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5
MICROPROCESSOR MATTERS

Introduction
The demonstration programs at Chapter 7 — Introduction to Controls are the first in
which specific measures  have had to be  taken to ensuring that the  source  code will
compile satisfactorily as both 680x0 code and PowerPC code.  Accordingly, as a prelude
for what is to come, this chapter addresses the differing run time environments1 of the
680x0 and PowerPC microprocessors and the measures required to ensure that source
code that will compile successfully as both 680x0 and PowerPC code.

The 68LC040 Emulator
The system software  provides  the  ability  to  execute  applications  that  use  the  native
instruction set of the Power Macintosh's PowerPC microprocessor and applications which
use the Motorola 680x0 instruction set.  The ability to execute applications which use the
680x0  instruction  set  is  provided  by  an  emulator (the  68LC040  Emulator),  which
provides  an  execution  environment  that  is  virtually  identical  to  the  execution
environment found on 680x0-based Macintoshes.  More specifically, the emulator:

• Converts  680x0  instructions  into  PowerPC  instructions  and  issues  those
instructions to the PowerPC processor.

• Updates  the  emulated  environment  (such  as  the  emulated  680x0  registers)  in
response to the operations of the PowerPC processor.

Under  the  emulator,  all  existing  680x0  applications  and other  software  modules  will
execute without modification on Power Macintoshes provided that they:

• Are 32-bit clean.

• Are compatible with operations of the Virtual Memory Manager.

• Are  able  to  operate  smoothly  in  the  cooperative  multitasking  environment
maintained by the Process Manager.

• Conform to  the  general  requirements  of  Macintosh  software  as  documented  in
Inside Macintosh.

1 A run-time environment is a set of conventions which determine how code is to be loaded into memory, where it is to be
stored, how it is to be addressed, and how functions call other functions and system software routines.
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The emulator has some limitations.  Possibly the most significant of these is that it does
not support the instruction sets of the 68881 or 68882 co-processors or of the 68851
PMMU.

An important aspect of the emulator is that it makes it possible for parts of the system
software  to  remain  as  680x0  code  while  other  parts  of  the  system software  are  re-
implemented, primarily for reasons of speed, as native PowerPC code.  (The Memory
Manager and QuickDraw, for example, were re-implemented as native PowerPC in the
first system software release for Power Macintoshes.)

The Mixed Mode Manager
The emulator works together with a manager called the  Mixed Mode Manager.  The
Mixed Mode Manager manages  mode switches between code in different  instruction
set architectures (ISAs),  switching the execution context between the CPU's native
PowerPC context and the 68LC040 emulator.

Mode Switches

Mode switches are required when an application calls a system software function (or,
indeed, any other code) that exists in a different ISA.  For example:

• When a  680x0  application  running under  the  emulator  calls  a  system software
function that exists as native PowerPC code, a mode switch is required to move out
of the emulator and into the native PowerPC environment.  Then, when that system
software  function  completes,  another  mode  switch  is  required  to  return  to  the
emulator and to allow the 680x0 application to continue executing.

• When a PowerPC application invokes a system software function or other code that
exists  only  as  680x0 code,  a  mode switch is  required to move from the native
environment  to  the  emulator  environment.   Then,  when  that  system  software
function completes, another mode switch is required to return from the emulator to
the PowerPC environment to allow the PowerPC application to continue executing.

The Mixed Mode Manager is intended to operate transparently to most applications and
other types of software, meaning that most cross-mode calls (calls to code in a different
ISA from the caller's ISA) are detected automatically by the Mixed Mode Manager and
handled without intervention by the calling software.

Occasionally, however, some executable code needs to interact directly with the Mixed
Mode Manager to ensure that a mode switch occurs at the correct time.  Because the
emulator  is  designed  to  allow  existing  680x0  applications  to  execute  without
modification,  it  is  always  the  responsibility  of  native  applications  to  implement  any
changes necessary to interact with the Mixed Mode Manager.

Intervention in Mode Switching

When writing native PowerPC code, you only have to intervene in the mode-switching
process when you execute code whose ISA might be different from the calling code.  For
example, when you pass the address of an action function2 to the system software, it is
possible that the ISA of the code whose address you are passing is different from the ISA
of the function you are passing it to.  In such cases, you must ensure that the Mixed
Mode Manager is called to make the necessary mode switch.  You do this by explicitly
signalling:

2 Action functions (sometimes called hook functions or call-back functions) refer to the ability of a Toolbox function to
itself call an application-defined function during its execution, thus extending the features of the function.  Action functions
are used for the first time in the demonstration programs associated with Chapter 7 — Controls.  That is the main reason
why the demonstration programs at Chapter 7 are the first in which specific measures have had to be taken to ensuring
that the source code will compile satisfactorily as both 680x0 code and PowerPC code.
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• The type of code you are passing.

