
Version 2.1

15
PRINTING

Includes Demonstration Program Printing

The Printing Manager
The Printing Manager is a collection of system software functions that your application
can use to print to any type of connected printer using the same QuickDraw functions
that your application uses for screen display. When printing, your application calls the
same Printing Manager functions regardless of the type of printer selected by the user.

You can use the Printing Manager to:

• Print documents.

• Display and alter printing dialog boxes.

• Handle printing errors.

To use the Printing Manager, you must first initialise QuickDraw, the Font Manager, the
Window Manager, the Menu Manager, TextEdit, and the Dialog Manager.

Printer Drivers
The Printing Manager uses a printer driver to do the actual printing. A printer driver
does any necessary translation of QuickDraw drawing functions and, when requested by
your application, sends the translated instructions and data to the printer.

Printer drivers are stored in printer resource files, which are located in the Extensions
folder inside the System Folder. Each type of printer has its own printer driver. The
current printer1 is the printer driver that actually implements the functions defined by
the Printing Manager.

Types and Characteristics of Printer Drivers

In general, there are two types of types of printer driver:

• QuickDraw printer drivers.

• PostScript printer drivers.

1 The current printer is the printer that the user last selected from the Chooser.

Printing 15-1

Version 2.1

QuickDraw Printer Drivers

QuickDraw printer drivers render images using QuickDraw and then send the rendered
images to the printer as bitmaps or pixel maps. Since they rely on the rendering
capabilities of the Macintosh computer, QuickDraw printers are not required to have any
intelligent rendering capabilities. Instead, they simply accept instructions from the
printer driver to place dots on the page in specified places.

A QuickDraw printer captures the image of an entire page either in memory or in a
temporary disk file known as a spool file, translates the pixels into dot placement
instructions, and sends these instructions to the printer.

Given that over 7 million pixels are required to render an 8-by-10-inch image at 300 dots
per inch, QuickDraw printers are relatively slow; accordingly, many QuickDraw printers
use some form of data compression to improve their performance. The large memory
requirements involved in printing to a colour printer using 8 bits per pixel may require
the driver to process the image in horizontal strips, which further impairs printing speed.

PostScript Printers

Unlike QuickDraw printers, PostScript printers have their own rendering capabilities.
Instead of rendering the entire page on the Macintosh computer and sending all the
pixels to the printer, PostScript printer drivers convert QuickDraw operations into
equivalent PostScript operations and send the resulting drawing commands directly to
the printer. The printer then renders the images by interpreting these commands. In
this way, image processing is offloaded from the computer.

Whereas QuickDraw printer drivers must capture an entire page before sending any of it
to the printer, PostScript printer drivers are able to send commands as soon as they are
generated. Although this results in faster printing, it does not allow the driver to
examine entire pages for their use of colour, fonts, or other resources that the printer
needs to have specially processed. Accordingly, some PostScript printer drivers may
capture page images in a spool file so that the driver can analyse the pages before
sending them to the printer.

Background Printing, Deferred Printing, and Spool Files

Some printer drivers allow users to specify background printing, which allows a user
to work with an application while documents are printing in the background. These
printer drivers send printing data to a spool file in the PrintMonitor Documents folder in
the System Folder.

Some QuickDraw printer drivers provide two methods of printing documents: deferred
printing and draft-quality. Deferred printing was designed to allow ImageWriter
printers to spool a page image to disk when printing under the low memory conditions of
the original 128 KB Macintosh. With deferred printing, a printer driver records each
page of the document's printed image in a structure similar to a QuickDraw picture,
which the printer driver writes to a spool file. PrPicFile is then used to instruct these
drivers to turn the QuickDraw picture into bit images and send them to the printer.

Do not confuse the different uses of spool files. With background printing, print files are
spooled to disk so that the user can work with an application while documents are
printing. You do not need to use PrPicFile to send these spool files to the printer — in fact,
there is no reliable way to determine whether a printer driver is using a spool file for
background printing. A spool file created by a printer driver using deferred printing is
another matter. (As will be seen, you can readily determine whether a printer driver is
using deferred printing.)

15-2 Printing

Version 2.1

Printer Drivers and Picture Comments

For most applications, sending QuickDraw's picture-drawing functions to the printer
driver is sufficient. However, some applications may rely on printer drivers to provide
several features (for example, rotated text or dashed lines) which are not available, or
which are difficult to achieve, using QuickDraw. If your application requires these
features, you may want to create two versions of your drawing code: one that uses
picture comments to take advantage of these features on capable printers, and another
that provides QuickDraw approximations of those features.

Picture comments are data or commands, created with the QuickDraw function
PicComment, used for special processing by output devices such as printer drivers. They
may be included in the code an application sends to a printer driver or they may be
stored in the definition of a picture.

Printer Resolution
Resolution is usually specified in dots-per-inch (dpi) in the x and y directions.

A printer driver supports either discrete resolution or variable resolution. If a printer
driver supports discrete resolution, an application can choose from only a limited number
of resolutions pre-defined by the printer driver. If a printer driver supports variable
resolution, an application can define any resolution within a range bounded by maximum
and minimum values defined by the printer driver.

Page and Paper Rectangles
When printing a document, you should consider the physical size of the paper and the
area of the paper that the printer can use to format the document. This is usually
smaller than the physical sheet of paper, generally because of the mechanical limitations
of the printer.

Page Rectangle

The page rectangle (see Fig 1) represents the boundaries of the printable area of the
page. Its upper-left coordinates are always (0,0). The coordinates of the lower-right
corner give the maximum page height and width attainable on the given printer. These
coordinates are specified by the units used to express the resolution of the printing
graphics port (see below). For example, the lower-right corner of a page rectangle used
by the PostScript LaserWriter printer driver for an 8.5-by-11-inch page is (730,552) at 72
dpi.

Your application should always use the page rectangle sizes provided by the printer
driver and should not attempt to change them or add new ones.

Printing 15-3

Version 2.1

FIG 1 - PAPER AND PAGE RECTANGLES

PAPER RECTANGLE PAGE RECTANGLE

(0,0)

LOWER-RIGHT
COORDINATES
DEPEND ON
PAPER SIZE

Paper Rectangle

The paper rectangle (see Fig 1) gives the physical paper size, defined in the same
coordinate system as the page rectangle. Thus the upper left coordinates of the paper
rectangle are typically negative, and its lower-right coordinates are greater than those of
the page rectangle.

Job Dialog Box, Style Dialog Box, and the TPrint Structure

Job Dialog Box and Style Dialog Box

If it is likely that the user will want to print the data created with your application, you
should support both the Page Setup… command and the Print… command in your
application's File menu.

In response to the Page Setup… command, your application should display the current
printer's style dialog box, which allows the user to specify printing options, such as
paper size and printing orientation, that your application needs for formatting the
document in the frontmost window. Each printer driver defines its own style dialog box.
Fig 2 shows the style dialog box for the Color StyleWriter 2500 printer.

FIG 2 - STYLE DIALOG BOX FOR COLOR STYLEWRITER 2500 PRINTER

In response to the Print… command, your application should display the current printer's
job dialog box, which solicits printing information from the user (such as the number of
copies to print, the print quality and the range of pages to print) for the document in the
frontmost window. Each printer driver defines its own job dialog box. Fig 3 shows the
job dialog box for the Color StyleWriter 2500 printer.

15-4 Printing

Version 2.1

FIG 3 - JOB DIALOG BOX FOR COLOR STYLEWRITER 2500 PRINTER

Note that many applications add items to the basic style and job dialog boxes so as to
provide the user with additional control over printing operations within that application.

Preserving the User's Printing Preferences

The only information you should preserve each time the user prints the document should
be that obtained via the style dialog box. The information supplied by the user through
the job dialog box should pertain to the document only while the document prints, and
you should not re-use this information if the user prints the document again.

A TPrint structure (see below) stores information about the user's choices made via the
style (and the job) dialog box. Thus you can preserve the information obtained via the
style dialog box by saving the TPrint structure associated with a document in that
document's data or resource fork.

The values specified by the user through the style dialog box apply only to the printing of
the document in the active window. In general, the user should have to specify these
values only once per document (although the user can, of course, choose to change the
settings at any time).

Displaying the Style and Job Dialog Boxes

PrStlDialog is used to display the style dialog box defined by the resource file for the current
printer. PrJobDialog is used to display the job dialog box defined by the resource file for the
current printer. These functions handle all user interaction in the items defined by the
printer driver until the user clicks the OK or Cancel button. You must call PrOpen before
calling PrStlDialog because the current printer driver must be open for your application to
successfully call PrStlDialog.

Customised Style and Job Dialog Boxes

If you wish to customise the style and/or job dialog boxes so as to solicit additional
information from the user, you must provide an initialisation function, an item evaluation
function and, possibly, an event filter function. A universal procedure pointer to the
initialisation function is passed in the second parameter of the function PrDlgMain. PrDlgMain,
not PrStlDialog and PrJobDialog, is used to display a customised style or job dialog box. (See
Customising the Style or Job Dialog Box, below.)

The TPrint Structure

To print a document, you need to create a print structure. The TPrint structure is a data
structure of type TPrint. Most Printing Manager functions require that you provide a
handle to a TPrint structure as a parameter.

You application allocates the memory for a TPrint structure itself, using NewHandle, and then
initialises the TPrint structure using PrintDefault. Your application may also use an existing

Printing 15-5

Version 2.1

TPrint structure, in which case you can validate the structure using PrValidate. (PrValidate
checks all fields of the TPrint structure to ensure compatibility with the current printer.)

When the user chooses the Print… command, your application passes a handle to a TPrint
structure to PrJobDialog (or PrDlgMain in the case of customised job dialog boxes) to display a
job dialog box to the user. PrJobDialog (or PrDlgMain) alters the prJob field (a TPrJob structure) of
the TPrint structure according to the user's responses.

When the user chooses the Page Setup… command, your application passes a handle to a
TPrint structure to PrStlDialog (or PrDlgMain in the case of customised style dialog boxes) to
display a style dialog box to the user. PrStlDialog (or PrDlgMain) alters the prInfo field (a TPrInfo
structure) of the TPrint structure according to the user's responses.

The TPrint structure, including its constituent TPrJob and TPrInfo structures, is shown at Fig 4.
Note also the prInfo field (a TPrInfo structure), which contains resolution and page rectangle
information.

15-6 Printing

Version 2.1

FIG 4 -THE TPrint RECORD

TPrint = record
iPrVersion:integer;{ (Reserved)}
prInfo:TPrInfo; { PrInfo data associated with the current style.}
rPaper:Rect; { Paper rectangle (offset from rPage).}
prStl:TPrStl; { This print request's style.}
prInfoPT:TPrInfo; { (Reserved)}
prXInfo:TPrXInfo; { (Reserved)}
prJob:TPrJob; { Print Job request.}
case integer of
0: (
printX:array [1..19] of integer; { (Reserved)}
);
1: (
prFlag1:TPrFlag1;
iZoomMin:integer;
iZoomMax:integer;
hDocName:StringHandle;
);
end;

TPPrint = ^TPrint;
THPrint = ^TPPrint;

NOTE: Some
printer drivers
always set the
iCopies field
to 1, regardless
of the user's
entry in the job
dialog box, and
handle multiple
copies internally.

