
Version 2.1

13
OFFSCREEN GRAPHICS WORLDS,
PICTURES, CURSORS, AND ICONS

Includes Demonstration Program GWorldPicCursIcon

Offscreen Graphics Worlds

Introduction

An offscreen graphics world may be regarded as a virtual screen on which your
application can draw a complex image without the user seeing the various steps your
application takes before completing the image. The image in an offscreen graphics world
is drawn into a part of memory not used by the video device. It therefore remains hidden
from the user.

One of the key advantages of using an offscreen graphics ports is that it allows you to
improve on-screen drawing speed and visual smoothness. For example, suppose your
application draws multiple graphics objects in a window and then needs to update part of
that window. If your image is very complex, your application can copy it from an
offscreen graphics world to the screen faster than it can repeat all of the steps necessary
to draw the image on-screen. At the same time, the inelegant visual effects associated
with the time-consuming drawing a large number of separate objects are avoided.

Creating an Offscreen Graphics World

You create an offscreen graphics world with the NewGWorld function. NewGWorld creates a
new offscreen colour graphics port, a new offscreen pixel map, and either a new GDevice
structure or a link to an existing one. NewGWorld returns a pointer of type GWorldPtr which
points to a colour graphics port:

type
GWorldPtr = CGrafPtr;

When you use NewGWorld, you can specify a pixel depth, a boundary rectangle (which also
becomes the port rectangle), a colour table, a GDevice structure, and option flags for
memory allocation. Passing 0 as the pixel depth, the window's port rectangle as the
offscreen world's boundary rectangle, nil for both the colour table and the GDevice
structure and 0 as the options flags:

• Provides your application with the default behaviour of NewGWorld.

• Allows QuickDraw to optimise the CopyBits, CopyMask, and CopyDeepMask functions used
to copy the image into the window's port rectangle.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-1

Version 2.1

Setting the Colour Graphics Port for an Offscreen Graphics World

Before drawing into the offscreen graphics port, you should save the current colour
graphics port and the current device's GDevice structure by calling GetGWorld. The offscreen
graphics port should then be made the current port by a call to SetGWorld. After drawing
into the offscreen graphics world, you should call SetGWorld to restore the saved colour
graphics port as the current colour graphics port.

SetGWorld takes two parameters (port and gdh). If the port parameter is of type CGrafPtr, the
current port is set to the port specified in the port parameter and the current device is set
to the device specified in the gdh parameter. If the port parameter is of type GWorldPtr, the
current port is set to the port specified in the port parameter, the gdh parameter is
ignored, and the current device is set to the device attached to the offscreen graphics
world.

Preparing to Draw Into an Offscreen Graphics World

After setting the offscreen graphics world as the current port, you should use the
GetGWorldPixMap function to get a handle to the offscreen pixel map. This is required as the
parameter in a call to the LockPixels function, which you must call before drawing to, or
copying from, an offscreen graphics world.

LockPixels prevents the base address of an offscreen pixel image from being moved while
you draw into it or copy from it. If the base address for an offscreen pixel image has not
been purged by the Memory Manager, or if its base address is not purgeable, LockPixels
returns true. If LockPixels returns false, your application should either call the UpdateGWorld
function to reallocate the offscreen pixel image and then reconstruct it, or draw directly
into an onscreen graphics port.

As a related matter, note that the baseAddr field of the PixMap structure for an offscreen
graphics world contains a handle, whereas the baseAddr field for an onscreen pixel map
contains a pointer. You must use the GetPixBaseAddr function to obtain a pointer to the
PixMap structure for an offscreen graphics world.

Copying an Offscreen Image into a Window

After drawing the image in the offscreen graphics world, your application should call
SetGWorld to restore the active window as the current graphics port.

The image is copied from the offscreen graphics world into the window using CopyBits (or,
if masking is required, CopyMask or CopyDeepMask). Specify the offscreen graphics world as
the source image for CopyBits and specify the window as its destination. Note that CopyBits,
CopyMask and CopyDeepMask expect their source and destination parameters to be pointers to
bit maps, not pixel maps. Accordingly, you must coerce the offscreen graphic's world's
GWorldPtr data type to a data structure of type GrafPtr. Similarly, whenever a colour
graphics port is your destination, you must coerce the window's CGrafPtr data type to data
type GrafPtr.

As long as you are drawing into an offscreen graphics world or copying an image from it,
you must leave its pixel image locked. When you are finished drawing into, and copying
from, an offscreen graphics world, call UnlockPixels. Calling UnlockPixels will assist in
preventing heap fragmentation.

Updating an Offscreen Graphics World

If, for example, you are using an offscreen graphics world to support the window
updating process, you can use UpdateGWorld to carry certain changes affecting the window
(for example, resizing, changes to the pixel depth of the screen, or modifications to the
colour table) through to the offscreen graphics world. UpdateGWorld allows you to change

13-2 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

the pixel depth, boundary rectangle, or colour table for an existing offscreen graphics
world without recreating it and redrawing its contents.

Disposing of an Offscreen Graphics World

Call DisposeGWorld when your application no longer needs the offscreen graphics world.

Pictures

Introduction

QuickDraw provides a simple set of functions for recording a collection of its drawing
commands and then playing the recording back later. Such a collection of drawing
commands, as well as the resulting image, is called a picture. Pictures provide a
common medium for the sharing of image data. They make it easier for your application
to draw complex images defined in other applications, and vice versa.

When you use OpenCPicture to begin defining a picture, QuickDraw collects your subsequent
drawing commands in a data structure of type Picture. By using DrawPicture, you can draw
onscreen the picture defined by the instructions stored in the Picture structure.

Picture Format

The OpenCPicture function creates pictures in the extended version 2 format. This format
permits your application to specify resolutions for pictures in colour or black-and-white.

Historical Note

During QuickDraw's evolution, three different formats evolved for the data
contained in a Picture structure. The extended version 2 format is the latest format.
The original format, the version 1 format, was created by the OpenPicture function
on machines without Color QuickDraw or whenever the current graphics port was
a basic graphics port. Pictures created in this format supported only black-and-
white drawing operations at 72 dpi (dots per inch). The version 2 format was
created by the OpenPicture function on machines with Color QuickDraw when the
current graphics port was a colour graphics port. Pictures created in this format
supported colour drawing operations at 72 dpi.

The Picture Structure

The Picture structure is as follows:
Picture = RECORD

picSize: INTEGER; { For a version 1 picture: its size. }
picFrame: Rect; { Bounding rectangle for the picture. }
…
END;

PicPtr = ^Picture;
PicHandle = ^PicPtr;

Field Descriptions

picSize The information in this field is useful only for version 1 pictures, which
cannot exceed 32 KB in size. Version 2 and extended version 2 pictures can
be larger than 32 KB. To maintain compatibility with the version 1 picture
format, the picSize field was not changed for version 2 or extended version 2
picture formats.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-3

Version 2.1

You should use the Memory Manager function GetHandleSize to determine the
size of a picture in memory, the File Manager function PBGetFInfo to determine
the size of a picture in a file of type 'PICT', and the Resource Manager function
MaxSizeResource to determine the size of a picture in a resource of type 'PICT'.

picFrame Contains the bounding rectangle for the picture. DrawPicture uses this
rectangle to scale the picture when you draw into a differently sized
rectangle.

... Compact drawing commands and picture comments constitute the rest of the
structure, which is of variable length.

Opcodes: Drawing Commands and Picture Comments

The variable length field in a Picture structure contains data in the form of opcodes, which
are values that DrawPicture uses to determine what objects to draw or what mode to change
for subsequent drawing.

In addition to compact drawing commands, opcodes can also specify picture
comments, which are created using PicComment. A picture comment contains data or
commands for special processing by output devices, such as PostScript printers. If your
application requires capability beyond that provided by QuickDraw drawing functions,
PicComment allows your application to pass data or commands direct to the output device.

You typically use QuickDraw commands when drawing to the screen and picture
comments to include special drawing commands for printers only.

'PICT' Files, 'PICT' Resources, and 'PICT' Scrap Format

QuickDraw provides functions for creating and drawing pictures. File Manager and
Resource Manager functions are used to read pictures from, and write pictures to, a disk.
Scrap Manager functions are used to read pictures from, and write pictures to, the
scrap1.

A picture can be stored as a 'PICT' resource in the resource fork of any file type. A picture
can also be stored in the data fork of a file of type 'PICT'. The data fork of a 'PICT' file
contains a 512-byte header that applications can use for their own purposes.

For each application, the Scrap Manager maintains a storage area to hold the last data
cut or copied by the user. The area that is available to your application for this purpose
is called the scrap. All applications that support copy-and-paste operations read data
from, and write data to, the scrap. The 'PICT' scrap format is one of two standard scrap
formats. (The other is 'TEXT'.)

The Picture Utilities

In addition to the QuickDraw functions for creating and drawing pictures, system
software provides a group of functions called the Picture Utilities for examining the
content of pictures. You typically use the Picture Utilities before displaying a picture.

The Picture utilities allow you to gather colour, comment, font, resolution, and other
information about pictures. You might use the Picture Utilities, for example, to
determine the 256 most-used colours in a picture, and then use the Palette Manager to
make those colours available for the window in which the application needs to draw the
picture.

1 See Chapter 18 — Scrap.

13-4 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

Creating Pictures

As previously stated, you use the OpenCPicture function to begin defining a picture.
OpenCPicture collects your subsequent drawing commands in a new Picture structure. To
complete the collection of drawing (and picture comment) commands which define your
picture, call ClosePicture.

You pass information to OpenCPicture in the form of an OpenCPicParams structure:
OpenCPicParams = RECORD

srcRect: Rect; { Optimal bounding rectangle. }
hRes: Fixed; { Best horizontal resolution. }
vRes: Fixed; { Best vertical resolution. }
version: INTEGER; { Set to -2. }
reserved1: INTEGER; { (Reserved. Set to 0.) }
reserved2: LONGINT; { (Reserved. Set to 0.) }
END;

This structure provides a simple mechanism for specifying resolutions when creating
images. For example, applications that create pictures from scanned images can specify
resolutions higher than 72 dpi.

Clipping Region

You should always use ClipRect to specify a clipping region appropriate to your picture
before calling OpenCPicture. If you do not specify a clipping region, OpenCPicture uses the
clipping region specified in the current colour graphics port. If this region is very large
(as it is when the graphics port is initialised, being set to the size of the coordinate plane
by that initialisation) and you scale the picture when drawing it, the clipping region can
become invalid when DrawPicture scales the clipping region, in which case your picture will
not be drawn. On the other hand, if the graphics port specifies a small clipping region,
part of your drawing may be clipped when you draw it. Setting the clipping region equal
to the port rectangle of the current graphics port always sets a valid clipping region.

Opening and Drawing Pictures

Using File Manager functions, your application can retrieve pictures saved in 'PICT' files.2

Using the GetPicture function, your application can retrieve pictures saved in the resource
forks of other file types. Using the Scrap Manager function GetScrap, your application can
retrieve pictures stored in the scrap.

When the picture is retrieved, you should call DrawPicture to draw the picture. The second
parameter taken by DrawPicture is the destination rectangle, which should be specified in
coordinates local to the current graphics port. DrawPicture shrinks or stretches the picture
as necessary to make it fit into this rectangle.

When you are finished using a picture stored as a 'PICT' resource, you should use the
resource Manager function ReleaseResource to release its memory.

Saving Pictures

After creating or changing pictures, your application should allow the user to save them.
To save a picture in a 'PICT' file, you should use the appropriate File Manager functions.2
(Remember that the first 512 bytes of a 'PICT' file are reserved for your application's own
purposes.) To save pictures in a 'PICT' resource, you should use the appropriate Resource
Manager functions. To place a picture in the Scrap (for example, to respond to the user
choosing the Copy command to copy a picture to the clipboard), you should use the Scrap
Manager function PutScrap.

2 The demonstration program at Chapter 16 — Files shows how to read pictures from, and save pictures to, files of type
'PICT'.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-5

Version 2.1

Gathering Picture Information

GetPictInfo may be used to gather information about a single picture, and GetPixMapInfo may
be used to gather colour information about a single pixel map or bit map. Each of these
functions returns colour and resolution information in a PictInfo structure. A PictInfo
structure can also contain information about the drawing objects, fonts, and comments in
a picture.

Cursors

Introduction

A cursor is a 256-pixel image in a 16-by-16 pixel square defined in a black-and-white
cursor ('CURS') or colour cursor ('crsr') resource.

Cursor Movement, Hot Spot, Visibility, and Shape

Cursor Movement

Whenever the user moves the mouse, the low-level interrupt-driven mouse functions
move the cursor to a new location on the screen. Your application does not need to do
anything to move the cursor.

Cursor Hot Spot

One point in the cursor's image is designated as the hot spot, which in turn points to a
location on the screen. The hot spot is the part of the pointer that must be positioned
over a screen object before mouse clicks can have an effect on that object. Fig 1
illustrates two cursors and their hot spot points. Note that the hot spot is a point, not a
bit.

1

1

7

7

FIG 1 - HOT SPOTS IN CURSORS

Cursor Visibility

In general, you should always make the cursor visible to your application, although there
are a few cases where the cursor should not be visible. For example, in a text-editing
application, the cursor should be made invisible, and the insertion point made to blink,
when the user begins entering text. In such cases, the cursor should be made visible
again only when the user moves the mouse.

Cursor Shape

Your application should change the shape of the cursor in the following circumstances:

13-6 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

• To indicate that the user is over a certain area of the screen. For example, when
the cursor is in the menu bar, it should usually have an arrow shape. When the
user moves the cursor over a text document, your application should change the
cursor to the I-beam shape.

• To provide feedback about the status of the computer system. For example, if an
operation will take a second or two, you should provide feedback to the user by
changing the cursor to the wristwatch cursor (see Fig 2). If the operation takes
several seconds and the user can do nothing in your application but stop the
operation, wait until it is completed, or switch to another application, you should
display an animated cursor (see below).3

Non-Animated Cursors

System 'CURS' and 'crsr' Resources

The System file in the System Folder contains an number of 'CURS' resources. The
following constants represent the 'CURS' resource IDs for the basic cursors shown at Fig 2:

Constant Value Description
iBeamCursor 1 Used in text editing.
crossCursor 2 Often used for manipulating graphics.
plusCursor 3 Often used for selecting fields in an

array.
watchCursor 4 Used when a short operation is in

progress.

