
Version 2.1

3
MENUS

Includes Demonstration Program Menus1 and Menus2

Introduction

Types of Menus

A menu is a user interface element which allows the user to view, or choose from, a list
of choices and commands provided by your application. There are basically three types
of menus:

• Pull-Down Menus. A pull-down menu is identified by a menu title in the menu bar.
Each pull-down menu comprises a menu title and one or more menu items.

• Submenus. A submenu is a menu that is attached to another menu. A menu to
which a submenu is attached is referred to as a hierarchical menu.

• Pop-Up Menus. A pop-up menu is a menu which does not appear in the menu bar
but rather appears on another part of the screen when the user presses the mouse
button while the cursor is at a particular location.

Pull-Down Menus

Menu Definition Functions and Menu Bar Definition Functions

The Menu Manager uses the following to display, and to perform basic operations on,
menus and the menu bar:

• Menu Definition Function. When you define a menu, you must specify the required
menu definition function (MDEF). The Menu Manager uses that MDEF to draw the
menu items in a menu, determine which item the user chose, insert scrolling
indicators as items in a menu, calculate the menu's dimensions, etc. An MDEF thus
determines the look and behaviour of menus.

• Menu Bar Definition Function. The Menu Manager uses the menu bar definition
function to draw and clear the menu bar, determine whether the cursor is currently
within the menu bar or any currently displayed menu, calculate the left edges of
menu titles, highlight a menu title, invert the entire menu bar, draw the menu's
shadow box, and save/restore the bits behind a menu. A menu bar definition
function thus determines the look and behaviour of the menu bar.

Menus 3-1

Version 2.1

Standard Appearance-Compliant Menu and
Menu Bar Definition Functions

The system software provides a standard Appearance-compliant MDEF and a standard
Appearance-compliant menu bar definition function, which are stored as code resources
in the System file. The standard MDEF is the 'MDEF' resource with a resource ID of 63.
The standard menu bar definition function is the 'MBDF' resource with a resource ID of 63.

Historical Note

These are the resource IDs of revised definition functions first issued with Mac OS
8 and the Appearance Manager. The old pre-Appearance definition functions have
resource IDs of 0, and remain in the System file. In Mac OS 8.0 and 8.1, the new
definition functions are located in the Appearance extension. As of Mac OS 8.5,
they are located in the System file.

When you define your menus and menu bar, you specify the definition functions that the
Menu Manager should use when managing them. Ordinarily, you will use the standard
functions; however, as with most other elements of the Macintosh user interface, the
option is available to write your own custom definition function if you need to provide
features not available in the standard definition functions.1 Given the new features added
by the latest standard definition functions, however, it is all but impossible to conceive of
circumstances that would require the writing of a custom definition function.

The Menu Bar and Menus

The Menu Bar

The menu bar extends across the top of the screen. As defined by the standard menu bar
definition function, the menu bar is white and high enough to display menu titles in the
height of the large system font2 plus a single pixel bottom border.

Generally, the menu bar should always be visible. If you want to hide the menu bar for
some reason, you should provide a method (for example, a keyboard equivalent for a
menu command) to allow the user to make the menu bar reappear.

The 'MBAR' Resource. Each application has its own menu bar, which is defined by an
'MBAR' resource. This resource lists the order and resource ID of each menu appearing in
your menu bar. Your menu's 'MBAR' resource should be defined such that the Apple menu
is the first menu in the menu bar, with the File and Edit menus being the next two. The
Help and Application menus do not need to be defined in the 'MBAR' resource, since the
Menu Manager automatically adds them to the menu bar when the application calls
GetNewMBar provided that your menu bar includes the Apple menu.

Menus

All Macintosh applications should provide, as a minimum, the standard menus. The
standard menus are the Apple menu, the File menu and the Edit menu.

Your application can disable any menu, which causes the Menu Manager to dim that
menu's title and all associated menu items. The menu items can also be disabled
individually. Your application should specify whether menu items are enabled or
disabled when it first defines and creates a menu and can enable or disable items at any
time thereafter.

1 Chapter 20 — Lists and Custom List Definition Functions includes an example of custom definition functions for another
element of the user interface known as a list.
2 For Roman scripts, Chicago or Charcoal (Mac OS 8.0, 8.1, and 8.5) plus Capitals, Gadget, Sand, Techno, or Textile (Mac
OS 8.5))

3-2 Menus

Version 2.1

The 'MENU' Resource. For each menu, you define the menu title and the individual
characteristics of its menu items in a 'MENU' resource.

The 'xmnu' Resource. For each menu, you may also define an 'xmnu' (extended menu)
resource. The 'xmnu' resource was introduced with Mac OS 8 and the Appearance
Manager and is, in effect, the extension of the 'MENU' resource required to provide for
additional menu features. . Note that you do not need to provide this resource if you do
not require these additional features. An 'xmnu' resource must have the same ID as the
'MENU' resource it extends

Historical Note

The 'mctb' Resource. The use of the old standard MDEF (resource ID 0) was
sometimes accompanied by the use of a menu colour table ('mctb') resource with
the same ID as the associated 'MENU' resource. This allowed the default colours of
the title, item text, and background to be changed. The use of 'mctb' resources is
inconsistent with the concept of themes and Appearance-compliance; accordingly,
under the Appearance Manager, the use of this resource is not recommended.

Menu Items

A menu item can contain text or a dividing line (that is, a divider). A divider is always
dimmed. Each menu item, other than dividers, can have a number of characteristics as
follows:

• An icon, small icon, reduced icon, colour icon, or an icon from an icon family3 to the
left of the menu item's text. (Note that items with small or reduced icons cannot
have submenus.)

Historical Note

Support for icon families was introduced with Mac OS 8 and the Appearance
Manager.

• A checkmark or other marking character to the left of the menu item's text,
indicating the status of the menu item or the mode it controls. (A menu item can
have a mark or a submenu, but not both.)

• The symbols for the item's keyboard equivalent. (An item that has a keyboard
equivalent cannot have a submenu, a small icon or a reduced icon.)

• A triangular indicator to the right of a menu item's text to indicate that the item
has a submenu. (An item that has a submenu cannot have a keyboard equivalent, a
marking character, a small icon or a reduced icon.)

• A font style (bold, italic, etc.) for the menu item's text.

• The text of the menu item.

• The ellipsis character (…) as the last character in the text of the menu item,
indicating that, before executing the command, the application will display a dialog
box requesting more information from the user. (The ellipsis character should not
be used in menu items which display informational dialogs or a confirmational
alert.)

• A dimmed appearance when the application disables the item. (When the menu
title is dimmed, all menu items in that menu are also dimmed.)

3 The various icon types are described at Chapter 13— Offsreeen Graphics Worlds, Pictures, Cursors, and Icons.

Menus 3-3

Version 2.1

A menu can contain any number of menu items; however, in versions of the system
software earlier than Mac OS 8.5, only the first 31 can be disabled.

Groups of Menu Items

Where appropriate, menu items should be grouped, with each group separated by a
divider. For example, a menu can contain commands which perform actions and
commands which set attributes. The action commands which are logically related should
be grouped, as should attribute commands which are interdependent. The attribute
commands which are mutually exclusive, and those which form accumulating attributes
(for example, Bold, Italic and Underline), should also be grouped.

Keyboard Equivalents for Menu Commands

The Menu Manager provides support for keyboard equivalents4. You detect a keyboard
equivalent by examining the modifiers field of the event structure, first determining
whether the Command key was pressed at the time of the event. If so, your application
typically calls MenuEvent, which maps the keyboard equivalent character contained in the
specified event structure to its corresponding menu and menu item and returns the menu
ID and the chosen menu item.5

Historical Note

Prior to Mac OS 8 and the Appearance Manager, only Command-key
equivalents for menu items were supported. Support for keyboard equivalents
was introduced with Mac OS 8 and the Appearance Manager. This new capability
is generally referred to as "support for extended modifier keys" (Shift, Option, and
Control).

Reserved Command-Key Equivalents. Apple reserves the following Command-key
equivalents, which should be used in the File and Edit menus of your application:

Keys Command Menu
Command-A Select All Edit
Command-C Copy Edit
Command-N New File
Command-O Open… File
Command-P Print… File
Command-Q Quit File
Command-S Save File
Command-V Paste Edit
Command-W Close File
Command-X Cut Edit
Command-Z Undo Edit

Other common keyboard equivalents are:

Keys Command Menu
Command-B Bold Style
Command-F Find File
Command-G Find Again File
Command-I Italic Style
Command-T Plain Text Style
Command-U Underline Style

4 A keyboard equivalent is any combination of the Command key, optionally one or more modifier keys (Shift, Option,
Control), and another key. A Command-key equivalent such as Command-C is thus, by definition, also a keyboard
equivalent.
5 You should not assign a Command–Shift–number key sequence to a menu item as its keyboard equivalent; Command–
Shift–number key sequences are reserved for use as 'FKEY' resources. Command–Shift–number key sequences are not
returned to your application, but instead are processed by the Event Manager. The Event Manager invokes the 'FKEY'
resource with a resource ID that corresponds to the number that activates it.

3-4 Menus

Version 2.1

Menus Added Automatically By the Menu Manager

The menus added automatically by the Menu Manager (the Help and Application menus)
are sometimes referred to as the system-managed menus. The Application menu has
an icon as a title. The Help menu is displayed only if space is available; however, the
application menu is invariably displayed, overlapping the main part of a long menu if this
becomes necessary.

Historical Note

Prior to Mac OS 8 and the Appearance Manager, the Help menu had an icon as a
title and was located immediately to the left of the Application menu. The new
menu bar definition function uses Help as the menu title and displays the menu
immediately to the right of your application's last menu.

Your application does not need to take any action if the user chooses an item from the
Application menu. However, if the user chooses an item added by your application to the
Help menu, your application is responsible for taking the appropriate action.

The Apple Menu

The Apple menu should be defined as the first in your application. Typically, applications
provide an About command as the first menu item, followed by a divider. The remaining
items are, of course, controlled by the contents of the Apple Menu Items folder in the
System folder.

To create your application's Apple menu, firstly define the Apple menu title, the
characteristics of your application's About command and the divider following it in a 'MENU'
resource. Then insert the contents of the Apple Menu Items folder into your application's
Apple menu by calling AppendResMenu, with 'DRVR' specified as the resource type in the
parameter theType.

When the user chooses the About command, your application should display a dialog box
or an alert box containing your application's name, version number, copyright
information, any other information as required, and an OK button.

When the user chooses an item other than the About command, your application should
call the OpenDeskAcc function, which schedules the chosen item for execution and then
returns to your application. At the next call to WaitNextEvent, your application receives a
suspend event and the chosen item becomes the foreground process.

The File Menu

The standard File menu contains commands related to the management of documents,
plus the Quit command. The standard commands (see Fig 1) should be supported by your
application. Any other commands added to the standard section of the menu should
pertain to the management of documents.

Menus 3-5

Version 2.1

FIG 1 - STANDARD FILE MENU

The actions your application should take when File menu commands are chosen are
detailed at Chapter 15 — Printing and Chapter 16 — Files.

The Edit Menu

The standard Edit menu (see Fig 2) provides commands which allow the user to edit the
contents of their documents, to copy data between different applications using the
Clipboard, and to facilitate data sharing between documents created by different
applications via publish and subscribe.

FIG 2 - STANDARD EDIT MENU

All Macintosh applications should include the standard editing commands (Undo, Cut, Copy,
Paste and Clear) so as to support those operations in dialog boxes.

An additional word or phrase should be added to Undo to clarify exactly what action your
application will reverse. Other commands may be added if they are related to editing or
changing the contents of your application's documents.

The Help Menu

You can add items to the end of the Help menu to give the user access to any online help
that your application provides in addition to help balloons. Items are added to the Help
menu using HMGetHelpMenuHandle and AppendMenu. When adding items, include the name of
your application in the command so as to indicate to the user just which application the
help relates to.

Help Balloons

In the Help menu, the effect of selecting Show Balloons and Hide Balloons is global and
affects all applications. The Help Manager provides balloons for the Apple, Help and
Application menu titles, for items in the Application menu, and for the standard items in

3-6 Menus

Version 2.1

the Help menu. Your application should provide the content of help balloons for all other
menu items and menus in your application.

The Application Menu

When the user chooses an item from the Application menu, the Menu Manager handles
the event as appropriate. For example, if the user chooses another application, the Menu
Manager sends your application a suspend event.

Font Menus

If your application has a Font menu, you should list in that menu the names of all
currently available fonts (that is, all those residing in the Fonts folder in the System
folder). Fonts are added to the Font menu using AppendResMenu or InsertResMenu, which add
items to the specified menu in alphabetical order.

Your application should indicate which font is in use by adding a checkmark to the left of
the name in the Font menu. If the current selection contains more than one font, a dash
should be placed next to the name of each font the selection contains. When the user
starts entering text at the insertion point, your application should display text in the
current font.

Font Attributes

Separate menus should be used to accommodate lists of font attributes such as styles and
sizes. Since the system software supports both bitmapped and TrueType fonts, your
application should not provide an upper limit for font sizes.

WYSIWYG Font Menus

Mac OS 8 and the Appearance Manager introduced the new function SetMenuItemFontID,
which enables you to easily set up a Font menu with each item being drawn in the actual
font.

Hierarchical Menus
A hierarchical menu is a menu which has a submenu attached to it. Hierarchical menus
should be used to provide the user with additional choices in the nature of attributes.
They should not be used to provide additional commands. There should only ever be one
hierarchical level, that is, there should be only one level of submenus.

Pop-Up Menus
Pop-up menus are used to present the user with a list of choices in a dialog box or
window. Pop-up menus work well when your application needs to present several
choices to the user and it is acceptable to hide these choices until the menu is opened.
(Other methods of displaying choices are checkboxes and radio buttons.) Pop-up menus
should not be used for multiple choice lists or as a way to provide more commands. They
should contain attributes rather than actions; accordingly, Command-key equivalents
should not be used in pop-up menus.

The standard pop-up menu is actually implemented as a control, specifically, the pop-up
menu button control. Its appearance (see Fig 3) and behaviour is thus determined by a
pop-up menu button control definition function.

Menus 3-7

Version 2.1

FIG 3 - POP-UP MENU BUTTON (EXAMPLE)

POP-UP MENU
BUTTON TITLE

POP-UP MENU BUTTON

POP-UP MENU

Because pop-up menus are implemented as controls, they are addressed at Chapter 7 —
Introduction to Controls. Further information in this chapter will be limited to the
provision of the 'MENU' resource required by the pop-up menu button control.

Menu Structures, Menu IDs and Item Numbers, Command IDs,
and Menu Lists

The Menu Structure

The Menu Manager maintains information about menus in menu structures, a data
structure of type MenuInfo:

TYPE
MenuInfoPtr = ^MenuInfo;
MenuInfo = RECORD

menuID: INTEGER;
menuWidth: INTEGER;
menuHeight: INTEGER;
menuProc: Handle;
enableFlags: LONGINT;
menuData: Str255;

END;

MenuPtr = ^MenuInfo;
MenuHandle = ^MenuPtr;

You typically specify most of this information in a 'MENU' resource. When you create a
menu, the Menu Manager creates a menu structure for the menu and returns a handle to
that structure. The Menu Manager automatically updates the menu structure when you
make any changes to the menu programmatically.

Menu IDs and Item Numbers

To refer to a menu, you usually use either the menu's ID or the handle to the menu's
menu structure. Accordingly, you must assign a menu ID to each menu in your
application as follows:

• Pull-down menus must use a menu ID greater than 0.

