MORE ON FILES —
NAVIGATION SERVICES

Includes Demonstration Program Files

Introduction

Navigation Services, which was introduced with Mac OS 8.5' as an alternative to, and
ultimately as a replacement for, the Standard File Package described at Chapter 16A,
provides greatly enhanced functionality in the area of document management.
Navigation Services provides for opening and saving documents, confirming saves and
discarding changes, choosing a volume, folder, file, or file object, creating a new folder,
file format translation, and easier navigation.

The dialog and alert boxes created by Navigation Services are all Appearance-compliant.
Provided that your application provides an event-handling callback function, the primary
dialog boxes are resizable and movable and the alert boxes are movable.

As is the case with the Standard File Package dialogs, the primary Navigation Services
dialog boxes may be customised.

Navigation Services Dialog and Alert Boxes

The primary dialog boxes created by Navigation Services are as follows:

. Open.

. Save.

. Choose a folder.
. Choose a volume.

. Choose a file.
. Choose a file object.

. Create a new folder.

1 Although introduced with Mac OS 8.5, Navigation Services may be used with Mac OS 7.5.5 or later provided Appearance
Manager 1.0.1 or later is present. QuickTime is also required if previews of graphic documents are to be created and
viewed. Macintosh Easy Open is required for document translation and the correct display of file types. On 680x0
systems, Navigation Services requires the CFM-68K Runtime Enabler.

Files 16B-1

The alert boxes created by Navigation Services are as follows:
. Save changes.

. Discard changes.

Standard User Interface Elements in Dialog Boxes

The standard user interface elements in Navigation Services primary dialog boxes are
shown at Fig 1.

‘ LOCATION POP-UP MENU BUTFOI\“ SHORTCUTS BEVEL BUWCHAVOURITES BEVEL BIU'IT"'BECENT BE|VEL BUﬁ'ON

|
———— opem:Sahpler————
N N2 F SORT
BEVEL.
e
[Tlﬂ Metrowerks | —— 7 . i . 43 . BUTTON
Mame Date Modified |4
[ﬁ Codew arrior Java 0g2/5,/38 E
~ i C% Tutorials Code 02/5/98 =
BROWSER [» 5L Tutorial Basic Suppart Files 08 /5 /98
BROWSER LI¢
~ ‘ Tutarial Bazics Mde 05 C 02/5/92
B simyeatis.c 04/5/95
B sinygansh 2T/11/93 -
Show: | All Readable Doculments 2 | | Show Preview |[<—5VEY
[Cancel I || Open]l
<— SIZE BOX

SHOW PUSH BUTTON SORT KEY BEVEL BUTTONSANCEL PUSH BUTTON DEFAULT PUSH BUTTON

Note: The Open dialog box is shown. The names of the user interface elements common to all primary Navigation

FIG 1 - STANDARD USER INTERFACE ELEMENTS IN NAVIGATION SERVICES DIALOG BOXE

The menus associated with the standard user interface elements known as the Shortcut,
Favourites, and Recent bevel buttons are shown in more detail at Fig 2.

16B-2 Files

SHORTCUTSAllows quick navigation to any mounted FAVOURITESThe Add to Favorites command allows the

storage volume, or straight to the desktop. the currently selected item to this menu.
[}' If ejectable volumes are mounted, an Eject m from Favorites command opens a dialog v
|| item appears at the bottom of the menu. = the user to remove items from the menu.
[Desktop .;u:ld to Fﬁ:vvurlt::as . Command
) emove from Favorites... |section
i=s Macintosh HD
= Smartset 3 E Chapter_16E Document
. . chapter_16b.pdf section
Eject "Smartset 3 PrEr.onp (Open dia
chapter_16b.html
RECENT The number of items in each section of
the Recent menu will not exceed the = Macintosh HDO Folders an
@ number set in the Apple Menu Options Volumes
~| dialog box. [ﬁ Metrowerks section
"E Chapter_15 Documents Ag an alternative to the Add to Favorites command,
- section item to the Favourites menu by dragging the file or
@ chapter_8.pdf g%?y%” dialog prowser list or desktop to the Favourites bevel butt
Efi. Macintosh C
i Folders and
Efi, Macintosh Pascal ;/glct;irgr?s
= Smartset 2 FIG 2 - SHORTCUTS, FAVOURITES, AND
RECENT BEVEL BUTTON MENUS (TYPICAL)

Moving and Resizing Navigation Services Dialog Boxes

Navigation Services primary dialog boxes are movable and resizable only if your
application provides an application-defined event-handling callback function to handle
update events. A universal procedure pointer to your event-handling function is passed
in the eventProc parameter of Navigation Services functions such as NavGetFile (see below).

Browser List Expansion

When the user resizes the dialog box using the size box, the browser list expands
proportionately. The date format in the browser list changes as the browser list expands.

Sort Keys and Sort Order

Clicking on one of the sort key bevel buttons (Name or Date) causes the browser list to
be sorted on that key. The sort order (ascending or descending) may be toggled by
clicking the sort order bevel button. Navigation Services tracks the sort key and sort
order for each application.

Preview Area

Navigation Services provides a preview area in all dialog boxes which open files. This
area can be toggled on or off by the user using the Show/Hide Preview push button. If the
preview area is visible, Navigation Services will automatically display a preview of any
file that contains a valid 'pnot' resource. You can request preview display by ensuring that
the kNavAllowPreviews constant is set in the dialogoptionFlags field of the NavDialogOptions structure
(see below).

Persistence

Persistence is the ability of Navigation Services to store information, and to store it on a
per-application basis. For example, when a primary dialog box is displayed, the browser
defaults to the directory location that was in use when that particular dialog box was last
closed by the application. In addition, if a file or folder was selected when the dialog box
was last closed, that file or folder is automatically selected when the dialog is re-opened.
The size, position, sort key and sort order of dialog boxes are also memorised for each
application.

Files 16B-3

Default Location and Selection

If you pass nil in the defaultLocation parameter of functions such as NavGetfile (see below),
Navigation Services will display the default location and selection. You can override
the default location and selection of any Navigation Services dialog box by passing a
pointer to an Apple event descriptor (AeDesc) for the new location in the defaultLocation
parameter.

Opening Files

The function NavGetFile displays an Open dialog box that prompts the user to select a file
(or files) to open.

Opening Multiple Files

By Shift-clicking in the Open dialog box's browser list, or by choosing the Select All item in
the application's Edit menu, the user can open multiple files.?

The Show Pop-up Menu

The Show pop-up menu in the Open dialog box allows the user to choose the file types to
be displayed by the browser list and opened by Navigation Services. The list of available
file types is built from information supplied by your application when it calls NavGetFile, and
by services in the Translation Manager. (See Fig 3.)

v All MyApp Documents The first section contains your application's native file types. Native file ty|
and creator codes appeawvifythieist structure whose handle is pasgedLlintth
MyApp Text Documents <— parameter dfidh@etFile function. The first item provides the user with a we

file types at once. The following items provide the user with a way to disp

MyApp Picture Documents
= = = This section contains a list of file types provided by the Translation Manage
QuickTime movie will automatically translate these file types unlesNau®ostsppdyrthelate
constant indiklngOptionsFlags field of tteevDialogOptions structure passed
Text document thelialogOptions parameter ofd¥t@etFile function. This section will not app

All Readable Documehts supply tkieavDontAddTranslateltems constant indthiegOptionsFlags field.

< This section is reserved for other file types. The All Readable item appears
Note: The Show pop-up menu button will not|appeéiesniliesvAllFilesinPopup constant indthiegOptionsFlags field of the
Open dialog if you suplyviiedypePopup NavDialogOptions ~ structure passeddialbty®ptions parameter dfd@etFile
constant indialmgOptionsFlags field of the |function. This option allows the display of all files regardless of your applic
NavDialogOptions structure. or open them directly.

FIG 3 - THE SHOW POP-UP MENU AND FILE TYPE OPTIONS

Native File Types Section

The first item in the native file types section of the Show pop-up menu defaults to All
Readable Files if you do not assign the name of your application to the clientName field of the
NavDialogOptions structure (see below) passed in the dialogoptions parameter of the NavGetFile
function.

The remaining items in the native file types section will default to <Application Name>
Document unless you provide kind strings to describe the file types included in your
NavTypeList structure. You can do this by including a kind resource (a resource of type
'kind') in your application's resource fork. Fig 4 shows the structure of a compiled 'kind'
resource and such a resource being created using Resorcerer.?

2 Folders and volumes cannot be multiple-selected.
3 The kind strings from your application's 'kind' resource also appear in the Kind column in Finder window list views.

16B-4 Files

RESORCERER 'kind' RESOURCE EDITING WINDOW COMPILED 'kind' RESOURCE BYTES

=[[I=—— New kind 128 from MyApp =——=[EI=
l w pp |__I > APPLICATION SIGNATURE 4
+ [¥] App_lit:atinn 5ignatur_e by Ap’ . il T — 5
+ [¥] Region code for strings Ausztralia=15
Fillear 11 FILLER 2
+ Strings 2
T — Strings #1 KIND ARRAY COUNT 2
* [] File type ‘apnm’
+ | Custom kind string “Myépp” FIRST FILE TYPE 4
* Stringg #2
+ ¢ [¥] File type Text="TEXT' ¢ FIRST KIND STRING -1 TO 256
+ | Custom kind string “Mydpp Text Docurnents®
+ Strings #3 ALIGNMENT BYTES
+ i [¥] File type Picture="PICT" [7 7
bl i Custom kind string “Myapp Picture Documents —14
R =] LAST FILE TYPE 4
- = LAST KIND STRING “<1TO 256
Edit | Cancel _
ALIGNMENT BYTES

Note: The special file type 'apnm' has been included so that, whenever Navigation Services encounters a document that
type has not been included in the 'kind' resource, a kind string in the form "<application name> document" will be gener:

FIG 4 - STRUCTURE OF A COMPILED 'kind' RESOURCE AND CREATING A 'kind' RESOURCE USING RI

The NavDialogOptions and NavTypelList Structures

Fig 3 referred to the NavTypeList structure, which defines a list of file types that your
application is capable of opening, and the NavDialogOptions structure, which contains dialog
box configuration settings.

The NavTypelList Structure

The NavTypeList structure is as follows:

NavTypeList = RECORD

componentSignature: OSType; { Your application signature. }
reserved : INTEGER;
osTypeCount: INTEGER; { How many file types will be defined. }
osType: ARRAY [0..0] OF OSType; { A list of file types your application
can open.}
END;

You can create your file type list dynamically or you can use an 'open' resource. Fig 5
shows the structure of a compiled 'open' resource and such a resource being created using
Resorcerer.

RESORCERER 'open’' RESOURCE EDITING WINDOW

== open 128 from MyApp.J.rsrc ——pm COMPILED 'open’' RESOURCE BYTES
EI ﬁpplicatinn 5ig“at“rE 'M].fﬁ.p’ APPLICATION SIGNATURE 4
Filler 0O |
File type= shanld he listed in nrder of derrrasing prefere FILLER 2
Supported file types 2 FILE TYPE COUNT 5
F Suppnrted file t}rpeg F 3 e e e e
i [File type Text="TEXT FIRST FILE TYPE 4

............... Suppnrted file tj"l:lES FD
i [¥] File type Picture="PICT’ ||
T i))

|__New I |Ed'tl |_Cancel LAST FILE TYPE 4

FIG 5 - STRUCTURE OF A COMPILED 'open' RESOURCE AND CREATING AN ‘open' RESOURCE USIN(

Files 16B-5|

The NavDialogOptions Structure

The NavDialogOptions record is as follows:

NavDialogOptions = RECORD

version:
dialogOptionFlags:
location:
clientName:
windowTitle:

actionButtonLabel:

cancelButtonLabel
savedFileName:
message:
preferenceKey:
popupExtension:
reserved:

END;

Field descriptions

dialogOptionsFlags

location

clientName
windowTitle

actionButtonLabel

cancelButtonLabel

Uintle;
NavDialogOptionFlags;
Point;
Str255;
Str255;
Str255;
: Str255;
Str255;
Str255;
Uint32;
Handle;
PACKED ARRAY [0..493] OF CHAR;

One of the following constants of type NavDialogOptionFlags:

Constant Description
kNavDefaultNavDlogOptions Use default options. The defaults are as
follows:

* No custom control titles.

No banner or prompt message.
Automatic resolution of aliases.
Support for file previews.

No invisible file objects are displayed.
Support for stationery.

Don't show file type pop-up.
Don't auto-translate on Open.
Don't add translation choices.
Add "All Files" menu item.

Allow stationery files.

Allow previews.

Allow multiple selection.

Show invisible objects.

Don't resolve aliases.

kNavNoTypePopup
kNavDontAutoTranslate
kNavDontAddTranslateltems
kNavAllFilesInPopup
kNavAllowStationery
kNavAllowPreviews
kNavAllowMultipleFiles
kNavAllowlInvisibleFiles
kNavDontResolveAliases

kNavSelectDefaultLocation Make default location the browser
selection.

kNavSelectAllReadableltem Make All Readable Items default
selection.

The upper-left location of the dialog box, in global coordinates. If the
dialogOptionFlags field is NuLL or the coordinate value is (-1,-1), then the
dialog box appears in the same location as when last closed. The size
and location of the dialog box is persistent, but defaults to opening in
the middle of the main screen if any portion is not visible when
opened at the persistent location and size.

A string that identifies your application in the dialog box window title.
A string that you can provide to override the default window title.

An alternative button title for the dialog box’s action push button. If
you do not specify a label, the push button will use the default label

(Open or Save, for example.)

An alternative button title for the Cancel push button in dialog boxes.

16B-6 Files

savedFileName The default file name for a saved file.

message The string for the banner, or prompt, below the browser list. This
message can provide more descriptive instructions for the user. If
you don’t provide a message string, the browser list will expand to fill
that area.

preferenceKey An application-defined value that identifies which set of dialog box
preferences Navigation Services should use. If your application
maintains multiple sets of preferences for a particular type of dialog
box, you can determine which set is active by specifying the
appropriate value in the preferencekey field. For example, an application
may allow one set of preferences when it calls the function NavGetFile to
open text files and a different set of preferences when opening movie
files. If you do not wish to provide a preference key, specify zero for
the preferencekey value.

popupExtension A handle to one or more structures of type NavMenultemSpec used to add
extra menu items to the Show pop-up menu in an Open dialog box or
the Format pop-up menu in Save dialog boxes. Using NavMenultemSpec
structures allows your application to add additional document types to
be opened or saved, or different ways of saving a file (with or without
line breaks, for example).

The function NavGetDefaultDialogOptions may be called to initialise a structure of type
NavDialogOptions with the default dialog box options.

