
Version 2.1

1
SYSTEM SOFTWARE,

MEMORY, AND RESOURCES
 Includes Demonstration Program SysMemRes

Macintosh System Software
All Macintosh applications make many calls, for many purposes, to Macintosh system
software routines. Such purposes include, for example, the creation of standard user
interface elements such as windows and menus, the drawing of text and graphics, and
the coordination of the application's actions with other open applications.1

The majority of system software routines are components of either the Macintosh
Toolbox or the Macintosh Operating System. In essence:

• Toolbox routines have to do with mediating your application with the user. They
relate, in general, to the management of elements of the user interface.

• Operating System routines have to do with mediating your application with the
Macintosh hardware, performing such basic low-level tasks as file input and output,
memory management and process and device control.

Managers

The entire collection of system software routines is further divided into functional groups
which are usually known as managers.2

Toolbox

The main Toolbox managers are as follows:

1 The main other open application that an application needs to work with is the Finder, which is responsible for keeping
track of files and managing the user’s desktop. The Finder is not really part of the system software, although it is
sometimes difficult to tell where the Finder ends and the system software begins.
2 For historical reasons, some collections of system software functions are referred to as packages. In general, the
distinction between managers and packages is unimportant. Packages are nowadays generally referred to as managers.

System Software, Memory and Resources 1-1

Version 2.1

QUICKDRAW WINDOW MANAGER DIALOG MANAGER CONTROL MANAGER MENU MANAGER TEXTEDIT

EVENT MANAGER RESOURCE
MANAGER HELP MANAGER SCRAP MANAGER FINDER INTERFACE LIST MANAGER

 SOUND MANAGER SOUND INPUT
MANAGER

APPEARANCE
MANAGER

Introduced with Mac OS 8.0. Note that Navigation Services renders
Standard File Package obsolescent

FOLDER
MANAGER

 NAVIGATION
SERVICES

STANDARD FILE
PACKAGE

Operating System

The main Operating System managers are as follows:

PROCESS MANAGER MEMORY MANAGER VIRTUAL MEMORY
MANAGER FILE MANAGER DISK INITIALIZATION

MANAGER DEVICE MANAGER

 SCSI MANAGER TIME MANAGER SHUTDOWN
MANAGER ALIAS MANAGER VERTICAL RETRACE

MANAGER

Additional System Software

The system software also includes a number of other components which do not
historically belong to either the Macintosh Toolbox or Macintosh Operating System.
These are categorised as follows:

• Text Handling. Text handling on the Macintosh is fundamentally graphic in that
text is drawn as a sequence of graphic elements, and is designed to support more
than one script (writing system). In addition to QuickDraw (see above), the
components of the Macintosh script management system (that is, the essential text
handling managers) are as follows:

FONT MANAGER TEXT UTILITIES SCRIPT MANAGER TEXT SERVICES
MANAGER

• Interapplication Communication. The interapplication communications
architecture (IAC) provides a mechanism for communication between Macintosh
applications. It comprises the following:

APPLE EVENT
MANAGER EVENT MANAGER PROGRAM-TO-PROGRAM

COMMUNICATIONS TOOLBOX

• QuickTime. QuickTime is a collection of managers and other system software
components which allow an application to control time-based data such as video
clips, animation sequences and sound sequences. It comprises:

MOVIE TOOLBOX IMAGE COMPRESSION
MANAGER

A SET OF PREDEFINED
COMPONENTS

• Communications Toolbox. The Communications Toolbox is a collection of system
software managers which provide an application with basic networking and
communications services. It comprises the following:

CONNECTION
MANAGER TERMINAL MANAGER FILE TRANSFER

MANAGER
 COMMUNICATIONS

RESOURCE MANAGER

System Software Routines

Routines in ROM

System software routines, which are also called traps, reside mainly in ROM (read-only
memory). When an application calls a routine, the Operating System intercepts the call
and, ordinarily, executes the relevant code contained in ROM.

1-2 System Software, Memory and Resources

Version 2.1

Routines in RAM — Patches

A patch is an additional component of the system software, and is usually stored in the
System file, which is located in the System folder. To understand patches, some
background is necessary.

The mechanism of the Operating System intercepting the call to the ROM-based code
provides a simple way for the Operating System to substitute the code that is executed in
response to a call to a particular trap.

All traps are numbered, and a trap dispatch table in RAM (random-access memory)
matches each trap's number to its address. One advantage of this arrangement is that it
makes it easy to correct bugs in the ROM-based code without replacing the ROM.3 When
a particular trap is called, the trap dispatch table can cause the Operating System to load
some substitute code into RAM and execute that code instead of the ROM-based code.
This RAM-based replacement code is called a patch.

Routines in RAM — Extensions

The System file also contains system software components which are not in ROM. These
routines are like patches except that, when loaded, they do not replace existing ROM-
based routines. The current method for adding capabilities to the system software is to
include the code of the new routines as a system extension. Extensions are located in
the Extensions folder and are loaded into memory at startup.

The Appearance Manager, a system software component introduced with Mac OS 8, is
unique as a manager in that it is actually delivered as an extension.

Glue Routines

Some routines declared in a particular development system’s header files are provided
by the development system itself, not by the system software. These routines are known
as glue routines and are constructed by modifying available system software routines in
some way. Knowing whether a particular routine is implemented as glue code is
generally only relevant to low-level assembly level debugging.

Memory
In the Macintosh’s cooperative multitasking environment, an application can use only
part of the available RAM. When the Operating System starts up, it divides the available
RAM into the system partition and the remainder of RAM, the latter being available for
applications or other software components. When an application is launched, the
Operating System allocates to it a section of RAM known as an application partition.
Application partitions are loaded into the top part of RAM first.

Organisation of Memory - 680x0 Run-Time Environment

Macintosh computers use the Motorola 680x0 microprocessor. Power Macintosh
computers use the PowerPC microprocessor. Although there are broad similarities, the
organisation of memory in the 680x0 microprocessor run-time environment differs from
that in the PowerPC microprocessor run-time environment.

Fig 1 illustrates the arrangement of memory in the 680x0 run-time environment4 when
several applications are open at once. Basically, system partition occupies the lowest

3 The other key advantage of this arrangement is that it overcomes the unavoidable difficulty of maintaining the same
address for a particular trap as newer versions of the system software are developed. (It is easy to keep the trap number
the same over time but difficult to ensure that its address remains forever unchanged.)
4 A run-time environment is a set of conventions which determine how code is to be loaded into memory, where it is to be
stored, how it is to be addressed, and how routines call other routines and system software routines.

System Software, Memory and Resources 1-3

Version 2.1

memory address space and the remaining space is allocated to the Process Manager,
which creates a partition for each open application.

FIG 1 - MEMORY ORGANIZATION - 680x0 RUN-TIME ENVIRONMENT

A5 WORLD
STACK

HEAP

A5 WORLD
STACK

HEAP

SYSTEM HEAP

SYSTEM GLOBAL VARIABLES

APPLICATION 1
PARTITION

(active application)

APPLICATION 2
PARTITION

SYSTEM
PARTITION

BufPtr
CurrentA5

ApplLimit

ApplZone

USED AREA

UNUSED AREA

PROCESS MANAGER
PARTITION

The System Partition

System Heap

The system heap (see Fig 1) is reserved for the exclusive use of the system, which loads
into it various items such as system resources, system code segments, and system data
structures. System patches and system extensions are loaded during startup. Hardware
device drivers are loaded when the driver is opened.5

System Global Variables

The Operating System uses system global variables to maintain information about the
operating environment. Most of these variables contain information of use to the system
software, for example:

• Ticks, which contains the number of ticks since system startup. (A tick is 1/60th of a
second.)

• MBarHeight, which contains the height of the menu bar.

• Pointers to the heads of various operating system queues.

Other system global variables contain information about the current application, for
example:

• ApplZone, which contains the address of the first byte of the active application's
memory partition (see Fig 1).

• ApplLimit, which contains the address of the last byte the active application's heap
can expand to include (see Fig 1).

5 Patches are stored as code resources of type 'INIT'. Device drivers are stored as code resources of type 'DRVR'. (See
Resources, below.)

1-4 System Software, Memory and Resources

Version 2.1

• CurrentA5, which contains the address of the boundary between the active
application's global variables and its application parameters (see Fig 1 and Fig 2).