• Submenus of an application must use a menu ID of from 1 to 235.

To refer to a menu item, you use the item's item number. Item numbers in a menu start
at 1.

3-8 Menus

Version 2.1

Command IDs

Mac OS 8 and the Appearance Manager introduced the command ID, which is an
alternative way of referring to a specific menu item in an application's menus.

The Menu List

The menu list, a structure private to the Menu Manager, contains handles to the menu
structures of one or more menus (although a menu list can, in fact, be empty). The end
of a menu list contains handles to the menu structures of submenus and pop-up menus, if
any, the phrase "submenu portion of the menu list" referring to this portion of the list.

When your application initialises the Menu Manager, the Menu Manager creates the
menu list. The menu list is initially empty but changes as your application adds menus to
it or removes menus from it programmatically.

Creating Your Application's Menus

'MBAR', 'MENU', and 'xmnu' Resources

As stated at Chapter 1 — System Software, Memory, And Resources, you can provide a
textual, formal description of resources in a file and then use a resource compiler such as
Rez to compile the description into a resource, or you can create resource descriptions
using a resource editor such as Resorcerer. Macintosh Pascal assumes the use of
Resorcerer.

When creating resources using Resorcerer, it is advisable that you refer to a diagram and
description of the structure of the resource and relate that to the various items in the
Resorcerer editing windows. Accordingly, the following describes the structure of those
resources associated with the creation of menus.

Structure of a Compiled 'MBAR' Resource

Fig 4 shows the structure of a compiled 'MBAR' resource. The number of resource IDs
should match the number of menus declared in the first two bytes.

FIG 4 - STRUCTURE OF A COMPILED 'MBAR' RESOURCE

NUMBER OF MENUS

RESOURCE ID IF FIRST MENU

RESOURCE ID OF SECOND MENU

RESOURCE ID OF NEXT MENU

2

2

RESOURCE ID OF LAST MENU

BYTES

2

2

2

Structure of a Compiled 'MENU' Resource

Fig 5 shows the structure of a compiled 'MENU' resource (and its variable length data) and
how it "feeds" the menu structure.

Menus 3-9

Version 2.1

FIG 5 - STRUCTURE OF A COMPILED MENU ('MENU') RESOURCE AND ITS VARIABLE LENGTH DATA

 VARIABLE LENGTH DATA FOR EACH MENU ITEM

LENGTH (m) OF MENU ITEM TEXT

ICON NUMBER, SCRIP CODE, OR 0
KEYBOARD EQUIVALENT, 0x1B, 0x1C, 0x1D, ox1E, or 0

MARKING CHARA , MENU ID OF SUBMENU, OR 0

n

1

FONT STYLE OF THE MENU ITEM

BYTES

1
1
1

1

TEXT OF MENU ITEM

Stored as variable length data
at the end of the menu structure

STRUCTURE OF A COMPILED MENU ('MENU') RESOURCE

MENU ID

PLACEHOLDER FOR MENU WIDTH

PLACEHOLDER FOR MENU HEIGHT

RESOURCE ID OF MENU DEFINITION FUNCTION

PLACEHOLDER

LENGTH (n) OF TITLE
CHARACTERS OF MENU TITLE

INITIAL ENABLED STATE OF
THE MENU AND MENU ITEMS

PLACEHOLDER

VARIABLE LENGTH DATA THAT
DEFINES THE MENU ITEMS

2

2

2

4

1
n

variable

BYTES

2

2

1

MenuInfo = RECORD
 menuID: INTEGER;
 menuWidth: INTEGER;
 menuHeight: INTEGER;
 menuProc: Handle;
 enableFlags: LONGINT;
 menuData:Str255;
END;

The following describes the main fields of the 'MENU' resource:

Field Description
MENU ID Each menu in your application should have a unique menu ID. Note

that the menu ID does not have to match the resource ID, although by
convention most applications assign the same number for a menu's
resource ID and menu ID.
A menu ID from 1 to 235 indicates a menu (or submenu) of an
application. A negative menu ID indicates a menu belonging to a
driver. A menu ID from 236 to 255 indicates a submenu of a driver.
Apple reserves the menu ID of 0.

PLACEHOLDER FOR MENU
WIDTH
PLACEHOLDER FOR MENU
HEIGHT

After reading in the resource data, the Menu Manager requests the
menu's MDEF to calculate the width and height of the menu and store
these values in the menuWidth and menuHeight fields of the menu structure.

RESOURCE ID OF MENU
DEFINITION
FUNCTION

If the integer 63 appears here, the Menu Manager uses the standard
MDEF to manage the menu. If you provide your own MDEF, its
resource ID should appear in this field.
After reading in the menu's resource data, the Menu Manager reads in
the MDEF, if necessary. The Menu Manager stores a handle to the
MDEF in the menuProc field of the menu structure.

INITIAL ENABLED STATE OF
THE
MENU AND MENU ITEMS

This is a 32-bit value where bits 1-31 indicate if the corresponding
menu item is enabled or disabled, and bit 0 indicates whether the
menu as a whole is enabled or disabled. The Menu Manager
automatically enables menu items greater than 31 when a menu is
created.

VARIABLE LENGTH DATA
THAT
 DEFINES THE MENU ITEMS

The Menu Manager simply reads in this variable length data for each
menu item and stores it as variable data at the end of the menu
structure. The MDEF is responsible for interpreting the contents of
the data (see Fig 5).

The following describes the main fields of the variable length data for each menu item.
Note that various alternatives apply to the icon number, keyboard equivalent, and
marking character fields. For example, a menu item can have a keyboard equivalent or a
submenu, but not both.

Field Description
ICON NUMBER, SCRIPTCODE,
OR 0

ICON NUMBER
The icon number is a number from 1 to 255 (or from 1 to 254 for small
or reduced icons).
The Menu Manager adds 256 to the icon number to generate the
resource ID of the menu item's icon. If the menu item specifies an

3-10 Menus

Version 2.1

icon, you should also provide a 'cicn' (colour icon) or 'ICON' resource with
a resource ID equal to the icon number plus 256. If you want the
Menu Manager to reduce an 'ICON' resource to the size of a small icon
('SICN'), or reduce the size of a 'cicn' resource by half, also provide the
value 0x1D in the keyboard equivalent field (see below). If you want a
'SICN' resource, also provide the value 0x1E in the keyboard equivalent
field.
The Menu Manager looks first for a 'cicn' resource with the calculated
resource ID. In the era of the Appearance Manager, colour icons are
much to be preferred.
SCRIPTCODE (Not to be used when the 'MENU' resource is extended with an 'xmnu'
resource)
If you want the Menu Manager to draw the item's text in a script other
than the system script, specify the script code here and also provide
0x1C in the keyboard equivalent field (see below).
When the 'MENU' resource is extended by an 'xmnu' resource, the script
code should be set in the text encoding field of the 'xmnu' resource.
0
Indicates that the menu item does not contain an icon and uses the
system script.

KEYBOARD EQUIVALENT, $1B,
$1C, $1D, $1E, OR 0

KEYBOARD EQUIVALENT
Specified as a one-byte character and, actually, a Command-key
equivalent only.
The Command-key equivalent can be extended with modifier key
(Shift, Option, Control) constants in the modifier keys field of the
extended menu ('xmnu') resource (see below).
$1B
Indicates that the menu item has a submenu. (The menu ID of the
submenu should be assigned to the marking character field (see
below).)
$1C (Not to be used when the 'MENU' resource is extended with an 'xmnu' resource)
Indicates that the item uses a script other than the system script.
(The script code should be assigned to the icon number field (see
above).)
When the 'MENU' resource is extended by an 'xmnu' resource, the script
code should be set in the text encoding field of the 'xmnu' resource.
$1D
For menu items containing icons, causes the Menu Manager to reduce
an 'ICON' resource to the size of a small icon, or reduce the size of a 'cicn'
resource by half.
$1E
Indicates that you want the Menu Manager to use a small icon ('SICN')
resource for the item's icon. (The small icon's resource ID should be
assigned to the icon number field (see above).)
0
Indicates that the menu item has neither a keyboard equivalent nor a
submenu and uses the system script.

MARKING CHARACTER, MENU
ID OF SUBMENU, OR 0

MARKING CHARACTER
Special characters, such as the checkmark and diamond characters
are available to indicate the marks associated with a menu item.
MENU ID OF SUBMENU
Submenus of an application must have menu IDs from 1 to 235.
Submenus of a driver must have menu IDs from 236 to 255..
0
Indicates that the item has neither a mark nor a submenu.

FONT STYLE OF THE MENU
ITEM Indicates whether the font style of the menu item should be plain, or

any combination of bold, italic, outline, and shadow.

Structure of a Compiled 'xmnu' Resource

The 'xmnu' resource provides for the additional features introduced with Mac OS 8 and the
Appearance Manager, for example, support for extended modifier keys, command IDs,

Menus 3-11

Version 2.1

etc. Fig 6 shows the structure of a compiled 'xmnu' resource and an individual menu item
entry in that resource.

FIG 6 - STRUCTURE OF A COMPILED EXTENDED MENU ('xmnu') RESOURCE AND AN EXTENDED MENU ITEM ENTRY

BYTES

2

2VERSION NUMBER

NUMBER OF ENTRIES

FIRST EXTENDED MENU
ENTRY

LAST EXTENDED MENU
ENTRY

46

46

 STRUCTURE OF A COMPILED EXTENDED
MENU ('xmnu') RESOURCE

BYTES

2

2

2

4

REFERENCE CONSTANT

KEYBOARD GLYPH

REFERENCE CONSTANT

TYPE

COMMAND ID

MODIFIER KEYS
ICON TYPE PLACEHOLDER

TEXT ENCODING

MENU ID OF SUBMENU

FONT ID

RESERVED

ICON HANDLE PLACEHOLDER

1
1

4

4

4

4

1
1

EXTENDED MENU ITEM ENTRY

The following describes the fields of a compiled 'xmnu' resource:

Field Description
VERSION NUMBER An integer specifying the version of the resource.
NUMBER OF ENTRIES An integer that specifies the number of entries in the resource. Each

entry is an extended menu item structure.
FIRST EXTENDED MENU
ENTRY
…
LAST EXTENDED MENU
ENTRY

A series of extended menu item structures, each of which consists of a
type, command ID, modifier keys, text encoding, reference constants,
menu ID of submenu, font ID, and keyboard glyph. (A glyph is the visual
representation of a character (see Chapter 19 — Text and TextEdit).

Each entry in a 'xmnu' resource corresponds to a menu item. The following describes the
main fields of an extended menu item entry.

Field Description
TYPE Specifies whether there is extended information for the item. 1 indicates

that there is extended information for the item, causing the Menu
Manager to read the rest of the structure. 0 indicates that there is no
information for the item, causing the Menu Manager to skip the rest of
the structure.

COMMAND ID A unique value which you set to identify the menu item (instead of
referring to it using the menu ID and item number). This value may be
ascertained via a call to GetMenuItemCommandID.
A command ID may be assigned to a menu item programmatically via a
call to SetMenuItemCommandID.

MODIFIER KEYS A mask that determines which modifier keys are used in a keyboard
equivalent to select a menu item. The current modifier keys may be
ascertained via a call to GetMenuItemModifiers.
Modifier keys may be assigned to a menu item programmatically via a
call to SetMenuItemModifiers.

ICON TYPE PLACEHOLDER
ICON HANDLE
PLACEHOLDER

Initially 0.
Calls to SetMenuItemHandle assign the icon type and icon handle to these two
fields.

3-12 Menus

Version 2.1

TEXT ENCODING A long integer which indicates the text encoding that the menu item text
will use.
This field of the 'xmnu' resource should be used instead of setting the
keyboard equivalent field in the 'MENU' resource to $1C and the icon
number field to the script code.
If you want the text of the item to use the system script, this value
should be -1. (This should be used as the default.) If you want the text
of the menu item to use the current script, this value should be -2.. The
current text encoding may be ascertained via a call to
GetMenuItemTextEncoding.
Text encoding may be assigned to a menu item programmatically via a
call to SetMenuItemTextEncoding.

REFERENCE CONSTANT Any value that an application wishes to store. The current value may be
ascertained via a call to GetMenuItemRefCon.
Reference constants may be assigned to a menu item programmatically
via a call to SetMenuItemRefCon.

REFERENCE CONSTANT Any additional value that an application wishes to store. The current
value may be ascertained via a call to GetMenuItemRefCon.
Reference constants may be assigned to a menu item programmatically
via a call to SetMenuItemRefCon.

MENU ID OF SUBMENU A value between 1 and 235, identifying the submenu. The current
submenu ID may be acertained via a call to GetMenuItemHierarchicalID.
The menu ID of a submenu may be assigned to a menu item
programmatically via a call to SetMenuItemHierarchicalID. This, in effect,
attaches a submenu to the menu item.

FONT ID An integer representing the ID of the font family. If this value is 0, then
the system font ID is used. The current font ID may be acertained via a
call to GetMenuItemFontID.
The font ID of a menu item may be set programmatically via a call to
SetMenuItemFontID.

KEYBOARD GLYPH A symbol representing a menu item’s modifier key. The current
keyboard glyph may be ascertained via a call to GetMenuItemGlyph.
If the value in this field is zero, the keyboard glyph uses the keyboard
font. Use of the keyboard font (rather than the system font) provides a
consistent user interface across applications, since a modifier key’s
symbol will not change regardless of what system font is running. If the
value in this field is nonzero, you can override the character code to be
displayed with a substitute glyph.
The keyboard glyph of a menu item may be set programmatically via a
call to SetMenuItemKeyGlyph.

The information in an 'xmnu' resource is set for specified menu items; it is not necessary to
create an extended menu entry for all menu items in a menu.

It is not necessary to provide 'xmnu' resources if your application's menus do not require
the additional features introduced with Mac OS 8 and the Appearance Manager.

Creating 'MBAR', 'MENU', and 'xmnu' Resources Using Resorcerer

As previously stated, when creating resources using Resorcerer, it is advisable that you
refer to a diagram and description of the structure of the resource and relate that to the
various items in the Resorcerer editing windows. The following assumes that approach.

Creating 'MBAR' Resources

Fig 7 shows an 'MBAR' resource containing seven menus being created with Resorcerer.
The first three entries would be, respectively, the Apple, File, and Edit menus.

Menus 3-13

Version 2.1

FIG 7 - CREATING AN 'MBAR' RESOURCE USING RESORCERER

STRUCTURE OF A COMPILED 'MBAR' RESOURCE
NUMBER OF MENUS

RESOURCE ID IF FIRST MENU ITEM

RESOURCE ID OF SECOND MENU ITEM

RESOURCE ID OF NEXT MENU ITEM

RESOURCE ID OF LAST MENU ITEM

RESORCERER RESOURCE ID EDITING WINDOW

To edit a particular 'MENU' resource,
click its entry and then click the Edit
button. The Resorcerer resource ID
ediding window opens.

If required, change the resource ID
for the 'MENU' resource here.
Click the Edit button. The
Resorcerer 'MENU' resource
editing window opens.

RESORCERER 'MBAR' RESOURCE EDITING WINDOW

Creating 'MENU' Resources

Fig 8 shows an imaginary View menu with the Full Screen menu item being edited. This
menu item has been assigned a keyboard equivalent (more specifically, a Command-key
equivalent); accordingly, the Key Equiv: radio button has been clicked and the character F
has been entered as the Command-key equivalent. The menu item has also been
assigned a marking character (a checkmark).

