
Version 2.1

11
QUICKDRAW PRELIMINARIES

Includes Demonstration Program PreQuickDraw

QuickDraw and Imaging
QuickDraw is a collection of system software routines that your application uses to
perform most imaging operations on Macintosh computers. Imaging entails the
construction and display of graphical information, including shapes, pictures, and text,
which can be displayed on such output devices as screens and printers.

This chapter serves as a prelude to Chapter 12 — Drawing With QuickDraw, and
introduces certain matters which need to be discussed before the matter of actually
drawing with QuickDraw is addressed. These matters include the history of QuickDraw,
RGB colours, colour and the video device, the colour graphics port, translation of RGB
values, and graphics devices.

History of QuickDraw
As the system software has developed, QuickDraw has progressed through the following
three main evolutionary stages:

• Basic QuickDraw, which was designed for the early black-and-white Macintoshes.
System 7 added new capabilities to basic QuickDraw, including support for
offscreen graphics worlds.

• The original version of Color QuickDraw, which was introduced with the first
Macintosh II systems, and which could support up to 256 colours.

• The current version of Color QuickDraw, which was originally introduced as 32-
bit Color QuickDraw. This version has been expanded to support millions of
colours.

The Appearance Manager requires that Color QuickDraw be present. Accordingly, this
edition of Macintosh C assumes Color QuickDraw in all circumstances. Where the word
"QuickDraw" is used, Color QuickDraw is invariably implied.

RGB Colours and Pixels
When using QuickDraw, you specify colours as RGB colours. An RGB (red-green-blue)
colour is defined by its red, green and blue components. For example, when each of the

QuickDraw Preliminaries 11-1

Version 2.1

red, green and blue components of a colour are at their maximum intensity (0xFFFF), the
result is the colour white. When each of the components has zero intensity (0x0000), the
result is the colour black.

You specify a colour to QuickDraw by creating an RGBColor structure in which you use
three 16-bit unsigned integers to assign intensity values for the three additive1 primary
colours. The RGBColor data type is defined as follows:

RGBColor = record
red : UInt16; { Magnitude of red component. }
green : UInt16; { Magnitude of green component. }
blue : UInt16; { Magnitude of blue component. }
end;

A pixel (picture element) is the smallest dot that QuickDraw can draw. Each colour pixel
represents up to 48 bits in memory.

Colour and the Video Device
QuickDraw supports a variety of screens of differing sizes and colour capabilities. It is
thus device-independent. Accordingly, you do not have to concern yourself with the
capabilities of individual screens. For example, when your application uses an RGBColor
structure to specify a colour by its red, green and blue components, with each component
defined in a 16-bit integer, QuickDraw compares the resulting 48-bit value with the
colours actually available on a video device (such as a plug-in video card or a built-in
video interface) at execution time and then chooses the closest match. What the user
finally sees depends on the characteristics of the actual video device and screen.

The video device that controls a screen may have either:

• Indexed colours, which support pixels of 1-bit, 2-bit, 4-bit, or 8-bit pixel depths 2.
The indexed colour system was introduced with the Macintosh II, that is, at a time
when memory was scarce and moving megabyte images around was impractical.

• Direct colours, which support pixels of 16-bit and 32-bit depths. Most video
devices in the current day are direct colour devices. (However, as will be seen,
there are circumstances in which a direct colour device will act like an indexed
colour device.)

QuickDraw automatically determines which method is used by the video device and
matches your requested 48-bit colour with the closest available colour.

Indexed Colour Devices

Video devices using indexed colours support a maximum of 256 colours at any one time,
that is, with indexed colour, the maximum value of a pixel is limited to a single byte, with
each pixel's byte specifying one of 256 (28) different values.

Video devices implementing indexed colour contain a data structure called a colour
lookup table (or, more commonly, a CLUT). The CLUT, in turn, contains entries for all
possible colour values.

256 colours is, for many images, sufficient for near-photographic quality. The problem is
that the colours needed for one photographic image may not be appropriate for another.
Because most indexed video devices use a variable CLUT, however, you can display one

1 On a video device, the primary colours are referred to as additive because, when each of the three colour components is
at maximum intensity, the result is the colour white. On a printer, the primary colours are referred to as subtractive
because the colour black results when the three colour components are at maximum intensity.
2 Pixel depth means the number of bits assigned to each pixel, and thus determines the maximum number of colours that
can be displayed at the one time. A 4-bit pixel depth, for example, means that an individual pixel can be displayed in any
one of 16 separate colours. An 8-bit pixel depth means that an individual pixel can be displayed in any one of 256 separate
colours.

11-2 QuickDraw Preliminaries

Version 2.1

image using one set of 256 colours and then use system software to reload the CLUT
with a second set of 256 colours that are appropriate for the next image.3 If your
application needs this sort of control on indexed video devices, you can use the Palette
Manager to arrange palettes (that is, sets of colours) for particular images and for video
devices with differing colour capabilities.

If your application uses a 48-bit RGBColor structure to specify a colour, the Color Manager
examines the colours available in the CLUT on the video device. Comparing the CLUT
entries to the RGBColor structure you specify, the Color Manager determines which colour
in the CLUT is closest, and gives QuickDraw the index to this colour. QuickDraw then
draws with this colour.

Fig 1 illustrates this process. In Fig 1, the user selects a colour for some object in an
application (1). Using a 48-bit RGBColor structure to specify the colour, the application
calls a QuickDraw routine to draw the object in that colour (2). QuickDraw uses the
Color Manager to determine what colour in the video devices's CLUT comes closest to
the requested colour (3).

At startup, the video device's declaration ROM supplies information for the creation of a
GDevice structure (see below) that describes the characteristics of the device. The
resulting structure contains a ColorTable structure that is kept synchronised with the card's
CLUT.

The Color Manager examines the GDevice structure to find what colours are currently
available (4) and to decide which colour comes closest to the one requested by the
application. The Color Manager gets the index value for the best match and returns the
value to QuickDraw (5), which puts the index value into those places in video RAM which
store the object.

FIG 1 - INDEXED COLOUR SYSTEM

USER APPLICATION

COLOR
QUICKDRAW

COLOR
MANAGER

GDevice STRUCTURE
COLOUR TABLE

CLUT
COLOUR TABLE R

G
B

VIDEO RAM

1 2
3

4
5

6

7
8 9

VIDEO CARD

The video device continually displays video RAM by taking the index values, converting
them to colours according to CLUT entries at those indexes (7), and sending them to the
digital-to-analog converters (8) which produce a signal for the screen (9).

Direct Colour Devices

Video devices which implement direct colour eliminate the competition for limited colour
lookup table spaces and remove the need for colour table matching. By using direct
colour, video devices can support thousands or millions of colours.

When you specify a colour using a 48-bit RGBColor structure on a direct colour system,
QuickDraw truncates the least significant bits of its red, green and blue components to
either 16 bits (five bits each for red, green and blue, with one bit unused) or 32 bits
(eight bits for red, green and blue, with eight bits unused). (See Translation of RGB
Colours to Pixel Values, below.) Using 16 bits, direct video devices can display 32,768
different colours. Using 32 bits, the device can display 16,777,215 different colours

3 Some Macintosh computers, such as grayscale PowerBook computers, have a fixed CLUT, which your application cannot
change.

QuickDraw Preliminaries 11-3

Version 2.1

Fig 2 illustrates the direct colour system. A user chooses a colour for some object (1)
and, using a 48-bit RGBColor structure to specify the colour, the application uses a
QuickDraw routine to draw the object in that colour (2).

QuickDraw knows from the GDevice structure (3) that the screen is controlled by a direct
device in which pixels are, say, 32 bits deep, which means that eight bits are used for
each of the red, green and blue components of the requested colour. Accordingly,
QuickDraw passes the high eight bits from each 16-bit component of the 48-bit RGBColor
structure to the video device (4), which stores the resulting 24-bit value in video RAM for
the object. The video device continually displays video RAM by sending the 8-bit red,
green and blue values for the colour to digital-to-analog converters (5) which produce a
signal for the screen (6).

FIG 2 - DIRECT COLOUR SYSTEM

USER APPLICATION

COLOR
QUICKDRAW

GDevice STRUCTURE

R
G

1 2 3

4

6
VIDEO CARD

5

32-BIT PixMap
STRUCTURE

VIDEO RAM

B

Direct colour not only removes much of the complexity of the CLUT mechanism for video
device developers, but it also allows the display of thousands or millions of colours
simultaneously, resulting in near-photographic resolution.

Direct Devices Operating Like Indexed
Devices

Note that, when a user uses the Monitors and Sound control panel to set a direct colour
device to use 256 colours (or less) as either a grayscale or colour device, the direct
device creates a CLUT and operates like an indexed device.

Colour Graphics Port
QuickDraw performs its operations in a colour graphics port, a data structure of type
CGrafPort.