FIG 2 - THE I-BEAM, CROSSHAIRS, PLUS SIGN, AND WRISTWATCH CURSORS

The Mac OS 8.0 and later System file contains additional 'CURS' resources. The Mac OS
8.5 and later System file contains three 'crsr' resources. The following are the resource
IDs for the additional cursors as shown as Fig 3:

Constant Value Description
- -20488 Contextual menu arrow cursor.
- -20487 Alias arrow cursor.
- -20486 Copy arrow cursor.
- -20452 Resize left cursor.
- -20451 Resize right cursor.
- -20450 Resize left/right cursor.
- -20877 Pointing hand cursor.
- -20876 Open hand pointer.
- -20875 Close hand pointer.

FIG 3 - ADDITIONAL CURSOR AND COLOUR CURSOR RESOURCES

Custom 'CURS' and 'crsr' Resources

To create custom cursors, you need to define 'CURS' or 'crsr' resources in the resource file
of your application.

3 If the operation takes longer than several seconds, you should display a dialog box with a progress indicator. (See
Chapter 23 — Miscellany.)

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-7

Version 2.1

Changing Cursor Shape

Your application is responsible for setting the initial appearance of the cursor and for
changing the appearance of the cursor as appropriate for your application.

To change cursor shape, your application must get a handle to the relevant cursor (either
a custom cursor or one of the system cursors shown at Figs 2 and 3) by specifying its
resource ID in a call to GetCursor or GetCCursor. GetCursor returns a handle to a Cursor
structure. GetCCursor returns a handle to a CCrsr structure. The address of the Cursor or CCrsr
structure is then used in a call to SetCursor or SetCCursor to change the cursor shape.

Changing Cursor Shape — Appearance-
Compliant Methodology

Mac OS 8.5 (or, more specifically, Appearance Manager Version 1.1) introduced a new
function (SetThemeCursor) for setting the cursor to a version of the specified cursor type that
is consistent with the current appearance. You must pass one of the following constants,
which are of type ThemeCursor, in the inCursor parameter of SetThemeCursor:

Constant Value Comments
kThemeArrowCursor 0
kThemeCopyArrowCursor 1
kThemeAliasArrowCursor 2
kThemeContextualMenuArrowCursor 3
kThemeIBeamCursor 4
kThemeCrossCursor 5
kThemePlusCursor 6
kThemeWatchCursor 7 Can animate.
kThemeClosedHandCursor 8
kThemeOpenHandCursor 9
kThemePointingHandCursor 10
kThemeCountingUpHandCursor 11 Can animate.
kThemeCountingDownHandCursor 12 Can animate.
kThemeCountingUpAndDownHandCursor 13 Can animate.
kThemeSpinningCursor 14 Can animate.
kThemeResizeLeftCursor 15
kThemeResizeRightCursor 16
kThemeResizeLeftRightCursor 17

Changing Cursor Shape in Response to
Mouse-Moved Events

Most applications set the cursor to the I-beam shape when the cursor is inside a text-
editing area of a document, and they change the cursor to an arrow when the cursor is
inside the scroll bars. Your application can achieve this effect by requesting that the
Event Manager report mouse-moved events if the user moves the cursor out of a region
you specify in the mouseRgn parameter to the WaitNextEvent function. Then, when a mouse-
moved event is detected in your main event loop, you can use SetCursor, SetCCursor, or, for
appearance-compliant cursors, SetThemeCursor, to change the cursor to the appropriate
shape.4

4 Note that your application may also have to accommodate the cursor shape changing requirements of modeless dialog
boxes with edit text field items.as well as its main windows.

13-8 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

Changing Cursor Shape in Response to
Resume Events

Your application also needs to set the cursor shape in response to resume events,
normally by setting the arrow cursor.

Hiding Cursors

You can remove the cursor image from the screen using HideCursor. You can hide the
cursor temporarily using ObscureCursor or you can hide the cursor in a given rectangle by
using ShieldCursor. To display a hidden cursor, use ShowCursor. Note, however, that you do
not need to explicitly show the cursor after your application uses ObscureCursor because the
cursor automatically reappears when the user moves the mouse again.

Animated Cursors

Appearance-Compliant Methodology

Mac OS 8.5 (or, more specifically, Appearance Manager Version 1.1) introduced a new
function (SetThemeAnimatedCursor) for animating a version of the specified cursor type that is
consistent with the current appearance. You must pass one of the following constants,
which are of type ThemeCursor, in the inCursor parameter of SetThemeAnimatedCursor:

Constant Value
kThemeWatchCursor 7
kThemeCountingUpHandCursor 11
kThemeCountingDownHandCursor 12
kThemeCountingUpAndDownHandCursor 13
kThemeSpinningCursor 14

Non-Appearance-Compliant Methodology

Non-appearance-compliant animated cursors require: a series of 'CURS' (or 'crsr') resources
that make up the "frames" of the animation; an 'acur' resource, which collects and orders
the 'CURS' frames into a single animation, specifying the IDs of the resources and the
sequence for displaying them in the animation.

System 'acur', and 'CURS' Resources

The Mac OS 8.0 and later System file contains an 'acur' resource (ID -6079), together the
associated eight 'CURS' resources, for an animated watch cursor. It also contains eight
'CURS' resources (IDs -20701 to -20708) for an animated spinning (beach ball) cursor and
six 'CURS' resources (IDs -20709 to -20714) for an animated counting hand cursor.

Custom 'acur' and 'CURS' Resources

Fig 4 shows the structure of a compiled 'acur' resource, and an 'acur' resource and one of
its associated 'CURS' resources being created using Resorcerer.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-9

Version 2.1

FIG 4 - CREATING AN 'acur' RESOURCE AND ASSOCIATED 'CURS' RESOURCES USING RESORCERER

INUMBER OF CURSORS

NEXT FRAME TO SHOW

RESOURCE ID FOR FIRST FRAME

RESOURCE ID FOR LAST FRAME

RESERVED

RESERVED

STRUCTURE OF A COMPILED
WINDOW ('acur') RESOURCE

Creating the Animated Cursor

The following are the steps required to create the animated cursor:

• If you do not intend to use the system-supplied 'acur' and associated 'CURS' resources:

• Create a series of 'CURS' resources that make up the "frames" of the
animation.

• Create an 'acur' resource.

• Load the 'acur' resource into an application-defined structure which replicates the
structure of an 'acur' resource, for example:

typedef struct
{

short numberOfFrames;
short whichFrame;
CursHandle frame[];

} animCurs, *animCursPtr, **animCursHandle;

• Load the 'CURS' resources using GetCursor and assign handles to the resulting Cursor
structures to the elements of the frame field.

• At the desired interval, call SetCursor to display each cursor, that is, each "frame", in
rapid succession, returning to the first frame after the last frame has been
displayed.

13-10 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

Icons

Icons and the Finder

As stated at Chapter 9 — Finder Interface, the Finder uses icons to graphically
represents objects, such as files and directories, on the desktop. Chapter 9 also
introduced the subject of icon families, and stated that your application should provide
the Finder with a family of specially designed icons for the application file itself and for
each of the document types created by the application.

The provision of a family of icon types for each desktop object, rather than just one icon
type, enables the Finder to automatically select the appropriate family member to display
depending on the icon size specified by the user and the bit depth of the display device.
Chapter 9 described the components of an icon family used by the Finder as follows:

Icon Size (Pixels) Resource in Which Defined
Large black-and-white icon, and mask 32 by 32 Icon list ('ICN#').
Small black-and-white icon, and mask 16 by 16 Small icon list ('ics#')
Mini black-and-white icon, and mask 12 by 16 Mini icon list ('icm#')
Large colour icon with 4 bits of colour data per
pixel

32 by 32 Large 4-bit colour icon ('icl4')

Small colour icon with 4 bits of colour data per
pixel

16 by 16 Small 4-bit colour icon ('ics4')

Mini colour icon with 4 bits of colour data per
pixel

12 by 16 Mini 4-bit colour icon ('icm4')

Large colour icon with 8 bits of colour data per
pixel

32 by 32 Large 8-bit colour icon ('icl8')

Small colour icon with 8 bits of colour data per
pixel

16 by 16 Small 8-bit colour icon ('ics8')

Mini colour icon with 8 bits of colour data per
pixel

12 by 16 Mini 8-bit colour icon ('icm8')

 Creating Icon Family Resources Using Resorcerer

Fig 3 at Chapter 9 — Finder Interface shows icon families being created using
Resorcerer.

The 'icns' Resource

The 'icns' resource contains all of the data for four icon sizes, thus providing a single
source for icon data as opposed to the collection of icon resources ('ics#', 'icl4', 'icm8', etc.)
described above. This speeds up icon fetching and simplifies resource management.

Historical Note

The 'icns' resource was introduced with Mac OS 8.5.

The four icon sizes are mini, small, large, and huge, the latter being a new size of 48 by
48 pixels. Four colour depths (1-bit, 4-bit, 8-bit, and 32-bit) and two kind of masks (1-bit
and 8-bit) are supported. The deep (8 bit) mask means that masks can have 256 different
levels of transparency.

Icon Services checks for an 'icns' resource of the specified ID before it checks for the older
resource types ('ics#', 'icl4', 'icm8', etc.) of the same ID. If an 'icns' resource is found, Icon
Services obtains all icon data exclusively from that resource.

As of Version 2.2, Resorcerer had no pixel editor for 'icns' resources. However, a
command available in the Icon Family editor will take all icons currently being shown and

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-11

Version 2.1

build an 'icns' resource with the same resource ID as those icons. (Choose Build/Update 'icns'
from the IconFamily menu.)

Other Icons — Icons, Colour Icons and Small Icons

Other icon types are the icon, colour icon, and small icon. Note that the Finder does
not use or display these icon types.

Icon ('ICON')

The icon is defined in an 'ICON' resource, which contains a bit map for a 32-by-32 pixel
black-and-white icon. Because it is always displayed on a white background, it does not
need a mask.

Colour Icon ('cicn')

The colour icon is defined in a 'cicn' resource, which has a special format which includes a
pixel map, a bit map, and a mask. You can use a 'cicn' resource to define a colour icon
with a width and height between 8 and 256 pixels. You can also define the bit depth for a
colour icon resource.

Small Icon ('SICN')

The small icon is defined in a 'SICN' resource. Small icons are 12 by 16 pixels even though
they are stored in a resource as 16-by-16 pixel bitmaps. A 'SICN' resource consists of a list
of 16-by-16 pixel bitmaps for black-and-white icons.5

Icons in Windows, Menus, and Alert and Dialog Boxes

The icons provided by your application for the Finder (or the default system-suppled
icons used by the Finder if your application does not provide its own icons) are displayed
on the desktop. Your application can also display icons in its menus, dialog boxes and
windows.

Icons in Windows

You can display icons of any kind in your windows using the appropriate Icon Utilities
functions.

Icons in Menus

The Menu Manager allows you to display icons of resource types 'ICON' (icon) 'cicn' (colour
icon), and 'SICN' (small icon) in menu items. The procedure is as follows:

• Create the icon resource with a resource ID between 257 and 511. Subtract 256
from the resource ID to get a value called the icon number. Specify the icon
number in the Icon field of the menu item definition.

• For an icon ('ICON'), specify 0x1D in the keyboard equivalent field of the menu item
definition to indicate to the Menu Manager that the icon should be reduced to fit
into a 16-by-16 pixel rectangle. Otherwise, specify a value of $00, or a value greater
than $20, in the keyboard equivalent field to cause the Menu Manager to expand the
item's rectangle so as to display the icon at its normal 32-by-32 pixel size. (A value
greater than 0x20 in the keyboard equivalent field specifies the item's Command-key
equivalent.)

• For a colour icon ('cicn'), specify $00 or a value greater than $20 in the keyboard
equivalent field. The Menu Manager automatically enlarges the enclosing
rectangle of the menu item according to the rectangle specified in the 'cicn'

5 Typically, only the Finder and the Standard File Package use small icons.

13-12 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

resource. (Colour icons, unlike icons, can be any height or width between 8 and 64
pixels.)

• For a small icon ('SICN'), specify $1E in the keyboard equivalent field. This indicates
that the item has an icon defined by a 'SICN' resource. The Menu Manager plots the
icon in a 16-by-16 pixel rectangle.

The Menu Manager will then automatically display the icon whenever you display the
menu using the MenuSelect function. The Menu Manager first looks for a 'cicn' resource with
the resource ID calculated from the icon number and displays that icon if it is found. If a
'cicn' resource is not found and the keyboard equivalent field specifies 0x1E, the Menu
Manager looks for a 'SICN' resource with the calculated resource ID. Otherwise, the Menu
Manager searches for an 'ICON' resource and plots it in either a 32-by-32 pixel rectangle
or a 16-by-16 bit rectangle, depending on the value in the menu item's keyboard
equivalent field.6

Icons in Alert and Dialog Boxes

The Dialog Manager allows you to display icons of resource types 'ICON' (icon) and 'cicn'
(colour icon) in alert and dialog boxes. You can display the icon alone or within an image
well.

To display the icon alone, the procedure is to define an item of type Icon and provide the
resource ID of the icon in the item list ('DITL') resource for the dialog. This will cause the
Dialog Manager to automatically display the icon whenever you display the alert or
dialog box using Dialog Manager functions.

To display the icon within an image well, include an image well control in the alert or
dialog box's item list and assign the resource ID of the icon to the control's minimum
value field.

If you provide a colour icon ('cicn') resource with the same resource ID as an icon ('ICON')
resource, the Dialog Manager displays the colour icon instead of the black-and-white
icon.

Ordinarily, you would use the Alert function (which does not automatically draw a system-
supplied alert icon in the alert box), or the StandardAlert function with kAlertPlainAlert passed in
the inAlertType parameter, when you wish to display an alert containing your own icon (for
example, in your application's About… alert box). If you invoke an alert box using the
NoteAlert, CautionAlert, or StopAlert functions, or with the StandardAlert function with an alert type
constant of other than kAlertPlainAlert passed in the inAlertType parameter, the Dialog Manager
draws the system-supplied black-and-white icon as well as your icon. Since your icon is
drawn last, you can obscure the system-suppled icon by positioning your icon at the same
coordinates.