The NavReplyRecord Structure

The second parameter in the NavGetfile function, and in other Navigation Services
functions, is a pointer to a structure of type NavReplyRecord. Navigation Services uses this
structure to provide your application with information about the user's actions. The
NavReplyRecord structure is as follows:

NavReplyRecord = RECORD

version: UIntl6;

validRecord: BOOLEAN;

replacing: BOOLEAN;

isStationery: BOOLEAN;

translationNeeded: BOOLEAN;

selection: AEDescList;

keyScript: ScriptCode;

fileTranslation: ~FileTranslationSpecPtr;

reservedl: UInt32;

reserved: PACKED ARRAY [0..230] OF CHAR;
END;

Field Descriptions
validRecord true if the user closes a dialog box by pressing Return or Enter, or by
pressing the default button in an Open or Save dialog box. If this field
is false, all other fields are unused and do not contain valid data.

replacing true if the user chooses to save a file by replacing an existing file
(thereby necessitating the removal or renaming of the existing file).

isStationery A Boolean value informing your application that the file about to be
saved should be saved as a stationery document.

translationNeeded A Boolean value indicating that translation was or will be needed for
files selected in Open and Save dialog boxes.

Files 16B-7

0 An Apple event descriptor list (AEDescList) created from Fsspec references
to items selected through the dialog box. Navigation Services creates
this list, which is automatically disposed of when your application calls
the function NavDisposeReply (see below). You can determine the number
of items in the list by calling the Apple Event Manager function
AECountitems. (Some dialog boxes may return one or more items; a Save
dialog box will always return one.) Each selected item is described in
an AeDesc structure by the descriptor type typeFss. You can coerce this
descriptor into an Fsspec structure to perform operations such as
opening the file.

keyScript The keyboard script system used for the filename.

fileTranslation A handle to a FileTranslationspec structure. This structure contains a
corresponding translation array for each file reference returned in the
selection field. When opening files, Navigation Services will perform the
translation automatically unless you set the kNavDontAutoTranslate flag in
the dialogoptionFlags field of the NavDialogOptions structure. When Navigation
Services performs an automatic translation, the FileTranslationSpec
structure is strictly for the Translation Manager’s use. If you turn off
automatic translation, your application may use the FileTranslationSpec
structure for its own translation scheme. If the user chooses a
translation for a saved file, the FileTranslationspec structure contains a
single translation reference for the saved file and the translationNeeded
field of the NavReplyRecord structure is set to true. The handle to the
FileTranslationsSpec structure is locked, so you can safely use dereferenced
pointers.

When your application has finished using this structure, it should dispose of it by calling
the function NavDisposeReply.

16B-8 Files

Saving Files

The function Navputfile displays the Save dialog box (see Fig 6).

Stationery Option =c0F=— New Folder
Format this file as type: Name of new folder:
@® Document | untitied folder
i) Statinnpry
Cancel Create
| Cancel I | QK I I |]
The New push button enables t r to

create a new folder for saving a d@cument.

L I When the user selects a fi
the default push button ti

e I w Document NEW toggles from Save to Ope
When thde ugler selecffsl’(cjhe

. Name editable text field, 1
Format: | MyApp Text Dofument %) default push button title r

to Save.

When no filename is displ
[Canrel] || Save II in the Name editable text

the default push button is
disabled.

The first item is defined by the document type specified byfileypapphkacatio
WMvApp Text Document <— fileCreator ~ parameters ofaiRaitFile function. The item's menu title is obt

. _ _ the Translation Manager.
QUIEKTIITIE HiIERALS After setting the first item, Navigation Services calls the Translation Manage
Text document — display subsequent menu items describing alternative file types.

>

Q

- The Stationery Option item displays the Stationery option dialog box, which
whether a new document or a copy of a document should be saved as a dac

Stationery Option...

Note: The Format pop-up menu button will not appear in the SavieNdiaNoy ifepopugupqhgtidre: in the
dialogOptionsFlags field of tteevDialogOptions structure.

FIG 6 - THE SAVE DIALOG BOX (PARTIAL), THE FORMAT POP-UP MENU, THE STATIONERY OPTION DIALOG BOX,

You should always call the function NavCompleteSave to complete any save operation.
Amongst other things, NavCompleteSave performs any needed translation.

Translating Files on Save

As stated at Fig 6, your application supplies its default file type and creator for saved
files to the function Navputrile and Navigation Services uses this information to build a pop-
up menu of available translation choices obtained from the Translation Manager.

If the user selects an output file type that is different from the native type, Navigation
Services prepares a translation specification and supplies a handle to it in the fileTranslation
field of a NavReplyRecord structure. If you choose to provide your own translation,
Navigation Services informs you that translation is required by setting the translationNeeded
field of the NavReplyRecord structure to true.

If you wish to turn off automatic translation, set the value of the translationNeeded field of the
NavReplyRecord structure to false before calling the NavCompleteSave function.

By default, the navputrile function saves translations as a copy of the original file. Your
application can direct Navigation Services to replace the original with the translation by
passing the kNavTranslateinPlace constant in the howToTranslate parameter of the NavCompleteSave
function.

Files 16B-9

Choosing A Folder

The function NavChooseFolder displays a dialog box that prompts the user to choose a folder
(see Fig 7.)

Choose a Folder

[_m Mptrnwerks —] [} . m . @ .
gﬁigy"swéﬁfy'Efréﬂt?r?egg?\%sioﬁﬁﬁiﬁ 200 T
[» ‘ I;u:u:le*.'.far':'ﬁn:nr' Lacurnentation Bt —|

[» @ Codew arrior Examples 02 /5792

[Rl cPro Release Notes 05 /5 /95

[+ ﬁ Metrowerks CodeMarrior 08/5/98

[+ a Other Metrowerks Toolz 02/5/98

If a string assignednesthge field of the
Flease choose a folder. NavDialogOptions structure, it is displays

New [Choose I[Cancel ||| Open “‘

FIG 7 - CHOOSE A FOLDER DIALOG BOX

Several Navigation Services functions return Apple event descriptors for file objects.
When Navigation Services passes your application an AeDesc structure of type typefFss
describing a file, the name field will contain the file’s name and the parid field will contain
the directory ID of the file’s parent directory. However, when Navigation Services
passes your application an AeDesc structure of type typeFss describing a directory, the name
field is empty and the pariD field contains the directory ID of that directory.*

Choosing Volumes, Files, File Objects, and Creating a New Folder

The function NavChooseVolume displays a dialog box that prompts the user to choose a
volume.

The function NavChooseFile displays a dialog box that prompts the user to choose a file. This
file can be a preferences file, dictionary, or other specialised file.

The function NavChooseObject displays a dialog box that prompts the user to choose a file
object. This function is useful when you need the user to select an object which might be
one of several different types.

The function NavNewFolder displays a dialog box that prompts the user to create a new
folder.

As with the Choose Folder dialog box, these dialog boxes will display a string assigned to
the message field of the NavDialogOptions structure immediately below the browser list.

4 This means, incidentally, that you can use the name field to determine whether an object is a file or a folder.

16B-10 Files

Save Changes and Discard Changes Alert Boxes

Save Changes Alert Box

To display a standard Save Changes alert box, your application passes the document title
to the function NavAskSaveChanges, which creates an alert box similar to that shown at Fig 8.

Do yvou want to save changes to the
document “MyDoc’ before quitting this
application?

[Don't Save] | Cancel I |IDHI

FIG 8 - STANDARD SAVE CHANGES ALERT BOX (QUITTING APPL

One of the following constants is passed in the action parameter of the NavAskSaveChanges
function:

kNavSaveChangesClosingDocument = 1
kNavSaveChangesQuittingApplication = 2
kNavSaveChangesOther = 0

After the user closes the alert box, Navigation Services tells your application which push
button the user clicked by returning one of the following constants:

kNavAskSaveChangesSave = 1
kNavAskSaveChangesCancel = 2
kNavAskSaveChangesDontSave = 3

You can display a customised Save Changes alert box wusing the function
NavCustomAskSaveChanges. A typical customised Save Changes alert box might contain text
such as "You have not saved your work for ten minutes. Do you want to save now?". The
message field of the NavDialogOptions structure passed in the dialogOptions parameter of
NavCustomAskSaveChanges is the only one you must supply with a value.

Save Changes alert boxes are movable only if your application provides an application-
defined event-handling callback function to handle update events.

Discard Changes Alert Box

To support a Revert To Saved item in your application's File menu, Navigation Services
provides the Discard Changes alert box (see Fig 9), which is created by the function
NavAskDiscardChanges.

f Do you want to discard changes to “MyDoc™?

e

FIG 9 - DISCARD CHANGES ALERT BOX

Files 16B-11

After the user closes the alert box, Navigation Services tells your application which
button the user clicked by returning one of the following constants:

kNavAskDiscardChanges = 1
kNavAskDiscardChangesCancel = 2

Discard Changes alert boxes are movable only if your application provides an application-
defined event-handling callback function to handle update events.

Application-Defined Functions

Application-Defined Event Handling

As previously stated, Navigation Services primary dialog boxes are movable and
resizable, and Navigation Services alert boxes are movable, only if your application
provides an application-defined event-handling function to handle update events. A
universal procedure pointer to your event-handling function is passed in the eventProc
parameter of Navigation Services functions such as NavGetFile and NavAskSaveChanges. Your
event-handling function must be defined like this:

procedure myEventFunction(callBackSelector : NavEventCallbackMessage;
callBackParms : NaVCBRecPtr;
callBackUD : NavCallBackUserData);

The formal parameter callBackSelector receives an event message constant indicating
which type of call Navigation Services is making to the event-handling function. One
such constant is kNavCBEvent, which indicates that an event has occurred, and which is the
only message that needs to be processed by applications that do not customise the Open
and Save dialog boxes. callBackparms is a pointer to a structure of type NavCBRec. The
event's event structure resides in the eventData field of the NavCBRec structure.

Application-Defined Object Filtering

The process of choosing which files, folders and volumes to display in the browser list
and the ShortCuts, Favourites, and Recent menus is known as object filtering. If your
application needs simple, straightforward object filtering, and as previously described,
you simply pass a pointer to a structure of type NavTypeList to the relevant Navigation
Services function. If you desire more specific filtering, Navigation Services lets you
implement an application-defined filter function. Filter functions give you more control
over what can and cannot be displayed.

You can use both an NavTypeList structure and a filter function if you wish, but be aware
that your filter function is directly affected by the NavTypeList structure. For example, if the
NavTypeList structure contains only TEXT and PICT types, only TEXT and PICT files will be
passed into your filter function.

You pass a universal procedure pointer to your filter function in the filterProc parameter of
functions such as NavGetfile. Your filter function should return true if an object is to be
displayed.

The following is an example of a simple filter function:

function MyFilterFunction(var theltem: AEDesc; info: UNIV Ptr;
callBackUD: NavCallBackUserData;
filterMode: NavFilterModes): boolean;

var

theErr : OSErr;

display : boolean;

thelnfo : NavFileOrFolderinfoPtr;

begin
theErr := noErr;

16B-12 Files

display := true;
thelnfo := NavFileOrFolderInfoPtr(info)
if (theltem.descriptorType = typeFSS) then
begin
if not (thelnfo”.isFolder) then
begin
if (thelnfo”.fileAndFolder.fileInfo.finderInfo.fdType <> 'TEXT') then
begin
display := false;
end;
end;
end;

MyFilterFunction := display;
end;

Application-Defined Previews

To override how previews are drawn and handled, you can create a preview function and
pass a universal procedure pointer to it in the previewProc parameter of Navigation Services
functions such as NavGetfFile. Your preview function must be defined like this:

function MyPreviewFunction(callBackParms: NavCBRecPtr;

callBackUD: NavCallBackUserData): boolean;

callBackParms A pointer to a NavCBRec record that contains event data needed for your

function to draw the preview.

callBackUD A value set by your application. When the NavGetrile function calls back

your event-handling function, the callBackub value is passed back to your
application.

Return: true if your preview function successfully draws the file preview. If your
preview function returns false, Navigation Services will display the preview if the file
contains a valid 'pnot' resource.

Your application can use the function NavCustomControl to determine if the preview area is
visible and, if so, what its dimensions are.

Adding Controls to a Navigation Services Dialog Box

To add controls to a Navigation Services dialog box, you should:

Provide an event-handling function to communicate with Navigation Services.

Within the event-handling function, respond to the kNavCBCustomize event message
constant, which your application can obtain from the param field of the NavCBRec
structure. (See Application-Defined Event Handling, above.) The customRect field of
the NavCBRec structure defines a rectangle in the local coordinates of the window.
The top-left coordinates of this rectangle define the anchor point for the
customisation rectangle, which is the area Navigation Services provides for your
application to add custom dialog items. Your application responds by passing the
values which will complete the dimensions of your required customisation
rectangle. Navigation Services inspects the customRect field to determine if the
requested dimensions can be accommodated in the screen space available. If not,
the rectangle will be set to the largest size that can be accommodated and your
application will be sent another kNavCBCustomize constant. Your application can
continue to negotiate by examining the customRect field and requesting a different
size until Navigation Services provides an acceptable rectangle value. The
minimum dimensions for the customisation area are 400 pixels wide by 40 pixels
high.s

5 The customRect field contains an empty rectangle if customisation is not allowed (i.e. dialog boxes other than Open or
Save). In this case, your application can simply ignore the call.

Files

16B-13

. With the customisation rectangle established, check for the kNavCBStart event
message constant in the param field of the NavCBRec structure. kNavCBstart indicates
that Navigation Services is opening the dialog box. After you obtain this constant,
you can add your interface elements to the customisation rectangle. You can do
this by providing a 'DITL' resource (in local coordinates, relative to the anchor point
of the customisation rectangle) and passing the kNavCtlAddControlList constant in the
selector parameter of the function NavCustomcControl. The following shows one way to do
this:

gDitlList := GetResource('DITL', kControlListID);
theErr := NavCustomControl(callBackParms”.context, kNavCtlAddControlList,
gDitlList);

The advantage of using a 'DITL' resource is that the Dialog Manager will handle all
control movement and tracking.

. When Navigation Services supplies the kNavCBTerminate event message constant in

the param field of the NavCBRec structure (after the user closes the dialog box),
dispose of the control or resource.

