
Version 2.1

7
INTRODUCTION TO CONTROLS

Includes Demonstration Programs Controls1 & Controls2

Introduction
Prior to the introduction of Mac OS 8 and the Appearance Manager, the system software
provided for only a limited range of controls (specifically, buttons, checkboxes, radio
buttons, pop-up menus, and scroll bars) and the creation and handling of these desktop
objects was relatively simple and straightforward. Mac OS 8 and the Appearance
Manager, however, ushered in a very wide range of additional controls, extended the
capabilities of the old controls, and provided a generally richer control environment. The
result is that the subject of controls is now considerably more involved; accordingly, this
chapter constitutes an introduction to controls only and addresses only the more basic
controls — in the main, those control types that existed prior to the introduction of Mac
OS 8 and the Appearance Manager. All but one of the remaining controls will be
addressed at Chapter 14 — More on Controls. The remaining control will be addressed
at Chapter 20 — Lists and Custom List Definition Functions.

You can use the Control Manager to create and manage controls. An alternative method
is to use the Dialog Manager to more easily create and manage controls in dialog boxes
and alert boxes. In this latter case, the Dialog Manager works with the Control Manager
behind the scenes. The creation and handling of controls in dialog boxes and alert boxes
will be addressed at Chapter 8 — Dialogs and Alerts. The creation and handling areas of
this chapter are limited to the use of the Control Manager to create and handle controls
in document windows.

Every control you create must be associated with a particular window. All the controls
for a window are stored in a control list, a handle to which is stored in the controlList field
of the window's window record.

Standard Controls
The term standard controls refers to controls whose control definition functions (see
below) are provided by the system software. The term custom controls refers to
controls that you provide yourself via a custom control definition function.

Historical Note

Prior to the introduction of Mac OS 8 and the Appearance Manager. It was often
necessary to provide your own custom controls (for example, slider controls).
However, the large range of controls now provided by the system software means

Controls 7-1

Version 2.1

that it is all but inconceivable that you will ever need to create a custom control.
A further consideration is the matter of Appearance-compliance. All of the new
and revised controls provided by the system are Appearance-compliant. A non-
Appearance-compliant custom control will create visual disharmony on the
desktop, a situation much to be avoided.

Available Appearance-Compliant Standard Controls

The complete range of available standard controls, all of which are Appearance-
compliant, is as follows. (Those control types and variants which existed prior to the
introduction of Mac OS 8 and the Appearance Manager, and which have been revised so
as to be Appearance-compliant, appear on a white background. Those control types and
variants introduced with Mac OS 8 and the Appearance Manager appear on a light gray
background. Those additional types and variants introduced with Mac OS 8.5 appear on
a dark gray background.)

Control Description Variants
Push button A control that appears on the screen as a

rounded rectangle with a title centered inside.
When the user clicks a push button, the
application performs the action described by
the button’s title. Button actions are usually
performed instantaneously. Examples include
completing operations defined by a dialog box
and acknowledging an error message in an
alert box.

With title only.
With colour icon to left of
title.
With colour icon to right of
title.

Checkbox A control that appears onscreen as a small
square with an accompanying title. A
checkbox displays one of three settings: on
(indicated by a checkmark inside the box), off,
or mixed (indicated by a dash inside the box).

(Non-auto-toggling.
Auto-toggling.

Radio button A control that appears onscreen as a small
circle. A radio button displays one of three
settings: on (indicated by a black dot inside
the circle), off, or mixed (indicated by a dash
inside the circle). A radio button is always a
part of a group of related radio buttons in
which only one button can be on at a time.

Non-auto-toggling.
Auto-toggling.

Scroll bar A control with which the user can change the
portion of a document displayed within a
window. A scroll bar is a light gray rectangle
with scroll arrows at each end. Windows can
have a horizontal scroll bar, a vertical scroll
bar, or both. A vertical scroll bar lies along
the right side of a window. A horizontal scroll
bar runs along the bottom of a window. Inside
the scroll bar is a rectangle called the scroll
box. The rest of the scroll bar is called the
gray area. The user can move through a
document by manipulating the parts of the
scroll bar.

Without live feedback.
With live feedback.

Pop-up menu
button

A control that is used to display a menu
elsewhere than in the menu bar.

Fixed width.
Variable width.
Add resource.
Use window font.

Bevel button A button containing a self-descriptive icon,
picture, text, or any combination of the three,
that performs an action when pressed.

With small bevel.
With normal bevel.
With large bevel.
The above with a pop-up menu
either to the right or below.

7-2 Controls

Version 2.1

Slider A control that displays a range of values,
magnitudes, or positions. A horizontally- and
vertically-mobile indicator is used to increase
or decrease the value.

Without live feedback.
With live feedback.
With tick marks.
With directional indicator.
With non-directional indicator.

Disclosure
triangle

A triangular control governing how items are
displayed in a list. The disclosure triangle can
point in two directions: right and down. When
the disclosure triangle points to the right, one
item is displayed in the list. When the arrow
points downward, the original item and its
subitems are displayed in the list.

Right-facing.
Left-facing.
Right-facing, auto-tracking.
Left-facing, auto-tracking.

Progress
indicator

A control indicating that a lengthy operation is
occurring. Two types of progress indicators
can be used: an indeterminate progress
indicator reveals that an operation is
occurring but does not indicate its duration; a
determinate progress indicator displays how
much of the operation has been completed.

(One variant only. However,
the progress indicator can be
made determinate or non-
determinate via a call to
SetControlData.)

Little arrows Up- and down-arrows accompanying a text box
that contains a value, such as a date. Clicking
the up arrow increases the value displayed.
Clicking the down arrow decreases the value
displayed.

(One variant only.)

Asynchronous
(or chasing)
arrows

A control which indicates through a simple
animation that a background process is in
progress.

(One variant only.)

Tab A control that appears as a row of folder tabs
on top of a pane. It allows multiple panes to
appear in the same window.

Normal.
Small.

Separator
line

A control that draws a vertical or horizontal
line used to visually separate groups of
controls.

(One variant only.)

Primary
group box

A control that consists of a rectangular two-
pixel-wide frame which may or may not
contain a title. It is used to provide a well-
defined area in a dialog box into which text,
pictures, icons or other controls can be
embedded.

With text title.
With checkbox title.
With pop-up menu button
title.

Secondary
group box

A control that consists of a rectangular one-
pixel-wide frame which may or may not
contain a title. It is used to provide a well-
defined area in a dialog box into which text,
pictures, icons or other controls can be
embedded.

With text title.
With checkbox title.
With pop-up button title.

Image well A control that is used to display non-text visual
content on a white background surrounded by
a rectangular frame.

Without auto-tracking
With auto-tracking.

Pop-up arrow A control that simply draws the pop-up glyph. Large, right-facing.
Large, left-facing.
Large, up-facing.
Large, down-facing.
Small, right-facing.
Small, left-facing.
Small, up-facing.
Small, down-facing.

Placard A rectangular control used as an information
display.

(One variant only.)

Clock A control that combines the features of little
arrows and an edit text field into a control

Displays hours, minutes.
Displays hours, minutes,

Controls 7-3

Version 2.1

which displays a date and/or time. seconds.
Displays date, month, year.
Displays month, year.

User pane A general purpose control which can be used
as the root control for a window and as an
embedder control in which other controls
may be embedded. It can also be used to hook
in callback functions for drawing, hit testing,
etc.

(One variant only.)

Edit text A control that appears as a rectangular box in
which the user enters text to provide
information to an application.

For windows.
For dialog boxes.
For passwords.
Inline input.

Static text A control that displays static (unchangeable by
the user) text labels in a window.

(One variant only.)

Picture A control used to display pictures. Tracking.
Non-tracking.

Icon A control used to display icons. Tracking.
Non-tracking.
Icon suite, tracking.
Icon suite, non-tracking.
All icon types, tracking.
All icon types, non-tracking.

Window
header

A control that runs along the top of a window's
content region and provides information about
the window's contents.

Window header.
Window list view header.

List box A control that combines a rectangular frame,
scroll bar(s), and a scrolling list.

Non-autosizing.
Autosizing.

Radio Group A control that implements a radio button
group.

(One variant only.)

Scrolling text
box

A control that implements a scrolling text box. Non-auto-scrolling.
Auto-scrolling.

Definition of the Term "Controls"

Prior to the introduction of Mac OS 8 and the Appearance Manager, a control was
defined as an "on-screen objects which the user can manipulate to cause an immediate
action or to change settings to modify a future action". Given this previous definition, the
question arises as to why such objects as, for example, separator lines and window
headers are now implemented as controls. On the surface, it may appear that these
objects are purely visual entities.

Part of the answer to that question has to do with the matter of Appearance-compliance.
For example, using the provided separator line "control" to draw separator lines will
ensure that those lines are drawn with the correct appearance, in both the activated and
deactivated modes, regardless of which Appearance theme has been chosen by the user.

Another part of the answer has to do with the concept of embedding (see below). The
window header control, for example, is not just the visual entity it might at first appear to
be; it is actually a control in which other controls may be embedded. (As will be seen,
the ability to embed other controls is a powerful new feature of some of the new
controls.)

Since many of the new controls are not really controls "which the user can manipulate", a
more accurate blanket definition might now be "any element of the user interface that is
implemented by a control definition function" (see below).

7-4 Controls

Version 2.1

Controls Addressed in This Chapter

Of the controls listed above, only those which might be termed the basic controls (push
buttons, checkboxes, radio buttons, scroll bars, and pop-up menu buttons), together with
primary group boxes (text title variant) and user panes, will be addressed in this
chapter and its associated demonstration programs. These controls, with the exception
of the user pane (which is invisible), are illustrated at Fig 1.

FIG 1 - THE BASIC CONTROLS AND THE PRIMARY GROUP BOX (TEXT TITLE VARIANT)

CHECKBOXES

SCROLL BAR

PUSH BUTTONS

RADIO BUTTONS

POP-UP MENU

Basic variant
with default
button outline

On state
Off state
Mixed state

On state
Off state
Mixed state

PRIMARY GROUP BOX
(TEXT TITLE VARIANT)

Left colour
icon variant
Right colour
icon variant

Basic variant

The Control Definition Function
A control definition function (CDEF) determines the appearance and behaviour of a
control. Various Control Manager functions call a control's CDEF when they need to
perform some control-related action. CDEFs are stored as resources of type 'CDEF'.

Just as a window definition function can describe variations of the same basic window, a
CDEF can use a variation code to describe variations of the same control. You specify
a particular control with a control definition ID, which is an integer containing the
resource ID of the in the upper 12 bits and the variation code in the lower four bits.

The control definition ID is arrived at by multiplying the resource ID by 16 and adding
the variation code. The following shows the control definition IDs for the standard
controls and variants addressed in this chapter and its associated demonstration
programs, together with the derivation of those IDs. (Those variants introduced with
Mac OS 8.5 are shown on a dark gray background.)

CDEF
Resource ID

Variation
Code

Control Definition ID
(Value)

Control Definition ID
(Constant)

23 0 23 * 16 + 0 = 368 kControlPushButtonProc
23 4 23 * 16 + 4 = 374 kControlPushButLeftIconProc
23 5 23 * 16 + 5 = 375 kControlPushButRightIconProc
23 1 23 * 16 + 1 = 369 kControlCheckBoxProc
23 3 23 * 16 + 3 = 371 kControlCheckBoxAutoToggleProc
23 2 23 * 16 + 2 = 370 kControlRadioButtonProc
23 4 23 * 16 + 4 = 372 kControlRadioAutoToggleButtonProc
24 0 24 * 16 + 0 = 384 kControlScrollBarProc
24 2 24 * 16 + 2 = 386 kControlScrollBarLiveProc
25 0 25 * 16 + 0 = 400 kControlPopupButtonProc
25 1 25 * 16 + 1 = 401 kControlPopupButtonProc +

kControlPopupFixedWidthVariant
25 2 25 * 16 + 2 = 402 kControlPopupButtonProc +

kControlPopupVariableWidthVariant
25 4 25 * 16 + 4 = 404 kControlPopupButtonProc +

kControlPopupUseAddResMenuVariant
25 8 25 * 16 + 8 = 408 kControlPopupButtonProc +

kControlPopupUseWFontVariant

Controls 7-5

Version 2.1

10 0 10 * 16 + 0 = 160 kControlGroupBoxTextTitleProc
16 0 16 * 16 + 0 = 256 kControlUserPaneProc

Historical Note

With regard to the basic controls, these are the resource IDs and variation codes
of the new Appearance-compliant CDEFs first issued with Mac OS 8 and the
Appearance Manager. The old CDEFs have resource IDs of 0 (button, checkbox,
radio button), 1 (scroll bar), and 63 (pop-up menu), and remain in the System file.
The new definition functions are located in the Appearance extension.

Note that the one CDEF caters for both horizontal and vertical scroll bars. The CDEF
determines whether a scroll bar is vertical or horizontal from the rectangle you specify
when you create the control.

The Basic Controls, Primary Group Boxes (Text Title Variant), and
User Panes

Push Buttons

You normally use push buttons in alert boxes and dialog boxes. Push buttons typically
allow the user to perform actions instantaneously, for example, completing the actions in
a dialog box or acknowledging an error in an alert box. In every window or dialog box in
which you display push buttons, you should designate one push button as the default
push button, that is, the push button the user is most likely to click. (In modal and
movable modal alert boxes, the Dialog Manager automatically outlines the default push
button (see the default push button at Fig 1); however, your application must outline the
push button in modeless dialog boxes.)

Your application should respond to key-down events involving the Enter and Return keys
as if the user had clicked the default push button.

Checkboxes

Checkboxes are typically used in dialog boxes so that the user can supply additional
information necessary for completing a command. Checkboxes provide alternative
choices and act like toggle switches, turning a setting on or off. Each checkbox has a
title, which should reflect two clearly opposite states. If you cannot devise a title which
clearly implies two opposite states, you might be better off providing two radio buttons.

Non-Auto-Toggling Variant

When the non-auto-toggling variant is being used, and when the user clicks a checkbox in
the off state, your application should call SetControlValue to set the control to the on state
and place a checkmark in the box (see Fig 1). When the user again clicks the checkbox,
your application should call SetControlValue to set the control to the off state and remove the
checkmark from the box.

SetControlValue may also be used to place a dash in the box to indicate that the control is in
the mixed state (see Fig 1). The mixed state is a special state which indicates that a
selected range of items has some in the on state and some in the off state. For example,
a text formatting checkbox for bold text would be in the mixed state if a text selection
contained both bold and non-bold text.

Historical Note

7-6 Controls

Version 2.1

The mixed state was introduced with Mac OS 8 and the Appearance Manager.

Auto-Toggling Variant

When the auto-toggling variant is being used, checkboxes automatically changes between
their various states (on, off, and mixed) in response to user actions. Your application
need only call the function GetControl32BitValue to get the checkbox's new state. There is no
need to programmatically change the control's value after tracking successfully.

Historical Note

The auto-toggling variant was introduced with Mac OS 8.5.

Radio Buttons

Like checkboxes, radio buttons retain and display an on or off setting and are typically
used inside dialog boxes. Radio buttons represent choices that are related but not
necessarily opposite. The user can have only one radio button setting in effect at one
time; in other words, radio buttons within a group are mutually exclusive.

A group of radio buttons must comprise at least two radio buttons. Each group must
have a label which identifies the kind of choices the group offers and each button must
have a title identifying what the radio button does. If you need to display more than
seven items, or if the items change as the context changes, you should use a pop-up
menu button instead.

Non-Auto-Toggling Variant

When the non-auto-toggling variant is being used, and when the user clicks a radio
button in the off state, your application should call SetControlValue to:

• Set that control to the on state and place a black dot in its circle (see Fig 1).

• Set the previously "on" button in the group to the off state and remove the black
dot from its circle.

SetControlValue may also be used to place a dash in the circle to indicate that the control is
in the mixed state (see Fig 1). The mixed state is a special state which shows that a
selected range has a variety of items in the on state. For example, a set of radio buttons
for selecting font size might have buttons representing 10- and 12-point sizes. If a
passage of text with both 10- and 12-point text was selected, both the 10 and 12 buttons
would appear in the mixed state.

Historical Note

The mixed state was introduced with Mac OS 8 and the Appearance Manager.

Auto-Toggling Variant

When the auto-toggling variant introduced with Mac OS 8.5 is being used, radio buttons
automatically change between their various states (on, off, and mixed) in response to
user actions. Your application need only call the function GetControl32BitValue to get the
radio button's new state. There is no need to programmatically change the control's
value after tracking successfully.

Historical Note

Controls 7-7

Version 2.1

The auto-toggling variant was introduced with Mac OS 8.5.

Scroll Bars

Scroll bars change the portion of a document that the user can view within a document's
window. A scroll bar is a light gray rectangle with scroll arrows at each end. Inside
the scroll bar is a scroll box. The rest of the scroll box is called the gray area. If the
user drags the scroll box, clicks a scroll arrow or clicks in the gray region, your
application scrolls the document accordingly.

As previously stated, the CDEF for scroll bars supports two variants. The only difference
between the two variants is that one supports live feedback and the other does not. In
the case of scroll bars, live feedback (a generic term) may be used to perform live
scrolling of a document in a window. Live scrolling means that, when the user attempts
to drag the scroll box, the scroll box moves and the document scrolls as the user moves
the mouse. (Without live scrolling, only a ghosted image of the scroll box moves. In
addition, the document is only scrolled, and the scroll box proper is only redrawn at its
new location, when the user releases the mouse button.)

Historical Note

The live feedback capability was introduced with Mac OS 8 and the Appearance
Manager.

Scroll Arrows and Gray Area

When the scroll arrows are clicked, your application should move the scroll box the
appropriate distance in the direction of the arrow being clicked and scroll the window
contents accordingly. Each click should move the window contents one unit in the
chosen direction. (In a text document, a unit would typically be one line of text.)

When the gray area is clicked above the scroll box, your application should move the
document up so that the bottom line of the previous view is at the top of the new view,
and it should move the scroll box accordingly. A similar, but downward movement,
should occur when the user clicks in the gray area below the scroll box.

Scroll Box

Live Feedback Variant Not Used. When the live feedback variant is not being used, and
when the user drags the scroll box, the Control Manager redraws the scroll box proper in
its new position, and sets the control's value accordingly, when the user releases the
mouse button. You must then ascertain the position (that is, the value) of the control box
and, using this value, display the appropriate portion of the document.

Live Feedback Variant Used. When the live feedback variant is being used, and when the
user drags the scroll box, the Control Manager continually redraws the scroll box, and
continually returns the control's position (that is, its value) as the scroll box moves.
Once again, your application uses this value to display the appropriate portion of the
document.

Proportional Scroll Boxes

A proportional scroll box is one whose height (vertical scroll bars) or width (horizontal
scroll bars) varies in relation to the height/width of the scroll bar so as to visually
represent the proportion of the document visible in the window.

Under Mac OS 8.5 and later, if the user selects Smart Scrolling on in the Options tab in the
Appearance control panel, your application's scroll boxes will appear as proportional

7-8 Controls

Version 2.1

scroll boxes provided that you pass the size of the view area, in whatever units the scroll
bar uses, to the function SetControlViewSize. The system automatically handles resizing the
scroll box once your application supplies this information.

Historical Note

Proportional scroll boxes were introduced with Mac OS 8.5.

The following functions, introduced with Mac OS 8.5, are relevant to proportional scroll
boxes:

Function Description
GetControlViewSize Obtains the size of the content to which a control's size is

proportioned.
SetControlViewSize Informs the Control Manager of the size of the content to which a

control's size is proportioned.