Drawing and Manipulating Icons

The Icon Utilities allow your application (and the system software) to draw and
manipulate icons of any standard resource type in windows and, subject to the limitations
and requirements previously described, in menus and dialog boxes.

6 Note that, for the Apple and Application menus, the Menu Manager either automatically reduces the icon to fit within the
enclosing rectangle of the menu item or uses the appropriate icon from the application's icon family, such as the 'icl8'
resource, if one is available.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-13

Version 2.1

You need to use Icon Utilities functions only if:

• You wish to draw icons in your application's windows.

• You wish to draw icons which are not recognised by the Menu Manager and the
Dialog Manager in, respectively, menu items and dialog boxes.

Preamble - Icon Families, Suites, and
Caches

Icon Families

You can define individual icons of resource types 'ICON', 'cicn', and 'SICN' that are not part of
an icon family and use Icon Utilities functions to draw them as required. However, to
display an icon effectively at a variety of sizes and bit depths, you should provide an icon
family7 in the same way that you provide icon families for the Finder. The advantage of
providing an icon family is that you can then leave it to functions such as PlotIconID, which
are used to draw icons, to automatically determine which icon in the icon family is best
suited to the specified destination rectangle and current display bit depth.

Icon Suites

Some Icon Utilities functions take as a parameter a handle to an icon suite. An icon
suite typically consists of one or more handles to icon resources from a single icon family
which have been read into memory. The GetIconSuite function may be used to get a handle
to an icon suite, which can then be passed to functions such as PlotIconSuite to draw that
icon in the icon suite best suited to the destination rectangle and current display bit
depth. An icon suite can contain handles to each of the six icon resources that an icon
family can contain, or it can contain handles to only a subset of the icon resources in an
icon family. For best results, an icon suite should always include a resource of type 'ICN#'
in addition to any other large icons you provide and a resource of type 'ics#' in addition to
any other small icons you provide.

When you create an icon suite from icon family resources, the associated resource file
should remain open while you use Icon Utilities functions.

Icon Cache

An icon cache is like an icon suite except that it also contains a pointer to an
application-defined icon getter function and a pointer to data that is associated with
the icon suite. You can pass a handle to an icon cache to any of the Icon Utilities
functions which accept a handle to an icon suite. An icon cache typically does not
contain handles to the icon resources for all icon family members. Instead, if the icon
cache does not contain an entry for a specific type of icon in an icon family, the Icon
Utilities functions call your application's icon getter function to retrieve the data for that
icon type.

Drawing an Icon Directly From a Resource

To draw an icon from an icon family without first creating an icon suite, use the PlotIconID
function. PlotIconID determines, from the size of the specified destination rectangle and the
current bit depth of the display device, which icon to draw. The icon drawn is as follows:

7 Each icon in an icon family shares the same resource ID as other icons in the family but has its own resource type
identifying the icon data it contains.

13-14 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

Destination Rectangle Size Icon Drawn
Width or height greater than or equal to 32. The 32-by-32 pixel icon with the appropriate bit

depth.
Less than 32 by 32 pixels and greater than 16
pixels wide or 12 pixels high.

The 16-by-16 pixel icon with the appropriate bit
depth.

Height less than or equal to 12 pixels or width
less than or equal to 16 pixels.

The 12-by-16 pixel icon with the appropriate bit
depth.

Icon Stretching and Shrinking

Depending on the size of the rectangle, PlotIconID may stretch or shrink the icon to fit. To
draw icons without stretching them, PlotIconID requires that the destination rectangle have
the same dimensions as one of the standard icons.

Icon Alignment and Transform

In addition to destination rectangle and resource ID parameters, PlotIconID takes
alignment and transform parameters. Icon Utilities functions can automatically align
an icon within its destination rectangle. (For example, an icon which is taller than it is
wide can be aligned to either the right or left of its destination rectangle.) These
functions can also transform the appearance of the icon in standard ways analogous to
Finder states for icons.

Variables of type IconAlignmentType and IconTransformType should be declared and assigned
values representing alignment and transform requirements. Constants, such as
kAlignAbsoluteCenter and kTransformNone, are available to specify alignment and transform
requirements.

Getting an Icon Suite and Drawing One of Its
Icons

The GetIconSuite function, with the constant kSelectorAllAvailableData passed in the third
parameter, is used to get all icons from an icon family with a specified resource ID and to
collect the handles to the data for each icon into an icon suite. An icon from this suite
may then be drawn using PlotIconSuite which, like PlotIconID, takes destination rectangle,
alignment and transform parameters and stretches or shrinks the icon if necessary.

Drawing Specific Icons From an Icon Family

If you need to plot a specific icon from an icon family rather than use the Icon Utilities to
automatically select a family member, you must first create an icon suite which contains
only the icon of the desired resource type together with its corresponding mask.
Constants such as kSelectorLarge4Bit (an icon selector mask for an 'icl4' icon) are used as the
third parameter of the GetIconSuite call to retrieve the required family member. You can
then use PlotIconSuite to plot the icon.

Drawing Icons That Are Not Part of an Icon
Family

To draw icons of resource type 'ICON' and 'cicn' in menu items and dialog boxes, and icons
of resource type 'SICN' in menu items, you use Menu Manager and Dialog Manager
functions such as SetItemIcon and SetDialogItem.

To draw resources of resource type 'ICON', 'cicn', and 'SICN' in your application's windows,
you use the following functions:

Resource Type Function to Get Icon Functions to Draw Icon
'ICON' GetIcon PlotIconHandle

PlotIcon

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-15

Version 2.1

'cicn' GetCIcon PlotCIconHandle
PlotCIcon

'SICN' GetResource PlotSICNHandle

The functions in this list ending in Handle allow you to specify alignment and transforms
for the icon.

Manipulating Icons

The GetIconFromSuite function may be used to get a handle to the pixel data for a specific
icon from an icon suite. You can then use this handle to manipulate the icon data, for
example, to alter its colour or add three-dimensional shading.

The Icon Utilities also include functions which allow you to perform an action on one or
more icons in an icon suite and to perform hit testing on icons.

Main Constants, Data Types and Functions — Offscreen Graphics
Worlds

Constants

Flags for GWorldFlags Parameter

pixPurgeBit = 0 Set to make base address for offscreen pixel image purgeable.
noNewDeviceBit = 1 Set to not create a new GDevice structure for offscreen world.
pixelsPurgeableBit = 6 Set to make base address for pixel image purgeable.
pixelsLockedBit = 7 Set to lock base address for offscreen pixel image.

Data Types
GWorldPtr = CGrafPtr;
GWorldFlags = UInt32;

Functions

Creating, Altering, and Disposing of Offscreen Graphics Worlds

FUNCTION NewGWorld(VAR offscreenGWorld: GWorldPtr; PixelDepth: INTEGER;
{CONST}VAR boundsRect: Rect; cTable: CTabHandle; aGDevice: GDHandle;
flags: GWorldFlags): QDErr;

FUNCTION UpdateGWorld(VAR offscreenGWorld: GWorldPtr; pixelDepth: INTEGER;
CONST}VAR boundsRect: Rect; cTable: CTabHandle; aGDevice: GDHandle;
flags: GWorldFlags): GWorldFlags;

PROCEDURE DisposeGWorld(offscreenGWorld: GWorldPtr);

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

PROCEDURE GetGWorld(VAR port: CGrafPtr; VAR gdh: GDHandle);
PROCEDURE SetGWorld(port: CGrafPtr; gdh: GDHandle);

Managing an Offscreen Graphics World's Pixel Image

FUNCTION GetGWorldPixMap(offscreenGWorld: GWorldPtr): PixMapHandle;
FUNCTION LockPixels(pm: PixMapHandle): BOOLEAN;
PROCEDURE UnlockPixels(pm: PixMapHandle);
PROCEDURE AllowPurgePixels(pm: PixMapHandle);
PROCEDURE NoPurgePixels(pm: PixMapHandle);
FUNCTION GetPixelsState(pm: PixMapHandle): GWorldFlags;
PROCEDURE SetPixelsState(pm: PixMapHandle; state: GWorldFlags);
FUNCTION GetPixBaseAddr(pm: PixMapHandle): Ptr;
FUNCTION PixMap32Bit(pmHandle: PixMapHandle): BOOLEAN;

13-16 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

Main Constants, Data Types and Functions — Pictures

Constants

Verbs for the GetPictInfo, GetPixMapInfo, and NewPictInfo calls

returnColorTable = $0001 Return a ColorTable structure.
returnPalette = $0002 Return a Palette structure.
recordComments = $0004 Return comment information.
recordFontInfo = $0008 Return font information.
suppressBlackAndWhite = $0010 Do not include black and white.

Colour Pick Methods for the GetPictInfo, GetPixMapInfo, and NewPictInfo calls

systemMethod = 0, System color pick method.
popularMethod = 1, Most popular set of colors.
medianMethod = 2, A good average mix of colors.

Data Types

Picture

Picture = RECORD
picSize: INTEGER; { For a version 1 picture: its size. }
picFrame: Rect; { Bounding rectangle for the picture. }
END;

PicPtr = ^Picture;
PicHandle = ^PicPtr;

OpenCPicParams

OpenCPicParams = RECORD
srcRect: Rect; { Optimal bounding rectangle. }
hRes: Fixed; { Best horizontal resolution. }
vRes: Fixed; { Best vertical resolution. }
version: INTEGER; { Set to -2. }
reserved1: INTEGER; { (Reserved. Set to 0.) }
reserved2: LONGINT; { (Reserved. Set to 0.) }
END;

PictInfo

PictInfo = RECORD
version: INTEGER; { This is always zero, for now. }
uniqueColors: LONGINT; { The number of actual colors in the picture/pixmap. }
thePalette: PaletteHandle; { Handle to the palette information. }
theColorTable: CTabHandle; { Handle to the color table. }
hRes: Fixed; { Maximum horizontal resolution for all the pixmaps. }
vRes: Fixed; { Maximum vertical resolution for all the pixmaps. }
depth: INTEGER; { Maximum depth for all the pixmaps (in the picture). }
sourceRect: Rect; { The picture frame rectangle (this contains the entire

picture). }
textCount: LONGINT; { Total number of text strings in the picture. }
lineCount: LONGINT; { Total number of lines in the picture. }
rectCount: LONGINT; { Total number of rectangles in the picture. }
rRectCount: LONGINT; { Total number of round rectangles in the picture. }
ovalCount: LONGINT; { Total number of ovals in the picture. }
arcCount: LONGINT; { Total number of arcs in the picture. }
polyCount: LONGINT; { Total number of polygons in the picture. }
regionCount: LONGINT; { Total number of regions in the picture. }
bitMapCount: LONGINT; { Total number of bitmaps in the picture. }
pixMapCount: LONGINT; { Total number of pixmaps in the picture. }
commentCount: LONGINT; { Total number of comments in the picture. }
uniqueComments: LONGINT; { The number of unique comments in the picture. }
commentHandle: CommentSpecHandle;{ Handle to all the comment information. }
uniqueFonts: LONGINT; { The number of unique fonts in the picture. }
fontHandle: FontSpecHandle; { Handle to the FontSpec information. }
fontNamesHandle: Handle; { Handle to the font names. }
reserved1: LONGINT;
reserved2: LONGINT;
END;

PictInfoPtr = ^PictInfo;
PictInfoHandle = ^PictInfoPtr;

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-17

Version 2.1

CommentSpec

CommentSpec = RECORD
count: INTEGER; { Number of occurrances of this comment ID. }
ID: INTEGER; { ID for the comment in the picture. }
END;

CommentSpecPtr = ^CommentSpec;
CommentSpecHandle = ^CommentSpecPtr;

FontSpec

FontSpec = RECORD
pictFontID: INTEGER; { ID of the font in the picture. }
sysFontID: INTEGER; { ID of the same font in the current system file. }
size: ARRAY [0..3] OF LONGINT; { bit array of all the sizes found (1..127)

(bit 0 means > 127). }
style: INTEGER; { Combined style of all occurrances of the font. }
nameOffset: LONGINT; { Offset into the fontNamesHdl handle for the font name. }
END;

FontSpecPtr = ^FontSpec;
FontSpecHandle = ^FontSpecPtr;

Functions

Creating and Disposing of Pictures

FUNCTION OpenCPicture({CONST}VAR newHeader: OpenCPicParams): PicHandle;
PROCEDURE PicComment(kind: INTEGER; dataSize: INTEGER; dataHandle: Handle);
PROCEDURE ClosePicture;
PROCEDURE KillPicture(myPicture: PicHandle);

Drawing Pictures

PROCEDURE DrawPicture(myPicture: PicHandle; {CONST}VAR dstRect: Rect);
FUNCTION GetPicture(pictureID: INTEGER): PicHandle;

Collecting Picture Information

FUNCTION GetPictInfo(thePictHandle: PicHandle; VAR thePictInfo: PictInfo; verb: INTEGER; colorsRequested: INTEGER;
colorPickMethod: INTEGER; version: INTEGER): OSErr;

FUNCTION GetPixMapInfo(thePixMapHandle: PixMapHandle; VAR thePictInfo: PictInfo; verb: INTEGER; colorsRequested:
INTEGER; colorPickMethod: INTEGER; version: INTEGER): OSErr;

FUNCTION NewPictInfo(VAR thePictInfoID: PictInfoID; verb: INTEGER; colorsRequested: INTEGER; colorPickMethod:
INTEGER; version: INTEGER): OSErr;

FUNCTION RecordPictInfo(thePictInfoID: PictInfoID; thePictHandle: PicHandle): OSErr;
FUNCTION RecordPixMapInfo(thePictInfoID: PictInfoID; thePixMapHandle: PixMapHandle): OSErr;
FUNCTION RetrievePictInfo(thePictInfoID: PictInfoID; VAR thePictInfo: PictInfo; colorsRequested: INTEGER): OSErr;
FUNCTION DisposePictInfo(thePictInfoID: PictInfoID): OSErr;

Main Constants, Data Types and Functions — Cursors

Constants
iBeamCursor = 1
crossCursor = 2
plusCursor = 3
watchCursor = 4

Data Types

Cursor

Cursor = RECORD
data: Bits16;
mask: Bits16;
hotSpot: Point;
END;