Historical Note

There is a related type of graphics port called the basic graphics port, which was
originally the drawing environment provided by basic QuickDraw. A basic
graphics port is defined in a GrafPort structure. It contains the information basic
QuickDraw needed to create and manipulate onscreen black-and-white images, or
colour images that employed basic QuickDraw's eight-colour system.

Since the Appearance Manager requires that Color QuickDraw be present, the
basic graphics port is now redundant.

A colour graphics port defines a complete drawing environment that determines where
and how colour graphics operations take place. Amongst other things, a colour graphics
port:

11-4 QuickDraw Preliminaries

Version 2.1

• Contains a handle to a pixel map which, in turn, contains a pointer to the area of
memory in which your drawing operations take place.

• Contains a metaphorical graphics pen with which to perform drawing operations.
(You can set this pen to different sizes, patterns and colours.)

• Holds information about text, which is styled and sized according to information in
the graphics port.

The fields of a colour graphics port are maintained by QuickDraw. QuickDraw provides
routines for changing and reading those fields. For example, routines are available to
reshape and resize the pen, change the pen's pattern and colour, switch fonts, etc.

You can open many colour graphics ports at the same time. Each has its own local
coordinate system, drawing pattern, background pattern, pen size and location,
foreground colour, background colour, pixel map, etc. You can instantly switch from one
graphics port to another using the function SetPort.

When you use Window Manager and Dialog Manager functions to create windows, dialog
boxes, and alert boxes, those managers automatically create colour graphics ports for
you

The CGrafPort structure is as follows:
CGrafPort = RECORD

device: INTEGER; { Device-specific information. }
portPixMap: PixMapHandle; { Handle to pixel map. }
portVersion: INTEGER; { Flags and version number. }
grafVars: Handle; { Handle to additional colour fields. }
chExtra: INTEGER; { Extra width added to non-space characters. }
pnLocHFrac: INTEGER; { Fractional horizontal pen position. }
portRect: Rect; { Port rectangle. }
visRgn: RgnHandle; { Visible region. }
clipRgn: RgnHandle; { Clipping region. }
bkPixPat: PixPatHandle; { Background pattern. }
rgbFgColor: RGBColor; { Requested foreground colour. }
rgbBkColor: RGBColor; { Requested background colour. }
pnLoc: Point; { Pen location. }
pnSize: Point; { Pen size. }
pnMode: INTEGER; { Pattern mode. }
pnPixPat: PixPatHandle; { Pen pattern. }
fillPixPat: PixPatHandle; { Fill pattern. }
pnVis: INTEGER; { Pen visibility. }
txFont: INTEGER; { Font number for text. }
txFace: StyleField; { Text font style. }
txMode: INTEGER; { Text source mode. }
txSize: INTEGER; { Font size for text. }
spExtra: Fixed; { Extra width added to space characters. }
fgColor: LONGINT; { Actual foreground colour. }
bkColor: LONGINT; { Actual background colour. }
colrBit: INTEGER; { Colour bit (reserved). }
patStretch: INTEGER; { (Used internally.) }
picSave: Handle; { Picture being saved. (Used internally.) }
rgnSave: Handle; { Region being saved. (Used internally.) }
polySave: Handle; { Polygon being saved. (Used internally.) }
grafProcs: CQDProcsPtr; { Pointer to low-level drawing routines. }
END;

CGrafPtr = ^CGrafPort;
CWindowPtr = CGrafPtr;

Main Field Descriptions

portPixMap A handle to a PixMap structure (see below) which describes the pixels in this
colour graphics port.

portVersion In the highest two bits, flags set to indicate that this is a CGrafPort structure
and, in the remainder of the field, the version number of QuickDraw that
created this structure.

QuickDraw Preliminaries 11-5

Version 2.1

grafVars A handle to a GrafVars structure, which contains colour information additional
to that contained in the CGrafPort structure itself, and which is used by
QuickDraw and the Palette Manager. For example, one field contains the
RGB colour for highlighting.

portRect The port rectangle that defines a subset of the pixel map to be used for
drawing. All drawing done by your application occurs inside the port
rectangle. (In a window's graphics port, the port rectangle is also called the
content region.)

The port rectangle uses the local coordinate system defined by the boundary
rectangle in the portPixMap field of the PixMap structure (see below). The upper-
left corner (which, for a window, is called the window origin) of the port
rectangle has a vertical coordinate of 0 and a horizontal coordinate of 0. The
port rectangle usually falls within the boundary rectangle, but it is not
required to do so.

visRgn The region of the graphics port that is actually visible on screen, that is, the
part of the window not covered by other windows (see Fig 3). By default, the
visible region is equivalent to the port rectangle.

clipRgn The graphics port's clipping region, an arbitrary region that you can use to
limit drawing to any region within the port rectangle. The default clipping
region is set arbitrarily large; however, you can change the clipping region
using the function ClipRect. At Fig 3, for example, Window B's clipping region
has been set by the application to prevent the scroll bar areas being over-
drawn.

WINDOW A

WINDOW B

TWO COLOUR GRAPHICS PORTS VISIBLE REGION OF WINDOW AMODIFIED CLIPPING REGION OF WINDOW B

FIG 3 - VISIBLE REGION AND CLIPPING REGION

bkPixPat A handle to a PixPat structure that describes the background pixel pattern.
Various QuickDraw functions use this pattern for filling scrolled or erased
areas.

rgbFgColor An RGBColor structure that contains the requested foreground colour. By
default, the foreground colour is black.

rgbBkColor An RGBColor structure that contains the requested background colour. By
default, the background colour is white.

pnLoc The point where QuickDraw will begin drawing the next line, shape, or
character. It can be anywhere on the coordinate plane.

pnSize The vertical height and horizontal width of the graphics pen. The default size
is a 1-by-1 pixel square. If either the pen width or height is 0, the pen does
not draw.

pnMode The pen transfer mode, that is, a Boolean or arithmetic operation that
determines how QuickDraw transfers the pen pattern to the pixel map during
drawing operations. When the graphics pen draws into a pixel map,
QuickDraw first determines what pixels in the pixel image are affected and
finds their corresponding pixels in the pen pattern. QuickDraw then does a

11-6 QuickDraw Preliminaries

Version 2.1

pixel-by-pixel comparison based on the transfer mode. QuickDraw stores the
resulting pixel in its proper place in the image.

pnPixPat A handle to a PixPat structure (see below) that describes the pixel pattern
used by the graphics pen for drawing lines and framed shapes, and for
painting shapes.

fillPixpat A handle to a PixPat structure (see below) that describes the pixel pattern
that is used when you call QuickDraw shape filling functions.

pnVis The graphics pen's visibility, that is, whether it draws on the screen.

txFont A font family ID number that identifies the font to be used in the graphics
port.

txFace The style of the text, for example, bold, italic, and/or underlined.

txMode The transfer mode for text drawing, which functions much like the transfer
mode specified in the pnMode field (see above).

txSize The text size in pixels. The Font Manager uses this information to provide
the bitmaps for text drawing. The value in this field can be represented by

point size x device resolution / 72 dpi
where point is a typographical term meaning approximately 1/72 inch.

fgColor The pixel value of the foreground colour supplied by the Color Manager.
(See Colour and the Video Device, above, and Translation of RGB Colours to
Pixel Values, below.) This is the colour actually displayed on the device, that
is, it is the the best available approximation to the requested color in the
rgbFgColor field.

bkColor The pixel value of the background colour supplied by the Color Manager.
(See Colour and the Video Device, above, and Translation of RGB Colours to
Pixel Values, below.) This is the colour actually displayed on the device, that
is, it is the the best available approximation to the requested color in the
rgbBkColor field.

Pixel Maps

QuickDraw draws in a pixel map. The portPixMap field of the CGrafPort structure contains a
handle to a pixel map, which is a data structure of type PixMap. A PixMap structure contains
a pointer to a pixel image, as well as information on the image's storage format, depth,
resolution, and colour usage. The PixMap structure is as follows:

PixMap = RECORD
baseAddr: Ptr; { Pointer to image data. }
rowBytes: INTEGER; { Flags, and bytes in a row. }
bounds: Rect; { Boundary rectangle. }
pmVersion: INTEGER; { Pixel Map version number. }
packType: INTEGER; { Packing format. }
packSize: LONGINT; { Size of data in packed state. }
hRes: Fixed; { Horizontal resolution in dots per inch. }
vRes: Fixed; { Vertical resolution in dots per inch. }
pixelType: INTEGER; { Format of pixel image. }
pixelSize: INTEGER; { Physical bits per pixel. }
cmpCount: INTEGER; { Number of components in each pixel. }
cmpSize: INTEGER; { Number of bits in each component. }
planeBytes: LONGINT; { Offset to next plane. }
pmTable: CTabHandle; { Handle to a colour table for this image. }
pmReserved: LONGINT; { (Reserved.) }
END;

PixMapHandle = ^PixMapPtr;
PixPatPtr = ^PixPat;

QuickDraw Preliminaries 11-7

Version 2.1

Field Descriptions

baseAddr For an onscreen pixel image, a pointer to the first byte of the image. The
pixel image that appears on the screen is normally stored on a graphics card
rather than in main memory. Note that there can be several pixel maps
pointing to the same pixel image, each imposing its own coordinate system
on it.

