
Version 2.1

6
THE APPEARANCE MANAGER

Includes Demonstration Program AppearanceDemo

Introduction
The Appearance Manager, which was first introduced with Mac OS 8.0, had implications
for the Menu Manager, the Window Manager, the Control Manager, and the Dialog
Manager. The relatively minor implications in respect of the Menu Manager and Window
Manager were incorporated into Chapter 3 — Menus and Chapter 4 — Windows. The
most profound impact of the Appearance Manager, however, has been in the area of user
interface objects known as controls, which are addressed at Chapter 7 — Introduction to
Controls and at Chapter 14 — More on Controls. Accordingly, as a preparation for what
is to come, this chapter now formally introduces the Appearance Manager, a component
of the system software which represents the most significant improvement in the
Macintosh user experience since the introduction of System 7.

Although introduced with Mac OS 8.0, the Appearance Manager's full impact on the
Macintosh user experience was not scheduled to be realised until the release of Mac OS
8.5. Mac OS 8.5 was to be the first release to include several switchable themes, one of
which (the Platinum theme) had, in fact, been included in Mac OS 8.0. The concept of
switchable themes was the main driving force behind the creation of the Appearance
Manager.

Essentially, a theme was intended to be an interface "look" that spanned all elements of
the user interface (windows, menus, dialog boxes, controls, background colours, alert
icons, etc), tying them together with a certain graphic design. Fig 1 shows the same
window as it would have appeared in the three themes originally intended to be included
in Mac OS 8.5. If one of these themes had been selected by the user, all elements of the
user interface (menus, windows, controls, etc.) would have appeared in that theme.

The Appearance Manager 6-1

Version 2.1

FIG 1 - WINDOWS IN THREE THEMES

HIGH TECH
GIZMO

PLATINUM

The two additional themes (High Tech and Gizmo) shown at Fig 1 were included in pre-
release versions of Mac OS 8.5; however, prior to final release, these two themes were
deleted. At the time of writing (March 1999), the reasons for this decision remain
tantalisingly obscure, and there is now at least some doubt as to whether multiple theme
choices will be offered by Apple in any future Mac OS release.

Terminological Confusion — Themes and Appearances

Unfortunately, the Apple decision to delete all but the Platinum theme from the release
version of Mac OS 8.5 has resulted in a a certain amount of terminological confusion.
This arises from the fact that Mac OS 8.5 did, in fact, introduce a theme scheme, though
one of an entirely different flavour to that described above. The themes that may be
chosen in the Themes tab in the Mac OS 8.5 Appearance control panel are nothing more
than simple collections of desktop patterns and pictures, system fonts, highlight colours,
system sounds, etc. Nowadays, therefore, the term "theme" has a meaning which differs
markedly from that which applied immediately prior to the release of Mac OS 8.5.

The same now applies to the term "appearance". In the Appearance tab in the Mac OS 8.5
Appearance control panel, the pop-up menu labelled Appearance would have been labelled
Theme in the originally envisaged scheme of things. Thus an "appearance", not a "theme",
is now the thing that unifies the look of human interface elements in your application.
The fact that only one item (Apple platinum) appears in the Mac OS 8.5 Appearance pop-up
menu bears testimony to the current uncertainty regarding the future of what must now
be referred to as switchable appearances.

Without a knowledge of this background, the beginning programmer could be forgiven
for being somewhat confused by the fact that "Theme" features in so many Appearance
Manager constant, data type, and function names (eg., kThemeDragHiliteBrush, ThemeDrawState,
DrawThemePlacard). To alleviate this confusion, and in the light of the history outlined above,
it might be advisable to mentally substitute "Appearance" for "Theme" in these constant, data
type, and function names.

The Appearance Manager
The Appearance Manager, whose influence is evident to a greater or lesser extent in all
Macintosh C demonstration programs and in many chapters of this book:

• Coordinates the look of the Mac OS human interface into a single appearance.

• Introduced new human interface elements to the Mac OS environment.

6-2 The Appearance Manager

Version 2.1

• Allows for the adaptation of pre–Appearance Manager human interface elements,
both standard and custom, to the new, coordinated appearance and behaviour of
elements of the user interface.

• Provides the underlying support for for appearances and appearance switching.

Appearance Manager Versions

The version of the Appearance Manager delivered with Mac OS 8.5 (Version 1.1) is
included in the System file. Previous versions were delivered as extensions. These
extensions can be installed and used on Macintoshes and Power Macintoshes running
System 7.1 through 7.6.1 (as well as Power Macintoshes running Mac OS 8.0 or 8.1),
meaning that Appearance-compliant applications running on the System 7 systems can
present their human interface elements in the Platinum appearance.

The Appearance Manager versions delivered as extensions are Versions 1.0, 1.0.1, 1.0.2,
and 1.0.3. Version 1.0.2 or, preferably, Version 1.0.3 must be used on Macintoshes and
Power Macintoshes running System 7.1 through 7.6.1. Versions 1.0 and 1.0.1 were
delivered with, respectively, Mac OS 8.0 and 8.1; however, it is advisable to upgrade to
Version 1.0.2 or, preferably, Version 1.0.3 on such systems.

The only difference between Versions 1.0.1 and 1.0.2 is that Version 1.0.2 contains extra
code (for backward compatibility) and the ".Keyboard" font. The ".Keyboard" font is
used to display keyboard glyphs in menus.

The only difference between Versions 1.0.2 and 1.0.3 is that Version 1.0.3 no longer
contains the ".Keyboard" font. In Version 1.0.3, this font is delivered as a separate
suitcase, which should be installed into the Fonts folder in the System folder. The
purpose of this latter is to avoid a font ID conflict between the ".Keyboard" font and
Microsoft Internet Explorer's Arial font.

New Definition Functions

To provide a system-wide coordination of appearance and behaviour, the Appearance
Manager introduced new Appearance-compliant definition functions to replace the old
pre-Appearance definition functions for menu bars, menus, windows, and controls. In
addition, many new Appearance-compliant control definition functions for new types of
controls (slider controls, focus rings, group boxes, etc) were introduced to obviate the
necessity for developers to provide their own.

Mapping of Pre-Appearance Definition Functions

Another way in which the Appearance Manager achieved a unified look and behaviour
was by mapping the following standard pre-Appearance definition functions to their
Appearance-compliant equivalents:

• The menu bar definition function (MBDF) with resource ID 0.

• The menu definition function (MDEF) with resource ID 0.

• The window definition function (WDEF) with resource ID 0. (Document windows).

• The window definition function (WDEF) with resource ID 124. (Utility windows).

• The control definition function (CDEF) with resource ID 0. (Buttons, checkboxes,
and radio buttons).

• The control definition function (CDEF) with resource ID 1. (Scroll bars).

• The control definition function (CDEF) with resource ID 63. (Pop-up menus).

The Appearance Manager 6-3

Version 2.1

Mapping is implemented by a set of mapper definition functions. The mappers have
the same resource ID as the pre-Appearance definition functions to which they relate.

Under Mac OS 8.5 (Appearance Version 1.1), mapping on a system-wide basis is
permanently on. In earlier versions of the Appearance Manager:

• Mapping on a system-wide basis only occurs when the user has selected system-
wide Appearance on in the Appearance control panel.

