialogs, Fonts, GestaltEqu, Processes, Resources, ToolUtils,
SoundInput, Speech, TextUtils,

{ AsyncSoundLib }
AsyncSoundLibInterface;

//
……
………………………………………… constants

const

rDialog = 128;
iDone = 1;
iPlayResource = 4;
iPlayFile = 5;
iRecordResource = 6;
iRecordFile = 7;
iSpeakTextSync = 8;
iLoopedSound = 9;
iUnloopedSound = 10;
iSpeakTextAsync = 11;
rPlaySoundResource = 8192;
rLoopedSound = 8193;
rUnloopedSound = 8194;
rSpeechStrings = 130;
rErrorAlert = 129;
rErrorStrings = 128;
eOpenDialogFail = 1;
eLoopedSoundSetUp = 2;
eCannotInitialise = 3;
eGetResource = 4;
eNoChannelsAvailable = 5;
ePlaySound = 6;
eMemory = 7;
rErrorAlertWithCode = 130;
rErrorStringsWithCode = 129;
eSndPlay = 1;
ePlayFile = 2;
eSndRecord = 3;
eWriteResource = 4;
eRecordFile = 5;
eSpeakString = 6;
eSndDoImmediate = 7;
rColourIcon1 = 128;
rColourIcon2 = 129;
kMaxChannels = 8;
kOutOfChannels = 1;

//
……
………………… global variables

var

22-16 Sound

Version 2.1

gDone : boolean;
gDialogPtr : DialogPtr;
gAppResFileRefNum : SInt16;
gHasSoundPlayDoubBuff : boolean;
gHasSoundInputDevice : boolean;
gHasSpeechManager : boolean;
gHasMultiChannel : boolean;
gLoopedSoundOn : boolean;
gLoopedSoundRefNum : SInt32;
gLoopedSoundChannel : SndChannelPtr;

// ... AsyncSoundLib attention flag

gCallAS_CloseChannel : boolean;

// ……… main
program block variables

mainMenubarHdl : Handle;
mainMenuHdl : MenuHandle;
mainErr : OSErr;

//
……
………… function prototypes

procedure DoInitManagers; forward;
procedure DoCheckSoundEnvironment; forward;
procedure DoInitialiseSoundLib; forward;
function DoLoopedSoundSetUp : boolean; forward;
procedure EventLoop; forward;
procedure DoDialogHit(item : SInt16); forward;
procedure DoPlayResource; forward;
procedure DoPlayFile; forward;
procedure DoRecordResource; forward;
procedure DoRecordFile; forward;
procedure DoSpeakStringSync; forward;
procedure DoLoopedSoundAsync; forward;
procedure DoUnloopedSoundAsync; forward;
procedure DoSpeakStringAsync; forward;
procedure DoSetUpDialog; forward;
procedure DoAdjustItems; forward;
procedure DoErrorAlert(stringIndex : SInt16); forward;
procedure DoErrorAlertWithCode(stringIndex : SInt16; resultCode : SInt16); forward;

// ◊◊◊ DoInitManagers

procedure DoInitManagers;
var
osError : OSErr;

begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

InitCursor;
FlushEvents(everyEvent, 0);

osError := RegisterAppearanceClient;

end;
{ of procedure DoInitManagers }

// ◊◊ DoCheckSoundEnvironment

procedure DoCheckSoundEnvironment;
var
osErr : OSErr;
response : SInt32;

begin
osErr := Gestalt(gestaltSoundAttr, response);

Sound 22-17

Version 2.1

if (osErr = noErr) then
begin
gHasSoundPlayDoubBuff := BitTst(@response, 31 - gestaltSndPlayDoubleBuffer);
end

else begin
gHasSoundPlayDoubBuff := false;
end;

if (osErr = noErr) then
begin
gHasSoundInputDevice := BitTst(@response, 31 - gestaltHasSoundInputDevice);
end

else begin
gHasSoundInputDevice := false;
end;

if (osErr = noErr) then
begin

{$ifc TARGET_CPU_PPC}
gHasSpeechManager := BitTst(@response, 31 - gestaltSpeechMgrPresent) and

(SInt32(@SpeechBusy) <> kUnresolvedCFragSymbolAddress);
{$elsec}

gHasSpeechManager := BitTst(@response, 31 - gestaltSpeechMgrPresent);
{$endc}

end
else begin

gHasSpeechManager := false;
end;

if (osErr = noErr) then
begin
gHasMultiChannel := BitTst(@response, 31 - gestaltMultiChannels);
end

else begin
gHasMultiChannel := false;
end;

end;
{ of procedure DoCheckSoundEnvironment }

// ◊◊◊ DoInitialiseSoundLib

procedure DoInitialiseSoundLib;
begin
if (AS_Initialise(gCallAS_CloseChannel, kMaxChannels) <> noErr) then

begin
DoErrorAlert(eCannotInitialise);
ExitToShell;
end;

end;
{ of procedure DoInitialiseSoundLib }

// ◊◊◊ DoLoopedSoundSetUp

function DoLoopedSoundSetUp : boolean;
var
error : SInt16;
osErr : OSErr;
soundHdl : Handle;