3-14 Menus

Version 2.1

FIG 8 - EDITING A 'MENU' RESOURCE USING RESORCERER

STRUCTURE OF A COMPILED MENU ('MENU') RESOURCE
MENU ID

PLACEHOLDER FOR MENU WIDTH

PLACEHOLDER FOR MENU HEIGHT

RESOURCE ID OF MENU DEFINITION FUNCTION

PLACEHOLDER

LENGTH (n) OF TITLE
CHARACTERS OF MENU TITLE

INITIAL ENABLED STATE OF
THE MENU AND MENU ITEMS

PLACEHOLDER

VARIABLE LENGTH DATA THAT
DEFINES THE MENU ITEMS

Menu title edited
and displayed here

Text of menu items edited here

 VARIABLE LENGTH DATA FOR EACH MENU ITEM
LENGTH (m) OF MENU ITEM TEXT

ICON NUMBER, SCRIP CODE, OR 0
KEYBOARD EQUIVALENT, 0x1B, 0x1C, 0x1D, ox1E, or 0

MARKING CHARA , MENU ID OF SUBMENU, OR 0
FONT STYLE OF THE MENU ITEM

TEXT OF MENU ITEM

Click for Apple
menu title (an icon)

Creates 'mctb' resources. The use of 'mctb' resources is inconsistent
with the concept of themes and Appearance-compliance.

A menu item cannot have both a keyboard
equivalent and a sub menu, hence the radio buttons

More specifically, a
Command-key equivalent

Clicked to set the marking character for this item

No icon for this item

Click to set a divider
as a menu item

 RESORCERER 'MENU' RESOURCE EDITING WINDOW

Fig 9 shows the same View menu with the Floating Palettes menu item being edited. This
item has a submenu; accordingly, the Sub-menu ID radio button has been clicked and the
resource ID of the submenu's 'MENU' resource has been entered. The item also has an icon
provided by a 'CICN' or 'cicn' resource with a resource ID of 257.

Menus 3-15

Version 2.1

FIG 9 - FURTHER EDITING OF A 'MENU' RESOURCE USING RESORCERER

0x1B (entered as $1B in Resourcerer) is automatically
entered in the keyboard equivalent field by Resorcerer
when the Sub-menu ID radio button is clicked

Click to select icon type. ('ICON' is being used
because a menu item cannot have a 'SICN' or a
reduced icon at the same time as a submenu.)

 VARIABLE LENGTH DATA FOR EACH MENU ITEM
LENGTH (m) OF MENU ITEM TEXT

ICON NUMBER, SCRIP CODE, OR 0
KEYBOARD EQUIVALENT, 0x1B, 0x1C, 0x1D, ox1E, or 0

MARKING CHARA , MENU ID OF SUBMENU, OR 0
FONT STYLE OF THE MENU ITEM

TEXT OF MENU ITEM

Triangle indicates item has a submenu

Click to choose the 'ICON' or 'cicn'. All
'ICON' and 'cicn' resources with resource IDs
higher than 256 will be displayed in a
window.

Note that, because a menu item cannot have a marking character
in addition to a submenu, the marking character section is hidden
when the Sub-menu ID radio button is clicked

 RESORCERER 'MENU' RESOURCE EDITING WINDOW

Creating 'MENU' Resources for Submenus

Fig 10 shows the Line and Fill submenu item in the submenu attached to the Floating Palettes
menu item being edited. This item has a marking character (a checkmark), an icon
provided by an 'ICON' or 'cicn' resource with resource ID 258, and a Command-key
equivalent.

3-16 Menus

Version 2.1

Title is not required

Menu item has a marking character,
a 'CICN' or 'cicn',

a Command-key equivalent

 RESORCERER 'MENU' RESOURCE EDITING WINDOW

FIG 10 - EDITING A 'MENU' RESOURCE FOR A SUBMENU USING RESORCERER

Creating 'xmnu' Resources

Fig 11 shows an 'xmnu' resource being created using Resorcerer. This 'xmnu' resource
extends the 'MENU' resource with resource ID 133 (the View menu, above). Menu item 4
has been assigned a command ID, and the Command-key equivalent assigned to this item
in the 'MENU' resource (Command-F) has been extended to the keyboard equivalent
Command-Shift-F by specifying the Shift key as an extended modifier.

Menus 3-17

Version 2.1

FIG 11 - CREATING AN 'xmnu' RESOURCE USING RESORCERER

VERSION NUMBER

NUMBER OF ENTRIES

FIRST EXTENDED MENU
ENTRY

LAST EXTENDED MENU
ENTRY

REFERENCE CONSTANT

KEYBOARD GLYPH

REFERENCE CONSTANT

TYPE

COMMAND ID

MODIFIER KEYS
ICON TYPE PLACEHOLDER

TEXT ENCODING

MENU ID OF SUBMENU

FONT ID

RESERVED

ICON HANDLE PLACEHOLDERSTRUCTURE OF A COMPILED
EXTENDED MENU ('xmnu') RESOURCE

EXTENDED MENU ITEM ENTRY

Number of entries is visible
when list is scolled fully up

A Command ID has been
assigned to menu item 4

The Command-key
equivalent for menu item 4 in
the associated 'MENU'
resource has been extended
to the keyboard equivalent
Command-Shift-F

No extended data for
menu item 3

No extended data for
menu item 5

RESORCERER 'xmnu' RESOURCE EDITING WINDOW

Creating the Menu Bar and Pull-Down Menus

The function GetNewMBar, which itself calls GetMenu, should be used to read in the 'MBAR'
resource and its associated 'MENU' resources. After reading in a 'MENU' resource, GetMenu
looks for an an 'xmnu' resource with the same resource ID and reads it in if found.
GetNewMBar creates a menu structure for each menu and inserts each menu into the menu
list.

3-18 Menus

Version 2.1

SetMenuBar should then be used to set the current menu list as the menu list created by
your application. A call to DrawMenuBar completes the process by drawing the menu bar,
displaying all the menu titles in the current menu list.

Creating an Hierarchical Menu

GetNewMBar does not read in the resource descriptions of submenus but simply records the
menu ID of any submenu in the menu structure. Submenu descriptions are read in with
GetMenu and the submenu is inserted in the current menu list using InsertMenu, with the
constant hierMenu passed as the second parameter to that call.6

Adding Menus to the Menu List

A menu may be added to the current menu list using one of the following procedures:

• Read the relevant 'MENU' resource in with GetMenu, add it to the current menu list
with InsertMenu, and update the menu bar with DrawMenuBar.

• Use NewMenu to create a new empty menu, use AppendMenu, InsertMenuItem, InsertResMenu, or
AppendResMenu to fill the menu with menu items, add the menu to the current menu
list using InsertMenu, and update the menu bar using DrawMenuBar.

Note that GetMenuHandle may be used to obtain a handle to the menu structure of any menu
in the current menu list.

Providing Help Balloons

'hmmu' Resources

You should define Help balloons for each of your application's menu items and each menu
title. Help balloons for menus are defined in 'hmmu' resources. The resource ID of an
'hmnu' resource should be the same as the resource ID of the 'MENU' resource to which it
pertains. In the case of the 'hmnu' resource for your Help menu item, the resource ID
should be -16490.

Creating 'hmnu' Resources

Fig 12 shows an 'hmnu' (help menu) resource being created using Resorcerer.

6 As the user traverses menu items, if an item has a submenu, the MenuSelect function looks in the submenu portion of the
menu list for the submenu. It then searches for a menu with a defined menu ID that matches the menu ID specified by the
hierarchical menu item. If it finds a match, it attaches the submenu to the menu item.

Menus 3-19

Version 2.1

FIG 12 - CREATING AN 'hmnu' RESOURCE USING RESORCERER

MENU TITLE COMPONENT

FIRST MENU ITEM COMPONENT

HELP MANAGER VERSION

OPTIONS

BALLOON DEFINITION FUNCTION

VARIATION CODE

MISSING ITEMS COMPONENT

LAST MENU ITEM COMPONENT

ITEM COUNT

STRUCTURE OF A COMPILED 'hmnu' RESOURCE

RESORCERER 'hmnu' RESOURCE EDITING WINDOW

Help Manager version

Resource ID of the window definition function (WDEF) used for drawing help balloons.
The standard WDEF's resource ID is 126. This can be specified by 0 in Resourcerer.
Variation code for WDEF. Governs the location of the balloon's tip.
The number of remaining components defined in the rest of the resource.

Header component

A number of options, none of which are relevant to 'hmnu' resources. (2 and 3, below,
relate to the three different ways that the Help Manager draws and removes balloons.)

Specifies how the Help Manager is to handle items that are not described in this
resource. (In the Resorcerer window below, this component has been skipped.)
Specifies the help messages for the menu title when the menu is enabled,
when it is dimmed by the application, and when it is dimmed by the system at
the appearance of an alert or modal dialog. Also specifies the messages for
all menu items when the system dims them.
Specifies the help message for the item when enabled, when the application
dims the item, when the item is enabled and checked, and when it is enabled
and marked with a character other than the checkmark

In the menu title component in Resorcerer, these two fields are misnamed.
They are actually used for (1) the message for the title and (2) the messages
for all menu items when they are dimmed by the system at the appearance of
an alert or modal dialog. (See MENU TITLE COMPONENT, above.)

As stated above, you can use the missing items component to supply help messages
for menu items that are described in the 'hmnu' resource but which lack help
messages for any particular states. It is also useful when you have menu items with
similar characteristics or when the number of menu items is variable. For example, if
the help message for a dimmed item applies to all dimmed items, you can specify a
help message once in the third field of the missing items component instead of
repeating it in every third field of the various menu item components.

...

Specifying the Format of Help Messages. The example at Fig 12 specifies the format
of the help messages as (Pascal) text strings stored within the 'hmnu' resource itself.
Clicking on the pop-up button adjacent to Message record type opens a pop-up menu which

3-20 Menus

Version 2.1

facilitates the choice of other formats (and also provides an option which enables you to
instruct the Help Manager to skip the item). The items in the pop-up menu and their
meanings are as follows:

Pop-up Menu Item Meaning to Help Manager
Use these strings Use the strings specified within this component of this 'hmnu' resource.
Use 'PICT' resources Use the picture stored in the specified 'PICT' resource.
Use 'STR#' resources Use the specified text string stored in the specified 'STR#' resource.

(Storing the text strings in 'STR#' resources or 'STR ' resources (see
below) simplifies the task of providing foreign language versions of
your application.)

Used styled text resources Use the styled text stored in the specified 'TEXT' and 'styl' resources.
Use 'STR ' resources Use the text string stored in the specified 'STR ' resource.
Use named resource type Use the resource ('STR ', 'PICT' or 'TEXT') whose name matches the name

and state of the current menu item.
Skip missing item No help message. Skip this item
Compare item Compare the specified comparison string against the current menu

item in that position. If the specified string matches the name of the
current menu item, display the help messages specified in the next
four elements. (This is useful in the case of menu items that change
names, for example Show Hidden Text and Hide Hidden Text.)

Text for Help Balloons. The text of your help balloons for menus should answer at least
one of the following questions:

• What is this? For example, when the user moves the cursor over the title of the
File menu in the title bar, the beginning of the balloon text should be "File menu".

• What does this do? For example, when the user moves the cursor over the Find
item in a File menu, the balloon text should be "Finds and selects items with the
characteristics you specify" or similar.

Changing the Appearance of Items in a Menu
Menu Manager functions may be used to change the appearance of items in a menu, for
example, the font style, text or other characteristics. Most of the functions which get or
set menu characteristics require three parameters:

• A handle to the menu structure of the menu containing the desired item.

• The number of the menu item.

• A variable which either specifies the data to set or identifies where to return
information about that item.

Enabling and Disabling Menu Items

Specific menu items or entire menus are disabled and enabled using:

• DisableItem and EnableItem, which both take a handle to the menu structure that
identifies the desired menu and either the item number of the menu to be
enabled/disabled or a value of 0 to indicate that the entire menu is to be
enabled/disabled. DisableItem and EnableItem can only disable and enable menu items
with item numbers up to 31.

• In Mac OS 8.5 and later, DisableMenuItem and EnableMenuItem. Unlike DisableItem and
EnableItem, DisableMenuItem and EnableMenuItem can enable and disable menu items with
item numbers greater than 31.

Menus 3-21

Version 2.1

When an entire menu is disabled or enabled, DrawMenuBar should be called to update the
appearance of the menu bar. If you do not need to update the menu bar immediately,
you can use InvalMenuBar instead of DrawMenuBar, causing the Event Manager to redraw the
menu bar the next time it scans for update events. This will reduce the menu bar flicker
which will occur if DrawMenuBar is called more than once in rapid succession.

If you disable an entire menu, the Menu Manager dims that menu's title at the next call
to DrawMenuBar and dims all menu items when it displays the menu. If you enable an entire
menu, the Menu Manager enables only the menu title and any items that you did not
previously disable individually.

Other Appearance Changes

The following lists other functions related to changing the appearance of menu items.
Those appearing on a gray background were introduced with Mac OS 8 and the
Appearance Manager. Those appearing on a dark gray background were introduced with
Mac OS 8.5.

Function Description
SetMenuItemText
GetMenuItemText

Set and get the text.

SetItemStyle
GetItemStyle

Set and get the font style.

SetItemMark
GetItemMark

Set and get the marking character.

SetItemIcon
GetItemIcon

Set and get the icon ('ICON' or 'cicn') using a resource ID.

CheckMenuItem Places and removes a checkmark at the left of the item text.
SetMenuItemFontID
GetMenuItemFontID

Set and get the font. SetMenuItemFontID allows you to set up a font menu
with each item being drawn in the actual font.

SetMenuItemIconHandle
GetMenuItemIconHandle

Set and get the icon (icon suite, 'ICON' or 'cicn') using an icon handle.
Provides, in conjuction with the 'xmnu' resource, the support for icon
suites introduced with Mac OS 8 and the Appearance Manager.

SetMenuItemKeyGlyph
GetMenuItemKeyGlyph

SetMenuItemKeyGlyph substitutes a keyboard glyph for that normally
displayed for a menu item's keyboard equivalent. GetMenuItemKeyGlyph
gets the keyboard glyph for the keyboard equivalent.

SetMenuFont
GetMenuFont

Set and get the font used in an individual menu

SetMenuExcludesMarkColumn
SetMenuExcludesMarkColumn

Set and determine whether an individual menu contains space for marking characters

Adding Items to a Menu

Adding Items Other Than the Names of Resources

AppendMenu, InsertMenuItem, AppendMenuItemText, and InsertMenuItemText (the latter two were
introduced with Mac OS 8.5) are used to add items other than the names of resources
(such as font resources) to a previously created menu. They require:

• A handle to the menu structure of the menu involved.

• A string describing the items to add.

Strings With Metacharacters

AppendMenu and InsertMenuItem allow you to specify the same characteristics for menu items
as are available when defining a 'MENU' resource. The string consists of the text of the
menu item and any required characteristics. You can specify a hyphen as the menu item
text to create a divider line. You can also use various metacharacters in the text string

3-22 Menus

Version 2.1

to separate menu items and to specify the required characteristics. The following
metacharacters may be used:

MetaCharacter Description
; or Return Separates menu items.

^ When followed by an icon number, defines the icon for the item.
! When followed by a character, defines the mark for the item.

If the keyboard equivalent field contains $1B, this value is interpreted as the
menu ID of a submenu of this menu item.1

< When followed by one or more of the characters B, I, U, O, and S, defines the
character style of the item to, respectively, bold, italic, underline, outline or
shadow.