• You can ensure that mapping on an individual application basis will occur when the
user has selected system-wide Appearance off in the Appearance control panel by
calling the function RegisterAppearanceClient within your application.

Of course, no mapping occurs if your application specifies the new Appearance-compliant
definition functions, which means that those definition functions will be called directly.
The left side of Figure 2 shows the ways by which it is determined how, and whether,
mapping will occur for a standard definition function, in this case for the pre-Appearance
WDEF for document windows (resource ID 0). The right side of Fig 2 shows the
Appearance-compliant control definition function being called directly.

RegisterAppearanceClient
CALLED?

NO NO

YES YES

WDEF 64 IS USED
(DIRECTLY, NO MAPPING)

APPLICATION REQUESTS
WDEF 0

WDEF 64 IS USED
(VIA MAPPING)

WDEF 0 IS USED
(NO MAPPING)

APPLICATION REQUESTS
WDEF 64

SYSTEMWIDE
APPEARANCE

ON?

FIG 2 - MAPPING A STANDARD PRE-APPEARANCE DEFINITION FUNCTION TO ITS APPEARANCE-COMPLIANT EQUIVALENT,
AND CALLING AN APPEARANCE-COMPLIANT DEFINITION FUNCTION DIRECTLY

The RegisterAppearanceClient Function

The following describes the RegisterAppearanceClient function.

Function Description
RegisterAppearanceClient This function must be called at the beginning of your application,

prior to initialising or drawing any onscreen elements or invoking
any definition functions, such as the menu bar.
Under Appearance Manager 1.0.3 and earlier, applications that call
this function will continue to have the Platinum appearance when
system-wide appearance is selected off in the Appearance control
panel.
This function automatically maps standard pre-Appearance
definition functions to their Appearance-compliant equivalents.
Although they will not make use of mapping, applications that
specify Appearance-compliant definition function IDs directly
should also call this function in order to receive Appearance
Manager Apple events.

6-4 The Appearance Manager

Version 2.1

Disadvantages of Calling a Definition
Function Via a Mapper

When an Appearance-compliant definition function is called via the mappers, the
associated object may have a slightly different look and behaviour than is the case when
they are called directly. For example:

• Since a standard pre-Appearance WDEF cannot specify the inclusion of a horizontal
zoom box, when a pre-Appearance WDEF is mapped to an Appearance-compliant
WDEF, the resulting window will not have a horizontal zoom box.

• It is never necessary to call DrawGrowIcon to have the grow icon drawn in a window's
size box when an Appearance-compliant WDEF is called directly. However, when it
is called via the mapper, DrawGrowIcon must be called once for the grow icon to be
drawn.

• When the Appearance-compliant WDEF for modal and movable modal dialog boxes
is called via the mapper, the three-pixel-wide space between the content region
and the structure region created by the pre-Appearance WDEF will remain. This
space created certain difficulties in the past. When the Appearance-compliant
WDEF is called directly, the three-pixel-wide space is banished.

For these reasons, and to eliminate the overhead involved in calling an Appearance-
compliant definition function through the mappers, it is best to call the Appearance-
compliant definition function directly.

Mapping of Custom Definition Functions

Custom definition functions cannot be automatically mapped to Appearance-compliant
equivalents. However, the Appearance Manager does provide ways to coordinate custom
user interface elements with themes. For example, using DrawThemeListBoxFrame creates a
theme-compliant frame for a custom list box.

Checking For the Presence of Appearance Manager

Before calling any functions dependent upon the Appearance Manager’s presence, your
application should check for the presence of the Appearance Manager.

The Gestalt function (see Chapter 23 — Miscellany) may be used to acquire a wide range
of information about the operating environment, and may be used to determine:

• Whether the Appearance Manager is present.

• Whether the Macintosh is currently in compatibility mode, that is, whether the
user has switched system-wide Appearance off in the Appearance control panel.
(This applies only under Appearance Manager 1.0.3 and earlier.)

• The version of the Appearance Manager that is present.

You pass a selector in the selector parameter of Gestalt and the function returns a response
in the response parameter. The following example shows how to, in sequence, check that
the Appearance Manager is present, determine whether system-wide Appearance is on,
and determine the version of the Appearance Manager that is present.

OsError : OSErr;
response : SInt32;
gAppearancePresent : boolean;
gAppearance101present : boolean;
gAppearance110present : boolean;
gInCompatibilityMode : boolean;

...

The Appearance Manager 6-5

Version 2.1

gAppearancePresent := false;
gAppearance101present := false;
gAppearance110present := false;
gInCompatibilityMode := false;

...

osError := Gestalt(gestaltAppearanceAttr, response);

{ If Gestalt returns no error and the bit in response represented by the constant }
{ gestaltAppearanceExists is set, proceed, otherwise exit with an error message. }

if ((osError = noErr) and BitTst(response, gestaltAppearanceExists)) then
begin

// At least Version 1.0 is present. Set a flag.

gAppearancePresent := true;

{ If the bit in response represented by the constant gestaltAppearanceCompatMode }
{ is set, system-wide Appearance is off. The result of this check will be }
{ relevant only where Versions 1.0 through 1.0.3 are present. }

if (BitTst(response, gestaltAppearanceCompatMode)) then
begin
gInCompatibilityMode := true;
end;

{ Call Gestalt again with the gestaltAppearanceVersion selector. }

osError := Gestalt(gestaltAppearanceVersion, response);

{ If the low order word in response is 0x0101, Version 1.0.1, 1.0.2, or 1.0.3 is }
{ present. If the low order word in response is 0x0110, Version 1.1 is available. }

if (response = $00000101) then
begin
gAppearance101present := true;
end

else if (response = $00000110) then
begin
gAppearance110present := true;
end;

end
else begin

{ Nil-Appearance error alert presented here, then exit. }
end;

Colours, Patterns, and the Current Appearance

The Appearance Manager provides drawing primitives, and the means to set the colours
and patterns, needed to draw consistently in the Platinum appearance. Using these
drawing primitives, colours, and patterns makes it easier to create visual entities and
custom definition functions that are consistent with the current appearance.

Drawing Appearance Primitives

The Appearance Manager provides functions for drawing Appearance primitives. As
will become apparent at Chapter 7 — Introduction to Controls and at Chapter 14 — More
on Controls, most of these primitives relate to certain controls. The control definition
functions for these controls call these primitives when drawing the relevant control. For
example, the control definition function for a primary group box calls the primitive
DrawThemePrimaryGroup to draw the Appearance-compliant visual representation of that
control.

Your application might use these primitives to, for example:

• Draw an Appearance-compliant image of a placard, window header, edit text field
frame, etc., when you don’t want to use a control.

6-6 The Appearance Manager

Version 2.1

• Assist you in making a custom list box Appearance-compliant by using
DrawThemeListBoxFrame to draw the frame and DrawThemeFocusRect to draw the focus ring.

The following are examples of functions that draw Appearance primitives. Those
appearing on a light gray background are available only in Appearance Version 1.0.1
through 1.0.3 and later. Those appearing on a dark gray background are available only
in Appearance Version 1.1 and later.

Function Description
DrawThemePrimaryGroup Draws a primary group box frame consistent with the current

appearance.
DrawThemeSecondaryGroup Draws a secondary group box frame consistent with the

current appearance. Allows you to nest a secondary group box
frame within the primary group box frame.