A pixel image is analogous to the bit image used by basic QuickDraw. A bit
image is a collection of bits in memory that form a grid. Fig 4 illustrates a
bit image, which can be visualised as a matrix of rows and columns of bits
with each row containing the same number of bytes. Each bit corresponds to
one screen pixel. If a bit's value is 0, its screen pixel is white; if the bit's
value is 1, the screen pixel is black. A bit image can be any length that is a
multiple of the row's width in bytes. On black-and-white Macintoshes, the
screen itself is one large visible bit image.

FIG 4 - A BIT IMAGE

8 BITS

FIRST BYTE

LAST BYTE

A pixel image is essentially the same as a bit image, except that a number of
bits, not just one bit, are assigned to each pixel. The number of bits per pixel
in a pixel image is called the pixel depth.

rowBytes The offset in bytes from one row of the image to the next. The value must be
even and less than $4000. For best performance it should be a multiple of 4.
Bit 15 is used as a flag. If bit 15 = 1, the data structure is a PixMap structure,
otherwise it is a BitMap structure. (The rowbytes bytes in a PixMap structure
occupy the same bytes (fifth and sixth) as they do is a BitMap.)

bounds The boundary rectangle, which links the local coordinate system of a
graphics port to QuickDraw's global coordinate system and defines the area
of the pixel image into which QuickDraw can draw. All drawing in a colour
graphics port occurs in the intersection of the boundary rectangle and the
port rectangle (and, within that intersection, all drawing is cropped to the
colour graphics port's visible region and its clipping region.)

As shown at Fig 5, QuickDraw assigns the entire screen as the boundary
rectangle. The boundary rectangle shares the same local coordinate system
as the port rectangle of the window.

11-8 QuickDraw Preliminaries

Version 2.1

FIG 5 - LOCAL AND GLOBAL COORDINATE SYSTEMS, THE BOUNDARY RECTANGLE AND THE PORT RECTANGLE

BOUNDARY RECTANGLE PORT RECTANGLE

(h=0,v=0) IN GLOBAL COORDINATES

(h=70,v=60) IN GLOBAL COORDINATES
(h=0,v=0) IN LOCAL COORDINATES

UPPER LEFT
CORNER OF
BOUNDARY
RECTANGLE:
h = - 70,v = - 60
IN LOCAL
COORDINATES

GLOBAL ORIGIN

WINDOW ORIGIN

- h

+ v

v

- v

+ h

h

Do not use the bounds field to determine the size of the screen; instead, use
the gdRect field of the GDevice structure (see below) for the screen.

pmVersion The version number of QuickDraw that created this PixMap structure.

packType The packing algorithm used to compress image data.

packSize The size of the packed image in bytes.

hRes The horizontal resolution of the image in pixels per inch, abbreviated as dpi
(dots per inch). By default, the value here is $00480000 (for 72 dpi), but
QuickDraw supports PixMap structures of other resolutions. For example,
PixMap structures for scanners can have dpi resolutions of 150, 200, 300, or
greater.

vRes Describes the vertical resolution. (See hRes).

pixelType The storage format for a pixel image. Indexed pixels are indicated by a value
of 0. Direct pixels are specified by a value of RGBDirect, or 16. In the PixMap
structure of the GDevice structure (see below) for a direct device, this field is
set to the constant RGBDirect when the screen depth is set.

pixelSize The pixel depth, that is, the number of bits used to represent a pixel.
Indexed pixels can have sizes of 1, 2, 4, or 8 bits. Direct pixel sizes are 16 or
32 bits.

cmpCount The number of components used to represent a colour for a pixel. With
indexed pixels, each pixel is a single value representing an index in a colour
table, so this field contains the value 1. With direct pixels, each pixel
contains three components (one integer each for the intensities of red,
green, and blue), so this field contains the value 3.

cmpSize Specifies how large each colour component is. For indexed devices, it is the
same value as that in the pixelSize field. For direct devices, each of the three
colour components can be either 5 bits for a 16-bit pixel (one of these 16 bits
is unused), or 8 bits for a 32 bit pixel (8 of these 32 bits are unused). (See
Translation of RGB Colours to Pixel Values, below.)

QuickDraw Preliminaries 11-9

Version 2.1

planeBytes QuickDraw does not support multiple-plane images, so the value of this field
is always 0.

pmTable Contains a handle to the ColorTable structure. ColorTable structures define the
colours available for pixel images on indexed devices. (The Color Manager
stores a colour table for the currently available colours in the graphic's
device's CLUT. You use the Palette Manager to assign different colour tables
to your different windows.)

You can create colour tables using either ColorTable structures or 'clut'
resources. Pixel images on direct devices do not need a colour table because
the colours are stored right in the pixel values. In such cases, pmTable points
to a dummy colour table.

Pixel Patterns and Bit Patterns

Pixel Patterns

Three fields in the colour graphics port structure (pnPixPat, fillPixPat, and bkPixPat,) hold
handles to a pixel pattern , a structure of type PixPat.

Pixel patterns, which define a repeating design, can use colours at any pixel depth, and
can be of any width and height that is a power of 2. You can create your own pixel
patterns in your program code, but it is usually simpler and more convenient to store
them in resources of type 'ppat'. Fig 6 shows an 8-by-8 pixel 'ppat' resource being created
using Resorcerer.

FIG 6 - CREATING A 'ppat' RESOURCE USING RESORCERER

Bit Patterns

Bit patterns date from the era of the black-and-white Macintosh, but may be assigned to
the pnPixPat , fillPixPat, and bkPixPat fields of a colour graphics port. (PixPat structures can
contain bit patterns as well as pixel patterns.) Bit patterns are defined in data structures
of type Pattern, a 64-pixel image of a repeating design organised as an 8-by-8 pixel square.

Five bit patterns are pre-defined as QuickDraw global variables. The five pre-defined
patterns are available not only through the QuickDraw globals but also as system

11-10 QuickDraw Preliminaries

Version 2.1

resources stored in the System resource file. Fig 7 shows images drawn using some
some of the 38 available system-supplied bit patterns.

FIG 7 - RECTANGLES DRAWN USING BIT PATTERNS IN THE SYSTEM RESOURCE FILE

 RECTANGLES DRAWN WITH OTHER BIT PATTERNS IN THE SYTEM RESOURCE FILE

white black dkGray gray ltGray
 RECTANGLES DRAWN WITH BIT PATTERNS PRE-DEFINED AS QUICKDRAW GLOBAL VARIABLES

You can create your own bit patterns in your program code, but it is usually simpler and
more convenient to store them in resources of type 'PAT ' or 'PAT#'. Fig 8 shows a 'PAT '
resource being created using Resorcerer, together with the contents of the pat field of the
structure of type Pattern that is created when the resource is loaded.

pat[0] = 10001000 = 0x88
pat[1] = 01000100 = 0x44
pat[2] = 00100010 = 0x22
pat[3] = 00010001 = 0x11
pat[4] = 10001000 = 0x88
pat[5] = 01000100 = 0x44
pat[6] = 00100010 = 0x22
pat[7] = 00010001 = 0x11

FIG 8 - CREATING A 'PAT ' RESOURCE USING RESORCERER

Creating Colour Graphics Ports

Your application creates a colour graphics port using either the GetNewCWindow, NewCWindow,
or NewGWorld function. These functions automatically call OpenCPort (which opens the port)
and InitCPort (which and initialises the port).

Translation of RGB Colours to Pixel Values
As previously stated, the baseAddr field of the CGrafPort structure contains a pointer to the
beginning of the onscreen pixel image. When your application specifies an RGB colour
for a pixel in the pixel image, QuickDraw translates that colour into a value appropriate
for display on the user's screen. QuickDraw stores this value in the pixel. The pixel
value is a number used by system software and a graphics device to represent a colour.
The translation from the colour you specify in an RGBColor structure to a pixel value is
performed at the time you draw the colour. The process differs for direct and indexed
devices as follows:

• When drawing on indexed devices, QuickDraw calls the Color Manager to supply
the index to the colour that most closely matches the requested colour in the
current device's CLUT. This index becomes the pixel value for that colour.

QuickDraw Preliminaries 11-11

Version 2.1

• When drawing on direct devices, QuickDraw truncates the least significant bits
from the red, green and blue fields of the RGBColor structure. The result becomes
the pixel value that QuickDraw sends to the graphics device.