Application Partitions

As shown at Fig 1, an application's stack expands downwards towards the heap, which
expands upwards as necessary during program execution. The ApplLimit global variable
marks the upper limit to which the heap can grow. The Memory Manager will never
allow the heap to grow beyond ApplLimit.

The Stack

The application stack is used for memory allocation associated with the execution of
routines. When an application calls a routine, space is automatically allocated on the
stack for a stack frame, which contains the routine's parameters, local variables and
return address. Once the call is executed, the local variables and routine parameters are
popped off the stack.6

Unlike the heap, the stack is not bounded by ApplLimit. It is important to understand that
the Memory Manager has no way of preventing the stack from growing beyond ApplLimit
and possibly encroaching on, and corrupting, the heap.7

By default, the stack can grow to 24KB. Accordingly, unless your application uses heavy
recursion (one routine repeatedly calling itself), you almost certainly will never need to
worry about the possibility of stack overflow.8

If necessary, you can change the default size of the stack using the routine SetApplLimit.
When, for example, you call SetApplLimit to increase the size of the stack, you are simply
reducing the maximum size to which the heap can grow by changing the value in the
system global variable ApplLimit (see Fig 1). This gives extra space to the stack at the
expense of the heap.

The Heap

The application heap is the area of the application partition in which space is dynamically
allocated and released on demand. It contains:

• The application's executable code segments.

• Those of the application's resources (see below) which are currently loaded into
memory.

• Other dynamically allocated items such as window structures, dialog structures,
document data, etc.

Space within the heap is allocated, in blocks, by both direct or indirect calls to the
Memory Manager. An indirect allocation arises from a call to a routine which itself calls
a Memory Manager memory allocation routine.

6 The compiler generates the code that creates and deletes stack frames for each procedure call.
7 However, every sixtieth of a second an Operating System task checks whether the stack has moved into the heap. If it
has, the task, known as the stack sniffer, generates a system error (System Error 28), which is useful during de-bugging.
8 The reason that recursion increases the risk is that, each time the routine calls itself, a new copy of that routine's
parameters and variables is pushed onto the stack.

System Software, Memory and Resources 1-5

Version 2.1

The A5 World

The A5 World contains four kinds of data:

• The application's jump table, which contains an entry for each of those of the
application's routines that are called by code in another code segment, and which
is used by the Segment Manager to determine the address of any externally
referenced routines called by a code segment.

• Application parameters, which are 32 bytes of memory reserved for use by the
Operating System, and of which the first long word is a pointer to the application's
QuickDraw global variables (see below).

• The application global variables.

• Application QuickDraw global variables, which contain information about the
application's drawing environment (for example, a pointer to the current graphics
port).

JUMP TABLE

APPLICATION PARAMETERS
pointer to QUICKDRAW GLOBAL VARIABLES

APPLICATION GLOBAL VARIABLES

QUICKDRAW GLOBAL VARIABLES

CurrentA5

FIG 2 - THE A5 WORLD - 680x0 RUN-TIME ENVIRONMENT

Fig 2 shows the organisation of this data. Note that the system global variable CurrentA5
points to the boundary between the current application's global variables and its
application parameters. The jump table, application parameters, application global
variables and QuickDraw global variables are known collectively as the A5 World
because the Operating System uses the microprocessor's A5 register to point to that
boundary.

Virtual Memory

The Operating System can extend the address space by using part of the available
secondary storage (that is, part of the hard disk) to hold portions of applications and data
that are not currently needed in RAM. When some of those portions of memory are
needed, the Operating System swaps out unneeded parts of applications or data to the
secondary storage, thereby making room for the parts that are needed. The secondary
storage area is known as virtual memory.

Organisation of Memory - PowerPC Run-Time Environment

The organisation of memory in the PowerPC run-time environment is reasonably similar
to the organisation of memory in the 680x0 run-time environment in that:

• The system partition occupies the lowest memory address and most of the
remaining space is allocated to the Process Manager, which creates a partition for
each open application.

• The organisation of an application partition is somewhat the same as that for an
application partition in the 680x0 run-time environment. In each application

1-6 System Software, Memory and Resources

Version 2.1

partition, there is a stack and a heap, as well as space for the application's global
variables.

The two main differences between 680x0 memory organisation and PowerPC memory
organisation concern the location of an application's code section and an application's
global variables.

A PowerPC application's executable code and global data are typically stored in a
fragment container in the application's data fork (see Resources, below). When the
application is launched, its code section and data section are loaded into memory. The
data section is loaded into the application's heap. However, the location of the code
section varies, depending on whether or not virtual memory is enabled.

Code Section Location - Virtual Memory Off

If virtual memory is not enabled, the code section of an application is loaded into the
application heap. The Finder and Process Manager automatically expand your
application partition as necessary to hold the code section. The code sections of other
fragments are put into part of the Process Manager's heap known as temporary
memory. If no temporary memory is available, code sections are loaded into the system
heap.

Application partitions (including the application's stack, heap, and global variables) are
loaded into the Process Manager heap. Code sections of applications and import
libraries are loaded either into the Process Manager partition or (less commonly) into the
system heap.

Fig 3 illustrates the general organisation of memory when virtual memory is not enabled.

FIG 3 - ORGANIZATION OF MEMORY - POWERPC RUNTIME ENVIRONMENT -
VIRTUAL MEMORY IS NOT ENABLED

STACK

CODE SECTION

STACK

CODE SECTION

APPLICATION 1
PARTITION

APPLICATION 2
PARTITION

SYSTEM PARTITION
USED AREA

UNUSED AREA

CODE SECTION FOR IMPORT LIBRARY

CODE SECTION FOR IMPORT LIBRARY SYSTEM
PARTITION

PROCESS MANAGER
PARTITION

Code Section Location - Virtual Memory On

If virtual memory is enabled, the Virtual Memory Manager uses a scheme called file
mapping to map your application's fragment into memory. It uses the data fork of your
application as the paging file for your application's code section. The entire code
fragment is mapped into the logical address space, though only the needed portions of
the code are actually loaded into physical memory.

System Software, Memory and Resources 1-7

Version 2.1

An advantage of this file mapping methodology is that, when it is time to remove some of
your application's code from memory (to page other code and data in), the Virtual
Memory Manager does not need to write the pages back to a paging file. 9 Instead, it
simply purges the code from the needed pages, because it can always read the file-
mapped code back from the paging file (your application's data fork).

Fig 4 illustrates the general organisation of memory when virtual memory is enabled.
The virtual addresses occupied by the file-mapped pages of an application's (or an import
library's) code are located outside both the system partition and the Process Manager
partition. As a result, an application's file-mapped code is never located in the
application's heap itself.

Application partitions (including the application's heap, stack, and global variables) are
loaded into the Process Manager heap, which is paged to and from the system-wide
backing store file. Code sections and import libraries are paged directly from the data
fork of the application or import library.

FIG 4 - ORGANIZATION OF MEMORY - POWERPC RUNTIME ENVIRONMENT -
VIRTUAL MEMORY ENABLED

SYSTEM
PARTITION

STACK

STACK

HEAP

APPLICATION 1
PARTITION

APPLICATION 2
PARTITION

USED AREA
UNUSED AREA

PROCESS
MANAGER
PARTITION

HEAP

HEAP

STACK

APPLICATION 3
PARTITION

CODE SECTION FOR IMPORT LIBRARY
CODE SECTION FOR APPLICATION 1

CODE SECTION FOR APPLICATION 3
CODE SECTION FOR APPLICATION 2

FILE-MAPPED
CODE
SECTIONS

Structure of the System Partition

To support existing 680x0 applications and other software modules which access
documented system global variables, the structure of much of the system partition
remains unchanged in the PowerPC environment.

Structure of Application Partitions

The organisation of the application partition in the PowerPC environment is substantially
simpler than in the 680x0 environment, comprising only a stack and a heap (see Fig 5).

9 In the 680x0 environment, all unused pages of memory are written into a single system-wide backing-store file and re-
read from there when needed. This often results in prolonged application launch, because an application's code is loaded
into memory and sometimes immediately written out to the backing-store file.