Pop-Up Menu Buttons

Pop-up menu buttons provide the user with a simple way to choose from a list of choices.
As an alternative to a group of radio buttons, a pop-up menu button is useful for
specifying a group of settings or values that number five or more, or whose settings or
values might change. Like the items in a group of radio buttons, the items in a pop-up
menu button's menu should be mutually exclusive.

Primary Group Boxes (Text Title Variant)

A primary group box (text title variant) is a control that consists of a rectangular two-
pixel-wide frame which may or may not contain a title. Group boxes are used to
associate, isolate, and distinguish groups of related controls, such as a group of radio
buttons.

The primary group box is an embedder control (see below), meaning that you can embed
other controls, such as radio buttons, checkboxes, and pop-up menu buttons, within it.

User Panes

The user pane is unique amongst the family of controls in that it has no visual
representation. It has two main uses:

• Like the primary group box, it can be used as an embedder control, that is, other
controls may be embedded within it.

• It provides a way to hook in application-defined functions, known as user pane
functions, which perform actions such as drawing, hit testing, etc.

Activating, Deactivating, Hiding, and Showing Controls

Activating and Deactivating Controls

A control can be either active or inactive. Whenever it is inappropriate for your
application to respond to a mouse-down event in a control, you should make it inactive.
The Control Manager continues to display inactive controls so that they remain visible,
but in a dimmed state which indicates their inactive status to the user. The Control
Manager displays inactive basic controls and inactive primary group boxes as shown at
Fig 2.

Controls 7-9

Version 2.1

FIG 2 - THE BASIC CONTROLS AND THE PRIMARY GROUP BOX (TEXT TITLE VARIANT) IN INACTIVE MODE

PUSH BUTTONS

CHECKBOXES

RADIO BUTTONS

SCROLL BAR

POP-UP MENU

On state
Off state
Mixed state

On state
Off state
Mixed state

PRIMARY GROUP BOX
(TEXT TITLE VARIANT)

Left colour
icon variant
Right colour
icon variant

Basic variant
with default
button outline

Basic variant

Activating and Deactivating Controls Other
Than Scroll Bars

You use ActivateControl and DeactivateControl to make push buttons, checkboxes, radio buttons,
pop-up menu buttons and primary group boxes active and inactive. You should make
these controls inactive when:

• They are not relevant to the current context.

• The window in which they reside is not the active window.

Your application can ascertain whether a control is currently active or inactive using
IsControlActive.

Historical Note

Prior to Mac OS 8 and the Appearance Manager, the HiliteControl function was used
for this purpose. HiliteControl has other uses for which it may still be used; however it
should not now be used to activate and deactivate controls.

Activating and Deactivating Scroll Bars

Scroll bars become irrelevant to the current context when the document being displayed
is smaller than the window in which it is being displayed. To make a scroll bar inactive
in this case, you typically use SetControlMaximum to make the scroll bar's maximum value
(see below) equal to its minimum value (see below), which causes the Control Manager
to automatically make the scroll bar inactive and display it in the inactive state. To make
the scroll bar active again, SetControlMaximum should be used to set its maximum value
larger than its minimum value.

Hiding and Showing Controls

HideControl may be used to hide a control. HideControl erases a control by filling its enclosing
rectangle with the owning window's background pattern.

ShowControl may be used to show a control. ShowControl makes the control visible and
immediately draws the control within its window without using your window’s standard
updating mechanism.

SetControlVisibility may be used to both hide and show a control. With regard to showing a
control, this function differs from ShowControl in that the option is available to "show" the
control without redrawing it immediately.

7-10 Controls

Version 2.1

Your application can ascertain whether a control is currently hidden or visible using
IsControlVisible.

Historical Note

SetControlVisibility and IsControlVisible were introduced with Mac OS 8 and the Appearance
Manager.

Visual Feedback From the Basic Controls
In response to a mouse-down event in a basic control, your application should call either
TrackControl or HandleControlClick. These functions provide visual feedback when a mouse-
down occurs in an active control by:

• Displaying push buttons, checkboxes and radio buttons in their pressed mode.

• Displaying and highlighting the items in pop-up menu buttons.

• Highlighting the scroll arrows in scroll bars.

• Moving the scroll box (live feedback variant of the scroll bar CDEF being used) or
moving a ghosted image of the scroll box (live feedback variant not being used)
when the user drags it.

Historical Note

HandleControlClick was introduced with Mac OS 8 and the Appearance Manager. It is
identical to TrackControl except that it allows modifier keys to be passed in its third
parameter. Some of the new controls, such as edit text fields and list boxes,
require the ability for modifier keys to be passed in. If you use HandleControlClick with
controls for which modifier keys are irrelevant, simply pass 0 in the inModifiers
parameter.

Embedding Controls
In addition to providing a large number of additional control types, Mac OS 8 and the
Appearance Manager introduced a richer environment for controls. The innovation of
specific relevance to this chapter is control embedding. As previously stated, this
involves the embedding of a control (or, more usually, a group of controls) in another
control.

The Root Control

To embed controls in a window, you must first create a root control for that window.
The root control, which is implemented as a user pane control, is the container for all
other window controls and is at the base of what is known as the embedding hierarchy.
In document windows, you create the root control by calling CreateRootControl. The root
control may be retrieved by calling GetRootControl.

Once you have created a root control, new controls will be automatically embedded in the
root control when they are created. One advantage of such embedding is that, when you
wish to activate and deactivate all of the window's controls on window activation and
deactivation, you can do so by simply activating and deactivating the root control. (If the
root control did not exist, you would have to activate and deactivate all of the window's
controls individually.) You can also hide and show all of the window's control by simply
hiding and showing the root control.

Controls 7-11

Version 2.1

Other Embedders

Certain other controls also have embedding capability. One such embedder control is
the primary group box. This means that you can embed, say, a group of radio buttons in
a primary group box (which would, in turn, be already automatically embedded in the
root control), an arrangement which is illustrated conceptually at Fig 3. By acting on the
group box alone, you can then activate, deactivate, hide, show, and move all four controls
as a group.

ROOT CONTROL (IMPLEMENTED AS A USER PANE).
ALL OTHER CONTROLS IN THE WINDOW ARE
VISUALLY CONTAINED BY THE ROOT CONTROL
AND ARE AUTOMATICALLY EMBEDDED IN IT.

PRIMARY GROUP BOX AUTOMATICALLY
EMBEDDED IN ROOT CONTROL

RADIO BUTTONS VISUALLY CONTAINED BY THE
PRIMARY GROUP BOX AND EMBEDDED IN THE
GROUP BOX VIA A CALL TO AutoEmbedControl.

DOCUMENT WINDOW

FIG 3 - THE ROOT CONTROL AND EMBEDDED CONTROLS

EmbedControl may be used to embed a control in another (embedder) control. However,
where the control to be embedded is visually contained by the embedder, as is the case
with the radio buttons in Fig 3, AutoEmbedControl would be more appropriate.

Other Advantages of Embedding

Drawing Order

As controls are created by your application, they are added to the head of the window's
control list. When those controls are drawn in the absence of an embedding hierarchy,
the Control Manager starts from the top of the control list, drawing the controls in the
opposite order to the order in which it they were created.

In the example at Fig 3, assume that there is no embedding hierarchy and that the radio
buttons are created after the group box. This means that the group box will be drawn
after the radio buttons, thus obscuring the radio buttons. An embedding hierarchy,
however, enforces drawing order by drawing the embedding control before its embedded
controls regardless of which is created first.

Hit Testing

Hit-testing is the process of testing whether a control is under the cursor at the time of a
mouse-down event, and of identifying that control. For situations where controls are
visually contained by other controls, an embedding hierarchy enforces orderly hit-testing
by forcing an “inside-out” hit test aimed at determining the most deeply nested control
that is hit by the mouse.

7-12 Controls

Version 2.1

Latency

Latency pertains to the ability of the Control Manager to remember the activation and
visibility status of an embedded control when its embedder is cycled between activated
and deactivated, or between visible and hidden.

For example, assume that the radio button labelled White at Fig 3 has been separately
deactivated by the application. When the primary group box is deactivated, the two
remaining radio buttons will also be deactivated. When the primary group box is again
enabled, the Control Manager remembers that the radio button labelled white was
previously deactivated, and ensures that it remains in that mode.

Getting and Setting Control Data
Another refinement introduced with Mac OS 8 and the Appearance Manager was read
and write access to the various attributes of a control. Essentially, this is a mechanism
that allows the outside world to access a control's specialised data without exposing how
that data is stored. It allows you to easily set and get control fonts, tell the push button
CDEF to draw the default outline around a default push button, and many other useful
things.

Each piece of information that a particular CDEF allows access to is referenced by a tag,
which is a constant that is meaningful to the CDEF and which represents the data in
question. Each tagged piece of data can be of any data type, such as a menu handle or a
structure.

Control data tag constants are passed in the third parameter of the getter and setter
routines SetControlData and GetControlData. The control data tag constants relevant to the
basic controls are as follows:

Control Data Tag Constant Meaning and Data Type Returned or Set
kControlPushButtonDefaultTag Tells Appearance-compliant push buttons whether to

draw a default ring, or returns whether the Appearance
Manager has drawn a default ring, for the push button.
Data type returned or set: Boolean

kControlPushButtonCancelTag Gets or sets whether a given push button in a dialog or
alert should be drawn with the appearance-specific
adornments for a Cancel button.
Data type returned or set: Boolean. Default is false.

kControlPopupButtonMenuHandleTag Gets or sets the menu handle for a pop-up menu.
Data type returned or set: MenuHandle

kControlPopupButtonMenuIDTag Gets or sets the menu ID for a pop-up menu button.
Data type returned or set: SInt16

kControlPopupButtonExtraHeightTag Gets or sets the amount of extra white space in a pop-up
menu button.
Data type returned or set: SInt16. Default is 0.

kControlGroupBoxTitleRectTag Get the rectangle that contains the title of a group box
(and any associated control, such as a checkbox).
Data type returned or set: Rect

Historical Notes

Calling SetControlData with the kControlPushButtonDefaultTag tag constant greatly simplifies
the task of drawing the default ring around the default push button. Prior to Mac
OS 8 and the Appearance Manager, your application had to provide its own
function to do this.

Controls 7-13

Version 2.1

kControlPushButtonCancelTag, kControlPopupButtonExtraHeightTag, and kControlGroupBoxTitleRectTag were
introduced with Mac OS 8.5.

The Control Record
The Control Manager stores information about a control in a control record. A control
record is defined by the data type ControlRecord:

TYPE
ControlRecord = PACKED RECORD

nextControl: ControlHandle; { Next Control. }
contrlOwner: WindowPtr; { Control's window. }
contrlRect: Rect; { Rectangle. }
contrlVis: UInt8; { 255 if visible, else 0. }
contrlHilite: UInt8; { Highlight state. }
contrlValue: SInt16; { Current setting. }
contrlMin: SInt16; { Minimum Setting. }
contrlMax: SInt16; { Maximum setting. }
contrlDefProc: Handle; { Control definition function. }
contrlData: Handle; { Data used by contrlDefProc. }
contrlAction: ControlActionUPP; { Action function. }
contrlRfCon: SInt32; { Reference constant. }
contrlTitle: Str255; { Title. }

END;

ControlRecordPtr = ^ControlRecord;
ControlPtr = ^ControlRecord;
ControlHandle = ^ControlPtr;

Creating Your Application's Basic Controls
You typically create controls from resources of type 'CNTL', though you can create controls
programmatically using the function NewControl.

'CNTL' Resources

When creating resources with Resorcerer, it is advisable that you refer to a diagram and
description of the structure of the resource and relate that to the various items in the
Resorcerer editing windows. Accordingly, the following describes the structure of the
'CNTL' resource.

Structure of a Compiled 'CNTL' Resource

Fig 4 shows the structure of a compiled 'CNTL' resource and how it "feeds" the control
structure.

7-14 Controls

Version 2.1

FIG 4 - STRUCTURE OF A COMPILED CONTROL ('CNTL') RESOURCE

8

2

2

4

1

Variable

BYTES

1

2

2

INITIAL RECTANGLE

INITIAL VALUE
VISIBILITY

FILL
MAXIMUM VALUE

MINIMUM VALUE

REFERENCE VALUE

CONTROL DEFINITION ID

TITLE

ControlRecord = PACKED RECORD
 nextControl: ControlHandle;
 contrlOwner: WindowPtr;
 contrlRect: Rect;
 contrlVis: UInt8;
 contrlHilite: UInt8;
 contrlValue: SInt16;
 contrlMin: SInt16;
 contrlMax: SInt16;
 contrlDefProc: Handle;
 contrlData: Handle;
 contrlAction: ControlActionUPP;
 contrlRfCon: SInt32;
 contrlTitle: Str255;
END;

The following describes the main fields of the 'CNTL' resource:

Field Description
INITIAL RECTANGLE The rectangle, specified in coordinates local to the window, that encloses

the control and thus determines its size and location.
INITIAL VALUE The initial value for the control. (See Values for Controls, below).
VISIBILITY The visibility of the control. If this field contains the value true,

GetNewControl draws the control immediately, without using the
application's standard updating mechanism for windows. If this field
contains false, the application may use ShowControl when it is prepared to
display the control.

MAXIMUM VALUE The maximum value of the control. (See Values for Controls, below).
MINIMUM VALUE The minimum value for the control. (See Values for Controls, below).
CONTROL DEFINITION ID The control definition ID, which the Control Manager uses to determine

the CDEF for the control. (See The Control Definition Function, above).
REFERENCE VALUE The control's reference value, which is set up and used only by the

application (except when the control is the add resource variant of the
pop-up menu button, in which case this field is used to specify the
resource type).

TITLE For controls that need a title, the string for that title. For controls that
do not need or do not use titles, an empty string.

Values For Controls

The following lists the initial, minimum, and maximum value settings for the basic
controls and the primary group box:

Control Initial Value Minimum Value Maximum Value
Push button 0 0 1
Checkbox 0 (initially off), or

1 (initially on), or
2 (initially in mixed
state).

0 1, or 2 if mixed state
checkboxes are to be
used.

Radio button 0 (initially off), or
1 (initially on), or
2 (initially in mixed
state).

0 1, or 2 if mixed state radio
buttons are to be used.

Scroll bar Whatever initial value is
appropriate (between the
minimum and maximum
settings).

Whatever minimum value
is appropriate. (See
Creating Scroll Bars,
below.) The value must
be between –32768 and

Whatever maximum value
is appropriate. (See
Creating Scroll Bars,
below.) The value must
be between –32768 and

Controls 7-15

Version 2.1

32768. 32768.
When the maximum
setting is equal to the
minimum setting, the
CDEF makes the scroll
bar inactive. When the
maximum setting is
greater than the minimum
setting, the CDEF makes
the scroll bar active.

Pop-up menu
button

A combination of values
which instructs the
Control Manager how to
draw the control's title.
(See Pop-up Menu Button
Title Style Constants,
below.)

Resource ID of the 'MENU'
resource.

Width (in pixels) of the
title. (See Pop-up Menu
Button Title Width,
below.)

Primary
group box

Ignored if the group box
is the text title variant.

Ignored if the group box
is the text title variant.

Ignored if the group box
is the text title variant.

Note that the title of each of the three value fields is somewhat of a misnomer in the case
of the pop-up menu button.

Creating 'CNTL' Resources Using Resorcerer

Fig 5 shows a 'CNTL' resource being created with Resorcerer.

7-16 Controls

Version 2.1

FIG 5 - CREATING A 'CNTL' RESOURCE USING RESORCERER

When pop-up menu button resources are being
edited:
• This title changes to StyleCode.
• This title changes to 'MENU' ID.
• This title changes to Title Width.

INITIAL RECTANGLE

INITIAL VALUE
VISIBILITY

FILL
MAXIMUM VALUE

MINIMUM VALUE

REFERENCE VALUE

CONTROL DEFINITION ID

TITLE

STRUCTURE OF A COMPILED 'CNTL' RESOURCE

RESORCERER 'CNTL' RESOURCE EDITING WINDOW

Creates 'cctb' resources. The Appearance-
compliant control definition functions ignore
'cctb' resources. All colours are determined
by the current theme.

In addition, if the pop-up
menu button resource
being edited is the add-
resource variant, this title
changes to ResType
and the resource type
(eg., FONT, snd) is
entered here.

If the pop-up menu button being edited is
the use-window-font variant , this checkbox
is checkmarked automatically.

These values
are automatically
set to 0 when a
primary group
box resource is
being edited.

Creating Controls

GetNewControl and NewControl are used to create new controls in a document window. You
typically use GetNewControl, which takes a 'CNTL' resource ID and a pointer to the window,
creates a control structure from the information in the resource, adds the control
structure to the control list for your window, and returns a handle to the control.

If the 'CNTL' resource specifies that a control is initially visible, the Control Manager uses
the CDEF to draw the control. (The Control Manager draws the control immediately and
does not wait for the window updating mechanism.) If the 'CNTL' resource specifies that
the control is to be initially invisible, ShowControl may be used to draw the control when
required.

Note that when you use the Dialog Manager to implement push buttons, radio buttons,
checkboxes or pop-up menu buttons in alert boxes or dialog boxes, Dialog Manager
functions automatically use Control Manager functions to create the controls for you.

Controls 7-17

Version 2.1

Creating Scroll Bars

The 'CNTL' resource for scroll bars should specify whether the live-feedback variant or the
non-live-feedback variant is required. Within the 'CNTL' resource, you typically make the
scroll bar invisible, set the initial, minimum and maximum settings to 0 and supply an
empty string for the title.

After you create the window, use GetNewControl to create the scroll bar. Then use
MoveControl, SizeControl, SetControlMaximum and SetControlValue to adjust the size, location and value
settings. (For example, for a window displaying a text document, you would typically
calculate the number of lines of text and set the vertical scroll bar's maximum value
according to the line count and the window's current height. You would set the control's
value according to the part of the document to be initially displayed.) Finally, use
ShowControl to display the control bar.

Most applications allow the user to change the size of windows, add information to the
document and remove information from the document. It is therefore necessary, in your
window handling code, to calculate a changing maximum setting based on the
document's current size and its window's current size. For new documents which have
no content to scroll, assign an initial value of 0 as the maximum setting (which will, as
previously stated, make the scroll bars inactive). Thereafter, your window-handling code
should set and maintain the maximum setting.

By convention, a scroll bar for a document window is 16 pixels wide; accordingly, there
should be a sixteen-pixel difference between the left and right coordinates of a vertical
scroll bar's rectangle and between the top and bottom coordinates of a horizontal scroll
bar. (If you do not specify a 16-pixel width, the Control Manager scales the scroll bar to
fit the width you specify.) A standard scroll bar for a document window should be at
least 48 pixels long to allow room for the scroll arrows and scroll box.

The Control Manager draws one-pixel lines for the rectangle enclosing the scroll bar. As
shown at Fig 6, the outside lines of the scroll bar should overlap the inside lines of the
window frame.

FIG 6 - CORRECT OVERLAP OF SCROLL BAR ON WINDOW FRAME

1 PIXEL OVERLAP

16 PIXELS

The following calculations1 determine the rectangle for a vertical scroll bar for a
document window:

Coordinate Calculation

1 Do not include the title bar area in these calculations.

7-18 Controls

Version 2.1

Top Combined height of any items above the scroll bar -
1.

Left Width of window - 15.
Bottom Height of window - 14.
Right Width of window + 1.

The following calculations determine the rectangle for a horizontal scroll bar for a
document window.

Coordinate Calculation
Top Height of window - 15.
Left Combined width of any items to the left of the scroll

bar - 1.
Bottom Height of window + 1.
Right Width of window - 14.

The top coordinate of a vertical scroll bar and the left coordinate of a horizontal scroll
bar is -1 unless your application uses part of the window's typical scroll bar area for
displaying information or specifying additional controls.