CursorPtr = ^Cursor;
CursPtr = ^Cursor;

13-18 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

CursHandle = ^CursPtr;

CCrsr

CCrsr = RECORD
crsrType: INTEGER; { Type of cursor. }
crsrMap: PixMapHandle; { The cursor's pixmap. }
crsrData: Handle; { Cursor's data. }
crsrXData: Handle; { Expanded cursor data. }
crsrXValid: INTEGER; { Depth of expanded data (0 if none). }
crsrXHandle: Handle; { Future use. }
crsr1Data: Bits16; { One-bit cursor. }
crsrMask: Bits16; { Cursor's mask. }
crsrHotSpot: Point; { Cursor's hotspot. }
crsrXTable: LONGINT; { Private. }
crsrID: LONGINT; { Private. }
END;

CCrsrPtr = ^CCrsr;
CCrsrHandle = ^CCrsrPtr;

Acur

Acur = RECORD
n: INTEGER; { Number of cursors ("frames of film"). }
index: INTEGER; { Next frame to show <for internal use>. }
frame1: INTEGER; { 'CURS' resource id for frame #1. }
fill1: INTEGER; { <for internal use>. }
frame2: INTEGER; { 'CURS' resource id for frame #2. }
fill2: INTEGER; { <for internal use>. }
frameN: INTEGER; { 'CURS' resource id for frame #N. }
fillN: INTEGER; { <for internal use>. }
END;

acurPtr = ^Acur;
acurHandle = ^acurPtr;

Functions

Initialising Cursors

PROCEDURE InitCursor;
PROCEDURE InitCursorCtl(newCursors: UNIV acurHandle);

Changing Black-and-White Cursors

FUNCTION GetCursor(cursorID: INTEGER): CursHandle;
PROCEDURE SetCursor({CONST}VAR crsr: Cursor);

Changing Colour Cursors

FUNCTION GetCCursor(crsrID: INTEGER): CCrsrHandle;
PROCEDURE SetCCursor(cCrsr: CCrsrHandle);
PROCEDURE AllocCursor;
PROCEDURE DisposeCCursor(cCrsr: CCrsrHandle);
PROCEDURE DisposCCursor(cCrsr: CCrsrHandle);

Hiding, Showing , and Animating Cursors

PROCEDURE HideCursor;
PROCEDURE ShowCursor;
PROCEDURE ObscureCursor;
PROCEDURE ShieldCursor({CONST}VAR shieldRect: Rect; offsetPt: Point);
PROCEDURE RotateCursor(counter: LONGINT);
PROCEDURE SpinCursor(increment: INTEGER);

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-19

Version 2.1

Appearance Manager Constants, Data Types and Functions —
Cursors

The following constants, data types, and functions were introduced with Mac OS 8.5.

Constants
KThemeArrowCursor = 0
KThemeCopyArrowCursor = 1
KThemeAliasArrowCursor = 2,
KThemeContextualMenuArrowCursor = 3
KThemeIBeamCursor = 4
KThemeCrossCursor = 5
KThemePlusCursor = 6
KThemeWatchCursor = 7 // Can animate
KThemeClosedHandCursor = 8
KThemeOpenHandCursor = 9
KThemePointingHandCursor = 10
KThemeCountingUpHandCursor = 11 // Can animate
KThemeCountingDownHandCursor = 12 // Can animate
KThemeCountingUpAndDownHandCursor = 13 // Can animate
KThemeSpinningCursor = 14 // Can Animate
KThemeResizeLeftCursor = 15
KThemeResizeRightCursor = 16
KThemeResizeLeftRightCursor = 17

Data Types
ThemeCursor = UInt32;

Functions
FUNCTION SetThemeCursor(inCursor: ThemeCursor): OSStatus;
FUNCTION SetAnimatedThemeCursor(inCursor: ThemeCursor; inAnimationStep: UInt32): OSStatus;

Main Constants, Data Types and Functions — Icons

Constants

Types for Icon Families

kLarge1BitMask = 'ICN#'
kLarge4BitData = 'icl4'
kLarge8BitData = 'icl8'
kSmall1BitMask = 'ics#'
kSmall4BitData = 'ics4'
kSmall8BitData = 'ics8'
kMini1BitMask = 'icm#'
kMini4BitData = 'icm4'
kMini8BitData = 'icm8'

IconAlignmentType Values

kAlignNone = $00
kAlignVerticalCenter = $01
kAlignTop = $02
kAlignBottom = $03
kAlignHorizontalCenter = $04
kAlignAbsoluteCenter = kAlignVerticalCenter + kAlignHorizontalCenter
kAlignCenterTop = kAlignTop + kAlignHorizontalCenter
kAlignCenterBottom = kAlignBottom + kAlignHorizontalCenter
kAlignLeft = $08
kAlignCenterLeft = kAlignVerticalCenter + kAlignLeft
kAlignTopLeft = kAlignTop + kAlignLeft
kAlignBottomLeft = kAlignBottom + kAlignLeft
kAlignRight = $0C
kAlignCenterRight = kAlignVerticalCenter + kAlignRight

13-20 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

kAlignTopRight = kAlignTop + kAlignRight
kAlignBottomRight = kAlignBottom + kAlignRight

IconTransformType Values

kTransformNone = $00
kTransformDisabled = $01
kTransformOffline = $02
kTransformOpen = $03
kTransformLabel1 = $0100
kTransformLabel2 = $0200
kTransformLabel3 = $0300
kTransformLabel4 = $0400
kTransformLabel5 = $0500
kTransformLabel6 = $0600
kTransformLabel7 = $0700
kTransformSelected = $4000
kTransformSelectedDisabled = kTransformSelected + kTransformDisabled
kTransformSelectedOffline = kTransformSelected + kTransformOffline
kTransformSelectedOpen = kTransformSelected + kTransformOpen

IconSelectorValue Masks

kSelectorLarge1Bit = $00000001
kSelectorLarge4Bit = $00000002
kSelectorLarge8Bit = $00000004
kSelectorSmall1Bit = $00000100
kSelectorSmall4Bit = $00000200
kSelectorSmall8Bit = $00000400
kSelectorMini1Bit = $00010000
kSelectorMini4Bit = $00020000
kSelectorMini8Bit = $00040000
kSelectorAllLargeData = $000000FF
kSelectorAllSmallData = $0000FF00
kSelectorAllMiniData = $00FF0000
kSelectorAll1BitData = kSelectorLarge1Bit + kSelectorSmall1Bit + kSelectorMini1Bit
kSelectorAll4BitData = kSelectorLarge4Bit + kSelectorSmall4Bit + kSelectorMini4Bit
kSelectorAll8BitData = kSelectorLarge8Bit + kSelectorSmall8Bit + kSelectorMini8Bit
kSelectorAllAvailableData = $FFFFFFFF

Data Types
IconAlignmentType = SInt16;
IconTransformType = SInt16;
IconSelectorValue = UInt32;
IconSuiteRef = Handle;
IconCacheRef = Handle;

CIcon

CIcon = RECORD
iconPMap: PixMap; { the icon's pixMap }
iconMask: BitMap; { the icon's mask }
iconBMap: BitMap; { the icon's bitMap }
iconData: Handle; { the icon's data }
iconMaskData: ARRAY [0..0] OF SInt16; { icon's mask and BitMap data }
END;

CIconPtr = ^CIcon;
CIconHandle = ^CIconPtr;

 Functions

Drawing Icons From Resources

FUNCTION PlotIconID({CONST}VAR theRect: Rect; align: IconAlignmentType;
transform: IconTransformType; theResID: SInt16): OSErr;

PROCEDURE PlotIcon({CONST}VAR theRect: Rect; theIcon: Handle);
FUNCTION PlotIconHandle({CONST}VAR theRect: Rect; align: IconAlignmentType;

transform: IconTransformType; theIcon: Handle): OSErr;
PROCEDURE PlotCIcon({CONST}VAR theRect: Rect; theIcon: CIconHandle);
FUNCTION PlotCIconHandle({CONST}VAR theRect: Rect; align: IconAlignmentType;

transform: IconTransformType; theCIcon: CIconHandle): OSErr;
FUNCTION PlotSICNHandle({CONST}VAR theRect: Rect; align: IconAlignmentType;

transform: IconTransformType; theSICN: Handle): OSErr;

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-21

Version 2.1

Getting Icons From Resources Which do Not Belong to an Icon Family

FUNCTION GetIcon(iconID: SInt16): Handle;
FUNCTION GetCIcon(iconID: SInt16): CIconHandle;

Disposing of Icons

PROCEDURE DisposeCIcon(theIcon: CIconHandle);

Creating an Icon Suite

FUNCTION GetIconSuite(VAR theIconSuite: IconSuiteRef; theResID: SInt16;
selector: IconSelectorValue): OSErr;

FUNCTION NewIconSuite(VAR theIconSuite: IconSuiteRef): OSErr;
FUNCTION AddIconToSuite(theIconData: Handle; theSuite: IconSuiteRef;

theType: ResType): OSErr;

Getting Icons From an Icon Suite

FUNCTION GetIconFromSuite(VAR theIconData: Handle; theSuite: IconSuiteRef;
theType: ResType): OSErr;

Drawing Icons From an Icon Suite

FUNCTION PlotIconSuite({CONST}VAR theRect: Rect; align: IconAlignmentType;
transform: IconTransformType; theIconSuite: IconSuiteRef): OSErr;

Performing Operations on Icons in an Icon Suite

FUNCTION ForEachIconDo(theSuite: IconSuiteRef; selector: IconSelectorValue;
action: IconActionUPP; yourDataPtr: UNIV Ptr): OSErr;

Disposing of Icon Suites

FUNCTION DisposeIconSuite(theIconSuite: IconSuiteRef; disposeData: BOOLEAN): OSErr;

Converting an Icon Mask to a Region

FUNCTION IconSuiteToRgn(theRgn: RgnHandle; {CONST}VAR iconRect: Rect;
align: IconAlignmentType; theIconSuite: IconSuiteRef): OSErr;

FUNCTION IconIDToRgn(theRgn: RgnHandle; {CONST}VAR iconRect: Rect;
align: IconAlignmentType; iconID: SInt16): OSErr;

Determining Whether a Point or Rectangle is Within an Icon

FUNCTION PtInIconID(testPt: Point; {CONST}VAR iconRect: Rect;
align: IconAlignmentType; iconID: SInt16): BOOLEAN;

FUNCTION PtInIconSuite(testPt: Point; {CONST}VAR iconRect: Rect;
align: IconAlignmentType; theIconSuite: IconSuiteRef): BOOLEAN;

FUNCTION RectInIconID({CONST}VAR testRect: Rect; {CONST}VAR iconRect: Rect;
align: IconAlignmentType; iconID: SInt16): BOOLEAN;

FUNCTION RectInIconSuite({CONST}VAR testRect: Rect; {CONST}VAR iconRect: Rect;
align: IconAlignmentType; theIconSuite: IconSuiteRef): BOOLEAN;

Working With Icon Caches

FUNCTION MakeIconCache(VAR theCache: IconCacheRef; makeIcon: IconGetterUPP;
yourDataPtr: UNIV Ptr): OSErr;

FUNCTION LoadIconCache({CONST}VAR theRect: Rect; align: IconAlignmentType;
transform: IconTransformType; theIconCache: IconCacheRef): OSErr;

13-22 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

Demonstration Program
{ ◊◊
// GWorldPicCursIcon.p
// ◊◊
//
// This program:
//
// • Opens a window in which the results of various drawing, copying, and cursor shape
// change operations are displayed.
//
// • Demonstrates offscreen graphics world, picture, cursor, cursor shape change,
// animated cursor, and icon operations as a result of the user choosing items from
// a Demonstration menu.
//
// • Demonstrates a modal dialog-based About… box containing a picture.
//
// To keep the non-demonstration code to a minimum, the program contains no functions
// for updating the window or for responding to activate and operating system events.
//
// The program utilises the following resources:
//
// • An 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).
//
// • A 'WIND' resource (purgeable) (initially visible).
//
// • An 'acur' resource (purgeable).
//
// • 'CURS' resources associated with the 'acur' resource (preload, purgeable).
//
// • Two 'cicn' resources (purgeable), one for the Icons menu item and one for drawing
// in the window.
//
// • Two icon family resources (purgeable), both for drawing in the window.
//
// • A 'DLOG' resource (purgeable) and an associated 'DITL' resource (purgeable) and
// 'PICT' resource for an About GWorldPicCursIcon… dialog box.
//
// • A 'STR#' resource (purgeable) containing transform constants.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents and is32BitCompatible flags
// set.
//
// ◊◊ }

program GWorldPicCursIcon;

//
……
……………………………………… includes

uses

{ Universal Interfaces. }
Appearance, Devices, Fonts, GestaltEqu, Menus, PictUtils, Processes, Sound, TextUtils,
ToolUtils, Resources;

//
……
……………………………………… constants

const

rMenubar = 128;
rWindow = 128;
mApple = 128;
iAbout = 1;
mFile = 129;
iQuit = 11;
mDemonstration = 131;
iOffScreenGWorld1 = 1;
iOffScreenGWorld2 = 2;
iPicture = 3;
iCursor = 4;
iAnimatedCursor = 5;
iIcon = 6;

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-23

Version 2.1

rBeachBallCursor = 128;
rPicture = 128;
rTransformStrings = 128;
rIconFamily1 = 128;
rIconFamily2 = 129;
rColourIcon = 128;
rAboutDialog = 128;
kSleepTime = 1;
kBeachBallTickInterval = 5;
kCountingHandTickInterval = 30;

MAXLONG = $7FFFFFFF;

//
……
……………………………………… typedefs

type

AnimCurs = record
numberOfFrames : SInt16;
whichFrame : SInt16;
frame : array [0..0] of CursHandle;
end;

AnimCursPtr = ^AnimCurs;
AnimCursHandle = ^AnimCursPtr;