begin
error := AS_PlayHandle(nil, gLoopedSoundRefNum);
if (error <> noErr) then

begin
DoLoopedSoundSetUp := false;
Exit(DoLoopedSoundSetUp);
end

else begin
error := AS_GetChannel(gLoopedSoundRefNum, gLoopedSoundChannel);
if (error <> noErr) then

begin
DoLoopedSoundSetUp := false;
Exit(DoLoopedSoundSetUp);
end;

soundHdl := GetResource('snd ', rLoopedSound);
if (soundHdl <> nil) then

begin
HLockHi(soundHdl);
osErr := SndPlay(gLoopedSoundChannel, SndListHandle(soundHdl), true);
if (osErr <> noErr) then

22-18 Sound

Version 2.1

begin
DoLoopedSoundSetUp := false;
Exit(DoLoopedSoundSetUp);
end;

end
else begin

DoLoopedSoundSetUp := false;
Exit(DoLoopedSoundSetUp);
end;

end;

DoLoopedSoundSetUp := true;
end;

{ of function DoLoopedSoundSetUp }

// ◊◊ EventLoop

procedure EventLoop;
var
theRect, eraseRect : Rect;
colourIconHdl1 : CIconHandle;
colourIconHdl2 : CIconHandle;
gotEvent : boolean;
theEvent : EventRecord;
theDialogPtr : DialogPtr;
fontNum, itemHit : SInt16;
finalTicks : UInt32;
theWindowPtr : WindowPtr;
partCode : SInt16;
ignoredErr : OSErr;

begin
SetRect(theRect, 267, 206, 299, 238);
SetRect(eraseRect, 310, 206, 496, 237);
colourIconHdl1 := GetCIcon(rColourIcon1);
colourIconHdl2 := GetCIcon(rColourIcon2);

gDone := false;

while not gDone do
begin
if gCallAS_CloseChannel then

begin
AS_CloseChannel;

GetFNum('Geneva', fontNum);
TextFont(fontNum);
TextSize(10);
MoveTo(350, 226);
DrawString('AS_CloseChannel called');
Delay(45, finalTicks);
end;

gotEvent := WaitNextEvent(everyEvent, theEvent, 10, nil);

if gotEvent then
begin
if IsDialogEvent(theEvent) then

begin
if DialogSelect(theEvent, theDialogPtr, itemHit) then

begin
DoDialogHit(itemHit);
end;

end
else begin

if (theEvent.what = mouseDown) then
begin
partCode := FindWindow(theEvent.where, theWindowPtr);
if (partCode = inDrag) then

begin
DragWindow(theWindowPtr, theEvent.where, qd.screenBits.bounds);
end;

if (partCode = inMenuBar) then
begin
ignoredErr := MenuSelect(theEvent.where);
end;

end;
end;

end

Sound 22-19

Version 2.1

else begin
PlotCIcon(theRect, colourIconHdl1);
Delay(5, finalTicks);
PlotCIcon(theRect, colourIconHdl2);
Delay(5, finalTicks);
EraseRect(eraseRect);
end;

end;

DisposeDialog(gDialogPtr);

AS_CloseDown;
end;

{ of procedure EventLoop }

// ◊◊ DoDialogHit

procedure DoDialogHit(item : SInt16);
begin
case item of

iDone: begin
gDone := true;
end;

iPlayResource: begin
DoPlayResource;
end;

iPlayFile: begin
DoPlayFile;
end;

iRecordResource: begin
DoRecordResource;
end;

iRecordFile: begin
DoRecordFile;
end;

iSpeakTextSync: begin
DoSpeakStringSync;
end;

iLoopedSound: begin
DoLoopedSoundAsync;
end;

iUnloopedSound: begin
DoUnloopedSoundAsync;
end;

iSpeakTextAsync: begin
DoSpeakStringAsync;
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoDialogHit }

// ◊◊◊ DoPlayResource

procedure DoPlayResource;
var
sndListHdl : SndListHandle;
resErr : SInt16;
osErr : OSErr;
ignoredErr : OSErr;
controlHdl : ControlHandle;

begin
sndListHdl := SndListHandle(GetResource('snd ', rPlaySoundResource));
resErr := ResError;
if (resErr <> noErr) then

begin
DoErrorAlert(eGetResource);

22-20 Sound

Version 2.1

end;

if (sndListHdl <> nil) then
begin
HLock(Handle(sndListHdl));
osErr := SndPlay(nil, sndListHdl, false);
if (osErr <> noErr) then

begin
DoErrorAlertWithCode(eSndPlay, osErr);
end;