Just as the maximum settings change when the user resizes a document's window, so too
do the scroll bar's coordinate locations change when the user resizes the window. The
initial maximum settings and location, as specified in the 'CNTL' resource, must therefore
be changed dynamically by the application as required. Typically, this is achieved by
storing handles to each scroll bar in an application-defined document structure
associated with the window and then using Control Manager functions to change control
settings.

Scroll Bars in Utility Windows. You can also use scroll bars in utility windows (see Fig
7). Size boxes in utility windows are 11-by-11 pixels, and the standard Appearance-
compliant scroll bar can be made to fit into this space.

FIG 7 - SCROLL BARS IN A UTILITY WINDOW

Pop-up Menu Buttons

Pop-up Menu Button Title Style Constants

The constants and values for the initial value for pop-up menu buttons are as follows:

Controls 7-19

Version 2.1

Constant Value Meaning
popupTitleBold $0100 Boldface font style
popupTitleItalic $0200 Italic font style
popupTitleUnderline $0400 Underline font

style
popupTitleOutline $0800 Outline font style
popupTitleShadow $1000 Shadow font style
popupTitleCondense $2000 Condensed text
popupTitleExtend $4000 Extended text
popupTitleNoStyle $0800 Monostyle text

Pop-up Menu Button Title Width

Fig 8 shows the relationship between the title width and the enclosing rectangle of a
pop-up menu box.

FIG 8 - POP-UP MENU BUTTON TITLE WIDTH AND CONTROL RECTANGLE WIDTH

FIXED-WIDTH VARIANT

VARIABLE-WIDTH VARIANT

CONTROL RECTANGLE WIDTH
TITLE WIDTH

Menu Width Adjustment

If the base variant or the variable width variant is being used, and whenever the pop-up
menu button is redrawn, the CDEF calls CalcMenuSize to calculate the size of the menu
associated with the control. If the sum of the width of the title, the longest item in the
menu, the arrows, and a small amount of "white space" is less than the width of the
control rectangle, the width of the pop-up button will be reduced for drawing purposes
(see Fig 7). If the calculated width is greater than the width of the control rectangle, the
longer menu items will be truncated with an added ellipsis so that the drawn pop-up will
not exceed the width of the control rectangle.

Menu Items and Control Values

When it creates the control, GetNewControl assigns the item number of the first menu item
to the contrlValue field of the control structure and sets the contrlMax field to the number of
items in the pop-up menu button. When the user chooses a different menu item, the
Control Manager changes the contrlValue field to that item number.

Adding Resource Names as Items

If the add resource variant of the pop-up menu button is being used, the Control
Manager coerces the value in the control structure's contrlRfCon field to the type ResType and
then uses AppendResMenu to add items of that type. For example, if you specify FONT in the
ResType item in the Resorcerer 'CNTL' resource editing window, the CDEF appends a list of
fonts installed in the system to the menu specified at the 'MENU' ID item. Note that, after
the control has been created, your application can use the contrlRfCon field for whatever
purpose it requires.

Setting the Font of a Control's Title

You can set the font of any control's title independently of the system font or window
font.

7-20 Controls

Version 2.1

Historical Note

Prior to Mac OS 8 and the Appearance Manager, your only choices were the
system font and, if the control had a variant that used it (as did the pop-up menu
control), the window font.

To set the font of a control's title, you pass a pointer to a control font style structure in
the inStyle parameter of the function SetControlFontStyle.

Control Font Style Structure
TYPE
ControlFontStyleRec = RECORD

flags: SInt16;
font: SInt16;
size: SInt16;
style: SInt16;
mode: SInt16;
just: SInt16;
foreColor: RGBColor;
backColor: RGBColor;

END;

ControlFontStyleRecPtr = ^ControlFontStyleRec;
ControlFontStylePtr = ^ControlFontStyleRec;

Field Descriptions

flags A signed 16-bit integer specifying which fields of the structure should be
applied to the control (see Control Font Style Flag Constants, below). If none
of the flags in the flags field of the structure are set, the control uses the
system font unless the control variant kControlUsesOwningWindowsFontVariant has been
specified, in which case the control uses the window font.

font If the kControlUseFontMask bit is set, this field will contain an integer indicating the
ID of the font family to use. If this bit is not set, then the system default font
is used. A meta font constant can be specified instead (see Meta Font
Constants, below).

size If the kControlUseSizeMask bit is set, this field will contain an integer representing
the point size of the text. If the kControlAddSizeMask bit is set, this value will
represent the size to add to the current point size of the text. A meta font
constant can be specified instead (see Meta Font Constants, below).

style If the kControlUseStyleMask bit is set, this field will contain an integer specifying
which styles to apply to the text. If all bits are clear, the plain font style is
used. The bit numbers and the styles they represent are as follows:
Bit Value Style
0 Bold
1 Italic
2 Underline
3 Outline
4 Shadow
5 Condensed
6 Extended

mode If the kControlUseModeMask bit is set, this field will contain an integer specifying
how characters are drawn in the bit image. (See Chapter 12 — Drawing With
QuickDraw for a discussion of transfer modes.)

Controls 7-21

Version 2.1

just If the kControlUseJustMask bit is set, this field will contain an integer specifying
text justification (left, right, centered, or system script direction).

foreColor If the kControlUseForeColorMask bit is set, this field will contain an RGB (red-green-
blue) colour to use when drawing the text.

backColor If the kControlUseBackColorMask bit is set, this element will contain an RGB (red-
green-blue) colour to use when drawing the background behind the text.
(Note that, in certain text modes, background colour is ignored.)

Control Font Style Flag Constants

You can pass one or more of the following control font style flag constants in the flags field
of the control font style structure to specify those fields of the structure that are be
applied to the control. (The constant shown on a dark gray background was introduced
with Mac OS 8.5.) If none of the flags in of the flags field are set, the control uses the
system font unless a control with a variant that uses the window font has been specified.

Constant Value Meaning
kControlUseFontMask 0x0001 The font field of the control font style structure is

applied to the control.
kControlUseFaceMask 0x0002 The style field of the control font style structure is

applied to the control.
This flag is ignored if you specify a meta font value (see
Meta Font Constants, below).

kControlUseSizeMask 0x0004 The size field of the control font style structure is
applied to the control.
This flag is ignored if you specify a meta font value (see
Meta Font Constants, below).

kControlUseForeColorMask 0x0008 The foreColor field of the control font style structure is
applied to the control.
This flag only applies to static text controls.

kControlUseBackColorMask 0x0010 The backColor field of the control font style structure is
applied to the control.
This flag only applies to static text controls.

kControlUseModeMask 0x0020 The text mode specified in the mode field of the control
font style structure is applied to the control.

kControlUseJustMask 0x0040 The just field of the control font style structure is applied
to the control.

kControlUseAllMask 0x00FF All flags in this mask will be set except
kControlUseAddFontSizeMask.

kControlUseAddFontSizeMask 0x0100 The Dialog Manager will add a specified font size to the
size field of the control font style structure.
This flag is ignored if you specify a meta font value (see
Meta Font Constants, below.

KControlAddToMetaFontMask 0x0200 The control may use a meta font while also adding
other attributes to the font.

Meta Font Constants

You can use the following meta font constants in the font field of the control font style
structure to specify the style, size, and font family of a control's font. You should use
these meta font constants whenever possible because the system font can change,
depending upon the current theme. If none of these constants are specified, the control
uses the system font unless a control with a variant that uses the window font has been
specified.

Constant Value Meaning In Roman Script System
kControlFontBigSystemFont $0001 Use the system font. (For the Roman script system,

7-22 Controls

Version 2.1

this is Charcoal 12.)
kControlFontSmallSystemFont $0002 Use the small system font. (For the Roman script

system, this is Geneva 10.)
kControlFontSmallBoldSystemFont $0004 Use the small emphasised system font. (For the

Roman script system, this is Geneva 10.)

Another advantage of using these meta font constants is that you can be sure of getting
the correct font on a Macintosh using a different script system, such as kanji.

Updating, Moving, and Removing Controls

Updating Controls

When your application receives an update event for a window containing controls, it
should call UpdateControls between the BeginUpdate and EndUpdate calls in its updating function.

Note that when you use the Dialog Manager to implement push buttons, radio buttons,
checkboxes or pop-up menu buttons in alert boxes or dialog boxes, Dialog Manager
functions automatically use Control Manager functions to update the controls for you.

Moving Controls

You can change the position of a control using MoveControl, which erases the control,
offsets the control's control rectangle, and redraws it at the specified new location

Removing Controls

When you no longer need a control in a window that you wish to keep, you use
DisposeControl to remove it from the screen, delete it from the window's control list, and
release the control structure and associated data structures from memory. KillControls will
dispose of all of a window's controls at once.

Handling Mouse Events in Controls

Overview

For mouse events in controls, you usually perform the following tasks:

• Use FindWindow to determine the window in which the mouse-down event occurred.

• If the mouse-down event occurred in the content region of the active window, use
FindControl to determine whether the event occurred in a control and, if so, which
control.

• Call TrackControl or HandleControlClick to handle user interaction with the control as long
as the user holds the mouse button down. The actionProc parameter passed to
TrackControl, or the inAction parameter passed to HandleControlClick, should be as follows:

• nil for push buttons, checkboxes and radio buttons.

• For scroll arrows and gray areas of scroll bars, a pointer which invokes an
application-defined action function which, in turn, causes the document to
scroll as long as the user holds the mouse button down.

• For the scroll box of scroll bars:

Controls 7-23

Version 2.1

• nil if the non-live-feedback variant is being used.

• If the live-feedback variant is being used, a pointer which invokes an
application-defined action function which, in turn, causes the
document to scroll while the scroll box is being dragged.

• ControlActionUPP(-1) for pop-up menu buttons. This causes TrackControl and
HandleControlClick to use the action function defined within the pop-up CDEF, a
pointer to which is stored in the contrlAction field of the control structure.

For source code that only needs to be compiled as 680x0 code, the pointer which
invokes the application-defined action function need only be a procedure pointer,
that is, the address of the action function. For source code that needs to be
compiled as PowerPC code, or as both PowerPC code and 680x0 code, the pointer
must be a Universal Procedure Pointer (UPP).

Note that, as an alternative to passing these pointers in the actionProc parameter of
TrackControl, or the inAction parameter of HandleControlClick, you can preset the action
function by passing the pointer in the actionProc parameter of SetControlAction.
(Ordinarily, you would call SetControlAction immediately after the control is created.
SetControlAction stores the pointer in the contrlAction field of the control structure.) In
this case, you must pass ControlActionUPP(-1) in the actionProc and inAction parameters of
TrackControl and HandleControlClick.

• When TrackControl or HandleControlClick reports that the user has released the mouse
button with the cursor in a control, respond appropriately, that is:

• Perform the task identified by the push button title if the cursor is over a push
button.

• Toggle the value of the checkbox when the cursor is over a checkbox. (The
Control Manager then redraws or removes the checkmark, as appropriate.)

• Turn on the radio button, and turn off all other radio buttons in the group,
when the cursor is over an active radio button.

• Show more of the document in the direction of the scroll arrow when the
cursor is over the scroll arrow or gray area of a scroll bar, and move the
scroll box accordingly.

• If the non-live-feedback scroll bar variant is being used, and when the cursor
is over the scroll box, determine where the user has dragged the scroll box,
and then display the corresponding portion of the document.

• Use the new setting chosen by the user when the cursor is over a pop-up
menu button.

Determining a Mouse-Down Event in a Control

When the mouse-down event occurs in a visible, active control, FindControl returns a handle
to that control as well as a control part code identifying that control's part. (When the
mouse-down occurs in an invisible or inactive control, or when the cursor is not in a
control, FindControl sets the control handle to NULL and returns 0 as its control part code.)

Historical Note

A new routine similar to FindControl was introduced with Mac OS 8 and the
Appearance Manager. This new routine (FindControlUnderMouse) will return a handle to
the control even if no part was hit and can determine whether a mouse-down
event has occurred even if the control is deactivated, whereas FindControl will not.

7-24 Controls

Version 2.1

A control part code is an integer from 1 to 255. Part codes are assigned to a control by
its CDEF. The CDEFs for the basic controls define the following part codes:

Constant Value Meaning
kControlNoPart 0 Event did not occur in any control.

Also unhighlights any highlighted part of the control when
passed to the HiliteControl function.

kControlLabelPart 1 Event occurred in the label of a pop-up menu button.
kControlMenuPart 2 Event occurred in the menu of a pop-up menu button.
kControlButtonPart 10 Event occurred in a push button.
kControlCheckBoxPart 11 Event occurred in a checkbox.
kControlRadioButtonPart 12 Event occurred in a radio button.
kControlUpButtonPart 20 Event occurred in the up (or left)scroll arrow of a scroll

bar.
kControlDownButtonPart 21 Event occurred in the down (or right) button of a scroll

bar.
kControlPageUpPart 22 Event occurred in the page-up part of a scroll bar.
kControlPageDownPart 23 Event occurred in the page-down part of a scroll bar.
kControlIndicatorPart 129 Event occurred in the scroll box of a scroll bar.

Tracking the Cursor in a Control

After calling FindControl to determine that the user pressed the mouse button while the
cursor was in a control, you should call TrackControl or HandleControlClick to follow and respond
to the user's movements.

You can also use an action function to undertake additional actions as long as the user
holds the mouse button down. Typically, action functions are used to continuously scroll
the window's contents while the cursor is on a scroll arrow or gray area of a scroll bar, or
in the scroll box of a live-feedback scroll bar. (As previously stated, you pass a pointer to
this action function in the actionProc parameter of TrackControl or the inAction parameter of
HandleControlClick).

TrackControl and HandleControlClick return the control's control part code if the user releases
the mouse button while the cursor is still inside the control part, or kControlNoPart (0) if the
cursor is outside the control part when the button is released. Your application should
then respond appropriately.

Determining and Changing Control Settings
When the user clicks a control, your application often needs to determine the current
setting and other values of that control. When the user clicks a checkbox, for example,
your application must determine whether the box is checked before it can decide
whether to clear or draw a checkmark inside the checkbox.

Applications must adjust some controls in response to events other than mouse events in
the controls themselves. For example, when the user resizes a window, your application
must use MoveControl and SizeControl to move and resize the scroll bars appropriately.

Your application can use the following functions to get and set control values. (Those
appearing on a dark gray background were introduced with Mac OS 8.5.)

Function Description
GetControlValue Obtains the current value of a control.
SetControlValue Changes the current value of a control.
GetControlMinimum Obtains the minimum value of a control.
SetControlMinimum Changes the minimum value of a control.

Controls 7-25

Version 2.1

GetControlMaximium Obtains the maximum value of a control.
SetControlMaximium Changes the maximum value of a control.
GetControl32BitValue Obtains the current value of a control.
SetControl32BitValue Changes the current value of a control.
GetControl32BitMinimum Obtains the minimum value of a control.
SetControl32BitMinimum Changes the minimum value of a control.
GetControl32BitMaximum Obtains the maximum value of a control.
SetControl32BitMaximum Changes the maximum value of a control.

If your application uses a 32-bit control value, it should not use the pre-Mac OS 8.5
functions to obtain or change this value. In addition, your application should not attempt
to obtain or change the value by accessing the contrlValue, contrlMin, or contrlMax fields of the
ControlRecord structure.

Moving and Resizing Scroll Bars
Your application must be able to size and move scroll bars dynamically in response to the
user resizing your windows. The steps involved are:

• Resize the window.

• Use HideControl to make each scroll bar invisible.

• Use MoveControl to move the scroll bars to the appropriate edges of the window.

• Use SizeControl to lengthen or shorten each scroll bar as appropriate.

• Recalculate the maximum settings for the scroll bars and use SetControlMaximum and
SetControlValue to update the settings and to redraw the scroll boxes appropriately.

• Use ShowControl to make each scroll bar visible at its new location.

Each of the functions involved require a handle to the relevant scroll bar control. When
your application creates a window, it should store handles for each scroll bar in an
application-defined document structure associated with that window.

Scrolling Operations With Scroll Bars

Scrolling Basics

Spatial Relationships - Document, Window,
and Scroll Bar

Spatial relationships between a document and a window, and their representation in a
scroll bar, are shown at Fig 9.

7-26 Controls

Version 2.1

FIG 9 - SPATIAL RELATIONSHIP BETWEEN A DOCUMENT AND A WINDOW,
AND THEIR REPRESENTATION IN A SCROLL BAR

030

30

45 90

105

90

SCROLL BAR VALUES

MAXIMUM SCROLLING VALUE

END OF DOCUMENT

START OF DOCUMENT0

Distance and Direction to Scroll

When the user scrolls a document using scroll bars, your application must first determine
the distance and direction to scroll. The distance to scroll is as follows:

• When the user drags the scroll box to a new location, your application should scroll
a corresponding distance in the document.

• When the user clicks on a scroll arrow, your application must determine an
appropriate amount to scroll. Word processor applications typically scroll one line
of text vertically, and horizontally by the average character width. Graphics
applications typically scroll to display an entire object.

• When the user clicks in the gray area, your application must determine an
appropriate amount to scroll. Typically, applications scroll by a distance of just less
than the height or width of the window.

The direction to scroll is determined by whether the scrolling distance is expressed as a
positive or negative number. For example, when the user scrolls from the beginning of a
document to a line 200 pixels down, the scrolling distance is -200 pixels on the vertical
scroll bar.

Scrolling the Pixels

With the distance and direction to scroll determined, the next step is to scroll the pixels
displayed in the window by that distance and in that direction. Typically, ScrollRect is used
for that purpose.

Controls 7-27

Version 2.1

Moving the Scroll Box

If the user did not effect the scroll using the scroll box, the scroll box must then be
repositioned using SetControlValue.

Updating the Window

The final step is to either call a function which generates an update event or directly call
your application's update function. Your application's update function should call
UpdateControls (to update the scroll bars) and redraw the appropriate part of the document
in the window.

Scrolling Example

Half the complexity of scrolling lays in ensuring that that part of the document which is
displayed in the window correlates with the scroll bar control value, and vice versa, at all
times.

Consider the left-top of Fig 10, which illustrates the situation where the user has just
opened an existing document. The document consists of 35 lines of monostyled text and
the line height throughout is 10 pixels. The document is, therefore, 350 pixels long.
When the user opens the document, the window origin is identical to the upper-left point
of the document's space, that is, both are at (0,0).

FIG 10 - SCROLLING A DOCUMENT IN A WINDOW

WHEN THE USER FIRST OPENS THE DOCUMENT AFTER APPLICATION SCROLLS DOCUMENT VERTICALLY BY -100 PIXELS

AFTER APPLICATION UPDATES WINDOW'S CONTENTSAFTER APPLICATION RESTORES DOCUMENT'S ORIGINAL COORDINATES

UPDATE REGION

(100,0)

(350,0)

(0,0)

(250,0)

(0,0)

(150,0)

(350,0)

(-100,0)

(0,0)

(150,0)

(250,0)

UPDATE REGION

(-100,0)

(0,0)

(150,0)

(250,0)

In this example, the window displays 15 lines of text, which amounts to 150 pixels.
Hence the maximum setting for the scroll bar is equivalent to 200 pixels down in the
document. (As shown at Fig 9, a vertical scroll bar's maximum setting equates to the
length of the document minus the height of the window.)

Now assume that the user drags the scroll box about halfway down the vertical scroll
bar. Because the user wishes to scroll down, your application must move the text of the
document up. Moving a document up in response to a user's request to scroll down
requires a negative scrolling value.