1-8 System Software, Memory and Resources

Version 2.1

FIG 5 - STRUCTURE OF A POWERPC APPLICATION PARTITION

APPLICATION
PARTITION

STACK

HEAP

MASTER POINTER BLOCKS (NONRELOCATABLE)

APPLICATION GLOBAL VARIABLES
(NONRELOCATABLE)

Demise of the A5 World

The A5 world which occupies part of a 680x0 application partition is largely absent from
the PowerPC environment. The information maintained in the A5 world for 680x0
applications is either not needed by PowerPC applications or is maintained elsewhere
(usually in the application heap).

Recall that the A5 world of a 680x0 application contains four kinds of data. The four
kinds of data and their fate in the PowerPC environment, are as follows.

• Jump Table. A 680x0 application's jump table contains an entry for each of the
application's routines called by code in another segment. Because the executable
code in a PowerPC application is not segmented, there is no need for a jump table
in a PowerPC application.

• Application Global Variables. In PowerPC applications, the application's global
variables are part of the fragment's data section, which the Code Fragment
Manager loads into the application's heap (see Fig 5). The application's global
variables are always located in a single nonrelocatable block.

• Application Parameters. The application parameters in a 680x0 application occupy
32 bytes, the first four bytes of which are a pointer to the application's QuickDraw
global variables. In PowerPC applications, the application parameters are
maintained privately by the Operating System.

• QuickDraw Global Variables. The QuickDraw global variables in a PowerPC
application are stored as part of the application's global variables.

The Mini-A5 World

QuickDraw has been ported to native PowerPC code. However, even for applications
which have themselves been ported to native PowerPC code, there must be a minimal A5
world to support some non-ported system software which accesses the QuickDraw global
variables relative to the application's A5 value. This mini-A5 world contains nothing
more than a pointer to the application's QuickDraw global variables which, as previously
stated, reside in the application's global data section in PowerPC applications. The
Process Manager creates a mini-A5 world for each native PowerPC application at
application launch time.

Inside the Heap — Nonrelocatable and Relocatable Memory Blocks

An application may use the Memory Manager to allocate two different types of memory
blocks: a nonrelocatable block and a relocatable block.

Nonrelocatable Blocks

Nonrelocatable blocks are blocks whose location in the heap is fixed. In its attempts to
avoid heap fragmentation (see below), the Memory Manager allocates nonrelocatable
blocks as low in the heap as possible, where necessary moving relocatable blocks upward

System Software, Memory and Resources 1-9

Version 2.1

to make space. Nonrelocatable blocks are referenced using a pointer variable of data
type Ptr. Ptr is defined as follows:

type
Ptr = ^SInt8; // A pointer to a signed 8-bit integer.

A pointer is simply the address of an arbitrary byte in memory, and a pointer to a
nonrelocatable block is simply a pointer to the first byte of that block. Note that, if a
copy is made of the pointer variable after the block is created, and since the block cannot
be moved, that copy will correctly reference the block until it is disposed of.

The Memory Manager routine NewPtr allocates a nonrelocatable block, for example:
var
myPointer : Ptr;
...
myPointer := NewPtr(sizeof(WindowRecord));

Nonrelocatable blocks are disposed of by a call to DisposePtr.10

Unlike relocatable blocks, there are only five things that your application can do with a
nonrelocatable block: create it; obtain its size; resize it; find which heap zone owns it;
dispose of it.

Relocatable Blocks

Relocatable blocks are blocks which can be moved within the heap — for example, during
heap compaction operations (see below). To reference relocatable blocks, the Memory
Manager uses double indirection, that is, the Memory Manager keeps track of a
nonrelocatable block with a master pointer, which is itself part of a nonrelocatable
master pointer block in the application heap. When the Memory Manager moves a
relocatable block, it updates the master pointer so that it always contains the address of
the relocatable block.

The Memory Manager allocates one master pointer block, which contains 64 master
pointers, for the application at launch time. This block is located at the very bottom of
the application heap. MoreMasters may be called by the application to allocate additional
master pointer blocks. To ensure that these additional (nonrelocatable) blocks are
allocated as low in the heap as possible, the calls to MoreMasters should be made at the
beginning of the program.11

Relocatable blocks are referenced using a handle variable of data type Handle. A handle
contains the address of a master pointer, as illustrated at Fig 6. Handle is defined as
follows:

type
Handle = ^Ptr; // A pointer to a master pointer.

The Memory Manager routine NewHandle allocates a relocatable block, for example:
var
myHandle : Handle;
...
myHandle := NewHandle(sizeof(myDataStructure));

A relocatable block can be disposed of by a call to DisposeHandle. Note, however, that the
Memory Manager does not change the value of any handle variables that previously

10 Many system software routines can be accessed using more than one spelling of the function's name, depending on the
header files supported by the development environment. For example, several years ago, the name for this function was
DisposPtr.
11 If these calls are not made, the Memory Manager will nonetheless automatically allocate additional blocks during
application execution if required. However, since master pointer blocks are nonrelocatable, such allocation, which will not
be at the bottom of the heap, is a possible cause of heap fragmentation. MoreMasters should thus be called enough times at
the beginning of the program to ensure that the Memory Manager never needs to call it for you. For example, if your
application never allocates more than 300 relocatable blocks in its heap, then five calls to MoreMasters should be enough.
(You can empirically determine how many times to call MoreMasters by using a low-level debugger.)

1-10 System Software, Memory and Resources

Version 2.1

referenced that deallocated block. Instead, those variables still hold the address of what
was once the relocatable block's master pointer. If you accidentally use a handle to a
block you have already disposed of, your application could crash or you could get garbled
data. You can avoid these problems by assigning the value NULL to the handle variable
after you dispose of the relocatable block.

FIG 6 - A HANDLE TO A RELOCATABLE BLOCK

1234

9876

BEFORE RELOCATION AFTER RELOCATION

Relocatable block Nonrelocatable block

MASTER POINTER 3210

HEAP

MASTER POINTER 9876

myHandle
STACK

EXECUTABLE CODE

1234

RELOCATABLE BLOCK

myHandle
STACK

EXECUTABLE CODE

1234

1234

3210
RELOCATABLE BLOCK

MASTER POINTER BLOCK MASTER POINTER BLOCK

HEAP

Heap Fragmentation, Compaction, and Purging

The continuous allocation and release of memory blocks which occurs during an
application's execution can result in a condition called heap fragmentation. The heap
is said to be fragmented when nonrelocatable blocks or locked relocatable blocks (see
below) are scattered about the heap, leaving "holes" of memory between those blocks.

The Memory Manager continuously attempts to create more contiguous free memory
space through an operation known as heap compaction, which involves moving all
relocatable blocks as low in the heap as possible. However, because the Memory
Manager cannot move relocatable blocks "around" nonrelocatable blocks and locked
relocatable blocks, such blocks act like log-jams if there is free space below them. In this
situation, the Memory Manager may not be able to satisfy a new memory allocation
request because, although there may be enough total free memory space, that space is
broken up into small non-contiguous blocks.

Heap fragmentation would not occur if all memory blocks allocated by the application
were free to move during heap compaction. However, there are two types of memory
block which are not free to move: nonrelocatable blocks and relocatable blocks which
have been temporarily locked in place.

Locking and Unlocking Relocatable Blocks

Despite the potential of such action to inhibit the Memory Manager's heap compaction
activities, it is nonetheless necessary to lock relocatable blocks in place in certain
circumstances.

For example, suppose you dereference a handle to obtain a pointer (that is, a copy of the
master pointer) to a relocatable block and, for the sake of increased speed12, use that
pointer within a loop to read or write data to or from the block. If, within that loop, you
call a routine which has the potential to move memory, and if that routine actually causes
the relocatable block to be moved, the master pointer will be correctly updated but your
copy (the pointer) will not. The net result is that your pointer no longer points to the

12 Accessing a relocatable block by double indirection (that is, through its handle) instead of by single indirection (ie,
through its master pointer) requires an extra memory reference.

System Software, Memory and Resources 1-11

Version 2.1

data and becomes what is known as a dangling pointer. This situation is illustrated at
Fig 7.

The documentation for system software routines indicates whether a particular routine
has the potential to move memory. Generally, any routine that allocates space from the
application heap has this potential. If such a routine is not called in a section of code,
you can safely assume that all blocks will remain stationary while that code executes.