HUnlock(Handle(sndListHdl));
ReleaseResource(Handle(sndListHdl));

ignoredErr := GetDialogItemAsControl(gDialogPtr, iPlayResource, controlHdl);
SetControlValue(controlHdl, 0);
end;

end;
{ of procedure DoPlayResource }

// ◊◊◊ DoPlayFile

procedure DoPlayFile;
var
osErr : OSErr;
fileSysSpec : FSSpec;
fileRefNum : SInt16;
controlHdl : ControlHandle;
ignoredErr : OSErr;

begin
osErr := FSMakeFSSpec(0, 0, ':soundfile.aiff', fileSysSpec);
if (osErr = noErr) then

begin
osErr := FSpOpenDF(fileSysSpec, fsRdPerm, fileRefNum);
end;

if (osErr = noErr) then
begin
ignoredErr := SetFPos(fileRefNum, fsFromStart, 0);
end;

if (osErr = noErr) then
begin
osErr := SndStartFilePlay(nil, fileRefNum, 0, 20480, nil, nil, nil, false);
end;

if (osErr <> noErr) then
begin
DoErrorAlertWithCode(ePlayFile, osErr);
end;

ignoredErr := FSClose(fileRefNum);

ignoredErr := GetDialogItemAsControl(gDialogPtr, iPlayFile, controlHdl);
SetControlValue(controlHdl, 0);
end;

{ of procedure DoPlayFile }

// ◊◊◊ DoRecordResource

procedure DoRecordResource;
var
oldResFileRefNum : SInt16;
topLeft : Point;
soundHdl : Handle;
osErr, memErr : OSErr;
theResourceID, resErr : SInt16;
controlHdl : ControlHandle;
ignoredErr : OSErr;

begin
oldResFileRefNum := CurResFile;
UseResFile(gAppResFileRefNum);

topLeft.h := (qd.screenBits.bounds.right div 2) - 156;
topLeft.v := 150;

soundHdl := NewHandle(25000);
memErr := MemError;
if (memErr <> noErr) then

Sound 22-21

Version 2.1

begin
DoErrorAlert(eMemory);
Exit(DoRecordResource);
end;

osErr := SndRecord(nil, topLeft, siBetterQuality, SndListHandle(soundHdl));
if ((osErr <> noErr) and (osErr <> userCanceledErr)) then

begin
DoErrorAlertWithCode(eSndRecord, osErr);
end

else begin
repeat

begin
theResourceID := UniqueID('snd ');
end;

until (theResourceID > 8191);

AddResource(Handle(soundHdl), 'snd ', theResourceID, 'Test');
resErr := ResError;
if (resErr = noErr) then

begin
UpdateResFile(gAppResFileRefNum);
end;

resErr := ResError;
if (resErr <> noErr) then

begin
DoErrorAlertWithCode(eWriteResource, resErr);
end;

end;

UseResFile(oldResFileRefNum);

ignoredErr := GetDialogItemAsControl(gDialogPtr, iRecordResource, controlHdl);
SetControlValue(controlHdl, 0);
end;

{ of procedure DoRecordResource }

// ◊◊◊ DoRecordFile

procedure DoRecordFile;
var
topLeft : Point;
osErr : OSErr;
fileSysSpec : FSSpec;
fileRefNum : SInt16;
controlHdl : ControlHandle;
ignoredErr : OSErr;

begin
topLeft.h := (qd.screenBits.bounds.right div 2) - 156;
topLeft.v := 150;

osErr := FSMakeFSSpec(0, 0, ':test.aiff', fileSysSpec);
if (osErr = fnfErr) then

begin
osErr := FSpCreate(fileSysSpec, '????', 'AIFF', smSystemScript);
end;

if (osErr = noErr) then
begin
osErr := FSpOpenDF(fileSysSpec, fsWrPerm, fileRefNum);
end;

if (osErr = noErr) then
begin
ignoredErr := SetFPos(fileRefNum, fsFromStart, 0);
end;

if (osErr = noErr) then
begin
osErr := SndRecordToFile(nil, topLeft, siBetterQuality, fileRefNum);
end;

if ((osErr <> noErr) and (osErr <> userCanceledErr)) then
begin
DoErrorAlertWithCode(eRecordFile, osErr);
end;

ignoredErr := FSClose(fileRefNum);

22-22 Sound

Version 2.1

ignoredErr := GetDialogItemAsControl(gDialogPtr, iRecordFile, controlHdl);
SetControlValue(controlHdl, 0);
end;

{ of procedure DoRecordFile }

// ◊◊ DoSpeakStringSync

procedure DoSpeakStringSync;
var
activeChannels : SInt16;
theString : Str255;
resErr, osErr : OSErr;
controlHdl : ControlHandle;
ignoredErr : OSErr;

begin
activeChannels := SpeechBusy;

GetIndString(theString, rSpeechStrings, 1);
resErr := ResError;
if (resErr <> noErr) then

begin
DoErrorAlert(eGetResource);
Exit(DoSpeakStringSync);
end;

osErr := SpeakString(theString);
if (osErr <> noErr) then

begin
DoErrorAlertWithCode(eSpeakString, osErr);
end

else begin
while (SpeechBusy <> activeChannels) do

begin
end;

end;

ignoredErr := GetDialogItemAsControl(gDialogPtr, iSpeakTextSync, controlHdl);
SetControlValue(controlHdl, 0);
end;