//
……
………………… global variables

var

gPreAllocatedBlockPtr : Ptr;
gMacOS85Present : Boolean;
gWindowPtr : WindowPtr;
gDone : boolean;
gInBackground : boolean;
gSleepTime : SInt32;
gCursorRegion : RgnHandle;
gCursorRegionsActive : boolean;
gAnimCursActive : boolean;
gAnimCursResourceHdl : Handle;
gAnimCursHdl : AnimCursHandle;
gAnimCursTickInterval : SInt16;
gAnimCursLastTick : SInt32;
gAnimationStep : UInt32;
gBlackColour : RGBColor;
gWhiteColour : RGBColor;
gBeigeColour : RGBColor;
gBlueColour : RGBColor;

// ……… main
program block variables

osError : OSErr;
response : SInt32;
mainMenubarHdl : Handle;
mainMenuHdl : MenuHandle;
mainErr : OSErr;

//
……
………… routine prototypes

procedure DoInitManagers; forward;
procedure EventLoop; forward;
procedure DoEvents({const} var theEvent : EventRecord); forward;
procedure DoMenuChoice(menuChoice : SInt32); forward;
procedure DoOffScreenGWorld1; forward;
procedure DoOffScreenGWorld2; forward;
procedure DoPicture; forward;
procedure DoCursor; forward;
procedure DoChangeCursor(theWindowPtr : WindowPtr; cursorRegion : RgnHandle); forward;
procedure DoAnimCursor; forward;
function DoGetAnimCursor(int1, int2 : SInt16) : boolean; forward;
procedure DoIncrementAnimCursor; forward;
procedure DoReleaseAnimCursor; forward;
procedure DoIdle; forward;

13-24 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

procedure DoIcon; forward;
procedure DoAboutDialog; forward;
procedure DoGWorldDrawing; forward;
function DoRandomNumber(minimum, maximum : UInt16) : UInt16; forward;

// ◊◊◊ DoInitManagers

procedure DoInitManagers;
var
osError : OSErr;

begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

InitCursor;
FlushEvents(everyEvent, 0);

osError := RegisterAppearanceClient;

end;
{ of procedure DoInitManagers }

// ◊◊ EventLoop

procedure EventLoop;
var
theEvent : EventRecord;
gotEvent : Boolean;

begin
gDone := false;
gSleepTime := MAXLONG;
gCursorRegion := nil;

while not gDone do
begin
gotEvent := WaitNextEvent(everyEvent, theEvent, gSleepTime, gCursorRegion);
if gotEvent then

begin
DoEvents(theEvent);
end

else begin
DoIdle;
end;

end;
end;

{ of procedure EventLoop }

// ◊◊◊ DoEvents

procedure DoEvents({const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
partCode : SInt16;
charCode : SInt8;
ignored : OSStatus;

begin

case (theEvent.what) of

mouseDown: begin
partCode := FindWindow(theEvent.where, theWindowPtr);
case partCode of

inMenuBar: begin
DoMenuChoice(MenuSelect(theEvent.where));
end;

inContent: begin
if (theWindowPtr <> FrontWindow) then

begin

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-25

Version 2.1

SelectWindow(theWindowPtr);
end;

end;

inDrag: begin
DragWindow(theWindowPtr, theEvent.where, qd.screenBits.bounds);
if gCursorRegionsActive then

begin
DoChangeCursor(gWindowPtr, gCursorRegion);
end;

end;
end;

end;

keyDown, autoKey: begin
charCode := BAnd(theEvent.message, charCodeMask);
if (BAnd(theEvent.modifiers, cmdKey) <> 0) then

begin
DoMenuChoice(MenuEvent(theEvent));
end;

end;

updateEvt: begin
BeginUpdate(WindowPtr(theEvent.message));
EndUpdate(WindowPtr(theEvent.message));
end;

osEvt: begin
case BAnd(BSR(theEvent.message, 24), $000000FF) of

suspendResumeMessage: begin
if (BAnd(theEvent.message, resumeFlag) = 1) then

begin
gInBackground := false;

{$ifc TARGET_CPU_PPC}
if (gMacOS85Present = true) then

begin
ignored := SetThemeCursor(kThemeArrowCursor);
end

else begin
SetCursor(qd.arrow);
end;

{$elsec}
SetCursor(qd.arrow);

{$endc}
end

else begin
gInBackground := true;
end;

end;

mouseMovedMessage: begin
DoChangeCursor(FrontWindow, gCursorRegion);
end;

otherwise begin
end;

end;
{ of case statement }

end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoEvents }

// ◊◊◊ DoMenuChoice

procedure DoMenuChoice(menuChoice : SInt32);
var
menuID, menuItem : SInt16;
itemName : Str255;
daDriverRefNum : SInt16;
ignored : OSStatus;

begin
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);

13-26 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

if (menuID = 0) then
begin
Exit(DoMenuChoice);
end;

if (gAnimCursActive = true) then
begin
gAnimCursActive := false;

{$ifc TARGET_CPU_PPC}
if (gMacOS85Present = true) then

begin
ignored := SetThemeCursor(kThemeArrowCursor);
end

else begin
SetCursor(qd.arrow);
DoReleaseAnimCursor;
end;

{$elsec}
SetCursor(qd.arrow);
DoReleaseAnimCursor;

{$endc}
gSleepTime := MAXLONG;
end;

if gCursorRegionsActive then
begin
gCursorRegionsActive := false;
DisposeRgn(gCursorRegion);
gCursorRegion := nil;
end;

case menuID of

mApple: begin
if (menuItem = iAbout) then

begin
DoAboutDialog;
end

else begin
GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);
daDriverRefNum := OpenDeskAcc(itemName);
end;

end;

mFile: begin
if (menuItem = iQuit) then

begin
gDone := true;
end;

end;

mDemonstration: begin
case menuItem of

iOffScreenGWorld1: begin
DoOffScreenGWorld1;
end;

iOffScreenGWorld2: begin
DoOffScreenGWorld2;
end;

iPicture: begin
DoPicture;
end;

iCursor: begin
DoCursor;
end;

iAnimatedCursor: begin
DoAnimCursor;
end;

iIcon: begin
DoIcon;
end;

otherwise begin

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-27

Version 2.1

end;
end;

{ of case statement }
end;

otherwise begin
end;

end;
{ of case statement }

HiliteMenu(0);
end;

{ of procedure DoMenuChoice }

// ◊◊◊ DoOffScreenGWorld1

procedure DoOffScreenGWorld1;
var
windowPortPtr : CGrafPtr;
deviceHdl : GDHandle;
qdErr : QDErr;
gworldPortPtr : GWorldPtr;
gworldPixMapHdl : PixMapHandle;
sourceRect, destRect : Rect;

begin

//
……
………………… draw in window

RGBBackColor(gBlueColour);
EraseRect(gWindowPtr^.portRect);

SetWTitle(gWindowPtr, 'Simulated time-consuming drawing operation');

DoGWorldDrawing;

SetWTitle(gWindowPtr, 'Click mouse to repeat in offscreen graphics port');

while not Button do
begin
end;

RGBBackColor(gBlueColour);
EraseRect(gWindowPtr^.portRect);
RGBForeColor(gWhiteColour);
MoveTo(190, 180);
DrawString('Please Wait. Drawing in offscreen graphics port.');

// ……………………………………………………………………………………… draw in offscreen graphics port and copy to window

SetCursor(GetCursor(watchCursor)^^);

// save current graphics world and create offscreen graphics world

GetGWorld(windowPortPtr, deviceHdl);

qdErr := NewGWorld(gworldPortPtr, 0, gWindowPtr^.portRect, nil, nil, 0);
if ((gworldPortPtr = nil) or (qdErr <> noErr)) then

begin
SysBeep(10);
Exit(DoOffScreenGWorld1);
end;

SetGWorld(gworldPortPtr, nil);

// lock pixel image for duration of drawing and erase offscreen to white

gworldPixMapHdl := GetGWorldPixMap(gworldPortPtr);

if not LockPixels(gworldPixMapHdl) then
begin
SysBeep(10);
Exit(DoOffScreenGWorld1);
end;

EraseRect(gworldPortPtr^.portRect);

// .. draw into the offscreen graphics port

13-28 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

DoGWorldDrawing;

// ... restore saved graphics world

SetGWorld(windowPortPtr, deviceHdl);

// .. set source and destination rectangles

sourceRect := gworldPortPtr^.portRect;
destRect := windowPortPtr^.portRect;

// ensure background colour is white and foreground colour in black, then copy

RGBBackColor(gWhiteColour);
RGBForeColor(gBlackColour);

CopyBits(GrafPtr(gworldPortPtr)^.portBits,
 GrafPtr(windowPortPtr)^.portBits,
 sourceRect, destRect, srcCopy, nil);

if (QDError <> noErr) then
begin
SysBeep(10);
end;

// ... clean up

UnlockPixels(gworldPixMapHdl);
DisposeGWorld(gworldPortPtr);

SetCursor(qd.arrow);

SetWTitle(WindowPtr(windowPortPtr),
'Offscreen Graphics Worlds, Pictures, Cursors and Icons');

end;
{ of procedure DoOffScreenGWorld1 }

// ◊◊◊ DoOffScreenGWorld2

procedure DoOffScreenGWorld2;
var
picture1Hdl, picture2Hdl : PicHandle;
sourceRect, maskRect, maskDisplayRect, dest1Rect, dest2Rect, destRect : Rect;
windowPortPtr : CGrafPtr;
deviceHdl : GDHandle;
qdErr : QDErr;
gworldPortPtr : GWorldPtr;
gworldPixMapHdl : PixMapHandle;
region1Hdl, region2Hdl, regionHdl : RgnHandle;
a, sourceMode : SInt16;

begin
RGBBackColor(gBeigeColour);
EraseRect(gWindowPtr^.portRect);

// …………………………………………………………………………………………… get the source picture and draw it in the window

picture1Hdl := GetPicture(rPicture);
if (picture1Hdl = nil) then

begin
ExitToShell;
end;

HNoPurge(Handle(picture1Hdl));
SetRect(sourceRect, 116, 35, 273, 147);
DrawPicture(picture1Hdl, sourceRect);
HPurge(Handle(picture1Hdl));
MoveTo(116, 32);
DrawString('Source image');

// …………………………………………………… save current graphics world and create offscreen graphics world

GetGWorld(windowPortPtr, deviceHdl);

SetRect(maskRect, 0, 0, 157, 112);

qdErr := NewGWorld(gworldPortPtr, 0, maskRect, nil, nil, 0);

if ((gworldPortPtr = nil) or (qdErr <> noErr)) then
begin

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-29

Version 2.1

SysBeep(10);
Exit(DoOffScreenGWorld2);
end;

SetGWorld(gworldPortPtr, nil);

// …………………………………… lock pixel image for duration of drawing and erase offscreen to white

gworldPixMapHdl := GetGWorldPixMap(gworldPortPtr);

if not LockPixels(gworldPixMapHdl) then
begin
SysBeep(10);
Exit(DoOffScreenGWorld2);
end;

EraseRect(gworldPortPtr^.portRect);

// ………………………………………………………………………… get mask picture and draw it in offscreen graphics port

picture2Hdl := GetPicture(rPicture + 1);
if (picture2Hdl = nil) then

begin
ExitToShell;
end;

HNoPurge(Handle(picture2Hdl));
DrawPicture(picture2Hdl, maskRect);

// ……… also
draw it in the window

SetGWorld(windowPortPtr, deviceHdl);
SetRect(maskDisplayRect, 329, 35, 485, 146);
DrawPicture(picture2Hdl, maskDisplayRect);
HPurge(Handle(picture2Hdl));
MoveTo(329, 32);
DrawString('Copy of offscreen mask');

// ………………………………………………… define an oval-shaped region and a round rectangle-shaped region

SetRect(dest1Rect, 22, 171, 296, 366);
region1Hdl := NewRgn;
OpenRgn;
FrameOval(dest1Rect);
CloseRgn(region1Hdl);

SetRect(dest2Rect, 308, 171, 582, 366);
region2Hdl := NewRgn;
OpenRgn;
FrameRoundRect(dest2Rect, 100, 100);
CloseRgn(region2Hdl);

SetWTitle(WindowPtr(windowPortPtr), 'Click mouse to copy');
while not Button do

begin
end;

// ……… set background and foreground colour, then copy source to destination using mask

RGBForeColor(gBlackColour);
RGBBackColor(gWhiteColour);

for a := 0 to 1 do
begin
if (a = 0) then

begin
regionHdl := region1Hdl;
destRect := dest1Rect;
sourceMode := srcCopy;
MoveTo(22, 168);
DrawString('Boolean source mode srcCopy');
end

else begin
regionHdl := region2Hdl;
destRect := dest2Rect;
sourceMode := srcXor;
MoveTo(308, 168);
DrawString('Boolean source mode srcXor');
end;

13-30 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

CopyDeepMask(GrafPtr(windowPortPtr)^.portBits,
GrafPtr(gworldPortPtr)^.portBits,
GrafPtr(windowPortPtr)^.portBits,
sourceRect, maskRect, destRect, sourceMode + ditherCopy, regionHdl);

if (QDError <> noErr) then
begin
SysBeep(10);
end;

end;

//
……
………………………………… clean up

UnlockPixels(gworldPixMapHdl);
DisposeGWorld(gworldPortPtr);

ReleaseResource(Handle(picture1Hdl));
ReleaseResource(Handle(picture2Hdl));
DisposeRgn(region1Hdl);
DisposeRgn(region2Hdl);

SetWTitle(WindowPtr(windowPortPtr),
'Offscreen Graphics Worlds, Pictures, Cursors and Icons');

end;
{ of procedure DoOffScreenGWorld2 }

// ◊◊ DoPicture

procedure DoPicture;
var
pictureRect, theRect : Rect;
picParams : OpenCPicParams;
oldClipRgn : RgnHandle;
pictureHdl : PicHandle;
a, left, top, right, bottom, random : SInt16;
theColour : RGBColor;
osErr : OSErr;
pictInfo : PictInfo;
theString : Str255;

begin
RGBBackColor(gWhiteColour);
EraseRect(gWindowPtr^.portRect);

// ………
define picture rectangle

pictureRect := gWindowPtr^.portRect;
pictureRect.right := (gWindowPtr^.portRect.right - gWindowPtr^.portRect.left) div 2;
InsetRect(pictureRect, 10, 10);

//
……
…… set clipping region

oldClipRgn := NewRgn;
GetClip(oldClipRgn);
ClipRect(pictureRect);