• The code's calling conventions.

An Example - Control Action Functions

As an example,  suppose you are  writing  a  native  PowerPC application that  calls  the
Control  Manager function  TrackControl.   TrackControl accepts  as  one of  its  parameters  the
address of an action function that is called repeatedly while the mouse button remains
down.   TrackControl has  no way of  determining in  advance  the  ISA of  the  code  whose
address you will pass to it.  Moreover, your application has no way of determining in
advance the  ISA of  the  TrackControl function,  so you cannot know whether  your  action
function and the TrackControl function are of the same ISA.

Because of all this, you must explicitly indicate the ISA of any action functions whose
addresses you pass to system software functions such as TrackControl.

Indicating the ISA of a Callback Function — 
Routine Descriptors

You indicate the ISA of a particular function by creating a routine descriptor for that
function  (see  Fig  1).   The  first  field  of  a  routine  descriptor  (goMixedModeTrap)  is  an
executable 680x0 instruction which invokes the Mixed Mode Manager.  When the Mixed
Mode Manager is called, it inspects the remaining fields of the routine descriptor — in
particular, the routineRecords field — to determine whether a mode switch is required.  The
routineRecords field  is  an array  of  routine records,  each element  of  which describes  a
single  function.   In  the simplest  case,  the  array of  routine  records  contains  a single
element.

FIG 1 -THE ROUTINE DESCRIPTOR RECORD AND ROUTINE RECORD

TYPE
  RoutineDescriptorPtr = ^RoutineDescriptor;
  RoutineDescriptor =     PACKED RECORD
  goMixedModeTrap:        UInt16;       { Mixed-mode A-Trap }
  version:                 SInt8;        
  routineDescriptorFlags: RDFlagsType;  
  reserved1:              UInt32;       
  reserved2:              UInt8;       
  selectorInfo:           UInt8;        
  routineCount:           UInt16;       
  routineRecords:         ARRAY [0..0] OF RoutineRecord; { The individual routines }
END;

RoutineDescriptorHandle = ^RoutineDescriptorPtr;

TYPE
  RoutineRecordPtr = ^RoutineRecord;
  RoutineRecord = RECORD
    procInfo:       ProcInfoType;   { calling conventions }
  reserved1:      SInt8;
  ISA:            ISAType;{ Instruction Set Architecture }
  routineFlags:RoutineFlagsType;
  procDescriptor: ProcPtr;        { Where is this thing we're calling }
  reserved2:      UInt32;
  selector:       UInt32;
  END;

RoutineRecordHandle= ^RoutineRecordPtr;

The most important fields in a routine record are the procInfo field and the ISA field:
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• ISA Field.  The ISA field encodes the ISA of the function being described.  It always
contains one of these two constants, which are defined in the Universal Interfaces
file MixedMode.p:

CONST
kM68kISA = 0;   { MC680x0 architecture. }
kPowerPCISA = 1;   { PowerPC Architecture. }

• procInfo Field.  The  procInfo field contains the function's  function information,
which encodes the function's calling conventions and information about the number
and  location  of  the  function's  parameters.   For  the  standard  kinds  of  action
functions and other types of "detached" code, the Universal Interfaces files include
definitions  of  function  information.   For  example,  the  interface  file  Controls.p
includes this definition (the comment has been added to explain how the value of
the "magic constant" has been calculated):

CONST
uppControlActionProcInfo = $000002C0;

{ $000002C0 = kPascalStackBased + kNoByteCode*$10 + kFourByteCode*$40 + 
                kTwoByteCode*$100 }

This  function  information  specification  indicates  that  a  control  action  function
follows standard Pascal calling conventions and takes two stack-based parameters
(a  control  handle  and  a  part  code)  and  returns  no  result.   Note  that  when
calculating the value of the procInfo the codes for the arguments and return value are
multiplied by constants.  This is equivalent to shifting the bits in the kByteCode
constants to the left so that the length of the return value is specified in bits 5-6,
the length of the first parameter in bits 7-8 and the length of the second parameter
in bits 9-10.