FIG 7 - A DANGLING POINTER

BEFORE CALL TO ROUTINE WHICH
HAS POTENTIAL TO MOVE MEMORY

AFTER CALL TO ROUTINE WHICH
HAS POTENTIAL TO MOVE MEMORY

HEAP

MASTER POINTER 3210

myHandle
myPtr

STACK

EXECUTABLE CODE

1234
3210

1234

3210
RELOCATABLE BLOCK

HEAP

MASTER POINTER 9876

STACK

EXECUTABLE CODE

1234

3210

RELOCATABLE BLOCK
9876

DANGLING
POINTER

Relocatable block Nonrelocatable block

myHandle
myPtr

1234
3210

MASTER POINTER BLOCK MASTER POINTER BLOCK

Relocatable blocks may be locked and unlocked using HLock and HUnlock. The following
example illustrates the use of these routines.

type
MyRecord = record

intArray : array[0..1000] of integer;
ch : char;
end;

...
var
MyRecordPointer = ^MyRecord;
MyRecordHandle = ^MyRecordPointer;
...
procedure myRoutine;

var
theHdl : MyRecordHandle;
thePtr : MyRecordPointer;
count : integer;

begin
theHdl := MyRecordHandle(NewHandle(sizeof(MyRecord)));

HLock(theHdl); // Lock the relocatable block ...
thePtr := theHdl^; // because the handle has been dereferenced ...

for count := 0 to 1000 do
begin
thePtr^.intArray[count] := 0; // and used in this loop ...
DrawChar('A'); // which calls a routine which could cause
end; // the relocatable block to be moved.

HUnlock(theHdl); // On loop exit, unlock the relocatable block.
end;

Moving Relocatable Blocks High

The potential for a locked relocatable block to contribute to heap fragmentation may be
avoided by moving the block to the top of the heap before locking it. This should be done

1-12 System Software, Memory and Resources

Version 2.1

if new nonrelocatable blocks are to be allocated while the relocatable block in question is
locked.

MoveHHi is used to move relocatable blocks to the top of the heap. HLockHi is used to move
relocatable blocks to the top of the heap and then lock them. Be aware, however, that
MoveHHi and HLockHi cannot move a block to the top of the heap if a nonrelocatable block or
locked relocatable block is located between its current location and the top of the heap.
In this situation, the block will be moved to a location immediately below the
nonrelocatable block or locked relocatable block.

Purging and Reallocating Relocatable
Blocks

In addition to compacting the heap in order to satisfy a memory allocation request, the
Memory Manager may purge unlocked relocatable memory blocks which have been
made purgeable.

HPurge and HNoPurge change a relocatable block from unpurgeable to purgeable and vice
versa. When you make a relocatable block purgeable, your program should subsequently
check the handle to that block before using it if calls are made to routines which could
move or purge memory.

If the handle's master pointer is set to NULL, then the Operating System has purged its
block. To use the information formerly in the block, space must then be reallocated for it
and its contents must be reconstructed.

Effect of a Relocatable Block’s Attributes

Two attributes of a relocatable block are whether the block is currently locked/unlocked
or purgeable/non-purgeable. These attributes are stored in bits in the block’s master
pointer tag byte13. The following summarises the effect of these attributes on the
Memory Manager’s ability to move and/or purge a relocatable block:

Tag Byte Indicates Block Is: The Memory Manager Can:
Locked Purgeable Move The Block Purge the Block

NO NO YES NO
NO YES YES YES
YES NO NO NO
YES YES NO NO

Note that a relocatable block created by a call to NewHandle is created initially
unlocked and unpurgeable, and that locking a relocatable block will also make it
unpurgeable if it is currently purgeable.

Avoiding Heap Fragmentation

The ideal heap is one with all nonrelocatable blocks at the bottom of the heap, all
unlocked relocatable blocks above that, free space above that, and all relocatable blocks
which must be locked for significant periods at the top of the heap. This ideal can be
approached, and significant heap fragmentation avoided, by adherence to the following
rules:

• At the beginning of the program, call MaxApplZone to expand the heap immediately to
ApplLimit. (If MaxApplZone is not called, the Memory Manager gradually expands the
heap towards ApplLimit as memory needs dictate. This gradual expansion can result
in significant heap fragmentation if relocatable blocks have previously been moved
to the previous top of the heap and locked.)14

13 The tag byte is the high byte of a master pointer. If Bit 5 of the tag byte is set, the block is a resource block (see
below). If Bit 6 is set, the block is purgeable. If Bit 7 is set, the block is locked.
14 Another reason for calling MaxApplZone at the beginning of the program is that the number of purgeable memory blocks
that may need to be purged by the Memory Manager to satisfy a new memory request is reduced. (The Memory Manager

System Software, Memory and Resources 1-13

Version 2.1

• At the beginning of the program, call MoreMasters enough times to allocate all of the
(nonrelocatable) master pointer blocks required during execution.

• Allocate all other required nonrelocatable blocks at the beginning of the
application's execution.

• Avoid disposing of, and then reallocating, nonrelocatable blocks during the
application's execution.

• When allocating relocatable blocks that will need to be locked for long periods of
time, use ReserveMem at the beginning of the program to reserve memory for them as
close to the bottom of the heap as possible, and lock the blocks immediately after
allocating them.

• If a relocatable block is to be locked for a short period of time and nonrelocatable
blocks are to be allocated while it is locked, call MoveHHi to move the block to the top
of the heap and then lock it. When the block no longer needs to be locked, unlock
it.

Also bear in mind that, in memory management terms, a relocatable block that is always
locked is worse than a nonrelocatable block in that nonrelocatable blocks are always
allocated as low in the heap as possible, whereas a relocatable block is allocated
wherever the Memory Manager finds it convenient.

Master Pointer Tag Byte - HGetState and HSetState

There are certain circumstances where you will want to save, and later restore, the
current value of a relocatable block's master pointer tag byte. Consider the following
example, which involves three of an imaginary application's routines, namely, Procedure
A, Procedure B, and Procedure C:

• Procedure A creates a relocatable block. For reasons of its own, Procedure A locks
the block before executing a few lines of code. Procedure A then calls Procedure C,
passing the handle to that routine as a formal parameter.

• Procedure B also calls Procedure C at some point, passing the relocatable block's
handle to it as a formal parameter. The difference in this instance is that, due to
certain machinations in other areas of the application, the block is unlocked when
the call to Procedure C is made.

• Procedure C, for reasons of its own, needs to ensure that the block is locked before
executing a few lines of code, so it makes a call to HLock. Those lines executed,
Procedure C then unlocks the block before returning to the calling routine. This
will not be of great concern if the return is to Procedure B, which expects the block
to be still unlocked. However, if the return is to Procedure A, and if Procedure A
now executes some lines of code which assume that the block is still locked,
disaster could strike.

This is where the Memory Manager routines HGetState and HSetState come in. The sequence
of events in Procedure C should have been as follows:

theTagByte : SInt8;
...
theTagByte := HGetState(myHandle); // Whatever the current state is, save it.
HLock(myHandle); // Redundant if Function A is calling, but no harm.

(Bulk of the Procedure C code, which requires handle to be locked.)

HSetState(myHandle,theTagByte) // Leave it the way it was found. (It could have
// been locked. It could have been unlocked.)

expands the heap to fulfill a memory request only after it has exhausted other methods of obtaining the required amount of
space, including compacting the heap and purging blocks marked as purgeable.) Also, since calling MaxApplZone means that
the heap is expanded only once during the application's execution, memory allocation operations can be significantly
faster.

1-14 System Software, Memory and Resources

Version 2.1

This is an example of a of what might be called a “well-mannered routine”. It is an
example of a rule that you may wish to apply whenever you write a routine that takes a
handle to a relocatable block as a formal parameter: If that routine calls HLock, make sure
that it leaves the block's tag byte (and thus the locked/unlocked bit) in the condition in
which it found it.15

Addressing Modes

Early versions of the system software used 24-bit addressing, where the upper eight bits
of memory addresses were ignored or used as flag bits. 24-bit addressing limits the
address space to 16MB, 8MB of which is reserved for I/O space, ROM and slot space.
The largest contiguous program address space under 24-bit addressing is thus 8MB.

On suitably equipped Macintosh computers (that is, those with a 32-bit Memory
Manager), the Operating System supports 32-bit addressing, under which the maximum
program address space is 1GB.