/ When followed by a character, defines the Command-key equivalent for the
item.2

When followed by $1B, specifies that this menu item has a submenu.1
(Note: To specify that a menu item has a script code, reduced icon or small
icon, use SetItemCmd to set the keyboard equivalent field to, respectively, 0x1C,
0x1D or 0x1E.3)

(Defines the menu item as disabled.
1 Applicable only to menus without 'xmnu' resources. When 'xmnu' resources are used, use SetMenuItemHierarchicalID to

attach a submenu to a menu item.
2 When 'xmnu' resources are used, use SetMenuItemModifiers to set the extended modifier keys (Shift, Option, Control).
3 Applicable only to menus without 'xmnu' resources. When 'xmnu' resources are used, do not use SetItemCmd to specify

a script code. Use SetMenuItemTextEncoding.

As an example of the use of metacharacters, assume that the following two strings are
stored in a string list ('STR#') resource:

Pick a Colour…
(^2!=Everything<B/E

The second string in this resource uses metacharacters to specify that the menu item is
to be disabled, that it has an icon with a resource ID 258 (2+256)7, that it has the "="
character as a marking character, that the text style is bold, and that the item has a
Command-key equivalent of Command-E.

Examples

The following code uses AppendMenu to append a menu item with no specific characteristics
other than its text to the menu identified by the menu handle. The text for the menu item
is "Pick a Colour…" as stored in the preceding 'STR#' resource.

var
myMenu : MenuHandle;
itemString: Str255;
...
myMenu := GetMenuHandle(mLibrary);
GetIndString(itemString, 300, 1);
AppendMenu(myMenu, itemString);

To insert an item after a given menu item, use InsertMenuItem. The following code inserts
the menu item "Everything" after the menu item with the item number specified in the iRed
constant:

var
myMenu : MenuHandle;
itemString: Str255;
...
myMenu := GetMenuHandle(mColours);
GetIndString(itemString, 300, 2);
InsertMenuItem(myMenu, itemString, iRed);

The following code appends multiple items to the Edit menu using AppendMenu:

7 The Menu Manager adds 256 to the number you specify, and uses the result as the icon's resource ID.

Menus 3-23

Version 2.1

var
myMenu : MenuHandle;
...
myMenu := GetMenuHandle(mEdit);
AppendMenu(myMenu, 'Undo/Z;-;Cut/X;Copy/C;Paste/V');

InsertMenuItem differs from AppendMenu in the way it handles the given text string when that
string contains multiple items, inserting them in reverse order. This code is equivalent to
the last line of the preceding code:

InsertMenuItem(myMenu, 'Paste/V;Copy/C;Cut/X-;-;Undo/Z', 0);

The following code adds a divider to the Edit menu:
AppendMenu(myMenu, '(-');

Strings Without Metacharacters

The two functions introduced with Mac OS 8.5 (AppendMenuItemText and InsertMenuItemText)
append and insert the specified string without evaluating the string for metacharacters.
These two functions may be used if you have a need to present non-alphanumeric
characters in a menu item.

Adding Items Comprising Resource Names to a Menu

AppendResMenu or InsertResMenu may be used to add items that consist of resource names to a
menu.

For example, you can use AppendResMenu to add the names of all font resources in the Fonts
folder as menu items in your application's Font menu. Similarly, AppendResMenu can be used
to add all of the items from the Apple Menu Items folder to your application's Apple
menu (with 'DRVR' specified as the resource type in the call). These are common instances
of when you will need to add items not already defined in a 'MENU' resource.

Adding Items to the Help Menu

Items are added to your application's Help menu using AppendMenu or InsertMenuItem.

Handling Menu Choices

Determining the Menu ID and Menu Item — MenuSelect and MenuEvent

When the user presses the mouse button while the cursor is in the menu bar, your
application should first adjust its menus (that is, enable or disable menu items and add or
remove marks as required) and then call MenuSelect. MenuSelect tracks the mouse, displays
menus, highlights menu titles, displays and highlights enabled menu items, handles all
user activity until the user releases the mouse button, and returns a long integer as its
function result. The long integer contains the menu ID in the high word and the item
number in the low word.

If some of your menu items have keyboard equivalents, your application should detect
such key-down events. If an examination of the modifiers field of the event structure
reveals that the Command key was down, your application should first adjust its menus
and then call MenuEvent. MenuEvent scans the current menu list for a menu item that has a
matching keyboard equivalent. Like MenuSelect, MenuEvent returns a long integer containing
the menu ID and the item number.

If the user did not actually choose a menu command with the mouse, or if the user
pressed a keyboard combination which did not map to a keyboard equivalent, MenuSelect
and MenuEvent return 0 in the high word, the value in the low word being undefined.

3-24 Menus

Version 2.1

Historical Note

The function MenuEvent was introduced with Mac OS 8 and the Appearance Manager
as part of the new support for extended modifier keys. Previously, when only
Command-key equivalents were supported, the function MenuKey was used.
Technically, either MenuEvent or MenuKey could be used if your menus do not require
support for extended modifier keys, though MenuEvent is recommended.

Further Handling - Command IDs Not Used

The long integer returned by MenuSelect and MenuEvent should be passed as a parameter to
an application-defined function which switches according to the menu ID in the high
word and passes the low word to other application-defined functions which respond
appropriately to that menu command.

Further Handling - Command IDs Used

Mac OS 8 and the Appearance Manager introduced an alternative method of identifying,
for the purposes of further handling, the menu item chosen by the user. This method
assumes that you have previously assigned a unique value to your individual menu items
via the command ID field of the 'xmnu' resource (or, programmatically, via calls to
SetMenuItemCommandID).

Using this method, the menu ID and item number should be extracted from the long
integer returned by MenuSelect and MenuEvent in the usual way. The menu ID should then be
used in a call to GetMenuHandle to get the handle to the menu's menu structure. This handle
and the menu item should then be used in a call to GetMenuItemCommandID, which returns the
unique value that you previously assigned to the item (that is, the item's command ID).
Your application should then switch according to that command ID, calling the other
application-defined functions which respond appropriately to that menu command.

Unhighlighting the Menu Title

Recall that one of the actions of MenuSelect and MenuEvent is to highlight the menu title.
Ordinarily, your application should not unhighlight the menu title (using HiliteMenu) until it
performs the action associated with the menu command chosen by the user. However, if,
in response to a menu command, your application displays a modal dialog box containing
an editable text item, you should unhighlight the menu title immediately so that the user
can access the Edit menu.

Adjusting Menus

Menu adjustment should be on the basis of the type of window that is currently the
frontmost window, for example, a text window, a modeless dialog box, etc.. Accordingly,
the application-defined menu adjustment function should first determine which window is
the front window. The following are examples of menu adjustment functions:

procedure DoAdjustMenus;

var
theWindowPtr : WindowPtr;
windowType : SInt16;

begin
theWindowPtr := FrontWindow;
windowType := DoGetWindowType(theWindowPtr);

case windowType of

kMyDocWindow: begin
DoAdjustFileMenuForDocWindow;
DoAdjustEditMenuForDocWindow;

Menus 3-25

Version 2.1

{ Adjust others. }
end;

kMyModelessDialogWindow: begin
DoAdjustMenusForModelessDialogs;
end;

kNil: begin
DoAdjustMenusNoWindows;
end;

otherwise begin
end;

end;
{ of case statement }

DrawMenuBar;
end;

{ of procedure DoAdjustMenus }

procedure DoAdjustFileMenuForDocWindow;

var
menuHdl : MenuHandle;

begin
menuHdl := GetMenuHandle(mFile);

EnableItem (menuHdl, iNew);
EnableItem (menuHdl, iOpen);
DisableItem(menuHdl, iClose);
DisableItem(menuHdl, iSave);
DisableItem(menuHdl, iSaveAs);
DisableItem(menuHdl, iPageSetup);
DisableItem(menuHdl, iPrint);
EnableItem (menuHdl, iQuit);
end;

{ of procedure DoAdjustFileMenuForDocWindow }

Handling Apple Menu Choices

When the user chooses an item in the Apple menu, MenuSelect returns the menu ID of your
application's Apple menu in the high word and the item number in the low word.

If your application provides an About command as the first menu item in the Apple menu,
and the user chooses this item, you should display the About box. Otherwise, your
application should use the GetMenuItemText function to get the menu item text and then call
the OpenDeskAcc function, passing the text of the chosen menu item as a parameter.

The OpenDeskAcc function prepares to open the desktop object chosen by the user. For
example, if the user chose a document created by the SimpleText application, OpenDeskAcc
schedules SimpleText for execution (or prepares to open it if it was not already open) and
returns to your application. On your application's next call to WaitNextEvent, your
application receives a suspend event and the Process Manager makes SimpleText the
foreground process, instructing it to open the chosen document.

Handling Help Menu Choices

Both the MenuSelect and MenuEvent functions return the kHMHelpMenuID constant (-16490) in the
high word if the user chooses an appended item from the Help menu. The item number
of the appended item is returned in the low word. When the kHMHelpMenuID constant is
detected, an application-defined function should be called to respond to the user's choice
of a Help menu command. That function must accommodate the fact that Apple reserves
the right to change the number of standard items in the Help menu.

3-26 Menus

Version 2.1

Handling a Size Menu

Preamble

Font sizes in Size menus should be outlined to indicate which sizes are directly provided
by the current font. For bitmapped fonts, you should outline only those sizes that exist in
the Fonts folder. For TrueType fonts, all sizes supported by that font should be outlined.
The current font size should be indicated with a checkmark. If the current selection
contains more than one font size, a dash should be placed next to each font size in the
selection.

Size menus should, in addition to displaying available font sizes, provide an Other
command to enable the user to specify a size not currently listed in the menu. When the
user chooses the Other command, the current font size should be displayed in a dialog box
which allows the user to enter the desired font size. If the user chooses a size not
already in the menu, a checkmark should be added to the Other menu item and the chosen
size should be added in parenthesis to the text of the Other command.

Handling the Menu Choice

The following is an example application-defined function which handles a user's choice of
an item in the Size menu:

procedure DoHandleSizeCommand(menuItem : SInt16);

var
numItems : SInt16;
addItem : boolean;
sizeChosen : SInt32;

begin
numItems := CountMItems(GetMenuHandle(mSize));
if (menuItem = numItems) then { If user chose Other, display dialog box. If the }

begin { user-specified size is not in the menu, add a }
DoDisplayOtherBox(sizeChosen); { checkmark to the Other command and add the new }
end { font size to the text of the Other command. }

else begin { Return sizeChosen. }
{ User chose a size. Remove marks }

DoRemoveMarksFromSizeMenu(); { from item/s showing previous size. }
CheckItem(GetMenuHandle(mSize), menuItem,t rue); { Add mark to chosen item. }
sizeChosen := DoItemToSize(menuItem); { Convert item number to font size. }
end;

DoResizeSelection(sizeChosen); { Update document state or user selection. }
end;

{ of procedure DoHandleSizeCommand }

Hiding and Showing the Menu Bar
Mac OS 8.5 introduced the functions HideMenuBar and ShowMenuBar, which may be used to
make the menu bar invisible and unselectable and visible and selectable.

Accessing Menus From Alert and Dialog Boxes
When alert boxes and dialog boxes are displayed, the Dialog Manager and the Menu
Manager interact to provide varying degrees of access to menus in your menu bar. In
some circumstances, you can rely on the system software to disable the appropriate
menus and menu items. In other circumstances, you application must contribute to, or
control, the matter of menu access.

The subject of menu access when alert boxes, movable alert boxes, modal dialog boxes,
moveable modal dialog boxes, and modeless dialog boxes are displayed is somewhat
involved, and is addressed in detail at Chapter 8 — Dialogs and Alerts.

Menus 3-27

Version 2.1

Main Menu Manager Constants, Data Types, and Functions
In the following:

• The constants, data types, and functions introduced with Mac OS 8 and the
Appearance Manager are shown on a gray background.

• The functions introduced with Mac OS 8.5 are shown on a dark gray background.

• Those older constants, data types and functions affected by the introduction of Mac
OS 8 and the Appearance Manager, but which may still be used in certain
circumstances, are shown against a black background.

Constants

For markChar Parameter of SetItemMark Calls

noMark = 0
commandMark = 17
checkMark = 18
diamondMark = 19
appleMark = 20

For beforeID Parameter of InsertMenu to Insert a Submenu Into the Submenu Portion of the Menu
List

hierMenu = -1

Modifier Key Masks for GetMenuItemModifiers and SetMenuItemModifiers Calls

kMenuCommandModifiers = 0 // If no bit is set, only the Command key is used.
kMenuShiftModifier = $01 // If this bit (bit 0) is set, the Shift key is used.
kMenuOptionModifier = $02 // If this bit (bit 1) is set, the Option key is used.
kMenuControlModifier = $04 // If this bit (bit 2) is set, the Control key is used.
kMenuNoCommandModifier = $08 // If this bit (bit 3) is set, the Command key is not used.

Menu Icon Handle Constants for GetMenuItemIconHandle and SetMenuItemIconHandle Calls

kMenuNoIcon = 0 // No icon.
kMenuIconType = 1 // 'ICON' handle.
kMenuShrinkIconType = 2 // 32-by-32 'ICON' handle shrunk (at display time) to

// 16-by-16.
kMenuSmallIconType = 3 // 'SICN' handle.
kMenuColorIconType = 4 // 'cicn' handle.
kMenuIconSuiteType = 5 // Icon suite handle.