7-28 Controls

Version 2.1

Your application, using GetControlValue, determines that the scroll bar's control value is 100
and that it must therefore move the document up by 100 pixels. It then uses ScrollRect to
shift the bits displayed in the window by a distance of -100 pixels (that is, 10 lines of
text). As shown at the top-right of Fig 10, five lines from the bottom of the previous
window display now appear at the top of the window. Your application adds the rest of
the window to an update region for later updating.Note that ScrollRect does not change the
coordinate system of the window; instead it moves the bits in the window to new
coordinates that are still in the window's local coordinate system. (For the purposes of
updating the window, you can think of this as changing the coordinates of the entire
document, as is illustrated at the right-top of Fig 10.) In terms of the window's local
coordinate system, then, the upper left corner of the document is now at (-100,0).

To facilitate updating of the window, SetOrigin must now be used to change the local
coordinate system of the window so that the application can treat the upper left corner of
the document as again lying at (0,0). This restoration of the document's original
coordinate space makes it easier for the application to determine which lines of the
document to draw in the update region of the window. (See bottom-left of Fig 10.)

Your application should now update the window by drawing lines 16 to 24, which it
stores in its document structure as beginning at (160,0) and ending at (250,0).

Finally, because the Window and Control Managers always assume that the window's
upper-left point is at (0,0) when they draw in the window, the window origin cannot be
left at (100,0). Accordingly, the application must use SetOrigin to reset it to (0,0) after
performing its own drawing, (See bottom-right of Fig 10.)

To summarise:

• The user dragged the scroll box about half way down the vertical scroll bar. The
application determined that this distance amounted to a scroll of -100 pixels.

• The application passed this distance to ScrollRect, which shifted the bits in the
window 100 pixels upwards and created an update region in the vacated area of
the window.

• The application passed the vertical scroll bar's current setting (100) in a parameter
to SetOrigin so that the document's local coordinates were used when the update
region of the window was redrawn. This changed the window's origin to (100,0).

• The application drew the text in the update region.

• The application reset the window's origin to (0,0)

Alternative to SetOrigin

There are alternatives to the SetOrigin methodology. SetOrigin simply helps you to offset the
window's origin by the scroll bar's current settings when you update the window so that
you can locate objects in a document using a coordinate system where the upper-left
corner of the document is always at (0,0).

As an alternative to this approach, your application can leave the upper-left corner of the
window at (0,0) and instead offset the items in your document, using OffsetRect, by an
amount equal to the scroll bar's settings.

Scrolling a TextEdit Document and Scrolling Using the List Manager

TextEdit is a collection of functions and data structures which you can use to provide
your application with basic text editing capabilities. Chapter 19 — Text and TextEdit
addresses, amongst other things, the scrolling of TextEdit documents.

Controls 7-29

Version 2.1

For scrolling lists of graphic or textual information, your application can use the List
Manager to implement scroll bars. (See Chapter 20 — Lists and Custom List Definition
Functions.)

Main Control Manager Constants, Data Types and Functions
Relevant to the Basic Controls, Primary Group Box (Text Title
Variant) and User Panes

In the following:

• The constants, data types, and functions introduced with Mac OS 8 and the
Appearance Manager are shown on a light gray background.

• The constants and functions introduced with Mac OS 8.5 are shown on a dark gray
background.

• Those older constants, data types and functions affected by the introduction of Mac
OS 8 and the Appearance Manager, but which may still be used in certain
circumstances, are shown against a black background.

Constants

Control Definition IDs

kControlPushButtonProc = 368
kControlPushButLeftIconProc = 374
kControlPushButRightIconProc = 375
kControlCheckBoxProc = 369
kControlCheckBoxAutoToggleProc = 371,
kControlRadioButtonProc = 370
kControlRadioButtonAutoToggleProc = 372
kControlScrollBarProc = 384
kControlScrollBarLiveProc = 386
kControlPopupButtonProc = 400
kControlGroupBoxTextTitleProc = 160
kControlUserPaneProc = 256

Pop-up Menu Button Variation Codes

kControlPopupFixedWidthVariant = 1
kControlPopupVariableWidthVariant = 2
kControlPopupUseAddResMenuVariant = 4
kControlPopupUseWFontVariant = 8

Pop-up Title Characteristics

popupTitleBold = $0100;
popupTitleItalic = $0200;
popupTitleUnderline = $0400;
popupTitleOutline = $0800;
popupTitleShadow = $1000;
popupTitleCondense = $2000;
popupTitleExtend = $4000;
popupTitleNoStyle = $8000;

Control Variants

kControlNoVariant = 0
kControlUsesOwningWindowsFontVariant = 8

Control Part Codes

kControlNoPart = 0
kControlLabelPart = 1
kControlMenuPart = 2
kControlButtonPart = 10
kControlCheckBoxPart = 11

7-30 Controls

Version 2.1

kControlRadioButtonPart = 11
kControlUpButtonPart = 20
kControlDownButtonPart = 21
kControlPageUpPart = 22
kControlPageDownPart = 23
kControlIndicatorPart = 129
kControlDisabledPart = 254
kControlInactivePart = 255

Checkbox Value Constants

kControlCheckBoxUncheckedValue = 0,
kControlCheckBoxCheckedValue = 1,
kControlCheckBoxMixedValue = 2

Radio Button Value Constants

kControlRadioButtonUncheckedValue = 0,
kControlRadioButtonCheckedValue = 1,
kControlRadioButtonMixedValue = 2

Control Data Tag Constants

kControlPushButtonDefaultTag = FOUR_CHAR_CODE('dflt')
kControlPushButtonCancelTag = FOUR_CHAR_CODE('cncl')
kControlPopupButtonMenuHandleTag = FOUR_CHAR_CODE('mhan')
kControlPopupButtonMenuIDTag = FOUR_CHAR_CODE('mnid')
kControlPopupButtonExtraHeightTag = FOUR_CHAR_CODE('exht')
kControlGroupBoxTitleRectTag = FOUR_CHAR_CODE('trec')

Control Font Style Flag Constants

kControlUseFontMask = 0x0001
kControlUseFaceMask = 0x0002
kControlUseSizeMask = 0x0004
kControlUseForeColorMask = 0x0008
kControlUseBackColorMask = 0x0010
kControlUseModeMask = 0x0020
kControlUseJustMask = 0x0040
kControlUseAllMask = 0x00FF
kControlAddFontSizeMask = 0x0100
kControlAddToMetaFontMask = 0x0200

Meta Font Constants

kControlFontBigSystemFont = -1
kControlFontSmallSystemFont = -2
kControlFontSmallBoldSystemFont = -3

Data Types
ControlPartCode : SInt16;

Control Structure

ControlRecord = PACKED RECORD
nextControl : ControlHandle; { Next Control. }
contrlOwner : WindowPtr; { Control's window. }
contrlRect : Rect; { Rectangle. }
contrlVis : UInt8; { 255 if visible, else 0. }
contrlHilite : UInt8; { Highlight state. }
contrlValue : SInt16; { Current setting. }
contrlMin : SInt16; { Minimum Setting. }
contrlMax : SInt16; { Maximum setting. }
contrlDefProc : Handle; { Control definition function. }
contrlData : Handle; { Data used by contrlDefProc. }
contrlAction : ControlActionUPP; { Action function. }
contrlRfCon : SInt32; { Reference constant. }
contrlTitle : Str255; { Title. }
END;

ControlRecordPtr = ^ControlRecord;
ControlPtr = ^ControlRecord;
ControlHandle = ^ControlPtr;

Controls 7-31

Version 2.1

Control Font Style Structure

ControlFontStyleRec = RECORD
flags : SInt16;
font : SInt16;
size : SInt16;
style : SInt16;
mode : SInt16;
just : SInt16;
foreColor : RGBColor;
backColor : RGBColor;
END;

ControlFontStyleRecPtr = ^ControlFontStyleRec;
ControlFontStylePtr = ^ControlFontStyleRec;

Routines

Creating and Removing Controls

FUNCTION NewControl(owningWindow: WindowPtr; {CONST}VAR boundsRect: Rect;
controlTitle: ConstStr255Param; initiallyVisible: BOOLEAN; initialValue: SInt16;
minimumValue: SInt16; maximumValue: SInt16; procID: SInt16;
controlReference: SInt32): ControlHandle;

FUNCTION GetNewControl(resourceID: SInt16; owningWindow: WindowPtr): ControlHandle;
PROCEDURE DisposeControl(theControl: ControlHandle);
PROCEDURE KillControls(theWindow: WindowPtr);

Embedding Controls

OSErr CreateRootControl(WindowPtr inWindow,ControlHandle * outControl);
OSErr GetRootControl(WindowPtr inWindow,ControlHandle * outControl);
OSErr EmbedControl(ControlHandle inControl,ControlHandle inContainer);
OSErr AutoEmbedControl(ControlHandle inControl,WindowPtr inWindow);
OSErr CountSubControl(ControlHandle inControl,SInt16 * outNumChildren);
OSErr GetIndexedSubControl(ControlHandle inControl,SInt16 inIndex,

ControlHandle * outSubControl);
OSErr GetSuperControl(ControlHandle inControl,ControlHandle * outParent);
OSErr SetControlSupervisor(ControlHandle inControl,ControlHandle inBoss);
OSErr DumpControlHierarchy(WindowPtr inWindow,const FSSpec *inDumpFile);

Displaying and Manipulating Controls

PROCEDURE MoveControl(theControl: ControlHandle; h: SInt16; v: SInt16);
PROCEDURE SizeControl(theControl: ControlHandle; w: SInt16; h: SInt16);
PROCEDURE UpdateControls(theWindow: WindowPtr; updateRegion: RgnHandle);
PROCEDURE DrawControls(theWindow: WindowPtr);
PROCEDURE Draw1Control(theControl: ControlHandle);
PROCEDURE DrawControlInCurrentPort(inControl: ControlHandle);
FUNCTION IsControlActive(inControl: ControlHandle): BOOLEAN;
FUNCTION IsControlVisible(inControl: ControlHandle): BOOLEAN;
FUNCTION ActivateControl(inControl: ControlHandle): OSErr;
FUNCTION DeactivateControl(inControl: ControlHandle): OSErr;
PROCEDURE ShowControl(theControl: ControlHandle);
PROCEDURE HideControl(theControl: ControlHandle);
FUNCTION SetControlVisibility(inControl: ControlHandle; inIsVisible: BOOLEAN;

inDoDraw: BOOLEAN): OSErr;
FUNCTION SendControlMessage(inControl: ControlHandle; inMessage: SInt16;

inParam: SInt32): SInt32;
PROCEDURE DragControl(theControl: ControlHandle; startPoint: Point;

{CONST}VAR limitRect: Rect; {CONST}VAR slopRect: Rect; axis: DragConstraint);
PROCEDURE HiliteControl(theControl: ControlHandle; hiliteState: ControlPartCode);
FUNCTION GetControlViewSize(theControl: ControlHandle): SInt32;
PROCEDURE SetControlViewSize(theControl: ControlHandle; newViewSize: SInt32);

Handling Events in Controls

FUNCTION FindControl(testPoint: Point; theWindow: WindowPtr;
VAR theControl: ControlHandle): ControlPartCode;

FUNCTION FindControlUnderMouse(inWhere: Point; inWindow: WindowPtr;
VAR outPart: SInt16): ControlHandle;

FUNCTION TrackControl(theControl: ControlHandle; startPoint: Point;
actionProc: ControlActionUPP): ControlPartCode;

FUNCTION HandleControlClick(inControl: ControlHandle; inWhere: Point; inModifiers: SInt16;
inAction: ControlActionUPP): SInt16;

7-32 Controls

Version 2.1

FUNCTION TestControl(theControl: ControlHandle; testPoint: Point): ControlPartCode;

Accessing and Changing Control Settings and Data

FUNCTION GetControlValue(theControl: ControlHandle): SInt16;
PROCEDURE SetControlValue(theControl: ControlHandle; newValue: SInt16);
FUNCTION GetControlMinimum(theControl: ControlHandle): SInt16;
PROCEDURE SetControlMinimum(theControl: ControlHandle; newMinimum: SInt16);
FUNCTION GetControlMaximum(theControl: ControlHandle): SInt16;
PROCEDURE SetControlMaximum(theControl: ControlHandle; newMaximum: SInt16);
FUNCTION GetControl32BitValue(theControl: ControlHandle): SInt32;
PROCEDURE SetControl32BitValue(theControl: ControlHandle; newValue: SInt32);
FUNCTION GetControl32BitMaximum(theControl: ControlHandle): SInt32;
PROCEDURE SetControl32BitMaximum(theControl: ControlHandle; newMaximum: SInt32);
FUNCTION GetControl32BitMinimum(theControl: ControlHandle): SInt32;
PROCEDURE SetControl32BitMinimum(theControl: ControlHandle; newMinimum: SInt32);
PROCEDURE GetControlTitle(theControl: ControlHandle; VAR title: Str255);
PROCEDURE SetControlTitle(theControl: ControlHandle; title: ConstStr255Param);
FUNCTION GetControlReference(theControl: ControlHandle): SInt32;
PROCEDURE SetControlReference(theControl: ControlHandle; data: SInt32);
FUNCTION GetControlAction(theControl: ControlHandle): ControlActionUPP;
PROCEDURE SetControlAction(theControl: ControlHandle; actionProc: ControlActionUPP);
FUNCTION GetControlVariant(theControl: ControlHandle): ControlVariant;
FUNCTION SetControlData(inControl: ControlHandle; inPart: ControlPartCode;

inTagName: ResType; inSize: Size; inData: Ptr): OSErr;
FUNCTION GetControlData(inControl: ControlHandle; inPart: ControlPartCode;

inTagName: ResType; inBufferSize: Size; inBuffer: Ptr;
VAR outActualSize: Size): OSErr;

FUNCTION GetControlDataSize(inControl: ControlHandle; inPart: ControlPartCode;
inTagName: ResType; VAR outMaxSize: Size): OSErr;

FUNCTION SetControlVisibility(inControl: ControlHandle; inIsVisible: BOOLEAN;
inDoDraw: BOOLEAN): OSErr;

Setting the Control Font Style

FUNCTION SetControlFontStyle(inControl: ControlHandle;
{CONST}VAR inStyle: ControlFontStyleRec): OSErr;

Demonstration Program Controls1
{ ◊◊
// Controls1.p
// ◊◊
//
// This program opens a kWindowFullZoomGrowDocumentProc window containing:
//
// • Four pop-up menu buttons (fixed width, variable width, add resource, and use window
// font variants).
//
// • Three radio buttons auto-embedded in a primary group box (text title variant).
//
// • Three checkboxes auto-embedded in a primary group box (text title variant).
//
// • Four push buttons (two basic, one left colour icon variant, and one right colour
// icon variant).
//
// • A vertical scroll bar (non live-feedback variant) and a horizontal scroll bar
// (live-feedback variant).
//
// The window also contains a window header frame in which is displayed:
//
// • The menu items chosen from the pop-up menus.
//
// • The identity of a push button when that push button is clicked.
//
// • Scroll bar control values when the scroll arrows or gray areas of the scroll bars
// are clicked and when the scroll box is dragged.
//
// The scroll bars are moved and resized when the user resizes or zooms the window;
// however, the scroll bars do not scroll the window content.
//
// A Demonstration menu allows the user to deactivate the group boxes in which the radio
// buttons and checkboxes are embedded.
//
// The program utilises the following resources:
//

Controls 7-33

Version 2.1

// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit, and Demonstration
// menus, and the pop-up menus (preload, non-purgeable).
//
// • A 'WIND' resource (purgeable) (initially not visible).
//
// • 'CNTL' resources for the pop-up menus, group boxes, radio buttons, checkboxes,
// buttons, and scroll bars (preload, purgeable) (initially visible).
//
// • Two 'cicn' resources (purgeable) for the colour icon variant buttons.
//
// • An 'hrct' resource and an 'hwin' resource (both purgeable), which provide help
// balloons describing the various controls.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch,
// and is32BitCompatible flags set.
//
// ◊◊ }

program Controls1;

//
……
………………………………… interfaces

uses

{ Universal Interfaces. }
Appearance, Devices, Fonts, Menus, NumberFormatting, Processes, Resources, Sound,
ToolUtils, LowMem;

//
……
…………………………………… constants

const

rMenubar = 128;
rNewWindow = 128;
mApple = 128;
 iAbout = 1;
mFile = 129;
 iQuit = 11;
mDemonstration = 131;
 iColour = 1;
 iGrids = 2;

cPopupFixed = 128;
cPopupVariable = 129;
cPopupAddRes = 130;
cPopupWinFont = 131;
iCanberra = 1;
iLondon = 2;
iAuckland = 3;
iRome = 4;
cRadiobuttonRed = 132;
cRadiobuttonWhite = 133;
cRadiobuttonBlue = 134;
cCheckboxGrid = 135;
cCheckboxRulers = 136;
cCheckboxGridsnap = 137;
cGroupBoxColour = 138;
cGroupBoxGrids = 139;
cButton = 140;
cButtonDefault = 141;
cButtonLeftIcon = 142;
cButtonRightIcon = 143;
cScrollbarVert = 144;
cScrollbarHoriz = 145;

MAXLONG = $7FFFFFFF;

//
……
…………………………………………… types

type

DocRecord = record
popupFixedHdl : ControlHandle;
popupVariableHdl : ControlHandle;
popupAddResHdl : ControlHandle;

7-34 Controls

Version 2.1

popupWinFontHdl : ControlHandle;
groupboxColourHdl : ControlHandle;
groupboxGridsHdl : ControlHandle;
buttonHdl : ControlHandle;
buttonDefaultHdl : ControlHandle;
buttonLeftIconHdl : ControlHandle;
buttonRightIconHdl : ControlHandle;
radiobuttonRedHdl : ControlHandle;
radiobuttonWhiteHdl : ControlHandle;
radiobuttonBlueHdl : ControlHandle;
checkboxGridHdl : ControlHandle;
checkboxRulersHdl : ControlHandle;
checkboxGridSnapHdl : ControlHandle;
scrollbarVertHdl : ControlHandle;
scrollbarHorizHdl : ControlHandle;
end;

DocRecordPtr = ^DocRecord;
DocRecordHandle = ^DocRecordPtr;

//
……
………………… global variables

var

gActionFunctionVertUPP : ControlActionUPP;
gActionFunctionHorizUPP : ControlActionUPP;
gDone : boolean;
gInBackground : boolean;
gPixelDepth : SInt16;
gIsColourDevice : boolean;
gCurrentString : Str255;

// ……… main
program block variables

mainMenubarHdl : Handle;
mainMenuHdl : MenuHandle;
mainWindowPtr : WindowPtr;
mainDocRecordHandle : DocRecordHandle;
mainEvent : EventRecord;
mainErr : OSErr;

//
……
……… routine declarations

procedure DoInitManagers; forward;
procedure DoGetControls(theWindowPtr : WindowPtr); forward;
procedure DoEvents({const} var theEvent : EventRecord); forward;
procedure DoMouseDown({const} var theEvent : EventRecord); forward;
procedure DoMenuChoice(menuChoice : SInt32); forward;
procedure DoUpdate({const} var theEvent : EventRecord); forward;
procedure DoActivate({const} var theEvent : EventRecord); forward;
procedure DoActivateWindow(theWindowPtr : WindowPtr; becomingActive : boolean); forward;
procedure DoOSEvent({const} var theEvent : EventRecord); forward;
procedure DoInContent({const} var theEvent : EventRecord; theWindowPtr : WindowPtr); forward;
procedure DoPopupMenuChoice(theWindowPtr : WindowPtr; controlHdl : ControlHandle;

theInt : SInt16); forward;
procedure DoVertScrollbar(partCode : ControlPartCode; theWindowPtr : WindowPtr;

controlHdl : ControlHandle; thePoint : Point); forward;
procedure DoMoveScrollBox(controlHdl : ControlHandle; scrollDistance : SInt16); forward;
procedure DoRadioButtons(controlHdl : ControlHandle; theWindowPtr : WindowPtr); forward;
procedure DoCheckboxes(controlHdl : ControlHandle); forward;
procedure DoPushButtons(controlHdl : ControlHandle; theWindowPtr : WindowPtr); forward;
procedure DoAdjustScrollBars(theWindowPtr : WindowPtr); forward;
procedure DoDrawMessage(theWindowPtr : WindowPtr; inState : boolean); forward;
procedure DoPlaySound(theString : Str255); forward;
procedure DoGetDepthAndDevice; forward;

procedure ActionFunctionVert(controlHdl : ControlHandle; partCode : ControlPartCode); forward;
procedure ActionFunctionHoriz(controlHdl : ControlHandle; partCode : ControlPartCode); forward;