DrawThemeSeparator Draws a separator line consistent with the current appearance.
The orientation of the rectangle determines where the
separator line is drawn. If the rectangle is wider than it is tall,
the separator line is horizontal; otherwise it is vertical.

DrawThemeWindowHeader Draws a window header consistent with the current
appearance. This function draws a window header such as
that used by the Finder. The window header is drawn inside
the rectangle that is passed.

DrawThemeWindowListViewHeader Draws a window list view header, such as that used by the
Finder, consistent with the current appearance. The header is
drawn inside the rectangle that is passed in. A window list
view header is drawn without a line on its bottom edge, so that
bevel buttons can be placed against it without overlapping.

DrawThemePlacard Draws a placard consistent with the current appearance.
DrawThemeEditTextFrame Draws an edit text field frame consistent with the current

appearance. The rectangle passed in should be the same as
the one passed in the function DrawThemeFocusRect (see below) so
you get the correct focus look for your edit text field control.
You should not use these frames for items other than edit text
fields.

DrawThemeListBoxFrame Draws a list box frame consistent with the current appearance.
The rectangle passed in should be the same as the one passed
into the function DrawThemeFocusRect (see below) so that you get
the correct focus look for your list box.

DrawThemeFocusRect Draws or erases a focus ring around a specified rectangle. To
achieve the right look, you should first call DrawThemeEditTextFrame
or DrawThemeListBoxFrame and then call DrawThemeFocusRect, passing
the same rectangle in the inRect parameter. If you use
DrawThemeFocusRect to erase the focus ring around an edit text
field frame or list box frame, you will have to redraw the edit
text field frame or list box frame because there is typically an
overlap.

DrawThemeModelessDialogFrame Draws a modeless dialog box frame, like the one drawn by the
Dialog Manager, consistent with the current appearance. This
function may be used to make a custom modeless dialog box
Appearance-compliant. The purpose of the modeless dialog
frame is to assist in making modeless dialog windows visually
distinguishable from normal document windows.

DrawThemeGenericWell Draws an image well frame consistent with the current
appearance. Image well frames are for use with custom image
well controls. You can specify that the center of the well be
filled with white.

DrawThemeFocusRegion Draws or erases an Appearance-compliant focus ring around a
specified region.

DrawThemeTabPane Draws a tab-pane consistent with the current appearance.
DrawThemeTab Draws a tab consistent with the current appearance.

The Appearance Manager 6-7

Version 2.1

Fig 3 and Fig 4 show examples, in Platinum appearance, of images drawn in both the
active and inactive modes using the Appearance primitives.

FIG 3 - IMAGES DRAWN WITH OTHER APPEARANCE DRAWING PRIMITIVES

kThemeStateDisabled PASSED IN
inState PARAMETER

kThemeStateActive PASSED IN
inState PARAMETER

WINDOW HEADER

PRIMARY GROUP
BOX FRAME

SECONDARY GROUP
BOX FRAME

EDIT TEXT FIELD FRAME

EDIT TEXT FIELD FRAME AND
KEYBOARD FOCUS RECTANGLE

IMAGE
WELL

IMAGE WELL WITH INTERIOR
IN WHITE

LIST BOX FRAME

PLACARD

SEPARATOR LINE

SEPARATOR LINE

FIG 4 - MODELESS DIALOG FRAME DRAWN WITH APPEARANCE DRAWING PRIMITIVE

ONE-PIXEL
MODELESS

DIALOG FRAME

ONE-PIXEL
MODELESS
DIALOG
FRAME

Draw State Constants

The following constants are passed in the inState parameter of the functions that draw
Appearance primitives (except DrawThemeFocusRect and DrawThemeFocusRegion) to specify
whether the primitive should be drawn in the active or deactivated mode.1

Constant Value Description
kThemeStateDisabled 0 Draw the primitive in the inactive mode.
kThemeStateActive 1 Draw the primitive in the active mode.

1 DrawThemeFocusRect and DrawThemeFocusRegion either draw or erase the focus rectangle depending on whether true or false is
passed in the inHasFocus parameter.

6-8 The Appearance Manager

Version 2.1

Another draw state constant (kThemeStatePressed) is available to draw certain primitives in
the pressed mode; however, the primitives listed above can only be drawn in the active
and inactive modes.

Drawing in Colours and Patterns Consistent
With the Current Theme

The following functions are those used to draw using colours/patterns consistent with
the current appearance. (Patterns are explained at Chapter 11 — QuickDraw
Preliminaries.) The reference to colours and patterns reflects the fact that, depending on
the current appearance, either a colour or a pattern may be used for the drawing.

Function Description
SetThemeWindowBackground Sets the Appearance-compliant colour/pattern that the window

background will be repainted to when PaintOne is called. This
function sets the colour/pattern to which the Window Manager
will erase the window background.
See also Appearance-Compliant Brush Type Constants, below.

SetThemeBackground Sets an element’s background colour/pattern to comply with
the Platinum appearance. This function should be called each
time you wish to draw an element in a specified brush constant
using Appearance Manager draw functions.
See also Appearance-Compliant Brush Type Constants, below.

SetThemePen Sets an element’s pen pattern or colour to comply with the
Platinum appearance. This function should be called each
time you wish to draw an element in a specified brush constant
using Appearance Manager draw functions.
See also Appearance-Compliant Brush Type Constants, below.

SetThemeTextColor Sets an element’s foreground colour for drawing text to
comply with the Platinum appearance. This function is
typically used inside a DeviceLoop drawing procedure to set the
foreground colour for drawing text in order to coordinate with
the Platinum appearance.
See also Appearance-Compliant Text Colour Constants, below.

Appearance-Compliant Brush Type Constants

The following constants, which are of type ThemeBrush, may be passed in the inBrush
parameter of calls to SetThemeWindowBackground, SetThemeBackground, and SetThemePen to specify
Appearance-compliant colours/patterns for user interface elements. For reasons
explained above, these constants can represent either a straight colour or a pattern.

Constant Description
kThemeBrushDialogBackgroundActive An active dialog box’s background colour/ pattern.
kThemeBrushDialogBackgroundInactive An inactive dialog box’s background colour or pattern.
kThemeBrushAlertBackgroundActive An active alert box’s background colour/pattern.
kThemeBrushAlertBackgroundInactive An inactive alert box’s background colour/pattern.
kThemeBrushModelessDialogBackgroundActive An active modeless dialog box’s background

colour/pattern.
kThemeBrushModelessDialogBackgroundInactive An inactive modeless dialog box’s background

colour/pattern.
kThemeBrushUtilityWindowBackgroundActive An active utility window’s background colour/pattern.
kThemeBrushUtilityWindowBackgroundInactive An inactive utility window’s background colour/pattern.
kThemeBrushListViewSortColumnBackground The background colour/pattern of the column upon which

a list view is sorted.
kThemeBrushListViewBackground The background colour/pattern of a list view column that

is not being sorted upon.
kThemeBrushListViewSeparator A list view separator’s colour/pattern.
kThemeBrushDocumentWindowBackground A document window’s background colour/pattern.

The Appearance Manager 6-9

Version 2.1

kThemeBrushFinderWindowBackground A Finder window’s background colour/pattern. Generally,
you should not use this constant unless you are trying to
create a window that matches the Finder window.