// …… set up
OpenCPicParams structure

picParams.srcRect := pictureRect;
picParams.hRes := $00480000;
picParams.vRes := $00480000;
picParams.version := -2;

//
……
………………… record picture

pictureHdl := OpenCPicture(picParams);

RGBBackColor(gBlueColour);
EraseRect(pictureRect);

for a := 0 to 299 do
begin

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-31

Version 2.1

theRect := pictureRect;

theColour.red := DoRandomNumber(0, 65535);
theColour.green := DoRandomNumber(0, 65535);
theColour.blue := DoRandomNumber(0, 65535);
RGBForeColor(theColour);

left := DoRandomNumber(10, UInt16(theRect.right + 1));
top := DoRandomNumber(10, UInt16(theRect.bottom + 1));
right := DoRandomNumber(UInt16(left), UInt16(theRect.right + 1));
bottom := DoRandomNumber(UInt16(top), UInt16(theRect.bottom + 1));
SetRect(theRect, left, top, right, bottom);

PenMode(DoRandomNumber(addOver, adMin + 1));

random := DoRandomNumber(0, 6);

if (random = 0) then
begin
MoveTo(left, top);
LineTo(right - 1, bottom - 1);
end

else if (random = 1) then
begin
PaintRect(theRect);
end

else if (random = 2) then
begin
PaintRoundRect(theRect, 30, 30);
end

else if (random = 3) then
begin
PaintOval(theRect);
end

else if (random = 4) then
begin
PaintArc(theRect, 0, 300);
end

else if (random = 5) then
begin
TextSize(DoRandomNumber(10, 70));
MoveTo(left, right);
DrawString('GWorldPicCursIcon');
end;

end;

// ……………………………………………………………… stop recording, draw picture, restore saved clipping region

ClosePicture;

DrawPicture(pictureHdl, pictureRect);

SetClip(oldClipRgn);
DisposeRgn(oldClipRgn);

// ………………………………………………………………………………… display some information from the PictInfo structure

RGBForeColor(gBlueColour);
RGBBackColor(gBeigeColour);
PenMode(patCopy);
OffsetRect(pictureRect, 300, 0);
EraseRect(pictureRect);
FrameRect(pictureRect);
TextSize(10);

osErr := GetPictInfo(pictureHdl, pictInfo, recordFontInfo + returnColorTable, 1,
systemMethod, 0);

if (osErr <> noErr)then
begin
SysBeep(10);
end;

MoveTo(380, 70);
DrawString('Some Picture Information:');

MoveTo(380, 100);
DrawString('Lines: ');
NumToString(pictInfo.lineCount, theString);
DrawString(theString);

13-32 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

MoveTo(380, 115);
DrawString('Rectangles: ');
NumToString(pictInfo.rectCount, theString);
DrawString(theString);

MoveTo(380, 130);
DrawString('Round rectangles: ');
NumToString(pictInfo.rRectCount, theString);
DrawString(theString);

MoveTo(380, 145);
DrawString('Ovals: ');
NumToString(pictInfo.ovalCount, theString);
DrawString(theString);

MoveTo(380, 160);
DrawString('Arcs: ');
NumToString(pictInfo.arcCount, theString);
DrawString(theString);

MoveTo(380, 175);
DrawString('Polygons: ');
NumToString(pictInfo.polyCount, theString);
DrawString(theString);

MoveTo(380, 190);
DrawString('Regions: ');
NumToString(pictInfo.regionCount, theString);
DrawString(theString);

MoveTo(380, 205);
DrawString('Text strings: ');
NumToString(pictInfo.textCount, theString);
DrawString(theString);

MoveTo(380, 220);
DrawString('Unique fonts: ');
NumToString(pictInfo.uniqueFonts, theString);
DrawString(theString);

MoveTo(380, 235);
DrawString('Unique colours: ');
NumToString(pictInfo.uniqueColors, theString);
DrawString(theString);

MoveTo(380, 250);
DrawString('Frame rectangle left: ');
NumToString(pictInfo.sourceRect.left, theString);
DrawString(theString);

MoveTo(380, 265);
DrawString('Frame rectangle top: ');
NumToString(pictInfo.sourceRect.top, theString);
DrawString(theString);

MoveTo(380, 280);
DrawString('Frame rectangle right: ');
NumToString(pictInfo.sourceRect.right, theString);
DrawString(theString);

MoveTo(380, 295);
DrawString('Frame rectangle bottom: ');
NumToString(pictInfo.sourceRect.bottom, theString);
DrawString(theString);

// ……………………………………………………………………………………………………… release memory occupied by Picture
structure

KillPicture(pictureHdl);
end;

{ of procedure DoPicture }

// ◊◊◊ DoCursor

procedure DoCursor;
var
cursorRect : Rect;
a : SInt16;

begin

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-33

Version 2.1

RGBBackColor(gBlueColour);
EraseRect(gWindowPtr^.portRect);

cursorRect := gWindowPtr^.portRect;

for a := 0 to 2 do
begin
InsetRect(cursorRect, 40, 40);

if ((a = 0) or (a = 2)) then
begin
RGBBackColor(gBeigeColour);
end

else begin
RGBBackColor(gBlueColour);
end;

EraseRect(cursorRect);
end;

RGBForeColor(gBeigeColour);
MoveTo(10, 20);
DrawString('Arrow cursor region');
RGBForeColor(gBlueColour);
MoveTo(50, 60);
DrawString('IBeam cursor region');
RGBForeColor(gBeigeColour);
MoveTo(90, 100);
DrawString('Cross cursor region');
RGBForeColor(gBlueColour);
MoveTo(130, 140);
DrawString('Plus cursor region');

gCursorRegionsActive := true;
gCursorRegion := NewRgn;
end;

{ of procedure DoCursor }

// ◊◊◊ DoChangeCursor

procedure DoChangeCursor(theWindowPtr : WindowPtr; cursorRegion : RgnHandle);
var
cursorRect : Rect;
arrowCursorRgn : RgnHandle;
ibeamCursorRgn : RgnHandle;
crossCursorRgn : RgnHandle;
plusCursorRgn : RgnHandle;
mousePosition : Point;
ignored : OSStatus;

begin
arrowCursorRgn := NewRgn;
ibeamCursorRgn := NewRgn;
crossCursorRgn := NewRgn;
plusCursorRgn := NewRgn;

SetRectRgn(arrowCursorRgn, -32768, -32768, 32766, 32766);

cursorRect := theWindowPtr^.portRect;
LocalToGlobal(cursorRect.topLeft);
LocalToGlobal(cursorRect.botRight);

InsetRect(cursorRect, 40, 40);
RectRgn(ibeamCursorRgn, cursorRect);
DiffRgn(arrowCursorRgn, ibeamCursorRgn, arrowCursorRgn);

InsetRect(cursorRect, 40, 40);
RectRgn(crossCursorRgn, cursorRect);
DiffRgn(ibeamCursorRgn, crossCursorRgn, ibeamCursorRgn);

InsetRect(cursorRect, 40, 40);
RectRgn(plusCursorRgn, cursorRect);
DiffRgn(crossCursorRgn, plusCursorRgn, crossCursorRgn);

GetMouse(mousePosition);
LocalToGlobal(mousePosition);

if PtInRgn(mousePosition, ibeamCursorRgn) then
begin

{$ifc TARGET_CPU_PPC}

13-34 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

If (gMacOS85Present = true) then
begin
ignored := SetThemeCursor(kThemeIBeamCursor);
end

else begin
{$endc}

SetCursor(GetCursor(iBeamCursor)^^);
{$ifc TARGET_CPU_PPC}

end;
{$endc}

CopyRgn(ibeamCursorRgn, cursorRegion);
end

else if PtInRgn(mousePosition, crossCursorRgn) then
begin

{$ifc TARGET_CPU_PPC}
If (gMacOS85Present = true) then

begin
ignored := SetThemeCursor(kThemeCrossCursor);
end

else begin
{$endc}

SetCursor(GetCursor(crossCursor)^^);
{$ifc TARGET_CPU_PPC}

end;
{$endc}

CopyRgn(crossCursorRgn, cursorRegion);
end

else if PtInRgn(mousePosition, plusCursorRgn) then
begin

{$ifc TARGET_CPU_PPC}
If (gMacOS85Present = true) then

begin
ignored := SetThemeCursor(kThemePlusCursor);
end

else begin
{$endc}

SetCursor(GetCursor(plusCursor)^^);
{$ifc TARGET_CPU_PPC}

end;
{$endc}

CopyRgn(plusCursorRgn, cursorRegion);
end

else begin
{$ifc TARGET_CPU_PPC}

If (gMacOS85Present = true) then
begin
ignored := SetThemeCursor(kThemeArrowCursor);
end

else begin
{$endc}

SetCursor(qd.arrow);
{$ifc TARGET_CPU_PPC}

end;
{$endc}

CopyRgn(arrowCursorRgn, cursorRegion);
end;

DisposeRgn(arrowCursorRgn);
DisposeRgn(ibeamCursorRgn);
DisposeRgn(crossCursorRgn);
DisposeRgn(plusCursorRgn);
end;

{ of procedure DoChangeCursor }

// ◊◊◊ DoAnimCursor

procedure DoAnimCursor;
var
animCursResourceID, animCursTickInterval : SInt16;

begin
BackColor(whiteColor);
FillRect(gWindowPtr^.portRect, qd.white);

{$ifc TARGET_CPU_PPC}
if (gMacOS85Present) then

begin

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-35

Version 2.1

gAnimCursTickInterval := kCountingHandTickInterval;
gSleepTime := gAnimCursTickInterval;
gAnimCursActive := true;
end

else begin
{$endc}

animCursResourceID := rBeachBallCursor;
animCursTickInterval := kBeachBallTickInterval;

if DoGetAnimCursor(animCursResourceID, animCursTickInterval) then
begin
gAnimCursActive := true;
gSleepTime := animCursTickInterval;
end

else begin
SysBeep(10);
end;

{$ifc TARGET_CPU_PPC}
end;

{$endc}
end;

{ of procedure DoAnimCursor }

// ◊◊ DoGetAnimCursor

function DoGetAnimCursor(resourceID, tickInterval : SInt16) : boolean;
var
cursorID, a : SInt16;
noError : boolean;

begin
a := 0;
noError := false;

gAnimCursHdl := AnimCursHandle(GetResource('acur', resourceID));
if (gAnimCursHdl <> nil) then

begin
noError := true;
while ((a < gAnimCursHdl^^.numberOfFrames) and noError) do

begin
cursorID := SInt16(HiWord(SInt32(gAnimCursHdl^^.frame[a])));
gAnimCursHdl^^.frame[a] := GetCursor(cursorID);
if (gAnimCursHdl^^.frame[a] <> nil) then

begin
a := a + 1;
end

else begin
noError := false;
end;

end;
end;

if noError then
begin
gAnimCursTickInterval := tickInterval;
gAnimCursLastTick := TickCount;
gAnimCursHdl^^.whichFrame := 0;
end;

DoGetAnimCursor := noError;
end;

{ of procedure DoGetAnimCursor }

// ◊◊ DoIncrementAnimCursor

procedure DoIncrementAnimCursor;
var
newTick : SInt32;
ignored : OSStatus;

begin
newTick := TickCount;
if (newTick < (gAnimCursLastTick + gAnimCursTickInterval)) then

begin
Exit(DoIncrementAnimCursor);
end;

{$ifc TARGET_CPU_PPC}
if (gMacOS85Present) then

begin

13-36 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

ignored := SetAnimatedThemeCursor(kThemeCountingUpAndDownHandCursor, gAnimationStep);
gAnimationStep := gAnimationStep + 1;
end

else begin
{$endc}

SetCursor(gAnimCursHdl^^.frame[gAnimCursHdl^^.whichFrame]^^);
gAnimCursHdl^^.whichFrame := gAnimCursHdl^^.whichFrame + 1;
if (gAnimCursHdl^^.whichFrame = gAnimCursHdl^^.numberOfFrames) then

begin
gAnimCursHdl^^.whichFrame := 0;
end;

{$ifc TARGET_CPU_PPC}
end;

{$endc}
gAnimCursLastTick := newTick;

end;
{ of procedure DoIncrementAnimCursor }

// ◊◊ DoReleaseAnimCursor

procedure DoReleaseAnimCursor;
var
a : SInt16;

begin
for a := 0 to gAnimCursHdl^^.numberOfFrames - 1 do

begin
ReleaseResource(Handle(gAnimCursHdl^^.frame[a]));
end;

ReleaseResource(Handle(gAnimCursHdl));
end;

{ of procedure DoReleaseAnimCursor }

// ◊◊◊ DoIdle

procedure DoIdle;
begin
if gAnimCursActive then

begin
DoIncrementAnimCursor;
end;

end;
{ of procedure DoIdle }

// ◊◊◊ DoIcon

procedure DoIcon;
var
a, b, stringIndex : SInt16;
theRect : Rect;
transform : IconTransformType;
theString : Str255;
iconSuiteHdl : Handle;
ciconHdl : CIconHandle;
ignoredErr : OSErr;

begin
stringIndex := 1;
transform := 0;

RGBForeColor(gBlueColour);
RGBBackColor(gBeigeColour);
EraseRect(gWindowPtr^.portRect);

// ………
PlotIconID with transforms

MoveTo(50, 28);
DrawString('PlotIconID with transforms');

for a := 50 to 471 by 140 do
begin
if (a = 190) then

begin
transform := 16384;
end

else if (a = 330) then
begin
transform := 256;

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-37

Version 2.1

end;

for b := 0 to 3 do
begin
if ((a <> 470) or (b <> 3)) then

begin
GetIndString(theString, rTransformStrings, stringIndex);
stringIndex := stringIndex + 1;
MoveTo(a, b * 60 + 47);
DrawString(theString);

SetRect(theRect, a, b * 60 + 50, a + 32, b * 60 + 82);
ignoredErr := PlotIconID(theRect, 0, transform, rIconFamily1);
SetRect(theRect, a + 40, b * 60 + 50, a + 56, b * 60 + 66);
ignoredErr := PlotIconID(theRect, 0, transform, rIconFamily1);
SetRect(theRect, a + 64, b * 60 + 50, a + 80, b * 60 + 62);
ignoredErr := PlotIconID(theRect, 0, transform, rIconFamily1);

if (a >= 330) then
begin
transform := transform + 256;
end

else begin
transform := transform + 1;
end;

end;
end;

end;