TPrJob = record
iFstPage:integer; { First page of page range.}
iLstPage:integer; { Last page of page range.}
iCopies:integer; { Number of copies.}
bJDocLoop:SInt8; { Printing method - draft or deferred.}
fFromUsr:boolean; { (Reserved)}
pIdleProc:PrIdleUPP;{ Pointer to an idle procedure.}
pFileName:StringPtr; { Spool file name: NIL for default.}
iFileVol:integer; { Spool file volume, set to 0 initially}
bFileVers:SInt8; { Spool file version, set to 0 initially}
bJobX:SInt8; { (Reserved)}
end;

TPPrJob = ^TPrJob;

TPrStl = record
wDev:integer; { Device number of printer.}
iPageV:integer; { (Reserved)}
iPageH:integer; { (Reserved)}
bPort:SInt8; { (Reserved)}
feed:TFeed; { Feed type.}
end;

TPPrStl = ^TPrStl;

TPrInfo = record
iDev:integer; { (Reserved)}
iVRes:integer;{ Vertical resolution of printer in dpi.}
iHRes:integer;{ Horizontal resolution of printer in dpi.}
rPage:Rect;{ Page (printable) rectangle - device coordinates.}
end;

TPPrInfo = ^TPrInfo;

The Printing Graphics Port
PrOpenDoc, which opens a printing graphics port, returns a pointer to a TPrPort structure.
The TPrPort structure, which defines a printing graphics port, is as follows:

type

TPrPortPtr = ^TPrPort;

TPrPort = RECORD
gPort: GrafPort; { Printer's graphics port structure. }
gProcs: QDProcs; { Functions for printing in the graphics port. }
... { More fields for internal use. }

TPPrPort = ^TPrPort;

Printing 15-7

Version 2.1

Field Descriptions

gPort A graphics port structure, which may be either a CGrafPort or a GrafPort structure,
depending on whether the current printer supports colour and greyscale.

gProcs A QDProcs structure, which contains pointers to functions which the printer driver
may have designated to take the place of QuickDraw functions.

You print text and graphics by drawing into the printing graphics port using
QuickDraw drawing functions, just as if you were drawing on the screen. The
printer driver installs its own versions of QuickDraw's low-level drawing
functions in this field.

Print Status Dialog Boxes and Idle Procedure
Because the user must wait for a document to print (that is, the application must draw
the data in the printing graphics port and the data must be sent either to the printer or a
spool file before the user can continue working), many printer drivers display a print
status dialog box informing the user that the printing process is under way and that the
process may be aborted by pressing Command-period.

A user should always be able to cancel printing by pressing Command-period. To
determine whether the user has cancelled printing, the printer driver periodically runs
an idle function.

The TPrJob structure contains a pointer to an idle function in its pIdleProc field (see Fig 4). If
this field contains the value NULL, then the printer driver uses its default idle function.
The default idle function checks for Command-period keyboard events and sets the iPrAbort
error code if one occurs so that your application can cancel the print job at the user's
request. Note, however, that the default idle function does not display a print status
dialog box. It is up to the printer driver or your application to display a print status
dialog box.

To handle update information in your status dialog box during the printing operation, you
should install your own idle function in the pIdleProc field of the TPrJob structure. Your idle
function should also check whether the user has pressed Command-period, in which case
your application should stop its printing operation. If your status dialog box contains a
button to cancel the printing operation, your idle function should also check for clicks in
the button and respond accordingly.

If you do not provide your own idle function, you can determine whether the user has
cancelled printing by calling PrError to check for the iPrAbort error code after each call to a
Printing Manager function.

Printing a Document - The Printing Loop
That part of your application's code which handles printing is referred to as the printing
loop. A printing loop calls all the Printing Manager functions necessary to print a
document, checking for printing errors at every step. In general, the printing loop
should perform the following tasks:

• Unload Unused Code Segments. Unused code segments2 should be unloaded to
ensure that the maximum possible memory is available for printing. (This applies
to 680x0 code only.)

2 See Chapter 23— Miscellany.

15-8 Printing

Version 2.1

• Open the Printing Manager and Current Printer Driver. Use PrOpen to initialise
the Printing Manager and to open the printer driver for the current printer (that is,
the printer the user last selected in the Chooser).

• Create or Validate a TPrint Structure. Use NewHandle to allocate storage for a TPrint
structure, and then initialise that TPrint structure using PrintDefault. Alternatively, if
you are using an existing TPrint structure, use PrValidate to check that the structure is
compatible with the current printer and its driver.

• Display the Job Dialog Box. Use PrJobDialog to display the job dialog box3 and to
handle all user interaction in the standard dialog items until the user clicks the Print
or Cancel button. Your application should print the document in the active window
if the user clicks the Print button in the job dialog box.

• Determine the Number of Copies and Number of Pages to Print. Determine the
number of copies to print, and the number of pages required to print the requested
range of pages, by examining the fields of the TPrint structure. (Note that,
depending on the page rectangle of the current printer, the amount of data you can
fit on a physical page of paper may differ from that displayed on the screen,
although it is usually the same.)

• Display a Status Dialog Box (Optional). If required, display a printing status
dialog box indicating to the user the status of the current printing operation.

• Install an Idle Function (Optional). If a status dialog box is used, install an idle
function in the pIdleProc field of the TPrJob structure to update information in the
status dialog box and to check whether the user wants to cancel the printing
operation.

• Print the Requested Range of Pages. Print the requested range of pages for
each requested copy as follows:

• Open a Printing Graphics Port. Call PrOpenDoc to open a printing graphics
port if the current page number is the first page or a multiple of the value
represented by the constant iPFMaxPgs (maximum pages in a spool file).4

• Open a Page for Printing. Call PrOpenPage to set up the printing graphics port
for the page. (PrOpenPage initialises the fields of the graphics port, and must be
called for every page to be printed.)

• Draw in the Printing Graphics Port. Use appropriate QuickDraw functions
to draw into the printing graphics port.

• Close the Page. When your application has finished drawing into the page,
close the page using PrClosePage.

• Close the Printing Graphics Port. Call PrCloseDoc to close the printing
graphics port and begin printing the requested range of pages

• Check for Deferred Printing. Check whether the printer driver is using
deferred printing and, if so, call PrPicFile to send the spool file to the printer.
(The bjDocLoop field of the TPrJob structure is set to bDraftLoop (0) for draft and
bSpoolLoop (1) for deferred printing.)

• Close the Printing Manager. The printing loop should then close the Printing
Manager using PrClose. PrClose releases the Printing Manager dialog and other

3 The PrDlgMain function is used to display a customised job dialog box.
4 The value represented by iPFMaxPgs is 128.

Printing 15-9

Version 2.1

resources, but it leaves the printer driver open. (The printer driver may be closed
using PrDrvrClose.)

Creating and Validating the TPrint Structure

The following example shows how to create a TPrint structure. Note that PrintDefault is
called to initialise the fields of the TPrint structure according to the current printer's
default values. (The default values are stored in the printer driver's resource file.)

var
tPrintHdl : THPrint;
printError : OSErr;
...

tPrintHdl = THPrint(NewHandleClear(sizeof(TPrint)));
if (tPrintHdl <> nil) then

begin
PrintDefault(tPrintHdl); { Sets appropriate default values for current driver. }

printError := PrError;
if (printError <> noErr) then

begin
DoPrintError(printError);
end;

end
else begin

{ Handle error. }
end;

You can also use an existing TPrint structure (for example, one saved with a document).
The following example application-defined routine reads a structure that the application
has saved with a document as a resource of type 'SPRC'. Note that PrValidate is called to
make sure that the TPrint structure is valid for the current version of the Printing Manager
and for the current printer driver.

function DoGetPrintStructure(refNum : SInt16; tPrintHdl : THPrint;
var prRecChanged : boolean) : OSErr;

var
saveResFile : SInt16;
result : OSErr;

begin
saveResFile := CurResFile;
UseResFile(refNum};

tPrintHdl := THPrint(Get1Resource('SPRC', kDocPrintRec));
if (tPrintHdl <> nil) then

begin
DetachResource((Handle) tPrintHdl);
prRecChanged = PrValidate(tPrintHdl); { Check validity of TPrint structure. }
UseResFile(saveResFile);
result := PrError;
end

else begin
UseResFile(saveResFile);
result := kNilHandlePrintErr;
end;

DoGetPrintStructure := result;
end;

{ of function DoGetPrintStructure }

Drawing in the Graphics Port

Observe the following general rules when drawing in the printing graphics port:

• Do not depend on values in the printing graphics port remaining identical from
page to page. With each new page, you generally get re-initialised font information
and other characteristics for the printing graphics port.

15-10 Printing

Version 2.1

• Do not make calls which do not do anything on the printer. For example,
QuickDraw erase functions are quite time-consuming and normally are not needed
on the printer. Paper does not need to be erased the way the screen does.

• Do not use clipping to select text to be printed. There are a number of subtle
differences between the way text appears on the screen and the way it appears on
the printer, and you cannot count on knowing the exact dimensions of the rectangle
occupied by the text.

• Do not use fixed-width fonts to align columns. Explicitly move the pen to where you
want it.

• Do not use the outline font to create white text on a black background.

• Avoid changing fonts frequently.

Note that, because of the way rectangle intersections are determined, you slow printing
substantially if your clipping region falls outside the rectangle given by the rPage field of
the TPrInfo structure.

Handling Printing Errors

The Printing Manager must necessarily bear the heavy burden of maintaining backward
compatibility with early Apple printer models and of maintaining compatibility with a
great many existing printer drivers. For this reason, you must be especially wary of, and
defensive about, possible error conditions when using Printing Manager functions and
data structures.

PrError returns the result of the last Printing Manager function call. PrError returns noErr if
no error occurred.

If you determine that an error has occurred after the completion of a printing function,
stop printing and call the close function that matches any open function you have called.
For example, if you call PrOpenDoc and receive an error, skip to the next call to PrCloseDoc. If
you call PrOpenPage and get an error, skip to the next calls to PrClosePage and PrCloseDoc.

Do not display an alert or dialog box to report an error until the end of the printing loop.
Once at the end of the loop, check for the error again. If there is no error, assume that
the printing completed normally. If the error is still present, alert the user. This
technique is important for two reasons:

• If you display a dialog box in the middle of a printing loop, it could cause errors
that might terminate an otherwise normal printing operation.

• The printer driver may have already displayed its own dialog box in response to an
error. In this instance, the printer driver posts an error to let the application know
that something went wrong and that it should cancel printing.