Your application never needs to handle pixel values. However, to clarify the relationship
between RGBColor structures and the pixels that are actually displayed, the following
presents some examples of the derivation of pixel values from RGBColor structures.

Derivation of Pixel Values on Indexed Devices

Fig 9 shows the translation of an RGBColor structure to an 8-bit pixel value on an indexed
device.

FIG 9 - TRANSLATING AN RGBColor STRUCTURE TO AN 8-BIT PIXEL VALUE ON AN INDEXED DEVICE

RGBColor STRUCTURE
INDEX NUMBERS

CLUT
0

161

R G B
0x32060x90380x013D

PIXEL VALUE (161) 255

CLOSEST
COLOUR MATCH
IS AT TABLE
ENTRY 161

0x3333 0x9999 0x0000

1

160

162

rgbFgColor or rgbBkColor
field of CGrafPort structure

fgColor or bkColor field
of CGrafPort structure

The application might later use GetCPixel to determine the colour of a particular pixel. As
shown at Fig 10, the Color Manager uses the index number stored as the pixel value to
find the RGBColor structure stored in the CLUT for that pixel's colour. Also as shown at Fig
10, this is not necessarily the exact colour first specified.

FIG 10 - TRANSLATING AN 8-BIT PIXEL VALUE ON AN IDEXED DEVICE TO AN RGBColor STRUCTURE

RGBColor STRUCTURE
INDEX NUMBERS

CLUT
0

161

R G B
0x33330x99990x0000

PIXEL VALUE (161) 255

0x3333 0x9999 0x0000

1

160

162
fgColor or bkColor field
of CGrafPort structure

GetCPixel

Derivation of Pixel Values on Direct Devices

Fig 11 shows how QuickDraw converts an RBGColor structure into a 16-bit pixel value on a
direct device by storing the most significant 5 bits of each 16-bit field of the 48-bit
RGBColor structure in the lower 15 bits of the pixel value, leaving an unused high bit. Fig
11 also shows how QuickDraw expands a 16-bit pixel value to a 48-bit RGBColor structure
by dropping the unused high bit of the pixel value and inserting three copies of each 5-bit
component and a copy of the most significant bit into each 16-bit field of the RGBColor
structure. Note that the result differs, in the least significant 11 bits, from the original
48-bit value.

11-12 QuickDraw Preliminaries

Version 2.1

FIG 11 - TRANSLATING AN RGBColor STRUCTURE TO A 16 BIT PIXEL VALUE, AND FROM A 16-BIT PIXEL VALUE TO AN RGBColor STRUCTURE,
ON A DIRECT DEVICE

16-BIT RED COMPONENT
0x3206

16-BIT GREEN COMPONENT
0x9038

16-BIT BLUE COMPONENT
0x013D

(UNUSED)

0x318C 0x9495 0x0000

R 0x06 G 0x12 B 0x00

rgbFgColor or
rgbBkColor field of
CGrafPort structure

fgColor or bkColor
field of CGrafPort
structure

GetCPixel

Fig 12 shows how QuickDraw converts an RBGColor structure into a 32-bit pixel value on a
direct device by storing the most significant 8 bits of each 16-bit field of the structure
into the lower 3 bytes of the pixel value, leaving 8 unused bits in the high byte of the
pixel value. Fig 12 also shows how QuickDraw expands a 32-bit pixel value to an RBGColor
structure by dropping the unused high byte of the pixel value and doubling each of its 8-
bit components. Note that the resulting 48-bit value differs in the least significant 8 bits
of each component from the original RBGColor structure.

FIG 12 - TRANSLATING AN RGBColor STRUCTURE TO A 32 BIT PIXEL VALUE, AND FROM A 32-BIT PIXEL VALUE TO AN RGBColor STRUCTURE,
ON A DIRECT DEVICE

16-BIT RED COMPONENT
0x3206

16-BIT GREEN COMPONENT
0x9038

16-BIT BLUE COMPONENT
0x013D

B 0x01(UNUSED)

0x3232 0x9090 0x0101

R 0x32 G 0x90

rgbFgColor or
rgbBkColor field of
CGrafPort structure

fgColor or bkColor
field of CGrafPort
structure

GetCPixel

Colours on Grayscale Screens

When QuickDraw displays a colour on a grayscale screen, it computes the luminance, or
intensity of light, of the desired colour and uses that value to determine the appropriate
gray value to draw.

A grayscale device can be a colour graphics device that the user sets to grayscale by
using the Monitors and Sound control panel. For such a graphics device, Colour
QuickDraw places an evenly spaced set of grays in the graphics device's CLUT.

By using the GetCTable function, your application can obtain the default colour tables for
various graphics devices, including grayscale devices.

Graphics Devices and GDevice Structures
As previously stated, QuickDraw provides a device-independent interface. Your
application can draw images in the graphics port for a window and QuickDraw
automatically manages the path to the screen — even if the user is using multiple
screens. QuickDraw communicates with a video device, such as a plug-in video card or a
built-in video interface, by automatically creating and managing a structure of data type
GDevice.

QuickDraw Preliminaries 11-13

Version 2.1

Types of Graphics Device

A graphics device is anything into which QuickDraw can draw. There are three types of
graphics device:

• Video devices, such as video cards and built-in video interfaces, that control
screens.

• Offscreen graphics worlds, which allow your application to build complex images
offscreen before displaying them.4

• Printing graphics ports for printers.5

GDevice Structure

For a video device or an offscreen graphics world, QuickDraw automatically creates, and
stores state information in, a GDevice structure. Note that printers do not have GDevice
structures.

When the system starts up, QuickDraw uses information supplied by the Slot Manager to
create and initialise a GDevice structure for each video device found during startup. When
you use the NewGWorld function to create an offscreen graphics world, QuickDraw
automatically creates a GDevice structure.

All existing GDevice structures are linked together in a list called a device list. The global
variable DeviceList holds a handle to the first structure in the list. At any given time,
exactly one graphics device is the current device (also called the active device), that is,
the one in which drawing is actually taking place. A handle to its GDevice structure is
stored in the global variable TheGDevice. By default, the GDevice structure corresponding to
the first video device found is marked as the current device.

Your application generally never needs to create GDevice structures; however, in may need
to examine GDevice structures to determine the capabilities of the user's screens. The
GDevice structure is as follows:

GDevicePtr = ^GDevice;
GDevice = RECORD

gdRefNum: INTEGER; { Reference Number of Driver. }
gdID: INTEGER; { Client ID for search procedures. }
gdType: INTEGER; { Type of device (indexed or direct). }
gdITable: ITabHandle; { Handle to inverse lookup table for Color Manager. }
gdResPref: INTEGER; { Preferred resolution. }
gdSearchProc: SProcHndl; { Handle to list of search functions. }
gdCompProc: CProcHndl; { Handle to list of complement functions. }
gdFlags: INTEGER; { Graphics device flags. }
gdPMap: PixMapHandle; { Handle to pixel map for displayed image. }
gdRefCon: LONGINT; { Reference value. }
gdNextGD: Handle; { Handle to next GDevice structure. }
gdRect: Rect; { Device's global boundaries. }
gdMode: LONGINT; { Device's current mode. }
gdCCBytes: INTEGER; { Width of expanded cursor data. }
gdCCDepth: INTEGER; { Depth of expanded cursor data. }
gdCCXData: Handle; { Handle to cursor's expanded data. }
gdCCXMask: Handle; { Handle to cursor's expanded mask. }
gdReserved: LONGINT; { (Reserved. Must be 0.) }
END;

GDPtr = ^GDevice;
GDHandle = ^GDPtr;

Main Field Descriptions

gdType The general type of graphics device. See Flag Bits of gdType Field, below.

4 See Chapter 13 — Offscreen Graphics Worlds, Pictures, Cursors, and Icons.
5 See Chapter 15 — Printing.

11-14 QuickDraw Preliminaries

Version 2.1

gdITable Points to an inverse table. An inverse table is a special Color Manager data
structure arranged in such a manner that, given an arbitrary RGB colour, its
pixel value (that is, its index number in the CLUT) can be found quickly.

gdFlags Device attributes (that is, whether the device is a screen, whether it is the
main screen, whether it is set to black-and-white or colour, whether it is the
active device, etc.) See Flag Bits of gdType Field, below.

gdPMap Contains a handle to the pixel map (PixMap) structure, which contains the
dimensions of the image buffer, along with the characteristics of the graphics
device (resolution, storage format, pixel depth, and colour table. QuickDraw
automatically synchronises the pixel map's colour table (ColorTable) structure
with the CLUT on the video device.

gdNextGD A handle to the next graphics device in the device list. If this is the last
graphics device in the device list, this field contains 0.

gdRect The boundary rectangle of the graphics device represented by the GDevice
structure. The main screen has the upper-left corner of the rectangle set to
(0,0). All other graphics devices are relative to this point.