// ◊◊◊ DoInitManagers

procedure DoInitManagers;
var
osError : OSErr;

Controls 7-35

Version 2.1

begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

InitCursor;
FlushEvents(everyEvent, 0);

osError := RegisterAppearanceClient;

end;

// ◊◊ DoGetControls

procedure DoGetControls(theWindowPtr : WindowPtr);
var
controlHdl : ControlHandle;
docRecordHdl : DocRecordHandle;
booleanData : boolean;
controlFontStyleStruc : ControlFontStyleRec;
ignoredErr : OSErr;

begin
booleanData := true;
ignoredErr := CreateRootControl(theWindowPtr, controlHdl);

docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

docRecordHdl^^.popupFixedHdl := GetNewControl(cPopupFixed, theWindowPtr);
if (docRecordHdl^^.popupFixedHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.popupVariableHdl := GetNewControl(cPopupVariable, theWindowPtr);
if (docRecordHdl^^.popupVariableHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.popupAddResHdl := GetNewControl(cPopupAddRes, theWindowPtr);
if (docRecordHdl^^.popupAddResHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.popupWinFontHdl := GetNewControl(cPopupWinFont, theWindowPtr);
if (docRecordHdl^^.popupWinFontHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.radiobuttonRedHdl := GetNewControl(cRadiobuttonRed, theWindowPtr);
if (docRecordHdl^^.radiobuttonRedHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.radiobuttonWhiteHdl := GetNewControl(cRadiobuttonWhite, theWindowPtr);
if (docRecordHdl^^.radiobuttonWhiteHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.radiobuttonBlueHdl := GetNewControl(cRadiobuttonBlue, theWindowPtr);
if (docRecordHdl^^.radiobuttonBlueHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.checkboxGridHdl := GetNewControl(cCheckboxGrid, theWindowPtr);
if (docRecordHdl^^.checkboxGridHdl = nil) then

begin
ExitToShell;

7-36 Controls

Version 2.1

end;

docRecordHdl^^.checkboxRulersHdl := GetNewControl(cCheckboxRulers, theWindowPtr);
if (docRecordHdl^^.checkboxRulersHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.checkboxGridSnapHdl := GetNewControl(cCheckboxGridsnap, theWindowPtr);
if (docRecordHdl^^.checkboxGridSnapHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.groupboxColourHdl := GetNewControl(cGroupBoxColour, theWindowPtr);
if (docRecordHdl^^.groupboxColourHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.groupboxGridsHdl := GetNewControl(cGroupBoxGrids, theWindowPtr);
if (docRecordHdl^^.groupboxGridsHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.buttonHdl := GetNewControl(cButton, theWindowPtr);
if (docRecordHdl^^.buttonHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.buttonDefaultHdl := GetNewControl(cButtonDefault, theWindowPtr);
if (docRecordHdl^^.buttonDefaultHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.buttonLeftIconHdl := GetNewControl(cButtonLeftIcon, theWindowPtr);
if (docRecordHdl^^.buttonLeftIconHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.buttonRightIconHdl := GetNewControl(cButtonRightIcon, theWindowPtr);
if (docRecordHdl^^.buttonRightIconHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.scrollbarVertHdl := GetNewControl(cScrollbarVert, theWindowPtr);
if (docRecordHdl^^.scrollbarVertHdl = nil) then

begin
ExitToShell;
end;

docRecordHdl^^.scrollbarHorizHdl := GetNewControl(cScrollbarHoriz, theWindowPtr);
if (docRecordHdl^^.scrollbarHorizHdl = nil) then

begin
ExitToShell;
end;

ignoredErr := AutoEmbedControl(docRecordHdl^^.radiobuttonRedHdl, theWindowPtr);
ignoredErr := AutoEmbedControl(docRecordHdl^^.radiobuttonWhiteHdl, theWindowPtr);
ignoredErr := AutoEmbedControl(docRecordHdl^^.radiobuttonBlueHdl, theWindowPtr);
ignoredErr := AutoEmbedControl(docRecordHdl^^.checkboxGridHdl, theWindowPtr);
ignoredErr := AutoEmbedControl(docRecordHdl^^.checkboxRulersHdl, theWindowPtr);
ignoredErr := AutoEmbedControl(docRecordHdl^^.checkboxGridSnapHdl, theWindowPtr);

ignoredErr := SetControlData(docRecordHdl^^.buttonDefaultHdl, kControlNoPart,
 kControlPushButtonDefaultTag, sizeof(booleanData), @booleanData);

controlFontStyleStruc.flags := kControlUseFontMask;
controlFontStyleStruc.font := kControlFontSmallSystemFont;
ignoredErr := SetControlFontStyle(docRecordHdl^^.buttonLeftIconHdl,

controlFontStyleStruc);
controlFontStyleStruc.font := kControlFontSmallBoldSystemFont;
ignoredErr := SetControlFontStyle(docRecordHdl^^.buttonRightIconHdl,

controlFontStyleStruc);

Controls 7-37

Version 2.1

ignoredErr := DeactivateControl(docRecordHdl^^.checkboxRulersHdl);
end;

{ of procedure DoGetControls }

// ◊◊◊ DoEvents

procedure DoEvents({const} var theEvent : EventRecord);
var
charCode : SInt8;
menuChoice : SInt32;
menuID, menuItem : SInt16;

begin
case (theEvent.what) of

keyDown, autoKey: begin
charCode := SInt8(BAnd(theEvent.message, charCodeMask));
if (BAnd(theEvent.modifiers, cmdKey) <> 0) then

begin
menuChoice := MenuEvent(theEvent);
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);
if ((menuID = mFile) and (menuItem = iQuit)) then

begin
gDone := true;
end;

end;
end;

mouseDown: begin
DoMouseDown(theEvent);
end;

updateEvt: begin
DoUpdate(theEvent);
end;

activateEvt: begin
DoActivate(theEvent);
end;

osEvt: begin
DoOSEvent(theEvent);
HiliteMenu(0);
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoEvents }

// ◊◊ DoMouseDown

procedure DoMouseDown({const} var theEvent : EventRecord);
var
partCode : SInt16;
theWindowPtr : WindowPtr;
growRect : Rect;
newSize : SInt32;

begin
partCode := FindWindow(theEvent.where, theWindowPtr);

case partCode of

inMenuBar: begin
DoMenuChoice(MenuSelect(theEvent.where));
end;

inContent: begin
if (theWindowPtr <> FrontWindow) then

begin
SelectWindow(theWindowPtr);
end

else begin
DoInContent(theEvent, theWindowPtr);
end;

end;

7-38 Controls

Version 2.1

inDrag: begin
DragWindow(theWindowPtr, theEvent.where, qd.screenBits.bounds);
end;

inGoAway: begin
if TrackGoAway(theWindowPtr, theEvent.where) then

begin
gDone := true;
end;

end;

inGrow: begin
growRect := qd.screenBits.bounds;
growRect.top := 336;
growRect.left := 260;
newSize := GrowWindow(theWindowPtr, theEvent.where, growRect);
if (newSize <> 0) then

begin
SizeWindow(theWindowPtr, LoWord(newSize), HiWord(newSize), true);
DoAdjustScrollBars(theWindowPtr);
DoDrawMessage(theWindowPtr, true);
end;

end;

inZoomIn, inZoomOut: begin
if (TrackBox(theWindowPtr, theEvent.where, partCode)) then

begin
SetPort(theWindowPtr);
EraseRect(theWindowPtr^.portRect);
ZoomWindow(theWindowPtr, partCode, false);
DoAdjustScrollBars(theWindowPtr);
end;

end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoMouseDown }

// ◊◊◊ DoMenuChoice

procedure DoMenuChoice(menuChoice : SInt32);
var
menuID, menuItem : SInt16;
itemName : Str255;
daDriverRefNum : SInt16;
menuHdl : MenuHandle;
theWindowPtr : WindowPtr;
docRecordHdl : DocRecordHandle;
ignoredErr : OSErr;

begin
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);

if (menuID = 0) then
begin
Exit(DoMenuChoice);
end;

case menuID of

mApple: begin
if (menuItem = iAbout) then

begin
SysBeep(10);
end

else begin
GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);
daDriverRefNum := OpenDeskAcc(itemName);
end;

end;

mFile: begin
if (menuItem = iQuit) then

begin
gDone := true;

Controls 7-39

Version 2.1

end;
end;

mDemonstration: begin
menuHdl := GetMenuHandle(mDemonstration);
theWindowPtr := FrontWindow;
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

if (menuItem = iColour) then
begin
if IsControlVisible(docRecordHdl^^.groupboxColourHdl) then

begin
HideControl(docRecordHdl^^.groupboxColourHdl);
SetMenuItemText(menuHdl, iColour, 'Show Colour');
end

else begin
ShowControl(docRecordHdl^^.groupboxColourHdl);
SetMenuItemText(menuHdl, iColour, 'Hide Colour');
end;

end
else if (menuItem = iGrids) then

begin
if IsControlActive(docRecordHdl^^.groupboxGridsHdl) then

begin
ignoredErr := DeactivateControl(docRecordHdl^^.groupboxGridsHdl);
SetMenuItemText(menuHdl, iGrids, 'Activate Grids');
end

else begin
ignoredErr := ActivateControl(docRecordHdl^^.groupboxGridsHdl);
SetMenuItemText(menuHdl, iGrids, 'Deactivate Grids');
end;

end;
end;

otherwise begin
end;

end;
{ of case statement }

HiliteMenu(0);
end;

{ of procedure DoMenuChoice }

// ◊◊◊ DoUpdate

procedure DoUpdate({const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;

begin
theWindowPtr := WindowPtr(theEvent.message);

BeginUpdate(theWindowPtr);

SetPort(theWindowPtr);
DoDrawMessage(theWindowPtr, not gInBackground);
UpdateControls(theWindowPtr, theWindowPtr^.visRgn);

EndUpdate(theWindowPtr);
end;

{ of procedure DoUpdate }

// ◊◊◊ DoActivate

procedure DoActivate({const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
becomingActive : Boolean;

begin
theWindowPtr := WindowPtr(theEvent.message);
becomingActive := (BAnd(theEvent.modifiers, activeFlag) = activeFlag);
DoActivateWindow(theWindowPtr, becomingActive);
end;

{ of procedure DoActivateWindow }

// ◊◊◊ DoActivateWindow

procedure DoActivateWindow(theWindowPtr : WindowPtr; becomingActive : boolean);
var

7-40 Controls

Version 2.1

controlHdl : ControlHandle;
ignoredErr : OSErr;

begin
ignoredErr := GetRootControl(theWindowPtr, controlHdl);

if becomingActive then
begin
ignoredErr := ActivateControl(controlHdl);
DoDrawMessage(theWindowPtr, becomingActive);
end

else begin
ignoredErr := DeactivateControl(controlHdl);
DoDrawMessage(theWindowPtr, becomingActive);
end;

end;
{ of procedure DoActivateWindow }

// ◊◊ DoOSEvent

procedure DoOSEvent({const} var theEvent : EventRecord);
begin
case BAnd(BSR(theEvent.message, 24), $000000FF) of

suspendResumeMessage: begin
gInBackground := BAnd(theEvent.message, resumeFlag) = 0;
DoActivateWindow(FrontWindow, not gInBackground);
end;

mouseMovedMessage: begin
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoOSEvent }

// ◊◊ DoInContent

procedure DoInContent({const} var theEvent : EventRecord; theWindowPtr : WindowPtr);
var
docRecordHdl : DocRecordHandle;
controlHdl : ControlHandle;
controlValue, partCode : SInt16;
thePoint : Point;
ignoredCode : SInt16;

begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

thePoint := Point(theEvent.where);
GlobalToLocal(thePoint);

partCode := FindControl(thePoint, theWindowPtr, controlHdl);
if (partCode <> 0) then

 begin
if ((controlHdl = docRecordHdl^^.popupFixedHdl) or

 (controlHdl = docRecordHdl^^.popupVariableHdl) or
 (controlHdl = docRecordHdl^^.popupAddResHdl) or
 (controlHdl = docRecordHdl^^.popupWinFontHdl)) then
begin
ignoredCode := TrackControl(controlHdl, thePoint, ControlActionUPP(-1));
controlValue := GetControlValue(controlHdl);
DoPopupMenuChoice(theWindowPtr, controlHdl, controlValue);
end

else if (controlHdl = docRecordHdl^^.scrollbarVertHdl) then
begin
DoVertScrollbar(partCode, theWindowPtr, controlHdl, thePoint);
end

else if (controlHdl = docRecordHdl^^.scrollbarHorizHdl) then
begin
ignoredCode := TrackControl(controlHdl, thePoint, gActionFunctionHorizUPP);
end

else begin
if (TrackControl(controlHdl, thePoint, nil) <> kControlNoPart) then

begin
if ((controlHdl = docRecordHdl^^.radiobuttonRedHdl) or

 (controlHdl = docRecordHdl^^.radiobuttonWhiteHdl) or

Controls 7-41

Version 2.1

 (controlHdl = docRecordHdl^^.radiobuttonBlueHdl)) then
begin
DoRadioButtons(controlHdl, theWindowPtr);
end;

if ((controlHdl = docRecordHdl^^.checkboxGridHdl) or
 (controlHdl = docRecordHdl^^.checkboxRulersHdl) or
 (controlHdl = docRecordHdl^^.checkboxGridSnapHdl)) then
begin
DoCheckboxes(controlHdl);
end;

if ((controlHdl =docRecordHdl^^.buttonHdl) or
 (controlHdl = docRecordHdl^^.buttonDefaultHdl) or
 (controlHdl = docRecordHdl^^.buttonLeftIconHdl) or
 (controlHdl = docRecordHdl^^.buttonRightIconHdl)) then
begin
DoPushButtons(controlHdl, theWindowPtr);
end;

end;
end;

end;
end;

{ of procedure DoInContent }

// ◊◊ DoPopupMenuChoice

procedure DoPopupMenuChoice(theWindowPtr : WindowPtr; controlHdl : ControlHandle;
controlValue : SInt16);

var
docRecordHdl : DocRecordHandle;
menuHdl : MenuHandle;
itemName : Str255;
actualSize : Size;
ignoredErr : OSErr;

begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

if (controlHdl = docRecordHdl^^.popupAddResHdl) then
begin
ignoredErr := GetControlData(controlHdl, kControlNoPart,

kControlPopupButtonMenuHandleTag, sizeof(menuHdl), @menuHdl, actualSize);
GetMenuItemText(menuHdl, controlValue, itemName);
DoPlaySound(itemName);
gCurrentString := itemName;
DoDrawMessage(theWindowPtr, true);
end

else begin
case controlValue of

iCanberra: begin
gCurrentString := 'Canberra';
DoDrawMessage(theWindowPtr, true);
end;

iLondon: begin
gCurrentString := 'London';
DoDrawMessage(theWindowPtr, true);
end;

iAuckland: begin
gCurrentString := 'Palmerston North';
DoDrawMessage(theWindowPtr, true);
end;

iRome: begin
gCurrentString := 'Rome';
DoDrawMessage(theWindowPtr, true);
end;

otherwise begin
end;

end;
{ of case statement }

end;
end;

{ of procedure DoPopupMenuChoice }

7-42 Controls

Version 2.1

// ◊◊ DoVertScrollbar

procedure DoVertScrollbar(partCode : ControlPartCode; theWindowPtr : WindowPtr;
controlHdl : ControlHandle; mouseXY : Point);

var
valueString : Str255;
ignoredCode : SInt16;

begin
gCurrentString := 'Vertical Scroll Bar Control Value: ';

case partCode of

kControlIndicatorPart: begin
if (TrackControl(controlHdl, mouseXY, nil) <> kControlNoPart) then

begin
NumToString(SInt32(GetControlValue(controlHdl)), valueString);
gCurrentString := gCurrentString + valueString;
DoDrawMessage(theWindowPtr, true);
end;

end;

kControlUpButtonPart, kControlDownButtonPart, kControlPageUpPart,
kControlPageDownPart: begin

ignoredCode := TrackControl(controlHdl, mouseXY, gActionFunctionVertUPP);
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoVertScrollbar }

// ◊◊◊ ActionFunctionVert

procedure ActionFunctionVert(controlHdl : ControlHandle; partCode : ControlPartCode);
var
scrollDistance, controlValue : SInt16;
valueString : Str255;
theWindowPtr : WindowPtr;

begin
gCurrentString := 'Vertical Scroll Bar Control Value: ';

if (partCode <> 0) then
begin
case partCode of

kControlUpButtonPart, kControlDownButtonPart: begin
scrollDistance := 2;
end;

kControlPageUpPart, kControlPageDownPart: begin
scrollDistance := 55;
end;

otherwise begin
end;

end;
{ of case statement }

if ((partCode = kControlDownButtonPart) or (partCode = kControlPageDownPart)) then
begin
scrollDistance := -scrollDistance;
end;

controlValue := GetControlValue(controlHdl);
if (((controlValue = GetControlMaximum(controlHdl)) and (scrollDistance < 0)) or

 ((controlValue = GetControlMinimum(controlHdl)) and (scrollDistance > 0))) then
begin

 Exit(ActionFunctionVert);
end;

DoMoveScrollBox(controlHdl, scrollDistance);

NumToString(SInt32(GetControlValue(controlHdl)), valueString);
gCurrentString := gCurrentString + valueString;
theWindowPtr := controlHdl^^.contrlOwner;
DoDrawMessage(theWindowPtr, true);

Controls 7-43

Version 2.1

end;
end;

{ of procedure ActionFunctionVert }

// ◊◊ ActionFunctionHoriz

procedure ActionFunctionHoriz(controlHdl : ControlHandle; partCode : ControlPartCode);
var
scrollDistance, controlValue : SInt16;
valueString : Str255;
theWindowPtr : WindowPtr;

begin
gCurrentString := 'Horizontal Scroll Control Bar Value: ';

if (partCode <> kControlIndicatorPart) then
begin
case partCode of

kControlUpButtonPart, kControlDownButtonPart: begin
scrollDistance := 2;
end;

kControlPageUpPart, kControlPageDownPart: begin
scrollDistance := 55;
end;

otherwise begin
end;

end;
{ of case statement }

if ((partCode = kControlDownButtonPart) or (partCode = kControlPageDownPart)) then
begin
scrollDistance := -scrollDistance;
end;

controlValue := GetControlValue(controlHdl);
if (((controlValue = GetControlMaximum(controlHdl)) and (scrollDistance < 0)) or

 ((controlValue = GetControlMinimum(controlHdl)) and (scrollDistance > 0))) then
begin
Exit(ActionFunctionHoriz);
end;

DoMoveScrollBox(controlHdl, scrollDistance);
end;

NumToString(SInt32(GetControlValue(controlHdl)), valueString);
gCurrentString := gCurrentString + valueString;
theWindowPtr := controlHdl^^.contrlOwner;
DoDrawMessage(theWindowPtr, true);
end;