For compatibility reasons, systems with a 32-bit Memory Manager also contain a 24-bit
Memory Manager. In order for an application to work when the machine is using 32-bit
addressing, it must be 32-bit clean. Some applications are not 32-bit clean because
they use flag bits in master pointers and manipulate those bits directly (for example, to
mark the associated memory blocks as locked or purgeable) instead of using Memory
Manager routines to achieve the same results. You must avoid such practices if your
application is to be 32-bit clean.

Memory Leaks

When you have no further use for a block of memory, you ordinarily return that memory
to the Memory Manager by calling DisposePtr or DisposeHandle (or ReleaseResource (see below)).
In certain circumstances, not disposing of a block which is no longer required can result
in what is known as a memory leak.

Memory leaks can have unfortunate consequences for your application. For example,
consider the following routine:

procedure theRoutine;

var
thePointer : Ptr;
osError : OSErr;

begin
thePointer := NewPtr(10000);
if (MemError = memFullErr) then

begin
doErrorAlert(eOutOfMemory);
end;

// The nonrelocatable block is used for some temporary purpose here, but is not
// disposed of before the routine returns.
end;

When theRoutine returns, the 10000-byte nonrelocatable block will still exist (even though,
incidentally, the local variable which previously pointed to it will not). Thus a large
nonrelocatable block for which you have no further use remains in memory (at what is
now, incidentally, an unknown location). If theRoutine is called several more times, a new
nonrelocatable block will be created by each call and the size of the memory leak will
grow, perhaps eventually causing MemErr to return memFullErr. In this way, memory leaks

15 Of course, this save/restore precaution will not really be necessary if you are absolutely certain that the block in
question will be in a particular state (locked or unlocked) every time Procedure C is called. But there is nothing wrong
with a little coding overkill to protect yourself from, for example, some future source code modifications which may add
other functions which call Procedure C, and which may assume that the block's attributes will be handed back in the
condition in which Procedure C found them.

System Software, Memory and Resources 1-15

Version 2.1

can bring you application to a standstill and may, in some circumstances, cause it to
crash.16

Memory Manager Errors

The low-memory address 0x0220, which is represented by the symbolic name MemErr,
contains the error code resulting from the last call to a Memory Manager routine. This
error code may be retrieved by calling the function MemError. Some of the error codes
which may be returned by MemError are as follows:

Error Code Constant Description
0 noErr No error occurred.
-108 memFullErr No room in heap.
-109 nilHandleErr Illegal operation on a nil handle.

Resources
In order to meet various requirements of the system software, your application must
provide its own resources, for example, resources which describe the application's user
interface elements such as menus, windows, controls, dialog boxes and icons. In
addition, the system software itself provides a number of resources (for example, fonts,
patterns, icons, etc.) which may be used by your application.

The concept of resources reflects the fact that, in the Macintosh environment, inter-
mixing code and data in a program is not encouraged. For example, it is usual practise
to separate changeable data, such as message strings which may need to be changed in a
foreign-language version of the application, from the application's code. All that is
required in such a case is to create a resource containing the foreign language version of
the message strings. There is thus no necessity to change and recompile the source code
in order to produce a foreign-language version of the application.

The subject of resources is closely related to the subject of files. A brief digression into
the world of files is thus necessary.

About Files — The Data Fork and the Resource Fork

On the Macintosh, a file is a named, ordered sequence of bytes stored on a volume and
divided into two forks:

• The Data Fork. The data fork typically contains data created by the user.

• The Resource Fork. The resource fork of a file contains resources, which are
collections of data of a defined structure and type.

All Macintosh files contain both a resource fork and a data fork, although one or both of
these forks may be empty. Note that the resource fork of a file is also called a resource
file, because in some respects you can treat it as if it were a separate file.

The resource fork of a document file contains any document-specific resources, such as
the size and location of the document's window when the document was last closed. The
resource fork of an application file includes the application's executable code and,
typically, resources which describe the application's windows, menus, controls, dialog
boxes, icons, etc. Fig 8 illustrates the typical contents of the data and resource forks of
an application file and a document file.

16 The dynamic memory inspection tool ZoneRanger, which is included with Metrowerks CodeWarrior, can be used to
check your application for memory leaks.

1-16 System Software, Memory and Resources

Version 2.1

FIG 8 - TYPICAL CONTENTS OF DATA FORKS AND RESOURCE FORKS IN APPLICATION AND DOCUMENT FILES

POWERPC
APPLICATION CODE

USER'S DATA LAST LOCATION AND
SIZE OF WINDOW.
MISSING
APPLICATION NAME
PAPER SIZE
SPECIFIED IN PAGE
SETUP… DIALOG

RESOURCE FORKDATA FORK

DESCRIPTIONS OF
MENUS, DIALOG
BOXES, ICONS, ETC.
TEXT STRINGS FOR
HELP BALLOONS
AND DIALOG BOXES.
680x0 APPLICATION
CODE.

RESOURCE FORKDATA FORK

APPLICATION FILE DOCUMENT FILE

The data fork can contain any kind of data organised in any fashion. Your application can
store data in the data fork of a document file in whatever way it deems appropriate, but it
needs to keep track of the exact byte location of each particular piece of saved data in
order to be able to access that data when required. The resource fork, on the other
hand, is highly structured. As will be seen, all resource forks contain a map which,
amongst other things, lists the location of all resources in the resource fork. This greatly
simplifies the task of accessing those resources.

Resources and the Application

During its execution, an application may read resources from:

• The application's resource file, which is opened automatically when the application
is launched.

• The System file, which is opened by the Operating System at startup and which
contains resources which are shared by all applications (for example, fonts, icons,
sounds, etc.) and resources which applications may use to help present the
standard user interface.

• Other resource files, such as a preferences file in the Preferences folder holding
the user's application-specific preferences, or the resource fork of a document file,
which might define certain document-specific preferences.

The Resource Manager provides routines which allow your application to read in these
resources and, in addition, to create, delete, open, modify and write resources in, from
and to any Macintosh file. The following, however, is concerned only with creating
resources for the application's resource file and with reading in standard resources
from the application and System files. Other aspects of resources, including custom
resources and resources in files other than the application and System files, are
addressed at Chapter 17 — More on Resources.

Resource Types and Resource IDs

An application refers to a resource by passing the Resource Manager a resource
specification, which consists of the resource type and a resource ID:

• Resource Type. A resource type is specified by any sequence of four alphanumeric
characters, including the space character, which uniquely identifies a specific type
of resource. Both uppercase and lowercase characters are used. Some of the
standard resource types defined by the system software are as follows:

Type Description Type Description
'ALRT' Alert box template. 'CODE' Application code segment.
'DITL' Item list in dialog or alert box. 'DLOG' Dialog box template.

System Software, Memory and Resources 1-17

Version 2.1

'FONT' Bitmapped font. 'ICON' Large black-and-white icon.
'MBAR' Menu bar. 'PAT ' Pattern. (Space character is required.)
'PICT' QuickDraw picture. 'SIZE' Size of application's partition and other

info.
'STR#' String list. 'WIND' Window template.
'snd ' Sound. (Space character is

required.)
'sfnt' Outline font.

You can also create your own custom resource types if your application needs
resources other than the standard types. An example would be a custom resource
type for application-specific preferences stored in a preferences file.17

• Resource ID. A resource ID identifies a specific resource of a given type by
number. System resource IDs range from -32768 to 127. In general, resource IDs
from 128 to 32767 are available for resources that you create yourself, although
the numbers you can use for some types of resources (for example, font families)
are more restricted. An application's definition functions (see below) should use
IDs between 128 and 4095.

Creating a Resource

At the very least, you will need to create resources for the standard user interface
elements used by your application. You typically define the user interface elements in
resources and then use Menu Manager, Window Manager, Dialog Manager or Control
Manager routines to create these elements, based on their resource descriptions, as
needed.

You can create resource descriptions using a resource editor such as Resorcerer (which
uses the familiar point-and-click approach), or you can provide a textual, formal
description of resources in a file and then use a resource compiler, such as Rez, to
compile the description into a resource.18 An example of a resource definition for a
window in Rez input format is as follows:

resource 'WIND' (128, preload, purgeable)
{

{64,60,314,460}, /* Window rectangle. (Initial window size and location.) */
kWindowDocumentProc, /* Window definition ID. */
invisible, /* Window is initially invisible. */
goAway, /* Window has a close box. */
0x0, /* Reference constant. */
"untitled", /* Window title. */
staggerParentWindowScreen /* Optional positioning specification. */

};

The structure of the compiled 'WIND' resource is shown at Fig 9.