Flag Bits of gdType Field

Constant Bit Meaning
clutType 0 CLUT device.
fixedType 1 Fixed CLUT device.
directType 2 Direct device.

Flag Bits of gdFlags Field

Constant Bit Meaning
gdDevType 0 0 = black-and-white. 1 = colour.
burstDevice 7 Device supports block transfer.
ext32Device 8 Device must be used in 32-bit mode.
ramInit 10 Device was initialised from RAM.
mainScreen 11 Device is the main screen.
allInit 12 All devices were initialised from 'scrn'

resource.
screenDevice 13 Device is a screen device.
noDriver 14 GDevice structure has no driver.
screenActive 15 Device is current device.

Setting a Device's Pixel Depth

The gdPMap field of the GDevice structure contains a handle to a PixMap structure which, in
turn, contains the PixelSize field to which is assigned the pixel depth of the device.

The Monitors and Sound control panel is the user interface for changing the pixel depth
of video devices. Since the user can control the capabilities of the video device, your
application should be flexible, that is, although it may have a preferred pixel depth, it
should do its best to accommodate less than ideal conditions. Your application can use
the SetDepth function to change the pixel depth, but it should not do so without the consent
of the user. Before calling SetDepth, you should use the HasDepth function to determine
whether the available hardware can support the pixel depth you require.

QuickDraw Preliminaries 11-15

Version 2.1

Other Graphics Managers
In addition to the QuickDraw functions, several other collections of system software
functions are available to assist you in drawing images.

Palette Manager

To provide more sophisticated colour support on indexed graphics devices, your
application can use the Palette Manager. The Palette Manager allows your application to
specify sets of colours that it needs on a window-by-window basis. On a video device that
uses a variable CLUT, your application can use the Palette Manager to display any
number of palettes (that is, sets of colours) consisting of 256 colours each. Remember,
though, that only one set of colours (palette) can be displayed at any one time.

Color Picker Utilities

To solicit colour choices from users, your application can use the Color Picker Utilities.
The Color Picker Utilities also provide functions that allow your application to convert
between colours specified in RGBColor structures and colours specified for other colour
models, such as the CMYK (cyan, magenta, yellow, black) model used for many colour
printers. (See Chapter 23 — Miscellany.)

Coping With Multiple Monitors
Image optimisation and window dragging in a multiple monitors environment is
addressed at Chapter 23 — Miscellany.

Relevant QuickDraw Constants, Data Types, and Functions

Constants

Flag Bits of gdType Field of GDevice Structure

clutType = 0
fixedType = 1
directType = 2

Flag Bits of gdFlags Field of GDevice Structure

gdDevType = 0
burstDevice = 7
ext32Device = 8
ramInit = 10
mainScreen = 11
allInit = 12
screenDevice = 13
noDriver = 14
screenActive = 15

Pixel Type

RGBDirect = 16 16 and 32 bits-per-pixel pixelType value.

Data Types

Colour Graphics Port

CGrafPort = RECORD
device: INTEGER; { Device-specific information. }
portPixMap: PixMapHandle; { Handle to pixel map. }
portVersion: INTEGER; { Flags and version number. }

11-16 QuickDraw Preliminaries

Version 2.1

grafVars: Handle; { Handle to additional colour fields. }
chExtra: INTEGER; { Extra width added to non-space characters. }
pnLocHFrac: INTEGER; { Fractional horizontal pen position. }
portRect: Rect; { Port rectangle. }
visRgn: RgnHandle; { Visible region. }
clipRgn: RgnHandle; { Clipping region. }
bkPixPat: PixPatHandle; { Background pattern. }
rgbFgColor: RGBColor; { Requested foreground colour. }
rgbBkColor: RGBColor; { Requested background colour. }
pnLoc: Point; { Pen location. }
pnSize: Point; { Pen size. }
pnMode: INTEGER; { Pattern mode. }
pnPixPat: PixPatHandle; { Pen pattern. }
fillPixPat: PixPatHandle; { Fill pattern. }
pnVis: INTEGER; { Pen visibility. }
txFont: INTEGER; { Font number for text. }
txFace: StyleField; { Text font style. }
txMode: INTEGER; { Text source mode. }
txSize: INTEGER; { Font size for text. }
spExtra: Fixed; { Extra width added to space characters. }
fgColor: LONGINT; { Actual foreground colour. }
bkColor: LONGINT; { Actual background colour. }
colrBit: INTEGER; { Colour bit (reserved). }
patStretch: INTEGER; { (Used internally.) }
picSave: Handle; { Picture being saved. (Used internally.) }
rgnSave: Handle; { Region being saved. (Used internally.) }
polySave: Handle; { Polygon being saved. (Used internally.) }
grafProcs: CQDProcsPtr; { Pointer to low-level drawing routines. }
END;

CGrafPtr = ^CGrafPort;
CWindowPtr = CGrafPtr;

GrafVars

GrafVars = RECORD
rgbOpColor: RGBColor; { Colour for addPin subPin and average. }
rgbHiliteColor:RGBColor; { Colour for hiliting. }
pmFgColor: Handle; { Palette Handle for foreground colour. }
pmFgIndex: INTEGER; { Index value for foreground. }
pmBkColor: Handle; { Palette Handle for background colour. }
pmBkIndex: INTEGER; { Index value for background. }
pmFlags: INTEGER; { Flags for Palette Manager. }
END;

GVarPtr = ^GrafVars;
GVarHandle = ^GVarPtr;

Pixel Map

PixMap = RECORD
baseAddr: Ptr; { Pointer to image data. }
rowBytes: INTEGER; { Flags, and bytes in a row. }
bounds: Rect; { Boundary rectangle. }
pmVersion: INTEGER; { Pixel Map version number. }
packType: INTEGER; { Packing format. }
packSize: LONGINT; { Size of data in packed state. }
hRes: Fixed; { Horizontal resolution in dots per inch. }
vRes: Fixed; { Vertical resolution in dots per inch. }
pixelType: INTEGER; { Format of pixel image. }
pixelSize: INTEGER; { Physical bits per pixel. }
cmpCount: INTEGER; { Number of components in each pixel. }
cmpSize: INTEGER; { Number of bits in each component. }
planeBytes: LONGINT; { Offset to next plane. }
pmTable: CTabHandle; { Handle to a colour table for this image. }
pmReserved: LONGINT; { (Reserved.) }
END;

PixMapHandle = ^PixMapPtr;
PixPatPtr = ^PixPat;

Color Table

ColorTable = RECORD
ctSeed: LONGINT; { Unique identifier for table. }
ctFlags: INTEGER; { High bit: 0 = PixMap; 1 = device. }
ctSize: INTEGER; { Number of entries in CTTable minus 1. }
ctTable: CSpecArray; { Array [0..0] of ColorSpec. }

QuickDraw Preliminaries 11-17

Version 2.1

END;

ColorTablePtr = ^ColorTable;
CTabPtr = ^ColorTable;
CTabHandle = ^CTabPtr;

ColorSpec

ColorSpec = RECORD
value: INTEGER; { Index or other value. }
rgb: RGBColor; { True colour. }
END;

ColorSpecPtr = ^ColorSpec;
CSpecArray = ARRAY [0..0] OF ColorSpec;

BitMap

BitMap = RECORD
baseAddr: Ptr;
rowBytes: INTEGER;
bounds: Rect;
END;

BitMapPtr = ^BitMap;
BitMapHandle = ^BitMapPtr;

Pixel Pattern

PixPat = RECORD
patType: INTEGER; { Type of pattern. }
patMap: PixMapHandle; { The pattern's pixMap. }
patData: Handle; { Pixmap's data. }
patXData: Handle; { Expanded Pattern data (internal use). }
patXValid: INTEGER; { Flags whether expanded Pattern valid. }
patXMap: Handle; { Handle to expanded Pattern data (reserved). }
pat1Data: Pattern; { Bit map's data. }
END;

PixPatPtr = ^PixPat;
PixPatHandle = ^PixPatPtr;

Pattern

Pattern = RECORD
pat: PACKED ARRAY [0..7] OF UInt8;
END;

PatternPtr = ^Pattern;
PatPtr = ^Pattern;
PatHandle = ^PatPtr;

Note: Patterns were originally defined as:

Pattern = PACKED ARRAY [0..7] OF 0..255;

The new struct definition was introduced with the Universal Headers. The old array
definition of Pattern would cause 68000-based CPUs to crash in certain
circumstances.