{ of procedure ActionFunctionHoriz }

// ◊◊ DoMoveScrollBox

procedure DoMoveScrollBox(controlHdl : ControlHandle; scrollDistance : SInt16);
var
oldControlValue, controlValue, controlMax : SInt16;

begin
oldControlValue := GetControlValue(controlHdl);
controlMax := GetControlMaximum(controlHdl);

controlValue := oldControlValue - scrollDistance;

if (controlValue < 0) then
begin
controlValue := 0;
end

else if (controlValue > controlMax) then
begin
controlValue := controlMax;
end;

SetControlValue(controlHdl, controlValue);
end;

{ of procedure DoMoveScrollBox }

// ◊◊◊ DoRadioButtons

7-44 Controls

Version 2.1

procedure DoRadioButtons(controlHdl : ControlHandle; theWindowPtr : WindowPtr);
var
docRecordHdl : DocRecordHandle;

begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

SetControlValue(docRecordHdl^^.radiobuttonRedHdl, kControlRadioButtonUncheckedValue);
SetControlValue(docRecordHdl^^.radiobuttonWhiteHdl, kControlRadioButtonUncheckedValue);
SetControlValue(docRecordHdl^^.radiobuttonBlueHdl, kControlRadioButtonUncheckedValue);
SetControlValue(controlHdl, kControlRadioButtonCheckedValue);
end;

{ of procedure DoRadioButtons }

// ◊◊◊ DoCheckboxes

procedure DoCheckboxes(controlHdl : ControlHandle);
begin
if (GetControlValue(controlHdl) = 0) then

begin
SetControlValue(controlHdl, 1);
end

else begin
SetControlValue(controlHdl, 0);
end;

end;
{ of procedure DoCheckboxes }

// ◊◊ DoPushButtons

procedure DoPushButtons(controlHdl : ControlHandle; theWindowPtr : WindowPtr);
var
docRecordHdl : DocRecordHandle;

begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

if (controlHdl = docRecordHdl^^.buttonHdl) then
begin
gCurrentString := 'Button';
DoDrawMessage(theWindowPtr, true);
end

else if (controlHdl = docRecordHdl^^.buttonDefaultHdl) then
begin
gCurrentString := 'Default Button';
DoDrawMessage(theWindowPtr, true);
end

else if (controlHdl = docRecordHdl^^.buttonLeftIconHdl) then
begin
gCurrentString := 'Left Icon Button';
DoDrawMessage(theWindowPtr, true);
end

else if (controlHdl = docRecordHdl^^.buttonRightIconHdl) then
begin
gCurrentString := 'Right Icon Button';
DoDrawMessage(theWindowPtr, true);
end;

end;
{ of procedure DoPushButtons }

// ◊◊◊ DoAdjustScrollBars

procedure DoAdjustScrollBars(theWindowPtr : WindowPtr);
var
winRect : Rect;
docRecordHdl : DocRecordHandle;

begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

winRect := theWindowPtr^.portRect;

HideControl(docRecordHdl^^.scrollbarVertHdl);
HideControl(docRecordHdl^^.scrollbarHorizHdl);

MoveControl(docRecordHdl^^.scrollbarVertHdl, winRect.right - 15, winRect.top + 25);
MoveControl(docRecordHdl^^.scrollbarHorizHdl, winRect.left -1, winRect.bottom -15);

SizeControl(docRecordHdl^^.scrollbarVertHdl, 16, winRect.bottom - 39);

Controls 7-45

Version 2.1

SizeControl(docRecordHdl^^.scrollbarHorizHdl, winRect.right - 13, 16);

ShowControl(docRecordHdl^^.scrollbarVertHdl);
ShowControl(docRecordHdl^^.scrollbarHorizHdl);

SetControlMaximum(docRecordHdl^^.scrollbarVertHdl,
theWindowPtr^.portRect.bottom - theWindowPtr^.portRect.top - 25 - 15);

SetControlMaximum(docRecordHdl^^.scrollbarHorizHdl,
theWindowPtr^.portRect.right - theWindowPtr^.portRect.left - 15);

end;
{ of procedure DoAdjustScrollBars }

// ◊◊ DoDrawMessage

procedure DoDrawMessage(theWindowPtr : WindowPtr; inState : boolean);
var
headerRect : Rect;
windowWidth, stringWidth : SInt16;
theState : SInt16;
ignoredErr : OSErr;

begin
theState := integer(inState);

SetRect(headerRect, theWindowPtr^.portRect.left - 1, theWindowPtr^.portRect.top - 1,
theWindowPtr^.portRect.right + 1, theWindowPtr^.portRect.top + 26);

ignoredErr := DrawThemeWindowHeader(headerRect, theState);

if (theState = kThemeStateActive) then
begin
ignoredErr := SetThemeTextColor(kThemeActiveWindowHeaderTextColor, gPixelDepth,

gIsColourDevice);
end

else begin
ignoredErr := SetThemeTextColor(kThemeInactiveWindowHeaderTextColor, gPixelDepth,

gIsColourDevice);
end;

windowWidth := theWindowPtr^.portRect.right - theWindowPtr^.portRect.left;
stringWidth := StringWidth(gCurrentString);
MoveTo((windowWidth div 2) - (stringWidth div 2), 17);
DrawString(gCurrentString);
end;

{ of procedure DoDrawMessage }

// ◊◊ DoPlaySound

procedure DoPlaySound(sndResourceName : Str255);
var
soundHdl : SndListHandle;
soundChanPtr : SndChannelPtr;
ignoredErr : OSErr;

begin
soundChanPtr := nil;

soundHdl := SndListHandle(GetNamedResource('snd ', sndResourceName));
if (soundHdl <> nil) then

begin
ignoredErr := SndPlay(soundChanPtr, soundHdl, true);
end;

end;
{ of procedure DoPlaySound }

// ◊◊ DoGetDepthAndDevice

procedure DoGetDepthAndDevice;
var
deviceHdl : GDHandle;

begin
deviceHdl := LMGetMainDevice;
gPixelDepth := deviceHdl^^.gdPMap^^.pixelSize;
if (BitTst(Ptr(@deviceHdl^^.gdFlags), gdDevType)) then

begin
gIsColourDevice := true;
end;

end;
{ of procedure DoGetDepthAndDevice }

7-46 Controls

Version 2.1

// ◊◊◊ main program block

begin

//
……
…… initialise managers

DoInitManagers;

// ………
create routine descriptors

gActionFunctionVertUPP := NewControlActionProc(ControlActionProcPtr(@ActionFunctionVert));
gActionFunctionHorizUPP := NewControlActionProc(ControlActionProcPtr(@ActionFunctionHoriz));

// …… cause the Appearance-compliant menu bar definition function to be called directly

mainErr := RegisterAppearanceClient;

// …… set
up menu bar and menus

mainMenubarHdl := GetNewMBar(rMenubar);
if (mainMenubarHdl = nil) then

begin
ExitToShell;
end;

SetMenuBar(mainMenubarHdl);
DrawMenuBar;

mainMenuHdl := GetMenuHandle(mApple);
if (mainMenuHdl = nil) then

begin
ExitToShell;
end

else begin
AppendResMenu(mainMenuHdl, 'DRVR');
end;

// …… initial advisory text for window
header

gCurrentString := 'Balloon help is available';

// ……… open a window, set font size, set Appearance-compliant colour/pattern for window

mainWindowPtr := GetNewCWindow(rNewWindow, nil, WindowPtr(-1));
if (mainWindowPtr = nil) then

begin
ExitToShell;
end;

SetPort(mainWindowPtr);
TextSize(10);

mainErr := SetThemeWindowBackground(mainWindowPtr, kThemeActiveDialogBackgroundBrush, true);

// ……………… get block for document structure, assign handle to window record refCon field

mainDocRecordHandle := DocRecordHandle(NewHandle(sizeof(DocRecord)));
if (mainDocRecordHandle = nil) then

begin
ExitToShell;
end;

SetWRefCon(mainWindowPtr, SInt32(mainDocRecordHandle));

// ………………………………………………………………………………………… get controls, adjust scroll bars, and show window

DoGetControls(mainWindowPtr);
DoAdjustScrollBars(mainWindowPtr);
ShowWindow(mainWindowPtr);

// ……………………… get pixel depth and whether colour device for certain Appearance functions

DoGetDepthAndDevice;

Controls 7-47

Version 2.1

//
……
……………… enter eventLoop

gDone := false;

while not gDone do
begin
if WaitNextEvent(everyEvent, mainEvent, MAXLONG, nil) then

begin
DoEvents(mainEvent);
end;

end;
end.

{ of main program block }

// ◊◊

Demonstration Program Controls1 Comments
When this program is run, the user should:

• Choose Show Balloons from the Help menu and peruse the help balloons which are invoked when the mouse cursor
is moved over the various controls.

• Choose items from each of the pop-up menu buttons, noting that the chosen item is displayed in the window
header. (Also, in the case of the pop-up menu button titled Sound (which uses the add resource variant of the CDEF
and adds the names of the system's 'snd ' resources to its menu), the chosen sound plays.)

• Click on the radio buttons, checkboxes, and push buttons, noting particularly that the radio button settings are
mutually exclusive and that checkbox settings are not.

• Click in the scroll bar arrows and gray areas of the scroll bars, noting the control value changes displayed in the
window header.

• Drag the scroll box of the vertical scroll bar (which uses the non-live-feedback CDEF variant), noting that only a
ghosted outline is dragged and that the control value does not change until the mouse button is released.

• Drag the scroll box of the horizontal scroll bar (which uses the live-feedback CDEF variant), noting that the scroll
box proper is dragged and that the control value is continually updated during the drag.

• Resize and zoom the window, noting (1) that the scroll bars are moved and resized in response to those actions and
(2) the change in the maximum value of the scroll bars.

• Send the program to the background and bring it to the foreground, noting the changes to the appearance of the
controls. (The program activates and deactivates the root control only; however, because all controls are
embedded in the root control, all controls are activated and deactivated along with the root control.)

• Alternately hide and show the Colour primary group box by choosing the associated item in the Demonstration
menu. (The program hides and shows the primary group box only; however, because the radio buttons are
embedded in the primary group box, those controls are activated and deactivated along with the primary group
box.)

• Alternately activate and deactivate the Grids primary group box by choosing the associated item in the
Demonstration menu. (The program activates and deactivates the primary group box only; however, because the
checkboxes are embedded in the primary group box, those controls are activated and deactivated along with the
primary group box.) Also note the latency of the Show Rulers checkbox. It is deactivated at program launch, and
retains that status when the primary group box is deactivated and then re-activated.

constants
The first block establishes constants representing a menu bar resource, a window resource, menu resources, menu IDs, and
items for the drop-down menus. The second block establishes constants for control resources and items in the pop-up
menu buttons (other than the add resource variant pop-up menu button). The penultimate line defines MAXLONG as the
maximum possible long value. (This value will be assigned to WaitNextEvent's sleep parameter.)

type declarations
The data type DocRecord is a record comprising fields in which the handles to the control structures for the various controls
will be stored. A handle to this record will be assigned to the window record's refCon field

Global Variables
gActionFunctionVertUPP and gActionFunctionHorizUPP will be assigned universal procedure pointers relating to action
functions for the scroll bars.

7-48 Controls

Version 2.1

gDone is used to control termination of the program, which will occur when the user selects Quit from the File menu or
clicks in the window's close box. gInBackground relates to foreground/background switching.

gPixelDepth will be assigned the pixel depth of the main device. gIsColourDevice will be assigned true if the graphics
device is a colour device and false if it is a monochrome device. The values in these two variables are required by the
Appearance Manager function SetThemeTextColor.

DoGetControls
The routine DoGetControls creates the controls from the various 'CNTL' resources.

At the first line, the root control is created. The first control created must be always be the root control (which is
implemented as a user pane).

A handle to the structure in which the handles to the control records will be stored is then retrieved. The following calls to
GetNewControl create a control record for each control, insert the structure into the control list for the specified window
and draw the control. At the same time, the handle to each control is assigned to the appropriate field of the window's
"document" record.

Because of the sequence in which the controls are created and initially drawn, the group boxes would ordinarily over-draw
the radio buttons and checkboxes. However, the calls to AutoEmbedControl embed these latter controls in their respective
group boxes, ensuring that they will be drawn after (or "on top of") the group boxes. (AutoEmbedControl, rather than
EmbedControl, is used in this instance because the radio button rectangles are visually contained by their respective group
box rectangles.)

The call to SetControlData, with kControlPushButtonDefaultTag passed in the third parameter causes the default outline to
be drawn around the specified push button.

In the next block, the title fonts of the left colour icon variant and right colour icon variant push buttons are changed.
Firstly, the flags and font fields of a control font style structure are assigned constants so that the following call to
SetControlFontStyle will set the title font of the left colour icon variant push button to the small system font. The font field
is then changed so that the second call to SetControlFontStyle will set the title font of the right colour icon variant push
button to the small emphasized system font.

Lastly, the checkbox titled Rulers is disabled. This is for the purpose of the latency aspect of the demonstration.

DoEvents
DoEvents branches according to the event type reported. In the keyDown/autoKey case, the program will terminate if the
Command-key equivalent for the Quit item in the File menu is pressed.

DoMouseDown
DoMouseDown branches according to the window part in which a mouseDown event occurs.

At the inContent case, if the window in which the mouse-down occurred is the front window, and since all of the controls
are located in the window's content region, a call to the application-defined routine DoInContent is made.

The inGrow case is of particular significance to the scroll bars. GrowWindow follows the mouse cursor while the mouse
button remains down, returning the new height and width of the window, or zero if no change was made. If a change was
made, SizeWindow is called to draw the window in its new size, and an application-defined routine is called to erase, move,
resize, and redraw the scroll bars and reset the control's maximum value according to the new size of the window. (The
following line is incidental to the demonstration. It simply redraws the window header frame and text in the window.)

The inZoomIn/InZoomOut case is also of significance to the scroll bars. If the call to TrackBox returns a non-zero value, the
content region is erased, ZoomWindow is called to redraw the window in its new state, and an application-defined routine is
called to hide, move, resize, and redraw the scroll bars.

DoMenuChoice
DoMenuChoice handles user choices from the drop-down menus.

The mDemonstration case handle the Demonstration menu. Firstly, handles to that menu and to the window's "document"
record are obtained.

If the menu item is the Colour item, IsControlVisible is called to determine the current visibility status of the Colour group
box. If it is visible, the call to HideControl hides the group box and its embedded radio buttons; also, the menu item is
changed to "Show Colour". If it is not visible, ShowControl is called and the menu item is changed to Hide Colour.

At the else if, if the menu item is the Grids item, the same general sequence takes place in respect of the Grids group box.
This time, however, IsControlActive is used to determine whether the control is active or inactive, and ActivateControl and
DeactivateControl are called, and the menu item toggled, as appropriate. Note that, because of latency, the application
does not have to "remember" that one of the embedded checkboxes was deactivated at program start. The Control
Manager does the remembering.

Controls 7-49

Version 2.1

DoUpdate
DoUpdate is called whenever the application receives an update event for its window. Between the usual calls to
BeginUpdate and EndUpdate, the window's graphics port is set as the current port for drawing, and UpdateControls is
called to draw those controls intersecting the current visible region (which, between the BeginUpdate and EndUpdate calls,
equates to the update region). The line preceding the UpdateControls call is incidental to the demonstration. It simply
redraws the window header frame and text in the window.

DoActivate
DoActivate is called whenever the application receives an activate event for its window. A variable is set to indicate
whether the window is becoming active or is about to be made inactive. This variable is then passed in the call to an
application-defined routine DoActivateWindow.

DoActivateWindow
DoActivateWindow branches according to whether the specified window is becoming active or is about to be made inactive.
(Actually, DoActivateWindow will never be called by DoActivate in this program because the program only opens one
window. It will however, be called by the application-defined routine DoOSEvent.)

At the first line, GetRootControl gets a handle to the window's root control.

If the window is becoming active, ActivateControl is called to activate the root control. Since all other controls are
embedded in the root control, all controls will be activated by this call.

If the window is about to become inactive, DeactivateControl is called to deactivate the root control. Since all other
controls are embedded in the root control, all controls will be deactivated by this call.

The calls to DoDrawMessage are incidental to the demonstration. They simply redraw the window header frame and text in
the window in the appropriate mode (inactive or active).

DoOSEvent
DoOSEvent handles operating system events. If the event is a suspend or resume event, a variable is then set to indicate
whether the program is coming to the foreground or is about to be sent to the background. This variable is passed in the
call to DoActivateWindow. (Recall that the doesActivateOnFGSwitch flag is set in the 'SIZE' resource.)

DoInContent
DoInContent further processes mouse-down events in the content region. Since the content region of the window contains
nothing but controls, this function is really just the main dispatching point for the further handling of those controls.

The first line gets the handle to the "document" structure containing the handles to the various control structures. The
second line converts the mouse coordinates in the event structure's where field from global coordinates to the local
coordinates required in the following call to FindControl. (FindControl is used here rather than the new routine
FindControlUnderMouse because there is no requirement to get a handle to a control even if no part was hit and no
requirement to determine whether a mouse-down event has occurred in a deactivated control.)

If there is a control at the cursor location at which the mouse button is released, the control handle returned by the
FindControl call is first compared with the handles to the pop-up menu controls stored in the window's "document"
structure. If a match is found, TrackControl is called with ControlActionUPP(-1) passed in the actionProc parameter so as to
cause an action function within the control's CDEF to be repeatedly invoked while the mouse button remains down. When
TrackControl returns, the control value is obtained by a call to GetControlValue and an application-defined routine is called
to perform further handling

Note that TrackControl, rather than the new function HandleControlClick, is used in this program because none of the
controls require modifier keys to be passed in. (Of course, HandleControlClick would work just as well (with 0 passed in the
inModifiers parameter).)

If the control handle returned by FindControl does not match the pop-up controls' handles, it is then tested against the
handles to the vertical and horizontal scroll bar control structures. If it matches the handle to the vertical scroll bar (which
uses the non-live-feedback CDEF variant), the application-defined routine DoVertScrollbar is called to perform further
handling. If it matches the handle to the horizontal scroll bar (which uses the live-feedback CDEF variant), TrackControl is
called with a Universal Procedure Pointer (UPP) passed in the actionProc parameter. The effect of this is that the UPP will
be assigned to the cntrlAction field of the control structure and thus the application-defined action function to which the
UPP relates will be repeatedly called while the mouse button remains down.

7-50 Controls

Version 2.1

ROUTINE DESCRIPTORS AND UNIVERSAL PROCEDURE POINTERS

This call to TrackControl, incidentally, is your first encounter with source code which differs from that which would
have applied prior to the introduction of the Power Macintosh and its PowerPC microprocessor.

Prior to the introduction of the PowerPC and the associated introduction of the Universal Headers, the prototype for
TrackControl looked like this:

FUNCTION TrackControl(theControl: ControlHandle; startPoint: Point;
actionProc: ProcPtr): ControlPartCode;

Notice that the actionProc parameter is of type ProcPtr (procedure pointer). The third parameter is thus a pointer to
a routine, specifically, an action function. That being the case, the subject call to TrackControl would have looked
look like this in the days when source code was intended only for compilation for 680x0 microprocessors:

TrackControl(theControl,theEvent.where, @gActionFunctionHoriz);

With the introduction of the Universal Interfaces, the declaration for TrackControl changed to this:

FUNCTION TrackControl(theControl: ControlHandle; startPoint: Point;
actionProc: ControlActionUPP): ControlPartCode;

Notice that the actionProc parameter is now of type ControlActionUPP. (UPP stands for Universal Procedure Pointer).

As a result of this change:

• For source code intended for compilation as either PowerPC code or 680x0 code, a call to create each required
routine descriptor needs to be made as shown in the main function of this program and the the pointer (UPP)
to that routine descriptor needs to be passed in the actionProc parameter of the subject TrackControl call.