An Example Printing Loop

The following is an example of a printing loop:
 procedure PrintLoop(docToPrint : DocumentRecordHld; displayJobDialog : boolean);

var
oldPort : GrafPtr;
numberOfPages, numberOfCopies : SInt16;
userClickedOK : boolean;
firstPage, lastPage, copy, page : SInt16;
tprStatus : TPrStatus;
printError : SInt16;

begin
GetPort(oldPort);

Printing 15-11

Version 2.1

DoUnloadSegments;

PrOpen;
if (PrError = noErr) then

begin
gPrintResFile := CurResFile;
gTPrintHdl := docToPrint^^.docPrintRecordHdl;
changed := PrValidate(gTPrintHdl);

if (PrError = noErr) then
begin
numberOfPages := DoCalculateNumberOfPages(gTPrintHdl^^.prInfo.rPage);

if displayJobDialog then
begin
userClickedOK := PrJobDialog(gTPrintHdl);
end

else begin
userClickedOK := DoJobMerge(gTPrintHdl);
end;

if userClickedOK then
begin
numberOfCopies := gTPrintHdl^^.prJob.iCopies;

firstPage := gTPrintHdl^^.prJob.iFstPage;
lastPage := gTPrintHdl^^.prJob.iLstPage;

gTPrintHdl^^.prJob.iFstPage := 1;
gTPrintHdl^^.prJob.iLstPage := iPrPgMax;

if(numberOfPages < lastPage) then
begin
lastPage := numberOfPages;
end;

DoActivateFrontWindow(false, oldPort); { Optional }
gPrintStatusDlg := GetNewDialog(rPrintStatus, nil, WindowPtr(-1)); { Optional }
DoDialogBoxItems(docToPrint); { Optional }
ShowWindow(gPrintStatusDlg); { Optional }
gTPrintHdl^^.prJob.pIdleProc := @DoPrintIdle; { Optional }

for copy := 1 to numberOfCopies do
begin
UseResFile(gPrintResFile);

for page := firstPage to lastPage do
begin
if ((page - firstPage) mod iPFMaxPgs = 0) then

begin
if (page <> firstPage) then

begin
PrCloseDoc(gPrintPortPtr);

if ((gTPrintHdl^^.prJob.bJDocLoop = bSpoolLoop) and (PrError = noErr)) then
begin
PrPicFile(gTPrintHdl, nil, nil, nil, tprStatus);
end;

end;
gPrintPortPtr := PrOpenDoc(gTPrintHdl, nil, nil);
end;

if (PrError = noErr) then
begin
PrOpenPage(gPrintPortPtr, nil);
if (PrError = noErr) then

begin
DoDrawPrintPage(gTPrintHdl^^.prInfo.rPage,docToPrint,

GrafPtr(gPrintPortPtr), page);
end;

PrClosePage(gPrintPortPtr);
end;

end;

PrCloseDoc(gPrintPortPtr);

if ((gTPrintHdl^^.prJob.bJDocLoop = bSpoolLoop) and (PrError = noErr)) then
begin
PrPicFile(gTPrintHdl, nil, nil, nil, tprStatus);
end;

end;

15-12 Printing

Version 2.1

end;
end;

end;

printError := PrError;

PrClose;

if (printError <> noErr) then
begin
DoPrintError(printError);
end;

DisposeDialog(gPrintStatusDlg);
SetPort(oldPort);
DoActivateFrontWindow(true,oldPort);
end;

{ of procedure PrintLoop }

Preliminaries

PrintLoop begins by saving a pointer to the current graphics port and swapping out code
segments not required during printing.5 It then opens the Printing Manager, together
with the current printer driver and its resource file, by calling PrOpen. Note that the
current resource file is now the printer driver's resource file. Assuming no error, the
current resource file is saved so that, if PrintLoop's idle function changes the resource chain
in any way, it can restore the current resource file before returning.

PrValidate is then used to change any values in the TPrint structure associated with the
document to match those specified by the current driver. (PrValidate, rather than PrDefault, is
used so as to preserve any values the user may have previously set through the style
dialog box.)

Calculate Number of Pages

The application-defined routine DoCalculateNumberOfPages is called to divide the data in the
file into sections that fit within the printable page rectangle stored in the rPage field of the
TPrInfo structure and, by so doing, to determine the number of pages required to print the
document.

Display Job Dialog Box or Perform Job
Merge

If the calling function so specifies, the job dialog box is then displayed. (If the user prints
multiple documents at once, the calling function sets the displayJobDialog parameter to true
for the first document and false for the rest. This allows the user to specify the values in
the job dialog box only once when printing multiple documents. It also facilitates the
printing of documents in the background (for example, as the result of responding to the
required Apple event Print Documents) without requiring the application to display the
job dialog box.)

If displayJobDialog was set to false by the calling function, the application-defined routine
DoJobMerge would, amongst other things, use PrJobMerge to copy data from the first print
structure to the print structure for the document about to be printed.

Get First Page, Last Page, and Number of
Copies

If true is returned by either the call to PrJobDialog (that is, the user clicked the Print (OK)
button) or the call to DoJobMerge (that is, there is another document to print), the number
of copies, first page and last page are retrieved from the relevant fields of the TPrJob
structure. Since the only information which should be preserved between separate
printings of the same document is that obtained via the style dialog box, the fields of the

5 Swapping out code segments applies only to 680x0 code. See Chapter 23 — Miscellany.

Printing 15-13

Version 2.1

TPrJob structure which store the first and last page numbers are then set back to 1 and
iPrPgMax (9999) respectively.

If the last page number specified by the user exceeds the total number of pages in the
document, the variable holding the last page value is set to the actual number of pages.

Display a "Print Status" Dialog Box and
Install an Idle Function (Optional)

Before sending the pages off to be printed, a "print status" dialog is displayed to inform
the user of the current status of the printing operation. If the dialog provides a button,
or reports on the progress of the printing operation, an idle function must be installed to
handle events in the dialog. The printer driver calls the idle function periodically during
the printing process.

The following is an example of an application-defined idle routine which assumes the use
of a "print status" modal dialog box to display printing status information:

procedure DoPrintIdle;

var
oldPort : GrafPtr;
theEvent : EventRecord;
gotEvent : boolean;
itemHit : SInt16;
handled, cancelled : boolean;

begin
GetPort(oldPort);
SetPort(gPrintStatusDlg);

gotEvent := WaitNextEvent(everyEvent, theEvent, 15, nil);

if gotEvent then
begin
{ DoHandleEvent should handle update and activate events. This also enables
 background applications to receive update events while the "print status" modal
 dialog is open. }

handled := DoHandleEvent(gPrintStatusDlg, theEvent, itemHit);

{ DoDidUserCancel should scan for Command-period key-down events (see Chapter 23 -
 Miscellany) and also for mouse-down events indicating that the user clicked the
 Stop Printing button. }

cancelled := DoDidUserCancel;
if cancelled then

begin
itemHit := kStopButton;
end;

{ To handle hits in the "print status" dialog, doHandleHitsInStatusBox should
 check the item number passed to it. For the Stop Printing button, it should
 call PrSetError, specifying the error code iPrAbort. For hits in other items,
 it should set the cursor to a wristwatch cursor. }

handled := DoHandleHitsInStatusBox(itemHit);
end;

{ DoUpdateStatus should update those items in "print status" dialog box that report
 printing status the user. }

DoUpdateStatusInformation(cancelled);

SetPort(oldPort);
end;

{ of procedure DoPrintIdle }

The following guidelines should be followed when writing your own idle function:

• If you draw anything within the idle function, save the printing graphics port upon
entry to the idle function and restore it upon exit, as shown in the example.

15-14 Printing

Version 2.1

• If your idle function changes the resource chain6, save the reference number of the
printer driver's resource file by calling CurResFile at the beginning of your idle
function. Upon exit, restore the resource chain using UseResFile.

• Avoid calling PrError within the idle function.

Copies Loop

Before beginning the actual printing process, printLoop displays its own status dialog box
and installs its own idle function. A loop, which will cycle once for each of the specified
number of copies, is then entered. The current resource file is restored to the printer
driver's resource file at the top of this loop.

Pages Loop

A nested loop is then entered for the printing of each page. The maximum number of
pages that can be printed at a time is represented by the constant iPFMaxPgs (128). If 128
(or 256, etc.) pages have been printed, the printing graphics port is closed by a call to
PrCloseDoc and, if the printer driver is using deferred printing, PrPicFile is called to send the
spool file to the printer. If this is either the first page of all or the first page after the
first 128 (or 256, etc.) have been printed, PrOpenDoc is called to initialise a printing
graphics port and make it the current port.

For each page, PrOpenPage is called to initialise the printing graphics port, the application-
defined function doDrawPrintPage is called to draw the page in the printing graphics port,
and PrClosePage is called to wrap up printing of the current page. (Note that the
parameters taken by doDrawPrintPage are the size of the page rectangle, the document
containing the page to print, the printing graphics port in which to draw, and the page
number. This allows the application to use the same code to print a page as it uses to
draw the same page on the screen.)

Exit From the Copies Loop

When all pages have been printed, PrCloseDoc is called to close the printing graphics port.
If the printer driver is using deferred printing, PrPicFile is called to send the spool file to
the printer. Finally, PrClose is called to release memory associated with the Printing
Manager (except the printer driver). It then remains to dispose of the status dialog,
reset the current graphics port and activate the application's front window.

Getting and Setting Printer Information
By using PrGeneral you can determine the resolution of the printer, set the printer
resolution, ascertain if the user has set landscape printing, and force enhanced draft-
quality printing.

To achieve these ends, you use PrGeneral with one of five opcodes: getRslDataOp, setRslOp,
getRotnOp, draftBitsOp, or noDraftBitsOp. These opcodes have data structures associated with
them. When you call PrGeneral, PrGeneral, in turn, calls the current printer driver to get or
set the desired information.

Checking Whether the Current Printer Driver Supports PrGeneral

Note that not all printer drivers support all of the features provided by PrGeneral. The
following example application-defined function checks whether the current printer driver
supports PrGeneral.

function DoIsPrGeneralThere : boolean;

6 See Chapter 17 — More on Resources.

Printing 15-15

Version 2.1

var
getRotRec : TGetRotnBlk;
printError : OSErr;

begin
printError := 0;
getRotRec.iOpCode := getRotnOp; { Set opcode used to determine if landscape chosen. }
getRotRec.hPrint := gTPrintHdl; { TPrint structure this operation applies to. }

PrGeneral(@getRotRec);

printError := PrError;
PrSetError(noErr);

if (printError = resNotFound) then
begin
DoIsPrGeneralThere := false;
end

else begin
DoIsPrGeneralThere := true;
end;

end;
{ of function DoIsPrGeneralThere }

Using PrGeneral to Determine Page Orientation

The principal use of PrGeneral is probably to determine page orientation. This can be
useful where, for example, an image will only fit on the page in landscape orientation, the
user has not selected landscape, and you want your application to remind the user to
select landscape before printing so as to avoid a clipped printed image. The following is
an example application-defined function which returns a value indicating whether the
user has selected landscape orientation:

function DoGetPageOrientation : SInt16;

var
getRotRec : TGetRotnBlk;

begin
if DoIsPrGeneralThere then

begin
getRotRec.iOpCode := getRotnOp;
getRotRec.hPrint := gTPrintHdl;
PrGeneral(@getRotRec);
if ((getRotRec.iError = noErr) and (PrError = noErr) and getRotRec.fLandscape) then

begin
DoGetPageOrientation := kInLandscapeOrientation;
end

else begin
DoGetPageOrientation := kInPortraitOrientation;
end

end
else begin

DoGetPageOrientation := kPrGeneralAbsent;
end;

end;
{ of function DoGetPageOrientation }

Error Handling

When using PrError and PrGeneral, be prepared to receive the errors noSuchRsl (printer does
not support the requested resolution), opNotImpl (printer does not support the PrGeneral
opcode selected) and resNotFound (current printer driver does not support PrGeneral). If you
receive a resNotFound result code, clear the error by calling PrSetError with a value of noErr.

Text on the Screen and the Printed Page
At the application level, printing on the Macintosh computer is not fundamentally
different from drawing on the screen. That said, printing text poses special challenges.

15-16 Printing

Version 2.1

A common complication results from the difference in resolution and pixel size between
screen and printer. QuickDraw measurements are theoretically in terms of points,
which are nominally equivalent to screen pixels. High resolution printers have very
much smaller pixels, although printer drivers are expected to take this into account so
that the same QuickDraw calls will produce text lines of the same width on the screen
and on the printer. Nevertheless, this higher resolution, and the fact that printers can
use different fonts from those used for screen display, can result in some loss of fidelity
from the screen to the printed page. In this regard, the following is relevant:

• QuickDraw places text glyphs7 on the screen at screen pixel intervals, whereas a
printer can provide much finer placements on the printed page. This situation
presents a choice between optimising the appearance of text on the screen or on
the printed page. In effect, that choice is whether to specify fractional glyph
widths or integer glyph widths.

Fractional glyph widths are measurements of a glyph's width which can include
fractions of a pixel. Using fractional glyph widths improves the appearance of
printed text because it makes it possible for the printer, with its very high
resolution, to print with better spacing. However, because screen glyphs are made
up of whole pixels, QuickDraw cannot draw a fractional glyph on the screen, so it
rounds off the fractional parts. This results in some degradation in the appearance
of the text, in terms of character spacing, on the screen.