Main Navigation Services Constants, Data Types, and Functions

Constants

Configuration Options

kNavDefaultNavDlogOptions = $000000E4 { Use defaults for all the options }

kNavNoTypePopup = $00000001 { Don't show file type/extension popup on Open/Save }
kNavDontAutoTranslate = $00000002 { Don't automatically translate on Open }
kNavDontAddTranslateltems = $00000004 { Don't add translation choices on Open/Save }
kNavAllFilesInPopup = $00000010 { "All Files" menu item in the type popup on Open }
kNavAllowStationery = $00000020 { Allow saving of stationery files }

kNavAllowPreviews = $00000040 { Allow to show previews }

kNavAllowMultipleFiles = $00000080 { Allow multiple items to be selected }
kNavAllowlnvisibleFiles = $00000100 { Allow invisible items to be shown }
kNavDontResolveAliases = $00000200 { Don't resolve aliases }

kNavSelectDefaultLocation = $00000400 { Make the default location the browser selection }
kNavSelectAllReadableltem = $00000800 { Make dialog select "All Readable Documents" on Open}

Save Changes Request

kNavSaveChangesClosingDocument
kNavSaveChangesQuittingApplication
kNavSaveChangesOther

o
O N

Save Changes Action
kNavAskSaveChangesSave =1

kNavAskSaveChangesCancel= 2
kNavAskSaveChangesDontSave =3

Discard Changes Action

kNavAskDiscardChanges
kNavAskDiscardChangesCancel

I
N~

Event Message

kNavCBEvent
kNavCBCustomize
kNavCBStart
kNavCBTerminate

o n
WN RO

Object Filtering

kNavFilteringBrowserList
kNavFilteringFavorites
kNavFilteringRecents

o
N = O

16B-14 Files

kNavFilteringShortCutVolumes =3

Data Types

NavDialog Options Structure

NavDialogOptions = RECORD

version: Uintle6;
dialogOptionFlags: NavDialogOptionFlags;
location: Point;
clientName: Str255;
windowTitle: Str255;
actionButtonLabel: Str255;
cancelButtonLabel: Str255;
savedFileName: Str255;
message: Str255;
preferenceKey: Uint32;
popupExtension: Handle;
reserved: PACKED ARRAY [0..493] OF CHAR;
END;
Nav Reply Structure
NavReplyRecord = RECORD
version: Uintl6;
validRecord: BOOLEAN;
replacing: BOOLEAN;
isStationery: BOOLEAN;
translationNeeded: BOOLEAN;
selection: AEDescList;
keyScript: ScriptCode;
fileTranslation: ~FileTranslationSpecPtr;
reservedl: UInt32;
reserved: PACKED ARRAY [0..230] OF CHAR;
END;
NavTypelist
NavTypeList = RECORD
componentSignature: OSType;
reserved: INTEGER;
osTypeCount: INTEGER;
osType: ARRAY [0..0] OF OSType;
END;
Functions

Calling Navigation Services

FUNCTION NavLoad: OSErr;

FUNCTION NavUnload: OSErr;

FUNCTION NavGetDefaultDialogOptions(VAR dialogOptions: NavDialogOptions): OSErr;
FUNCTION NavDisposeReply(VAR reply: NavReplyRecord): OSErr;

FUNCTION NavCustomControl(context: NavContext; selector: NavCustomControlMessage; parms: UNIV Ptr): OSErr;
FUNCTION NavServicesCanRun: BOOLEAN;

Choosing Files, Folders, and Volumes

FUNCTION NavGetFile(VAR defaultLocation: AEDesc; VAR reply: NavReplyRecord;

VAR dialogOptions: NavDialogOptions; eventProc: NavEventUPP;

previewProc: NavPreviewUPP; filterProc: NavObjectFilterUPP;

typelList: NavTypelListHandle; callBackUD: NavCallBackUserData): OSErr;
FUNCTION NavChooseFile(VAR defaultLocation: AEDesc; VAR reply: NavReplyRecord;

VAR dialogOptions: NavDialogOptions; eventProc: NavEventUPP;

previewProc: NavPreviewUPP; filterProc: NavObjectFilterUPP;

typeList: NavTypeListHandle; callBackUD: NavCallBackUserData): OSErr;
FUNCTION NavChooseFolder(VAR defaultLocation: AEDesc; VAR reply: NavReplyRecord;

VAR dialogOptions: NavDialogOptions; eventProc: NavEventUPP;

filterProc: NavObjectFilterUPP; callBackUD: NavCallBackUserData): OSErr;
FUNCTION NavChooseVolume(VAR defaultSelection: AEDesc; VAR reply: NavReplyRecord;

VAR dialogOptions: NavDialogOptions; eventProc: NavEventUPP;

Files 16B-15

filterProc: NavObjectFilterUPP; callBackUD: NavCallBackUserData): OSErr;
FUNCTION NavChooseObject(VAR defaultLocation: AEDesc; VAR reply: NavReplyRecord;

VAR dialogOptions: NavDialogOptions; eventProc: NavEventUPP;

filterProc: NavObjectFilterUPP; callBackUD: NavCallBackUserData): OSErr;
FUNCTION NavNewFolder(VAR defaultLocation: AEDesc; VAR reply: NavReplyRecord;

VAR dialogOptions: NavDialogOptions; eventProc: NavEventUPP;

callBackUD: NavCallBackUserData): OSErr;

Saving Files

FUNCTION NavPutFile(VAR defaultLocation: AEDesc; VAR reply: NavReplyRecord;
VAR dialogOptions: NavDialogOptions; eventProc: NavEventUPP;
fileType: OSType; fileCreator: OSType; callBackUD: NavCallBackUserData): OSErr;
FUNCTION NavAskSaveChanges(VAR dialogOptions: NavDialogOptions;
action: NavAskSaveChangesAction; VAR reply: NavAskSaveChangesResult;
eventProc: NavEventUPP; callBackUD: NavCallBackUserData): OSErr;
FUNCTION NavCustomAskSaveChanges(VAR dialogOptions: NavDialogOptions;
VAR reply: NavAskSaveChangesResult; eventProc: NavEventUPP;
callBackUD: NavCallBackUserData): OSErr;
FUNCTION NavAskDiscardChanges(VAR dialogOptions: NavDialogOptions;
VAR reply: NavAskDiscardChangesResult; eventProc: NavEventUPP;
callBackUD: NavCallBackUserData): OSErr;
FUNCTION NavCompleteSave(VAR reply: NavReplyRecord;
howToTranslate: NavTranslationOptions): OSErr;

Demonstration Program
£ 00000000000HHMHNHHHOHHNHHHRNRHNHOHRNRNHNRRNRNRN

Files2Program.p

/§><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

// This program demonstrates:

I

// * The use of Navigation Services rather than the Standard File Package to display
/! Open, Save, and Choose a Folder dialog boxes.

I

/l = The use of Navigation Services rather than the Dialog Manager to display Save
/! Changes and Discard Changes alert boxes.

/1

/l = Application-defined file handling functions associated with:

/1

/! . The user invoking the File menu Open..., Close, Save, Save As..., Revert to Saved,
/! and Quit commands of a typical application.

/1

/! . Handling of the required Apple events Open Application, Re-open Application,

!/ Open Documents and Quit Application.

I

/! These functions are essentially the same as those in the demonstration program
/! Filesl except that the safe-save methodology used in Filesl is not used, all
/! saves being direct to the target file.

// To keep the code not specifically related to files and file-handling to a minimum, an

// item is included in the Demonstration menu which allows the user to simulate

// "touching" a window (that is, modifying the contents of the associated document).

// Choosing the first menu item in this menu sets the window-touched flag in the window's
// document structure to true and draws the text "WINDOW TOUCHED" in the window in a
// large font size, this latter so that the user can keep track of which windows have

// been "touched".

/!

// The program utilises the following resources:

1

// * An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Demonstration

// menus (preload, non-purgeable).

/!

/I * A'WIND' resource (purgeable) (initially not visible).

1

/l * A'STR 'resource containing the "missing application name" string, which is copied
/I to all document files created by the program.

/I + 'STR#' resources (purgeable) containing error strings, the application's name (for
/! certain Navigation Services functions), and a message string for the Choose a
/! Folder dialog box.

// » A 'kind' resource (purgeable) describing file types, which is used by Navigation

1l Services to build the native file types section of the Show pop-up menu in the
/! Open dialog box.

16B-16 Files

// * An 'open' resource (purgeable) containing the file type list for the Open dialog
1 box.

// = A'pnot' and associated 'PICT' resource (both purgeable), which provide the preview
/I for the PICT file.

// * The 'BNDL' resource (non-purgeable), 'FREF' resources (non-purgeable), signature
/! resource (non-purgeable), and icon family resources (purgeable), required to
/I support the built application.

/I * A'SIZE' resource with the acceptSuspendResumeEvents, isHighLevelEventAware, and
/I is32BitCompatible flags set (non-purgeable).

11000000 HOGHIIOIHOIHNCNMOOGHHOOOHHO NN UG NN +

program Files2Program;

1
LTSS 1
uses

{ Other project files. }

Files2;
/I
globalvanables ..
var

mainMenubarHdl| : Handle;
mainMenuHdl : MenuHandle;
mainErr : OSErr;

11 GXXAAA000NN0N0 main
begin

] e ettt eeeee et et e e et ea et e et e et e e
initialise global variables

gCurrentNumberOfWindows := 0;
gCurrentType := 1;

Ll e check for Navigation Services, and pre-load (optional)

{$ifc GENERATINGPOWERPC}
if ((SInt32(@NavLibraryVersion) <> kUnresolvedCFragSymbolAddress) & NavServicesCanRun) then
{$elsec}
if NavServicesCanRun then
{$endc}
begin
mainErr := NavlLoad,;
end
else begin
DoErrorAlert(eNoNavServices);
end;

PP PP create routine decriptors for Apple event handlers
doOpenAppEventUPP := NewAEEventHandlerProc(@DoOpenAppEvent);

doReopenAppEventUPP := NewAEEventHandlerProc(@DoReopenAppEvent);

doOpenDocsEventUPP := NewAEEventHandlerProc(@DoOpenDocsEvent);

doQuitAppEventUPP := NewAEEventHandlerProc(@DoQuitAppEvent);

] e set application's resource fork as current resource file

gAppResFileRefNum := CurResFile;

N set
up menu bar and menus

Files 16B-17

mainMenubarHd| := GetNewMBar(rMenubar);
if (mainMenubarHdI| = nil) then
begin
DoErrorAlert(MemError);
end;
SetMenuBar(mainMenubarHdl);
DrawMenuBar,;
mainMenuHdl := GetMenuHandle(mApple);
if (mainMenuHdI| = nil) then
begin
DoErrorAlert(MemError);
end
else begin
AppendResMenu(mainMenuHdl, 'DRVR');
end;

PP install required Apple
event handlers

DolnstallAEHandlers;

EventLoop;

end.
{ of main program block }

1 000000000O00MAOCMHOGHHOOGHHAINHONHO NI HHNMONNON
{ 000000000000OO0000000000000OOO0000000000000000000000OOO0000000000000000000000OOOOOOOOO

Files2

0000000000000000000000000000000000OOO0000000000000000000000OOO000000000000000000000000 }

unit Files2;

interface

uses
{ Universal Interfaces. }

Appearance, AERegistry, Devices, Dialogs, Folders, Fonts, LowMem, Navigation, Processes,
Resources, TextUtils, ToolUtils;

const

mApple = 128;

iAbout = 1;
mFile = 129;
iNew = 1;
iOpen = 2;
iClose = 4;
iSave = 5;
iSaveAs = 6;
iRevert = 7;
iQuit = 12;

mDemonstration = 131;
iTouchWindow = 1;
iChooseAFolderDialog = 3;
rNewWindow = 128;
rMenubar = 128;
rRevertAlert = 128;
rCloseFileAlert = 129;
rCustomOpenDialog = 130;
iPopupltem = 10;
rSelectDirectoryDialog = 131;
iSelectButton = 10;

16B-18 Files

rErrorStrings = 128;
elnstallHandler = 1000;
eMaxWindows = 1001;
eFilelsOpen = opWrErr;
eNoNavServices = 1002;
rMiscStrings = 129;
sApplicationName = 1;
sChooseAFolder = 2;
rOpenResource = 128;
kMaxWindows = 10;
MAXLONG = $7FFFFFFF;

type

DocRecord = record
editStrucHdI : TEHandle;
pictureHdI : PicHandle;
fileRefNum : SInt16;
fileFSSpec : FSSpec;
windowTouched : boolean;
end;

DocRecordPointer
DocRecordHandle

~DocRecord;
~DocRecordPointer;

var

gDone : boolean;

glnBackground : boolean;
doOpenAppEventUPP : AEEventHandlerUPP;
doReopenAppEventUPP : AEEventHandlerUPP;
doOpenDocsEventUPP : AEEventHandlerUPP;
doQuitAppEventUPP : AEEventHandlerUPP;
gAppResFileRefNum : SInt16;

gCurrentNumberOfWindows : SInt16;
gDestRect, gViewRect : Rect;
gDirectorySelectionFlag : boolean;

gCurrentType : SInt16;
gPrevSelectedName : Str255;
gWindowPtr : WindowPtr;

procedure EventLoop;

procedure DolnitManagers;

procedure DolnstallAEHandlers;

procedure DoEvents({const} var theEvent : EventRecord);

procedure DoMouseDown({const} var theEvent : EventRecord);

procedure DoUpdate({const} var theEvent : EventRecord);

procedure DoMenuChoice(menuChoice : SInt32);

procedure DoFileMenu(menultem : SInt16);

procedure DoAdjustMenus;

procedure DoErrorAlert(error : SIntl6);

procedure DoTouchWindow;

function DoOpenAppEvent(var appEvent, reply : AppleEvent; handlerRefcon : UInt32) : OSErr;
function DoReopenAppEvent(var appEvent, reply : AppleEvent; handlerRefcon : UInt32) : OSErr;
function DoOpenDocsEvent(var appEvent, reply : AppleEvent; handlerRefcon : UInt32) : OSErr;
function DoQuitAppEvent(var appEvent, reply : AppleEvent; handlerRefcon : UInt32) : OSErr;
function DoHasGotRequiredParams(var theEvent : AppleEvent) : OSErr;

implementation
uses

ChooseAFolderDialog, NewOpenCloseSave;

Files 16B-19

11 O000A0000A0C0MAOMOO MMM NN 0NN EventLoop

procedure EventLoop;
var
theEvent : EventRecord;

begin
gDone := false;

while not gDone do
begin
if WaitNextEvent(everyEvent, theEvent, MAXLONG, nil) then
begin
DoEvents(theEvent);
end;
end;
end;
{ of procedure EventLoop }

11 00000000000 HOOOGHHAOCNHAO N NNO00NNO00 DolnitManagers

procedure DolnitManagers;
var
osError : OSErr;

begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;

TEInit;

InitDialogs(nil);