// ……… GetIconSuite
and PlotIconSuite

MoveTo(50, 275);
LineTo(550, 275);
MoveTo(50, 299);
DrawString('GetIconSuite and PlotIconSuite');

ignoredErr := GetIconSuite(iconSuiteHdl, rIconFamily2, kSelectorAllLargeData);

SetRect(theRect, 50, 324, 82, 356);
ignoredErr := PlotIconSuite(theRect, kAlignNone, kTransformNone, iconSuiteHdl);
SetRect(theRect, 118, 316, 166, 364);
ignoredErr := PlotIconSuite(theRect, kAlignNone, kTransformNone, iconSuiteHdl);
SetRect(theRect, 202, 308, 266, 372);
ignoredErr := PlotIconSuite(theRect, kAlignNone, kTransformNone, iconSuiteHdl);

//
………
GetCIcon and PlotCIcon

MoveTo(330, 299);
DrawString('GetCIcon and PlotCIcon');

ciconHdl := GetCIcon(rColourIcon);

SetRect(theRect, 330, 324, 362, 356);
PlotCIcon(theRect, ciconHdl);
SetRect(theRect, 398, 316, 446, 364);
PlotCIcon(theRect, ciconHdl);
SetRect(theRect, 482, 308, 546, 372);
PlotCIcon(theRect, ciconHdl);
end;

{ of procedure DoIcon }

// ◊◊ DoAboutDialog

procedure DoAboutDialog;
var
dialogPtr : DialogPtr;
itemHit : SInt16;

begin
dialogPtr := GetNewDialog(rAboutDialog, gPreAllocatedBlockPtr, WindowPtr(-1));
ModalDialog(nil, itemHit);
DisposeDialog(dialogPtr);
end;

{ of procedure DoAboutDialog }

// ◊◊ DoGWorldDrawing

13-38 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

procedure DoGWorldDrawing;
var
a : SInt32;
b, c : SInt16;
theRect : Rect;
theColour : RGBColor;

begin
RGBForeColor(gBeigeColour);
PaintRect(gWindowPtr^.portRect);

for a :=0 to 55000 by 300 do
begin
theColour.red := a;
theColour.blue := 55000 - a;
theColour.green := 0;
RGBForeColor(theColour);

for b := 10 to 531 by 65 do
begin
for c := 10 to 331 by 64 do

begin
SetRect(theRect, b, c, b + 62, c + 61);
PaintRect(theRect);
end;

end;
end;

end;
{ of procedure DoGWorldDrawing }

// ◊◊◊ DoRandomNumber

function DoRandomNumber(minimum, maximum : UInt16) : UInt16;
{
var
randomNumber : UInt16;
range, t : SInt32;
}
begin
{randomNumber := Random;
range := maximum - minimum;
t := (randomNumber * range) / 65535;
Exit()(t + minimum);}
DoRandomNumber := minimum + Abs(Random) mod (maximum - minimum + 1);
end;

{ of function DoRandomNumber }

// ◊◊◊ main program block

begin

gMacOS85Present := false;
gCursorRegionsActive := false;
gAnimCursActive := false;
gAnimCursResourceHdl := nil;

gBlackColour.red := $0000;
gBlackColour.green := $0000;
gBlackColour.blue := $0000;

gWhiteColour.red := $FFFF;
gWhiteColour.green := $FFFF;
gWhiteColour.blue := $FFFF;

gBeigeColour.red := $F000;
gBeigeColour.green := $E300;
gBeigeColour.blue := $C200;

gBlueColour.red := $4444;
gBlueColour.green := $4444;
gBlueColour.blue := $9999;

// ………………………………………………… get nonrelocatable block low in heap for About… dialog structure

gPreAllocatedBlockPtr := NewPtr(sizeof(DialogRecord));
if (gPreAllocatedBlockPtr = nil) then

begin
ExitToShell;
end;

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-39

Version 2.1

//
……
…… initialise managers

DoInitManagers;

// ……………………………………………………………………………………………………… check whether Mac OS 8.5 or later is
present

osError := Gestalt(gestaltSystemVersion, response);
if ((osError = noErr) and (response >= $00000850)) then

begin
gMacOS85Present := true;
end;

// …… see
random number generator

GetDateTime(UInt32(qd.randSeed));

// …… set
up menu bar and menus

mainMenubarHdl := GetNewMBar(rMenubar);
if (mainMenubarHdl = nil) then

begin
ExitToShell;
end;

SetMenuBar(mainMenubarHdl);
DrawMenuBar;
mainMenuHdl := GetMenuHandle(mApple);
if (mainMenuHdl = nil) then

begin
ExitToShell;
end

else begin
AppendResMenu(mainMenuHdl, 'DRVR');
end;

//
……
………………………… open window

gWindowPtr := GetNewCWindow(rWindow, nil, WindowPtr(-1));
if (gWindowPtr = nil) then

begin
ExitToShell;
end;

SetPort(gWindowPtr);
TextSize(10);

//
……
…………… enter event loop

EventLoop;

end.
{ of main program block }

// ◊◊

Demonstration Program Comments
If monitor colour depth is set to Thousands (or less), the Minimum Heap Size of 680K set in the CodeWarrior project will be
adequate. If monitor depth is set to Millions, the Minimum Heap Size will need to be increased. The determinant is the
memory required by the offscreen graphics world created within the function DoOffScreenGWorld1.

When this program is run, the user should:

• Invoke the demonstrations by choosing items from the Demonstration menu, clicking the mouse when instructed to
do so by the text in the window's title bar.

• Click outside and inside the window when the cursor and animated cursor demonstrations have been invoked.

• Choose the About… item in the Apple menu to display the About… dialog box.

13-40 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

• Note that the Icons item in the Demonstration menu contains an icon.

When the PowerPC target is run, and Mac OS 8.5 or later is present, the new Appearance Manager Version 1.1 functions for
setting cursor shape and animating the cursor are used. When Mac OS 8.5 or later is not present (PowerPC target), or
when the 68K target is run, the older cursor shape changing and animating functions and methodologies are used.

constants
In addition to the usual window and menu-related constants, constants are established for the resource IDs of 'acur', 'PICT',
'STR#', icon family, and 'cicn' resources, and a 'DLOG' resource. KSleeptime and MAXLONG will be assigned
WaitNextEvent's sleep parameter at various points in the program. kBeachBallTickInterval represents the interval between
frame changes for the animated cursor (68K target, or PowerPC target when Mac OS 8.5 or later is not present).
kCountingHandTickInterval represents the interval between frame changes for the animated cursor (PowerPC target with
Mac OS 8.5 or later present).

data types
The data type anumCurs is identical to the structure of an 'acur' resource.

global Variables
gPreAllocatedBlock will be assigned a pointer to a nonrelocatable block for the dialog structure associated with the About…
dialog. gMacOS85Present will be assigned true if Mac OS 8.5 or later is present. gWindowPtr will be assigned a pointer to
the window's window structure. gDone controls exit from the main event loop and thus program termination.
gInBackground relates to foreground/background switching.

In this program, the sleep and cursor region parameters in the WaitNextEvent call will be changed during program
execution, hence the global variables gSleepTime and gCursorRegion.

gCursorRegion will be assigned a handle to a region which will passed in the mouseRgn parameter of the WaitNextEvent
call. This relates to the cursor shape changing demonstration.

gCursorRegionActive and gAnimCursActive will be set to true during, respectively, the cursor and animated cursor
demonstrations. gAnimCursHdl will be assigned a handle to the animCurs structure used during the animated cursor
demonstration. gAnimCursTickInterval and gAnimCursLastTick also relate to the animated cursor demonstration.

gCursorRegionsActive will be set to true during the cursor shape changing demonstration. gAnimCursResourceHdl will be
assigned a handle to the 'acur' structure associated with the second of two animated cursors. gAnimCurs1Active and
gAnimCurs2Active will be set to true during the animated cursor demonstrations.

EventLoop
EventLoop contains the main event loop. The event loop terminates when gDone is set to true. Before the loop is entered,
gSleepTime is set to MAXLONG. Initially, therefore, the sleep parameter in the WaitNextEvent call is set to the maximum
possible value.

The global variable passed in the mouseRgn parameter of the WaitNextEvent call is assigned nil so as to defeat the
generation of mouse-moved events.

Each time round the loop, before the WaitNextEvent call, if the cursor shape changing demonstration is under way
(gCursorRegionActive is true) and the application is not in the background, the application-defined routine DoChangeCursor
is called.

If a null event is received, the application-defined routine DoIdle is called. The DoIdle routine has to do with the animated
cursors demonstrations.

DoEvents
In the inDrag case, after the call to DragWindow, and provided the cursor shape changing demonstration is currently under
way, the application-defined routine DoChangeCursor is called. The regions controlling the generation of mouse-moved
events are defined in global coordinates, and are based on the window's port rectangle. Accordingly, when the window is
moved, the new location of the port rectangle, in global coordinates, must be re-calculated so that the various cursor
regions may be re-defined. The call to DoChangeCursor re-defines these regions for the new window location and copies
the handle to one of them, depending on the current location of the mouse cursor, to the global variable gCursorRegion.
(Note that this call to DoChangeCursor is also required, for the same reason, when a window is re-sized or zoomed.)

In the case of a resume event:

• If the target is the PowerPC target and Mac OS 8.5 or later is not present, or the target is the 68K target, SetCursor is
called to ensure that the cursor is set to the arrow shape. The QuickDraw global variable arrow, which is of type
Cursor, and which contains the arrow shaped cursor image, is passed in the newCursor parameter.

• If the target is the PowerPC target and Mac OS 8.5 or later is present SetThemeCursor is called to ensure that the
cursor is set to the appearance-compliant arrow shape.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-41

Version 2.1

In the case of a mouse-moved event (which occurs when the mouse cursor has moved outside the region whose handle is
currently being passed in WaitNextEvent's mouseRgn parameter), doChangeCursor is called to change the handle passed
in the mouseRgn parameter according to the current location of the mouse.

DoMenuChoice
DoMenuChoice processes Apple and File menu choices to completion, with the exception of a choice of the About… item in
the Apple menu. In this latter case, the application-defined routine DoAboutDialog is called. Choices from the
Demonstration menu result in calls to application-defined routines.

Before the main switch, however, certain actions relevant to the animated cursor and cursor shape changing
demonstrations are taken.

Firstly, if the animated cursor demonstration is currently under way, the flag which indicates this condition is set to false.
Then:

• If the target is the PowerPC target and Mac OS 8.5 or later is not present, or the target is the 68K target, SetCursor is
called to set the cursor shape to the arrow shape and memory associated with the animated cursor is released.

• If the target is the PowerPC target and Mac OS 8.5 or later is present SetThemeCursor is called to set the cursor to
the appearance-compliant arrow shape.

WaitNextEvent's sleep parameter is then set to the maximum possible value.

Secondly, if the cursor shape changing demonstration is currently under way, the global variable which signifies that
situation is set to false. In addition, the region containing the current cursor region is disposed of and the associated global
variable is set to nil, thus defeating the generation of mouse-moved events.

DoOffScreenGWorld1
DoWithoutOffScreenGWorld is the first demonstration.

Draw in Window

As a prelude for what is to come, the application-defined routine DoGWorldDrawing is called to repeatedly paint some
rectangles in the window in simulation of drawing operations that take a short but nonetheless perceptible period of time to
complete. This will be contrasted with the alternative of completing the drawing in an offscreen graphics port and then
copying it to the on-screen port.

Draw in Offscreen Graphics Port and Copy to Window

Firstly, the cursor is set the watch shape to indicate to the user that an operation which will take but a second or two is
taking place.

The call to GetGWorld saves the current graphics world, that is, the current colour graphics port and the current device.

The call to NewGWorld creates an offscreen graphics world. The offscreenGWorld parameter receives a pointer to the
offscreen graphics world's graphics port. 0 in the pixelDepth means that the offscreen world's pixel depth will be set to the
deepest device intersecting the rectangle passed as the boundsRect parameter. This Rect passed in the boundsRect
parameter becomes the offscreen port's portRect, the offscreen pixel map's bounds and the offscreen device's gdRect. nil
in the cTable parameter causes the default colour table for the pixel depth to be used. The aGDevice parameter is set to nil
because the noNewDevice flag is not set. 0 in the flags parameter means that no flags are set.

The call to SetGWorld sets the graphics port pointed to by gworldPortPtr as the current graphics port. (When the first
parameter is a GWorldPtr, the current device is set to the device attached to the offscreen world and the second parameter
is ignored.)

GetGWorldPixMap gets a handle to the offscreen pixel map and LockPixels called to prevent the base address of the pixel
image from being moved when the pixel image it is drawn into or copied from.

The call to EraseRect clears the offscreen graphics port before the application-defined routine DoGWorldDrawing is called
to draw some graphics in the offscreen port.

With the drawing complete, the call to SetGWorld sets the (saved) window's colour graphics port as the current port and
the saved device as the current device.

The next two lines establish the source and destination rectangles (required by the forthcoming call to CopyBits) as
equivalent to the offscreen graphics world and window port rectangles respectively. The calls to RGBForeColor and
RGBBackColor set the foreground and background colours to black and white respectively, which is required to ensure that
the CopyBits call will produce predictable results in the colour sense.

The CopyBits call copies the image from the offscreen world to the window. The call to QDError checks for any error
resulting from the last QuickDraw call (in this case, CopyBits).

UnlockPixels unlocks the offscreen pixel image buffer and DisposeGWorld deallocates all of the memory previously
allocated for the offscreen graphics world.

13-42 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

Finally, SetCursor sets the cursor shape back to the standard arrow cursor.

DoOffScreenGWorld2
DoWithoutOffScreenGWorld demonstrates the use of CopyDeepMask to copy a source pixel map to a destination pixel map
using a pixel map as a mask, and clipping the copying operation to a designated region. Because mask pixel maps cannot
come from the screen, an offscreen graphics world is created for the mask.

The first block loads a 'PICT' resource and draws the picture in the window.

The current graphics world is then saved and an offscreen graphics world the same size as the drawn picture is created.
The offscreen graphics port is set as the current port, the pixel map is locked, and the offscreen port is erased.