The alternative (integer glyph widths) gives more pleasing screen results because
the characters are drawn with regular pixel spacing, but this may possibly be at the
price of a printed page which is typographically unacceptable.

The Font Manager function SetFractEnable is used to turn fractional glyph widths on
and off. SetFractEnable affects functions which draw text and which calculate text and
character widths.

• Printer drivers attempt to reproduce faithfully the text formatting as drawn by
QuickDraw on the screen, including keeping the same intended character spacing,
line breaks and page breaks. However, because printers can have resident fonts
that are different from the fonts that QuickDraw uses, because the drivers may
handle text layout somewhat differently than QuickDraw, and because font metrics
do not always scale linearly, fidelity may not always be achieved. Typically,
identical line breaks and page breaks can be maintained, but character spacing can
be noticeaby different.

Customising the Style or Job Dialog Box
As previously stated, you may want to add additional options to the style and job dialog
boxes so that the user can further customise the printing process. For example, you
might want to add a "skip blank pages" checkbox to a job dialog box. Also as previously
stated, the function PrDlgMain, not PrStlDialog and PrJobDialog, is used to display a customised
style or job dialog.

Preamble — How the Dialogs Work

The TPrDlg structure contains all of the information pertaining to a print dialog and is thus
of central importance to the matter of customising style and job dialogs:

type

TPrDlgPtr = ^TPrDlg;

TPrDlg = RECORD
Dlg: DialogRecord; { A dialog structure. }

7 A glyph is the visual representation of a character. See Chapter 19 — Text. and TextEdit.

Printing 15-17

Version 2.1

pFltrProc: ModalFilterUPP; { The event filter function. }
pItemProc: PItemUPP; { The item evaluation function. }
hPrintUsr: THPrint; { Handle to a TPrint structure. }
fDoIt: BOOLEAN; { true means user clicked OK. }
fDone: BOOLEAN; { true means user clicked OK or Cancel. }
lUser1: LONGINT;
lUser2: LONGINT;
lUser3: LONGINT;
lUser4: LONGINT;
END;

TPPrDlg = ^TPrDlg;

Note particularly the fields pFltrProc and pItemProc.

When your application calls PrStlDialog and PrJobDialog, the printer driver calls PrDlgMain.
PrDlgMain is declared as follows:

function PrDlgMain(hPrint : THPrint; pDlgInit : PDlgInitUPP) : boolean;

PrDlgMain, in turn, calls functions which set up the dialog structure, assign a universal
procedure pointer to the standard event filter function to the pFltrProc field of the TPrDlg
structure, and assign a universal procedure pointer to the item evaluation function to the
pItemProc field. When an item is hit, the function pointed to by the pItemProc field is called to
handle the hit. When the Print (OK) button is hit, the THPrint structure is validated.

Adding Items to the Dialog Box

To customise a print dialog, you must modify the contents of the TprDlg structure before
the dialog is drawn on the screen. This involves:

• Providing a 'DITL' resource containing the required additional items.

• Defining an item evaluation function that handles hits on items in the dialog.

• Defining an initialisation function that:

• Calls AppendDITL to append the items to the dialog box.

• Saves the universal procedure pointer to the driver's item evaluation function
in the pItemProc field of the TprDlg structure. (This will be need to be called from
your item evaluation function to handle hits on the dialog's standard items.)

• Assigns a universal procedure pointer to your item evaluation function in the
pItemProc field.

• Returns a pointer to the TPrDlg structure.

• If required, defining a custom event filter function and assigning a universal
procedure pointer to it to the pFltrProc field of the TprDlg structure.

A universal procedure pointer to the initialisation function should then be passed in the
pDlgInit parameter of PrDlgMain.

Printing From the Finder
Users generally print documents that are open on the screen one at a time while the
application that created the document is running. However, users can also print one or
more documents from the Finder by selecting the documents and choosing Print… from
the Finder's File menu. This causes the Finder to launch the application and pass it a
required Apple event (the Print Documents event) indicating the documents to be
printed. In response to a Print Documents event, your application should:

15-18 Printing

Version 2.1

• Open windows for the documents only if your application can interact with the user
(see Chapter 10 - Required Apple Events.)

• Use saved or default style settings instead of displaying the style dialog box.

• Display the job dialog box once only, and use PrJobMerge to apply the information
specified by the user to all of the selected documents. (Note that PrJobMerge
preserves the fields of the TPrint structure that are specific to each document, that
is, the fields that are set through the style dialog box.)

• Remain open unless and until the Finder sends it a Quit Application event.

Main Printing Manager Constants, Data Types and Functions

Constants
iPFMaxPgs = 128 Maximum pages in spool file.
iPrPgFract = 120 Page scale factor.
iPrPgFst = 1 Page range constant - first page.
iPrPgMax = 9999 Page range constant - last page.
bDraftLoop = 0 Draft-quality printing.
bSpoolLoop = 1 Deferred printing.

PrGeneral Opcodes

getRslDataOp = 4 Get resolutions for current printer.
setRslOp = 5 Set resolutions for a TPrint structure.
draftBitsOp = 6 Force enhanced draft-quality printing.
noDraftBitsOp = 7 Cancel enhanced draft-quality printing.
getRotnOp = 8 Get page orientation of a TPrint structure.
NoSuchRsl = 1 Resolution not supported.

Data Types

Print Structure

struct TPrint
{

short iPrVersion; // (Reserved)
TPrInfo prInfo; // PrInfo data associated with the current style.
Rect rPaper; // Paper rectangle (offset from rPage).
TPrStl prStl; // This print request's style.
TPrInfo prInfoPT; // (Reserved)
TPrXInfo prXInfo; // (Reserved)
TPrJob prJob; // Print Job request.

 short printX[19]; // (Reserved)
};
typedef struct TPrint TPrint;
typedef TPrint *TPPrint, **THPrint;

Printer Information Structure

struct TPrInfo
{

short iDev; // (Reserved)
short iVRes; // Vertical resolution of printer in dpi.
short iHRes; // Horizontal resolution of printer in dpi.
Rect rPage; // Page (printable) rectangle in device coordinates.

};
typedef struct TPrInfo TPrInfo;
typefdef TPrInfo *TPPrInfo;

Print Job Structure

struct TPrJob
{

short iFstPage; // First page of page range.
short iLstPage; // Last page of page range.
short iCopies; // Number of copies.
SInt8 bJDocLoop; // Printing method - draft or deferred.

Printing 15-19

Version 2.1

Boolean fFromUsr; // (Reserved)
PrIdleUPP pIdleProc; // Pointer to an idle function.
StringPtr pFileName; // Spool file name: NULL for default.
short iFileVol; // Spool file volume: set to 0 initially.
SInt8 bFileVers; // Spool file version: set to 0 initially.
SInt8 bJobX; // (Reserved)

};
typedef struct TPrJob TPrJob;
typedef TPrJob *TPPrJob;

Printing Style Structure

struct TPrStl
{

short wDev; // Device number of printer.
short iPageV; // (Reserved)
short iPageH; // (Reserved)
SInt8 bPort; // (Reserved)
TFeed feed; // Feed type.

};
typedef struct TPrStl TPrStl;
typedef TPrStl *TPPrStl;

Printing Graphics Port Structure

struct TPrPort
{

GrafPort gPort; // Graphics port for printing.
QDProcs gProcs; // Functions for printing in graphics port.
long lGParam1; // (Reserved)
long lGParam2; // (Reserved)
long lGParam3; // (Reserved)
long lGParam4; // (Reserved)
Boolean fOurPtr; // (Reserved)
Boolean fOurBits; // (Reserved)

};
typedef struct TPrPort TPrPort;
typedef TPrPort *TPPrPort;

Printing Status Structure

struct TPrStatus
{

short iTotPages; // Total pages in print File.
short iCurPage; // Current page number.
short iTotCopies; // Current copies requested.
short iCurCopy; // Current copy number
short iTotBands; // (Reserved)
short iCurBand; // (Reserved)
Boolean fPgDirty; // true if current page has been written to.
Boolean fImaging; // (Reserved)
THPrint hPrint; // Handle to the active printer structure.
TPPrPort pPrPort; // Pointer to the active printing graphics port.
PicHandle hPic; // Handle to the active picture.

};
typedef struct TPrStatus TPrStatus;
typedef TPrStatus *TPPrStatus;

Print Dialog Box Structure

struct TPrDlg
{

DialogRecord Dlg; // A dialog structure.
ModalFilterUPP pFltrProc; // The event filter function.
PItemUPP pItemProc; // The item evaluatiion function.
THPrint hPrintUsr; // Handle to a TPrint structure.
Boolean fDoIt; // true means user clicked OK.
Boolean fDone; // true means user clicked OK or Cancel.
long lUser1; // (Storage for your application.)
long lUser2; // (Storage for your application.)
long lUser3; // (Storage for your application.)

 long lUser4; // (Storage for your application.)
};
typedef struct TPrDlg TPrDlg;
typedef TPrDlg *TPPrDlg;

15-20 Printing

Version 2.1

Page Orientation Structure

struct TGetRotnBlk
{

short iOpCode; // The getRotnOp opcode.
short iError; // Result code returned by PrGeneral.
long lReserved; // (Reserved)
THPrint hPrint; // Handle to current TPrint structure.
Boolean fLandscape; // true if user selected landscape printing.
SInt8 bXtra; // (Reserved)

};
typedef Rect *TPRect;
typedef pascal void (*PrIdleProcPtr)(void);
typedef pascal void (*PItemProcPtr)(DialogPtr theDialog, short item);

Functions

Opening and Closing the Printing Manager

void PrOpen(void);
void PrClose(void);

Initialising and Validating TPrint Structures

void PrintDefault(THPrint hPrint);
Boolean PrValidate(THPrint hPrint);

Displaying and Customising Print Dialog Boxes

Boolean PrStlDialog(THPrint hPrint);
Boolean PrJobDialog(THPrint hPrint);
Boolean PrDlgMain(THPrint hPrint,PDlgInitUPP pDlgInit);
TPPrDlg PrStlInit(THPrint hPrint);
TPPrDlg PrJobInit(THPrint hPrint);
void PrJobMerge(THPrint hPrintSrc,THPrint hPrintDst);

Printing a Document

TPPrPort PrOpenDoc(THPrint hPrint,TPPrPort pPrPort,Ptr pIOBuf);
void PrCloseDoc(TPPrPort pPrPort);
void PrOpenPage(TPPrPort pPrPort,TPRect pPageFrame);
void PrClosePage(TPPrPort pPrPort);
void PrPicFile(THPrint hPrint, TPPrPort pPrPort, Ptr pIOBuf, Ptr pDevBuf, TPrStatus

*prStatus);

Optimising Printing

void PrGeneral(Ptr pData);

Creating Routine Descriptors

#define NewPDlgInitProc(userRoutine)
(PDlgInitUPP) NewRoutineDescriptor((ProcPtr)(userRoutine),uppPDlgInitProcInfo,
GetCurrentArchitecture())

#define NewPItemProc(userRoutine)
(PItemUPP) NewRoutineDescriptor((ProcPtr)(userRoutine), uppPItemProcInfo,
GetCurrentArchitecture())

Handling Printing Errors

short PrError(void);
void PrSetError(short iErr);

Demonstration Program
{ ◊◊
// PrintingDemo.p
// ◊◊
//
// This program:
//
// • Opens a window in which the contents of the main fields of the TPrint, TPrJob,