InitCursor;
FlushEvents(everyEvent, 0);

osError := RegisterAppearanceClient;

end;
{ of procedure DolnitManagers }

11 Q000G HIOOGHIAOOIHOIHNO MO IHNOOONNNONK) DolnstallAEHandlers

procedure DolnstallAEHandlers;
var
osError : OSErr;

begin
osError := AElInstallEventHandler(kCoreEventClass, KAEOpenApplication,
doOpenAppEventUPP, 0, false);
if (osError <> noErr) then
begin
DoErrorAlert(elnstallHandler);
end;

osError := AElnstallEventHandler(kCoreEventClass, kAEReopenApplication,
doReopenAppEventUPP, 0, false);
if (osError <> noErr) then
begin
DoErrorAlert(elnstallHandler);
end;

osError := AEInstallEventHandler(kCoreEventClass, KAEOpenDocuments,
doOpenDocsEventUPP, 0, false);
if (osError <> noErr) then
begin
DoErrorAlert(elnstallHandler);
end;

osError := AElnstallEventHandler(kCoreEventClass, KAEQuitApplication,
doQuitAppEventUPP, 0, false);
if (osError <> noErr) then
begin
DoErrorAlert(elnstallHandler);
end;
end;
{ of procedure DolnstallAEHandlers }

16B-20 Files

11 0000000000000 MMM NN N0 DoEvents

procedure DoEvents({const} var theEvent : EventRecord);
var
ignoredErr : OSErr;
charCode : SInt8;

begin
case (theEvent.what) of

kHighLevelEvent: begin
ignoredErr := AEProcessAppleEvent(theEvent);
end;

mouseDown: begin
DoMouseDown(theEvent);
end;

keyDown, autoKey: begin

charCode := BAnd(theEvent.message, charCodeMask);

if (BAnd(theEvent.modifiers, cmdKey) <> 0) then
begin
DoAdjustMenus;
DoMenuChoice(MenuEvent(theEvent));
end;

end;

updateEvt: begin
DoUpdate(theEvent);
end;

osEvt: begin
if (BAnd(BSR(theEvent.message, 24), $000000FF) = suspendResumeMessage) then
begin
glnBackground := BAnd(theEvent.message, resumeFlag) = 0;
end;

HiliteMenu(0);
end;

otherwise begin
end;

end;
{ of case statement }
end;
{ of procedure DoEvents }

11 O000A0000O0AOGHOGHCHNCNHOHHOOONONNO0 KN DoMouseDown

procedure DoMouseDown({const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
partCode : SInt16;
ignoredErr : OSErr;

begin
partCode := FindWindow(theEvent.where, theWindowPtr);

case partCode of

inMenuBar: begin
DoAdjustMenus;
DoMenuChoice(MenuSelect(theEvent.where));
end;

inContent: begin
if (theWindowPtr <> FrontWindow) then
begin
SelectWindow(theWindowPtr);
end;
end;

inDrag: begin
DragWindow(theWindowPtr, theEvent.where, gd.screenBits.bounds);
end;

inGoAway: begin
if TrackGoAway(theWindowPtr, theEvent.where) then

Files 16B-21

begin
ignoredErr := DoCloseCommand(kNavSaveChangesClosingDocument);
end;

end;

otherwise begin
end;

end;
{ of case statement }
end;
{ of procedure DoMouseDown }

11 O000O0HIOOOHHIOOHHIOOGHHOOOUHHCUHNOO IO KOO UHHOO00NNN¢ DoUpdate

procedure DoUpdate({const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
docRecordHdI : DocRecordHandle;
oldPort : GrafPtr;
destRect : Rect;

begin
theWindowPtr := WindowPtr(theEvent.message);
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

GetPort(oldPort);
SetPort(theWindowPtr);

BeginUpdate(theWindowPtr);

if (docRecordHdI”™ " .pictureHdl <> nil) then
begin
destRect := docRecordHdI|™ ~.pictureHdI™ ~.picFrame;
OffsetRect(destRect, 170, 54);
HLock(Handle(docRecordHdI”™ ~.pictureHdl));
DrawPicture(docRecordHdI”™ " .pictureHdl, destRect);
HUnlock(Handle(docRecordHdI|”™ ~.pictureHdl));
end

else if (docRecordHdI”™ ~.editStrucHdI <> nil) then
begin
HLock(Handle(docRecordHdI™ ~.editStrucHdl));
TEUpdate(gDestRect, docRecordHdI”™ " .editStrucHdl);
HUnlock(Handle(docRecordHdI™ ™ .editStrucHdl));
end;

if (docRecordHdI”™"~.windowTouched) then
begin
TextSize(48);
MoveTo(30, 170);
DrawString("WINDOW TOUCHED');
TextSize(12);
end;

EndUpdate(WindowPtr(theEvent.message));

SetPort(oldPort);
end;
{ of procedure DoUpdate }

11 O00A000HOOOHOGHOIHOIHNOIHMOGHHOOOHHCNNOO0KK DoMenuChoice

procedure DoMenuChoice(menuChoice : SInt32);
var
menulD, menultem : SInt16;
itemName : Str255;
daDriverRefNum : SIntl6;
fileSpec : FSSpec;
osError : OSErr;
theRect : Rect;
theString, numberString : Str255;

begin
menulD := HiWord(menuChoice);
menultem := LoWord(menuChoice);

if (menulD = 0) then
begin
Exit(DoMenuChoice);
end;

16B-22 Files

case menulD of

mApple: begin
GetMenultemText(GetMenuHandle(mApple), menultem, itemName);
daDriverRefNum := OpenDeskAcc(itemName);
end;

mFile: begin
DoFileMenu(menultem);
end;

mDemonstration: begin
if (menultem = iTouchWindow) then
begin
DoTouchWindow;
end
else if (menultem = iChooseAFolderDialog) then
begin
osError := DoChooseAFolderDialog(fileSpec);
if ((osError <> noErr) and (osError <> userCanceledErr)) then
begin
end
else if (FrontWindow <> nil) then
begin
SetPort(FrontWindow);
TextSize(10);
SetRect(theRect, 0, 271, 600, 300);
EraseRect(theRect);
if (osError <> userCanceledErr) then
begin
theString := fileSpec.name;
theString := theString + ' Volume Reference Number: ;
NumToString(SInt32(fileSpec.vRefNum), numberString);
theString := theString + numberString;
theString := theString + ' Parent Directory ID: ;
NumToString(SInt32(fileSpec.parlD), numberString);
theString := theString + numberString;
MoveTo(10, 290);
DrawString(theString);
end;
end;
end;
end;

otherwise begin
end;

end;
{ of case statement }

HiliteMenu(0);
end;
{ of procedure DoMenuChoice }

11 O00A000OOOHOGHIIOGHCIHNCNMOIHHOOONONNNOOONNNO DoFileMenu

procedure DoFileMenu(menultem : SInt16);
var
osError : OSErr;

begin
case menultem of

iNew: begin
osError := DoNewCommand;
if (osError <> noErr) then
begin
DoErrorAlert(osError);
end;
end;

iOpen: begin
osError := DoOpenCommand;
if (osError <> noErr) then
begin
DoErrorAlert(osError);
end;
end;

Files 16B-23

iClose: begin
osError := DoCloseCommand(kNavSaveChangesClosingDocument);
if ((osError <> noErr) and (osError <> kNavAskSaveChangesCancel)) then
begin
DoErrorAlert(osError);
end;
end;

iSave: begin
osError := DoSaveCommand;
if (osError <> noErr) then
begin
DoErrorAlert(osError);
end;
end;

iSaveAs: begin
osError := DoSaveAsCommand;
if (osError <> noErr) then
begin
DoErrorAlert(osError);
end;
end;

iRevert: begin
osError := DoRevertCommand;
if (osError <> noErr) then
begin
DoErrorAlert(osError);
end;
end;

iQuit: begin
osError := DoQuitCommand(kNavSaveChangesQuittingApplication);
if ((osError <> noErr) and (osError <> kNavAskSaveChangesCancel)) then
begin
DoErrorAlert(osError);
end;

if (osError <> kNavAskSaveChangesCancel) then
begin
osError := NavUnload;
gDone := true;
end;
end;

otherwise begin
end;

end;
{ of case statement }
end;
{ of procedure DoFileMenu }

1100000000000 CHOOOMONNO0K) DoAdjustMenus

procedure DoAdjustMenus;
var
menuHd| : MenuHandle;
theWindowPtr : WindowPtr;
docRecordHdI : DocRecordHandle;

begin
theWindowPtr := FrontWindow;
docRecordHdl| := DocRecordHandle(GetWRefCon(theWindowPtr));

menuHd| := GetMenuHandle(mFile);

if (gCurrentNumberOfWindows > 0) then
begin
menuHd| := GetMenuHandle(mFile);
Enableltem(menuHdl, iClose);
if (docRecordHdI”™ "~ .windowTouched) then
begin
Enableltem(menuHdl, iSave);
Enableltem(menuHdl, iRevert);
end
else begin
Disableltem(menuHdl, iSave);
Disableltem(menuHdl, iRevert);

16B-24 Files

end;
Enableltem(menuHdl, iSaveAs);

menuHd| := GetMenuHandle(mDemonstration);
if not docRecordHdI”™ "~ .windowTouched then
begin
Enableltem(menuHdl, iTouchWindow);
end
else begin
Disableltem(menuHdl, iTouchWindow);
end;
end
else begin
menuHd| := GetMenuHandle(mFile);
Disableltem(menuHdl, iClose);
Disableltem(menuHdl, iSave);
Disableltem(menuHdl, iSaveAs);
Disableltem(menuHdl, iRevert);
menuHd| := GetMenuHandle(mDemonstration);
Disableltem(menuHdl|, iTouchWindow);
end;

—_~

DrawMenuBar;
end;
{ of procedure DoAdjustMenus }

11 00000000000 HHOONNNNOONN) DoErrorAlert

procedure DoErrorAlert(errorCode : SInt16);
var
paramRec : AlertStdAlertParamRec;
errorString, theString : Str255;
itemHit : SInt16;
ignoredErr : OSErr;

begin

paramRec.movable := true;

paramRec.helpButton := false;

paramRec.filterProc := nil;

paramRec.defaultText := StringPtr(kAlertDefaultOKText);
paramRec.cancelText := nil;

paramRec.otherText := nil;

paramRec.defaultButton := kAlertStdAlertOKButton;
paramRec.cancelButton := 0;

paramRec.position := kWindowDefaultPosition;

if (errorCode = elnstallHandler) then
begin
GetIndString(errorString, rErrorStrings, 1);
end

else if (errorCode = eMaxWindows) then
begin
GetIndString(errorString, rErrorStrings, 2);
end

else if (errorCode = eFilelsOpen) then
begin
GetIndString(errorString, rErrorStrings, 3);
end

else if (errorCode = eNoNavServices) then
begin
GetIndString(errorString, rErrorStrings, 4);
end

else begin
GetIndString(errorString, rErrorStrings, 5);
NumToString(SInt32(errorCode), theString);
errorString := errorString + theString;
end;

if ((errorCode <> memFullErr) and (errorCode <> eNoNavServices)) then
begin
ignoredErr := StandardAlert(kAlertCautionAlert, @errorString, nil, @paramRec, itemHit);
end
else begin
ignoredErr := StandardAlert(kAlertStopAlert, @errorString, nil, @paramRec, itemHit);
ExitToShell;
end;
end;
{ of procedure DoErrorAlert }

11 O000A000OOOHOCOGHOOUHOCUMIOO XN DoTouchWindow

Files 16B-25

procedure DoTouchWindow;
var
theWindowPtr : WindowPtr;
docRecordHdI : DocRecordHandle;

begin
theWindowPtr := FrontWindow;
docRecordHdl| := DocRecordHandle(GetWRefCon(theWindowPtr));

SetPort(theWindowPtr);

TextSize(48);

MoveTo(30, 170);
DrawString('WINDOW TOUCHED');
TextSize(12);

docRecordHdI”™ ~.windowTouched := true;
end;
{ of procedure DoTouchWindow }

11 0000000000000 GHHOONNNNA0O0 DoOpenAppEvent

function DoOpenAppEvent(var appEvent, reply : AppleEvent; handlerRefcon : UInt32) : OSErr;
var
osError : OSErr;

begin
osError := DoHasGotRequiredParams(appEvent);
if (osError = noErr) then

begin

osError := DoNewCommand;

end;

DoOpenAppEvent := osError;
end;
{ of function DoOpenAppEvent }

11 O000000UOOOHOGHOGNCIHNCNNOOGHIOOO0NNNNNNOO DoReopenAppEvent

function DoReopenAppEvent(var appEvent, reply : AppleEvent; handlerRefcon : UInt32) : OSErr;
var
osError : OSErr;

begin
osError := DoHasGotRequiredParams(appEvent);
if (osError = noErr) then
begin
if (FrontWindow = nil) then
begin
osError := DoNewCommand;
end;
end;

DoReopenAppEvent := osError;
end;
{ of function DoReopenAppEvent }

11 00000000000 HHOO0NN0NNNOO DoOpenDocsEvent

function DoOpenDocsEvent(var appEvent, reply : AppleEvent; handlerRefcon : UInt32) : OSErr;
var
fileSpec : FSSpec;
doclList : AEDesclList;
osError, ignoredErr : OSErr;
index, numberOfltems : SInt32;
actualSize : Size;
keyWord : AEKeyword;
returnedType : DescType;
fileInfo : FInfo;

begin
osError := AEGetParamDesc(appEvent, keyDirectObject, typeAEList, docList);

if (osError = noErr) then
begin
osError := DoHasGotRequiredParams(appEvent);
if (osError = noErr) then
begin
ignoredErr := AECountltems(docList, numberOfltems);

16B-26 Files

if (osError = noErr) then
begin
for index := 1 to numberOfltems do
begin
osError := AEGetNthPtr(docList, index, typeFSS, keyWord, returnedType,
©@fileSpec, sizeof(fileSpec), actualSize);
if (osError = noErr) then
begin
osError := FSpGetFInfo(fileSpec, filelnfo);
if (osError = noErr) then
begin
osError := DoOpenfFile(fileSpec, fileInfo.fdType);
if (osError <> noErr) then
begin
DoErrorAlert(osError);
end;
end;
end
else begin
DoErrorAlert(osError);
end;
end;
end;
end
else begin
DoErrorAlert(osError);
end;

ignoredErr := AEDisposeDesc(docList);
end
else begin
DoErrorAlert(osError);
end;

DoOpenDocsEvent := osError;
end;
{ of function DoOpenDocsEvent }

11 O00A000HMOOOHOOGHIOGHHOINHONMOOGHNOOONONNNOO00 DoQuitAppEvent

function DoQuitAppEvent(var appEvent, reply : AppleEvent; handlerRefcon : UInt32) : OSErr;
var
osError : OSErr;
ignoredErr : OSErr;

begin
osError := DoHasGotRequiredParams(appEvent);
if (osError = noErr) then
begin
while (FrontWindow <> nil) do
begin
osError := DoCloseCommand(kNavSaveChangesQuittingApplication);
if ((osError <> noErr) and (osError <> kNavAskSaveChangesCancel)) then
begin
DoErrorAlert(osError);
end;

if (osError = kNavAskSaveChangesCancel) then
begin
Exit(DoQuitAppEvent);
end;
end;
end;

ignoredErr := NavUnload;
gDone := true;