GDevice

GDevicePtr = ^GDevice;
GDevice = RECORD

gdRefNum: INTEGER; { Reference Number of Driver. }
gdID: INTEGER; { Client ID for search procedures. }
gdType: INTEGER; { Type of device (indexed or direct). }
gdITable: ITabHandle; { Handle to inverse lookup table for Color Manager. }
gdResPref: INTEGER; { Preferred resolution. }
gdSearchProc: SProcHndl; { Handle to list of search functions. }
gdCompProc: CProcHndl; { Handle to list of complement functions. }
gdFlags: INTEGER; { Graphics device flags. }
gdPMap: PixMapHandle; { Handle to pixel map for displayed image. }
gdRefCon: LONGINT; { Reference value. }

11-18 QuickDraw Preliminaries

Version 2.1

gdNextGD: Handle; { Handle to next GDevice structure. }
gdRect: Rect; { Device's global boundaries. }
gdMode: LONGINT; { Device's current mode. }
gdCCBytes: INTEGER; { Width of expanded cursor data. }
gdCCDepth: INTEGER; { Depth of expanded cursor data. }
gdCCXData: Handle; { Handle to cursor's expanded data. }
gdCCXMask: Handle; { Handle to cursor's expanded mask. }
gdReserved: LONGINT; { (Reserved. Must be 0.) }
END;

GDPtr = ^GDevice;
GDHandle = ^GDPtr;

Functions

Opening and Closing Colour Graphics Ports

PROCEDURE OpenCPort(port: CGrafPtr);
PROCEDURE InitCPort(port: CGrafPtr);
PROCEDURE CloseCPort(port: CGrafPtr);

Saving and Restoring Colour Graphics Ports

PROCEDURE SetPort(port: GrafPtr);
PROCEDURE GetPort(VAR port: GrafPtr);

Creating, Setting and Disposing of Pixel Maps

FUNCTION NewPixMap: PixMapHandle;
PROCEDURE DisposePixMap(pm: PixMapHandle);
PROCEDURE CopyPixMap(srcPM: PixMapHandle; dstPM: PixMapHandle);
PROCEDURE SetPortPix(pm: PixMapHandle);

Creating, Setting and Disposing of Graphics Device Structures

FUNCTION NewGDevice(refNum: INTEGER; mode: LONGINT): GDHandle;
PROCEDURE SetGDevice(gd: GDHandle);
PROCEDURE DisposeGDevice(gdh: GDHandle);
PROCEDURE InitGDevice(qdRefNum: INTEGER; mode: LONGINT; gdh: GDHandle);
PROCEDURE SetDeviceAttribute(gdh: GDHandle; attribute: INTEGER; value: BOOLEAN);

Getting the Available Graphics Devices

FUNCTION GetGDevice: GDHandle;
FUNCTION LMGetMainDevice: GDHandle;
FUNCTION LMGetDeviceList: GDHandle;
FUNCTION GetNextDevice(curDevice: GDHandle): GDHandle;

Determining the Characteristics of a Video Device

FUNCTION TestDeviceAttribute(gdh: GDHandle; attribute: INTEGER): BOOLEAN;
PROCEDURE ScreenRes(VAR scrnHRes: INTEGER; VAR scrnVRes: INTEGER);

Changing the Pixel Depth of a Video Device

FUNCTION SetDepth(gd: GDHandle; depth: INTEGER; whichFlags: INTEGER; flags: INTEGER): OSErr;
FUNCTION HasDepth(gd: GDHandle; depth: INTEGER; whichFlags: INTEGER; flags: INTEGER): INTEGER;

Demonstration Program
{ ◊◊
// PreQuickDraw.p
// ◊◊
//
// This program opens a window in which is displayed some information extracted from
// the GDevice structure for the main video device and some colour information extracted
// from the window's colour graphics port structure. When the monitor is set to 256
// colours or less, the colours in the colour table in the GDevice structure's pixel map
// structure are also displayed.
//
// A Demonstration menu, which is enabled if the monitor is a direct device set to 256

QuickDraw Preliminaries 11-19

Version 2.1

// colours or less at program start, allows the user to set the monitor to 16-bit colour,
// and restore the original pixel depth, using application-defined functions.
//
// The program utilises 'MBAR', 'MENU', 'WIND', and 'STR#' resources, and a 'SIZE'
// resource with the is32BitCompatible flag set.
//
// ◊◊ }

program PreQuickDraw;

//
……
………………………………… interfaces

uses

{ Universal Interfaces. }
Appearance, Devices, Dialogs, Palettes, Processes, Sound, TextUtils, ToolUtils,
LowMem, NumberFormatting;

//
……
…………………………………… constants

const

rMenubar = 128;
rWindow = 128;
mApple = 128;
 iAbout = 1;
mFile = 129;
 iQuit = 11;
mDemonstration = 131;
 iSetDepth = 1;
 iRestoreDepth = 2;
rIndexedStrings = 128;
sMonitorInadequate = 1;
sSettingPixelDepth16 = 2;
sMonitorIsDepth16 = 3;
sMonitorIsDepthStart = 4;
sRestoringMonitor = 5;
MAXLONG = $7FFFFFFF;

//
……
………………… global variables

var

gDone : boolean;
gStartupPixelDepth : SInt16;

// ……… main
program block variables

mainMenubarHdl : Handle;
mainMenuHdl : MenuHandle;
mainWindow : WindowPtr;
mainString : Str255;
mainEvent : EventRecord;
mainErr : OSErr;

//
……
…………… routine prototypes

procedure DoInitManagers; forward;
procedure DoEvents({const} var theEvent : EventRecord); forward;
procedure DoDisplayInformation(theWindow : WindowPtr); forward;
function DoCheckMonitor : boolean; forward;
procedure DoSetMonitorPixelDepth; forward;
procedure DoRestoreMonitorPixelDepth; forward;
procedure DoMonitorAlert(labelText : Str255); forward;

// ◊◊◊ DoInitManagers

procedure DoInitManagers;
var
osError : OSErr;

11-20 QuickDraw Preliminaries

Version 2.1

begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

InitCursor;
FlushEvents(everyEvent, 0);

osError := RegisterAppearanceClient;

end;
{ of procedure DoInitManagers }

// ◊◊◊ DoEvents

procedure DoEvents({const} var theEvent : EventRecord);
var
charCode : SInt8;
menuChoice : SInt32;
menuID, menuItem : SInt16;
partCode : SInt16;
theWindow : WindowPtr;
itemName : Str255;
daDriverRefNum : SInt16;
theRect : Rect;

begin
case theEvent.what of

keyDown, autoKey: begin
charCode := SInt8(BAnd(theEvent.message, charCodeMask));
if (BAnd(theEvent.modifiers, cmdKey) <> 0) then

begin
menuChoice := MenuEvent(theEvent);
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);
if ((menuID = mFile) and (menuItem = iQuit)) then

begin
gDone := true;
end;

end;
end;

{ of keyDown, autoKey }

mouseDown: begin
partCode := FindWindow(theEvent.where, theWindow);
if (partCode <> 0) then

begin
case partCode of

inMenuBar: begin
menuChoice := MenuSelect(theEvent.where);
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);

if (menuID = 0) then
begin
Exit(DoEvents);
end;

case menuID of

mApple: begin
if (menuItem = iAbout) then

begin
SysBeep(10);
end

else begin
GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);
daDriverRefNum := OpenDeskAcc(itemName);
end;

end;

mFile: begin

QuickDraw Preliminaries 11-21

Version 2.1

if (menuItem = iQuit) then
begin
gDone := true;
end;

end;

mDemonstration: begin
if (menuItem = iSetDepth) then

begin
DoSetMonitorPixelDepth;
end

else if (menuItem = iRestoreDepth) then
begin
DoRestoreMonitorPixelDepth;
end;

end;

otherwise begin
end;

end;
{ of case statement }

HiliteMenu(0);
end;

inDrag: begin
DragWindow(theWindow, theEvent.where, qd.screenBits.bounds);
theRect := theWindow^.portRect;
theRect.right := theWindow^.portRect.left + 250;
InvalRect(theRect);
end;

otherwise begin
end;

end;
{ of case statement }

end;
end;

{ of mouseDown }

updateEvt: begin
theWindow := WindowPtr(theEvent.message);
BeginUpdate(theWindow);
SetPort(theWindow);
EraseRect(theWindow^.portRect);
DoDisplayInformation(theWindow);
EndUpdate(theWindow);
end;

{ of updateEvt }

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoEvents }

// ◊◊◊ DoDisplayInformation

procedure DoDisplayInformation(theWindow : WindowPtr);
var
whiteColour : RGBColor;
blueColour : RGBColor;
deviceHdl : GDHandle;
videoDeviceCount : SInt16;
theString : Str255;
deviceType, pixelDepth : SInt32;
bytesPerRow : SInt32;
theRect : Rect;
pixMapHdl : PixMapHandle;
cgrafPtr : CGrafPtr;
pixelValue : SInt32;
redComponent, greenComponent, blueComponent : SInt32;
colorTableHdl : CTabHandle;
entries, a, b, c : SInt16;
theColour : RGBColor;