Creating a Routine Descriptor For a Control 
Action Function

The Universal Interfaces file Controls.p contains this definition for the  NewControlActionProc
function:

type
ControlActionUPP : UniversalProcPtr;

FUNCTION NewControlActionProc(userRoutine: ControlActionProcPtr): ControlActionUPP;

Using NewControlActionProc, you can create a routine descriptor for a control action function
as follows, in which myControlAction is your application-defined control action function:

myControlActionUPP : ControlActionUPP;

myControlActionUPP := NewControlActionProc(ControlActionProcPtr(@myControlAction));

Notice  that  the  result  returned by  NewControlActionProc is  of  type  ControlActionUPP.   The  UPP
stands for a universal procedure pointer, which is defined in the Universal Interfaces
to be either a pointer to a routine descriptor or a simple 680x0 function pointer (hence
the term "universal").  Thus the effect of the call to NewControlActionProc depends on whether
it is executed in the 680x0 environment or the PowerPC environment:

• In the 680x0 environment, NewControlActionProc simply returns its first parameter, that
is, a pointer to your application-defined control action function.

• In the PowerPC environment, NewControlActionProc creates a routine descriptor in your
application heap and returns the address of that routine descriptor.

Effect of the Routine Descriptor

Once you have created the routine descriptor, you can later call TrackControl like this:
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TrackControl(myControl, myPoint, myControlActionUPP);

If  your application is  a  PowerPC application,  the value  passed in the  myControlActionUPP
parameter is not the address of your action function itself, but the address of the routine
descriptor.  When a 680x0 version of  TrackControl executes your action function, it begins
by executing the instruction in the first field of the routine descriptor.  That instruction
invokes  the  Mixed  Mode  Manager,  which  inspects  the  ISA  of  the  action  function
(contained in the ISA field of the routine record).  If that ISA differs from the instruction
set  architecture  of  the  TrackControl function,  the  Mixed Mode Manager  causes  a  mode
switch.  Otherwise, if the ISAs are identical, the Mixed Mode Manager simply executes
the action function without switching modes.

Disposing of Routine Descriptors

Routine descriptors may be disposed of using DisposeRoutineDescriptor, although this is only
necessary or advisable if you know that you will not be using the descriptor any more
during  the  execution  of  your  application  or  if  you  allocate  a  routine  descriptor  for
temporary use only.

Functions Requiring Routine Descriptors

Thus  you  satisfy  the  requirement  to  explicitly  indicate  a  function's  ISA  by  creating
routine  descriptors  and by using the  address  of  those  routine  descriptors  where  you
would have used simple function pointers in the purely 680x0 programming environment.

Remember, however, that you only need to do this when you need to pass the address of
a function to some external piece of code (such as a system software function or some
other application) that might be in a different ISA from that of the function.  You do not
need to create routine descriptors for functions that are called only by your application.
More generally, if you know for certain that a function is always called by code of the
same ISA, you can and should continue to use procedure pointers instead of universal
procedure pointers.

Some of the typical functions for which you need to create routine descriptors are:

• Control  action  functions  (see  the  demonstration  programs  at  Chapter  7  —
Introduction to Controls and Chapter 19 — Text and TextEdit).

• Event filter functions (see the demonstration program at Chapter 8 — Dialogs and
Alerts and Chapter 19 — Text and TextEdit).

• Apple event handling functions (see the demonstration programs at Chapter 10 —
Required Apple Events and Chapter 16 — Files).

• TextEdit click loop functions (see the first demonstration program at Chapter 19 —
Text and TextEdit).

The PowerPC Environment
In the emulation environment provided by the 68LC040 emulator, the organisation of an
application partition3, and the run-time behaviour of emulated software are identical to
that  provided  on  680x0-based  Macintoshes.   However,  the  run-time  environment  for
native PowerPC software is significantly different from that of standard 680x0 run-time
environment.  The PowerPC environment provides a much simpler run-time model made
possible by the use of fragments as the standard way of organising executable code and
data in memory

3  See Chapter 1 — System Software, Memory, and Resources.
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Fragments

A fragment is any block of executable PowerPC code and its associated data.  Fragments
can be of any size, and are complete, executable entities.4  Amongst other things, they
use a method of addressing the data they contain that is different and more general than
the  A5-related  method used  by  680x0  applications  to  address  their  global  data  (see
Chapter 1 — System Software, Memory, and Resources).   The natural consequence of
this is that any PowerPC software packaged as a fragment has easy access to global
data5.   In  the  PowerPC  environment,  any  function  contained  in  an  application  has
automatic access to the application's global variables.