Printing 15-21

Version 2.1

// TPrStl and TPrInfo structures are displayed when the user dismisses the style
// dialog box, and in which the first part of a document is displayed when the user
// hits the Print button in the job dialog box.
//
// • Adds a pop-up menu button, three radio buttons, a checkbox, and a group box to the
// job dialog box.
//
// • Allows the user to print a document containing a picture and text, with the text
// being printed in the font and font size, and with the fractional widths setting,
// specified using the items added to the job dialog box.
//
// The program utilises the following resources:
//
// • 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).
//
// • A 'WIND' resource (purgeable).
//
// • A 'TEXT' resource (non-purgeable) used for printing.
//
// • A 'PICT' resource (non-purgeable) used for printing.
//
// • 'CNTL' resources (purgeable) for controls added to the job dialog box.
//
// • A 'DITL' resource (purgeable) specifying the items to be appended to the job
// dialog box.
//
// • A 'MENU' resource (preload, non-purgeable) for the pop-up menu button.
//
// ◊◊◊ }

program PrintingDemo;

{ ………
…………………………………… interfaces }

uses

PrintingUnit, JobDialogAppend;

 { ……… main
program block variables }

var

mainMenubarHdl : Handle;
mainMenuHdl : MenuHandle;
mainEvent : EventRecord;
mainErr : OSErr;

 { ◊◊◊ main }

begin

 { ……… initialise
global variables }

gPrintStructureInited := false;
gInhibitPrintStructuresInfo := false;

gWhiteColour.red := $FFFF;
gWhiteColour.green := $FFFF;
gWhiteColour.blue := $FFFF;

gBlackColour.red := $0000;
gBlackColour.green := $0000;
gBlackColour.blue := $0000;

gBlueColour.red := $1818;
gBlueColour.green := $4B4B;
gBlueColour.blue := $8181;

{ ………
……… initialise managers }

DoInitManagers;

 { ……
set up menu bar and menus }

15-22 Printing

Version 2.1

mainMenubarHdl := GetNewMBar(rMenubar);
if (mainMenubarHdl = nil) then

begin
ExitToShell;
end;

SetMenuBar(mainMenubarHdl);
DrawMenuBar;

mainMenuHdl := GetMenuHandle(mApple);
if (mainMenuHdl = nil) then

begin
ExitToShell;
end

else begin
AppendResMenu(mainMenuHdl, 'DRVR');
end;

{ ………
…………………………… open window }

gWindowPtr := GetNewCWindow(rWindow, nil, WindowPtr(-1));
if (gWindowPtr = nil) then

begin
ExitToShell;
end;

SetPort(gWindowPtr);
TextSize(10);
RGBBackColor(gBlueColour);
EraseRect(gWindowPtr^.portRect);

 { ……… load 'TEXT' and
'PICT' resources }

gTextHdl := GetResource('TEXT', rText);
if (gTextHdl = nil) then

begin
ExitToShell;
end;

gPictureHdl := GetPicture(rPicture);
if (gPictureHdl = nil) then

begin
ExitToShell;
end;

{ ………
……………………………… event loop }

gDone := false;

while not gDone do
begin
if WaitNextEvent(everyEvent, mainEvent, kMaxLong, nil) then

begin
DoEvents(mainEvent);
end;

end;

end.
{ of main program }

 { ◊◊ }

{ ◊◊
 // PrintingUnit.p
 // ◊◊ }

unit PrintingUnit;

interface

{ ………
………………………………………… includes }

uses

Printing 15-23

Version 2.1

{ Universal Interfaces. }
Appearance, Devices, Fonts, Printing, Processes, Resources, TextUtils, ToolUtils;

{ ………
……………………………………… constants }

const

mApple = 128;
mFile = 129;
iQuit = 11;
iPageSetup = 8;
iPrint = 9;
rMenubar = 128;
rWindow = 128;
rText = 128;
rPicture = 128;
rJobDialogAppendDITL = 128;
iPopupButton = 1;
iRadioButton10pt = 2;
iRadioButton12pt = 3;
iRadioButton14pt = 4;
iCheckboxFracWidths = 5;
kMargin = 90;
kMaxLong = $7FFFFFFF;

{ ………
…………………… global variables }

var

gTPrintHdl : THPrint;
gWindowPtr : WindowPtr;
gDone : boolean;
gPrintStructureInited : boolean;
gInhibitPrintStructuresInfo : boolean;
gEditRecHdl : TEHandle;
gTextHdl : Handle;
gPictureHdl : PicHandle;
gFontNumber : SInt16;
gFontSize : SInt16;
gWhiteColour : RGBColor;
gBlackColour : RGBColor;
gBlueColour : RGBColor;

{ ………
…………………routine prototypes }

procedure DoInitManagers;
procedure DoEvents(var theEvent : EventRecord);
procedure DoUpdate(var theEvent : EventRecord);
procedure DoMenuChoice(menuChoice : SInt32);
procedure DoPrinting;
function DoCreatePrintRecord : OSErr;
procedure DoPrStyleDialog;
function DoCalcNumberOfPages(pageRect : Rect) : SInt16;
procedure DoDrawPage(pageRect : Rect; pageNumber : SInt16; numberOfpages : SInt16);
procedure DoDrawPageOrientation;
function DoGetPageOrientation : SInt16;
function DoIsPrGeneralThere : boolean;
procedure DoPrintRecordsInfo;
procedure DoDrawRectStrings(s1 : Str255; x1, y1 : SInt16; s2 : Str255; x2, y2 : SInt16;

 s3 : Str255);
procedure DoErrorAlert(errorType : SInt16; fatal : boolean);

implementation

uses

{ Other project files. }
JobDialogAppend;

 { ◊◊◊ DoInitManagers }

procedure DoInitManagers;
var

15-24 Printing

Version 2.1

osError : OSErr;

begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

InitCursor;
FlushEvents(everyEvent, 0);

osError := RegisterAppearanceClient;

end;
{ of procedure DoInitManagers }

 { ◊◊◊ DoEvents }

procedure DoEvents(var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
partCode : SInt16;
charCode : SInt8;

begin
theWindowPtr := WindowPtr(theEvent.message);

case theEvent.what of

mouseDown: begin
partCode := FindWindow(theEvent.where, theWindowPtr);
case partCode of

inMenuBar: begin
DoMenuChoice(MenuSelect(theEvent.where));
end;

inContent: begin
if (theWindowPtr <> FrontWindow) then

begin
SelectWindow(theWindowPtr);
end;

end;

inDrag: begin
DragWindow(theWindowPtr, theEvent.where, qd.screenBits.bounds);
end;

inGoAway: begin
if TrackGoAway(theWindowPtr, theEvent.where) then

begin
gDone := true;
end;

end;

otherwise begin
end;

end;
{ of case statement }

end;

keyDown, autoKey: begin
charCode := UInt8(BAnd(theEvent.message, charCodeMask));
if (BAnd(theEvent.modifiers, cmdKey) <> 0) then

begin
DoMenuChoice(MenuEvent(theEvent));
end;

end;

updateEvt: begin
DoUpdate(theEvent);
end;

activateEvt: begin
DoPrintRecordsInfo;

Printing 15-25

Version 2.1

end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoEvents }

 { ◊◊◊ DoUpdate }

procedure DoUpdate(var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;

begin
theWindowPtr := WindowPtr(theEvent.message);

BeginUpdate(theWindowPtr);
DoPrintRecordsInfo;
EndUpdate(theWindowPtr);
end;

{ of procedure DoUpdate }

 { ◊◊◊ DoMenuChoice }

procedure DoMenuChoice(menuChoice : SInt32);
var
menuID, menuItem : SInt16;
itemName : Str255;
daDriverRefNum : SInt16;

begin
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);

if (menuID = 0) then
begin
Exit(DoMenuChoice);
end;

case menuID of

mApple: begin
GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);
daDriverRefNum := OpenDeskAcc(itemName);
end;

mFile: begin
if (menuItem = iPageSetup) then

begin
gInhibitPrintStructuresInfo := false;
DoPrStyleDialog;
end

else if (menuItem = iPrint) then
begin
DoPrinting;
end

else if (menuItem = iQuit) then
begin
gDone := true;
end

end;

otherwise begin
end;

end;
{ of case statement }

HiliteMenu(0);
end;

{ of procedure DoMenuChoice }

 { ◊◊◊ DoPrinting }

procedure DoPrinting;
var
oldPort : GrafPtr;
printError : SInt16;
userClickedOK : boolean;

15-26 Printing

Version 2.1

numberOfPages, numberOfCopies : SInt16;
firstPage, lastPage, copy, page : SInt16;
printPortPtr : TPPrPort;
theTPrStatus : TPPrStatusRef;

begin
GetPort(oldPort);

PrOpen;

if (PrError = noErr) then
begin
if not gPrintStructureInited then

begin
printError := DoCreatePrintRecord;
end

else begin
printError := noErr;
end;

gTPrDlgReference := PrJobInit(gTPrintHdl);
printError := PrError;

if (printError = noErr) then
begin
gInitialisationFunctionUPP := NewPDlgInitProc(@InitialisationFunction);
gNewItemEvaluateFunctionUPP := NewPItemProc(@ItemEvaluationFunction);
gEventFilterUPP := NewModalFilterProc(@EventFilter);

userClickedOK := PrDlgMain(gTPrintHdl, gInitialisationFunctionUPP);

DisposeRoutineDescriptor(gInitialisationFunctionUPP);
DisposeRoutineDescriptor(gNewItemEvaluateFunctionUPP);
DisposeRoutineDescriptor(gEventFilterUPP);

if userClickedOK then
begin
gInhibitPrintStructuresInfo := true;

numberOfPages := DoCalcNumberOfPages(gTPrintHdl^^.prInfo.rPage);

numberOfCopies := gTPrintHdl^^.prJob.iCopies;
firstPage := gTPrintHdl^^.prJob.iFstPage;
lastPage := gTPrintHdl^^.prJob.iLstPage;

gTPrintHdl^^.prJob.iFstPage := 1;
gTPrintHdl^^.prJob.iLstPage := iPrPgMax;

if (numberOfPages < lastPage) then
begin
lastPage := numberOfPages;
end;

for copy := 1 to numberOfCopies do
begin
for page := firstPage to lastPage do

begin
if ((page - firstPage) mod iPFMaxPgs = 0) then

begin
if (page <> firstPage) then

begin
PrCloseDoc(printPortPtr);
if ((gTPrintHdl^^.prJob.bJDocLoop = bSpoolLoop) and (PrError = noErr)) then

begin
PrPicFile(gTPrintHdl, nil, nil, nil, theTPrStatus);
end;

end;
printPortPtr := PrOpenDoc(gTPrintHdl, nil, nil);
end;

if (PrError = noErr) then
begin
PrOpenPage(printPortPtr, nil);
if (PrError = noErr) then

begin
DoDrawPage(gTPrintHdl^^.prInfo.rPage, page, numberOfPages);
end;

PrClosePage(printPortPtr);
end;

end;

Printing 15-27

Version 2.1

PrCloseDoc(printPortPtr);

if ((gTPrintHdl^^.prJob.bJDocLoop = bSpoolLoop) and (PrError = noErr)) then
begin
PrPicFile(gTPrintHdl, nil, nil, nil, theTPrStatus);
end;

end;
end;

end;
end;

printError := PrError;

PrClose;

if ((printError <> noErr) and (printError <> iPrAbort)) then
begin
DoErrorAlert(printError, false);
end;

SetPort(oldPort);
DoPrintRecordsInfo;
end;

{ of procedure DoPrinting }

 { ◊◊ DoCreatePrintRecord }

function DoCreatePrintRecord : OSErr;
var
printError : SInt16;

begin
gTPrintHdl := THPrint(NewHandleClear(sizeof(TPrint)));
if (gTPrintHdl <> nil) then

begin
PrintDefault(gTPrintHdl);
printError := PrError;
if (printError = noErr) then

begin
gPrintStructureInited := true;
end;