11-22 QuickDraw Preliminaries

Version 2.1

begin
whiteColour.red := $FFFF;
whiteColour.green := $FFFF;
whiteColour.blue := $FFFF;
blueColour.red := $4444;
blueColour.green := $4444;
blueColour.blue := $9999;
videoDeviceCount := 0;

RGBForeColor(whiteColour);
RGBBackColor(blueColour);
EraseRect(theWindow^.portRect);

//
……
……………… Get Device List

deviceHdl := LMGetDeviceList;

// ……… count video devices
in device list

while (deviceHdl <> nil) do
begin
if TestDeviceAttribute(deviceHdl, screenDevice) then

begin
videoDeviceCount := videoDeviceCount + 1;
end;

deviceHdl := GetNextDevice(deviceHdl);
end;

NumToString(SInt32(videoDeviceCount), theString);
MoveTo(10, 20);
DrawString(theString);
if (videoDeviceCount = 1) then

begin
DrawString(' video device in the device list.');
end

else begin
DrawString(' video devices in the device list.');
end;

//
……
……………… Get Main Device

deviceHdl := LMGetMainDevice;

//
……
determine device type

MoveTo(10, 35);
if BitTst(Ptr(@deviceHdl^^.gdFlags), 15 - gdDevType) then

begin
DrawString('The main video device is a colour device.');
end

else begin
DrawString('The main video device is a monochrome device.');
end;

MoveTo(10, 50);
deviceType := deviceHdl^^.gdType;

case deviceType of

clutType: begin
DrawString('It is an indexed device with variable CLUT.');
end;

fixedType: begin
DrawString('It is is an indexed device with fixed CLUT.');
end;

directType: begin
DrawString('It is a direct device.');
end;

otherwise begin

QuickDraw Preliminaries 11-23

Version 2.1

end;

end;
{ of case statement }

//
…… Get
Handle to Pixel Map

pixMapHdl := deviceHdl^^.gdPMap;

//
……
determine pixel depth

MoveTo(10, 70);
DrawString('Pixel depth = ');
pixelDepth := pixMapHdl^^.pixelSize;
NumToString(pixelDepth, theString);
DrawString(theString);

// ……… Get Device's
Global Boundaries

theRect := deviceHdl^^.gdRect;

// …………………………………………………………………………………… determine bytes per row and total pixel image bytes

MoveTo(10, 90);
bytesPerRow := BAnd(pixMapHdl^^.rowBytes, $7FFF);
DrawString('Bytes per row = ');
NumToString(bytesPerRow, theString);
DrawString(theString);

MoveTo(10, 105);
DrawString('Total pixel image bytes = ');
NumToString(bytesPerRow * theRect.bottom, theString);
DrawString(theString);

// …………………………………………… convert device's global boundaries to coordinates of graphics port

GlobalToLocal(theRect.topLeft);
GlobalToLocal(theRect.botRight);

MoveTo(10, 125);
DrawString('Boundary rectangle top = ');
NumToString(theRect.top, theString);
DrawString(theString);

MoveTo(10, 140);
DrawString('Boundary rectangle left = ');
NumToString(theRect.left, theString);
DrawString(theString);

MoveTo(10, 155);
DrawString('Boundary rectangle bottom = ');
NumToString(theRect.bottom, theString);
DrawString(theString);

MoveTo(10, 170);
DrawString('Boundary rectangle right = ');
NumToString(theRect.right, theString);
DrawString(theString);

// …… Get Pointer to Colour
Graphics Port

cgrafPtr := CGrafPtr(theWindow);

// …… determine requested
background colour

MoveTo(10, 190);
GetBackColor(blueColour);
DrawString('Requested background colour (rgb) = ');
MoveTo(10, 205);
NumToString(UInt16(blueColour.red), theString);
DrawString(theString);
DrawString(' ');
NumToString(UInt16(blueColour.green), theString);

11-24 QuickDraw Preliminaries

Version 2.1

DrawString(theString);
DrawString(' ');
NumToString(UInt16(blueColour.blue), theString);
DrawString(theString);

// …… get actual
colour (pixel value)

pixelValue := cgrafPtr^.bkColor;

// ……………… if direct device, extract colour components, else begin retrieve colour table index

MoveTo(10, 220);

if (deviceType = directType) then
begin
if (pixelDepth = 16) then

begin
redComponent := BAnd(BSR(pixelValue, 10), $0000001F);
greenComponent := BAnd(BSR(pixelValue, 5), $0000001F);
blueComponent := BAnd(pixelValue, $0000001F);
end

else if (pixelDepth = 32) then
begin
redComponent := BAnd(BSR(pixelValue, 16), $000000FF);
greenComponent := BAnd(BSR(pixelValue, 8), $000000FF);
blueComponent := BAnd(pixelValue, $000000FF);
end;

DrawString('Background colour used (rgb) = ');
MoveTo(10, 235);

NumToString(redComponent, theString);
DrawString(theString);
DrawString(' ');

NumToString(greenComponent, theString);
DrawString(theString);
DrawString(' ');

NumToString(blueComponent, theString);
DrawString(theString);
end

else if ((deviceType = clutType) or (deviceType = fixedType)) then
begin
DrawString(' Background colour used (color table index) = ');
MoveTo(10, 235);
NumToString(pixelValue, theString);
DrawString(theString);
end;

// ……… Get
Handle to Colour Table

colorTableHdl := pixMapHdl^^.pmTable;
entries := colorTableHdl^^.ctSize;

// …………………………………………………………………………………………… if any entries in colour table, draw the colours

MoveTo(250, 20);
DrawString('Colour table in GDevice''s PixMap:');

if (entries < 2) then
begin
MoveTo(260, 105);
DrawString('Dummy (one entry) colour table only.');
MoveTo(260, 120);
DrawString('To get some entries, set the monitor to');
MoveTo(260, 135);
DrawString(' 256 colours, causing it to act like an');
MoveTo(260, 150);
DrawString(' indexed device.');
SetRect(theRect, 250, 28, 458, 236);
FrameRect(theRect);
end;

c := 0;
for a := 28 to 223 by 13 do

begin
for b := 250 to 445 by 13 do

QuickDraw Preliminaries 11-25

Version 2.1

begin
if (c <= entries) then

begin
SetRect(theRect, b, a, b + 12, a + 12);
theColour := colorTableHdl^^.ctTable[c].rgb;
c := c + 1;
RGBForeColor(theColour);
PaintRect(theRect);
if (((deviceType = clutType) or (deviceType = fixedType)) and (c - 1 = pixelValue)) then

begin
RGBForeColor(whiteColour);
InsetRect(theRect, -1, -1);
FrameRect(theRect);
end;

end;
end;

end;
end;

{ of procedure DoDisplayInformation }

// ◊◊◊ DoCheckMonitor

function DoCheckMonitor : boolean;
var
mainDeviceHdl : GDHandle;

begin
mainDeviceHdl := LMGetMainDevice;

if (HasDepth(mainDeviceHdl, 16, 0, 0) = 0) then
begin
DoCheckMonitor := false;
end

else begin
gStartupPixelDepth := mainDeviceHdl^^.gdPMap^^.pixelSize;
DoCheckMonitor := true;
end;

end;
{ of procedure DoCheckMonitor }

// ◊◊◊ DoSetMonitorPixelDepth

procedure DoSetMonitorPixelDepth;
var
mainDeviceHdl : GDHandle;
ignoredErr : OSErr;
alertString : Str255;
pixelDepth : SInt16;

begin
mainDeviceHdl := LMGetMainDevice;
pixelDepth := mainDeviceHdl^^.gdPMap^^.pixelSize;

if (pixelDepth <> 16) then
begin
GetIndString(alertString, rIndexedStrings, sSettingPixelDepth16);
DoMonitorAlert(alertString);
ignoredErr := SetDepth(mainDeviceHdl, 16, 0, 0);
end

else begin
GetIndString(alertString, rIndexedStrings, sMonitorIsDepth16);
DoMonitorAlert(alertString);
end;

end;
{ of procedure DoSetMonitorPixelDepth }

// ◊◊◊ DoRestoreMonitorPixelDepth

procedure DoRestoreMonitorPixelDepth;
var
mainDeviceHdl : GDHandle;
ignoredErr : OSErr;
alertString : Str255;
pixelDepth : SInt16;

begin
mainDeviceHdl := LMGetMainDevice;
pixelDepth := mainDeviceHdl^^.gdPMap^^.pixelSize;

if (pixelDepth <> gStartupPixelDepth) then

11-26 QuickDraw Preliminaries

Version 2.1

begin
GetIndString(alertString, rIndexedStrings, sRestoringMonitor);
DoMonitorAlert(alertString);
ignoredErr := SetDepth(mainDeviceHdl, gStartupPixelDepth, 0, 0);
end

else begin
GetIndString(alertString, rIndexedStrings, sMonitorIsDepthStart);
DoMonitorAlert(alertString);
end;

end;
{ of procedure DoRestoreMonitorPixelDepth }

// ◊◊◊ DoMonitorAlert

procedure DoMonitorAlert(labelText : Str255);
var
paramRec : AlertStdAlertParamRec;
itemHit : SInt16;
ignoredErr : OSErr;

begin
paramRec.movable := true;
paramRec.helpButton := false;
paramRec.filterProc := nil;
paramRec.defaultText := StringPtr(kAlertDefaultOKText);
paramRec.cancelText := nil;
paramRec.otherText := nil;
paramRec.defaultButton := kAlertStdAlertOKButton;
paramRec.cancelButton := 0;
paramRec.position := kWindowDefaultPosition;

ignoredErr := StandardAlert(kAlertNoteAlert, @labelText, nil, @paramRec, itemHit);
end;