Data Types

Menu Structure

MenuInfoPtr = ^MenuInfo;
MenuInfo = RECORD

menuID: INTEGER;
menuWidth: INTEGER;
menuHeight: INTEGER;
menuProc: Handle;
enableFlags: LONGINT;
menuData: Str255;

END;

MenuPtr = ^MenuInfo;
MenuHandle = ^MenuPtr;

3-28 Menus

Version 2.1

Functions

Initialising the Menu Manager

PROCEDURE InitMenus;

Creating Menus

FUNCTION NewMenu(menuID: INTEGER; menuTitle: ConstStr255Param): MenuHandle;
FUNCTION GetMenu(resourceID: INTEGER): MenuHandle;

Adding Menus to and Removing Menus From the Current Menu List

PROCEDURE InsertMenu(theMenu: MenuHandle; beforeID: INTEGER);
PROCEDURE DeleteMenu(menuID: INTEGER);
PROCEDURE ClearMenuBar;

Getting a MenuBar Description From an 'MBAR' resource

FUNCTION GetNewMBar(menuBarID: INTEGER): Handle;

Getting and Setting the Menu Bar

FUNCTION GetMenuBar: Handle;
PROCEDURE SetMenuBar(menuList: Handle);
FUNCTION GetMBarHeight: INTEGER;

Drawing the Menu Bar

PROCEDURE DrawMenuBar;
PROCEDURE InvalMenuBar;

Controlling Menu Bar Visibility

PROCEDURE ShowMenuBar;
PROCEDURE HideMenuBar;
FUNCTION IsMenuBarVisible: BOOLEAN;

Modifying the Menu Width

FUNCTION GetMenuExcludesMarkColumn(menu: MenuHandle): BOOLEAN;
FUNCTION SetMenuExcludesMarkColumn(menu: MenuHandle; excludesMark: BOOLEAN): OSStatus;

Responding to User Choice of a Menu Command

FUNCTION MenuKey(ch: CharParameter): LONGINT;
FUNCTION MenuEvent({CONST}VAR inEvent: EventRecord): UInt32;
FUNCTION MenuSelect(startPt: Point): LONGINT;
FUNCTION MenuChoice: LONGINT;
PROCEDURE HiliteMenu(menuID: INTEGER);
FUNCTION PopUpMenuSelect(menu: MenuHandle; top: INTEGER; left: INTEGER;
 popUpItem: INTEGER): LONGINT;

Getting a Handle to a Menu Structure

FUNCTION GetMenuHandle(menuID: INTEGER): MenuHandle;
FUNCTION HMGetHelpMenuHandle(VAR mh: MenuHandle): OSErr;

Adding and Deleting Menu Items

PROCEDURE AppendMenu(menu: MenuHandle; data: ConstStr255Param);
PROCEDURE InsertMenuItem(theMenu: MenuHandle; itemString: ConstStr255Param;
 afterItem: INTEGER);
FUNCTION AppendMenuItemText(menu: MenuHandle; inString: Str255): OSStatus;
FUNCTION InsertMenuItemText(menu: MenuHandle; inString: Str255; afterItem: UInt16): OSStatus;
PROCEDURE DeleteMenuItem(theMenu: MenuHandle; item: INTEGER);
PROCEDURE AppendResMenu(theMenu: MenuHandle; theType: ResType);
PROCEDURE InsertResMenu(theMenu: MenuHandle; theType: ResType; afterItem: INTEGER);

Manipulating and Accessing Menu Item Characteristics

PROCEDURE EnableItem(theMenu: MenuHandle; item: INTEGER);

Menus 3-29

Version 2.1

PROCEDURE DisableItem(theMenu: MenuHandle; item: INTEGER);
PROCEDURE EnableMenuItem(theMenu: MenuHandle; item: UInt16);
PROCEDURE DisableMenuItem(theMenu: MenuHandle; item: UInt16);
FUNCTION IsMenuItemEnabled(menu: MenuHandle; item: UInt16): BOOLEAN;
PROCEDURE EnableMenuItemIcon(theMenu: MenuHandle; item: UInt16);
PROCEDURE DisableMenuItemIcon(theMenu: MenuHandle; item: UInt16);
FUNCTION IsMenuItemIconEnabled(menu: MenuHandle; item: UInt16): BOOLEAN;
PROCEDURE GetMenuItemText(theMenu: MenuHandle; item: INTEGER; VAR itemString: Str255);
PROCEDURE SetMenuItemText(theMenu: MenuHandle; item: INTEGER; itemString: ConstStr255Param);
PROCEDURE GetItemStyle(theMenu: MenuHandle; item: INTEGER; VAR chStyle: Style);
PROCEDURE SetItemStyle(theMenu: MenuHandle; item: INTEGER; chStyle: StyleParameter);
PROCEDURE GetItemMark(theMenu: MenuHandle; item: INTEGER; VAR markChar: CharParameter);
PROCEDURE SetItemMark(theMenu: MenuHandle; item: INTEGER; markChar: CharParameter);
PROCEDURE CheckItem(theMenu: MenuHandle; item: INTEGER; checked: BOOLEAN);
FUNCTION GetMenuFont(menu: MenuHandle; VAR outFontID: SInt16;
 VAR outFontSize: UInt16): OSStatus;
FUNCTION SetMenuFont(menu: MenuHandle; inFontID: SInt16; inFontSize: UInt16): OSStatus;
PROCEDURE GetItemIcon(theMenu: MenuHandle; item: INTEGER; VAR iconIndex: Byte);
PROCEDURE SetItemIcon(theMenu: MenuHandle; item: INTEGER; iconIndex: INTEGER);
PROCEDURE GetItemCmd(theMenu: MenuHandle; item: INTEGER; VAR cmdChar: CharParameter);
PROCEDURE SetItemCmd(theMenu: MenuHandle; item: INTEGER; cmdChar: CharParameter);
FUNCTION SetMenuItemCommandID(inMenu: MenuHandle; inItem: SInt16;
 inCommandID: UInt32): OSErr;
FUNCTION GetMenuItemCommandID(inMenu: MenuHandle; inItem: SInt16;
 VAR outCommandID: UInt32): OSErr;
FUNCTION SetMenuItemFontID(inMenu: MenuHandle; inItem: SInt16; inFontID: SInt16): OSErr;
FUNCTION GetMenuItemFontID(inMenu: MenuHandle; inItem: SInt16; VAR outFontID: SInt16): OSErr;
FUNCTION SetMenuItemHierarchicalID(inMenu: MenuHandle; inItem: SInt16;
 inHierID: SInt16): OSErr;
FUNCTION GetMenuItemHierarchicalID(inMenu: MenuHandle; inItem: SInt16;
 VAR outHierID: SInt16): OSErr;
FUNCTION SetMenuItemIconHandle(inMenu: MenuHandle; inItem: SInt16; inIconType: ByteParameter;
 inIconHandle: Handle): OSErr;
FUNCTION GetMenuItemIconHandle(inMenu: MenuHandle; inItem: SInt16; VAR outIconType: UInt8;
 VAR outIconHandle: Handle): OSErr;
FUNCTION SetMenuItemKeyGlyph(inMenu: MenuHandle; inItem: SInt16; inGlyph: SInt16): OSErr;
FUNCTION GetMenuItemKeyGlyph(inMenu: MenuHandle; inItem: SInt16;
 VAR outGlyph: SInt16): OSErr;
FUNCTION SetMenuItemModifiers(inMenu: MenuHandle; inItem: SInt16;
 inModifiers: ByteParameter): OSErr;
FUNCTION GetMenuItemModifiers(inMenu: MenuHandle; inItem: SInt16;
 VAR outModifiers: UInt8): OSErr;
FUNCTION SetMenuItemRefCon(inMenu: MenuHandle; inItem: SInt16; inRefCon: UInt32): OSErr;
FUNCTION GetMenuItemRefCon(inMenu: MenuHandle; inItem: SInt16; VAR outRefCon: UInt32): OSErr;
FUNCTION SetMenuItemRefCon2(inMenu: MenuHandle; inItem: SInt16; inRefCon2: UInt32): OSErr;
FUNCTION GetMenuItemRefCon2(inMenu: MenuHandle; inItem: SInt16;
 VAR outRefCon2: UInt32): OSErr;
FUNCTION SetMenuItemTextEncoding(inMenu: MenuHandle; inItem: SInt16;
 inScriptID: TextEncoding): OSErr;
FUNCTION GetMenuItemTextEncoding(inMenu: MenuHandle; inItem: SInt16;
 VAR outScriptID: TextEncoding): OSErr;

Disposing of Menus

PROCEDURE DisposeMenu(theMenu: MenuHandle);

Counting Items in a Menu

FUNCTION CountMItems(theMenu: MenuHandle): INTEGER;

Highlighting the Menu Bar

PROCEDURE FlashMenuBar(menuID: INTEGER);
PROCEDURE SetMenuFlash(count: INTEGER);

Recalculating Menu Dimensions

PROCEDURE CalcMenuSize(theMenu: MenuHandle);

Demonstration Program Menus 1
{ ◊◊
// Menus1.p
// ◊◊
//

3-30 Menus

Version 2.1

// This program:
//
// • Opens a window.
//
// • Creates these pull-down menus: Apple, File, Edit, Font, Style, Size, and Special.
//
// The Apple menu includes an 'About…' menu item for the program.
//
// The second menu item in the Special menu contains a submenu.
//
// A 'Help' menu item for the program is appended to the Help menu.
//
// • Displays text in the window indicating the menu selection made by the user.
//
// The implementation of the Size menu is nominal only. The current size is indicated
// with a checkmark; however, the number of sizes shown is not font-dependent and there
// is no 'Other' item.
//
// To facilitate a comparison with the fully Appearance-compliant menus in the
// demonstration program Menus2, no measures are taken in this program to cause the menu
// bar and menus to use the new menu bar and menu definition functions when system-wide
// Appearance is selected off in the Appearance control panel. The menu bar and menus will
// only use the new definition functions when system-wide Appearance is selected on.
//
// Because the primary purpose of the program is to demonstrate menu creation and
// handling, no code is included to update and activate/deactivate the window or to
// respond to events which are not relevant to the demonstration.
//
// The program is terminated by selecting Quit from the File menu, by pressing the
// keyboard equivalent for that item (Command-Q), or by clicking in the window's go-away
// box.
//
// The program utilises the following resources:
//
// • A 'WIND' resource (purgeable) (initially not visible).
//
// • An 'MBAR' resource (preload, non-purgeable).
//
// • 'MENU' resources for the drop-down and hierarchical menus (all preload, all
// non-purgeable).
//
//
// ◊◊ }

program Menus1;

//
……
………………………………… interfaces

uses

{ Universal Interfaces. }
Balloons, Devices, Fonts, Menus, Processes, Sound, ToolUtils;

//
……
…………………………………… constants

const

mApple = 128;
 iAbout = 1;
mFile = 129;
 iQuit = 11;
mEdit = 130;
 iUndo = 1;
 iCut = 3;
 iCopy = 4;
iPaste = 5;
 iClear = 6;
mFont = 131;
mStyle = 132;
 iPlain = 1;
 iBold = 3;
 iItalic = 4;
 iUnderline = 5;
 iOutline = 6;
 iShadow = 7;
mSize = 133;

Menus 3-31

Version 2.1

 iTen = 1;
 iTwelve = 2;
 iEighteen = 3;
 iTwentyFour = 4;
mSpecial = 134;
 iFirstItem = 1;
 iSecondItem = 2;
mSubmenu = 135;
 iFirstSubItem = 1;
 iSecondSubItem = 2;
rWindowResource = 128;

//
……
………………… global variables

var

gDone : Boolean;
gCurrentFont : SInt16;
gCurrentStyle : Style;
gCurrentSize : SInt16;
gEvent : EventRecord;
gWindowPtr : WindowPtr;

//
……
………… routine prototypes

procedure DoInitManagers; forward;
procedure DoGetMenus; forward;
procedure DoEvents({$const} var theEvent : EventRecord); forward;
procedure DoMouseDown({$const} var theEvent : EventRecord); forward;
procedure DoAdjustMenus; forward;
procedure DoMenuChoice(menuChoice : SInt32); forward;
procedure DoAppleMenu(theItem : SInt16); forward;
procedure DoFileMenu(theItem : SInt16); forward;
procedure DoEditMenu(theItem : SInt16); forward;
procedure DoFontMenu(theItem : SInt16); forward;
procedure DoStyleMenu(theItem : SInt16); forward;
procedure DoSizeMenu(theItem : SInt16); forward;
procedure DoSpecialMenu(theItem : SInt16); forward;
procedure DoSubMenus(theItem : SInt16); forward;
procedure DoHelpMenu(theItem : SInt16); forward;
procedure DrawItemString(theString : Str255); forward;

// ◊◊◊ DoInitManagers

procedure DoInitManagers;
begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

InitCursor;
FlushEvents(everyEvent, 0);
end;

{ of procedure DoInitManagers }

// ◊◊◊ DoGetMenus

procedure DoGetMenus;
var
menubarHdl : Handle;
menuHdl : MenuHandle;
osErr : OSErr;

begin
menubarHdl := GetNewMBar(128);
if (menubarHdl = nil) then

begin
ExitToShell;
end;

SetMenuBar(menubarHdl);

3-32 Menus

Version 2.1

DrawMenuBar;

menuHdl := GetMenuHandle(mApple);
if (menuHdl <> nil) then

begin
AppendResMenu(menuHdl,'DRVR');
end

else begin
ExitToShell;
end;

menuHdl := GetMenuHandle(mFont);
if (menuHdl <> nil) then

begin
AppendResMenu(menuHdl,'FONT');
end

else begin
ExitToShell;
end;

menuHdl := GetMenu(mSubmenu);
if (menuHdl <> nil) then

begin
InsertMenu(menuHdl,hierMenu);
end

else begin
ExitToShell;
end;

osErr := HMGetHelpMenuHandle(menuHdl);
if (osErr = noErr) then

begin
AppendMenu(menuHdl,'Menus1 Help');
end

else begin
ExitToShell;
end;

DoFontMenu(gCurrentFont);
DoStyleMenu(0);
DoSizeMenu(gCurrentSize);
end;

{ of procedure DoGetMenus }

// ◊◊◊ DoEvents

procedure DoEvents({$const} var theEvent : EventRecord);
var
charCode : char;

begin
case(theEvent.what) of

mouseDown: begin
DoMouseDown(theEvent);
end;

keyDown, autoKey: begin
charCode := chr(BAnd(theEvent.message, charCodeMask));
if (BAnd(theEvent.modifiers, cmdKey) <> 0) then

begin
DoAdjustMenus;
DoMenuChoice(MenuEvent(theEvent));
end;

end;

updateEvt: begin
BeginUpdate(WindowPtr(theEvent.message));
EndUpdate(WindowPtr(theEvent.message));
end;

osEvt: begin
HiliteMenu(0);
end;

otherwise begin
end;

end;
{ of case statement }

end;

Menus 3-33

Version 2.1

{ of procedure DoEvents }

// ◊◊ DoMouseDown

procedure DoMouseDown({$const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
partCode : SInt16;
menuChoice : SInt32;

begin
partCode := FindWindow(theEvent.where, theWindowPtr);

case (partCode) of

inMenuBar: begin
DoAdjustMenus;
menuChoice := MenuSelect(theEvent.where);
DoMenuChoice(menuChoice);
end;

inContent: begin
if (theWindowPtr <> FrontWindow) then

begin
SelectWindow(theWindowPtr);
end;

end;

inDrag: begin
DragWindow(theWindowPtr, theEvent.where, qd.screenBits.bounds);
end;

inGoAway: begin
if (TrackGoAway(theWindowPtr, theEvent.where)) then

begin
gDone := true;
end;

end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoMouseDown }

// ◊◊ DoAdjustMenus

procedure DoAdjustMenus;
begin
// Adjust menus here.
end;

// ◊◊◊ DoMenuChoice

procedure DoMenuChoice(menuChoice : SInt32);
var
menuID, menuItem : SInt16;

begin
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);

if (menuID = 0) then
begin
Exit(DoMenuChoice);
end;

case (menuID) of

mApple: begin
DoAppleMenu(menuItem);
end;

mFile: begin
DoFileMenu(menuItem);
end;

mEdit: begin
DoEditMenu(menuItem);

3-34 Menus

Version 2.1

end;

mFont: begin
DoFontMenu(menuItem);
end;

mStyle: begin
DoStyleMenu(menuItem);
end;

mSize: begin
DoSizeMenu(menuItem);
end;

mSpecial: begin
DoSpecialMenu(menuItem);
end;

mSubmenu: begin
DoSubMenus(menuItem);
end;

kHMHelpMenuID: begin
DoHelpMenu(menuItem);
end;

otherwise begin
end;

end;
{ of case statement }

HiliteMenu(0);
end;

{ of procedure DoMenuChoice }

// ◊◊ DoAppleMenu

procedure DoAppleMenu(menuItem : SInt16);
var
itemName : Str255;
daDriverRefNum : SInt16;

begin
if (menuItem = iAbout) then

begin
DrawItemString('About Menus1…');
end

else begin
GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);
daDriverRefNum := OpenDeskAcc(itemName);
end;

end;
{ of procedure DoAppleMenu }

// ◊◊◊ DoFileMenu

procedure DoFileMenu(menuItem : SInt16);
begin
if (menuItem = iQuit) then

begin
gDone := true;
end;

end;
{ of procedure DoFileMenu }

// ◊◊◊ DoEditMenu

procedure DoEditMenu(menuItem : SInt16);
begin
case (menuItem) of

iUndo: begin
DrawItemString('Undo');
end;

iCut: begin
DrawItemString('Cut');
end;

iCopy: begin

Menus 3-35

Version 2.1

DrawItemString('Copy');
end;

iPaste: begin
DrawItemString('Paste');
end;

iClear: begin
DrawItemString('\Clear');
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoEditMenu }

// ◊◊◊ DoFontMenu

procedure DoFontMenu(menuItem : SInt16);
var
fontMenuHdl : MenuHandle;
fontName : Str255;
fontNumber : SInt16;

begin
fontMenuHdl := GetMenuHandle(mFont);

CheckItem(fontMenuHdl, gCurrentFont, false);
CheckItem(fontMenuHdl, menuItem, true);

gCurrentFont := menuItem;

GetMenuItemText(fontMenuHdl, menuItem, fontName);
GetFNum(fontName, fontNumber);
TextFont(fontNumber);

DrawItemString(fontName);
end;

{ of procedure DoFontMenu }

// ◊◊ DoStyleMenu

procedure DoStyleMenu(menuItem : SInt16);
var
styleMenuHdl : MenuHandle;

begin
case (menuItem) of

iPlain: begin
gCurrentStyle := [];
end;

iBold: begin
if (bold in gCurrentStyle) then

begin
gCurrentStyle := gCurrentStyle - [bold];
end

else begin
gCurrentStyle := gCurrentStyle + [bold];
end;

end;

iItalic: begin
if (italic in gCurrentStyle) then

begin
gCurrentStyle := gCurrentStyle - [italic];
end

else begin
gCurrentStyle := gCurrentStyle + [italic];
end;

end;

iUnderline: begin
if (underline in gCurrentStyle) then

begin
gCurrentStyle := gCurrentStyle - [underline];
end

3-36 Menus

Version 2.1

else begin
gCurrentStyle := gCurrentStyle + [underline];
end;

end;

iOutline: begin
if (outline in gCurrentStyle) then

begin
gCurrentStyle := gCurrentStyle - [outline];
end

else begin
gCurrentStyle := gCurrentStyle + [outline];
end;

end;

iShadow: begin
if (shadow in gCurrentStyle) then

begin
gCurrentStyle := gCurrentStyle - [shadow];
end

else begin
gCurrentStyle := gCurrentStyle + [shadow];
end;

end;

otherwise begin
end;

end;
{ of case statement }

styleMenuHdl := GetMenuHandle(mStyle);

CheckItem(styleMenuHdl, iPlain, gCurrentStyle = []);
CheckItem(styleMenuHdl, iBold, bold in gCurrentStyle);
CheckItem(styleMenuHdl, iItalic, italic in gCurrentStyle);
CheckItem(styleMenuHdl, iUnderline, underline in gCurrentStyle);
CheckItem(styleMenuHdl, iOutline, outline in gCurrentStyle);
CheckItem(styleMenuHdl, iShadow, shadow in gCurrentStyle);

TextFace(gCurrentStyle);

DrawItemString('Style change');
end;

{ of procedure DoStyleMenu }

// ◊◊◊ DoSizeMenu

procedure DoSizeMenu(menuItem : SInt16);
var
sizeMenuHdl : MenuHandle;

begin
case (menuItem) of

iTen: begin
TextSize(10);
end;

iTwelve: begin
TextSize(12);
end;

iEighteen: begin
TextSize(18);
end;

iTwentyFour: begin
TextSize(24);
end;

otherwise begin
end;

end;
{ of case statement }

sizeMenuHdl := GetMenuHandle(mSize);

CheckItem(sizeMenuHdl, gCurrentSize, false);
CheckItem(sizeMenuHdl, menuItem, true);

Menus 3-37

Version 2.1

gCurrentSize := menuItem;

DrawItemString('Size change');
end;

{ of procedure DoSizeMenu }

// ◊◊ DoSpecialMenu

procedure DoSpecialMenu(menuItem : SInt16);
begin
if (menuItem = iFirstItem) then

begin
DrawItemString('First Item');
end;

end;
{ of procedure DoSpecialMenu }

// ◊◊◊ DoSubMenus

procedure DoSubMenus(menuItem : SInt16);
begin
case (menuItem) of

iFirstSubItem: begin
DrawItemString('Subitem 1');
end;

iSecondSubItem: begin
DrawItemString('Subitem 2');
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoSubMenus }

// ◊◊◊ DoHelpMenu

procedure DoHelpMenu(menuItem : SInt16);
var
helpMenuHdl : MenuHandle;
ignoredErr : OSErr;
origHelpItems, numItems : SInt16;

begin
ignoredErr := HMGetHelpMenuHandle(helpMenuHdl);

numItems := CountMItems(helpMenuHdl);
origHelpItems := numItems - 1;

if (menuItem > origHelpItems) then
begin
DrawItemString('Menus1 Help');
end;

end;
{ of procedure DoHelpMenu }

// ◊◊◊ DrawItemString

procedure DrawItemString(eventString : Str255);
var
tempRegion : RgnHandle;
theWindowPtr : WindowPtr;
scrollBox : Rect;

begin
theWindowPtr := FrontWindow;
tempRegion := NewRgn;

if (theWindowPtr <> nil) then
begin
scrollBox := theWindowPtr^.portRect;

ScrollRect(scrollBox, 0, -24, tempRegion);
DisposeRgn(tempRegion);

MoveTo(8, 286);

3-38 Menus

Version 2.1

DrawString(eventString);
end;

end;
{ of procedure DrawItemString }

// ◊◊◊ main program

begin
gCurrentFont := 1;
gCurrentStyle := [];
gCurrentSize := 2;

//
……
…… initialise managers

DoInitManagers;

//
……
…………………… open a window

gWindowPtr := GetNewCWindow(rWindowResource, nil, WindowPtr(-1));
if (gWindowPtr = nil) then

begin
SysBeep(10);
ExitToShell;
end;

SetPort(gWindowPtr);

// …… set up menu bar and menus, then
show window

DoGetMenus;
ShowWindow(gWindowPtr);

//
……
…………………………… event loop

gDone := false;

while (not gDone) do
begin
if (WaitNextEvent(everyEvent, gEvent, 180, nil)) then

begin
DoEvents(gEvent);
end;

end;
end.

{ of main program }

// ◊◊

Demonstration Program Menus 1 Comments
When this program is run, the user should make menu selections from all menus, including the Apple menu and the Help
menu. Selections should be made using the mouse and, where appropriate, the Command key equivalents. The user
should also note the effects on the menu bar of clicking outside, then inside, the program's window, that is, of sending the
program to the background and returning it to the foreground.

constants
Constants are established for the pull-down and hierarchical menu IDs and resources, menu item numbers and subitem
numbers. The last line establishes a constant for the resource ID of the 'WIND' resource.

Global Variables
The global variable gDone relates to the main event loop. When set to true, the loop will exit and the program will
terminate. The next three global variables will hold the current choices, in terms of item numbers, from the Font, Style and
Size menus. The remaining variables are used in the main program block.

main program block

Menus 3-39

Version 2.1

The main program block initialises the system software managers, creates a window and makes its graphics port the
current port, calls the application-defined function which sets up the menus, shows the window and enters the main event
loop.

DoGetMenus
DoGetMenus sets up the menu bar and the various menus.

At the first block, GetNewMBar reads in the 'MENU' resources for each menu specified in the 'MBAR' resource and creates a
menu record for each of those menus. (Note that the error handling here and in other areas of this program is somewhat
rudimentary: the program simply terminates.) The call to SetMenuBar makes the newly created menu list the current list
and DrawMenuBar draws the menu bar.

The next block adds the contents of the Apple Menu Items folder to the Apple menu. The use of 'DRVR' as the second
parameter to the AppendResMenu call is automatically interpreted to mean that the Apple menu is being created, so that
all items in the Apple Menu Items folder are added rather than resources of type 'DRVR'.

The third block adds the names of all resident fonts to the Font menu. Using 'FONT' in the second parameter in the call to
AppendResMenu causes all such resources to be searched out and their names added to the specified menu.

The fourth block inserts the application's single submenu into the submenu portion of the menu list. GetNewMBar does not
read in the resource descriptions of submenus, so the first step is to read in the 'MENU' resource with GetMenu.
InsertMenu inserts a menu record for this menu into the menu list at the location specified in the second parameter to this
call. Using the constant hierMenu (-1) as the second parameter causes the menu to be installed in the submenu portion of
the menu list.

The next block appends a menu item with the name "Menus Help" to the Help menu.

The last three lines cause checkmarks to be set against the appropriate font, style and size menu items according to the
initialised values of the associated global variables.

DoEvents
DoEvents branches according to the type of low-level or Operating System event received. Further processing is called for
in the case of mouse-down or Command key equivalents, these being central to the matter of menu handling.

In the case of key-down and auto-key events, the character code is first extracted from the event record's message field. A
check is then made of the modifiers field to establish whether the Command key was also pressed at the time. If so, menu
enabling/disabling is attended to before the call to MenuEvent establishes whether the character code is associated with a
currently enabled menu or submenu item in the menu list. If a match is found, MenuEvent returns a long integer
containing the menu ID in the high word and the item number in the low word, otherwise it returns 0 in the high word. This
long integer is then passed to the function DoMenuChoice.

The call to HiliteMenu at the osEvt case unhighlights the Apple menu title when the user brings the demonstration program
to the foreground, having previously sent it to the background by choosing an Apple Menu Items folder item from the Apple
menu.

DoMouseDown
DoMouseDown first establishes the window and window part in which the mouse-down event occurred, and branches
accordingly. This demonstration program is specifically concerned with mouse-downs in the menu bar and the content
region of the window.

If the event occurred in this program's menu bar, menu enabling/disabling is attended to before the call to MenuSelect.
MenuSelect tracks the user's actions until the mouse button is released, at which time it returns a long integer. If the user
actually chose a menu item, this long integer contains the menu ID in the high word and the item number in the low word,
otherwise it contains 0 in the high word. This long integer is passed to the function DoMenuChoice.

If the mouse-down event occurred in the content region of the window, and if the window to which the mouse-down refers
is not the front window, SelectWindow is called to effect basic window activation/deactivation.

The inDrag case responds to a mouse-down in the drag bar.

The inGoAway case responds to a mouse-down in the go-away box, setting gDone to true and thus terminating the program
if the cursor is still within the go-away box when the mouse button is released.

DoAdjustMenus
DoAdjustMenus is called when a mouse-down occurs in the menu bar and when examination of a key-down event reveals
that a menu item's keyboard equivalent has been pressed. No action is taken in this simple program because only one
window, whose content never changes, is ever open.

(Later demonstration programs contain examples of menu adjustment functions which cater for specific circumstances.
For example, the menu adjustment function in the demonstration program at Chapter 8 — Dialogs and Alerts
accommodates the situation where the front window could be either a document window or a modeless dialog box.)

3-40 Menus

Version 2.1

DoMenuChoice
DoMenuChoice takes the long integer returned by the MenuSelect and MenuEvent calls, extracts the high word (the menu
ID) and the low word (the menu item number) and switches according to the menu ID.

At the first two lines, the menu ID and the menu item number are extracted from the long integer. The next two lines will
cause an immediate return if the high word equals 0, (meaning that either the mouse button was released when the pointer
was outside the menu box or MenuEvent found no menu list match for the key pressed in conjunction with the Command
key).

Within the switch on the menu ID, the appropriate application-defined individual menu handling function are called. Note
the handling of the hierarchical menu (case mSubMenu). Note also that, at the last case, the kHMHelpMenuID constant (-
16490) is returned in the high word if the user chooses an appended item from the Help menu.

MenuEvent and MenuSelect leave the menu title highlighted if an item was actually selected. Accordingly, the last line
unhighlights the menu title when the action associated with the user's drop-down menu choice is complete.

DoAppleMenu
DoAppleMenu takes the short integer representing the menu item. If this value represents the first item in the Apple menu
(the inserted "About…" item), text representing this item is drawn in the scrolling display.

If the value passed to the DoAppleMenu routine represents other items in the Apple menu, the call to GetMenuItemText
gets the string representing the item's name. This string (which excludes metacharacters) is used as the parameter in the
OpenDeskAcc call. OpenDeskAcc opens the chosen object and passes control that object.

DoFileMenu
DoFileMenu handles choices from the File menu. In this demonstration, only the Quit item is enabled, all other items
having been disabled in the File menu's 'MENU' resource. When this item is chosen, the global variable gDone is set to
true, causing termination of the program.

DoEditMenu
DoEditMenu branches according to the menu item number, drawing text representing the chosen item in the window.

DoFontMenu
DoFontMenu first gets a handle to the Font menu structure required by the following CheckItem calls. The CheckItem calls
uncheck the current font menu item and check the menu item passed to the DoFontMenu function. This latter menu item
number is then assigned to the gCurrentFont global variable.

The call to GetMenuItemText extracts the string representing the item's name. This string is passed as the first parameter
in the call to GetFNum, which gets the font number associated with the name. This number is then used in the call to
TextFont, which will cause subsequent text drawing to be conducted in the specified font. The last line draws the name of
the font in that font.

DoStyleMenu
DoStyleMenu branches according to the menu item chosen in the Style menu. Within the case statement, items in the
global set variable gCurrentStyle are added or removed according to the font styles selected. The code reflects the fact
that Bold, Italic, Underline, Outline and Shadow style selections are additive, not mutually exclusive, and that a selection of
Plain must remove all members from gCurrentStyle. The code also reflects the requirement that, except in the case of the
Plain item, the selection of a checked item must cause that item to be unchecked, and vice versa.

With the appropriate memberships of gCurrentStyle attended to, a handle to the Style menu record is then obtained. This
is required for the six CheckMenuItem, which check or uncheck the individual menu items according to whether the third
argument evaluates to, respectively, true or false.

The call to TextFace sets the style for subsequent text drawing. The last line draws some text to prove that the desired
effect was achieved.

DoSizeMenu
DoSizeMenu branches according to the menu item chosen in the Size menu, sets the text size for all text drawing to that
size, unchecks the current size item, and checks the newly chosen item. gCurrentSize is then set to the selected menu
item number before the function returns.

DoSpecialMenu
DoSpecialMenu handles a choice of the first item in the Special menu. Since the second item is the title of a submenu, only
the first item is attended to in this function.

Menus 3-41

Version 2.1

DoSubMenus
DoSubMenus branches according to the chosen subitem in the hierarchical menu represented by the second menu item in
the Special menu.

DoHelpMenu
DoHelpMenu handles the choice of the "Menus Help" item added by this program to the system-managed Help Menu. This
code reflects the fact that Apple reserves the right to add items to the Help menu in future versions of the system software.

HMGetHelpMenuHandle gets a handle to the Help menu record. The call to CountMenuItems returns the number of items
in the Help menu. Since we know that we have added one item to this menu, the next line will establish the original
number of help items. If the value passed to the DoHelpMenu routine is greater than this number, it must therefore
represent the item number of our "Menus Help" item, in which case some text is drawn in the window to register the fact.

DrawItemString
The routine DrawItemString is incidental to the demonstration, being called by the menu selection handling functions to
draw text in the application's window to reflect the user's menu choices.