{ of procedure DoSpeakStringSync }

// ◊◊◊ DoLoopedSoundAsync

procedure DoLoopedSoundAsync;
var
sndCommand : SndCommand;
osErr : OSErr;

begin
gLoopedSoundOn := not gLoopedSoundOn;

DoAdjustItems;

sndCommand.param1 := 0;

if gLoopedSoundOn then
begin
sndCommand.cmd := freqCmd;
sndCommand.param2 := $3C;
end

else begin
sndCommand.cmd := quietCmd;
sndCommand.param2 := 0;
end;

osErr := SndDoImmediate(gLoopedSoundChannel, sndCommand);
if (osErr <> noErr) then

begin
DoErrorAlertWithCode(eSndDoImmediate, osErr);
end;

end;
{ of procedure DoUnloopedSoundAsync }

// ◊◊◊ DoUnloopedSoundAsync

procedure DoUnloopedSoundAsync;
var
error : SInt16;

Sound 22-23

Version 2.1

ignoredSInt32 : SInt32;

begin
error := AS_PlayID(rUnloopedSound, ignoredSInt32);
if (error = kOutOfChannels) then

begin
DoErrorAlert(eNoChannelsAvailable);
end

else begin
if (error <> noErr) then

begin
DoErrorAlert(ePlaySound);
end;

end;
end;

{ of procedure DoUnloopedSoundAsync }

// ◊◊◊ DoSpeakStringAsync

procedure DoSpeakStringAsync;
var
theString : Str255;
resErr, osErr : OSErr;

begin
GetIndString(theString, rSpeechStrings, 2);
resErr := ResError;
if (resErr <> noErr) then

begin
DoErrorAlert(eGetResource);
Exit(DoSpeakStringAsync);
end;

osErr := SpeakString(theString);
if (osErr <> noErr) then

begin
DoErrorAlertWithCode(eSpeakString, osErr);
end;

end;
{ of procedure DoSpeakStringAsync }

// ◊◊ DoSetUpDialog

procedure DoSetUpDialog;
var
a : SInt16;
offset : Point;
controlHdl : ControlHandle;
alignConstant : ControlButtonGraphicAlignment;
placeConstant : ControlButtonTextPlacement;
ignoredErr : OSErr;

begin
alignConstant := kControlBevelButtonAlignLeft;
placeConstant := kControlBevelButtonPlaceToRightOfGraphic;

offset.v := 1;
offset.h := 5;

for a := iPlayResource to iSpeakTextAsync do
begin
ignoredErr := GetDialogItemAsControl(gDialogPtr, a, controlHdl);
ignoredErr := SetControlData(controlHdl, kControlNoPart,

kControlBevelButtonGraphicAlignTag, sizeof(alignConstant), Ptr(@alignConstant));
ignoredErr := SetControlData(controlHdl, kControlNoPart,

kControlBevelButtonGraphicOffsetTag, sizeof(offset), Ptr(@offset));
ignoredErr := SetControlData(controlHdl, kControlNoPart,

kControlBevelButtonTextPlaceTag, sizeof(placeConstant), Ptr(@placeConstant));
end;

if not gHasSoundPlayDoubBuff then
begin
ignoredErr := GetDialogItemAsControl(gDialogPtr, iPlayFile, controlHdl);
ignoredErr := DeactivateControl(controlHdl);
end;

if not gHasSoundInputDevice then
begin
ignoredErr := GetDialogItemAsControl(gDialogPtr, iRecordResource, controlHdl);
ignoredErr := DeactivateControl(controlHdl);

22-24 Sound

Version 2.1

ignoredErr := GetDialogItemAsControl(gDialogPtr, iRecordFile, controlHdl);
ignoredErr := DeactivateControl(controlHdl);
end;

if not gHasSpeechManager then
begin
ignoredErr := GetDialogItemAsControl(gDialogPtr, iSpeakTextSync, controlHdl);
ignoredErr := DeactivateControl(controlHdl);
ignoredErr := GetDialogItemAsControl(gDialogPtr, iSpeakTextAsync, controlHdl);
ignoredErr := DeactivateControl(controlHdl);
end;

if not gHasMultiChannel then
begin
ignoredErr := GetDialogItemAsControl(gDialogPtr, iLoopedSound, controlHdl);
ignoredErr := DeactivateControl(controlHdl);
end;

end;
{ of procedure DoSetUpDialog }

// ◊◊ DoAdjustItems

procedure DoAdjustItems;
var
controlHdl : ControlHandle;
a : SInt16;
ignoredErr : OSErr;

begin
ignoredErr := GetDialogItemAsControl(gDialogPtr, iLoopedSound, controlHdl);
if gLoopedSoundOn then

begin
SetControlTitle(controlHdl, 'Switch Looped Sound Off');
end

else begin
SetControlTitle(controlHdl, 'Switch Looped Sound On');
end;

for a := iRecordResource to iRecordFile do
begin
ignoredErr := GetDialogItemAsControl(gDialogPtr, a, controlHdl);

if gLoopedSoundOn then
begin
ignoredErr := DeactivateControl(controlHdl);
end

else begin
ignoredErr := ActivateControl(controlHdl);
end;

end;
end;