Categories of Fragments

There are three broad categories of fragments:

• Applications.  An application is a fragment which can be launched by the user
from the Finder.

• Import Libraries.  An import library is a fragment which contains code and data
associated  with  some  other  fragment  or  fragments.   The  system software,  for
example,  is  an  import  library.   When  you  link  an  import  library  with  your
application, the import library's code is not copied to your application; rather, your
application contains symbols known as imports which refer to some code or data in
the import library.

• Extensions.  An extension is a fragment which extends the capabilities of some
other fragment.  For example, your application might use external code modules
like  control  definition  functions.   Unlike  import  libraries,  extensions  must  be
explicitly connected to your application during execution.  There are two types of
extensions,  namely,  application  extensions and  system  extensions.   An
application extension is an extension that is used by a single application.

Import libraries and system extensions are sometimes called shared libraries, because
the code and data they contain can be shared by multiple clients.

Fragment Storage and Loading

The physical  storage for a fragment is a  container,  which can be any kind of object
accessible by the operating system.  The system software import library, for example, is
stored in ROM.  The fragment containing an application's executable code is stored in the
application's data fork, which is a file of type 'APPL'.  A container can also be a resource.

The process of loading a fragment into memory and preparing it for execution is handled
by the Code Fragment Manager.  The code and data sections of a loaded fragment are
loaded  into  separate  sections  of  memory,  which  are  generally  not  contiguous.
Regardless  of  where  it  is  loaded,  however,  there  is  no segmentation within the code
section of a fragment.

Even though a fragment's code and data sections can be loaded anywhere in memory,
those sections cannot be moved in memory once they have been loaded6.

4 The term "fragment"  was  chosen  to  avoid  confusion  with  the terms  already  used in  Inside Macintosh  to  describe
executable code, such as "component" and "module".  The term is not intended to suggest that the block of code and data
is small, detached or incomplete.
5 In the 680x0-based system software,  it is sometimes difficult to use global data within types of software other than
applications.  In addition, it is often complicated for a routine installed by some code to gain access to the code's global
variables.
6 In the 680x0 environment, an application's code can be unloaded (by the Memory Manager) and later re-loaded into a
different place in memory.
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Container Formats

The Code Fragment Loader recognises two kinds of container format, the principal one
being Preferred Executable Format (PEF).  PEF is an object file format developed by
Apple  Computer.   PEF  provides  support  for  a  fragment's  optional  initialisation  and
termination  routines  and  for  the  version  checking  performed  by  the  Code  Fragment
Manager when an import library is connected to a fragment.

Code Fragment Resource

As  previously  stated,  the  first  version  of  the  system  software  for  PowerPC-based
Macintosh  computers  allows  the  user  to  run  both  680x0  and  PowerPC  applications.
Accordingly, the Process Manager needs some method of determining, at the time the
user  launches  the  application,  what  kind  of  application  it  is.   The  Process  Manager
assumes that the application is a 680x0 application unless you indicate otherwise.  You
do this by including in the resource fork of your PowerPC application a code fragment
resource (resource type 'cfrg') with a resource ID of 0.  This resource indicates:

• The ISA of your application's executable code.

• The location of the code's container.

You do not have to create the 'cfrg' resource yourself because CodeWarrior does this for
you when you compile your application as PowerPC code.

Effect of the Code Fragment Resource

Typically,  the  code  and  data  for  a  PowerPC  application  are  contained  in  your
application's data fork, as shown at Fig 2.  If your application does not contain a code
fragment  resource,  the  Process  Manager  assumes  that  your  application  is  a  680x0
application and calls the Segment Manager to load your application's executable code
from resources of type 'CODE' in your application's resource fork (see Fig 2).

FIG 2 - THE STRUCTURE OF 680x0 AND POWERPC APPLICATIONS 
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Fat Applications

The placement of an application's PowerPC code in the data fork makes it easy to create
a  fat application.  Fat applications contain both PowerPC code and 680x0 executable
code, as shown at Fig 3.7

7 Ideally, you should package your application as a fat application so as to afford users maximum flexibility.  If, however,
you decide not to package your application as a fat application, you should at least include an executable 680x0  'CODE'
resource which displays an alert box informing the user that your application runs only on PowerPC-based Macintoshes.
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FIG 3 - THE STRUCTURE OFA FAT APPLICATION 
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Accelerated Code Resources

As previously stated, it is possible to use resources as containers for executable code.
You can put an executable PowerPC code fragment into a resource to obtain a PowerPC
version of a 680x0 stand-alone code module. 