DoCreatePrintRecord := printError;
end

else begin
ExitToShell;
end;

end;
{ of function DoCreatePrintRecord }

 { ◊◊ DPrStyleDialog }

procedure DoPrStyleDialog;
var
printError : SInt16;
ignoredBool : boolean;

begin
PrOpen;

printError := PrError;
if (printError = noErr) then

begin
if not gPrintStructureInited then

begin
printError := DoCreatePrintRecord;
if (printError <> noErr) then

begin
DoErrorAlert(printError, true);
end;

end;

ignoredBool := PrStlDialog(gTPrintHdl);
end

else begin
DoErrorAlert(printError, false);
end;

PrClose;
end;

15-28 Printing

Version 2.1

{ of procedure DoPrStyleDialog }

 { ◊◊ DoCalcNumberOfPages }

function DoCalcNumberOfPages(pageRect : Rect) : SInt16;
var
destRect, pictureRect : Rect;
heightDestRect, linesPerPage, numberOfPages : SInt16;

begin
RGBForeColor(gBlackColour);
RGBBackColor(gWhiteColour);
EraseRect(gWindowPtr^.portRect);

SetRect(destRect, pageRect.left + kMargin, pageRect.top + trunc(kMargin * 1.5),
pageRect.right - kMargin, pageRect.bottom - trunc(kMargin * 1.5));

OffsetRect(destRect, - (kMargin - 5), - (trunc(kMargin * 1.5) - 5));

TextFont(gFontNumber);
TextSize(gFontSize);

gEditRecHdl := TENew(destRect, destRect);
TEInsert(gTextHdl^, GetHandleSize(gTextHdl), gEditRecHdl);

heightDestRect := destRect.bottom - destRect.top;
linesPerPage := heightDestRect div gEditRecHdl^^.lineHeight;
numberOfPages := (gEditRecHdl^^.nLines div linesPerPage) + 1;

SetRect(pictureRect, destRect.left, destRect.top,
destRect.left + (gPictureHdl^^.picFrame.right - gPictureHdl^^.picFrame.left),
destRect.top + (gPictureHdl^^.picFrame.bottom - gPictureHdl^^.picFrame.top));

DrawPicture(gPictureHdl, pictureRect);

DoCalcNumberOfPages := numberOfPages;
end;

{ of procedure DoCalcNumberOfPages }

 { ◊◊◊ DoDrawPage }

procedure DoDrawPage(pageRect : Rect; pageNumber : SInt16; numberOfpages : SInt16);
var
destRect, pictureRect : Rect;
heightDestRect, linesPerPage, numberOfLines : SInt16;
pageEditRecHdl : TEHandle;
textHdl : Handle;
startOffset, endOffset : SInt32;
theString : Str255;

begin
SetRect(destRect, pageRect.left + kMargin, pageRect.top + trunc(kMargin * 1.5),

pageRect.right - kMargin, pageRect.bottom - trunc(kMargin * 1.5));

heightDestRect := destRect.bottom - destRect.top;
linesPerPage := heightDestRect div gEditRecHdl^^.lineHeight;
numberOfLines := gEditRecHdl^^.nLines;

TextFont(gFontNumber);
TextSize(gFontSize);

pageEditRecHdl := TENew(destRect, destRect);
textHdl := gEditRecHdl^^.hText;

startOffset := gEditRecHdl^^.lineStarts[(pageNumber - 1) * linesPerPage];
if (pageNumber = numberOfpages) then

begin
endOffset := gEditRecHdl^^.lineStarts[numberOfLines];
end

else begin
endOffset := gEditRecHdl^^.lineStarts[pageNumber * linesPerPage];
end;

HLock(textHdl);
TEInsert(Ptr(SInt32(textHdl^) + startOffset), endOffset - startOffset, pageEditRecHdl);
HUnlock(textHdl);

if (pageNumber = 1) then
begin
SetRect(pictureRect, destRect.left, destRect.top,

destRect.left + (gPictureHdl^^.picFrame.right - gPictureHdl^^.picFrame.left),
destRect.top + (gPictureHdl^^.picFrame.bottom - gPictureHdl^^.picFrame.top));

Printing 15-29

Version 2.1

DrawPicture(gPictureHdl, pictureRect);
end;

MoveTo(destRect.left, pageRect.bottom - 25);
NumToString(SInt32(pageNumber), theString);
DrawString(theString);
end;

{ of procedure DoDrawPage }

 { ◊◊ DoDrawPageOrientation }

procedure DoDrawPageOrientation;
var
orientation : SInt16;

begin
MoveTo(20, 260);
DrawString('Orientation selected:');

orientation := DoGetPageOrientation;

MoveTo(190, 260);
if (orientation = 1) then

begin
DrawString('Landscape');
end

else if (orientation = 2) then
begin
DrawString('Portrait');
end

else begin
DrawString('(PrGeneral not supported by driver)');
end;

end;
{ of procedure DoDrawPageOrientation }

 { ◊◊◊ DoGetPageOrientation }

function DoGetPageOrientation : SInt16;
var
getRotRec : TGetRotnBlk;

begin
if DoIsPrGeneralThere then

begin
getRotRec.iOpCode := getRotnOp;
getRotRec.hPrint := gTPrintHdl;
PrGeneral(@getRotRec);
if ((getRotRec.iError = noErr) and (PrError = noErr) and getRotRec.fLandscape) then

begin
DoGetPageOrientation := 1;
end

else begin
DoGetPageOrientation := 2;
end;

end
else begin

DoGetPageOrientation := 3;
end;

end;
{ of function DoGetPageOrientation }

 { ◊◊◊ DoIsPrGeneralThere }

function DoIsPrGeneralThere : boolean;
var
getRotRec : TGetRotnBlk;
printError : OSErr;

begin
printError := 0;
getRotRec.iOpCode := getRotnOp;
getRotRec.hPrint := gTPrintHdl;

PrGeneral(@getRotRec);

printError := PrError;
PrSetError(noErr);

15-30 Printing

Version 2.1

if (printError = resNotFound) then
begin
DoIsPrGeneralThere := false;
end

else begin
DoIsPrGeneralThere := true;
end;

end;
{ of function DoIsPrGeneralThere }

 { ◊◊◊ DoPrintRecordsInfo }

procedure DoPrintRecordsInfo;
var
oldForeColour, oldBackColour : RGBColor;
fontNum : SInt16;
s2, s3 : Str255;

begin
if ((FrontWindow = gWindowPtr) and gPrintStructureInited and not gInhibitPrintStructuresInfo) then

begin
GetForeColor(oldForeColour);
GetBackColor(oldBackColour);
RGBForeColor(gWhiteColour);
RGBBackColor(gBlueColour);
EraseRect(gWindowPtr^.portRect);

GetFNum('Geneva', fontNum);
TextFont(fontNum);
TextSize(10);

MoveTo(20, 25);
TextFace([bold]);
DrawString('From TPrint, TPrInfo and TPrStl structures:');
TextFace([]);

NumToString(gTPrintHdl^^.rPaper.top, s2);
NumToString(gTPrintHdl^^.rPaper.left, s3);
DoDrawRectStrings('Paper Rectangle (top, left):', 20, 45, s2, 190, 45, s3);

NumToString(gTPrintHdl^^.rPaper.bottom, s2);
NumToString(gTPrintHdl^^.rPaper.right, s3);
DoDrawRectStrings('Paper Rectangle (bottom, right):', 20, 60, s2, 190, 60, s3);

NumToString(gTPrintHdl^^.prInfo.rPage.top, s2);
NumToString(gTPrintHdl^^.prInfo.rPage.left, s3);
DoDrawRectStrings('Page Rectangle (top, left):', 20, 75, s2, 190, 75, s3);

NumToString(gTPrintHdl^^.prInfo.rPage.bottom, s2);
NumToString(gTPrintHdl^^.prInfo.rPage.right, s3);
DoDrawRectStrings('Page Rectangle (bottom, right):', 20, 90, s2, 190, 90, s3);

MoveTo(20, 105);
DrawString('Feed Type:');
MoveTo(190, 105);
if (gTPrintHdl^^.prStl.feed = 0) then

begin
DrawString('Cut sheet');
end

else if (gTPrintHdl^^.prStl.feed = 1) then
begin
DrawString('Fanfold');
end;

MoveTo(20, 120);
DrawString('Vertical resolution:');
NumToString(gTPrintHdl^^.prInfo.iVRes, s2);
MoveTo(190, 120);
DrawString(s2);

MoveTo(20, 135);
DrawString('Horizontal resolution:');
NumToString(gTPrintHdl^^.prInfo.iHRes, s2);
MoveTo(190, 135);
DrawString(s2);

MoveTo(20, 155);
TextFace([bold]);
DrawString('From TPrJob structure:');
TextFace([]);

Printing 15-31

Version 2.1

MoveTo(20, 175);
DrawString('First Page:');
NumToString(gTPrintHdl^^.prJob.iFstPage, s2);
MoveTo(190, 175);
DrawString(s2);

MoveTo(20, 190);
DrawString('Last Page:');
NumToString(gTPrintHdl^^.prJob.iLstPage, s2);
MoveTo(190, 190);
DrawString(s2);

MoveTo(20, 205);
DrawString('Number of Copies:');
NumToString(gTPrintHdl^^.prJob.iCopies, s2);
MoveTo(190, 205);
DrawString(s2);

MoveTo(20, 245);
DrawString('Note: Some printer drivers always set the iCopies field of the TPrJob');
MoveTo(20, 260);
DrawString('structure to 1 and handle multiple copies internally.');
end;

RGBForeColor(oldForeColour);
RGBBackColor(oldBackColour);
end;

{ of procedure DoPrintRecordsInfo }

 { ◊◊ DoDrawRectStrings }

procedure DoDrawRectStrings(s1 : Str255; x1, y1 : SInt16; s2 : Str255; x2, y2 : SInt16; s3 : Str255);
begin
MoveTo(x1, y1);
DrawString(s1);
MoveTo(x2, y2);
DrawString('(');
DrawString(s2);
DrawString(', ');
DrawString(s3);
DrawString(')');
end;

{ of procedure DoDrawRectStrings }

 { ◊◊◊ DoErrorAlert }

procedure DoErrorAlert(errorType : SInt16; fatal : boolean);
var
paramRec : AlertStdAlertParamRec;
theString, errorString : Str255;
itemHit : SInt16;
ignoredErr : OSErr;

begin
errorString := 'Printing Manager Error';

paramRec.movable := true;
paramRec.helpButton := false;
paramRec.filterProc := nil;
paramRec.defaultText := StringPtr(kAlertDefaultOKText);
paramRec.cancelText := nil;
paramRec.otherText := nil;
paramRec.defaultButton := kAlertStdAlertOKButton;
paramRec.cancelButton := 0;
paramRec.position := kWindowDefaultPosition;

NumToString(SInt32(errorType), theString);
errorString := errorString + theString;

if not fatal then
begin
ignoredErr := StandardAlert(kAlertCautionAlert, @errorString, nil, @paramRec, itemHit);
end

else begin
ignoredErr := StandardAlert(kAlertStopAlert, @errorString, nil, @paramRec, itemHit);
ExitToShell;
end;

end;
{ of procedure DoErrorAlert }

15-32 Printing

Version 2.1

end.
{ of unit PrintingUnit }

{ ◊◊ }

{ ◊◊
 JobDialogAppend.p
 ◊◊ }

unit JobDialogAppend;

interface

{ ………
…………………………………… interfaces }

uses

PrintingUnit;

function InitialisationFunction(hPrint : THPrint) : TPPrDlgRef;
procedure DoAppendTheDITL(theDialog : TPPrDlgRef);
procedure ItemEvaluationFunction(theDialog : TPPrDlg; itemHit : SInt16);
function EventFilter(theDialogPtr : DialogPtr; var theEvent : EventRecord;

 var itemHit : SInt16) : boolean;