Appearance-Compliant Text Colour Constants

Constants of type ThemeTextColor may be passed in the inColor parameter of the function
SetThemeTextColor to specify Appearance-compliant text colours for user interface elements
in their active, inactive, and highlighted states. Some of these constants are as follows:

Constant Description
kThemeTextColorWindowHeaderActive Text colour for active window header.
kThemeTextColorWindowHeaderInactive Text colour for inactive window header.
kThemeTextColorPlacardActive Text colour for active placard.
kThemeTextColorPlacardInactive Text colour for inactive placard.
kThemeTextColorPlacardPressed Text colour for highlighted placard.
kThemeListViewTextColor Text colour for list view.

Saving and Setting the Colour Graphics Port Drawing State

Chapter 12 — Drawing With QuickDraw addresses certain measures which need to be
taken consequential to the fact that both colours and patterns can be used by the
Appearance functions SetThemeWindowBackground, SetThemeBackground, and SetThemePen. These
measures have to do with saving, restoring, and normalising the drawing state of the
graphics port.

Version 1.1 of the Appearance Manager introduced new functions which simplify this
process. These functions, the uses of which are addressed at Chapter 12, are as follows:

Constant Description
GetThemeDrawingState Obtain the drawing state of the current colour graphics port.
SetThemeDrawingState Set the drawing state of the current graphics port.
NormalizeThemeDrawingState Set the current colour graphics port to the default drawing state.
DisposeThemeDrawingState Release the memory associated with a reference to a graphics

port's drawing state.

Setting Appearance Cursors

Version 1.1 of the Appearance Manager introduced new functions for setting the cursor
shape. These functions, the uses of which are addressed at Chapter 13 — Offscreen
Graphics Worlds, Pictures, Cursors, and Icons, are as follows:

Constant Description
SetThemeCursor Sets the cursor to a version of the cursor consistent with the

current appearance.
SetAnimatedThemeCursor Animates a version of the cursor that is consistent with the

current appearance.

Appearance-Compliant Applications

Making a New Application Appearance-Compliant

The following lists the actions required to make a new application Appearance-compliant:

• Call RegisterAppearanceClient early in your application code, before you draw the menu
bar.

6-10 The Appearance Manager

Version 2.1

• Use the system-supplied Appearance-compliant menu and window definition
functions.

• Use Appearance Manager functions and constants to get any colours/patterns you
need to draw consistently with the current appearance, and to draw Appearance-
compliant visual entities such as window headers when you don't want to use a
control of that type.

• As will be explained at Chapter 7 — Introduction to Controls and at Chapter 14 —
More on Controls, use the system-supplied Appearance-compliant control definition
functions.

• As will be explained at Chapter 8 — Dialogs and Alerts:

• Use the new 'dlgx' and 'alrx' resources to supplement your 'DLOG' and 'ALRT'
resources.

• Enable embedding and Appearance-compliant backgrounds.

In addition, and because the Appearance Manager introduces a movable modal
alert and simplifies the handling of movable modal alert and dialog boxes, make all
your alerts and dialogs movable. Also use the StandardAlert routine, introduced with
the Appearance Manager, to create your alerts whenever possible.

Making Old Applications Appearance-Compliant

Ultimately, the task of making an old non-Appearance compliant application fully
Appearance-compliant will involve all of the steps listed at Making a New Application
Appearance-Compliant, above.

The task may be phased, however, by taking one simple initial step. That step is to
simply insert a call to RegisterAppearanceClient early in your code. This will cause the
mappers to invoke the new definition functions.

When converting an application under Versions 1.0 through 1.0.3 of the Appearance
Manager, be sure to select system-wide Appearance off in the Appearance control panel.
This puts your system back into the old System 7 look for applications that have not
adopted Appearance, which makes it easy for you to tell where you have implemented
the new look and where you still have work to do. (If you are running with system-wide
Appearance selected on, you will not be able to distinguish the changes you’ve made
from those performed automatically by the system.)

Main Constants, Data Types, and Functions
In the following:

• Those items appearing on a light gray background are available only with
Appearance Version 1.0.1 through 1.0.3 and later.

• Those items appearing on a dark gray background are available only with
Appearance Version 1.1 and later.

Constants

Checking For Appearance, Appearance Functions, and Version

gestaltAppearanceAttr = 'appr'
gestaltAppearanceExists = 0
gestaltAppearanceCompatMode = 1
gestaltAppearanceVersion = 'apvr'

The Appearance Manager 6-11

Version 2.1

Appearance-Compliant Brush Type Constants

kThemeBrushDialogBackgroundActive = 1
kThemeBrushDialogBackgroundInactive = 2
kThemeBrushAlertBackgroundActive = 3
kThemeBrushAlertBackgroundInactive = 4
kThemeBrushModelessDialogBackgroundActive = 5
kThemeBrushModelessDialogBackgroundInactive = 6
kThemeBrushUtilityWindowBackgroundActive = 7
kThemeBrushUtilityWindowBackgroundInactive = 8
kThemeBrushListViewSortColumnBackground = 9
kThemeBrushListViewBackground = 10
kThemeBrushListViewSeparator = 12
kThemeBrushDocumentWindowBackground = 15
kThemeBrushFinderWindowBackground = 16

Appearance-Compliant Text Colour Constants

kThemeTextColorWindowHeaderActive = 7
kThemeTextColorWindowHeaderInactive = 8
kThemeTextColorPlacardActive = 9
kThemeTextColorPlacardInactive = 10
kThemeTextColorPlacardPressed = 11
kThemeTextColorListView = 22

Appearance-Compliant Draw State Constants (For Primitives)

kThemeStateDisabled = 0
kThemeStateActive = 1
kThemeStatePressed = 2

Theme Cursor Constants

kThemeArrowCursor = 0
kThemeCopyArrowCursor = 1
kThemeAliasArrowCursor = 2
kThemeContextualMenuArrowCursor = 3
kThemeIBeamCursor = 4
kThemeCrossCursor = 5
kThemePlusCursor = 6
kThemeWatchCursor = 7 // Can animate
kThemeClosedHandCursor = 8
kThemeOpenHandCursor = 9
kThemePointingHandCursor = 10
kThemeCountingUpHandCursor = 11 // Can animate
kThemeCountingDownHandCursor = 12 // Can animate
kThemeCountingUpAndDownHandCursor = 13 // Can animate
kThemeSpinningCursor = 14 // Can animate
kThemeResizeLeftCursor = 15
kThemeResizeRightCursor = 16
kThemeResizeLeftRightCursor = 17

Data Types
ThemeDrawState : UInt32;
ThemeBrush : SInt16;
ThemeTextColor : SInt16;

Routines

Initialising the Appearance Manager

FUNCTION RegisterAppearanceClient: OSStatus;