For example, you might re-compile an existing custom menu definition function (stored in
a resource of type  'MDEF') into PowerPC code.  Note that, because the Menu Manager
code that calls your menu definition function might be 680x0 code, a mode switch to the
PowerPC environment might be required before your definition function can be executed.
Accordingly, as shown at the left at Fig 4, you need to prepend a routine descriptor onto
the beginning of the resource.

These  kinds  of  resources  are  called  accelerated resources because  they  are  faster
implementations of existing kinds of resources.  An accelerated resource is any resource
containing PowerPC code that has a single entry point at the top (the routine descriptor)
and that  models  the  traditional  behaviour  of  a  680x0 stand-alone  code  resource,  for
example, a control definition function (stored in a resource of type 'CDEF').

The CodeWarrior Linker adds the start-up code to your resource that allows a 680x0
application,  running  under  the  emulator  on  a  PowerPC,  to  use  the  resource.   The
resource runs only on a PowerPC computer.

FIG 4 - STRUCTURE OF ACCELERATED AND FAT CODE RESOURCES
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Fat Code Resources

As is shown at the right at Fig 4, it is also possible to create fat code resources, that is,
resources containing both 680x0 and PowerPC versions.  A fat code resource runs only
on a PowerPC computer.  It contains a header that allows the Mixed Mode Manager to
avoid  a  context  switch  by  letting  the  resource  run  either  native  or  under  the  68K
emulator.
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Safe Fat Code Resources

You can also create safe fat code resources, which run on either 680x0 or PowerPC.  A
safe fat resource contains a header that decides whether the resource is running on a
680x0 or a PowerPC,  and calls  the correct  code for  the Mac OS computer  that it  is
running on.

Calling Conventions

In  the  680x0  environment,  there  are  many  ways  for  one  function  to  call  another,
depending on whether the called function conforms to Pascal, C, Operating System, or
other  calling  conventions.   In  the  PowerPC  environment,  there  is  only  one  calling
convention,  which is  designed to reduce the amount of  time required to call  another
piece of code and to simplify the entire code calling process.

One significant feature of the calling convention in the PowerPC environment is that most
parameters are passed in registers dedicated for that purpose.  The large number of
general-purpose and floating-point registers in the PowerPC makes this goal quite easy
to achieve.   Parameters  are  passed  on the  stack only  when they  cannot be  put  into
registers.

Accessing Global Variables — "Detached" Code

In the 680x0 environment,  you need to manage the processor's  A5 register explicitly
when you need to gain access to your application's global variables or QuickDraw global
variables from within some piece of "detached" code installed by your application.  As
will be seen at Chapter 23 — Miscellany, an example of such a piece of detached code is
a VBL task (vertical blanking task). 

Because VBL tasks are interrupt routines, they could well execute when the value in the
680x0 microprocessor's A5 register does not point to your application's A5 world.  As a
result, if you needed to access your application's global variables within a VBL task, you
would  need  to  set  the  A5  register  to  its  correct  value  when  your  VBL  task  begins
executing and restore the previous value upon exit.

To achieve this, your application would save its A5 using SetCurrentA5.  Then, at interrupt
time, the VBL task would begin by calling SetA5 to, firstly, set the A5 register to this saved
value and, secondly, save the value that was in the A5 register immediately prior to the
call.  The VBL task would then end with another call to  SetA5, this time to restore the
initial value.

All this is necessary in 680x0 code.  However, because a PowerPC application does not
have an A5 world (see  Chapter  1 — System Software,  Memory,  and Resources),  you
never need to explicitly set up and restore your application's A5 world.  (Put another
way, your application's global variables are transparently available to any code compiled
into your application.)  Accordingly your VBL task source code would need to be modified
for compilation as PowerPC code.