{ of procedure DoAdjustItems }

// ◊◊◊ DoErrorAlert

procedure DoErrorAlert(stringIndex : SInt16);
var
errorString : Str255;
ignoredErr : OSErr;

begin
GetIndString(errorString, rErrorStrings, stringIndex);
ParamText(errorString, '', '', '');
ignoredErr := StopAlert(rErrorAlert, nil);
end;

{ of procedure DoErrorAlert }

// ◊◊◊ DoErrorAlertWithCode

procedure DoErrorAlertWithCode(stringIndex : SInt16; resultCode : SInt16);
var
errorString, resultCodeString : Str255;
ignoredErr : OSErr;

begin
GetIndString(errorString, rErrorStringsWithCode, stringIndex);
NumToString(SInt32(resultCode), resultCodeString);

ParamText(errorString, resultCodeString, '', '');
ignoredErr := StopAlert(rErrorAlertWithCode, nil);

Sound 22-25

Version 2.1

end;
{ of procedure DoErrorAlertWithCode }

// ◊◊◊ main

begin
gLoopedSoundOn := false;
gCallAS_CloseChannel := false;

//
……
…… initialise managers

DoInitManagers;

// …… set
up menu bar and menus

mainMenubarHdl := GetNewMBar(128);
if (mainMenubarHdl = nil) then

begin
ExitToShell;
end;

SetMenuBar(mainMenubarHdl);
DrawMenuBar;

mainMenuHdl := GetMenuHandle(128);
if (mainMenuHdl = nil) then

begin
ExitToShell;
end

else begin
AppendResMenu(mainMenuHdl, 'DRVR');
end;

// ………………………………………………………………………………… save reference number of applications resource file

gAppResFileRefNum := CurResFile;

// ……………………………………………………………… check for sound recording equipment and speech capabilities

DoCheckSoundEnvironment;

//
………
open and set up dialog

gDialogPtr := GetNewDialog(rDialog, nil, WindowPtr(-1));
if (gDialogPtr = nil) then

begin
DoErrorAlert(eOpenDialogFail);
ExitToShell;
end;

SetPort(gDialogPtr);
mainErr := SetDialogDefaultItem(gDialogPtr, kStdOkItemIndex);

DoSetUpDialog;

// ………
initialise AsychSoundLib

DoInitialiseSoundLib;

//
……
…… set up looped sound

if gHasMultiChannel then
begin
if not DoLoopedSoundSetUp then

begin
DoErrorAlert(eLoopedSoundSetUp);
AS_CloseDown;
ExitToShell;
end;

end;

22-26 Sound

Version 2.1

//
……
…………… enter event loop

EventLoop;
end.

{ of main program block }

// ◊◊

Demonstration Program Comments
Ensure that the Speech Manager extension is on before running this program.

When this program is run, the user should click on the various buttons in the dialog box to record and play back sound
resources and sound files and to play back the provided "speak text" strings. The user should observe the effects of
asynchronous and synchronous playback on the "working man" icon in the image well in the dialog. The user should also
observe that the text "AS_CloseChannel called" appears briefly in the secondary group box to the right of the image well
when AsynchSoundLib sets the application's "attention" flag to true, thus causing the application to call the
AsynchSoundLib function AS_CloseChannel.

Note that the doRecordResource function saves recorded sounds as 'snd ' resources with unique IDs in the resource fork of
the application (Sound_68K or Sound_PPC). In addition, the doRecordFile function creates a file called "test.aiff" in the
directory containing this application. When you have finished exploring the recording aspects of this demonstration, the
you may wish to remove the file "test.aiff" and the 'snd ' resources you have created.

constants
rDialog and the following nine constants represent the dialog's resource ID and items. The next four constants represent
the resource IDs of 'snd ' resources and a 'STR#' resource containing the "speak text" strings. The next eighteen constants
represent error 'ALRT' resource IDs, the IDs of "STR#' resources containing error strings, and the indexes into those "STR#"
resources. The next two constants represent 'cicn' resource IDs.

kMaxChannels will be used to specify the maximum number of sound channels that AsynchSoundLib is to open.
kOutOfChannels will be used to determine whether the AsynchSoundLib function AS_PlayID returns a "no channels
available" error.

Global Variables
The application's resource file reference number will be saved to gAppResFileRefNum at startup.

gHasSoundPlayDoubBuff, gHasSoundInputDevice, gHasSpeechmanager, and gHasMultiChannel will be set to true if the
associated sound capabilities are available, otherwise they will be set to false.

gLoopedSoundOn will be toggled between true and false by successive presses of the "Switch Looped Sound On/Off" bevel
button. gLoopedSoundRefNum will be assigned the reference number returned by a call to the AsynchSoundLib function
AS_PlayHandle. gLoopedSoundChannel will be assigned the pointer to the sound channel structure returned by a call to the
AsynchSoundLib function AS_GetChannel.

gCallAS_CloseChannel is the application's "attention" flag. This will be set to true by AsynchSoundLib when a sound played
asynchronously has stopped playing.

main program block
CurResFile saves the reference number of the application's resource file. The call to doCheckSoundEnvironment checks the
capability of the sound environment and sets global variables accordingly.

doInitialiseSoundLib is called to initialise the AsynchSoundLib library.