• For source code intended only for compilation as 680x0 code, the routine descriptor does not need to created
and only a simple procedure pointer (the address of the action function) may be passed in the actionProc
parameter, as in the example call above.

If the handle returned by FindControl does not match the handles to any of the pop-up menu buttons or scroll bars, it must
be a handle to one of the other controls. In this case, TrackControl is called, with the procPtr field set to that required for
push buttons, radio buttons, and checkboxes (that is, nil). If the cursor is still within the control when the mouse button is
released, the handle is compared to, in sequence, the handles to the radio buttons, the checkboxes, and the push buttons.
If a match is found, the appropriate application-defined routine is called to perform further handling.

DoPopupMenuChoice
DoPopupMenuChoice further handles mouse-downs in the pop-up menu buttons. The code reflects the fact that the Sound
pop-up menu button, which uses the add resource variant of the CDEF, and whose 'CNTL' resource causes the names of the
system's 'snd ' resources to be appended to its associated menu, needs to be handled differently from the others.

If the control handle passed to this function matches the handle to the Sound pop-up menu button's control structure, the
handle to the control's associated 'MENU' structure is retrieved and used, together with the control's value (that is, the
menu item), in the call to GetMenuItemText. This call returns, in the last parameter, the menu item text. This string is
then passed to an application-defined routine which plays the chosen 'snd ' resource. The call to DoDrawMessage draws
the menu item text in the window header frame.

Note that the menu handle is not obtained in the same way as would apply in the case of a drop-down menu (that is, calling
GetMenuHandle with the menu ID). In this case, GetControlData is called with the tag constant
kControlPopupButtonMenuHandleTag passed in the second parameter, the menu handle being returned in the fifth
parameter.

Controls 7-51

Version 2.1

This is a good example of why the new data access mechanism was introduced with Mac OS 8 and the Appearance
Manager. In the past, the only way to allow access to control-specific information was to create a handle to hold
such data, place it in the contrlData field of the control structure, and publish the interface. For example, pop-up
menu buttons place a handle to a block of private information (called the pop-up menu private data structure) in the
controlData field. This structure contains two fields: a handle to the pop-up menu button's menu structure
(mHandle), and the menu ID (mID). In the past, before the new data access mechanism was introduced, the menu
handle would have to have been retrieved like this:

popupPrivateDataHdl : PopupPrivateDataHandle;

popupPrivateDataHdl := PopupPrivateDataHandle(controlHdl^^.contrlData);
menuHdl := popupPrivateDataHdl^^.mHandle;

The new data access mechanism means that controls can now allow the outside world to access their specialised
data without exposing how it is stored.

If the control handle passed to this function does not match that for the Sound pop-up menu button, the routine branches
on the control value. In this case, the further handling that would normally take place here is replaced in this
demonstration by the simple drawing of some text (which is identical with the menu item's text) in the window header
frame.

DoVertScrollbar
DoVertScrollbar is called from DoInContent in the case of a mouse-down in the vertical scroll bar (which uses the non-live-
feedback variant of the CDEF).

The copying of text to the global variable gCurrentString is incidental to the demonstration.

At the next line, the routine branches on the control part code. If the control part code was the scroll box (that is, the
indicator), TrackControl is called with the procPtr parameter set to that required for the scroll box of non-live-feedback
scroll bars (that is, NULL). If the user did not move the cursor outside the control before releasing it, the if block executes,
retrieving the new control value, converting it to a string, appending that string to the string currently in gCurrentString,
and drawing gCurrentString in the window header. (In a real application, calculation of the distance and direction to scroll,
and the scrolling itself, would take place inside this if block.)

If the mouse down was in the gray area or one of the scroll arrows, TrackControl is called with a Universal Procedure
Pointer (UPP) passed in the actionProc parameter. The effect of this is that the application-defined action function to which
the UPP relates will be repeatedly called while the mouse button remains down.

At this point, another brief digression is necessary.

ACTION FUNCTIONS
Action functions (sometimes called hook functions or call-back functions) refer to the ability of a Toolbox function to
call an application-defined routine during its execution, thus extending the features of the function.

The following is for information only, and can be safely ignored by Pascal programmers:

Toolbox calls use Pascal calling conventions, and C and Pascal are different in their conventions on the 680x0
processor. An action function can be written in C; however, in order to account for the difference in calling
conventions, it must be declared using the pascal keyword. (Note the first line of the function actionFunctionVert.)

ActionFunctionVert
ActionFunctionVert is the action function called by TrackControl at the bottom of DoVertScrollbar. Because it is repeatedly
called by TrackControl while the mouse button remains down, the scrolling such a function would perform in a real
application continues repeatedly until the mouse button is released (provided the cursor remains within the scroll arrow or
gray area).

The copying of text to the global variable gCurrentString is incidental to the demonstration.

The "if controlPartCode then" line ensures that, if the cursor is not still inside the scroll arrow or gray area, the action
function exits and all scrolling ceases until the user brings the cursor back within the scroll arrow or gray area, causing a
non-zero control part code to be again received. The following occurs only when the cursor is within the control.

The function branches on the control part code. If the mouse-down is in a scroll arrow, the variable scrollDistance is set to
2. If it is in a gray area, scrollDistance is set to 55. (In this simple demonstration, these are just arbitrary values. In a real
application, you would assign an appropriate value in the case of the scroll arrows, and assign a calculated value (based
primarily on current window height) in the case of the gray areas.)

The next block convert the value in scrollDistance to the required negative value if the user is scrolling down rather than
up.

7-52 Controls

Version 2.1

The next block defeats any further scrolling action if, firstly, the down scroll arrow is being used and the "document" is at
the maximum scrolled position or, secondly, the up scroll arrow is being used and the "document" is at the minimum
scrolled position.

The distance to scroll having been set, the call to the application-defined routine DoMoveScrollBox moves the scroll box the
appropriate distance in the appropriate direction and update the control's value accordingly. This means, of course, that
the scroll box is being continually moved, and the control's value continually updated, while the mouse button remains
down.

In this demonstration, the remaining action is to retrieve the current value of the control, convert it to a string, append it to
the string currently in gCurrentString, and draw gCurrentString in the window header frame. (In a real application, the
actual scrolling of the window's contents would be effected here.)

ActionFunctionHoriz
ActionFunctionHoriz is the action function passed in the actionProc parameter of the TrackControl call in DoInContent
arising from a mouse-down in the horizontal scroll bar. This action function differs from that for the vertical scroll bar
because the horizontal scroll bar uses the live-feedback variant of the CDEF.

The principal differences are that action functions for live-feedback scroll bars must continually scroll the window's
contents, not only while the mouse button remains down in the scroll arrows and gray areas, but also while the scroll box is
being dragged. Accordingly, this function, unlike the action function for the vertical scroll bar, is also called while the
mouse button remains down in the scroll box.

The copying of text to the global variable gCurrentString is incidental to the demonstration.

If the mouse-down occurred in the scroll box, the code which sets up the scroll distance, adjusts the sign of the scroll
distance according to whether the scroll is left or right, prevents scrolling beyond the minimum and maximum scroll values,
and calls DoMoveScrollBox to move the scroll box and update the control's value, is bypassed. The call to DoMoveScrollBox
is bypassed because, in live-feedback, the CDEF moves the scroll box and updates the control's value when the mouse-
down is in the scroll box.

In this demonstration, the action taken after the main block of code has been bypassed (mouse-down in the scroll box) or
executed (mouse-down in the scroll arrows or gray area) is to retrieve the current value of the control, convert it to a
string, append it to the string currently in gCurrentString, and draw gCurrentString in the window header frame. (In a real
application, the actual scrolling of the window's contents would be effected here.)

DoMoveScrollBox
DoMoveScrollBox is called from within the action functions to reset the control's current value to reflect the scrolled
distance, and to reposition the scroll box accordingly.

The first two line retrieve the control's current value and maximum value. The next line calculates the new control value by
subtracting the distance to scroll received from the calling action function from the current control value. The next four
lines prevent the control's value from being set lower or higher than the control's minimum and maximum values
respectively. The call to SetControlValue sets the new control value and repositions the scroll box.

DoRadioButtons
DoRadioButtons is called when the mouse-down is within a radio button. The first three calls to SetControlValue set all
radio buttons to the off state. The final call sets the radio button under the mouse to the on state.

DoCheckboxes
DoCheckboxes is called when the mouse-down is within a checkbox. The single line simply toggles the current value of the
control.

DoPushButtons
DoPushButtons is called when the mouse-down is within a push button. In this demonstration, the only action taken is to
draw the identity of the push button in the window header frame.

DoAdjustScrollBars
DoAdjustScrollBars is called if the user resizes or zooms the window.

At the first line, a handle to the window's "document" structure is retrieved from the window structure's refCon field.

At the next line, the coordinates representing the window's current content region are assigned to a Rect variable which
will be used in calls to MoveControl and SizeControl.

Amongst other things, MoveControl and SizeControl both redraw the specified scroll bar. Since SizeControl will be called
immediately after MoveControl, this will causes a very slight flickering of the scroll bars. To prevent this, the scroll bars will
be hidden while these two functions are executing.

Controls 7-53

Version 2.1

The calls to HideControl hide the scroll bars. The calls to MoveControl erase the scroll bars, offset the contrlRect fields of
their control structures, and redraw the scroll bars within the offset rectangle. SizeControl hides the scroll bars (in this
program they are already hidden), adjusts the contrlRect fields of their control structures, and redraws the scroll bars
within their new rectangles. The calls to ShowControl then show the scroll bars.

In this demonstration, the remaining lines set the new maximum values for the scroll bars according to the new height and
width of the window. No attempt is made to calculate the required new control value to ensure that the (non-existent)
document remains in the same scrolled position after the zoom or resize. In a real application, this, plus the calculation of
the maximum value according to, for example, the line height of text content as well as the new window height, are
matters that would need to be attended to in this function.

DoDrawMessage, DoPlaySound, and
DoGetDepthAndDevice
DoDrawMessage, DoPlaySound, and DoGetDepthAndDevice are incidental to the demonstration.

main program block
After the system software managers are initialised, two calls to NewControlActionProc create a routine descriptor for each
of two action functions associated with the scroll bars. (If this program was required to be compiled as 68K code only,
these routine descriptors would not be required.)

The next block sets up the drop-down menus.

The string copied to gCurrentString, which will be changed at various points in the code, will be drawn in the window
header frame.

The next block opens a window, makes the window's graphics port the current port, and sets the size of the window font to
10. This latter is because one of the pop-up menus will use the window font and Geneva 10pt is the ideal size for small
pop-up menu text. The call to SetThemeWindowBackground sets an Appearance-compliant background colour/pattern for
the window. The window's background will be similar to that applying to dialog boxes, which is appropriate for a window
containing nothing but controls.

The call to NewHandle gets a relocatable block the size of one DocRecord structure. The handle to the block is assigned to
the window record's refCon field by the call to SetWRefCon.

In the next block, DoGetControls creates and draws the controls, DoAdjustScrollBars resizes and locates the scroll bars, and
sets their maximum value, according to the dimensions of the window's port rectangle, and ShowWindow makes the
window visible.

The call to the application-defined routine DoGetDepthAndDevice determines the current pixel depth of the graphics port,
and whether the current graphics device is a colour device, and assigns the results to the global variables gPixelDepth and
gIsColourDevice.

The main event loop is then entered, and continues until gDone is set to true.

Note that error handling here and in other areas of this demonstration program is somewhat rudimentary. In the unlikely
event that certain calls fail, ExitToShell is called to terminate the program.

Demonstration Program Controls2
{ ◊◊
// Controls2.p
// ◊◊
//
// This program:
//
// • Opens a kWindowDocumentProc window with a two horizontal scroll bars, each of
// which relates to the picture displayed immediately above it.
//
// • Allows the user to horizontally scroll the pictures within the window using the
// scroll box, the scroll arrows and the gray area of each scroll bar.
//
// The top scroll bar uses the non-live-feedback variant of the scroll bar CDEF. The
// bottom scroll bar uses the live-feedback variant.
//
// If the target is the PowerPC target, and if Mac OS 8.5 or later is present, the scroll
// bar scroll boxes are made proportional.
//
// In this program, the action functions are are set using the function SetControlAction.
// (In Controls1, the action functions were passed in TrackControl's actionProc
// parameter.)
//
// The program utilises the following resources:

7-54 Controls

Version 2.1

//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File and Edit (preload, non-
// purgeable).
//
// • A 'WIND' resource (purgeable) (initially visible).
//
// • Two 'CNTL' resource for the horizontal scroll bars (purgeable).
//
// • A 'PICT' resource containing the picture to be scrolled (non-purgeable).
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch,
// and is32BitCompatible flags set.
//
// ◊◊ }

program Controls2;

//
……
………………………………… interfaces

uses

{ Universal Interfaces. }
Appearance, Devices, Fonts, GestaltEqu, Processes, Sound, ToolUtils;

//
……
…………………………………… constants

const

rMenubar = 128;
rNewWindow = 128;
rPictureNonLive = 128;
rPictureLive = 129;
mApple = 128;
 iAbout = 1;
mFile = 129;
 iQuit = 11;
cScrollbarNonLive = 128;
cScrollbarLive = 129;

MAXLONG = $7FFFFFFF;

//
……
……………… type declarations

type

DocRecord = record
scrollbarNonLiveHdl : ControlHandle;
scrollbarLiveHdl : ControlHandle;
end;

DocRecordPtr = ^DocRecord;
DocRecordHandle = ^^DocRecord;

//
……
………………… global variables

var

gActionFuncNonLiveUPP : ControlActionUPP;
gActionFuncLiveUPP : ControlActionUPP;
gDone : Boolean;
gInBackground : Boolean;
gPictRectNonLive, gPictRectLive : Rect;
gPictHandleNonLive, gPictHandleLive : PicHandle;

// ……… main
program block variables

mainMenubarHdl : Handle;
mainMenuHdl : MenuHandle;
mainWindowPtr : WindowPtr;
mainDocRecordHdl : DocRecordHandle;
osError : OSErr;

Controls 7-55

Version 2.1

response, viewSize: SInt32;
mainEvent : EventRecord;

//
……
……… routine declarations

procedure DoInitManagers; forward;
procedure DoEvents({const} var theEvent : EventRecord); forward;
procedure DoMouseDown({const} var theEvent : EventRecord); forward;
procedure DoUpdate({const} var theEvent : EventRecord); forward;
procedure DoActivate({const} var theEvent : EventRecord); forward;
procedure DoActivateWindow(theWindowPtr : WindowPtr; becomingActive : Boolean); forward;
procedure DoOSEvent({const} var theEvent : EventRecord); forward;
procedure DoMenuChoice(menuChoice : SInt32); forward;
procedure DoInContent({const} var theEvent : EventRecord; theWindowPtr : WindowPtr); forward;
procedure DoNonLiveScrollBars(partCode : ControlPartCode; theWindowPtr : WindowPtr;

controlHdl : ControlHandle; mouseXY : Point); forward;
procedure DoMoveScrollBox(controlHdl : ControlHandle; scrollDistance : SInt16); forward;

procedure ActionFuncNonLive(controlHdl : ControlHandle; partCode : ControlPartCode); forward;
procedure ActionFuncLive(controlHdl : ControlHandle; partCode : ControlPartCode); forward;

// ◊◊◊ DoInitManagers

procedure DoInitManagers;
var
osError : OSErr;

begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

InitCursor;
FlushEvents(everyEvent, 0);

osError := RegisterAppearanceClient;

end;
{ of procedure DoInitManagers }

// ◊◊◊ DoEvents

procedure DoEvents({const} var theEvent : EventRecord);
begin
case (theEvent.what) of

mouseDown: begin
DoMouseDown(theEvent);
end;

updateEvt: begin
DoUpdate(theEvent);
end;

activateEvt: begin
DoActivate(theEvent);
end;

osEvt: begin
DoOSEvent(theEvent);
HiliteMenu(0);
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoEvents }

// ◊◊ DoMouseDown

7-56 Controls

Version 2.1

procedure DoMouseDown({const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
partCode : SInt16;

begin
partCode := FindWindow(theEvent.where, theWindowPtr);

case partCode of

inMenuBar: begin
DoMenuChoice(MenuSelect(theEvent.where));
end;

inContent: begin
if (theWindowPtr <> FrontWindow) then

begin
SelectWindow(theWindowPtr);
end

else begin
DoInContent(theEvent, theWindowPtr);
end;

end;

inDrag: begin
DragWindow(theWindowPtr, theEvent.where, qd.screenBits.bounds);
end;

inGoAway: begin
if TrackGoAway(theWindowPtr, theEvent.where) then

begin
gDone := true;
end;

end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoMouseDown }

// ◊◊◊ DoUpdate

procedure DoUpdate({const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
docRecordHdl : DocRecordHandle;

begin
theWindowPtr := WindowPtr(theEvent.message);
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

BeginUpdate(theWindowPtr);

SetPort(theWindowPtr);

UpdateControls(theWindowPtr, theWindowPtr^.visRgn);

SetOrigin(GetControlValue(docRecordHdl^^.scrollbarNonLiveHdl), 0);
DrawPicture(gPictHandleNonLive, gPictRectNonLive);
SetOrigin(0, 0);

SetOrigin(GetControlValue(docRecordHdl^^.scrollbarLiveHdl), 0);
DrawPicture(gPictHandleLive, gPictRectLive);
SetOrigin(0, 0);

EndUpdate(theWindowPtr);
end;

{ of procedure DoUpdate }

// ◊◊◊ DoActivate

procedure DoActivate({const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
becomingActive : Boolean;

begin
theWindowPtr := WindowPtr(theEvent.message);

Controls 7-57

Version 2.1

becomingActive := (BAnd(theEvent.modifiers, activeFlag) = activeFlag);
DoActivateWindow(theWindowPtr, becomingActive);
end;

{ of procedure DoActivate }

// ◊◊◊ DoActivateWindow

procedure DoActivateWindow(theWindowPtr : WindowPtr; becomingActive : Boolean);
var
docRecordHdl : DocRecordHandle;
ignoredErr : OSErr;

begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

if becomingActive then
begin
ignoredErr := ActivateControl(docRecordHdl^^.scrollbarNonLiveHdl);
ignoredErr := ActivateControl(docRecordHdl^^.scrollbarLiveHdl);
end

else begin
ignoredErr := DeactivateControl(docRecordHdl^^.scrollbarNonLiveHdl);
ignoredErr := DeactivateControl(docRecordHdl^^.scrollbarLiveHdl);
end;

end;
{ of procedure DoActivateWindow }

// ◊◊ DoOSEvent

procedure DoOSEvent({const} var theEvent : EventRecord);
begin
case BAnd(BSR(theEvent.message, 24), $000000FF) of

suspendResumeMessage: begin
gInBackground := BAnd(theEvent.message, resumeFlag) = 0;
DoActivateWindow(FrontWindow, not gInBackground);
end;

mouseMovedMessage: begin
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoOSEvent }

// ◊◊◊ DoMenuChoice

procedure DoMenuChoice(menuChoice : SInt32);
var
menuID, menuItem : SInt16;
itemName : Str255;
daDriverRefNum : SInt16;

begin
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);

if (menuID = 0) then
begin
Exit(DoMenuChoice);
end;

case menuID of

mApple: begin
if (menuItem = iAbout) then

begin
SysBeep(10);
end

else begin
GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);
daDriverRefNum := OpenDeskAcc(itemName);
end;

end;

mFile: begin
if (menuItem = iQuit) then

7-58 Controls

Version 2.1

begin
gDone := true;
end;

end;

otherwise begin
end;

end;
{ of case statement }

HiliteMenu(0);
end;