Drawing Appearance Primitives

FUNCTION DrawThemeWindowHeader({CONST}VAR inRect: Rect; inState: ThemeDrawState): OSStatus;
FUNCTION DrawThemeWindowListViewHeader({CONST}VAR inRect: Rect;

inState: ThemeDrawState) : OSStatus;
FUNCTION DrawThemePlacard({CONST}VAR inRect: Rect; inState: ThemeDrawState): OSStatus;
FUNCTION DrawThemeEditTextFrame({CONST}VAR inRect: Rect; inState: ThemeDrawState): OSStatus;
FUNCTION DrawThemeListBoxFrame({CONST}VAR inRect: Rect; inState: ThemeDrawState): OSStatus;
FUNCTION DrawThemeFocusRect({CONST}VAR inRect: Rect; inHasFocus: BOOLEAN): OSStatus;
FUNCTION DrawThemePrimaryGroup({CONST}VAR inRect: Rect; inState: ThemeDrawState): OSStatus;
FUNCTION DrawThemeSecondaryGroup({CONST}VAR inRect: Rect; inState: ThemeDrawState): OSStatus;

6-12 The Appearance Manager

Version 2.1

FUNCTION DrawThemeSeparator({CONST}VAR inRect: Rect; inState: ThemeDrawState): OSStatus;
FUNCTION DrawThemeModelessDialogFrame({CONST}VAR inRect: Rect;

inState: ThemeDrawState): OSStatus;
FUNCTION DrawThemeGenericWell({CONST}VAR inRect: Rect; inState: ThemeDrawState;

inFillCenter: BOOLEAN): OSStatus;
FUNCTION DrawThemeFocusRegion(inRegion: RgnHandle; inHasFocus: BOOLEAN): OSStatus;
FUNCTION DrawThemeTab({CONST}VAR inRect: Rect; inStyle: ThemeTabStyle;
 inDirection: ThemeTabDirection; labelProc: ThemeTabTitleDrawUPP;
 userData: UInt32): OSStatus;
FUNCTION DrawThemeTabPane({CONST}VAR inRect: Rect; inState: ThemeDrawState): OSStatus;

Drawing in Colours and Patterns Consistent With the Current Theme

FUNCTION SetThemeWindowBackground(inWindow: WindowPtr; inBrush: ThemeBrush;
inUpdate: BOOLEAN): OSStatus;

FUNCTION SetThemePen(inBrush: ThemeBrush; inDepth: SInt16;
inIsColorDevice: BOOLEAN): OSStatus;

FUNCTION SetThemeBackground(inBrush: ThemeBrush; inDepth: SInt16;
inIsColorDevice: BOOLEAN): OSStatus;

FUNCTION SetThemeTextColor(inColor: ThemeTextColor; inDepth: SInt16;
inIsColorDevice: BOOLEAN): OSStatus;

Saving and Setting the Colour Graphics Port Drawing State

FUNCTION NormalizeThemeDrawingState: OSStatus;
FUNCTION GetThemeDrawingState(VAR outState: ThemeDrawingState): OSStatus;
FUNCTION SetThemeDrawingState(inState: ThemeDrawingState; inDisposeNow: BOOLEAN): OSStatus;
FUNCTION DisposeThemeDrawingState(inState: ThemeDrawingState): OSStatus;

Setting Appearance Cursors

FUNCTION SetThemeCursor(inCursor: ThemeCursor): OSStatus;
FUNCTION SetAnimatedThemeCursor(inCursor: ThemeCursor; inAnimationStep: UInt32): OSStatus;

Demonstration Program
{ ◊◊
// AppearanceDemo.p
// ◊◊
//
// This program opens two kWindowDocumentProc windows containing:
//
// • In the first window, an Appearance-compliant list view.
//
// • In the second window, various images drawn with Appearance primitives and window
// header text drawn in the correct appearance colour.
//
// Two of the images in the second window are edit text field frames and one is a list
// box frame. At any one time, one of these will have a keyboard focus frame drawn
// around it. Clicking in one of the other frames will move the keyboard focus frame
// to that frame.
//
// The program is terminated by the choosing the Quit item in the File menu.
//
// The program utilises the following resources:
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit, and Demonstration
// menus, and the pop-up menus (preload, non-purgeable).
//
// • Two 'WIND' resources (purgeable) (initially not visible).
//
// • 'hrct' and 'hwin' resources (both purgeable), which provide help balloons
// describing the contents of the windows.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch,
// and is32BitCompatible flags set.
//
// ◊◊ }

program AppearanceDemo;

//
……
………………………………… interfaces

The Appearance Manager 6-13

Version 2.1

uses

{ Universal Interfaces. }
Appearance, Devices, Fonts, GestaltEqu, Menus, Processes, Sound, ToolUtils, LowMem,
SegLoad;

//
……
…………………………………… constants

const

rMenubar = 128;
rNewWindow1 = 128;
rNewWindow2 = 129;
mApple = 128;
 iAbout = 1;
mFile = 129;
 iQuit = 11;

MAXLONG = $7FFFFFFF;

//
……
………………… global variables

var

gAppearancePresent : boolean;
gAppearance101present : boolean;
gAppearance110present : boolean;
gInCompatibilityMode : boolean;
gDone : boolean;
gInBackground : boolean;
gWindowPtr1, gWindowPtr2 : WindowPtr;
gPixelDepth : SInt16;
gIsColourDevice : boolean;
gCurrentRect : Rect;

//
……
… main program variables

osError : OSErr;
response : SInt32;
menubarHdl : Handle;
menuHdl : MenuHandle;
mainEvent : EventRecord;

//
……
……… routine declarations

procedure DoInitManagers; forward;
procedure DoEvents({const} var theEvent : EventRecord); forward;
procedure DoUpdate({const} var theEvent : EventRecord); forward;
procedure DoActivate({const} var theEvent : EventRecord); forward;
procedure DoActivateWindow(theWindowPtr : WindowPtr; becomingActive : boolean); forward;
procedure DoOSEvent({const} var theEvent : EventRecord); forward;
procedure DoDrawAppearancePrimitives(themeState : ThemeDrawState); forward;
procedure DoDrawAppearanceCompliantText(theWindowPtr : WindowPtr;
 themeState : ThemeDrawState); forward;
procedure DoDrawListView(theWindowPtr : WindowPtr); forward;
procedure DoChangeKeyBoardFocus(mouseXY : Point); forward;
procedure DoGetDepthAndDevice; forward;

// ◊◊◊ DoInitManagers

procedure DoInitManagers;
var
osError : OSErr;

begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;

6-14 The Appearance Manager

Version 2.1

TEInit;
InitDialogs(nil);

InitCursor;
FlushEvents(everyEvent, 0);

osError := RegisterAppearanceClient;

end;
{ of procedure DoInitManagers }

// ◊◊◊ DoEvents

procedure DoEvents({const} var theEvent : EventRecord);
var
charCode : SInt8;
menuChoice : SInt32;
partCode : SInt16;
menuID, menuItem : SInt16;
theWindowPtr : WindowPtr;
itemName : Str255;
daDriverRefNum : SInt16;

begin
case (theEvent.what) of

keyDown, autoKey: begin
charCode := SInt8(BAnd(theEvent.message, charCodeMask));
if (BAnd(theEvent.modifiers, cmdKey) <> 0) then

begin
menuChoice := MenuEvent(theEvent);
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);
if ((menuID = mFile) and (menuItem = iQuit)) then

begin
gDone := true;
end;

end;
end;

mouseDown: begin
partCode := FindWindow(theEvent.where, theWindowPtr);
if (partCode <> 0) then

begin
case partCode of

inMenuBar: begin
menuChoice := MenuSelect(theEvent.where);
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);

if (menuID = 0) then
begin
Exit(DoEvents);
end;

case menuID of

mApple: begin
if (menuItem = iAbout) then

begin
SysBeep(10);
end

else begin
GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);
daDriverRefNum := OpenDeskAcc(itemName);
end;

end;

mFile: begin
if (menuItem = iQuit) then

begin
gDone := true;
end;

end;

otherwise begin
end;

end;
{ of case statement }

The Appearance Manager 6-15

Version 2.1

HiliteMenu(0);
end;

inContent: begin
if (theWindowPtr <> FrontWindow) then

begin
SelectWindow(theWindowPtr);
end

else begin
if (FrontWindow = gWindowPtr2) then

begin
SetPort(gWindowPtr2);
DoChangeKeyBoardFocus(theEvent.where);
end;

end;
end;

inDrag: begin
if (theWindowPtr <> FrontWindow) then

begin
SelectWindow(theWindowPtr);
end;