To maintain a single source code base for both the 680x0 and PowerPC environment, you
would use conditional compilation.  For example, consider the following simple 680x0
VBL task:

function GetVBLRec : VBLRecPtr;
inline $2E88; { MOVE.L A0,D0 }

...

procedure TheVBLTask;

var
ignoredInt : SInt32;
currentA5 : SInt32; { For stored value of A5. }
taskRecPtr: VBLRecPtr; { Pointer to task record. }
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begin
taskRecPtr:= GetVBLRec; { Get address of task record. }
currentA5 := SetA5(vblRecPtr^.thisAppsA5); { Set app's A5 and store old A5. }

gCounter := gCounter + 1; { MODIFY A GLOBAL VARIABLE. }
taskRecPtr^.vblTaskRec.vblCount := kInterval; { Reset so function executes again. }

ignoredInt := SetA5(currentA5); { Restore the old A5 value. }
end;

{ of procedure TheVBLTask }

At the first call to SetA5, the application's A5 is set and the current value in the A5 register
is  saved.  This saved value is  re-installed at the second call  to  SetA5.   For VBL tasks
written as PowerPC code, both of  these steps are unnecessary.   Furthermore,  in the
680x0 environment, the address of the VBL task record is passed in register A0.  If you
need that address in a high-level language, you must retrieve it immediately upon entry
into  your  VBL task  (as  is  done  in  the  above  listing).   In  the  PowerPC environment,
however, the address of the VBL task record can be passed to the task as an explicit
parameter.

The  following  shows  how  the  above  source  code  would  be  modified  for  conditional
compilation so as to be capable of being compiled as both 680x0 code and PowerPC code:

{$ifc TARGET_CPU_68K }
function GetVBLRec : VBLRecPtr;

inline $2E88; { MOVE.L A0,D0 }
{$endc}
...
{$ifc TARGET_CPU_68K }
procedure TheVBLTask;
{$elsec}
procedure TheVBLTask(vblRecPtr : VBLTaskPtr);
{$endc}

var
taskRecPtr: VBLRecPtr; { Pointer to task record. }

{$ifc TARGET_CPU_68K }
ignoredSInt32 : SInt32;
curA5 : SInt32; { For stored value of A5. }

begin
taskRecPtr := GetVBLRec; { Get address of task record. }
currentA5 := SetA5(vblRecPtr^.thisAppsA5); { Set app's A5 and store old A5. }

{$elsec}
begin

{$endc}

gCounter := gCounter + 1; { MODIFY A GLOBAL VARIABLE. }
taskRecPtr^.vblTaskRec.vblCount := kInterval; { Reset so function executes again. }

{$ifc TARGET_CPU_68K }
ignoredSInt32 := SetA5(currentA5); { Restore the old A5 value. }

{$endc}
end;

{ of procedure TheVBLTask }

TARGET_CPU_68K (Compiler  is  generating  680x0  instructions)  is  defined  in  the  Universal
Interfaces file ConditionalMacros.p.

Accessing Global Variables — Code Resources

Code resources (for  example,  custom menu definition functions)  often need to access
global variables.  To avoid any conflict with the running application, 680x0 versions of
code resources access their globals referenced from the 680x0 A4 register, instead of the
A5 register.  Accordingly,  the value in the A4 register must be saved on entry to the
main function and restored on exit.  Using CodeWarrior, you would ensure this by calling
SetCurrentA4 and SetA4 as follows:

uses
PascalA4;
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var
oldA4, ignored : longint;

begin
oldA4 := SetCurrentA4;

...

ignored := SetA4(oldA4);
end.

The calls to  EnterCodeResource and  ExitCodeResource are not required when the code is being
compiled as PowerPC code.  Accordingly the above code would need to be modified for
conditional compilation so as to be capable of being compiled as both 680x0 code and
PowerPC code:

uses
PascalA4;

{$ifc TARGET_CPU_68K }
var
oldA4, ignored : longint;
{$endc}

begin
{$ifc TARGET_CPU_68K }

oldA4 := SetCurrentA4;
{$endc}

...

{$ifc TARGET_CPU_68K }
ignored := SetA4(oldA4);

{$endc}
end.

Data Alignment

Unless told to do otherwise, a compiler arranges a data structure in memory so as to
minimise  the amount of  time required to access  the fields  of  the  structure,  which is
generally what you would like to have happen.  PowerPC and 680x0 compilers follow
different conventions concerning the alignment of data in memory.  Those conventions
are as follows

• 680x0  Data  Alignment  Conventions.  A  680x0  processor  places  very  few
restrictions on the alignment of data in memory.  The processor can read or write a
byte, word, or long word value at any even address in memory.  In addition, the
processor can read byte values at any location in memory.  As a result, the only
padding required might be a single byte to align two-byte or larger fields to even
boundaries or to make the size of an entire data structure an even number of bytes.