If multi-channel playback is available, the application-defined function doLoopedSoundSetUp is called to set up the looped
sound playback. If this call is not successful, an error alert is displayed, the AsynchSoundLib function AS_CloseDown is
called and the program terminates.

This block means that, on machines without multi-channel playback capability, the program has opted to defeat the
continuous looped sound playback and make the single channel available for the other playback options represented
by the buttons in the dialog. The program could be readily modified to reverse this situation and allow the user to
make the single channel available to the continuous looped sound only.

DoCheckSoundEnvironment
DoCheckSoundEnvironment checks for play-from-disk capability, recording capability, speech capability, and multi-channel
playback capability, and sets the associated global variables accordingly.

Sound 22-27

Version 2.1

DoInitialiseSoundLib
DoInitialiseSoundLib initialises the AsynchSoundLib library. More specifically, it calls the AsynchSoundLib function
AS_Initialise and passes to AsynchSoundLib the address of the application's "attention" flag (gAS_CloseChannel), together
with the requested number of channels.

If AS_Initialise returns a non-zero value, an error alert is displayed and the program terminates.

DoLoopedSoundSetUp
DoLoopedSoundSetUp gets a channel for the looped sound, loads the 'snd ' resource containing the looped sound, and calls
SndPlay.

First, the AsynchSoundLib function AS_PlayHandle is called with NULL passed in the first parameter. (This causes
AS_PlayHandle to open a sound channel but not call SndPlay.) The second parameter is the address of a global variable
which will receive the reference number associated with the channel opened by this call to AS_PlayHandle.

If the call to AS_PlayHandle is successful, a call is made to the AsynchSoundLib function AS_GetChannel, passing the
reference number returned by AS_PlayHandle in the first parameter and receiving a pointer to the sound channel in the
second parameter.

If the call to AS_GetChannel is successful, GetResource attempts to load the specified 'snd ' resource. If the resource is
loaded successfully, it is first moved as high in the application heap as possible and locked there. SndPlay is then called
with true passed in the third parameter, indicating that asynchronous playback is required of the sound passed in the
second parameter on the channel passed in the first parameter.

The 'snd ' resource being used contains one command only (soundCmd). In the standard sound header, the loopStart
field contains 0 and the loopEnd field contains 24199. (The sound length is 24200 frames.) Since the soundCmd
command may only be used with non-compressed sampled-sound data, the sampled sound data in the resource is
not compressed.

SndPlay causes all commands and data contained in the sound handle to be sent to the channel. Since the single
command in the 'snd ' resource being used is soundCmd (install a sampled sound as a voice in a channel) and not
bufferCmd (play a sampled sound), nothing is heard at this point. (If the command in the resource was bufferCmd, the
sound would play once at this point.)

If all four calls in DoLoopedSoundSetUp are successful, true is returned. Otherwise, false is returned and the program
terminates.

EventLoop
Within the event loop, the "attention" flag required by AsynchSoundLib is checked. If AsynchSoundLib has set it to true, the
AsynchSoundLib function AS_CloseChannel is called to free up the relevant ASStructure, close the relevant sound channel,
and clear the "attention" flag. In addition, some text is drawn in the group box to the right of the image well to indicate to
the user that AS_CloseChannel has just been called.

If WaitNextEvent retrieves an event other than a NULL event, IsDialogEvent is called to determine whether the event
belongs to the dialog. If so, DialogSelect is called to determine whether one of the dialog's buttons was clicked. If so, the
application-defined function doDialogHit is called to further process the item hit. If the event does not belong to the dialog,
the else block supports dragging of the dialog and choosing Show/Hide Balloons from the Help menu.

If a null event was returned by WaitNextEvent, the two frames of "working man" animation are drawn within the image well,
separated by five ticks, and the area in which "AS_CloseChannel called" may have been drawn is erased.

When gDone is set to true, the event loop exits, the dialog is disposed of, and the AsynchSoundLib function AS_CloseDown
is called to stop all current playback, close open sound channels, and dispose of the associated ASStructures.

DoDialogHit
DoDialogHit switches according to the received item number and calls the appropriate application-defined routine to
further process the item hit event.

DoPlayResource
DoPlayResource is the first of the synchronous playback functions. It uses SndPlay to play a specified 'snd ' resource.

GetResource attempts to load the resource. If the subsequent call to ResError indicates an error, an error alert is
presented.

If the load was successful, the sound handle is locked prior to a call to SndPlay. Since NULL is passed in the first parameter
of the SndPlay call, SndPlay automatically allocates a sound channel to play the sound and deallocates the channel when
the playback is complete. false passed in the third parameter specifies that the playback is to be synchronous.