The second call to GetPicture loads the 'PICT' resource representing the mask and DrawPicture is called to draw the mask
in the offscreen port.

SetGWorld is then called again to make the window's colour graphics port the current port. The mask is then also drawn in
the window next to the source image so that the user can see a copy of the mask in the offscreen graphics port.

The next two blocks define two regions, one containing an oval and one a rounded rectangle. The handles to these regions
will be passed in the maskRgn parameter of two separate calls to CopyDeepMask.

Before the calls to CopyDeepMask, the foreground and background colours are set to black and white respectively so that
the results of the copying operation, in terms of colour, will be predictable.

The for loop causes the source image to be copied to two locations in the window using a different mask region and
Boolean source mode for each copy. The first time CopyDeepMask is called, the oval-shaped region is passed in the
maskRgn parameter and the source mode srcCopy is passed in the mode parameter. The second time CopyDeepMask is
called, the round rectangle-shaped region and srcOr and passed.

QDError checks for any error resulting from the last QuickDraw call (in this case, CopyDeepMask).

In the clean-up, UnlockPixels unlocks the offscreen pixel image buffer, DisposeGWorld deallocates all of the memory
previously allocated for the offscreen graphics world, and the memory occupied by the picture resources and regions is
released. Note that, because the pictures are resources obtained via GetPicture, ReleaseResource, rather than KillPicture,
is used.

DoPicture
DoPicture demonstrates the recording and playing back a picture.

Define Picture Rectangle and Set Clipping Region

The window's port rectangle is copied to a local Rect variable. This rectangle is then made equal to the left half of the port
rectangle, and then inset by 10 pixels all round. This is the picture rectangle

The clipping region is then set to be the equivalent of this rectangle. (Before this call, the clipping region is very large. In
fact, it is as large as the coordinate plane. If the clipping region is very large and you scale a picture while drawing it, the
clipping region can become invalid when DrawPicture scales the clipping region - in which case the picture will not be
drawn.)

Set up OpenCPicParams Structure

This block assigns values to the fields of an OpenCPicParams structure. These specify the previously defined rectangle as
the bounding rectangle, and 72 pixels per inch resolution both horizontally and vertically. The version field should always
be set to -2.

Record Picture

OpenCPicture initiates the recording of the picture definition. The address of the OpenCPicParams structure is passed in
the newHeader parameter.

The picture is then drawn. Lines, rectangles, round rectangles, ovals, wedges, and text are drawn in random colours, and
sizes.

Stop Recording, Draw Picture, Restore Saved Clipping Region

The call to ClosePicture terminates picture recording and the call to DrawPicture draws the picture by "playing back" the
"recording" stored in the specified Picture structure.

The call to SetClip restores the saved clipping region and DisposeRgn frees the memory associated with the saved region.

Display Some Information From The Pictinfo Structure

The call to GetPictInfo returns information about the picture in a picture information structure. Information in some of the
fields of this structure is then drawn in the right side of the window.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-43

Version 2.1

Release Memory Occupied By Picture Structure

The call to KillPicture releases the memory occupied by the Picture structure.

DoCursor
DoCursor's chief purpose is to assign true to the global variable gCursorRegionsActive, which will cause the application-
defined routine DoChangeCursor to be called from within main event loop provided the application is not in the
background. In addition, it erases some rectangles in the window which visually represent to the user some cursor regions
which will later be established by the DoChangeCursor function.

The last two lines sets the gCursorRegionsActive flag to true and create an empty region for the last parameter of the
WaitNextEvent call in the main event loop. A handle to a cursor region will be copied to gCursorRegion in the application-
defined routine DoChangeCursor.

doChangeCursor
DoChangeCursor is called whenever a mouse-moved event is received and after the window is dragged.

The first four lines create new empty regions to serve as the regions within which the cursor shape will be changed to,
respectively, the arrow, I-beam, cross, and plus shapes.

The SetRectRgn call sets the arrow cursor region to, initially, the boundaries of the coordinate plane. The next lines
establish a rectangle equivalent to the window's port rectangle and change this rectangle's coordinates from local to global
coordinates so that the regions calculated from it will be in the required global coordinates. The call to InsetRect insets this
rectangle by 40 pixels all round and the call to RectRgn establishes this as the I-beam region. The call to DiffRgn, in effect,
cuts the rectangle represented by the I-beam region from the arrow region, leaving a hollow arrow region.

The next six lines use the same procedure to establish a rectangular hollow region for the cross cursor and an interior
rectangular region for the plus cursor. The result of all this is a rectangular plus cursor region in the centre of the window,
surrounded by (but not overlapped by) a hollow rectangular cross cursor region, this surrounded by (but not overlapped by)
a hollow rectangular I-beam cursor region, this surrounded by (but not overlapped by) a hollow rectangular arrow cursor
region the outside of which equates to the boundaries of the coordinate plane.

The call to GetMouse gets the point representing the mouse's current position. Since GetMouse returns this point in local
coordinates, the next line converts it to global coordinates.

The next task is to determine the region in which the cursor is currently located. The calls to PtInRgn are made for that
purpose. Depending on which region is established as the region in which the cursor in currently located, the cursor is set
to the appropriate shape and the handle to that region is copied to the global variable passed in WaitNextEvent's
mouseRgn parameter. Note that:

• If the target is the PowerPC target and Mac OS 8.5 or later is not present, or if the target is the 68K target, SetCursor
is used to change the cursor shape.

• If the target is the PowerPC target and Mac OS 8.5 or later is present, SetThemeCursor is used to change the
appearance-compliant cursor shape.

That accomplished, the last four lines deallocate the memory associated with the regions created earlier in the function.

DoAnimCursor
DoAnimCursor responds to the user's selection of the Animated Cursor item in the Demonstration menu.

If the target is the PowerPC target and Mac OS 8.5 or later is present, the Appearance Manager function
SetAnimatedThemeCursor will be used in the application-defined function DoIncrementAnimCursor to increment the
appearance-compliant cursor frame. In this case, DoAnimCursor simply assigns the appropriate frame change tick interval
to gAnimCursTickInterval, the sleep parameter in the WaitNextEvent call is set to the same value (causing null events to be
generated at that tick interval), and gAnimCursActive is set to true so that DoIncrementAnimCursor will be called from the
DoIdle function.

If the target is the PowerPC target and Mac OS 8.5 or later is not present, or if the target is the 68K target, the following
applies:

• In this demonstration, application-defined functions are utilised to retrieve 'acur' and 'CURS' resources, animate the
cursor, and deallocate the memory associated with the animated cursor when the cursor is no longer required.
These functions are generic in that they may be used to initialise, animate and release any animated cursor passed
to the getAnimCursor function as a formal parameter. A spinning "beach-ball" cursor is utilised in this
demonstration. DoAnimCursor's major role is simply to call getAnimCursor with the beach-ball 'acur' resource as a
parameter.

• The first line after #endif assigns the resource ID of the beach-ball 'acur' resource to the variable used as the first
parameter in the later call to DoGetAnimCursor. The next line assigns a value represented by a constant to the
second parameter in the DoGetAnimCursor call. This value controls the frame rate of the cursor, that is, the number
of ticks which must elapse before the next frame (cursor) is displayed. (The best frame rate depends on the type of
animated cursor used.)

13-44 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Version 2.1

• If the call to DoGetAnimCursor is successful, the sleep parameter in the WaitNextEvent call is set to the same ticks
value as that used to control the cursor's frame rate (causing null events to be generated at that tick interval), and
the flag gAnimCursActive is set to true so that DoIncrementAnimCursor will be called from the DoIdle function.

• If the call to getAnimCursor fails, DoAnimCursor simply plays the system alert sound and returns.

DoGetAnimatedCursor
DoGetAnimatedCursor retrieves the data in the specified 'acur' resource and stores it in an animCurs structure, retrieves
the 'CURS' resources specified in the 'acur' resource and assigns the handles to the resulting Cursor structures to elements
in an array in the animCurs structure, establishes the frame rate for the cursor, and sets the starting frame number.

GetResource is called to read the 'acur' resource into memory and return a handle to the resource. The handle is cast to
type AnimCursHandle and assigned to the global variable gAnimCursHdl (a handle to a structure of type AnimCurs, which is
identical to the structure of an 'acur' resource). If this call is not successful (that is, GetResource returns nil), the routine
will simply exit, returning false to DoAnimCursor. If the call is successful, noError is set to true before a while loop is
entered. This loop will cycle once for each of the 'CURS' resources specified in the 'acur' resource - assuming that noError
is not set to false at some time during this process.

The ID of each cursor is stored in the high word of the specified element of the frame[] field of the animCurs structure. This
is retrieved. The cursor ID is then used in the call to GetCursor to read in the resource (if necessary) and assign the handle
to the resulting 68-byte Cursor structure to the specified element of the frame[] field of the animCurs structure. If this pass
through the loop was successful, the array index is incremented; otherwise, noError is set to false, causing the loop and the
function to exit, returning false to DoAnimCursor.

The first line within the if block assigns the ticks value passed to DoGetAnimCursor to a global variable which will be
utilised in the function DoIncrementAnimCursor. The next line assigns the number of ticks since system startup to another
variable which will also be utilised in the function DoIncrementAnimCursor. The third line sets the starting frame number.

At this stage, the animated cursor has been initialised and doIdle will call DoIncrementAnimCursor whenever null events
are received.

doIncrementAnimCursor
DoIncrementAnimCursor is called whenever null events are received.

The first line assigns the number of ticks since system startup to newTick. The next line checks whether the specified
number of ticks have elapsed since the previous call to DoIncrementAnimCursor. If the specified number of ticks have not
elapsed, the function simply returns. Otherwise, the following occurs:

• If the target is the PowerPC target and Mac OS 8.5 or later is present, the new Appearance Manager function
SetThemeAnimatedCursor is called to increment the appearance-compliant cursor frame.

• If the target is the PowerPC target and Mac OS 8.5 or later is not present, or if the target is the 68K target, SetCursor
sets the cursor shape to that represented by the handle stored in the specified element of the frame[] field of the
animCurs structure. This line also increments the frame counter field (whichFrame) of the animCurs structure. If
whichFrame has been incremented to the last cursor in the series, the frame counter is re-set to 0.

The last line retrieves and stores the tick count at exit for use at the first line the next time the function is called.

DoReleaseAnimCursor
DoReleaseAnimCursor deallocates the memory occupied by the Cursor structures and the 'acur' resource.

Recall that DoReleaseAnimCursor is called when the user clicks in the menu bar and that, at the same time, the
gAnimCursActive flag is set to false, the cursor is reset to the standard arrow shape, and WaitNextEvent's sleep parameter
is reset to the maximum possible value.

DoIdle
DoIdle is called from the main event loop whenever a null event is received. If the active demonstration is the animated
cursor demonstration, the application-defined routine DoSpinCursor is called.

DoIcon
DoIcon demonstrates the drawing of icons in a window using PlotIconID, PoltIconSuite, and PlotCIcon.

PlotIconID With Transforms

This block uses the function PlotIconID to draw an icon from an icon family with the specified ID fifteen times, once for each
of the fifteen available transform types. PlotIconID automatically chooses the appropriate icon resource from the icon suite
depending on the specified destination rectangle and the bit depth of the current device.

GetIconSuite and PlotIconSuite

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 13-45

Version 2.1

This block uses GetIconSuite to get an icon suite comprising only the 'ICN#', 'icl4', and 'icl8' resources from the icon family
with the specified resource ID. PlotIconSuite is then called three times to draw the appropriate icon within destination
rectangles of three different sizes. PlotIconSuite automatically chooses the appropriate icon resource from the icon suite
depending on the specified destination rectangle and the bit depth of the current device. PlotIconSuite also expands the
icon to fit the last two destination rectangles.

GetCIcon and PlotCIcon

This block uses GetCIcon to load the specified 'cicn' resource and PlotCIcon to draw the colour icon within destination
rectangles of three different sizes. PlotCIcon expands the 32 by 32 pixel icon to fit the last two destination rectangles.

DoAboutDialog
DoAboutDialog is called when the user chooses the About… item in the Apple menu.

GetNewDialog creates a modal dialog. The dialog's item list contains a picture item, which fills the entire dialog window.
Note that a pointer to a pre-allocated nonrelocatable memory block is passed in the dStorage parameter

The call to ModalDialog means that the dialog will remain displayed until the user clicks somewhere within the dialog box,
at which time DisposeDialog is called to dismiss the dialog and free the associated memory. A dialog box rather than an
alert box is used to obviate the need for a button for dismissing the dialog.

DoGWorldDrawing and doRandomNumber
DoGWorldDrawing and DoRandomNumber are both incidental to the demonstration, DoGWorldDrawing is called from
DoOffScreenGWorld1 to execute a drawing operation which will take a short but nonetheless perceptible period of time.
DoRandomNumber generates the random numbers used within the DoPicture function.

main program block
The first action in the main function is to pre-allocate a nonrelocatable block for the dialog structure for the About… modal
dialog. This is an anti-heap-fragmentation measure.

If Mac OS 8.5 or later is present, gMacOS85Present is assigned true.

Random numbers will be used in the routine DoPicture. The call to GetDateTime seeds the random number generator.

Note that error handling here and in other areas of the program is somewhat rudimentary: the program simply terminates,
sometimes with a call to SysBeep(10).

13-46 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

	Cursors
	Introduction
	Cursor Movement, Hot Spot, Visibility, and Shape
	Cursor Movement
	Cursor Hot Spot
	Cursor Visibility
	Cursor Shape
	Non-Animated Cursors
	System 'CURS' and 'crsr' Resources
	Custom 'CURS' and 'crsr' Resources
	Changing Cursor Shape
	Changing Cursor Shape — Appearance-Compliant Methodology
	Changing Cursor Shape in Response to Mouse-Moved Events
	Changing Cursor Shape in Response to Resume Events
	Hiding Cursors
	Animated Cursors
	Appearance-Compliant Methodology
	System 'acur', and 'CURS' Resources
	Custom 'acur' and 'CURS' Resources
	Creating the Animated Cursor
	The 'icns' Resource
	Historical Note
	Constants
	Data Types
	Functions
	WaitNextEvent's sleep parameter is then set to the maximum possible value.