DoQuitAppEvent := osError;
end;
{ of function DoQuitAppEvent }

11 O000A0000000M00NMOOCGMOOMOCNNNO0N0NNNO0 DoHasGotRequiredParams

function DoHasGotRequiredParams(var appEvent : AppleEvent) : OSErr;
var
returnedType : DescType;
actualSize : Size;
osError : OSErr;

begin

Files 16B-27

osError := AEGetAttributePtr(appEvent, keyMissedKeywordAttr, typeWildCard, returnedType,
nil, 0, actualSize);

if (osError = errAEDescNotFound) then
begin
DoHasGotRequiredParams :
end

else if (osError = noErr) then
begin
DoHasGotRequiredParams := errAEParamMissed;
end;

end;
{ of function DoHasGotRequiredParams }

nokrr;

end.
{ of unit Filesl }

1 00000000MO0MAOHMOGHIOOIHMCIHNO NN NI IHMOOHMONNO NN
1 000000000OOOUMOOOUHMOOOGHHOOOUHIOCHHIOOHHIOI KOOI XN NN NN

NewOpenCloseSave.p

R000OOGHIOOHHIOOO KNI HIOOOUHIOOHINO UK KM IHIOOCUNNONNO0

unit NewOpenCloseSave;

interface
uses

{ Other project files. }
Files2;

function DoNewCommand : OSErr;

function DoOpenCommand : OSErr;

function DoCloseCommand(action : NavAskSaveChangesAction) : OSErr;

function DoSaveCommand : OSErr;

function DoSaveAsCommand : OSErr;

function DoRevertCommand : OSErr;

function DoQuitCommand(action : NavAskSaveChangesAction) : OSErr;

function DoNewDocWindow(showWindow : boolean; documentType : OSType) : OSErr;

function DoOpenFile(fileSpec : FSSpec; documentType : OSType) : OSErr;

function DoCloseFile(theWindowPtr : WindowPtr; docRecordHdl : DocRecordHandle;
action : NavAskSaveChangesAction) : OSErr;

function DoWriteFile(theWindowPtr : WindowPtr; newFile : boolean) : OSErr;

function DoReadTextFile(theWindowPtr : WindowPtr) : OSErr;

function DoReadPictFile(theWindowPtr : WindowPtr) : OSErr;

function DoWriteTextData(theWindowPtr : WindowPtr; tempFileRefNum : SInt16) : OSErr;

function DoWritePictData(theWindowPtr : WindowPtr; tempFileRefNum : SInt16) : OSErr;

function DoCopyResources(theWindowPtr : WindowPtr) : OSErr;

function DoCopyAResource(resourceType : ResType;
resourcelD, sourceFileRefNum, destFileRefNum : SInt16) : OSErr;

procedure NavEventFunction(callBackSelector : NavEventCallbackMessage;
callBackParms : NavCBRecPtr; callBackUD : NavCallBackUserData);

implementation

11 O00A00GHOOHOGHOOGHOOMOCHNNOO XN DoNewCommand

function DoNewCommand : OSErr;
var
documentType : OSType;

begin
documentType := 'TEXT';
DoNewCommand := DoNewDocWindow(true, documentType);
end;
{ of function DoNewCommand }

11 0000000000 MOCMHOOOGHOOMONOC NN DoOpenCommand

function DoOpenCommand : OSErr;
var
dialogOptions : NavDialogOptions;
fileTypeListHd| : NavTypelListHandle;
navEventFunctionUPP : NavEventUPP;
osError : OSErr;
theNavReply : NavReplyRecord;
resultDesc : AEDesc;
defaultLocation : AEDescPtr;

16B-28 Files

index, count : SInt32;
fileSpec : FSSpec;

filelnfo : FInfo;
documentType : OSType;
ignoredErr : OSErr;
theKeyword : AEKeyword;

begin
fileTypeListHdI := nil;
osError := noErr;

ignoredErr := NavGetDefaultDialogOptions(dialogOptions);

GetlndString(dialogOptions.clientName, rMiscStrings, sApplicationName);
fileTypeListHdl := NavTypeListHandle(GetResource('open', rOpenResource));

navEventFunctionUPP := NavEventUPP(NewRoutineDescriptor(@NavEventFunction,
uppNavEventProclnfo, GetCurrentlISA));

defaultLocation”.descriptorType := FourCharCode(0);

defaultLocation”.dataHandle := nil;

osError := NavGetFile(defaultLocation, theNavReply, dialogOptions, navEventFunctionUPP, nil,
nil,fileTypeListHdlI, nil);

DisposeRoutineDescriptor(navEventFunctionUPP);

if (theNavReply.validRecord and (osError = noErr)) then
begin
if (osError = noErr) then
begin
osError := AECountltems(theNavReply.selection, count);

for index := 1 to count do
begin
resultDesc.dataHandle := nil;

theKeyword := FourCharCode(0);
osError := AEGetNthDesc(theNavReply.selection, index, typeFSS, theKeyword,
resultDesc);
if (osError = noErr) then
begin
BlockMoveData(resultDesc.dataHandle”™, @fileSpec, sizeof(FSSpec));

osError := FSpGetFInfo(fileSpec, fileInfo);
if (osError = noErr) then

begin

documentType := fileInfo.fdType;

osError := DoOpenFile(fileSpec,documentType);
end;

ignoredErr := AEDisposeDesc(resultDesc);
end;
end;
end;

ignoredErr := NavDisposeReply(theNavReply);
end;

if (fileTypeListHdl <> nil) then
begin
ReleaseResource(Handle(fileTypeListHdl));
end;

if (osError = userCanceledErr) then
begin
osError := noErr;
end;

DoOpenCommand := osError;
end;
{ of function DoOpenCommand }

11 0000000000000 GHOOHAONO N NNO0NNO0O DoCloseCommand

function DoCloseCommand(action : NavAskSaveChangesAction) : OSErr;
var
theWindowPtr : WindowPtr;
windowKind : SInt16;
docRecordHdl : DocRecordHandle;
osError : OSErr;

Files 16B-29

begin

osError := nokErr;

theWindowPtr := FrontWindow;

windowKind := WindowPeek(theWindowPtr)~.windowKind;

case windowKind of

kApplicationWindowKind: begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));
osError := DoCloseFile(theWindowPtr, docRecordHdl, action);

if (osError = kNavAskSaveChangesCancel) then
begin
DoCloseCommand := osError;
Exit(DoCloseCommand);
end

else if (osError = noErr) then
begin
DisposeWindow(theWindowPtr);
gCurrentNumberOfWindows := gCurrentNumberOfWindows - 1;
end;

end;

kDialogWindowKind: begin
{ Hide or close modeless dialog, as required. }
end;

otherwise begin
end;

end;
{ of case statement }

DoCloseCommand := osError;
end;
{ of function DoCloseCommand }

11 0000000000000 DoSaveCommand

function DoSaveCommand : OSErr;
var
theWindowPtr : WindowPtr;
docRecordHdI : DocRecordHandle;
osError : OSErr;

begin

osError := nokErr;

theWindowPtr := FrontWindow;

docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

if (docRecordHdI™ "™ .fileRefNum <> 0) then
begin
osError := DoWriteFile(theWindowPtr, false);

SetPort(theWindowPtr);
EraseRect(theWindowPtr~.portRect);
InvalRect(theWindowPtr~.portRect);
end

else begin
osError := DoSaveAsCommand,;
end;

DoSaveCommand := osError;
end;
{ of function DoSaveCommand }

11 O000A00000OMOCMHOOOGHOOOHONNOHNONNO00NNN0O DoSaveAsCommand

function DoSaveAsCommand : OSErr;
var
dialogOptions : NavDialogOptions;
theWindowPtr : WindowPtr;
docRecordHdl : DocRecordHandle;
navEventFunctionUPP : NavEventUPP;
fileType : OSType;
osError : OSErr;
theNavReply : NavReplyRecord;
resultDesc : AEDesc;
defaultLocation : AEDescPtr;

16B-30 Files

theKeyword : AEKeyword;
fileSpec : FSSpec;

fileRefNum : SInt16;

ignoredErr : OSErr;

userData : NavCallBackUserData;

begin
osError := noErr;

ignoredErr := NavGetDefaultDialogOptions(dialogOptions);

theWindowPtr := FrontWindow;

docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));
GetWTitle(theWindowPtr, dialogOptions.savedFileName);
GetIndString(dialogOptions.clientName, rMiscStrings, sApplicationName);

navEventFunctionUPP := NavEventUPP(NewRoutineDescriptor(@NavEventFunction,
uppNavEventProcinfo, GetCurrentiSA));

if (docRecordHdI”™ " .editStrucHdI <> nil) then
begin
fileType := 'TEXT;
end

else if (docRecordHdI™ ~.pictureHdl <> nil) then
begin
fileType := 'PICT;
end;

defaultLocation”.descriptorType := FourCharCode(0);

defaultLocation”.dataHandle := nil;

userData := nil;

osError := NavPutFile(defaultLocation, theNavReply, dialogOptions, navEventFunctionUPP,
fileType, 'kkkG', userData);

DisposeRoutineDescriptor(navEventFunctionUPP);

if (theNavReply.validRecord and (osError = noErr)) then
begin
resultDesc.dataHandle := nil;
theKeyword := FourCharCode(0);

osError := AEGetNthDesc(theNavReply.selection, 1, typeFSS, theKeyword, resultDesc);
if (osError = noErr) then

begin

BlockMoveData(resultDesc.dataHandle”™, @fileSpec, sizeof(FSSpec));

if not theNavReply.replacing then

begin

osError := FSpCreate(fileSpec, 'kkkG', fileType, theNavReply.keyScript);

if (osError <> noErr) then
begin
ignoredErr := AEDisposeDesc(resultDesc);
ignoredErr := NavDisposeReply(theNavReply);
DoSaveAsCommand := osError;
Exit(DoSaveAsCommand);
end;

end;

docRecordHdI™ . .fileFSSpec := fileSpec;

if (docRecordHdI™ " .fileRefNum <> 0) then
begin
osError := FSClose(docRecordHdI™ "~ .fileRefNum);
docRecordHdI”™ . fileRefNum := 0;
end;

if (osError = noErr) then
begin
osError := FSpOpenDF(docRecordHdI™ ~.fileFSSpec, fsRdWrPerm, fileRefNum);
end;

if (osError = noErr) then
begin
docRecordHdI”™ ~ .fileRefNum := fileRefNum;
SetWTitle(theWindowPtr,fileSpec.name);

osError := DoWriteFile(theWindowPtr, not theNavReply.replacing);
end;

ignoredErr := AEDisposeDesc(resultDesc);

Files 16B-31

ignoredErr := NavCompleteSave(theNavReply, kNavTranslatelnPlace);
end;

ignoredErr := NavDisposeReply(theNavReply);
end;

SetPort(theWindowPtr);
EraseRect(theWindowPtr~.portRect);
InvalRect(theWindowPtr~.portRect);

if (osError = userCanceledErr) then
begin
osError := noErr;
end;

DoSaveAsCommand := osError;
end;
{ of function DoSaveAsCommand }

11 O000A000000MOCHHOOCGHOMOCHNOCHNONNO0NN00 DoRevertCommand

function DoRevertCommand : OSErr;
var
navEventFunctionUPP : NavEventUPP;
theWindowPtr : WindowPtr;
docRecordHdl : DocRecordHandle;
fileName : Str255;
dialogOptions : NavDialogOptions;
reply : NavAskSaveChangesResult;
osError : OSErr;

begin

osError := nokErr;

navEventFunctionUPP := NavEventUPP(NewRoutineDescriptor(@NavEventFunction,
uppNavEventProcinfo, GetCurrentISA));

theWindowPtr := FrontWindow;
docRecordHdI := DocRecordHandle(GetWRefCon(theWindowPtr));

SetPort(theWindowPtr);

GetWTitle(theWindowPtr, fileName);
BlockMoveData(@fileName[1], @dialogOptions.savedFileName, UInt8(fileName[0]));

osError := NavAskDiscardChanges(dialogOptions, reply, navEventFunctionUPP, nil);
if (reply = kNavAskDiscardChanges) then

begin

EraseRect(theWindowPtr~.portRect);

if (docRecordHdI”™ " .editStrucHdI <> nil) then

begin
osError := DoReadTextFile(theWindowPtr);
end

else if (docRecordHdI™ ~.pictureHdl <> nil) then
begin

KillPicture(docRecordHdI”™ . pictureHdl);
docRecordHdI”™ ~.pictureHdlI := nil;
osError := DoReadPictFile(theWindowPtr);
end;

docRecordHdI”™ ~.windowTouched := false;

InvalRect(theWindowPtr~.portRect);
end;

DoRevertCommand := osError;

end;
{ of function DoRevertCommand }

11 X00000MXAOO00GHHNNIO00GHIHAOCUHHNMNAO0 0NN DoQuitCommand

function DoQuitCommand(action : NavAskSaveChangesAction) : OSErr;
var
osError : OSErr;

begin
osError := noErr;

while (FrontWindow <> nil) do

16B-32 Files

begin
osError := DoCloseCommand(action);
if (osError <> noErr) then
begin
DoQuitCommand := osError;
Exit(DoQuitCommand);
end;
end;

DoQuitCommand := osError;
end;
{ of function DoQuitCommand }

11 000000000 GHHOOOUHHOCUNNO NN K000 DoNewDocWindow

function DoNewDocWindow(showWindow : boolean; documentType : OSType) : OSErr;
var
docRecordHdl : DocRecordHandle;

begin

if (gCurrentNumberOfWindows = kMaxWindows) then
begin
DoNewDocWindow := eMaxWindows;
Exit(DoNewDocWindow);
end;

gWindowPtr := GetNewCWindow(rNewWindow, nil, WindowPtr(-1));
if (gWindowPtr = nil) then

begin

DoNewDocWindow := MemeError;

Exit(DoNewDocWindow);

end;

SetPort(gWindowPtr);

docRecordHdl| := DocRecordHandle(NewHandle(sizeof(DocRecord)));
if (docRecordHd| = nil) then

begin

DisposeWindow(gWindowPtr);

DoNewDocWindow := MemError;

Exit(DoNewDocWindow);

end;