17 When choosing the characters to identify your custom resource types, note that Apple reserves for its own use resource
types consisting entirely of lowercase characters and special symbols. Your custom resource types should therefore
contain at least one uppercase character.
18 Macintosh Pascal assumes the use of Resorcerer, and all demonstration program reources were created using
Resorcerer.

1-18 System Software, Memory and Resources

Version 2.1

FIG 9 - STRUCTURE OF A COMPILED WINDOW ('WIND ') RESOURCE

INITIAL RECTANGLE

WINDOW DEFINITION ID

VISIBILITY STATUS

PRESENCE OF CLOSE BOX

REFERENCE CONSTANT

LENGTH (n) OF WINDOW TITLE

POSITIONING SPECIFICATION

8

2

2

2

4

1

n

2

WINDOW TITLE

BYTES

Resource Attributes

Note the words preload and purgeable in the preceding 'WIND' resource definition. These are
constants representing resource attributes, which are flags which tell the Resource
Manager how to handle the resource. Resource attributes are described by bits in the
low-order byte of an integer value:

Bit Constant Description
1 resChanged Resource has been changed.
2 resPreload Resource is to be read into memory immediately after the resource fork is

opened.
3 resProtected Application cannot change the resource ID, modify the resource's contents or

remove the resource from the resource fork.
4 resLocked Relocatable block occupied by the resource is to be locked. (Overrides the

resPurgeable attribute.)
5 resPurgeable Relocatable block occupied by the resource is to be purgeable.
6 resSysHeap Read the resource into the system heap rather than the application heap.

Note that, if both the resPreload and the resLocked attributes are set, the Resource Manager
loads the resource as low as possible in the heap.

Resources Which Must Be Unpurgeable. Some resources must not be made purgeable.
For example, the Menu Manager expects menu resources to remain in memory at all
times.

Resources Which May Be Purgeable. Other resources, such as those relating to
windows, controls, and dialog boxes, do not have to remain in memory once the
corresponding user interface element has been created. You may therefore set the
purgeable attribute for those kinds of resources if you so desire. The following
considerations apply to the decision as to whether to make a resource purgeable or
unpurgeable:

• The concept of purgeable resources dates back to the time when RAM was limited
and programmers had to be very careful about allowing resources which were not
in use to continue to occupy precious memory. Nowadays, however, RAM is not so
limited, and programmers need not be overly concerned about, say, a few 'DLOG'
resources (24 bytes each) remaining in memory when they are not required.

• Some resources (for example, large 'PICT' resources and 'snd ' resources) do require a
lot of memory, even by today's standards. Accordingly, such resources should
generally be made purgeable.

System Software, Memory and Resources 1-19

Version 2.1

• As will be seen, there are certain hazards associated with the use of purgeable
resources. These hazards must be negated by careful programming involving
additional lines of code.

Given these considerations, a sound policy would be to make all small and basic
resources unpurgeable and set the resPurgeable attribute only in the case of comparatively
large resources which are not required to remain permanently in memory.

Template Resources and Definition Resources

The 'WIND' resource defined above is an example of a template resource. A template
resource defines the characteristics of a desktop object, in this case a window's size,
location, etc., and the window definition function (specified by the constant
kWindowDocumentProc) to be used to draw it. Definition functions, which determine the look
and behaviour of a desktop object, are executable code segments contained within
another kind of resource called a definition resource.

The definition routine specified by the constant kWindowDocumentProc is contained within the
'WDEF' resource with ID 0 in the System file. Note that it is possible to write your own
custom window definition routine (and, indeed, custom definition routines for other
desktop objects such as menus), store it in a 'WDEF' resource in you application file, and
specify it in the relevant field of your 'WIND' resource definitions.

Resources in Action

The Resource Map

Your application file's resource fork contains, in addition to the resources you have
created for your application, an automatically created resource map. The resource map
contains entries for each resource in the resource fork.

When your application is launched, the system first gets the Memory Manager to create
the application heap and allocate a block of master pointers at the bottom of the heap.
The Resource Manager then opens your application file's resource fork and reads in the
resource map, followed by those resources which have the resPreload attribute set.

The handles to the resources which have been loaded are stored in the resource map in
memory. The following is a diagrammatic representation of a simple resource map in
memory immediately after the resource map, together with those resources with the
preload attribute set, have been loaded.

Type ID Attributes Handle
Preload Lock Purgeable

CODE 1 • • 1234
CODE 2 • NULL
MENU 128 • 123C
WIND 128 • NULL
PICT 128 • NULL
PICT 129 • NULL

Note that the handle entry in the resource map contains NULL for those resources which
have not yet been loaded. Note also that this handle entry is filled in only when a
resource is loaded for the first time, and that that entry remains even if a purgeable
resource is later purged by the Memory Manager.

Reading in Non-Preloaded Resources

Some system software managers use the Resource Manager to read in resources for you.
Using the 'WIND' resource listed in the above resource map as an example, when the
Window Manager routine GetNewCWindow is called to create a new window (specifying 128

1-20 System Software, Memory and Resources

Version 2.1

as the resource ID), GetNewCWindow, in turn, calls the Resource Manager routine GetResource.
GetResource loads the resource (assuming that it is not currently in memory), returns the
handle to GetNewCWindow, and copies the handle to the appropriate entry in the resource
map. This is an example of an indirect call to the Resource Manager.

Other resources are read in by direct calls to the Resource Manager. For example, the
'PICT' resources listed in the above example resource map would be read in by calling
another of the Get… family of resource-getting routines directly, for example:

const
rPicture1 = 128;
rPicture2 = 129;
...
var
pic1Hdl : PicHandle;
pic2Hdl : PicHandle;
...
pic1Hdl := GetPicture(rPicture1);
pic2Hdl := GetPicture(rPicture2);

Once again, and assuming that the resources have not previously been loaded, the
handle returned by each GetPicture call is copied to the appropriate entry in the resource
map.

Purgeable Resources

When a resource which has the resPurgeable attribute set has been loaded for the first time,
the handle to that resource is copied to the appropriate entry in the resource map in the
normal way. If the Memory Manager later purges the resource, the master pointer
pointing to that resource is set to NULL by the Memory Manager but the handle entry in
the resource map remains. This creates what is known as an empty handle.

If the application subsequently calls up the resource, the Resource Manager first checks
the resource map handle entry to determine whether the resource has ever been loaded
(and thus whether a master pointer exists for the resource). If the resource map
indicates that the resource has never been loaded, the Resource Manager loads the
resource, returns its handle to the calling routine, and copies the handle to the resource
map.

If, on the other hand, the resource map indicates that the resource has previously been
loaded (that is, the handle entry in the resource map contains the address of a master
pointer), the Resource Manager checks the master pointer. If the master pointer
contains NULL, the Resource Manager knows that the resource has been purged, so it
reloads the resource and updates the master pointer. Having satisfied itself that the
resource is in memory, the Resource Manager returns the resource's handle to the
application.

Problems with Purgeable Resources

Using purgeable resources optimises heap space; however, misuse of purgeable
resources can crash an application. For example, consider the following code example,
which loads two purgeable 'PICT' resources and then uses the drawing instructions
contained in those resources to draw each picture.

pic1Hdl := GetPicture(rPicture1); // Load first 'PICT' resource.
pic2Hdl := GetPicture(rPicture2); // Load second 'PICT' resource.
if(pic1Hdl <> nil) then // If the handle to first resource is not nil ...

begin
DrawPicture(pic1Hdl,...); // ... draw the second picture.
end;

if(pic2Hdl <> nil) then // If the handle to second resource is not nil
begin
DrawPicture(pic2Hdl,...); // ... draw the second picture.
end;

System Software, Memory and Resources 1-21

Version 2.1

GetPicture is one of the many routines that can cause memory to move. When memory is
moved, the Memory Manager may purge memory to obtain more heap space. If heap
space is extremely limited at the time of the second call to GetPicture, the first resource will
be purged by the Memory Manager, which will set the master pointer to the first
resource to NULL to reflect this condition. The variable pic1Hdl will now contain an empty
handle. Passing an empty handle to DrawPicture just about guarantees a system crash.