• PowerPC  Data  Alignment  Conventions.  The  PowerPC  processor  prefers to
access data in memory according to its natural alignment, which depends on the
size of the data.  A 1-byte value is always aligned in memory.  A 2-byte value is
aligned  at  an even address.   A 4-byte  value  is  aligned  on any  address  that  is
divisible  by 4,  and so on.   The PowerPC processor can access  data that is  not
aligned on its natural boundary, but it performs aligned memory accesses more
efficiently.   As a  result,  PowerPC processors  usually  insert  pad bytes  into data
structures  to enforce the preferred data alignment.   For example,  consider this
data structure, which would occupy eight bytes in the 680x0 environment:

MyRecord = record
version : SInt16;
address : SInt32;
count : SInt16;
end;

To achieve the desired alignment of the  address field in the PowerPC environment
onto a 4-byte boundary, 2 bytes of padding are inserted after the  version field.  In
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addition,  the  record  itself  is  padded  to  a  word  boundary  (a  word  on PowerPC
processors being 4 bytes, not 2 bytes as is the case on 680x0 processors).   As a
result, the record occupies 12 bytes of memory in the PowerPC environment.

In general,  these  different  data alignment conventions  should be transparent  to your
application.  You need to worry about the differences only when you need to transfer data
between the two environments, for example, when:

• Your application creates files containing data structures and the user copies those
files from a PowerPC-based Macintosh to a 680x0-base Macintosh (or vice versa).

• Your PowerPC application creates  a  data structure  and passes  it  to some code
running under the 68LC040 Emulator.

To ensure  that  data  can be  transferred  successfully  in  such cases,  it  is  sufficient  to
simply instruct the PowerPC compiler to use 680x0 data alignment conventions.  (You
can do this in the CodeWarrior Settings dialog.)  You should make sure, however, that
you use 680x0 alignment only when absolutely necessary.  The PowerPC processor is less
efficient when accessing misaligned data.

Floating Point Arithmetic

The  PowerPC-based  Macintosh  follows  the  IEEE  754  standard  for  floating-point
arithmetic.  In this standard, float is 32 bits, and double is 64 bits.  (Apple has added a 128
bit  long  double type.)   However,  the  PowerPC  Floating-Point  Unit  does  not  support
Motorola's  80/96-bit  extended type,  and  neither  do  the  PowerPC  numerics.   To
accommodate this, you must use Apple-supplied conversion utilities to move to and from
extended.    Once  again,  conditional  compilation  may  be  used  to  make  your  code
680x0/PowerPC compatible.  The following is an example:

quantity : Sint32;
value80bit : extended80;
{$ifc TARGET_CPU_PPC }
valueDouble : double;
{$endc}

{$ifc TARGET_CPU_68K }
value80bit := value80Bit * quantity;
{$endc}
{$ifc TARGET_CPU_PPC }

valueDouble := x80tod(value80Bit);
valueDouble := valueDouble * quantity;
dtox80(valueDouble, value80Bit);

{$endc}

Making Code Suitable For Compilation As Either 680x0 Code or 
PowerPC code — Summary

In general,  it  is  relatively easy to ensure  that your code will  compile  successfully  as
either 680x0 code or PowerPC code.  The areas requiring attention are summarised as
follows:

• Create routine descriptors for any routines whose addresses you pass to code of an
unknown type.

• Where there  are dependencies  on specific features  of  the 680x0 A5 world,  use
conditional  compilation  so  as  to  exclude  that  dependency  from  the  compiled
PowerPC code.

• Where  there  are  dependencies  on  information  being  passed  in  specific  680x0
registers (for example the A4 register), use conditional compilation so as to exclude
that dependency from the compiled PowerPC code.
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• Use 680x0 alignment for any data that is passed between environments.

• Accommodate  the  fact  that  neither  the  PowerPC  Floating-Point  Unit  nor  the
PowerPC numerics support Motorola's 80/96-bit extended type.

Relevant Constants, Data Types, and Functions
In the following, those functions introduced with Mac OS 8 and the Appearance Manager
are shown on a light gray background.

Constants

Instruction Set Architectures

kM68kISA = 0 680x0 architecture.
kPowerPCISA = 1 PowerPC architecture.