{ of procedure DoMenuChoice }

// ◊◊ DoInContent

procedure DoInContent({const} var theEvent : EventRecord; theWindowPtr : WindowPtr);
var
docRecordHdl : DocRecordHandle;
partCode : ControlPartCode;
controlHdl : ControlHandle;
thePoint : Point;
ignoredCode : SInt16;

begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

thePoint := theEvent.where;
GlobalToLocal(thePoint);

partCode := FindControl(thePoint, theWindowPtr, controlHdl);
if (partCode <> kControlNoPart) then

begin
if (controlHdl = docRecordHdl^^.scrollbarNonLiveHdl) then

begin
DoNonLiveScrollBars(partCode, theWindowPtr, controlHdl, thePoint);
end

else if (controlHdl = docRecordHdl^^.scrollbarLiveHdl) then
begin
ignoredCode := TrackControl(controlHdl, thePoint, ControlActionUPP(-1));
end;

end;
end;

{ of procedure DoInContent }

// ◊◊ DoNonLiveScrollBars

procedure DoNonLiveScrollBars(partCode : ControlPartCode; theWindowPtr : WindowPtr;
controlHdl : ControlHandle; mouseXY : Point);

var
docRecordHdl : DocRecordHandle;
oldControlValue : SInt16;
scrollDistance : SInt16;
updateRgnHdl : RgnHandle;
ignoredCode : SInt16;

begin
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

case partCode of

kControlIndicatorPart: begin
oldControlValue := GetControlValue(controlHdl);
if (TrackControl(controlHdl, mouseXY, nil) <> kControlNoPart) then

begin
scrollDistance := oldControlValue - GetControlValue(controlHdl);
if (scrollDistance <> 0) then

begin
if (controlHdl = docRecordHdl^^.scrollbarNonLiveHdl) then

begin
updateRgnHdl := NewRgn;
ScrollRect(gPictRectNonLive, scrollDistance, 0, updateRgnHdl);
InvalRgn(updateRgnHdl);
DisposeRgn(updateRgnHdl);
end;

end;
end;

end;

kControlUpButtonPart, kControlDownButtonPart, kControlPageUpPart,

Controls 7-59

Version 2.1

kControlPageDownPart: begin
if (controlHdl = docRecordHdl^^.scrollbarNonLiveHdl) then

begin
ignoredCode := TrackControl(controlHdl, mouseXY, ControlActionUPP(-1));
end;

end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoNonLiveScrollBars }

// ◊◊ ActionFuncNonLive

procedure ActionFuncNonLive(controlHdl : ControlHandle; partCode : ControlPartCode);
var
theWindowPtr : WindowPtr;
docRecordHdl : DocRecordHandle;
scrollDistance : SInt16;
controlValue : SInt16;
updateRgnHdl : RgnHandle;

begin
if (partCode <> kControlNoPart) then

begin
theWindowPtr := controlHdl^^.contrlOwner;
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

case partCode of

kControlUpButtonPart, kControlDownButtonPart: begin
scrollDistance := 2;
end;

kControlPageUpPart, kControlPageDownPart: begin
scrollDistance := (theWindowPtr^.portRect.right - theWindowPtr^.portRect.left) - 10;
end;

otherwise begin
end;

end;
{ of case statement }

if ((partCode = kControlDownButtonPart) or
(partCode = kControlPageDownPart)) then
begin
scrollDistance := -scrollDistance;
end;

controlValue := GetControlValue(controlHdl);
if (((controlValue = GetControlMaximum(controlHdl)) and (scrollDistance < 0)) or

 ((controlValue = GetControlMinimum(controlHdl)) and (scrollDistance > 0))) then
begin
Exit(ActionFuncNonLive);
end;

DoMoveScrollBox(controlHdl, scrollDistance);

if ((partCode = kControlUpButtonPart) or
 (partCode = kControlDownButtonPart)) then
begin
updateRgnHdl := NewRgn;
ScrollRect(gPictRectNonLive, scrollDistance, 0, updateRgnHdl);
InvalRgn(updateRgnHdl);
DisposeRgn(updateRgnHdl);
BeginUpdate(theWindowPtr);
end;

SetOrigin(GetControlValue(docRecordHdl^^.scrollbarNonLiveHdl), 0);
DrawPicture(gPictHandleNonLive, gPictRectNonLive);
SetOrigin(0, 0);

if ((partCode = kControlUpButtonPart) or
(partCode = kControlDownButtonPart)) then
begin
EndUpdate(theWindowPtr);
end;

end;

7-60 Controls

Version 2.1

end;
{ of procedure ActionFuncNonLive }

// ◊◊ ActionFuncLive

procedure ActionFuncLive(controlHdl : ControlHandle; partCode : ControlPartCode);
var
theWindowPtr : WindowPtr;
docRecordHdl : DocRecordHandle;
scrollDistance : SInt16;
controlValue : SInt16;

begin
theWindowPtr := controlHdl^^.contrlOwner;
docRecordHdl := DocRecordHandle(GetWRefCon(theWindowPtr));

if(partCode <> 0) then
begin
if (partCode <> kControlIndicatorPart) then

begin
case partCode of

kControlUpButtonPart, kControlDownButtonPart: begin
scrollDistance := 2;
end;

kControlPageUpPart, kControlPageDownPart: begin
scrollDistance := (theWindowPtr^.portRect.right - theWindowPtr^.portRect.left) - 10;
end;

otherwise begin
end;

end;
{ of case statement }

if ((partCode = kControlDownButtonPart) or (partCode = kControlPageDownPart)) then
begin
scrollDistance := -scrollDistance;
end;

controlValue := GetControlValue(controlHdl);
if (((controlValue = GetControlMaximum(controlHdl)) and (scrollDistance < 0)) or

 ((controlValue = GetControlMinimum(controlHdl)) and (scrollDistance > 0))) then
begin
Exit(ActionFuncLive);
end;

DoMoveScrollBox(controlHdl, scrollDistance);
end;

SetOrigin(GetControlValue(docRecordHdl^^.scrollbarLiveHdl), 0);
DrawPicture(gPictHandleLive, gPictRectLive);
SetOrigin(0, 0);
end;

end;
{ of procedure ActionFuncLive }

// ◊◊ DoMoveScrollBox

procedure DoMoveScrollBox(controlHdl : ControlHandle; scrollDistance : SInt16);
var
oldControlValue, controlValue, controlMax : SInt16;

begin
oldControlValue := GetControlValue(controlHdl);
controlMax := GetControlMaximum(controlHdl);

controlValue := oldControlValue - scrollDistance;

if (controlValue < 0) then
begin
controlValue := 0;
end

else if (controlValue > controlMax) then
begin
controlValue := controlMax;
end;

SetControlValue(controlHdl, controlValue);
end;

Controls 7-61

Version 2.1

{ of procedure DoMoveScrollBox }

// ◊◊◊ main program block

begin

//
……
…… initialise managers

DoInitManagers;

// ………
create routine descriptors

gActionFuncNonLiveUPP := NewControlActionProc(ControlActionProcPtr(@ActionFuncNonLive));
gActionFuncLiveUPP := NewControlActionProc(ControlActionProcPtr(@ActionFuncLive));

// …… set
up menu bar and menus

mainMenubarHdl := GetNewMBar(rMenubar);
if (mainMenubarHdl = nil) then

begin
ExitToShell;
end;

SetMenuBar(mainMenubarHdl);
DrawMenuBar;

mainMenuHdl := GetMenuHandle(mApple);
if (mainMenuHdl = nil) then

begin
ExitToShell;
end

else begin
AppendResMenu(mainMenuHdl, 'DRVR');
end;

//
……
…………………… open a window

mainWindowPtr := GetNewCWindow(rNewWindow, nil, WindowPtr(-1));
if (mainWindowPtr = nil) then

begin
ExitToShell;
end;

SetPort(mainWindowPtr);

// ……………… get block for document structure, assign handle to window record refCon field

mainDocRecordHdl := DocRecordHandle(NewHandle(sizeof(DocRecord)));
SetWRefCon(mainWindowPtr, SInt32(mainDocRecordHdl));

// …………………………………………………………………………………………………… get controls and set control action
functions

mainDocRecordHdl^^.scrollbarNonLiveHdl := GetNewControl(cScrollbarNonLive, mainWindowPtr);
SetControlAction(mainDocRecordHdl^^.scrollbarNonLiveHdl, gActionFuncNonLiveUPP);

mainDocRecordHdl^^.scrollbarLiveHdl := GetNewControl(cScrollbarLive, mainWindowPtr);
SetControlAction(mainDocRecordHdl^^.scrollbarLiveHdl, gActionFuncLiveUPP);

//
……
………………………… get picture

gPictHandleNonLive := GetPicture(rPictureNonLive);
if (gPictHandleNonLive = nil) then

begin
ExitToShell;
end;

gPictRectNonLive := gPictHandleNonLive^^.picFrame;

gPictHandleLive := GetPicture(rPictureLive);
if (gPictHandleLive = nil) then

begin
ExitToShell;
end;

7-62 Controls

Version 2.1

gPictRectLive := gPictHandleLive^^.picFrame;

OffsetRect(gPictRectLive, 0, 201);

// …………………………………… if Mac OS 8.5 or later present, set up for proportional scroll boxes

{$ifc TARGET_CPU_PPC}
osError := Gestalt(gestaltSystemVersion, response);

if ((osError = noErr) and (response >= $00000850)) then
begin
viewSize := gPictHandleNonLive^^.picFrame.right -

gPictHandleNonLive^^.picFrame.left;
SetControlViewSize(mainDocRecordHdl^^.scrollbarNonLiveHdl,200);
viewSize := gPictHandleLive^^.picFrame.right -

gPictHandleLive^^.picFrame.left;
SetControlViewSize(mainDocRecordHdl^^.scrollbarLiveHdl,200);
end;

{$endc}

//
……
……………… enter eventLoop

gDone := false;

while not gDone do
begin
if (WaitNextEvent(everyEvent, mainEvent, MAXLONG, nil)) then

begin
DoEvents(mainEvent);
end;

end;
end.

{ of main program block }

// ◊◊

Controls 7-63

Version 2.1

Demonstration Program Controls2 Comments
This program is basically an extension of the scroll bars aspects of the demonstration program Controls1 in that, unlike the
scroll bars in Controls1, the scroll bars in this program actually scroll the contents of the window.

When the program is run, the user should scroll the pictures by dragging the scroll boxes, clicking in the scroll bar gray
areas, clicking in the scroll arrows and holding the mouse button down while the cursor is in the gray areas and scroll
arrows. The user should note, when scrolling with the scroll boxes, that the top scroll bar uses the non-live-feedback
variant of the scroll bar CDEF and the bottom scroll bar uses the live-feedback variant, this latter to facilitate the program's
live-scrolling of the bottom picture.

The pictures scrolled in this demonstration are 600 pixels wide and 185 pixels high, the window "pane" for each picture and
scroll bar is 200 pixels wide by 200 pixels high, the 'CNTL' resources sets the control maximum values to 400, and the
control rectangles specified in the 'CNTL' resource locate the scroll bars in the correct position in the non-resizable, non-
zoomable window.

As an incidental aspect of the demonstration, two different methods are used to scroll the pictures when the scroll arrows
are being used. In the top picture, at each pass through the action function, the pixels are scrolled using ScrollRect, the
"vacated" area is invalidated, and only this vacated area is redrawn. In the bottom picture, at each pass through the action
function, the whole visible part of the picture is redrawn. The user should note that the first method results in some
flickering in the "vacated" area when the picture is scrolled, and that the second method eliminates this flickering at the
cost of some horizontal "tearing" of the picture. (This latter should be recalled at Chapter 23 — Miscellany, where the
subject of VBL tasks is addressed. See the end of the Demonstration Program Comments section.) Note that either method
may be used for either scroll bar.

The following comments are limited to those areas which are significantly different from the same areas in the
demonstration program Controls1

DoUpdate
In the two blocks which draw the pictures, the first call to SetOrigin sets the window origin to the current scroll position,
that is, to the position represented by the control's current value, thus ensuring that the correct part of the picture will be
drawn by the call to DrawPicture. The second call to SetOrigin resets the window's origin to (0,0).

DoInContent
DoInContent establishes whether a mouse-down event was in one of the scroll bars and, if so, branches accordingly.

The call to GlobalToLocal converts the global coordinates of the mouse-down, stored in the where field of the event
structure, to the local coordinates required by FindControl. If the call to FindControl returns a non-zero result, the mouse-
down was in a scroll bar.

As in Controls1:

• If the mouse-down was in the non-live-feedback scroll bar, an application-defined routine is called to further handle
the mouse-down event.

• If the mouse-down was in the live-feedback scroll bar, TrackControl is called with ControlActionUPP(-1) passed in
the actionProc parameter. This means that the application-defined routine associated with the UPP assigned by
SetControlAction to the contrlAction field of the control structure will be continually called while the mouse button
remains down.

DoNonLiveScrollBars
DoNonLiveScrollBars is similar to its sister function in Controls1 except that it actually scrolls the window's contents.

At the first line, the function branches on the control part code:

• If the mouse-down was in the scroll box (that is, the indicator), the control's value at the time of the mouse-down is
retrieved. Control is then handed over to TrackControl, which tracks user actions while the mouse button remains
down. If the user releases the mouse button with the cursor inside the control box, the scroll distance (in pixels) is
calculated by subtracting the control's value prior to the scroll from its current value. If the user moved the scroll
box, the picture's pixels are scrolled by the specified scroll distance in the appropriate direction, and the "vacated"
area of the window following the scroll is added to the (currently empty) window update region. This means that an
update event will be generated for the window and that the re-draw of the picture will be attended to in the
DoUpdate function.

• If the mouse-down was in a scroll arrow or gray area, more specifically in one of the non-live-feedback's scroll bar's
scroll arrows or gray areas, TrackControl takes control until the user releases the mouse button. The third
parameter in the TrackControl call means that the application-defined routine associated with the UPP assigned by
SetControlAction to the contrlAction field of the control structure will be continually called while the mouse button
remains down.

7-64 Controls

Version 2.1

ActionFunctionNonLive
ActionFunctionNonLive is the action function for the non-live-feedback scroll bar. Because it is repeatedly called by
TrackControl while the mouse button remains down, the scrolling it performs continues repeatedly until the mouse button
is released.

Firstly, if the cursor is not still inside the scroll arrow or gray area, the action function exits. The following occurs only when
the cursor is within the control.

A pointer to the window record for the window which "owns" this control is retrieved from the control record's contrlOwner
field, and the handle to the record structure is retrieved from that window record's refCon field.

If the control part being used by the user to perform the scrolling is one of the scroll arrows, the distance to scroll (in
pixels) is set to 2. If the control part being used is one of the gray areas, the distance to scroll is set to the width of the
window's content region minus 10 pixels. (Subtracting 10 pixels ensures that a small part of the pre-scroll display will
appear at right or left (depending on the direction of scroll) of the post-scroll display.)

The first block following the switch converts the distance to scroll to the required negative value if the user is scrolling
towards the right. The second block defeats any further scrolling action if, firstly, the left scroll arrow is being used, the
mouse button is still down and the document is at the minimum (left) scrolled position or, secondly, the right scroll arrow is
being used, the mouse button is still down and the document is at the maximum (right) scrolled position.

With the scroll distance determined, the call to the application-defined routine DoMoveScrollBox adds/subtracts the
distance to scroll to/from the control's current value and repositions the scroll box accordingly.

At this stage, the picture scrolling takes place. If scrolling is being effected using the scroll arrows, ScrollRect scrolls the
picture's pixels by the specified amount, and in the specified direction, as represented by the distance-to-scroll value. The
"vacated" area is then added to the window's update region (previously empty) by the call to InvalRgn, and BeginUpdate is
called to ensure that (1) only the "vacated" area will be redrawn and (2) the update region is cleared.

Regardless of whether the picture is being scrolled using the scroll arrows or the gray areas, SetOrigin is then called to
reset the window origin so that that part of the picture represented by the current scroll position is drawn. After the correct
part of the picture is drawn, the window origin is reset to (0,0).

Finally, if BeginUpdate was called prior to the draw (that is, scrolling is being effected using the scroll arrows), EndUpdate
is called.

ActionFunctionLive
ActionFunctionLive is the action function for the live-feedback scroll bar.

The principal differences between this action function and the previous one are that action functions for live-feedback scroll
bars must continually scroll the window's contents, not only while the mouse button remains down in the scroll arrows and
gray areas, but also while the scroll box is being dragged. Accordingly, this action function, unlike the action function for
the non-live-feedback scroll bar, is also called while the mouse button remains down in the scroll box.

If the mouse-down occurred in the scroll box, the code which sets up the scroll distance, adjusts the sign of the scroll
distance according to whether the scroll is left or right, prevents scrolling beyond the minimum and maximum scroll values,
and calls DoMoveScrollBox to move the scroll box and update the control's value, is bypassed. The call to DoMoveScrollBox
is bypassed because, the live-feedback variant of the CDEF moves the scroll box and updates the control's value when the
mouse-down is in the scroll box.

After the if block has been bypassed (mouse-down in the scroll box) or executed (mouse-down in the scroll arrows or gray
area), the window contents are "scrolled". Regardless of whether the picture is being scrolled using the scroll box, the
scroll arrows, or the gray areas, SetOrigin is called to reset the window origin so that that part of the picture represented by
the current scroll position is drawn by the call to DrawPicture. After the correct part of the picture is drawn, the window
origin is reset to (0,0).

Note that this alternative approach to re-drawing the picture when scrolling is being effected using the scroll arrows, has
not been dictated by the fact that this is a live-feedback action function. Either of these two approaches will work in both
live-feedback and non-live-feedback action functions.

DoMoveScrollBox

DoMoveScrollBox is called from within the action function to reset the control's current value to reflect the scrolled
distance, and to reposition the scroll box accordingly.

main program block
After the block for the "document" record is created, two calls to GetNewControl allocate memory for the control records,
insert the controls into the window's control list and draw the controls.

Following each call to GetNewControl, SetControlAction is called with a Universal Procedure Pointer (UPP) passed in the
actionProc parameter. The effect of this is that the UPP will be assigned to the cntrlAction field of the control structure and
thus the application-defined action function to which the UPP relates will be repeatedly called while the mouse button
remains down. As a consequence of using SetControlAction, ControlActionUPP(-1) will be passed in TrackControl's

Controls 7-65

Version 2.1

actionProc parameter. (This approach differs from the alternative method used in Controls1, where the UPP is passed in
TrackControl's actionProc parameter.)

Note that no root control is created in this program; accordingly, the two controls will be activated and deactivated
individually.

In the next block, two 'PICT' resources are loaded, the associated handles being assigned to two global variables. In each
case, the picture structure's picFrame field (a Rect) is copied to a global variable. In the case of the second picture, this
rectangle is then offset downwards by 201 pixels. (Note that the two 'PICT' resources were created so that the top and left
fields of the picFrame Rect are both zero.)

The next block is applicable only to the PowerPC target, and the if block executes only if Mac OS 8.5 or later is present. The
width of each picture in pixels is determined and passed in the newViewSize parameter of calls to SetControlViewSize.
(This value is in the same units of measurement as are used for the scroll bar minimum, maximum, and current values.)
This makes the scroll boxes proportional provided that the user has selected Smart Scrolling on in the Option tab of the
Appearance control panel.

7-66 Controls

	Checkboxes
	Non-Auto-Toggling Variant
	Historical Note
	Auto-Toggling Variant
	Historical Note
	Radio Buttons
	Non-Auto-Toggling Variant
	Historical Note
	Auto-Toggling Variant
	Historical Note
	Scroll Bars
	Proportional Scroll Boxes
	Historical Note
	Control Font Style Flag Constants
	Control Data Tag Constants
	Control Font Style Flag Constants
	Meta Font Constants
	The next block sets up the drop-down menus.