{ ………
………………………… unit variables }

var

gTPrDlgReference : TPPrDlgRef;
gFirstAppendedItemNo : SInt32;
gInitialisationFunctionUPP : PDlgInitUPP;
gOldItemEvaluateFunctionUPP : PItemUPP;
gNewItemEvaluateFunctionUPP : PItemUPP;
gEventFilterUPP : ModalFilterUPP;

implementation

 { ◊◊◊ InitialisationFunction }

function InitialisationFunction(hPrint : THPrint) : TPPrDlgRef;
var
controlHdl : ControlHandle;
menuHdl : MenuHandle;
numberOfItems, a, fontNumber : SInt16;
fontName : Str255;
ignoredErr : OSErr;
ignoredSize : Size;

begin
{$unused(hPrint)}

{ ………
………………… append the DITL }

DoAppendTheDITL(gTPrDlgReference);

 { …………… make pop-up menu WYSIWYG, check second radio button, set fractional widths off }

ignoredErr := GetDialogItemAsControl(DialogPtr(gTPrDlgReference), gFirstAppendedItemNo,
controlHdl);

ignoredErr := GetControlData(controlHdl, kControlNoPart, kControlPopupButtonMenuHandleTag,
sizeof(menuHdl), @menuHdl, ignoredSize);

numberOfItems := CountMItems(menuHdl);
for a := 1 to numberOfItems do

begin
GetMenuItemText(menuHdl, a, fontName);
GetFNum(fontName, fontNumber);
ignoredErr := SetMenuItemFontID(menuHdl, a, fontNumber);
end;

ignoredErr := GetDialogItemAsControl(DialogPtr(gTPrDlgReference), gFirstAppendedItemNo + 2,

Printing 15-33

Version 2.1

controlHdl);
SetControlValue(controlHdl, 1);
gFontSize := 12;

 ignoredErr := GetDialogItemAsControl(DialogPtr(gTPrDlgReference), gFirstAppendedItemNo + 4,
 controlHdl);
 SetControlValue(controlHdl, 0);

SetFractEnable(false);

 { …………………………………………………… save old evaluation function and assign new evaluation function }

gOldItemEvaluateFunctionUPP := gTPrDlgReference^.pItemProc;
gTPrDlgReference^.pItemProc := gNewItemEvaluateFunctionUPP;

 { ……… assign new
event filter function }

gTPrDlgReference^.pFltrProc := gEventFilterUPP;

 { ……………………………………………… PrDlgMain expects a pointer to the modified dialog to be returned }

InitialisationFunction := gTPrDlgReference;
end;

{ of function InitialisationFunction }

 { ◊◊ DoAppendTheDITL }

procedure DoAppendTheDITL(theDialog : TPPrDlgRef);
var
ditlHdl : Handle;
numberOfExistingItems : SInt16;

begin
ditlHdl := GetResource('DITL', rJobDialogAppendDITL);
numberOfExistingItems := CountDITL(DialogPtr(theDialog));
AppendDITL(DialogPtr(theDialog), ditlHdl, appendDITLBottom);
gFirstAppendedItemNo := numberOfExistingItems + 1;
end;

{ of procedure DoAppendTheDITL }

 { ◊◊◊ ItemEvaluationFunction }

procedure ItemEvaluationFunction(theDialog : TPPrDlg; itemHit : SInt16);
var
localizedItemNo, controlValue : SInt16;
controlHdl : ControlHandle;
menuHdl : MenuHandle;
itemName : Str255;
ignoredErr : OSErr;
ignoredSize : Size;
newValue : SInt16;

begin
localizedItemNo := itemHit - gFirstAppendedItemNo + 1;

if (localizedItemNo > 0) then
begin

 if (localizedItemNo = iPopupButton) then
 begin

ignoredErr := GetDialogItemAsControl(DialogPtr(theDialog), gFirstAppendedItemNo,
controlHdl);

controlValue := GetControlValue(controlHdl);
ignoredErr := GetControlData(controlHdl, kControlNoPart,

kControlPopupButtonMenuHandleTag, sizeof(menuHdl), @menuHdl, ignoredSize);
GetMenuItemText(menuHdl, controlValue, itemName);
GetFNum(itemName, gFontNumber);
end

else if ((localizedItemNo >= iRadioButton10pt) and (localizedItemNo <= iRadioButton14pt)) then
begin
ignoredErr := GetDialogItemAsControl(DialogPtr(theDialog), gFirstAppendedItemNo + 1,

controlHdl);
 SetControlValue(controlHdl, 0);

ignoredErr := GetDialogItemAsControl(DialogPtr(theDialog), gFirstAppendedItemNo + 2,
controlHdl);

 SetControlValue(controlHdl, 0);
ignoredErr := GetDialogItemAsControl(DialogPtr(theDialog), gFirstAppendedItemNo + 3,

controlHdl);
 SetControlValue(controlHdl, 0);

ignoredErr := GetDialogItemAsControl(DialogPtr(theDialog), itemHit, controlHdl);

15-34 Printing

Version 2.1

 SetControlValue(controlHdl, 1);

 if (localizedItemNo = iRadioButton10pt) then
 begin
 gFontSize := 10;
 end
 else if (localizedItemNo = iRadioButton12pt) then
 begin
 gFontSize := 12;
 end
 else if (localizedItemNo = iRadioButton14pt) then
 begin
 gFontSize := 14;
 end;
 end
 else if (localizedItemNo = iCheckboxFracWidths) then
 begin
 ignoredErr := GetDialogItemAsControl(DialogPtr(theDialog), gFirstAppendedItemNo + 4,
 controlHdl);

 if (GetControlValue(controlHdl) <> 0) then
 begin
 newValue := 0;
 end
 else begin
 newValue := 1;
 end;
 SetControlValue(controlHdl, newValue);

SetFractEnable(boolean(GetControlValue(controlHdl)));
end;

end
else begin

CallPItemProc(DialogPtr(theDialog), itemHit, gOldItemEvaluateFunctionUPP);
end;

end;
{ of procedure ItemEvaluationFunction }

 { ◊◊ EventFilter }

function EventFilter(theDialogPtr : DialogPtr; var theEvent : EventRecord;
 var itemHit : SInt16) : boolean;

var
handledEvent : Boolean;
oldPort : GrafPtr;

begin
handledEvent := false;

if ((theEvent.what = updateEvt) and (WindowPtr(theEvent.message) <> theDialogPtr)) then
begin
DoUpdate(theEvent);
end

else begin
GetPort(oldPort);
SetPort(theDialogPtr);

handledEvent := StdFilterProc(theDialogPtr, theEvent, itemHit);

SetPort(oldPort);
end;

EventFilter := handledEvent;
end;

{ of function EventFilter }

end.
{ of unit JobDialogAppend }

 { ◊◊}

 Demonstration Program Comments
When the program is run, the user should:

• Choose Page Setup… from the File menu, make changes in the style dialog, and observe the resulting contents of
the main fields of the Tprint, TPrJob, TPrStyl, and TPrInfo structures in the window.

Printing 15-35

Version 2.1

• Choose Print… from the File menu, note the items added to the job dialog box, select the desired font, font size,
and fractional widths setting using these items, and print the simulated document.

The user should print the simulated document several times using different page size, scaling, and orientation settings in
the style dialog, and occasionally limiting the printout to one page only by changing the page range settings in the job
dialog.

PrintingDemo.p

main program block
After the window is opened, GetResource is called to loads the 'TEXT' resource, and GetPicture is used to load the 'PICT'
resource, used in the printing demonstration.

Note that, in this program, error handling of all errors other than Printing Manager errors is somewhat rudimentary. The
program simply exits.

PrintingUnit.p

Global Variables
gTPrintHdl will be assigned a handle to a TPrint structure. gWindowPtr will be assigned a pointer to the window. gDone
controls the exit from the main loop and thus program termination.

gPrintStructureInited will be set to true when a TPrint record has been created and initialised. gInhibitPrintStructuresInfo is
a flag which will prevent the display of information in the window in certain circumstances. gEditRecHdl will be assigned a
handle to a TextEdit edit record. gTextHdl will be assigned a handle to the text used for printing. gPictureHdl will be
assigned a handle to the picture used for printing.

gFontNumber will be assigned a font number derived from the font name obtained via user-selection from the Font pop-up
menu appended by the application to the job dialog. gFontSize will be assigned a font size obtained via user-selection from
the appended radio buttons.

DoUpdate
DoUpdate calls the application-defined routine which draws information in the window. Note that this routine will be called
from the application defined event-filter function for the modified job dialog box.

DoMenuChoice
If the user chooses Page Setup… from the File menu, the application-defined function DoPrStyleDialog is called. If the user
chooses Print… from the File menu, the application-defined function DoPrinting is called.

DoPrinting
DoPrinting contains the printing loop. It supports printers using deferred printing. However, it does not use a saved TPrint
structure (but rather creates one for the print job), and does not use a custom status dialog box and associated idle
function. Also, it does not unload unneeded code segments at the beginning. (Unloading code segments applies only to
680x0 code. See Chapter 23 — Miscellany.)

The first line saves the pointer to the current graphics port. The call to PrOpen opens the Printing Manager, together with
the current printer driver.

If the global variable gPrintStructureInited indicates that a TPrint structure has not already been created, the application-
defined function DoCreatePrintRecord is called to create and initialise a TPrint structure.

Before the printing loop is entered, and because the application will be modifying the standard job dialog box, PrJobInit is
called to get a pointer to the TPrDlg structure for the dialog box defined in the resource file for the current printer driver.
This pointer will be used in the initialisation function which appends items to the standard job dialog.

If no errors have occurred, routine descriptors are created for the functions associated with the modification of the
standard job dialog box, and PrDlgMain is called to display the dialog. A universal procedure pointer to the initialisation
function which appends items to the standard job dialog is passed in the last parameter of this call. When the user
dismisses the dialog, the routine descriptors are disposed of.

Note that, if an unmodified job dialog is required, the call to PrJobInit, together with the calls to create and dispose of the
routine descriptors, should be deleted. In addition, the call to PrDlgMain should be replaced by:

userClickedOK := PrJobDialog(gTPrintHdl);

Note also that, when the Print button is hit, PrDlgMain calls PrValidate to ensure that the contents of the TPrint structure
are compatible with the printer driver for the current printer.

15-36 Printing

Version 2.1

If false is returned by the call to PrDlgMain (that is, the user clicked the Cancel button), the printing loop is bypassed.
Otherwise, the first actions are to call an application-defined function to calculate the number of pages, and then retrieve
the number of copies, the first page and the last page from the relevant fields of the TPrJob structure.

Since the only information that should be preserved between separate printings of the same document is that obtained via
the style dialog box, the fields of the TPrJob structure which store the first and last page numbers are set back to 1 and
iPrPgMax (9999) respectively before proceeding further.

If the last page number specified by the user exceeds the total number of pages in the document, the variable holding the
last page value is set to the actual number of pages.

The copies loop is then entered, followed by the nested pages loop. The maximum number of pages that can be printed at
a time is represented by the constant iPFMaxPgs (128). The first two lines in the pages loop determine whether this is the
first or the 129th (or 257th, etc.) time around the pages loop. If, for example, it is the 129th (that is, 128 pages have been
printed), PrCloseDoc is called to close the printing graphics port and, if the printer driver is using deferred printing,
PrPicFile is called to send the spool file to the printer. If this is either the first page of all or the first page after the first 128
(or 257, etc.) have been printed, PrOpenDoc is called to initialise a new printing graphics port and makes it the current
port.