{ of procedure DoMonitorAlert }

// ◊◊ main program block

begin

//
……
…… initialise managers

DoInitManagers;

// …… set
up menu bar and menus

mainMenubarHdl := GetNewMBar(rMenubar);
if (mainMenubarHdl = nil) then

begin
ExitToShell;
end;

SetMenuBar(mainMenubarHdl);

mainMenuHdl := GetMenuHandle(mApple);
if (mainMenuHdl = nil) then

begin
ExitToShell;
end

else begin
AppendResMenu(mainMenuHdl, 'DRVR');
end;

if not DoCheckMonitor then
begin
GetIndString(mainString, rIndexedStrings, sMonitorInadequate);
DoMonitorAlert(mainString);
mainMenuHdl := GetMenuHandle(mDemonstration);
DisableItem(mainMenuHdl, 0);
end

else begin
if (gStartupPixelDepth > 8) then

begin
mainMenuHdl := GetMenuHandle(mDemonstration);
DisableItem(mainMenuHdl, 0);
end;

end;

DrawMenuBar;

QuickDraw Preliminaries 11-27

Version 2.1

// ………………………………………………………………………… open windows, set font size, show windows, move windows

mainWindow := GetNewCWindow(rWindow, nil, WindowPtr(-1));
if (mainWindow = nil) then

begin
ExitToShell;
end;

SetPort(mainWindow);
TextSize(10);

//
……
……………… enter eventLoop

gDone := false;

while not gDone do
begin
if WaitNextEvent(everyEvent, mainEvent, MAXLONG, nil) then

begin
DoEvents(mainEvent);
end;

end;

end.
{ of main program block }

// ◊◊

Demonstration Program Comments
When this program is first run, the user should:

• Drag the window to various position on the main screen, noting the changes to the coordinates of the boundary
rectangle.

• Open the Monitors and Sound control panel and, depending on the characteristics of the user's system:

• Change between the available resolutions, noting the changes in the bytes per row and total pixel image bytes
figures displayed in the window.

• Change between the available colour depths, noting the changes to the pixel depth and total pixel image bytes
figures, and the background colour used figures, displayed in the window.

• Note that, when 256 or less colours are displayed on a direct device (in colours and grays), the device creates a CLUT
and operates like a direct device. In this case, the background colour used figure is the colour table entry (index),
and the relevant colour in the colour table display is framed in white.

Assuming the user's monitor is a direct colour device, the user should then run the program again with the monitor set to
display 256 colours prior to program start. The Demonstration menu and its items will be enabled. The user should then
choose the items in the Demonstration menu to set the monitor to a pixel depth of 16 and back to the startup pixel depth.

DoEvents
In the case of a mouse-down event, in the inDrag case, when the user releases the mouse button, the left half of the
window is invalidated, causing the left half to be redrawn with the new boundary rectangle coordinates.

DoDisplayInformation
In the first ten lines, RGB colours are assigned to the window's colour graphics port's rgbFgColor and rgbBkColor fields. The
call to EraseRect causes the content region to be filled with the background colour.

Get Device List

The call to LMGetDeviceList gets a handle to the first GDevice structure in the device list. The device list is then "walked"
in the while loop. For every video device found in the list, the variable videoDeviceCount is incremented. GetNextDevice
gets a handle to the next device in the device list.

Get Main Device

11-28 QuickDraw Preliminaries

Version 2.1

LMGetMainDevice gets a handle to the startup device, that is, the device on which the menu bar appears.

The call to BitTest with the gdDevType flag determines whether the main (startup) device is a colour or black-and-white
device. In the next block, the gdType field of the GDevice structure is examined to determine whether the device is an
indexed device with a variable CLUT, an indexed device with a fixed CLUT, or a direct device (or a direct device set to
display 256 colours or less and, as a consequence, acting like an indexed device).

Get Handle to Pixel Map

At the first line of this block, a handle to the GDevice structure's pixel map is retrieved from the gdPMap field.

In the next block, the pixel depth is extracted from the PixMap structure's pixelSize field.

Get Device's Global Boundaries

At the first line of this block, the device's global boundaries are extracted from the GDevice structure's gdRect field.

At the next block, the number of bytes in each row in the pixel map is determined. (The high bit in the rowBytes field of the
PixMap structure is a flag which indicates whether the data structure is a PixMap structure or a BitMap structure.)

At the next block, the bytes per row value is multiplied by the height of the boundary rectangle to arrive at the total
number of bytes in the pixel image.

The two calls to GlobalToLocal convert the boundary rectangle coordinates to coordinates local to the colour graphics port.

Get Pointer To Colour Graphics Port

The first line simply casts theWindow to a pointer to a colour graphics port so that, later on, the bkColor field can be
accessed.

The next block gets the current (requested) background colour using the function GetBackColor, and then extracts the red,
green, and blue components.

At the next line, the pixel value in the bkColor field of the colour graphics port is retrieved. This is an SInt32 value holding
either the red, green, and blue components of the background colour actually used for drawing (direct device) or the colour
table entry used for drawing (indexed devices).

For direct devices with a pixel depth of 16, the first 15 bits hold the three RGB components. For direct devices with a pixel
depth of 32, the first 24 bits hold the RGB components. These are extracted in the "if (deviceType = directType) then"
block. For indexed devices the value is simply the colour table entry (index) determined by the Color Manager to represent
the nearest match to the requested colour.

Get Handle To Colour Table

The first two lines get a handle to the colour table in the GDevice structure's pixel map and the number of entries in that
table.

The final block paints small coloured rectangles for each entry in the colour table. If the main device is an indexed device
(or if it is a direct device set to display 256 colours or less), the colour table entry being used as the best match for the
requested background colour is outlined in white.

DoCheckMonitor
DoCheckMonitor is called at program start to determine whether the main device supports 16-bit colour and, if it does, to
assign the main device's pixel depth at startup to the global variable gStartupPixelDepth.

The call to LMGetMainDevice gets a handle to the main device's GDevice structure. The function HasDepth is used to
determine whether the device supports 16-bit colour. The pixel depth is extracted from the pixelSize field of the PixMap
structure in the GDevice structure.

DoSetMonitorPixelDepth
DoSetMonitorPixelDepth is called when the first item in the Demonstration menu is chosen to set the main device's pixel
depth to 16.

If the current pixel depth determined at the first two lines is not 16, a string is retrieved from a 'STR#' resource and passed
to the application-defined routine DoMonitorAlert, which displays a movable modal alert box advising the user that the
monitor's bit depth is about to be changed to 16. When the user dismisses the alert box, SetDepth sets the main device's
pixel depth to 16.

If the current pixel depth is 16, the last two lines display an alert box advising the user that the device is currently set to
that pixel depth.

DoRestoreMonitorPixelDepth

QuickDraw Preliminaries 11-29

Version 2.1

DoRestoreMonitorPixelDepth is called when the second item in the Demonstration menu is chosen to reset the main
device's pixel depth to the startup pixel depth.

If the current pixel depth determined at the first two lines is not equal to the startup pixel depth, a string is retrieved from a
'STR#' resource and passed to the application-defined routine DoMonitorAlert, which displays a movable modal alert box
advising the user that the monitor's bit depth is about to be changed to the startup pixel depth. When the user dismisses
the alert box, SetDepth sets the main device's pixel depth to the startup pixel depth.

If the current pixel depth is the startup pixel depth, the last two lines display an alert box advising the user that the device
is currently set to that pixel depth.

main program block
Before DrawMenuBar is called, a call to the application-defined routine DoCheckMonitor assigns the startup pixel depth to a
global variable and determines whether the main device supports 16-bit colour. If the main device does not support 16-bit
colour, the Demonstration menu is disabled. If the main device does support support 16-bit colour, the Demonstration
menu is disabled only if the current pixel depth is not 8 (256 colours) or less.

11-30 QuickDraw Preliminaries