Demonstration Program Menus 2
{ ◊◊
// Menus2.p
// ◊◊
//
// This program is based on Menus1 and, amongst other things, demonstrates:
//
// • How to achieve Appearance-compliant menus and menu bars.
//
// • The additional menus-related features introduced with Mac OS 8 and the Appearance
// Manager and, later, Mac OS 8.5.
//
// The basic differences between this program and Menus1 are as follows:
//
// • A call to RegisterAppearanceClient is used early in main() to cause the new menu
// bar definition function (resource ID 63) to be used regardless of whether
// system-wide Appearance is selected on or off in the Mac OS 8.0 and 8.1 Appearance
// control panel. Also, the new menu definition function (resource ID 63) is
// specified in the 'MENU' resource for all menus, meaning that that that definition
// function will be used regardless of whether system-wide Appearance is selected on
// or off in the Mac OS 8.0 and 8.1 Appearance control panel.
//
// • 'xmnu' resources are used to extend the 'MENU' resources for all non-system
// managed menus and the Font menu.
//
// • Extended modifier keys (Shift, Option, and Control) are used to extend the
// Command-key equivalents for two menu items in the Style menus.
//
// • There are two Style menus (Style ('xmnu') and Style (Programmatic). The two Style
// menus are intended to demonstrate an anomaly in the first version of the
// Appearance-compliant menu definition function (resource ID 63) in the case where
// extended modifier keys are assigned to a menu item via an 'xmnu' resource as
// opposed to being assigned programmatically. (Note that this only applies to Mac
// OS 8.0 and 8.1. This problem was fixed in Mac OS 8.5.)
//
// • Command IDs are assigned to all menu items except those in the system-managed
// menus and the Font menu, and the associated menu handling code branches according
// to the command ID of the chosen menu item (as opposed to menu ID and menu item).
//
// • The Font menu is WYSIWYG, meaning that each item is drawn in that font.
//
// • The delete-to-the-left, delete-to-the-right, page-up, and page-down keys are
// assigned as Command-key equivalents in the Size menu, and the glyphs are adjusted
// where necessary.
//
// • If Mac OS 8.5 is present, the mark column is eliminated from the Special menu and
// the font for the menu is set to the Gadget font (if it is present).
//
// • The submenu is attached to the second item in the Special menu programmatically
// rather than via the 'MENU' resource.
//
// • Colour icons are included in the menu items in the submenu.
//
// • Balloon help is provided, via 'hmnu' resources, for all menus.

3-42 Menus

Version 2.1

//
// The extended modifier keys in the Style ('xmnu') menu are assigned via the 'xmnu'
// resource for that menu. The extended modifier keys in the Style (Programmatic)
// menu are assigned programmatically via calls to SetMenuItemModifiers.
//
// The command IDs for items in the File, Edit, and Style ('xmnu') menus are assigned via
// the 'xmnu' resources for those menus. The command IDs for the items in the Style
// (Programmatic), Size, and Special menus, and the submenu, are assigned
// programmatically.
//
// The colour icon in the first submenu item is assigned via the 'MENU' resource. The
// colour icon in the second item is assigned programmatically via a call to
// SetMenuItemIconHandle.
//
// The program utilises the following resources:
//
// • A 'WIND' resource (purgeable) (initially not visible).
//
// • An 'MBAR' resource (preload, non-purgeable).
//
// • 'MENU' resources for the drop-down menus and submenu (all preload, all non-
// purgeable).
//
// • 'xmnu' resources (preload, purgeable) for the drop-down menus (except the
// system-managed menus and the Font menu) and the submenu.
//
// • 'hmnu' resources (purgeable) providing balloon help for menus and menu items.
//
// • Two 'cicn' resources (purgeable) for the items in the submenu.
//
// ◊◊ }

program Menus2;

//
……
………………………………… interfaces

uses

{ Universal Interfaces. }
Appearance, Balloons, Devices, Fonts, GestaltEqu, Menus, Processes, Sound, ToolUtils;

//
……
…………………………………… constants

const

mApple = 128;
 iAbout = 1;
mFile = 129;
 idQuit = 'quit';
mEdit = 130;
 idUndo = 'undo';
 idCut = 'cut ';
 idCopy = 'copy';
 idPaste = 'past';
 idClear = 'clea';
mFont = 131;
mStyle_xmnu = 132;
 idPlain_xmnu = 'plax';
 idBold_xmnu = 'bolx';
 idItalic_xmnu = 'itax';
 idUnderline_xmnu = 'undx';
 idOutline_xmnu = 'outx';
 idShadow_xmnu = 'shax';
mStyle_prog = 133;
 iPlain = 1;
 iBold = 3;
 iItalic = 4;
 iOutline = 6;
 iUnderline = 5;
 iShadow = 7;
 idPlain_prog = 'plap';
 idBold_prog = 'bolp';
 idItalic_prog = 'itap';
 idUnderline_prog = 'undp';
 idOutline_prog = 'outp';
 idShadow_prog = 'shap';

Menus 3-43

Version 2.1

mSize = 134;
 iTen = 1;
 iTwelve = 2;
 iEighteen = 3;
 iTwentyFour = 4;
 idTen = 'ten ';
 idTwelve = 'twel';
 idEighteen = 'eigh';
 idTwentyFour = 'twen';
mSpecial = 135;
 iFirst = 1;
 iSecond = 2;
 idFirst = 'firs';
mSubmenu = 136;
 iBat = 1;
 iBowl = 2;
 idBat = 'bat ';
 idBowl = 'bowl';
rWindowResource = 128;
rColourIcon = 258;

//
……
………………… global variables

var

gMacOS_85_present : Boolean;
gDone : Boolean;
gCurrentFont : SInt16;
gCurrentStyle : Style;
gCurrentSize : SInt16;
gEvent : EventRecord;
gWindowPtr : WindowPtr;
backColour : RGBColor;
foreColour : RGBColor;
gIgnoredErr : OSErr;

//
……
… main program variables

osError : OSErr;
response : SInt32;

//
……
………… routine prototypes

procedure DoInitManagers; forward;
procedure DoGetMenus; forward;
procedure DoEvents({$const} var theEvent : EventRecord); forward;
procedure DoMouseDown({$const} var theEvent : EventRecord); forward;
procedure DoAdjustMenus; forward;
procedure DoMenuChoice(menuChoice : SInt32); forward;
procedure DoAppleMenu(menuItem : SInt16); forward;
procedure DoFontMenu(menuItem : SInt16); forward;
procedure DoHelpMenu(menuItem : SInt16); forward;
procedure DoCheckStyleMenuItem(menuID : SInt16); forward;
procedure DoCheckSizeMenuItem(menuID, menuItem : SInt16); forward;
procedure DrawItemString(theString : Str255); forward;

// ◊◊◊ DoInitManagers

procedure DoInitManagers;
begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

InitCursor;
FlushEvents(everyEvent, 0);
end;

{ of procedure DoEvents }

3-44 Menus

Version 2.1

// ◊◊◊ DoGetMenus

procedure DoGetMenus;
var
menubarHdl : Handle;
menuHdl : MenuHandle;
a, numberOfItems, fontNumber : SInt16;
fontName : Str255;
osErr, ignoredErr : OSErr;
cicnHdl : CIconHandle;

begin
//

……
get and draw menu bar

menubarHdl := GetNewMBar(128);
if (menubarHdl = nil) then

begin
ExitToShell;
end;

SetMenuBar(menubarHdl);
DrawMenuBar;

//
……
………… set up Apple menu

menuHdl := GetMenuHandle(mApple);
if (menuHdl <> nil) then

begin
AppendResMenu(menuHdl, 'DRVR');
end

else begin
ExitToShell;
end;

// …… set up Font menu
and make WYSIWYG

menuHdl := GetMenuHandle(mFont);
if (menuHdl <> nil) then

begin
AppendResMenu(menuHdl, 'FONT');

numberOfItems := CountMItems(menuHdl);
for a := 1 to numberOfItems do

begin
GetMenuItemText(menuHdl, a, fontName);
GetFNum(fontName, fontNumber);
ignoredErr := SetMenuItemFontID(menuHdl, a, fontNumber);
end;

end
else begin

ExitToShell;
end;

// …………………………… programmatically set the extended modifiers in Style Programmatic(menu)

menuHdl := GetMenuHandle(mStyle_prog);
ignoredErr := SetMenuItemModifiers(menuHdl, iOutline, kMenuShiftModifier
 + kMenuOptionModifier + kMenuControlModifier);
ignoredErr := SetMenuItemModifiers(menuHdl, iShadow, kMenuShiftModifier
 + kMenuOptionModifier);

// insert submenu into menu list and programmatically attach it to Special menu, item 2

menuHdl := GetMenu(mSubmenu);
if (menuHdl <> nil) then

begin
InsertMenu(menuHdl, hierMenu);
menuHdl := GetMenuHandle(mSpecial);
ignoredErr := SetMenuItemHierarchicalID(menuHdl, iSecond, mSubmenu);
end

else begin
ExitToShell;
end;

// … programmatically set command IDs for second Style, Size, Special menus and submenu

Menus 3-45

Version 2.1

menuHdl := GetMenuHandle(mStyle_prog);
ignoredErr := SetMenuItemCommandID(menuHdl, iPlain, UInt32(idPlain_prog));
ignoredErr := SetMenuItemCommandID(menuHdl, iBold, UInt32(idBold_prog));
ignoredErr := SetMenuItemCommandID(menuHdl, iItalic, UInt32(idItalic_prog));
ignoredErr := SetMenuItemCommandID(menuHdl, iUnderline, UInt32(idUnderline_prog));
ignoredErr := SetMenuItemCommandID(menuHdl, iOutline, UInt32(idOutline_prog));
ignoredErr := SetMenuItemCommandID(menuHdl, iShadow, UInt32(idShadow_prog));

menuHdl := GetMenuHandle(mSize);
ignoredErr := SetMenuItemCommandID(menuHdl, iTen, UInt32(idTen));
ignoredErr := SetMenuItemCommandID(menuHdl, iTwelve, UInt32(idTwelve));
ignoredErr := SetMenuItemCommandID(menuHdl, iEighteen, UInt32(idEighteen));
ignoredErr := SetMenuItemCommandID(menuHdl, iTwentyFour, UInt32(idTwentyFour));

menuHdl := GetMenuHandle(mSpecial);
ignoredErr := SetMenuItemCommandID(menuHdl, iFirst, UInt32(idFirst));

menuHdl := GetMenuHandle(mSubmenu);
ignoredErr := SetMenuItemCommandID(menuHdl, iBat, UInt32(idBat));
ignoredErr := SetMenuItemCommandID(menuHdl, iBowl, UInt32(idBowl));

// ……………………………………………………… programmatically set the icon for the Bowl item in the submenu

cicnHdl := GetCIcon(rColourIcon);
ignoredErr := SetMenuItemIconHandle(menuHdl, iBowl, kMenuColorIconType, Handle(cicnHdl));

// …… programmatically set Command-key equivalents to Size menu items and adjust glyphs

menuHdl := GetMenuHandle(mSize);
SetItemCmd(menuHdl, iTen, char($08));
ignoredErr := SetMenuItemKeyGlyph(menuHdl, iTen, $17);
SetItemCmd(menuHdl, iTwelve, char($7f));
ignoredErr := SetMenuItemKeyGlyph(menuHdl, iTwelve, $0A);
SetItemCmd(menuHdl, iEighteen, char($0b));
SetItemCmd(menuHdl, iTwentyFour, char($0c));

 // ……………… programmatically exclude the mark column and set the font in the Special menu

{$ifc TARGET_CPU_PPC}
if(gMacOS_85_present) then

begin
menuHdl := GetMenuHandle(mSpecial);
ignoredErr := SetMenuExcludesMarkColumn(menuHdl,true);

GetFNum('Gadget',fontNumber);
if(fontNumber <> 0) then

begin
ignoredErr := SetMenuFont(menuHdl,fontNumber,12);
end

end;
{$endc}

//
……
… set up the Help menu

osErr := HMGetHelpMenuHandle(menuHdl);
if (osErr = noErr) then

begin
AppendMenu(menuHdl, 'Menus2 Help');
end

else begin
ExitToShell;
end;

// ……………………………………………………………………………… set initial font, style, and size, and checkmark them

DoFontMenu(gCurrentFont);
DoCheckStyleMenuItem(mStyle_xmnu);
DoCheckStyleMenuItem(mStyle_prog);
DoCheckSizeMenuItem(mSize, iTen);
end;

{ of procedure DoGetMenus }

// ◊◊◊ DoEvents

procedure DoEvents({$const} var theEvent : EventRecord);
var
charCode : char;

3-46 Menus

Version 2.1

begin
case (theEvent.what) of

mouseDown: begin
DoMouseDown(theEvent);
end;

keyDown, autoKey: begin
charCode := chr(BAnd(theEvent.message, charCodeMask));
if (BAnd(theEvent.modifiers, cmdKey) <> 0) then

begin
DoAdjustMenus;
DoMenuChoice(MenuEvent(theEvent));
end;

end;

updateEvt: begin
BeginUpdate(WindowPtr(theEvent.message));
EndUpdate(WindowPtr(theEvent.message));
end;

osEvt: begin
HiliteMenu(0);
end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoEvents }

// ◊◊ DoMouseDown

procedure DoMouseDown({$const} var theEvent : EventRecord);
var
theWindowPtr : WindowPtr;
partCode : SInt16;
menuChoice : SInt32;

begin
partCode := FindWindow(theEvent.where, theWindowPtr);

case (partCode) of

inMenuBar: begin
DoAdjustMenus;
menuChoice := MenuSelect(theEvent.where);
DoMenuChoice(menuChoice);
end;

inContent: begin
if (theWindowPtr <> FrontWindow) then

begin
SelectWindow(theWindowPtr);
end;

end;

inDrag: begin
DragWindow(theWindowPtr, theEvent.where, qd.screenBits.bounds);
end;

inGoAway: begin
if (TrackGoAway(theWindowPtr, theEvent.where)) then

begin
gDone := true;
end;

end;

otherwise begin
end;

end;
{ of case statement }

end;
{ of procedure DoMouseDown }

// ◊◊ DoAdjustMenus

procedure DoAdjustMenus;

Menus 3-47

Version 2.1

begin
// Adjust menus here.
end;

{ of procedure DoAdjustMenus }

// ◊◊◊ DoMenuChoice

procedure DoMenuChoice(menuChoice : SInt32);
var
menuID, menuItem : SInt16;
osErr : OSErr;
commandID : UInt32;
menuHdl : MenuHandle;

begin
menuID := HiWord(menuChoice);
menuItem := LoWord(menuChoice);

if (menuID = 0) then
begin
Exit(DoMenuChoice);
end;

if (menuID = mApple) then
begin
DoAppleMenu(menuItem);
end

else if (menuID = mFont) then
begin
DoFontMenu(menuItem);
end

else if (menuID = kHMHelpMenuID) then
begin
DoHelpMenu(menuItem);
end

else begin
osErr := GetMenuItemCommandID(GetMenuHandle(menuID), menuItem, commandID);
if ((osErr <> noErr) or (commandID <> 0)) then

begin
case (commandID) of

//
……
……………… File menu

UInt32('quit'): begin
gDone := true;
end;

//
……
……………… Edit menu

UInt32('undo'): begin
DrawItemString('Undo');
end;

UInt32('cut '): begin
DrawItemString('Cut');
end;

UInt32('copy'): begin
DrawItemString('Copy');
end;

UInt32('past'): begin
DrawItemString('Paste');
end;

UInt32('clea'): begin
DrawItemString('Clear');
end;

// ……………………………………………………………………………………… Style ('xmnu') and Style
Programmatic(menu)

UInt32('plax'), UInt32('plap'): begin
gCurrentStyle := [];
DoCheckStyleMenuItem(menuID);
end;