SetWRefCon(gWindowPtr, Sint32(docRecordHdl));

docRecordHdI™ ~.editStrucHdI := nil;
docRecordHdI™ ~.pictureHdI := nil;
docRecordHdI™ ~.fileRefNum := 0;
docRecordHdI™ ~.windowTouched := false;

if (documentType = 'TEXT') then
begin
gDestRect := gWindowPtr~.portRect;
InsetRect(gDestRect, 6, 6);
gViewRect := gDestRect;

MoveHHi(Handle(docRecordHdl));
HLock(Handle(docRecordHdl));

docRecordHdI”™ ~.editStrucHdI := TENew(gDestRect, gViewRect);
if (docRecordHdI = nil) then

begin

DisposeWindow(gWindowPtr);

DisposeHandle(Handle(docRecordHdl));

DoNewDocWindow := MemeError;

Exit(DoNewDocWindow);

end;

HUnlock(Handle(docRecordHdl));
end;

if showWindow then
begin
ShowWindow(gWindowPtr);
end;
gCurrentNumberOfWindows := gCurrentNumberOfWindows + 1;

DoNewDocWindow := noErr;
end;

Files 16B-33

{ of function DoNewDocWindow }

11 0000A0000A00MOCMHOOOGHHOOGHHOCMOO NN DoOpenFile

function DoOpenFile(fileSpec : FSSpec; documentType : OSType) : OSErr;
var
osError : OSErr;
fileRefNum : SInt16;
docRecordHdI : DocRecordHandle;

begin
osError := DoNewDocWindow(false, documentType);
if (osError <> noErr) then

begin

DoOpenFile := osError;

Exit(DoOpenFile);

end;

SetWTitle(gWindowPtr, fileSpec.name);

osError := FSpOpenDF(fileSpec, fsRdWrPerm, fileRefNum);
if (0sError <> noErr) then
begin
DisposeWindow(gWindowPtr);
gCurrentNumberOfWindows := gCurrentNumberOfWindows - 1;
DoOpenFile := osError;
Exit(DoOpenFile);
end;

docRecordHdI := DocRecordHandle(GetWRefCon(gWindowPtr));
docRecordHdI”™ ~.fileRefNum := fileRefNum;
docRecordHdI™ . fileFSSpec := fileSpec;

if (documentType = 'TEXT') then
begin
osError := DoReadTextFile(gWindowPtr);
if (osError <> noErr) then
begin
DoOpenFile := osError;
Exit(DoOpenFile);
end;
end
else if (documentType = 'PICT') then
begin
osError := DoReadPictFile(gWindowPtr);
if (osError <> noErr) then
begin
DoOpenFile := osError;
Exit(DoOpenFile);
end;
end;

ShowWindow(gWindowPtr);

DoOpenFile := osError;
end;
{ of function DoOpenfFile }

11 0000000000000 NNOONNK DoCloseFile

function DoCloseFile(theWindowPtr : WindowPtr; docRecordHdI : DocRecordHandle;
action : NavAskSaveChangesAction) : OSErr;
var
reply : NavAskSaveChangesResult;
navEventFunctionUPP : NavEventUPP;
dialogOptions : NavDialogOptions;
fileName : Str255;
osError : OSErr;

begin
reply := 0;

if (docRecordHdI”™”~.windowTouched) then
begin
GetWTitle(theWindowPtr, fileName);
BlockMoveData(@fileName[0], @dialogOptions.savedFileName, UInt8(fileName[0]) + 1);

navEventFunctionUPP := NavEventUPP(NewRoutineDescriptor(@NavEventFunction,
uppNavEventProcinfo, GetCurrentlSA));

16B-34 Files

osError := NavAskSaveChanges(dialogOptions, action, reply, navEventFunctionUPP, nil);
DisposeRoutineDescriptor(navEventFunctionUPP);

if (reply = kNavAskSaveChangesCancel) then
begin
DoCloseFile := OSErr(reply);
Exit(DoCloseFile);
end
else if (reply = kNavAskSaveChangesSave) then
begin
osError := DoSaveCommand;
if (osError <> noErr) then
begin
DoCloseFile := osError;
Exit(DoCloseFile);
end;
end;
end;

if (docRecordHdI™ " .fileRefNum <> 0) then

begin

osError := FSClose(docRecordHdI™ ~.fileRefNum);

if (osError <> noErr) then
begin
osError := FlushVol(nil, docRecordHdI™ ~.fileFSSpec.vRefNum);
docRecordHdI”™ ™ .fileRefNum := 0;
end;

end;

if (docRecordHdI”™ " .editStrucHdI <> nil) then
begin
TEDispose(docRecordHdI™ " .editStrucHdl);
end;

if (docRecordHdI”™ " .pictureHdl <> nil) then
begin
KillPicture(docRecordHdI”™ " .pictureHdl);
end;

DisposeHandle(Handle(docRecordHdl));

DoCloseFile := osError;
end;
{ of function DoCloseFile }

11 Q00000000000 HHIHA00GUHHMIAAOOOHHIN000HNK) DoWriteFile

function DoWriteFile(theWindowPtr : WindowPtr; newFile : boolean) : OSErr;

var
docRecordHdI : DocRecordHandle;
osError : OSErr;

fileRefNum : SInt32;

begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));
fileRefNum := docRecordHd|™ ~.fileRefNum;

if (docRecordHdI™ ™ .editStrucHdl <> nil) then
begin
osError := DoWriteTextData(theWindowPtr,fileRefNum);
end

else if (docRecordHdI”™ " .pictureHdl <> nil) then
begin
osError := DoWritePictData(theWindowPtr,fileRefNum);
end;

if (osError = noErr) then
begin
if newFile then
begin
osError := DoCopyResources(theWindowPtr);
end;
end;

DoWriteFile := osError;

end;
{ of function DoWriteFile }

Files 16B-35

11 0000A0000OOHAOCHOHOOMOHHOHNNNN0NNN0OO DoReadTextFile

function DoReadTextFile(theWindowPtr : WindowPtr) : OSErr;
var
docRecordHdI : DocRecordHandle;
fileRefNum : SInt16;
textEditHdI : TEHandle;
numberOfBytes : SInt32;
textBuffer : Handle;
osError : OSErr;

begin
docRecordHdl| := DocRecordHandle(GetWRefCon(theWindowPtr));
fileRefNum := docRecordHdI|”™ ~.fileRefNum;

textEditHdI := docRecordHdI™ ~.editStrucHdl;
textEditHdI™ ~.txSize := 10;
textEditHdI™ ~.lineHeight := 15;

osError := SetFPos(fileRefNum, fsFromStart, 0);
osError := GetEOF(fileRefNum, numberOfBytes);

if (numberOfBytes > 32767) then
begin
numberOfBytes := 32767,
end;

textBuffer := NewHandle(Size(numberOfBytes));
if (textBuffer = nil) then
begin
DoReadTextFile := MemError;
Exit(DoReadTextFile);
end;

osError := FSRead(fileRefNum, numberOfBytes, textBuffer™);
if ((osError = noErr) or (osError = eofErr)) then
begin
MoveHHi(textBuffer);
HLockHi(textBuffer);
TESetText(textBuffer™, numberOfBytes, docRecordHdI”™ " .editStrucHdl);
HUnlock(textBuffer);
DisposeHandle(textBuffer);
end
else begin
DoReadTextFile := osError;
Exit(DoReadTextFile);
end;

DoReadTextFile := noErr;
end;
{ of function DoReadTextFile }

11 O000A000000M0GOGMOMOHHO N0 DoReadPictFile

function DoReadPictFile(theWindowPtr : WindowPtr) : OSErr;
var
docRecordHdI : DocRecordHandle;
fileRefNum : SInt16;
numberOfBytes : SInt32;
osError : OSErr;

begin
docRecordHdl| := DocRecordHandle(GetWRefCon(theWindowPtr));
fileRefNum := docRecordHdI™ " .fileRefNum;

osError := GetEOF(fileRefNum, numberOfBytes);
osError := SetFPos(fileRefNum, fsFromStart, 512);
numberOfBytes := numberOfBytes - 512;

docRecordHdI”™ ~.pictureHd| := PicHandle(NewHandle(numberOfBytes));
if (docRecordHdI”™ " .pictureHd| = nil) then

begin

DoReadPictFile := MemError;

Exit(DoReadPictFile);

end;

osError := FSRead(fileRefNum, numberOfBytes, docRecordHdI”™ ~.pictureHdI™);
if ((osError = noErr) or (osError = eofErr)) then

begin

DoReadPictFile := noErr;

16B-36 Files

end
else begin
DoReadPictFile := osError;
end;
end;
{ of function DoReadPictFile }

11 O000A000OOOHOGOOGUMCONOCHNOGHINNO0NNNOO DoWriteTextData

function DoWriteTextData(theWindowPtr : WindowPtr; tempFileRefNum : SInt16) : OSErr;
var
docRecordHdI : DocRecordHandle;
textEditHdI : TEHandle;
editText : Handle;
numberOfBytes : SInt32;
volRefNum : SInt16;
osError : OSErr;

begin

docRecordHdI := DocRecordHandle(GetWRefCon(theWindowPtr));
textEditHdI| := docRecordHdI™ "~ .editStrucHdl;

editText := textEditHdI™ "~ .hText;

numberOfBytes := textEditHdI"™ ~.teLength;

osError := SetFPos(tempFileRefNum, fsFromStart, 0);

if (osError = noErr) then
begin
osError := FSWrite(tempFileRefNum, numberOfBytes, editText™);
end;

if (osError = noErr) then
begin
osError := SetEOF(tempFileRefNum, numberOfBytes);
end;

if (osError = noErr) then
begin
osError := GetVRefNum(tempFileRefNum, volRefNum);
end;

if (osError = noErr) then
begin
osError := FlushVol(nil, volRefNum);
end;

if (osError = noErr) then
begin
docRecordHdI”™ ~.windowTouched := false;
end;

DoWriteTextData := osError;
end;
{ of function DoWriteTextData }

11 O000A0000O00M00OGMCIMOCNNOGHMOONN0NNOO DoWritePictData

function DoWritePictData(theWindowPtr : WindowPtr; tempFileRefNum : SInt16) : OSErr;
var
docRecordHdI : DocRecordHandle;
pictureHdlI : PicHandle;
numberOfBytes, dummyData : SInt32;
volRefNum : SInt16;
osError : OSErr;

begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));
pictureHd| := docRecordHdI|”™ ~.pictureHd];

numberOfBytes := 512;
dummyData := 0;

osError := SetFPos(tempFileRefNum, fsFromStart, 0);

if (osError = noErr) then
begin
osError := FSWrite(tempFileRefNum, numberOfBytes, @dummyData);
end;

numberOfBytes := GetHandleSize(Handle(docRecordHdI™ "~ .pictureHdl));

Files 16B-37

if (osError = noErr) then
begin
HLock(Handle(docRecordHdI”™ ™~ .pictureHdl));
osError := FSWrite(tempFileRefNum, numberOfBytes, docRecordHdI”™ ~.pictureHd|”);
HUnlock(Handle(docRecordHdI|™ ~.pictureHdl));
end;

if (osError = noErr) then
begin
osError := SetEOF(tempFileRefNum, 512 + numberOfBytes);
end;

if (osError = noErr) then
begin
osError := GetVRefNum(tempFileRefNum, volRefNum);
end;

if (osError = noErr) then
begin
osError := FlushVol(nil, volRefNum);
end;

if (osError = noErr) then
begin
docRecordHdI”™ ~.windowTouched := false;
end;

DoWritePictData := osError;
end;
{ of function DoWritePictData }

11 0000000000000 N0 DoCopyAppNameResource

function DoCopyResources(theWindowPtr : WindowPtr) : OSErr;
var
docRecordHdI : DocRecordHandle;
fileType : OSType;
osError : OSErr;
fileRefNum : SInt16;
ignoredErr : OSErr;

begin
docRecordHdI := DocRecordHandle(GetWRefCon(theWindowPtr));

if (docRecordHdI™ " .editStrucHdI <> nil) then
begin
fileType := 'TEXT;
end

else if (docRecordHdI”™ " .pictureHdl <> nil) then
begin
fileType := 'PICT";
end;

FSpCreateResFile(docRecordHdI™ . .fileFSSpec, 'kkkG', fileType, smSystemScript);

osError := ResError;

if (osError = noErr) then
begin
fileRefNum := FSpOpenResFile(docRecordHdI™ " .fileFSSpec, fsRdWrPerm);
end;

if (fileRefNum > 0) then
begin
osError := DoCopyAResource('STR ', -16396, gAppResFileRefNum, fileRefNum);

if (fileType = 'PICT') then
begin
ignoredErr := DoCopyAResource('pnot’, 128, gAppResFileRefNum, fileRefNum);
ignoredErr := DoCopyAResource('PICT', 128, gAppResFileRefNum, fileRefNum);
end;

end

else begin
osError := ResError;
end;

if (osError = noErr) then
begin
CloseResFile(fileRefNum);
end;

16B-38 Files

DoCopyResources := ResError;
end;
{ of function DoCopyResources }

11 0000000000000 DoCopyAResource

function DoCopyAResource(resourceType : ResType;
resourcelD, sourceFileRefNum, destFileRefNum : SInt16) : OSErr;
var
sourceResourceHdl| : Handle;
sourceResourceName : Str255;
ignoredType : ResType;
ignoredID : SInt16;

begin
UseResFile(sourceFileRefNum);

sourceResourceHdl := GetResource(resourceType, resourcelD);

if (sourceResourceHd|l <> nil) then
begin
GetResInfo(sourceResourceHdl, ignoredID, ignoredType, sourceResourceName);
DetachResource(sourceResourceHdl);
UseResFile(destFileRefNum);
AddResource(sourceResourceHdl, resourceType, resourcelD, sourceResourceName);
if (ResError = noErr) then
begin
UpdateResFile(destFileRefNum);
end;
end;

ReleaseResource(sourceResourceHdl);
DoCopyAResource := ResError;

end;
{ of function DoCopyAResource }

11 0000000 KGO0 NNO0 N0 NavEventFunction

procedure NavEventFunction(callBackSelector : NavEventCallbackMessage;
callBackParms : NavCBRecPtr; callBackUD : NavCallBackUserData);

var
theWindowPtr : WindowPtr;

begin

if (callBackParms”.eventData.eventDataParms.event <> nil) then
begin
theWindowPtr := WindowPtr(callBackParms”™.eventData.eventDataParms.event”™.message);
end;

if (callBackSelector = kNavCBEvent) then

begin
if (callBackParms”.eventData.eventDataParms.event”™.what = updateEvt) then
begin
if (WindowPeek(theWindowPtr)”.windowKind <> kDialogWindowKind) then
begin
DoUpdate(callBackParms”™.eventData.eventDataParms.event™);
end;
end;
end;
end;