22-28 Sound

Version 2.1

Note: The 2174-byte 'snd ' resource being used contains one command only (bufferCmd). The compressed sound
header indicates MACE 3:1 compression. The loopStart field of the compressed sound header contains 6270 and the
loopEnd field contains 6271. (The sound length is 6270 frames.) The 8-bit mono sound was sampled at 22kHz.

SndPlay causes all commands and data contained in the sound handle to be sent to the channel. Since there is a
bufferCmd command in the 'snd ' resource, the sound is played.

If SndPlay returns an error, an error alert is presented.

When SndPlay returns, HUnlock unlocks the sound handle and ReleaseResource releases the resource.

DoPlayFile
DoPlayFile uses SndStartFilePlay to play a specified sound file.

FSMakeFSSpec converts the directory specification shown into an FSSpec structure. The pointer to the FSSpec structure
returned by FSMakeFSSpec is passed in the first parameter of a call to FSpOpenDF. FSpOpenDF opens the file's data fork
and receives the file reference number in its third parameter. SetFPos positions the file mark to the beginning of the file.

The file reference number is passed in the second parameter of the call to SndStartFilePlay. The parameters passed to
SndStartFilePlay are as follows:

• nil in the chan parameter causes SndStartPlay to allocate a sound channel itself.

• fileRefNum in the fRefNum parameter specifies the file reference number of the file to be played.

• resNum is 0 because a file is being played, not a 'snd ' resource.

• 20480 in the bufferSize parameter means the number of bytes to be allocated for input buffering.

• nil in the theBuffer parameter causes the Sound Manager to internally allocate two relocatable blocks, each of
which is half the size of bufferSize.

• nil in the theSelection parameter means the entire sound will be played.

• nil in the theCompletion parameter means that there is no completion function to be called when the file has
finished playing.

• false in the async parameter means that playback is to be synchronous.

If an error is detected along the way, doErrorAlert presents an error alert.

FSClose closes the file.

Note: The MACE 6:1 AIFF-C file being used was sampled at 22kHz as 8-bit mono sound. Because of the high
compression, the sound quality is poor.

DoRecordResource
DoRecordResource uses SndRecord to record a sound synchronously and then saves the sound in a 'snd ' resource.

CurResFile saves the current resource file reference number and UseResFile sets the application's resource fork as the
current resource file. (The 'snd ' resource will be saved to the resource fork of the application file (Sound_68K or
Sound_PPC).)

The next two lines establish the location for the top left corner of the sound recording dialog.

NewHandle creates a relocatable block. The address of the handle will be passed as the fourth parameter of the SndRecord
call. The size of this block determines the recording time available. (If NULL is passed as the fourth parameter of a
SndRecord call, the Sound Manager allocates the largest block possible in the application's heap.) If NewHandle cannot
allocate the block, an error alert is presented and the function returns.

SndRecord opens the sound recording dialog and handles all user interaction until the user clicks the Cancel or Save
button. Note that the second parameter of the SndRecord call establishes the location for the top left corner of the sound
recording dialog and that the third parameter specifies 22kHz, mono, 3:1 compression.

When the user clicks the Save button, the handle is resized automatically. If the user clicks the Cancel button, SndRecord
returns userCanceledErr. If SndRecord returns an error other than userCanceledErr, an error alert is presented and the
function returns.

The relocatable block allocated by NewHandle, and resized as appropriate by SndPlay, has the structure of a 'snd '
resource, but its handle is not a handle to an existing resource. To save the recorded sound as a 'snd ' resource in the
application's resource fork, the do/while loop first finds an acceptable unique resource ID for the resource. (For the System

Sound 22-29

Version 2.1

file, resource IDs for 'snd ' resources in the range 0 to 8191 are reserved for use by Apple Computer, Inc. Avoiding those
IDs in this demonstration is not strictly necessary, since there is no intention to move those resources to the System file.).

The call to AddResource at causes the Resource Manager to regard the relocatable block containing the sound as a 'snd '
resource. If the call is successful, UpdateResFile writes the changed resource map and the 'snd ' resource to disk. If an
error occurs, an error alert is presented.

UseResFile restores the previously saved resource file as the current resource file.

Note that, ordinarily, you should not record to your application's resource fork because applications which record to their
own resource fork cannot be used over networks.

DoRecordFile
DoRecordFile uses SndRecordToFile to record a sound synchronously to a file.

The first two lines establish the location for the top left corner of the sound recording dialog.

FSMakeFSSpec converts the directory specification passed in its third parameter into an FSSpec structure. If
FSMakeFSSpec returns fnfErr (file not found), FSpCreate creates a new file of type 'AIFF'. FSpOpenDF opens the file's data
fork and SetFPos positions the file mark to the beginning of the file.

SndRecordToFile opens the sound recording dialog and handles all user interaction until the user clicks the Cancel or Save
button. Note that the second parameter of the SndRecord call establishes the location for the top left corner of the sound
recording dialog, that the third parameter specifies 22kHz, mono, 3:1 compression, and that the fourth parameter specifies
the file reference number of the file to record to.

When SndRecordToFile returns, the file will contain the recorded audio data. Since compression was specified, the file will
be in AIFF-C format.