3-48 Menus

Version 2.1

UInt32('bolx'), UInt32('bolp'): begin
if (bold in gCurrentStyle) then

begin
gCurrentStyle := gCurrentStyle - [bold];
end

else begin
gCurrentStyle := gCurrentStyle + [bold];
end;

DoCheckStyleMenuItem(menuID);
end;

UInt32('itax'), UInt32('itap'): begin
if (italic in gCurrentStyle) then

begin
gCurrentStyle := gCurrentStyle - [italic];
end

else begin
gCurrentStyle := gCurrentStyle + [italic];

end;
DoCheckStyleMenuItem(menuID);
end;

UInt32('undx'), UInt32('undp'): begin
if (underline in gCurrentStyle) then

begin
gCurrentStyle := gCurrentStyle - [underline];
end

else begin
gCurrentStyle := gCurrentStyle + [underline];
end;

DoCheckStyleMenuItem(menuID);
end;

UInt32('outx'), UInt32('outp'): begin
if (outline in gCurrentStyle) then

begin
gCurrentStyle := gCurrentStyle - [outline];
end

else begin
gCurrentStyle := gCurrentStyle + [outline];
end;

DoCheckStyleMenuItem(menuID);
end;

UInt32('shax'), UInt32('shap'): begin
if (shadow in gCurrentStyle) then

begin
gCurrentStyle := gCurrentStyle - [shadow];
end

else begin
gCurrentStyle := gCurrentStyle + [shadow];
end;

DoCheckStyleMenuItem(menuID);
end;

//
……
……………… Size menu

UInt32('ten '): begin
TextSize(10);
DoCheckSizeMenuItem(menuID, menuItem);
end;

UInt32('twel'): begin
TextSize(12);
DoCheckSizeMenuItem(menuID, menuItem);
end;

UInt32('eigh'): begin
TextSize(18);
DoCheckSizeMenuItem(menuID, menuItem);
end;

UInt32('twen'): begin
TextSize(24);
DoCheckSizeMenuItem(menuID, menuItem);
end;

Menus 3-49

Version 2.1

//
……
……… Special menu

UInt32('firs'): begin
DrawItemString('First Item');
end;

//
……
…………………… submenu

UInt32('bat '): begin
menuHdl := GetMenuHandle(mSubmenu);
DisableItem(menuHdl, iBat);
EnableItem(menuHdl, iBowl);
DrawItemString('Bat');
end;

UInt32('bowl'): begin
menuHdl := GetMenuHandle(mSubmenu);
DisableItem(menuHdl, iBowl);
EnableItem(menuHdl, iBat);
DrawItemString('Bowl');
end;

otherwise begin
end;

end;
{ of case statement }

end;
end;

HiliteMenu(0);
end;

{ of procedure DoMenuChoice }

// ◊◊ DoAppleMenu

procedure DoAppleMenu(menuItem : SInt16);
var
itemName : Str255;
daDriverRefNum : SInt16;

begin
if (menuItem = iAbout) then

begin
DrawItemString('About Menus2…');
end

else begin
GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);
daDriverRefNum := OpenDeskAcc(itemName);
end;

end;
{ of procedure DoAppleMenu }

// ◊◊◊ DoFontMenu

procedure DoFontMenu(menuItem : SInt16);
var
fontMenuHdl : MenuHandle;
fontName : Str255;
fontNumber : SInt16;

begin
fontMenuHdl := GetMenuHandle(mFont);

CheckItem(fontMenuHdl, gCurrentFont, false);
CheckItem(fontMenuHdl, menuItem, true);

gCurrentFont := menuItem;

GetMenuItemText(fontMenuHdl, menuItem, fontName);
GetFNum(fontName, fontNumber);
TextFont(fontNumber);

DrawItemString(fontName);
end;

{ of procedure DoFontMenu }

3-50 Menus

Version 2.1

// ◊◊◊ DoHelpMenu

procedure DoHelpMenu(menuItem : SInt16);
var
helpMenuHdl : MenuHandle;
ignoredErr : OSErr;
origHelpItems, numItems : SInt16;

begin
ignoredErr := HMGetHelpMenuHandle(helpMenuHdl);

numItems := CountMItems(helpMenuHdl);
origHelpItems := numItems - 1;

if (menuItem > origHelpItems) then
begin
DrawItemString('Menus2 Help');
end;

end;
{ of procedure DoHelpMenu }

// ◊◊◊ DoCheckStyleMenuItem

procedure DoCheckStyleMenuItem(menuID : SInt16);
var
styleMenuHdl : MenuHandle;

begin
styleMenuHdl := GetMenuHandle(menuID);

CheckItem(styleMenuHdl, iPlain, gCurrentStyle = []);
CheckItem(styleMenuHdl, iBold, bold in gCurrentStyle);
CheckItem(styleMenuHdl, iItalic, italic in gCurrentStyle);
CheckItem(styleMenuHdl, iUnderline, underline in gCurrentStyle);
CheckItem(styleMenuHdl, iOutline, outline in gCurrentStyle);
CheckItem(styleMenuHdl, iShadow, shadow in gCurrentStyle);

TextFace(gCurrentStyle);

DrawItemString('Style change');
end;

{ of procedure DoCheckStyleMenuItem }

// ◊◊ DoCheckSizeMenuItem

procedure DoCheckSizeMenuItem(menuID, menuItem : SInt16);
var
sizeMenuHdl : MenuHandle;

begin
sizeMenuHdl := GetMenuHandle(menuID);

CheckItem(sizeMenuHdl, gCurrentSize, false);
CheckItem(sizeMenuHdl, menuItem, true);

gCurrentSize := menuItem;

DrawItemString('Size change');
end;

{ of procedure DoCheckSizeMenuItem }

// ◊◊◊ DrawItemString

procedure DrawItemString(eventString : Str255);
var
tempRegion : RgnHandle;
theWindowPtr : WindowPtr;
scrollBox : Rect;

begin
theWindowPtr := FrontWindow;

if (theWindowPtr <> nil) then
begin
tempRegion := NewRgn;
scrollBox := theWindowPtr^.portRect;

ScrollRect(scrollBox, 0, -30 ,tempRegion);
DisposeRgn(tempRegion);

Menus 3-51

Version 2.1

MoveTo(8,286);
DrawString(eventString);
end;

end;
{ of procedure DrawItemString }

// ◊◊◊ main program

begin
gCurrentFont := 1;
gCurrentStyle := [];
gCurrentSize := 2;
foreColour.red := $FFFF;
foreColour.green := $FFFF;
foreColour.blue := $FFFF;
backColour.red := $4444;
backColour.green := $4444;
backColour.blue := $9999;

//
……
…… initialise managers

DoInitManagers;

// …… cause the Appearance-compliant menu bar definition function to be called directly

gIgnoredErr := RegisterAppearanceClient;

// …… check if Mac OS 8.5 or later is
present

osError := Gestalt(gestaltSystemVersion,response);
if(response >= $00000850) then

begin
gMacOS_85_present := true;
end

else begin
gMacOS_85_present := false;
end;

//
……
…………………… open a window

gWindowPtr := GetNewCWindow(rWindowResource, nil, WindowPtr(-1));
if (gWindowPtr = nil) then

begin
SysBeep(10);
ExitToShell;
end;

SetPort(gWindowPtr);
TextFace([bold]);
RGBBackColor(backColour);
RGBForeColor(foreColour);

// …… set up menu bar and menus, then
show window

DoGetMenus;
ShowWindow(gWindowPtr);
EraseRect(gWindowPtr^.portRect);

//
……
…………………………… event loop

gDone := false;

while (not gDone) do
begin
if (WaitNextEvent(everyEvent, gEvent, 180, nil)) then

begin
DoEvents(gEvent);
end;

end;
end.

{ of main program }
// ◊◊

3-52 Menus

Version 2.1

Menus 3-53

Version 2.1

Demonstration Program Menus2 Comments
When this program is run, the user should choose Show Balloons from the Help menu and make menu selections from all
menus, including the Apple menu and the Help menu. Selections should be made using the mouse and, where appropriate,
the keyboard equivalents. The user should also note:

• That, if the program is being run under Mac OS 8.0 or 8.1, the appearance of the menu bar and menus remains the
same regardless of whether system-wide appearance is selected on or off in the Mac OS 8.0 and 8.1 Appearance
control panel.

• The extended modifier keys assigned to the last two items in the Style menus.

• The Command-key equivalents assigned to the items in the Size menu. (These are, in order, delete-to-the-left key,
delete-to-the-right key, page-up key, and page-down key.)

• That the Font menu is WYSIWYG.

• That, if the program is compiled and run under Mac OS 8.5, the marking character column has been deleted from the
Special menu and the menu items in this menu are drawn in the Gadget font (assuming it is available).

• That, if the program is being run under Mac OS 8.0 or 8.1, there is an anomaly in the way the new MDEF draws Style
menus. In the Style ('xmnu') menu, in which the extended modifier keys for the last two menu items are assigned via
the 'xmnu' resource, the item text is severely truncated and an ellipsis is added. In the Style (Programmatic) menu,
in which the extended modifier keys are assigned programmatically, this truncation of the item text does not occur.
(This problem was fixed in Mac OS 8.5.)

• The balloon help provided for all menus and menu items.

Because this demonstration program is based on Menus1, the following comments exclude those routines which remain
unchanged.

constants
Menus2 now establishes constants for command IDs for menu items. Command IDs are of type UInt32. To enhance source
code readability, these are defined in the four-character-code format, which packs four one-byte characters together in a
32-bit value.

main program block
The call to RegisterAppearanceClient means that the new Appearance-compliant menu bar definition function (resource ID
63) will be used regardless of whether the system-wide Appearance is selected on or off in the Mac OS 8.0 and 8.1
Appearance control panel.

Next, the function Gestalt is used to determine whether Mac OS 8.5 or later is present. If so, the global variable
gMacOS_85_present is set to true. (In the function doGetMenus, this global variable will determine whether two functions
introduced with Mac OS 8.5 get called.)

DoGetMenus
DoGetMenus sets up the menu bar and the various menus.

GetNewMBar reads in the 'MENU' resources for each menu specified in the 'MBAR' resource and creates a menu structure
for each of those menus. (Note that the error handling here and in other areas of this program is somewhat rudimentary:
the program simply terminates.) SetMenuBar makes the newly created menu list the current list and DrawMenuBar draws
the menu bar.

The next block adds the contents of the Apple Menu Items folder to the Apple menu. The use of 'DRVR' as the second
parameter to the AppendResMenu call is automatically interpreted to mean that the Apple menu is being created, so that
all items in the Apple Menu Items folder are added rather than resources of type 'DRVR'.

The next block adds the names of all resident fonts to the Font menu and makes the menu WYSIWYG. The call to
AppendResMenu causes all 'FONT' resources to be searched out and their names added to the specified menu. The process
of making the menu WYSIWYG then begins. The call to CountMItems returns the number of items in the menu. Then, for
each of these items, GetMenuItemText gets the text (the font's name), GetFNum gets the font number associated with the
font name, and SetMenuItemFontID sets the font for the menu item.

The next block programmatically assigns extended modifier keys to the Outline and Shadow items in the Style
(Programmatic) menu. The SetMenuItemModifiers calls assign Shift-Option-Control to the Outline item and Shift-Option to
the Shadow item. (The extended modifier keys for the same two items in the Style ('xmnu') menu are assigned in the
associated 'xmnu' resources.

The next block inserts the application's single submenu into the submenu portion of the menu list and programmatically
attaches it to the Special menu's second menu item. GetNewMBar does not read in the resource descriptions of submenus,
so the first step is to read in the 'MENU' resource with GetMenu. InsertMenu inserts a menu structure for this menu into the

3-54 Menus

Version 2.1

menu list at the location specified in the second parameter to this call. (Using the constant hierMenu (-1) as the second
parameter causes the menu to be installed in the submenu portion of the menu list.) The call to GetMenuHandle gets the
handle to the Special menu, which is used in the following call to SetMenuHierarchicalID to attach the submenu to the
second item in the Special menu.

The following rather large block programmatically assigns command IDs to all items in the Style (Programmatic), Size, and
Special menus and the submenu. (Command IDs for the File and Style ('xmnu') menus are assigned in the associated
'xmnu' resources. It is not possible to assign command IDs to this application's items in the system-managed menus
(Apple and Help), nor is it possible to assign command IDs to the items in the Font menu.)

The following small block programmatically assigns a colour icon to the second item in the submenu. The call to GetCIcon
creates a CIcon data structure and initializes it from data read in from the specified 'cicn' resource. The handle to this
structure is then passed as the last parameter in the SetMenuItemIconHandle, the third parameter specifying that the type
of icon is a colour icon. (The colour icon for the first second item in the submenu is assigned in the associated 'xmnu'
resource.)

The next block programmatically assigns command-key equivalents to the items of the Size menu. (Because the keys
assigned are the two delete keys and the page-up and page-down keys, it is not possible to make these assignments within
the 'MENU' resource.) Also, a substitute glyph must be assigned in the case of the two delete keys, otherwise the correct
glyphs will not be displayed. The calls to SetItemCmd assign the specified key to the menu item. In the case of the first
two calls, a substitute glyph is assigned via calls to SetMenuItemGlyph. If this is not done, the glyphs displayed will not be
visual representations of the delete keys. (These substitute glyphs could also have been specified in the keyboard glyph
fields for these items in the menu's 'xmnu' resource.)

The next block is applicable only to the PowerPC target, and only executes if Mac OS 8.5 or later is present.
SetMenuExcludesMarkColumn is called to delete the marking character column from the Special menu and SetMenuFont is
called to set the font for the menu items in this menu to Gadget (assuming that font is present).

The block beginning with the call to HMGetHelpMenuHandle appends a menu item with the name "Menus Help" to the Help
menu.

The final block sets checkmarks against the appropriate font, style and size menu items according to the initialised values
of the associated global variables.

DoMenuChoice
DoMenuChoice takes the long integer returned by the MenuSelect and MenuEvent calls, extracts the menu ID, the menu
item number, and the command ID (if any) and branches according to the menu ID (if no Command ID is present) or the
command ID (if present).

Prior to the switch, the menu ID and the menu item number are extracted from the long integer. An immediate return is
made if the high word equals 0, (meaning that either the mouse button was released when the pointer was outside the
menu box or MenuEvent found no menu list match for the key pressed in conjunction with the Command key).

If the menu ID represents the Apple, Font, or Help menus, the relevant application-defined functions are called to further
handle the menu item choice. Otherwise, GetMenuItemCommandID is called. GetMenuItemCommandID returns zero as
the function result if the call is successful, and a pointer to an integer representing the value of the item's command ID will
be returned in the third parameter. If the call is successful, and if a zero is not returned in the third parameter, a command
ID exists for the item. Accordingly, the program switches according to the command ID.

Note that the initial handling of all of the remaining menu items, regardless of which menu they belong to, is attended to
within the one switch in the one function. The responses to the user choosing the various menu items is the same as in
Menus1, except that the code for checkmarking the Style menu items and changing the current style, and for checkmarking
the Size menu items and storing the current size, has been divided between this function and two further-handling
functions (doCheckStyleMenuItem and doCheckSizeMenuItem).

Also note that the handling of the two submenu items has been changed to make the items mutually exclusive.

MenuSelect and MenuEvent leave the menu title highlighted if an item was actually selected. Accordingly, the last line
unhighlights the menu title when the action associated with the user's drop-down menu choice is complete.

Menus 3-55

	Strings With Metacharacters
	Strings Without Metacharacters
	Adding Items to the Help Menu
	Hiding and Showing the Menu Bar
	Controlling Menu Bar Visibility
	Modifying the Menu Width