For each page, PrOpenPage re-initialises the printing graphics port, the application-defined function doDrawPage is called
to draw that page's contents in the printing graphics port, and PrClosePage wraps up the printing of the current page.

When all pages have been printed, PrCloseDoc closes the printing graphics port and, if the printer driver is using deferred
printing, PrPicFile sends the spool file to the printer.

When all copies have been printed (or if control fell through as a result of an error), PrClose releases all memory associated
with the Printing Manager (except the printer driver), and the result of the preceding call to PrError is then examined. If an
error occurred, and provided that error was not the error that is reported when the user (or the application) requests an
abort, a Caution alert is displayed advising the user of the error and error number.

Finally, the saved graphics port is restored.

DoCreatePrintRecord
DoCreatePrintRecord creates and initialises a TPrint record.

Memory is allocated by the call to NewHandleClear. If the call to allocate memory is successful, PrintDefault initialises the
TPrint record to the system standard settings. If this call is successful, the global variable (gPrintStructureInited) which
indicates whether an initialised TPrint record exists is set to true. The result of the PrError call is returned to the calling
function.

If the call to allocate memory is not successful, the last line simply closes down the program.

DoPrStyleDialog
DoPrStyleDialog is called when the user chooses Page Setup… from the File menu.

The call to PrOpen opens the Printing Manager and printer driver. If the call is successful, the second if statement
determines whether a TPrint record currently exists. If not, DoCreatePrintRecord is called to create a new TPrint record. If
DoCreatePrintRecord does not return noErr, a Stop alert is invoked.

PrStylDialog opens the style dialog box.

If the call to PrOpen was not successful, a Caution alert is invoked.

PrClose closes the Printing Manager (but not the printer driver), releasing the associated memory.

DoCalcNumberOfPages
doCalcNumberOfPages is called by DoPrinting to calculate the number of pages in the (simulated) document.

The simulated document is provided by a 'TEXT' resource, which will be inserted into a TextEdit monostyled edit structure.
TextEdit is not addressed until Chapter 19 — Text and TextEdit; however, to facilitate an understanding of what is to follow,
it is sufficient at this stage to understand that a monostyled edit structure contains the following fields:

destRect The destination rectangle into which text is drawn. The bottom of the destination rectangle can
extend to accommodate the end of the text. In other words, you can think of the destination
rectangle as bottomless.

viewRect The rectangle within which text is actually displayed.

hText A handle to the text.

lineHeight The vertical spacing, in pixels, of the lines of text.

nLines The total number of lines of text.

Printing 15-37

Version 2.1

linestarts An array with a number of elements corresponding to the number of lines of text. Each element
contains the offset of the first character in each line.

EraseRect erases the window preparatory to the simulated document being drawn in the window.

The next block establishes a rectangle equal to the received page rectangle less 180 pixels in width and 270 pixels in
height. (As will be seen, this is the same size as the rectangle to be used in the drawing of each page in the printing
graphics port.) The call to OffsetRect simply offsets this rectangle so that, when the document is drawn in the window, the
top and right margins will be reduced to five pixels.

The calls to TextFont and TextSize set the window's font and font size to those chosen/selected by the user at the pop-up
menu and radio buttons added by the application to the standard job dialog box.

TENew creates a new monostyled edit record with the previously defined rectangle passed in both the destination rectangle
parameter and the view rectangle parameters. TEInsert inserts the previously loaded 'TEXT' resource into the edit
structure. The hText field of the edit structure is now a handle to that text. The call to TEInsert also causes the text to be
drawn in the window. (A 'TEXT' resource, rather than a 'TEXT' file, is used in this demonstration simply to keep that part of
the source code that is not related to printing per se to a minimum.)

The matter of the actual calculation of the number of pages now follows. The first line in this block gets the height of the
previously defined rectangle. The next line calculates how many lines of text will fit into that height. The third line then
calculates the total number of rectangles (and thus the number of pages) required to accommodate the whole of the text.

Before the calculated number of pages is returned to the calling function, the previously loaded picture is drawn at the top
of the destination rectangle. This latter is simply to display the full contents of the top of the simulated document in the
window. (Space for the picture is accounted for by the fact that the first 11 lines in the 'TEXT' resource are carriage
returns.)

The edit structure is retained because it will be used in the following function.

DoDrawPage
DoDrawPage is called by DoPrinting to draw a specified page in the printing graphics port.

The first block establishes a rectangle equal to the received page rectangle less 180 pixels in width and 270 pixels in
height. This smaller rectangle is centred on the page rectangle both laterally and vertically.

The next block calculates the number of lines of text that will fit into the height of that rectangle, and gets the total number
of lines in the monostyled edit structure created in the function DoCalcNumberOfPages.

The next block sets the printing graphics port's font and font size to the same font and size used to calculate the number of
pages.

TENew creates a new monostyled edit structure with the previously defined rectangle passed in both the destination
rectangle parameter and the view rectangle parameter. The following line gets a handle to the text in the monostyled edit
structure created in the function DoCalcNumberOfPages.

In the next block, the first line gets the starting offset, that is, the offset from the first character in the block of text to the
first character in the first line of text for the specified page number. The next four lines get the ending offset, that is, the
offset to the last character in the last line of text for the specified page.

Using these offsets, TEInsert then inserts the text for the page into the newly created edit structure, an action which causes
that text to be drawn in the printing graphics port.

If this is the first page, the next block draws the previously loaded picture at the top left of the previously defined rectangle.

The last three lines draw the page number at the bottom left of that rectangle.

DoDrawPageOrientation
DoDrawPageOrientation ascertains the page orientation selected by the user in the style dialog box and prints it in the
window. It gets a value representing the orientation via a call to the application-defined function DoGetPageOrientation.

DoGetPageOrientation
DoGetPageOrientation uses PrGeneral to establish the page orientation setting to be used for printing.

A TGetRotnBlk structure is used when PrGeneral is used to determine whether landscape orientation has been specified.

If the current printer driver supports PrGeneral (determined by the call to doIsPrGeneralThere), the iopCode field of the
TGetRotnBlk structure is assigned the opcode getRtnOp and the hPrint field is assigned the handle to the TPrintRecord.
PrGeneral is then called with the address of the TGetRotnBlk structure as its argument.

Following the call, the fLandscape field of the TGetRotnBlk structure will contain true if landscape orientation has been
selected. In this case (and assuming no errors), a value representing landscape orientation is returned to the calling
function, otherwise a value representing portrait orientation is returned.

15-38 Printing

Version 2.1

If the current printer driver does not support PrGeneral, a value representing this situation is returned.

DoIsPrGeneralThere
doIsPrGeneralThere is called by DoGetPageOrientation to determine whether the current printer driver supports PrGeneral.
The procedure is similar to that in DoGetPageOrientation, except that here we are interested only in the error code
generated by a call to PrGeneral. If that error is the error represented by the constant resNotFound (-192), PrGeneral is not
supported and false is returned, otherwise true is returned.

Note that PrSetError is used to set the value in the low-memory global PrintErr to noErr in case PrGeneral generated an
error code other than noErr. PrintErr holds the most recent Printing Manager error code and, since an actual printing error
did not occur, it is necessary to ensure that PrintErr reflects that fact.

DoPrintRecordsInfo and
DoDrawRectStrings
DoPrintRecordsInfo extracts information from the TPrint, TPrInfo, TPrStyl and TPrJob structures and prints it in the window if
a TPrint structure has been initialised and the global variable gInhibitPrintStructuresInfo contains false. DoDrawRectStrings
supports doPrintRecords.

DoErrorAlert
DoErrorAlert is called from DoPrinting and DoPrStyleDialog if an error code is generated following a call to a Printing
Manager function. Depending on the nature of the error, either a Stop alert or a Caution alert is displayed, each containing
the reported error code. In the case of a Stop alert, the program terminates when the user clicks the OK button.

JobDialogAppend.p

InitialisationFunction
Recall that, in the function DoPrinting, a universal procedure pointer to InitialisationFunction was passed in the pDlgInit
parameter of the PrDlgMain call. PrDialogMain thus calls this function to append the DITL to the end of the job dialog's item
list, and to set up the pItemProc (item evaluation) and pFilterProc (event filter function) fields of the TPrDlg structure.

The DITL to be appended contains the following items:

• A pop-up menu button (AddResMenu variant) for font selection. 'FONT' is the specified resource type.

• Three radio buttons for font size selection.

• A checkbox for selecting fractional widths on or off.

• A primary group box (text title variant).

At the first line, the application-defined function DoAppendTheDITL is called to append the items. Amongst other things,
DoAppendTheDITL assigns a value to the global variable gFirstAppendedItemNo. This value represents the item number in
the job dialog's item list of the first appended item (the pop-up menu button).

The next three blocks make the font pop-up menu WYSIWYG (using essentially the same code as was used in the
demonstration program Menus2) check the second radio button and set the global variable holding the current font size to
12pt, and uncheck the checkbox and set fractional widths to off.

The printer driver's item evaluation function will be called upon by the application-defined item evaluation function to
handle mouse-downs in the job dialog's standard items. Accordingly, the universal procedure pointer in the TPrDlg record's
pItemProc field is saved for future use. The universal procedure pointer to the application-defined item evaluation function
is then assigned to the pItemProc field.

As is required by PrDlgMain, the last line returns a pointer to the modified TPrDlg structure.

DoAppendTheDITL
DoAppendTheDITL is called by initialisationFunction to append the new items to the job dialog.

GetResource loads the specified 'DITL' resource and gets a handle to it. CountDITL counts the current number of items in
the job dialog. AppendDITL then appends the new items at the bottom of the dialog, causing the dialog box to expand
downwards to accommodate them.

Note: If the currently chosen printer is the LaserWriter 8 (driver version 8.4 and later), the result of the
AppendDITL call will be somewhat different in that the items will be added to a pane and the name of the
application will be inserted into the menu of a pop-up group box. (See Fig 5.)

Printing 15-39

Version 2.1

FIG 5 - EFFECT OF AppendDITL - LASERWRITER 8

The global variable gFirstAppendedItemNo is then assigned the item number in the new job dialog item list of the first
appended item (the pop-up menu button).

ItemEvaluationFunction
ItemEvaluationFunction handles item hits in the job dialog. The item number of the item hit is received in the second
parameter.

At the first line, the item number of the item hit is "localised". This means that, for example, the localised item number of
the pop-up menu button will be 1. In other words, if the localised item number is greater than 0, it will be the item number
of one of the appended items; otherwise, it will be the item number of one of the job dialog's standard items.

If the localised item number is greater than 0, and if it is the localised item number for the pop-up menu button, the
control's value (that is, the menu item number) is retrieved. GetMenuItemText is called to get the text of the menu item,
and GetFNum is called to get the font number for this font and assign it to the relevant global variable.

If the localised item number is the localised item number for one of the radio buttons, all radio buttons are unchecked, the
radio button hit is checked, and the global variable which holds the current text size is assigned the appropriate value. If
the localised item number is the localised item number for the checkbox, the current value of that control is flipped and
SetFractEnable is called to set fractional widths on or off as appropriate.

If the localised item number is 0 or less, the item must be one of the job dialog's standard items. In this case, the printer
driver's item evaluation function is called upon to handle the item hit.

EventFilter
EventFilter is identical to the custom event filter for modal dialogs introduced at Chapter 8 — Dialogs and Alerts. The use
of a the event filter is optional. Its use in this program simply allows the dialog, together with windows belonging to
background applications, to receive update events.

15-40 Printing