DragWindow(theWindowPtr, theEvent.where, qd.screenBits.bounds);
end;

end;
{ of case statement }

end;
end;

updateEvt: begin
DoUpdate(theEvent);
end;

activateEvt: begin
DoActivate(theEvent);
end;

osEvt: begin
DoOSEvent(theEvent);
HiliteMenu(0);
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoEvents }

// ◊◊◊ DoUpdate

procedure DoUpdate({const} var theEvent : EventRecord);
var
ignoredErr : OSErr;
theWindowPtr : WindowPtr;

begin
theWindowPtr := WindowPtr(theEvent.message);
BeginUpdate(theWindowPtr);

SetPort(theWindowPtr);

if (theWindowPtr = gWindowPtr2) then
begin
if ((gWindowPtr2 = FrontWindow) and (not gInBackground)) then

begin
DoDrawAppearancePrimitives(kThemeStateActive);
DoDrawAppearanceCompliantText(theWindowPtr, kThemeStateActive);
ignoredErr := DrawThemeFocusRect(gCurrentRect, true);
end

else begin
DoDrawAppearancePrimitives(kThemeStateDisabled);
DoDrawAppearanceCompliantText(theWindowPtr, kThemeStateDisabled);
end;

end;

if (theWindowPtr = gWindowPtr1) then
begin
DoDrawListView(theWindowPtr);

6-16 The Appearance Manager

Version 2.1

end;

EndUpdate(theWindowPtr);
end;

{ of procedure DoUpdate }

// ◊◊◊ DoActivate

procedure DoActivate({const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
becomingActive : boolean;

begin
theWindowPtr := WindowPtr(theEvent.message);
becomingActive := (BAnd(theEvent.modifiers, activeFlag) = activeFlag);
DoActivateWindow(theWindowPtr, becomingActive);
end;

{ of procedure DoActivate }

// ◊◊◊ DoActivateWindow

procedure DoActivateWindow(theWindowPtr : WindowPtr; becomingActive : boolean);
var
ignoredErr : OSErr;

begin
if (theWindowPtr = gWindowPtr2) then

begin
SetPort(gWindowPtr2);

DoDrawAppearancePrimitives(integer(becomingActive));
DoDrawAppearanceCompliantText(theWindowPtr, integer(becomingActive));
ignoredErr := DrawThemeFocusRect(gCurrentRect, becomingActive);
end;

end;
{ of procedure DoActivateWindow }

// ◊◊ DoOSEvent

procedure DoOSEvent({const} var theEvent : EventRecord);
begin
case BAnd(BSR(theEvent.message, 24), $000000FF) of

suspendResumeMessage: begin
gInBackground := BAnd(theEvent.message, resumeFlag) = 0;
DoActivateWindow(FrontWindow, not gInBackground);
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoOSEvent }

// ◊◊◊ DoDrawAppearancePrimitives

procedure DoDrawAppearancePrimitives(inState : ThemeDrawState);
var
ignoredErr : OSErr;
theRect : Rect;

begin
SetRect(theRect, -1, -1, 261, 26);
ignoredErr := DrawThemeWindowHeader(theRect, inState);

SetRect(theRect, 20, 46, 119, 115);
ignoredErr := DrawThemePrimaryGroup(theRect, inState);

SetRect(theRect, 140, 46, 239, 115);
ignoredErr := DrawThemeSecondaryGroup(theRect, inState);

SetRect(theRect, 20, 127, 240, 128);
ignoredErr := DrawThemeSeparator(theRect, inState);

SetRect(theRect, 20, 141, 239, 162);
ignoredErr := DrawThemeEditTextFrame(theRect, inState);

SetRect(theRect, 20, 169, 239, 190);

The Appearance Manager 6-17

Version 2.1

ignoredErr := DrawThemeEditTextFrame(theRect, inState);

if ((gAppearance101present = true) or (gAppearance110present = true)) then
begin
SetRect(theRect, 20, 203, 62, 245);
ignoredErr := DrawThemeGenericWell(theRect, inState, false);
end;

SetRect(theRect, 20, 258, 62, 300);
ignoredErr := DrawThemeGenericWell(theRect, inState, true);

SetRect(theRect, 75, 202, 76, 302);
ignoredErr := DrawThemeSeparator(theRect, inState);

SetRect(theRect, 90, 203, 239, 300);
ignoredErr := DrawThemeListBoxFrame(theRect, inState);

SetRect(theRect, -1, 321, 261, 337);
ignoredErr := DrawThemePlacard(theRect, inState);
end;

{ of procedure DoDrawAppearancePrimitives }

// ◊◊ DoDrawAppearanceCompliantText

procedure DoDrawAppearanceCompliantText(theWindowPtr : WindowPtr; inState : ThemeDrawState);
var
ignoredErr : OSErr;
windowWidth, stringWidth : SInt16;
message : Str255;

begin
message := 'Balloon help is available';

if (inState = kThemeStateActive) then
begin
ignoredErr := SetThemeTextColor(kThemeActiveWindowHeaderTextColor, gPixelDepth, gIsColourDevice);
end

else begin
ignoredErr := SetThemeTextColor(kThemeInactiveWindowHeaderTextColor, gPixelDepth, gIsColourDevice);
end;

windowWidth := theWindowPtr^.portRect.right - theWindowPtr^.portRect.left;
stringWidth := StringWidth(message);
MoveTo((windowWidth div 2) - (stringWidth div 2), 17);
DrawString('Balloon help is available');
end;

{ of procedure DoDrawAppearanceCompliantText }

// ◊◊◊ DoDrawListView

procedure DoDrawListView(theWindowPtr : WindowPtr);
var
ignoredErr : OSErr;
theRect : Rect;
a : SInt16;

begin
theRect := theWindowPtr^.portRect;

ignoredErr := SetThemeBackground(kThemeListViewBackgroundBrush, gPixelDepth, gIsColourDevice);
EraseRect(theRect);

theRect.left := theRect.left + 130;

ignoredErr := SetThemeBackground(kThemeListViewSortColumnBackgroundBrush, gPixelDepth, gIsColourDevice);
EraseRect(theRect);

ignoredErr := SetThemePen(kThemeListViewSeparatorBrush, gPixelDepth, gIsColourDevice);

theRect := theWindowPtr^.portRect;
for a := theRect.top to theRect.bottom by 18 do

begin
MoveTo(theRect.left, a);
LineTo(theRect.right - 1, a);
end;

ignoredErr := SetThemeTextColor(kThemeListViewTextColor, gPixelDepth, gIsColourDevice);

for a := theRect.top to theRect.bottom + 18 by 18 do
begin

6-18 The Appearance Manager

Version 2.1

MoveTo(theRect.left, a - 5);
DrawString(' List View Background List View Sort Column');
end;

end;
{ of procedure DoDrawListView }

// ◊◊ DoChangeKeyBoardFocus

procedure DoChangeKeyBoardFocus(mouseXY : Point);
var
ignoredErr : OSErr;
edit1Rect, edit2Rect, listRec : Rect;

begin
ignoredErr := DrawThemeFocusRect(gCurrentRect, false);
ignoredErr := DrawThemeEditTextFrame(gCurrentRect, kThemeStateActive);