There is a second problem with this code. Like GetPicture, DrawPicture also has the potential
to move memory blocks. If the second call to GetPicture did not result in the first resource
being purged, the possibility remains that it will be purged while it is being used (that is,
during the execution of the DrawPicture routine).

To avoid such problems when using purgeable resources, you should observe these
steps:

• Get (that is, load) the resource only when it is needed.

• Immediately make the resource unpurgeable.

• Use the resource immediately after making it unpurgeable.

• Immediately after using the resource, make it purgeable.

The following revised version of the above code demonstrates this approach:
pic1Hdl := GetPicture(rPicture1); // Load first 'PICT' resource.
if (pic1Hdl <> nil) then // If the resource was successfully loaded ...

begin
HNoPurge(Handle(pic1Hdl)); // make the resource unpurgeable ...
DrawPicture(pic1Hdl,...); // draw the first picture ...
HPurge(Handle(pic1Hdl)); // and make the resource purgeable again.
end;

pic2Hdl := GetResource(rPicture2); // Repeat for the second 'PICT' resource.
if (pic2Hdl <> nil) then

begin
HNoPurge(Handle(pic2Hdl));
DrawPicture(pic2Hdl ,...);
HPurge(Handle(pic2Hdl));
end;

Note that this procedure only applies when you use routines which get resources directly
(for example GetResource, GetPicture, etc.). It is not required when you call GetResource
indirectly (for example, when you call the Window Manager routine GetNewWindow) because
routines like GetNewWindow know how to treat purgeable resources properly.

Note also that LoadResource may be used to ensure that a previously loaded, but purgeable,
resource is in memory before an attempt is made to use it. If the specified resource is
not in memory, LoadResource will load it. The essential difference between LoadResource and
the Get… family of resource-getting routines is that the latter return a handle to the
resource (loading the resource if necessary), whereas LoadResource takes a handle to a
resource as a parameter and loads the resource if necessary.

Releasing Resources

When you have finished using a resource loaded by a routine which gets resources
directly, you should call the appropriate routine to release the memory associated with
that resource. For example, ReleaseResource is used in the case of generic handles obtained
with the GetResource routine. ReleaseResource frees up all the memory occupied by the
resource and sets the resource's handle in the resource map to nil.

You do not need to be concerned with explicitly releasing resources loaded indirectly (for
example, by a call to GetNewCWindow). Using the case of a window resource template as an
example, the sequence of events following a call to GetNewCWindow is as follows:

1-22 System Software, Memory and Resources

Version 2.1

• GetNewCWindow calls GetResource to read in the window resource template whose ID is
specified in the GetNewCWindow call.

• A relocatable block is created for the template resource and marked as purgeable,
as specified by the resource's attributes. (You should always specify window
template resources as purgeable.)

• The window template's block is then temporarily marked as unpurgeable while:

• A nonrelocatable block is created for a data structure known as a window
structure.

• Data is copied from the resource template into certain fields in the window
structure.

• The window template's block is then marked as purgeable.

Resource Manager Errors

The low-memory address 0x0A60, which is represented by the symbolic name ResErr,
contains the error code resulting from the last call to a Resource Manager routine. This
error code may be retrieved by calling the function ResError. Some of the error codes
which may be returned by ResError are as follows:

Error Code Constant Description
0 noErr No error occurred.
-192 resNotFound Resource not found.
-193 resFNotFound Resource file not

found.

Main Memory Manager Data Types and Functions

Data Types
Ptr = ^SInt8; // Pointer to nonrelocatable block.
Handle = ^Ptr; // Handle to relocatable block.
Size = LONGINT; // Size of a block in bytes.

Functions

Setting Up the Application Heap

PROCEDURE MaxApplZone;
PROCEDURE MoreMasters;
FUNCTION GetApplLimit: Ptr;
PROCEDURE SetApplLimit(zoneLimit: UNIV Ptr);

Allocating and Releasing NonRelocatable Blocks of Memory

FUNCTION NewPtr(byteCount: Size): Ptr;
FUNCTION NewPtrClear(byteCount: Size): Ptr;
FUNCTION NewPtrSys(byteCount: Size): Ptr;
FUNCTION NewPtrSysClear(byteCount: Size): Ptr;
void DisposePtr(Ptr p);

Allocating and Releasing Relocatable Blocks of Memory

FUNCTION NewHandle(byteCount: Size): Handle;
FUNCTION NewHandleClear(byteCount: Size): Handle;
FUNCTION NewHandleSys(byteCount: Size): Handle;
FUNCTION NewHandleSysClear(byteCount: Size): Handle;
FUNCTION NewEmptyHandle: Handle;
FUNCTION NewEmptyHandleSys: Handle;
PROCEDURE DisposeHandle(h: Handle);

System Software, Memory and Resources 1-23

Version 2.1

Changing the Sizes of Nonrelocatable and Relocatable Blocks

FUNCTION GetPtrSize(p: Ptr): Size;
PROCEDURE SetPtrSize(p: Ptr; newSize: Size);
FUNCTION GetHandleSize(h: Handle): Size;
PROCEDURE SetHandleSize(h: Handle; newSize: Size);

Setting the Properties of Relocatable Blocks

PROCEDURE HLock(h: Handle);
PROCEDURE HUnlock(h: Handle);
PROCEDURE HPurge(h: Handle);
PROCEDURE HNoPurge(h: Handle);
FUNCTION HGetState(h: Handle): SInt8;
PROCEDURE HSetState(h: Handle; flags: SInt8);

Managing Relocatable Blocks

PROCEDURE EmptyHandle(h: Handle);
PROCEDURE ReallocateHandle(h: Handle; byteCount: Size);
FUNCTION RecoverHandle(p: Ptr): Handle;
PROCEDURE ReserveMem(cbNeeded: Size);
PROCEDURE ReserveMemSys(cbNeeded: Size);
PROCEDURE MoveHHi(h: Handle);
PROCEDURE HLockHi(h: Handle);

Manipulating Blocks of Memory

PROCEDURE BlockMove(srcPtr: UNIV Ptr; destPtr: UNIV Ptr; byteCount: Size);
PROCEDURE BlockMoveData(srcPtr: UNIV Ptr; destPtr: UNIV Ptr; byteCount: Size);
FUNCTION PtrToHand(srcPtr: UNIV Ptr; VAR dstHndl: Handle; size: LONGINT): OSErr;
FUNCTION PtrToXHand(srcPtr: UNIV Ptr; dstHndl: Handle; size: LONGINT): OSErr;
FUNCTION HandToHand(VAR theHndl: Handle): OSErr;
FUNCTION HandAndHand(hand1: Handle; hand2: Handle): OSErr;
FUNCTION PtrAndHand(ptr1: UNIV Ptr; hand2: Handle; size: LONGINT): OSErr;

Accessing Memory Conditions

FUNCTION FreeMem: LONGINT;
FUNCTION FreeMemSys: LONGINT;
FUNCTION MaxBlock: LONGINT;
FUNCTION MaxBlockSys: LONGINT;
PROCEDURE PurgeSpace(VAR total: LONGINT; VAR contig: LONGINT);
FUNCTION StackSpace: LONGINT;

Freeing Memory

FUNCTION CompactMem(cbNeeded: Size): Size;
FUNCTION CompactMemSys(cbNeeded: Size): Size;
PROCEDURE PurgeMem(cbNeeded: Size);
PROCEDURE PurgeMemSys(cbNeeded: Size);
FUNCTION MaxMem(VAR grow: Size): Size;
FUNCTION MaxMemSys(VAR grow: Size): Size;

Allocating Temporary Memory

FUNCTION TempNewHandle(logicalSize: Size; VAR resultCode: OSErr): Handle;
FUNCTION TempMaxMem(VAR grow: Size): Size;
FUNCTION TempFreeMem: LONGINT;

Checking for Errors

FUNCTION MemError: OSErr;

Main Resource Manager Constants, Data Types, and Functions

Constants

Resource Attributes

resSysHeap = 64 System or application heap?
resPurgeable = 32 Purgeable resource?

1-24 System Software, Memory and Resources

Version 2.1

resLocked = 16 Load it in locked?
resProtected = 8 Protected?
resPreload = 4 Load in on OpenResFile?
resChanged = 2 Resource changed?