If the user clicks the Cancel button, SndRecordToFile returns userCanceledErr. If an error occurs along the way and it is not
userCanceledErr, an error alert is presented.

FSClose closes the file.

DoSpeakStringSync
DoSpeakStringSync uses SpeakString to speak a specified string resource and takes measures to cause the speech to be
generated in a psuedo-synchronous manner.

The speech that SpeakString generates is asynchronous, that is, control returns to the application before SpeakString
finishes speaking the string. In this function, SpeechBusy is used to cause the speech activity to be synchronous so far as
the function as a whole is concerned. That is, DoSpeakStringSync will not return until the speech activity is complete.

As a first step, the first line saves the number of speech channels that are active immediately before the call to
SpeakString.

GetIndString loads the first string from the specified 'STR#' resource. If an error occurs, an error alert is presented and the
function returns.

SpeakString, which automatically allocates a speech channel, is called to speak the string. If SpeakString returns an error,
an error alert is presented.

Although SpeakString returns control to the application immediately it starts generating the speech, the speech channel it
opens remains open until the speech concludes. While the speech continues, the number of speech channels open will be
one more that the number saved at the first line. Accordingly, the while loop continues until the number of open speech
channels is equal to the number saved at the first line. Then, and only then, does DoSpeakStringSync exit.

DoLoopedSoundAsync
DoLoopedSoundAsync is the first of the asynchronous playback functions. It sends sound commands to the sound channel
opened by the application-defined routine DoLoopedSoundSetUp, and on which DoLoopedSoundSetUp has already installed
a voice.

The first line toggles the Boolean global variable gLoopedSoundOn to the opposite state.

The next line calls an application-defined routine which, depending on the value in gLoopedSoundOn, toggles the button
title between "Switch Looped Sound On" and Switch Looped Sound Off" and toggles the "Record Sound Resource" and
"Record Sound File" buttons between the deactivated and activated states.

Depending on the value in gLoopedSoundOn, the if/else block will be sending either the freqCmd command or the quietCmd
command to the channel on which the looped sound is installed. In both of these commands, param1 should be set to 0.

If the value in gLoopedSoundOn is true, the cmd field of a sound command structure is assigned freqCmd and the param2
field is assigned a value (60 decimal) which equates to middle C. (The freqCmd command changes the frequency (or pitch)
of a sound. Also, if no sound is currently playing, freqCmd causes the Sound Manager to begin playing at the specified

22-30 Sound

Version 2.1

frequency. If, however, no voice is installed in the channel, no sound is produced. (A voice was installed in the channel to
which the command will be sent by the application-defined routine DoLoopedSoundSetUp.)

If the value in gLoopedSoundOn is false, the cmd field of a sound command structure is assigned quietCmd and the param2
field is assigned 0. (The quietCmd command stops the sound that is currently playing, and should be sent using
SndDoImmediate.)

SndDoImmediate is called to send the command specified in the second parameter to the sound channel specified in the
first parameter. If SndDoImmediate returns an error, an error alert is presented.

DoUnloopedSoundAsync
DoUnloopedSoundAsync uses the AsynchSoundLib function AS_PlayID to play a 'snd ' resource asynchronously.

AS_PlayID is called to play the 'snd ' resource specified in the first parameter. Since no further control over the playback is
required, NULL is passed in the second parameter. (Recall that, if you pass a pointer to a variable in the second parameter,
AS_PlayID returns a reference number in that parameter. That reference number may be used to gain more control over
the playback process. If you simply want to trigger a sound and let it to run to completion, you pass nil in the second
parameter, in which case a reference number is not returned by AS_PlayID.)

If AS_PlayID returns the "no channels currently available" error, an error alert is presented advising of that specific
condition. If any other error is returned, a more generalised error alert is presented.

When the sound has finished playing, ASynchSoundLib advises the application by setting the application's "attention" flag
to true. Recall that this will cause the AsynchSoundLib function AS_CloseChannel to be called to free up the relevant
ASStructure, close the relevant sound channel, clear the "attention" flag, and draw some text in the group box to the right
of the image well to indicate to the user that AS_CloseChannel has just been called.

Note: The 701-byte 'snd ' resource being used contains one command only (bufferCmd). The compressed sound
header indicates MACE 6:1 compression. The loopStart field of the compressed sound header contains 3704 and the
loopEnd field contains 3705. The 8-bit mono sound was sampled at 22kHz.

DoSpeakStringAsync
DoSpeakStringAsync is identical to the function doSpeakStringSync except that, in this function, SpeechBusy is not used to
delay the function returning until the speech activity spawned by SpeakString has run its course.

DoSetUpDialog
DoSetUpDialog sets up the graphic alignment, graphic offset, and text placement for the bevel buttons. It then deactivates
any bevel buttons relating to sound features not available on the machine on which the program is running.

DoAdjustItems
DoAdjustItems toggles the "Switch looped Sound" button between on and off, and the "Record Sound Resource" and
"Record Sound File" buttons between activated and deactivated, according to the value in gLoopedSoundOn.

Sound 22-31