{ of procedure NavEventFunction }

end.
{ of unit NewOpenCloseSave }

{ 00000000000AONHOOOGHOOOGHAOHOGHHIOHHHOOIHHONHOOONNOO0N0
1 00000000XO00MAONHOGHHOOOGHIOCIMHOO NN HHOOO NN HNIOO NN

ChooseAFolderDialog.p

i s

unit ChooseAFolderDialog;

interface

Files

16B-39

uses

Files2, Navigation;
function DoChooseAFolderDialog(var theFileSpec : FSSpec) : OSErr;

implementation
uses

NewOpenCloseSave;

11 0000000 HOOGHOGHCIHIOINNOOGHNOO0NNNOGO DoChooseAFolderDialog

function DoChooseAFolderDialog(var theFileSpec : FSSpec) : OSErr;
var
dialogOptions : NavDialogOptions;
navEventFunctionUPP : NavEventUPP;
osError : OSErr;
theNavReply : NavReplyRecord;
fileSpec : FSSpec;
resultDesc : AEDesc;
defaultLocation : AEDescPtr;
ignoredErr : OSErr;

begin
osError := NavGetDefaultDialogOptions(dialogOptions);
GetIndString(dialogOptions.message, rMiscStrings, sChooseAFolder);

navEventFunctionUPP := NavEventUPP(NewRoutineDescriptor(@NavEventFunction,
uppNavEventProcinfo, GetCurrentISA));

defaultLocation”.descriptorType := FourCharCode(UInt32(0));

defaultLocation”.dataHandle := nil;

osError := NavChooseFolder(defaultLocation, theNavReply, dialogOptions, navEventFunctionUPP,
nil, nil);

DisposeRoutineDescriptor(navEventFunctionUPP);

if (theNavReply.validRecord and (osError = noErr)) then
begin
osError := AECoerceDesc(theNavReply.selection, typeFSS, resultDesc);
if (osError = noErr) then
begin
BlockMoveData(resultDesc.dataHandle”™, @fileSpec, sizeof(FSSpec));

ignoredErr := FSMakeFSSpec(fileSpec.vRefNum, fileSpec.parlD ,fileSpec.name,
theFileSpec);
end;

ignoredErr := AEDisposeDesc(resultDesc);
ignoredErr := NavDisposeReply(theNavReply);
end;

DoChooseAFolderDialog := osError;

end;
{ of function DoChooseAFolderDialog }

end.
{ of unit ChooseAFolderDialog }

£ 000000000O0MAOCHHOGHOOOGHHHHO NN HHONHONNON

Demonstration Program Comments

Note: Navigation Services requires Mac OS 7.5 or later and Appearance Manager 1.0.1 or later. The Navigation Services
shared library must be installed in the Extensions folder. On 680x0 systems, OpenTransportLib68K 1.3 or later must be
installed in the Extensions folder.

When the program is run, the user should:

16B-40 Files

. Exercise the File menu by opening the supplied TEXT and PICT files, saving those files, saving those files under new
names, closing files, opening the new files, attempting to open files which are already open, attempting to save
files to new files with existing names, making open windows "touched" by choosing the first item in the
Demonstration menu, reverting to the saved versions of files associated with "touched" windows, choosing Quit
when "touched" and non-" touched" windows are open, and so on.

. Choose, via the Show pop-up menu button, the file types required to be displayed in the Open dialog.

. Choose the Choose a Folder item from the Demonstration menu to display the Choose a Folder dialog, and choose a
folder using the Choose button at the bottom of the dialog. (The name of the chosen folder will be drawn in the
bottom-left corner of the front window.)

The program may be run from within CodeWarrior to demonstrate responses to the File menu commands and the Choose a
Folder dialog.

The built application, together with the supplied TEXT and PICT files, may be used to demonstrate the additional aspect of
integrating the receipt of required Apple events with the overall file handling mechanism. To prove the correct handling of
the required Apple events, the user should:

. Open the application by double-clicking the application icon, noting that a new document window is opened after
the application is launched and the Open Application event is received.

. Double click on a document icon, or select one or more document icons and either drag those icons to the
application icon or choose Open from the Finder's File menu, noting that the application is launched and the
selected files are opened when the Open Documents event is received.

. Close all windows and double-click the application icon, noting that the application responds to the Re-open
Application event by opening a new window.

. With several documents open, some with "touched" windows, choose Restart or Shut Down from the Finder's

Special menu (thus invoking a Quit Application event), noting that, for "touched" windows, the Save Changes alert
box is presented asking the user whether the file should be saved before the shutdown process proceeds.

Files2Program.p

main program block

The call to NavServicesCanRun (68K & PowerPC) and check that the Navigation Services library is installed by comparing
the address of a routine in the library with the constant kUnresolvedCFragSymbolAddress (PowerPC only) determines
whether the Navigation Services shared library is installed and running on the user's system. If it is, NavLoad is called to
load the library, otherwise, an error alert is presented and the program terminates. (The call to NavLoad is optional. If the
call is not made, the Navigation Services shared library will not load until your application calls a Navigation Services
function, and will unload after the call completes. If the NavLoad call is made, you must call the NavUnload function before
quitting so as to release the reserved memory.)

Routine descriptors for the required Apple events (less the Print Documents event) are created and a call is made to the

application-defined routine which installs the handlers. Also, the file reference number of the application's resource fork
(which is opened automatically at application launch) is assigned to the global variable gAppResFileRefNum.

Files2.p

Files2.p is simply the basic "engine" which supports the demonstration. There is little in this file which has not featured in
previous demonstration programs.

type definitions

Each window created by the program will have an associated document structure, accessed via the window structure's
refCon field. The DocRecord record will be used for document records.

The editStrucHdI field will be assigned a handle to a TextEdit edit structure (‘TEXT' files). The pictureHdI field will be
assigned a handle to a Picture structure ('PICT' files). The fileRefNum and fileFSSpec fields will be assigned the file
reference number and the file system specification structure of the file associated with the window. The windowTouched
field will be set to true when a window has been made "touched", that is, when the associated document in memory has
been modified by the user.

constants

After the usual constants relating to menus, windows, and alert boxes are established, additional constants are established
a 'STR#' resource containing error strings, four specific error conditions, a 'STR#' resource containing the application's
name and the message string for the Choose a Folder dialog box, and the 'open' resource containing the file types list.
kMaxWindows is used to limit the number of windows the user can open.

Global Variables

Files 16B-41

gAppResFileRefNum will be assigned the file reference number of the application's resource fork. gWindowPtr is assigned
the pointer to the graphics port of each new window as it is opened. gCurrentNumberOfWindows keeps a count of the
number of windows opened. gDestRect and gViewRect are used to set the destination and view rectangles for the edit
structures associated with 'TEXT" files.

DolinstallAEHandlers

DolnstallAEHandlers installs handlers for the Open Application, Re-Open Application, Open Documents, and Quit Application
events. (Note that, so as to avoid the necessity to include application-defined printing functions in this program, a handler
for the Print Documents event is not included in this demonstration.)

DoMouseDown

Note that, in the inGoAway case, the constant kNavSaveChangesClosingDocument is passed in the call to
DoCloseCommand. This affects the text in the Save Changes alert box.

DoUpdate

DoUpdate performs such window updating as is necessary for the satisfactory execution of the demonstration aspects of
the program.

DoMenuChoice

If the Choose a Folder item in the Demonstration menu is chosen, the application-defined routine which presents the
Choose a Folder dialog box is called. This function returns userCanceledErr if the user clicked the Cancel push button in
the dialog box. If an error other than userCanceledErr is returned, an error alert box is presented and the else block is
bypassed.

The DoChooseAFolderDialog function fills in the file system specification structure whose address is passed in its
parameter. If a window is open, a rectangle in the bottom corner of the front window is erased and, if the user did not click
the Cancel push button, the chosen folder's name, volume reference number, and parent directory ID are extracted from
the file system specification structure and drawn in the bottom of the window.

DoFileMenu

At the iClose case, kNavSaveChangesClosingDocument is passed in the call to DoCloseCommand. This affects the wording
in the Save Changes alert box. If DoCloseCommand returns an error, and if that error is not kNavAskSaveChangesCancel
(the user clicked the Cancel push button in the Save Changes alert box), an error alert box is presented.

At the iQuit case, kNavSaveChangesQuittingApplication is passed in the call to DoQuitCommand. This affects the wording
in the Save Changes alert box. If DoQuitCommand returns an error, and if that error is not kNavAskSaveChangesCancel
(the user clicked the Cancel push button in the Save Changes alert box), an error alert box is presented. If
kNavAskSaveChangesCancel was not returned, NavUnload is called to release the memory reserved for the Navigation
Services shared library, and gDone is set to true to cause program termination.

DoErrorAlert

DoErrorAlert handles errors, invoking an appropriate alert box (caution or stop) advising of the nature of the problem by
error code number or straight text. Note that he program will only be terminated if the Navigation Services library is not
installed and running, or in the case of the memFullErr error (no more space in the application heap).

DoTouchWindow

DoTouchWindow is called when the user chooses the Touch Window item in the Demonstration menu. Changing the
content of the in-memory version of a file is only simulated in this program. The text "WINDOW TOUCHED" is drawn in
window and the windowTouched field of the document structure is set to true.

DoOpenAppEvent, DoOpenDocsEvent, and
DoQuitAppEvent

The handlers for the required Apple events are essentially identical to those in the demonstration program at Chapter 10 -
Required Apple Events.

Most programs should simply open a new untitled window on receipt of an Open Application event. Accordingly,
DoOpenAppEvent simply calls the same function (DoNewCommand) as is called when the user chooses New from the File
menu.

On receipt of a Re-Open Application event, if no windows are currently open, DoNewCommand is called to open a window.
The demonstration program supports both 'TEXT' and 'PICT" files. On receipt of an Open Application event, it is thus

necessary to determine the type of each file specified in the event. Accordingly, within DoOpenDocsEvent, the call to
FSpGetFInfo returns the Finder information from the volume catalog entry for the file relating to the specified FSSpec

16B-42 Files

structure. The fdType field of the FInfo structure "filled-in" by FSpGetFInfo contains the file type. This, together with the
FSSpec structure, is then passed in the call to DoOpenFile. (DoOpenFile is also called when the user chooses Open from
the File menu.)

Within the function DoQuitAppEvent, the while loop entered at repeats for each open window. Within the loop,
DoCloseCommand is called, passing kNavSaveChangesQuittingApplication (which affects the wording in the Save Changes
alert box). DoCloseCommand, in turn, calls DoCloseFile. DoCloseFile presents the Save Changes alert box. If an error is
returned by this sequence, and if the user did not click the Cancel push button in the alert box, the error handler is called.
If the user clicked the Cancel button, it is necessary to interrupt the sequence of closing all open windows and re-enter the
main event loop.

When the while loop eventually exits, NavUnload is called to release the memory reserved for the Navigation Services
shared library, and gDone is set to true, causing the program to terminate.

NewOpenCloseSave.p

DoNewCommand

DoNewCommand is the first of the file-handling functions. It is called when the user chooses New from the File menu and
when an Open Application or Re-Open Application event is received.

Since this demonstration does not support the actual entry of text or the drawing of graphics, the document type passed to
DoNewDocWindow is immaterial. The document type 'TEXT' is passed in this instance simply to keep DoNewDocWindow

happy.

DoOpenCommand

DoOpenCommand is called when the user chooses Open from the File menu. This function uses Navigation Services
functions.

NavGetDefaultDialogOptions initialises the specified NavDialogOptions structure with the defaults.

GetIndString assigns the application's name to the clientName field of the NavDialogOptions structure. This will then
appear in the dialog box's title bar. The next line reads in the 'open' resource containing the file type list and assigns the
handle to a variable of type NavTypeListHandle.

NewNavEventProc creates a routine descriptor for an application-defined event-handling function, which is included so as to
make the Open dialog box movable and resizable.

The call to NavGetFile displays the Open dialog box. Setting all fields of the first parameter to 0/nil means that the dialog
box will open at the last location visited during the last call to NavGetFile. The second parameter will receive the
information required by the application. Since the default options are being used, multiple file selection is allowed. The
universal procedure pointer to the event-handling function is passed in the fourth parameter. No preview function is used.
No filter function is used. The handle to the file type list is passed in the second last parameter.

When the Open dialog is dismissed by the user and NavGetFile returns, the first action is to dispose of the routine
descriptor.

The main if block executes only if the user clicked the Open push button (or pressed the Return or Enter keys) and no error
was returned. The first action is to call AECountltems to count the number of descriptor structures in the descriptor list
returned in the selection field of the NavReplyRecord structure, and which is created from FSSpec references to items
selected in the Open dialog box.

The following for loop repeats for each of the descriptor structures. AEGetNthDesc gets a descriptor structure of type file
system specification into the AEDesc structure resultDesc. BlockMoveData copies the data from the dataHandle field of
that structure to a local variable of type FSSpec. This file system specification is then passed in the first parameter of a call
to FspGetFinfo, allowing the file type to be ascertained. The file system specification and file type are then passed in a call
to the application-defined routine DoOpenFile, which creates a new window and reads in the file. Before the next iteration
of the loop (if any), AEDisposeDesc is called to deallocate the memory occupied by the descriptor structure.

With all of the selected files read in, NavDisposeReply must be called to release the memory allotted for the NavReplyReply
structure. The call to ReleaseResource frees the memory occupied by the file type list.

If the user clicks the Cancel push button in a Navigation Services dialog box, the relevant Navigation Services function
returns userCanceledErr. In this event, the variable osError is set to noErr before DoOpenCommand returns.

DoCloseCommand

DoCloseCommand is called when the user chooses Close from the File menu or clicks in the window's go-away box. Itis
also called successively for each open window when a Quit Application event is received.

The first two lines get the WindowPtr for the front window and establish whether the front window is a document window or
a modeless dialog box.

If the front window is a document window, the handle to the window's document structure is retrieved from the window
structure's refCon field. The WindowPtr and this handle are then passed to the application-defined routine DoCloseFile,

Files 16B-43

together with the Navigation Services constant received in DoCloseCommand's action parameter. If the window is
"touched", DoCloseFile presents the Save Changes alert box asking the user whether the document should be saved before
it is closed. If the user clicks the Cancel push button of that alert box, DoCloseFile returns kNavAskSaveChangesCancel, in
which case DoCloseCommand returns kNavAskSaveChangesCancel. If the user clicks either the OK or Don't Save push
buttons in the alert box, and if DoCloseFile returns no error, the window is closed as the final act in closing the file, and the
global variable which keeps track of the number of open windows is decremented.

No modeless dialog boxes are used by this program. However, if the front window was a modeless dialog box, the
appropriate action would be taken at the second case.