Procedure Information

kPascalStackBased = 0
kCStackBased = 1
kRegisterBased = 2

Data Types
ISAType = SInt8;
CallingConventionType = INTEGER;
ProcInfoType = LONGINT;

Routine Descriptor

RoutineDescriptor = PACKED RECORD
goMixedModeTrap: UInt16; { Our A-Trap }
version: SInt8; { Current Routine Descriptor version }
routineDescriptorFlags: RDFlagsType; { Routine Descriptor Flags }
reserved1: UInt32; { Unused, must be zero }
reserved2: UInt8; { Unused, must be zero }
selectorInfo: UInt8; { If a dispatched routine, calling convention, }

{ else 0 }
routineCount: UInt16; { Number of routines in this RD }
routineRecords: ARRAY [0..0] OF RoutineRecord; { The individual routines }

END;

RoutineDescriptorPtr = ^RoutineDescriptor;
RoutineDescriptorHandle = ^RoutineDescriptorPtr; 

Routine record
RoutineRecord = RECORD

procInfo: ProcInfoType; {  Calling conventions  }
reserved1: SInt8; {  Must be 0  }
ISA: ISAType; {  Instruction Set Architecture  }
routineFlags: RoutineFlagsType; {  Flags for each routine  }
procDescriptor: ProcPtr; {  Where is the thing we’re calling?  }
reserved2: UInt32; {  Must be 0  }
selector: UInt32; {  For dispatched routines, the selector  }

END;

RoutineRecordPtr = ^RoutineRecord;
RoutineRecordHandle = ^RoutineRecordPtr;

Routines

Determining Instruction Set Architectures

FUNCTION  GetCurrentISA : ISAType;  { Actually a conditionally-defined constant. }
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Creating and Disposing of Routine Descriptors

FUNCTION  NewRoutineDescriptor(theProc: ProcPtr; theProcInfo: ProcInfoType; 
theISA: ISAType): UniversalProcPtr;

FUNCTION  NewFatRoutineDescriptor(theM68kProc: ProcPtr; thePowerPCProc: ProcPtr;
theProcInfo: ProcInfoType): UniversalProcPtr;

PROCEDURE DisposeRoutineDescriptor(theProcPtr: UniversalProcPtr);

FUNCTION NewControlActionProc(userRoutine: ControlActionProcPtr): ControlActionUPP;
FUNCTION NewControlDefProc(userRoutine: ControlDefProcPtr): ControlDefUPP;
FUNCTION NewUserItemProc(userRoutine: UserItemProcPtr): UserItemUPP;
FUNCTION NewListDefProc(userRoutine: ListDefProcPtr): ListDefUPP;
FUNCTION NewTEClickLoopProc(userRoutine: TEClickLoopProcPtr): TEClickLoopUPP;
FUNCTION NewAEEventHandlerProc(userRoutine: AEEventHandlerProcPtr): AEEventHandlerUPP;
FUNCTION NewModalFilterProc(userRoutine: ModalFilterProcPtr): ModalFilterUPP;
FUNCTION NewListSearchProc(userRoutine: ListSearchProcPtr): ListSearchUPP;
FUNCTION NewDeviceLoopDrawingProc(userRoutine: DeviceLoopDrawingProcPtr): 

DeviceLoopDrawingUPP;
FUNCTION NewVBLProc(userRoutine: VBLProcPtr): VBLUPP;
FUNCTION NewSoundProc(userRoutine: SoundProcPtr): SoundUPP;
NewControlKeyFilterProc (userRoutine)
FUNCTION NewControlUserPaneDrawProc(userRoutine: ControlUserPaneDrawProcPtr):

ControlUserPaneDrawUPP;
FUNCTION NewControlUserPaneHitTestProc(userRoutine: ControlUserPaneHitTestProcPtr):

ControlUserPaneHitTestUPP;
FUNCTION NewControlUserPaneTrackingProc(userRoutine: ControlUserPaneTrackingProcPtr):

ControlUserPaneTrackingUPP;
FUNCTION NewControlUserPaneIdleProc(userRoutine: ControlUserPaneIdleProcPtr):

ControlUserPaneIdleUPP;
FUNCTION NewControlUserPaneKeyDownProc(userRoutine: ControlUserPaneKeyDownProcPtr):

ControlUserPaneKeyDownUPP;
FUNCTION NewControlUserPaneActivateProc(userRoutine: ControlUserPaneActivateProcPtr): 

ControlUserPaneActivateUPP;
FUNCTION NewControlUserPaneFocusProc(userRoutine: ControlUserPaneFocusProcPtr): 

ControlUserPaneFocusUPP;
FUNCTION NewControlUserPaneBackgroundProc(userRoutine: ControlUserPaneBackgroundProcPtr):

ControlUserPaneBackgroundUPP;
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