SetRect(edit1Rect, 20, 141, 239, 162);
SetRect(edit2Rect, 20, 169, 239, 190);
SetRect(listRec, 90, 203, 239, 300);

GlobalToLocal(mouseXY);

if PtInRect(mouseXY, edit1Rect) then
begin
SetRect(gCurrentRect, 20, 141, 239, 162);
end

else if PtInRect(mouseXY, edit2Rect) then
begin
SetRect(gCurrentRect, 20, 169, 239, 190);
end

else if PtInRect(mouseXY, listRec) then
begin
SetRect(gCurrentRect, 90, 203, 239, 300);
end;

ignoredErr := DrawThemeFocusRect(gCurrentRect, true);
end;

{ of procedure DoChangeKeyBoardFocus }

// ◊◊ DoGetDepthAndDevice

procedure DoGetDepthAndDevice;
var
deviceHdl : GDHandle;

begin
deviceHdl := LMGetMainDevice;
gPixelDepth := deviceHdl^^.gdPMap^^.pixelSize;
if (BitTst(Ptr(@deviceHdl^^.gdFlags), gdDevType)) then

begin
gIsColourDevice := true;
end;

end;
{ of procedure DoGetDepthAndDevice }

// ◊◊◊ main program

begin

// …… initialise
global variables

gAppearancePresent := false;
gAppearance101present := false;
gAppearance110present := false;
gInCompatibilityMode := false;

gIsColourDevice := false;

//
……
initialise managers

DoInitManagers;

// ………………… check for Appearance and functions, compatibility mode, Appearance version

osError := Gestalt(gestaltAppearanceAttr, response);

The Appearance Manager 6-19

Version 2.1

if ((osError = noErr) and BitTst(response, gestaltAppearanceExists)) then
begin
gAppearancePresent := true;

if (BitTst(response, gestaltAppearanceCompatMode)) then
begin
gInCompatibilityMode := true;
end;

osError := Gestalt(gestaltAppearanceVersion, response);

if (response = $00000101) then
begin
gAppearance101present := true;
end

else if (response = $00000110) then
begin
gAppearance110present := true;
end;

end
else begin

SysBeep(10);
ExitToShell;
end;

// …… set up
menu bar and menus

menubarHdl := GetNewMBar(rMenubar);
if (menubarHdl = nil) then

begin
ExitToShell;
end;

SetMenuBar(menubarHdl);
DrawMenuBar;

menuHdl := GetMenuHandle(mApple);
if (menuHdl = nil) then

begin
ExitToShell;
end

else begin
AppendResMenu(menuHdl, 'DRVR');
end;

// …………………………………………………………………… open windows, set font size, show windows, move windows

gWindowPtr1 := GetNewCWindow(rNewWindow1, nil, WindowPtr(-1));
if (gWindowPtr1 = nil) then

begin
ExitToShell;
end;

SetPort(gWindowPtr1);
TextSize(10);
ShowWindow(gWindowPtr1);

gWindowPtr2 := GetNewCWindow(rNewWindow2, nil, WindowPtr(-1));
if (gWindowPtr2 = nil) then

begin
ExitToShell;
end;

SetPort(gWindowPtr2);
TextSize(10);
ShowWindow(gWindowPtr2);

// ……………………………………………………………… set Appearance-compliant colour/pattern for second window

osError := SetThemeWindowBackground(gWindowPtr2, kThemeActiveDialogBackgroundBrush, true);

// ………………… get pixel depth and whether colour device for certain Appearance functions

DoGetDepthAndDevice;

// …………… set top edit text field rectangle as target for initial keyboard focus frame

SetRect(gCurrentRect, 20, 141, 239, 162);

6-20 The Appearance Manager

Version 2.1

//
……
………… enter EventLoop

gDone := false;
while (not gDone) do

begin
if (WaitNextEvent(everyEvent, mainEvent, MAXLONG, nil)) then

begin
DoEvents(mainEvent);
end;

end;
end.

{ of main program. }

// ◊◊

Demonstration Program Comments
When this program is run, the user should:

• First drag the top window to a position where the content of the bottom window is visible.

• Choose Show Balloons from the Help menu and move the cursor over the frames in the window titled "Drawing With
Primitives" window (when active), and the left and right sides of the window titled "Appearance-Compliant List
View" (when active), noting the descriptions in the balloons.

• With the "Drawing With Primitives" window frontmost, click in the edit text field frame not currently outlined with
the keyboard focus frame, or in the list box frame, so as to move the keyboard focus frame to that rectangle.

• Click on the desktop to send the application to the background and note the changed appearance of the frames and
text in the "Drawing With Primitives" window. Note also that there is no change to the appearance of the content
region of the "Theme-Compliant List View" window. Click on the "Drawing With Primitives" window to bring the
application to the foreground with that window active, noting the changed appearance of the frames and text.

In the following, reference is made to graphics devices and pixel depth. Graphics devices and pixel depth are
explained at Chapter 11 — QuickDraw Preliminaries.

constants
The first block establishes constants representing menu IDs, resources, and menu items, and window and menu bar
resources.

MAXLONG is defined as the maximum possible long value, and is used in the WaitNextEvent function.

Global Variables
gAppearancePresent will be assigned true if at least Version 1.0 of the Appearance Manager is present.
gInCompatibilityMode will be assigned true if the machine on which the demonstration is running is in compatibility mode
(applicable only to Versions 1.0 through 1.0.3 only). gAppearance101present will be assigned true if Versions 1.0.1, 1.0.2,
or 1.0.3 are present. gAppearance110present will be assigned true if Version 1.1 is present.

gDone, when set to true, causes the main event loop to be exited and the program to terminate. gInBackground relates to
foreground/background switching. gWindowPtr1 and gWindowPtr2 will be assigned window pointers.

gPixelDepth will be assigned the pixel depth of the main device. gIsColourDevice will be assigned true if the graphics
device is a colour device and false if it is a monochrome device. The values in these two variables are required by certain
Appearance functions. gCurrentRect will be assigned the rectangle which is to be the current target for the keyboard focus
frame.

doInitManagers
DoInitManagers is called from main immediately after it has been determined that the Appearance Manager is present. In
this demonstration program, and in all subsequent demonstration programs, a call to RegisterAppearanceClient has been
added to this function.

If this program is run under Appearance Manager Versions 1.0 through 1.0.3, one effect of the call to
RegisterAppearanceClient is that the new Appearance-compliant menu bar definition function (resource ID 63) will be used
regardless of whether system-wide Appearance is selected on or off in the Appearance control panel.