DoSaveCommand

DoSaveCommand is called when the user chooses Save from the File menu. It may also be called by DoCloseFile if the user
is attempting to close a "dirty" window.

The first two lines get the WindowPtr for the front window and retrieve the handle to that window's document structure. If

a file currently exists for the document in this window, the application-defined routine DoWriteFile is called, otherwise the
application-defined routine DoSaveAsCommand is called.

DoSaveAsCommand

DoSaveAsCommand is called when the user chooses Save As... from the File menu. Itis also called by DoSaveCommand if
the user chooses Save when the front window contains a document for which no file currently exists. This function uses
Navigation Services functions.

NavGetDefaultDialogOptions initialises the specified NavDialogOptions structure with the defaults.

The next two lines get the handle to the window's document structure, which will be required later. GetWTitle gets the
window's title into the savedFileName field of a NavDialogOptions structure. This will be the default name for the saved file
and will appear in the Name edit text field in the Save dialog box. The call to GetIndString copies the application's name to
the clientName field of the NavDialogOptions structure. This will then appear in the dialog box's title bar.

NewNavEventProc creates a routine descriptor for an application-defined event-handling function, which is included so as to
make the Save dialog box movable and resizable. The next four lines retrieve the file type from the document structure for
the front window.

The call to NavPutFile displays the Open dialog box. Setting the fields of the first parameter to 0/nil means that the dialog
box will open at the last location visited during the last call to NavPutFile. The second parameter will receive the
information required by the application. The file type and creator are passed in the fifth and sixth parameters. When the
user dismisses the dialog box, NavPutFile returns, at which point the routine descriptor for the event-handling function is
disposed of.

The main if block executes only if the user clicked the Save push button (or pressed the Return or Enter keys) and no error
was returned. A descriptor list is returned in the selection field of the NavReplyRecord structure. AEGetNthDesc is called
to get the descriptor structure (of type file system specification) from that descriptor list into the AEDesc structure
resultDesc. If this call is successful, BlockMoveData is called to copy the data from the dataHandle field of that structure to
a local variable of type FSSpec.

If the value in the replacing field of the NavReplyRecord structure indicates that the file is not being replaced, FSpCreate is
called to create a new file of the specified type and with the application's signature as the specified creator. If this call is
not successful, the descriptor structure is disposed of, the NavReplyRecord structure is disposed of, and the function
returns.

The file system specification structure returned by the FSpCreate call is assigned to the fileFSSpec field of the window's
document structure. If a file currently exists for the document, that file is closed by the call to FSClose. The data fork of
the newly created file is then opened by a call to FSpOpenDF, the fileRefNum field of the document structure is assigned
the file reference number returned by FSpOpenDF, the window's title is set to the new file's name, and the application-
defined routine DoWriteFile is called to write the document to the new file.

AEDisposeDesc is called to deallocate the memory occupied by the descriptor structure. NavCompleteSave is called to
complete the save operation. With the save completed, NavDisposeReply must be called to release the memory allotted
for the NavReplyReply structure.

If the user clicks the Cancel push button in a Navigation Services dialog box, the relevant Navigation Services function
returns userCanceledErr. In this event, the variable osError is set to noErr before DoOpenCommand returns.

DoRevertCommand

DoRevertCommand is called when the user chooses Revert to Saved from the File menu. This function uses a Navigation
Services function.

The first line creates a routine descriptor for an application-defined event handling function, which will be used so as to
cause the Discard Changes alert box to be movable.

The next two lines get the WindowPtr for the front window and the handle to that window's document structure. The call to

GetWTitle gets the window's title (that is, the filename). BlockMoveData copies that filename to the savedFileName field of
a NavDialogOptions structure. This will be used in the Discard Changes alert box's text.

16B-44 Files

The call to NavAskDiscardChanges displays the Discard Changes alert box. The information required by the application is
received in the reply parameter. When the user dismisses the alert box, the routine descriptor is disposed of.

If the user clicked the OK push button, the window's content area is erased and the appropriate application-defined function
(DoReadTextFile or DoReadPictFile) is called depending on whether the file type is 'TEXT' or 'PICT'. In addition, the
window's "touched" field in the document structure is set to false and InvalRect is called to force a redraw of the window's
content region.

DoQuitCommand

DoQuitCommand is called when the user chooses Quit from the File menu and when a Quit Application event is received.
The while loop continues to execute until no more windows remain open. On each pass through the loop,

DoCloseCommand is called to manage the process of closing (and, where necessary, saving) all documents and disposing
of the associated windows.

DoNewDocWindow

DoNewDocWindow is called by DoNewCommand, DoOpenFile and the Open Application event handler. It creates a new
window and associated document structure.

If the current number of open windows is the maximum allowable by this program, the function immediately exits, passing
an error code which will cause an advisory error alert box to be displayed.

The call to GetNewCWindow opens a new window. SetPort sets that window's graphics port as the current port for drawing.

The call to NewHandle allocates memory for the window's document structure. If this call is not successful, the window is
disposed of and the function returns with the error code returned by MemeError.

The call to SetWRefCon assigns the handle to the document structure to the window structure's refCon field. The next four
lines initialise fields of the document structure.

If the document type is 'TEXT', the if block executes, creating a TextEdit edit structure and assigning a handle to that
structure to the editRec field of the document structure. (Note that the processes here are not explained in detail because
TextEdit and edit structures are not central to the demonstration. For the purposes of the demonstration, it is sufficient to
understand that the text data retrieved from, and saved to, disk is stored in a TextEdit edit structure. TextEdit is addressed
in detail at Chapter 19 — Text and TextEdit.)

If the boolean value passed to DoNewDocWindow was set to true, the call to ShowWindow makes the window visible,

otherwise the window is left invisible. The penultimate line increments the global variable which keeps track of the number
of open windows.

DoOpenfFile

DoOpenFile is called by DoOpenCommand and the Open Documents event handler, which pass to it the file system
specification structure and document type. DoOpenFile opens a new document window and calls the application-defined
routine which read in the file.

The call to DoNewDocWindow opens a new window and creates an associated document structure. SetWTitle sets the
window's title. FSpOpenDF opens the file's data fork. If this call is not successful, the window is disposed of and the
function returns. The next lines assign the file reference number and file system specification structure to the relevant
fields of the document structure.

The next block calls the appropriate function for reading in the file, depending on whether the file type is of type "TEXT' or
'PICT'. If the file is read in successfully, ShowWindow makes the window visible.

DoCloseFile

DoCloseFile is called by DoCloseCommand. DoCloseFile does not allow a "touched" window to be closed without offering
the user the option of first saving the associated document to file. This function uses a Navigation Services function.

The first if block executes only if the window has been "touched". First, GetWTitle gets the window's title, which
BlockMoveData copies to the savedFileName field of a NavDialogOptions structure. This will be used in the alert box's text.
A routine descriptor is created for an event-handling routine, which is used so as to cause the Save Changes alert box to be
movable.

NavAskSaveChanges is then called to display the Save Changes alert box. The information required by the application is
received in the reply parameter. The routine descriptor is disposed of when NavAskSaveChanges returns.

If the Cancel push button was clicked, NavAskSaveChanges returns kNavAskSaveChangesCancel, in which case DoCloseFile
returns, returning kNavAskSaveChangesCancel to the calling function. If OK push button was clicked, the application-
defined routine DoSaveCommand is called to save the file.

If the document has a file, FSClose closes the file, and FlushVol stores to disk all unwritten data currently in the volume
buffer.

Files 16B-45

If the document is a text document, the text edit record is disposed of. If it is a picture document, the Picture structure is
disposed of. Finally, the document record is disposed of.

DoWriteFile

DoWriteFile is called by DoSaveCommand and DoSaveAsCommand. In conjunction with two supporting application-defined
routines, it writes the document to disk. Note that, unlike the routine of the same name in the demonstration program
Filesl, the "safe-save" methodology is not used.

The first two lines retrieve a handle to the window's document structure and the file reference number from the document
structure.

At the next four lines, the appropriate application-defined routine is called to write the document's data to its file.
If the file is a newly created file, the application-defined routine DoCopyResources is called to copy the missing application

name string resource from the resource fork of the application file to the resource fork of the new document file. If the file
type is 'PICT', a 'pnot' resource and associated 'PICT' resource is also copied to the resource fork.

DoReadTextFile

DoReadTextFile is called by DoOpenFile and DoRevertCommand to read in data from an open file of type 'TEXT".

The first lines retrieve the file reference number from the document structure.

The next lines retrieve the handle to the TextEdit edit structure from the document structure and modify the text size and
line height fields of the edit structure.

SetFPos sets the file mark to the beginning of the file. GetEOF gets the number of bytes in the file. If the number of bytes
exceeds that which can be stored in a TextEdit edit structure (32,767), the number of bytes which will be read from the file
is restricted to 32,767.

NewHandle allocates a buffer equal to the size of the file (or 32,767 bytes if the preceding if statement executed). FSRead
reads the data from the file into the buffer. MoveHHi and HLockHi move the buffer high in the heap and lock it preparatory
to the call to TESetText. TESetText copies the text in the buffer into the existing hText handle of the TextEdit edit
structure. The buffer is then unlocked and disposed of.

(Note: TextEdit is addressed in detail at Chapter 19 - Text and TextEdit.)

DoReadPictFile

DoReadPictFile is called by DoOpenFile and DoRevertCommand to read in data from an open file of type 'PICT".

The first two lines retrieve the file reference number from the document structure. GetEOF gets the number of bytes in the
file. SetFPos sets the file mark 512 bytes (the size of a 'PICT' file's header) past the beginning of the file, and the next line
subtracts the header size from the total size of the file. NewHandle allocates memory for the Picture structure and FSRead
reads in the file's data.

DoWriteTextData

DoWriteTextData is called by DoWriteFile to write text data to the specified file.

The first two lines retrieve the handle to the TextEdit edit structure from the document structure. The number of bytes of
text is then retrieved from the teLength field of the text edit structure.

SetFPos sets the file mark to the beginning of the file. FSWrite writes the specified number of bytes to the file. SetEOF
adjusts the file's size. FlushVol stores to disk all unwritten data currently in the volume buffer.

The penultimate line sets the windowTouchedfield of the document record to indicate that the document data on disk
equates to the document data in memory.

DoWritePictData

DoWritePictData is called by DoWriteFile to write picture data to the specified file.

The first two lines retrieve the handle to the relevant Picture structure from the document structure. SetFPos sets the file
mark to the start of the file. FSWrite writes zeros in the first 512 bytes (the size of a 'PICT' file's header). GetHandleSize
gets the size of the Picture structure and FSWrite writes the bytes in the Picture structure to the file. SetEOF adjusts the
file's size and FlushVol stores to disk all unwritten data currently in the volume buffer.

The penultimate line sets the windowTouchedfield of the document record to indicate that the document data on disk
equates to the document data in memory.

DoCopyResources

16B-46 Files

DoCopyResources is called by DoWriteFile when a newly created file has been written to for the first time. It copies the
missing application name string resource from the resource fork of the application file to the resource fork of the new file. If
the file type is PICT, a 'pnot' resource and associated 'PICT' resource is also copied.

The first line retrieves a handle to the file's document structure. The next four lines establish the file type involved.
FSpCreateResFile creates the resource fork in the new file and FSpOpenResFile opens the resource fork. The application-
defined routine for copying specified resources between specified files (DoCopyAResource) is then called to copy the
missing application name string resource from the resource fork of the application file to the resource fork of the new file.
If the file type is 'PICT', a 'pnot' resource and associated 'PICT' resource is also copied so as to provide a preview for 'PICT'
files in the Open dialog box. (Of course, in a real application, the 'pnot' and 'PICT' resource would be created by the
application for each separate 'PICT' file.)

CloseResFile closes the resource fork of the new file.

DoCopyAResource

DoCopyAResource copies specified resources between specified files. In this program, it is called only by
DoCopyResources.

UseResFile sets the application's resource fork as the current resource file. GetResource reads the specified resource into
memory.

GetReslInfo, given a handle, gets the resource type, ID and name. (Note that this line is included only because of the
generic nature of DoCopyResource. The calling function has passed DoCopyResource the type and ID in this instance.)

DetachResource removes the resource's handle from the resource map without removing the resource from memory, and
converts the resource handle into a generic handle. UseResFile makes the new file's resource fork the current resource file.
AddResource makes the now arbitrary data in memory into a resource, assigns a resource ID, type and name to that
resource, and inserts an entry in the resource map for the current resource file. UpdateResFile then writes the resource
map and data to disk.

NavEventFunction

NavEventFunction is the event-handling function used by the Navigation Services dialog and alert boxes.

The formal parameter callBackSelector is a constant indicating which type of call Navigation Services is making to
navEventFunction. One such constant is kNavCBEvent, which indicates that an event has occurred. callBackParms is a
pointer to a structure of type NavCBRec. The event's event structure resides in the eventDataParms field, which itself
resides in the eventData field of the NavCBRec structure.

At the first line, the window's WindowPtr is retrieved from the event structure's message field. At the kNavCBEvent case,
the event type is extracted from the event structure's what field. If it is an update event, and if it is not for a Navigation
Services dialog box (the application does not open any other dialog boxes), the application's window updating function
DoUpdate is called.

ChooseAFolderDialog.c

DoChooseAFolderDialog

DoChooseAFolderDialog is called when the user chooses the Choose a Folder Dialog item in the demonstration menu. This
function uses Navigation Services functions.

NavGetDefaultDialogOptions initialises the specified NavDialogOptions structure with the defaults. GetIndString copies a
string to the message field of a NavDialogOptions structure. This will appear immediately below the browser list in the
dialog box.

The next line creates a routine descriptor for the event-handling function.

NavChooseFolder displays the Choose a Folder dialog box. When the user dismisses the dialog box, NavChooseFolder
returns, at which time the routine descriptor is disposed of.

The if block executes if the user clicked the Choose push button. AECoerceDesc coerces the descriptor structure in the
descriptor list returned in the selection field of the NavReplyRecord structure to a descriptor of type file system
specification, the resulting descriptor being assigned to the AEDesc structure resultDesc. If this call is successful,
BlockMoveData is called to copy the data from the dataHandle field of that structure to a local variable of type FSSpec.

When Navigation Services passes your application an AEDesc structure of type typeFSS describing a directory, the name
field is empty and the parlID field contains the directory ID of that directory, not the ID of the parent directory. In this
demonstration, the volume reference number and directory ID are passed in a call to FSMakeFSSpec, which fills in the fields
of the FSSpec record pointed to by the fourth parameter. In the routine DoMenuChoice, the contents of the fields of this
FSSpec structure (the directory name, its parent directory ID, and the volume reference number) are drawn in the bottom
of the front window.

Files 16B-47