The Appearance Manager 6-21

Version 2.1

DoEvents
At the mouseDown case, the inContent case within the partCode switch is of relevance to the demonstration.

If the mouse-down was within the content region of a window, and if that window is not the front window, SelectWindow is
called to bring that window to the front and activate it.

However, if the window is the front window, and if that window is the "Drawing With Primitives" window, that window's
graphics port is set as the current graphics port for drawing, and the application-defined routine DoChangeKeyBoardFocus
is called. That routine determines whether the mouse-down was within one of the edit text field frames or the list box
frame, and moves the keyboard focus if necessary.

DoUpdate
Within the DoUpdate routine, if the window to which the update event relates is the "Drawing With Primitives" window, and
if that window is currently the front window:

• Application-defined routines are called to draw the primitives and the window header text in the active mode.

• DrawThemeFocusRect is called to draw the keyboard focus frame using the rectangle currently assigned to the global
variable gCurrentRect.

If, however, the "Drawing With Primitives" window is not the front window, the same calls are made but with the primitives
and text being drawn in the inactive mode. Note that no call is required to erase the keyboard focus frame because this
will already have been erased when the window was deactivated (see below).

If the window to which update event relates is the "Appearance-Compliant List View" window, an application-defined
routine for drawing the window's content area is called. Note that, for this window, there is no differentiation between
active and inactive modes. This is because, for list views, the same brush type constants are used regardless of whether
the window is active or inactive.

DoActivateWindow
When an activate event is received for the "Drawing With Primitives" window, the application-defined routines for drawing
the primitives and the window header text, together with the Appearance routine which draws and erases the keyboard
focus rectangle, are called. To eliminate the necessity for if/then/else coding, the becomingActive value is used to ensure
that, firstly, the primitives and text are drawn in the appropriate mode and, secondly, that the keyboard focus frame is
either drawn or erased, depending on whether the window is coming to the front or being sent to the back.

Once again, the " Appearance-Compliant List View" window is treated differently because the list view brush constants to
be used are the same regardless of whether the window is activated and deactivated.

DoDrawThemePrimitives
doDrawAppearancePrimitives uses Appearance Manager functions for drawing Appearance primitives, and is called to draw
the various frames in the "Drawing With Primitives" window. The mode in which the primitives are drawn (active or
inactive) is determined by the Boolean value passed in the inState parameter.

Note that DrawThemeGenericWell, which was introduced with Version 1.0.1 of the Appearance Manager, is called only if
Versions 1.0.1 through 1.0.3, or Version 1.1, are present.

doDrawAppearanceCompliantText
doDrawAppearanceCompliantText is called to draw some advisory text in the window header of the "Drawing With
Primitives" window. The QuickDraw drawing function DrawString does the drawing; however, before the drawing begins,
the Appearance function SetThemeTextColor is used to set the foreground colour for drawing text, in either the active or
inactive modes, so as to comply with the current appearance.

If "Drawing With Primitives" is the active window, SetThemeTextColor is called with the
kThemeActiveWindowHeaderTextColor text colour constant passed in the first parameter. If the window is inactive,
SetThemeTextColor is called with kThemeInctiveWindowHeaderTextColor passed in the first parameter. Note that
SetThemeTextColor requires the pixel depth of the graphics port, and whether the graphics device is a colour device or a
monochrome device, passed in the second and third parameters.

The next three lines simply adjust QuickDraw's pen location so that the text is drawn centered laterally in the window
header frame. The call to DrawString draws the specified text.

DoDrawListView
DoDrawListView draws an Appearance-compliant list view background in the specified window.

The first line copies the window's port rectangle to a local variable of type Rect.

6-22 The Appearance Manager

Version 2.1

The call to SetThemeBackground sets the background colour/pattern to the colour/pattern represented by the Appearance-
compliant brush type constant kThemeListViewBackgroundBrush. The QuickDraw function EraseRect fills the whole of the
port rectangle with this colour/pattern.

The next line adjusts the Rect variable's left field so that the rectangle now represents the right half of the port rectangle.
The same drawing process is then repeated, but this time with kThemeListViewSortColumnBackgroundBrush passed in the
first parameter of the SetThemeBackground call.

SetThemePen is then called with the colour/pattern represented by the constant kThemeListViewSeparatorBrush passed in
the first parameter. The rectangle for drawing is then expanded to equate with the port rectangle before the following five
lines draw one-pixel-wide horizontal lines, at 18-pixel intervals, from the top to the bottom of the port rectangle.

Finally, some text is drawn in the list view in the Appearance-compliant colour for list views. SetThemeTextColour is called
with the kThemeListViewTextColor passed in, following which a for loop draws some text, at 18-pixel intervals, from the top
to the bottom of the port rectangle.

DoChangeKeyBoardFocus
DoChangeKeyBoardFocus is called when a mouse-down occurs in the content region of the "Drawing With Primitives"
window.

At the first two lines, Appearance functions are used to, firstly, erase the keyboard focus frame from the rectangle around
which it is currently drawn and, secondly, redraw an edit text field frame around that rectangle.

The next three lines make three local variables of type Rect equal to the rectangles for the two edit text field frames and
the list box frame.

The call to GlobalToLocal converts the coordinates of the mouse-down to the local coordinates required by the following
calls to PtInRect. PtInRect returns true if the mouse-down is within the rectangle passed in the second parameter. If one of
the calls to PtInRect returns true, that rectangle is made the current rectangle for keyboard focus by assigning it to the
global variable gCurrentRect.

Whatever rectangle is assigned to gCurrentRect, the call to DrawThemeFocusRect draws a Theme-compliant keyboard
focus frame around that rectangle.

DoGetDepthAndDevice
DoGetDepthAndDevice determines the pixel depth of the graphics port, and whether the graphics device is a colour device
or a monochrome device, and assigns the results to two global variables. This information is required by certain
Appearance functions.

main program block
Gestalt is called to determine whether some version of the Appearance Manager is present. If so, bit 1 in response is
tested to determine whether the machine on which the program is running is currently in compatibility mode (relevant only
where Appearance Manager Versions 1.0 through 1.0.3 are present), and Gestalt is called again to determine whether
Version 1.0.1 through 1.0.3, or Version 1.1, is present. If the Appearance Manager is not present, the system alert sound is
played and the program simply terminates.

Note that the assignment to the global variable gInCompatibilityMode is for demonstration purposes only; the program
does not use this variables for any purpose.

After the menus are set up, each window is created. After each window is created, its graphics port is set as the current
port and the text size for that port is set to 10pt, the window is shown.

SetThemeWindowBackground sets an Appearance-compliant colour/pattern for the "Drawing With Primitives" window's
content area. This means that the content area will be automatically repainted with that colour/pattern when required with
no further assistance from the application. When true is passed in the third parameter, the content region of the window is
invalidated and the content region is repainted immediately.

The call to the application-defined function DoGetDepthAndDevice determines the current pixel depth of the graphics port,
and whether the current graphics device is a colour device, and assigns the results to the global variables gPixelDepth and
gIsColourDevice.

The call to SetRect establishes the initial target for the keyboard focus frame. This is the rectangle used by the first edit
text field frame.

The Appearance Manager 6-23

	Appearance Manager Versions
	The RegisterAppearanceClient Function
	Colours, Patterns, and the Current Appearance
	Appearance-Compliant Applications