Data Types
FourCharCode = UNSIGNEDLONG;
ResType = FourCharCode;

Functions

Reading Resources Into Memory

FUNCTION GetResource(theType: ResType; theID: INTEGER): Handle;
FUNCTION Get1Resource(theType: ResType; theID: INTEGER): Handle;
PROCEDURE LoadResource(theResource: Handle);

Disposing of Resources

PROCEDURE ReleaseResource(theResource: Handle);

Checking for Errors

FUNCTION ResError: OSErr;

Demonstration Program
// ◊◊
// SysMemRes.p
// ◊◊
//
// This program:
//
// • Initialises the system software managers.
//
// • Creates a nonrelocatable block of memory for a window structure.
//
// • Loads a window template ('WIND') resource and creates a window.
//
// • Loads a purgeable 'PICT' resource and a non-purgeable 'STR ' resource and draws
// them in the window.
//
// • Checks if any error codes were generated as a result of calls to Memory Manager and
// Resource Manager functions.
//
// • Terminates when the mouse button is clicked.
//
// ◊◊

program SysResMem;

//
……
……………………………………… includes

uses

{ Universal Interfaces. }
Dialogs, Fonts, Menus, Processes, Resources, Sound, TextUtils;

//
……
…………………………………… constants

const

rWindowResourceID = 128;
rStringResourceID = 128;
rPictureResourceID = 128;

System Software, Memory and Resources 1-25

Version 2.1

//
……
……… routine declarations

procedure doInitManagers; forward;
procedure doNewWindow; forward;
procedure doDrawPictAndString; forward;

// ◊◊◊ initManagers

procedure doInitManagers;

begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

InitCursor;
end;

// ◊◊ doNewWindow

procedure doNewWindow;

var
windowPtr : WindowPtr;
windowRecPtr : Ptr;

begin
windowRecPtr := NewPtr(sizeof(WindowRecord));
if (windowRecPtr = nil) then

begin
SysBeep(10);
ExitToShell;
end;

windowPtr := GetNewCWindow(rWindowResourceID, windowRecPtr, WindowPtr(-1));
if (windowPtr = nil) then

begin
SysBeep(10);
ExitToShell;
end;

SetPort(windowPtr);
TextFont(systemFont);
end;

{ of procedure doNewWindow }

// ◊◊ doDrawPictAndString

procedure doDrawPictAndString;

var
pictureHdl : PicHandle;
stringHdl : StringHandle;
pictureRect : Rect;
resourceError : SInt16;
memoryError : OSErr;

begin
pictureHdl := GetPicture(rPictureResourceID);
if (pictureHdl = nil) then

begin
SysBeep(10);
ExitToShell;
end;

SetRect(pictureRect,148,25,353,170);

HNoPurge(Handle(pictureHdl));
DrawPicture(pictureHdl,pictureRect);
HPurge(Handle(pictureHdl));

stringHdl := GetString(rStringResourceID);

1-26 System Software, Memory and Resources

Version 2.1

if(stringHdl = nil) then
begin
SysBeep(10);
ExitToShell;
end;

MoveTo(105,210);
DrawString(stringHdl^^);

ReleaseResource(Handle(pictureHdl));
ReleaseResource(Handle(stringHdl));

resourceError := ResError;
if (resourceError = noErr) then

begin
MoveTo(162,240);
DrawString('No Resource Manager errors');
end;

memoryError := MemError;
if (memoryError = noErr) then

begin
MoveTo(165,255);
DrawString('No Memory Manager errors');
end;

end;
{ of procedure doDrawPictAndString }

// ◊◊◊ main

begin

doInitManagers;
doNewWindow;
doDrawPictAndString;
while not Button do

begin
end;

end.
{ of main program }

// ◊◊

Demonstration Program Comments

uses
The following explains the inclusion of each of the specified interface files:

Dialogs.p Routines: InitDialogs

Dialogs.p itself includes TextEdit.p, which includes
Routines: TEInit

Dialogs.hp itself includes MacWindows.p, which contains:
Routines: InitWindows GetNewCWindow
Data Types: WindowRecord

MacWindows.p also includes Events.p, which contains:
Routines: Button

MacWindows.p also includes Types.p, which contains:
DataTypes: SInt16

Fonts.p Routines: InitFonts
Constants: systemFont

Menus.p Routines: InitMenus

Menus.p itself includes MacMemory.p, which contains:
Routines: MaxApplZone NewPtr HNoPurge HPurge MemError

MacMemory.h itself includes Types.p, which contains:
Data Types: Ptr StringHandle Rect OSErr Handle
Constants: noErr

System Software, Memory and Resources 1-27

Version 2.1

Menus.p also includes Quickdraw.p, which contains:
Routines: InitGraf InitCursor SetPort SetRect DrawPicture

MoveTo GetPicture
Data Types: WindowPtr PicHandle
QuickDraw Global Variable: thePort

Quickdraw.p itself includes QuickdrawText.p, which contains:
Routines: TextFont DrawString

Processes.p Routines: ExitToShell

Resources.p Routines: ReleaseResource ResError

Sound.p Routines: SysBeep

TextUtils.p Routines: GetString

constants
Constants are established for the resource IDs of the 'WIND', 'PICT' and 'STR ' resources.

main
The main program calls the application-defined functions which initialise the system software managers, create a window,
and draw a picture and text in the window. It then waits for a button click before terminating the program.

doInitManagers
doInitManagers grows the application heap, creates a block of master pointers, initialises the system software managers,
and sets the cursor to the standard arrow shape.

Note that the routine name is somewhat of a misnomer in that it does more than initialise the system software managers.
However, since growing the heap, creating additional master pointer blocks, and setting the standard arrow cursor shape
are invariably part of an application's setting up process, it is convenient to attend to those matters within the
doInitManagers routine. This practice will continue in all other demonstration programs.

The call to MaxApplZone is really not required for this simple program. However, it should be the first call in any serious
application. The call grows the heap immediately to the maximum permissible size, assisting in the prevention of heap
fragmentation, reducing the number of blocks which the Memory Manager has to purge when satisfying a memory request
and speeding up memory allocation operations.

The call to MoreMasters to allocate a block of master pointers is really not required in this simple program because the
Operating System automatically allocates one block of master pointers at application launch. However, in larger
applications where more than 64 master pointers are required, the call, or calls, to MoreMasters should be made here so
that all master pointer (nonrelocatable) blocks are located at the bottom of the heap. This will assist in preventing heap
fragmentation.

The next six lines initialise certain system software managers. Not all of the data structures and variables inititialised by
these calls will be used by this simple program; however, any serious application will require the full initialisation shown. It
is also relevant that some managers require the use of information in other managers, so those other managers need to be
initialised at least for that purpose. Some explanatory notes on the various calls are as follows:

• InitGraf initialises the QuickDraw global variables. The first element in the QuickDraw global data area is a pointer
(thePort) to the current graphics port. Because it is the first QuickDraw global, passing its address to InitGraf tells
QuickDraw where all the other QuickDraw globals are located. Other QuickDraw globals initialised by InitGraf are:

• The pattern variables qd.white, qd.black, qd.gray, qd.ltGray, qd.dkGray.

• qd.arrow, which contains the standard cursor arrow shape and which can be passed as an argument to
QuickDraw's cursor functions.

• qd.screenBits, a data structure which describes the main screen. The field screenBits.bounds contains a
rectangle which encloses the main screen.

• qd.randSeed, which is used to seed the random number generator.

Note: The header file Quickdraw.p defines the following data type:

TYPE
QDGlobalsPtr = ^QDGlobals;
QDGlobals = RECORD

privates: PACKED ARRAY [0..75] OF CHAR;
randSeed: LONGINT;
screenBits: BitMap;
arrow: Cursor;
dkGray: Pattern;

1-28 System Software, Memory and Resources

Version 2.1

ltGray: Pattern;
gray: Pattern;
black: Pattern;
white: Pattern;
thePort: GrafPtr;

END;

QDGlobalsHdl = ^QDGlobalsPtr;

In the 680x0 environment, the runtime libraries define the QuickDraw global variable qd. There is no need for your
application to do this.

• InitFont initialises the Font Manager and loads the system font into memory. Since the Window Manager uses the
Font Manager to draw the window's title, etc., InitFonts must be called before InitWindows. Also, it must be called
after InitGraf.

• InitWindows initialises the Window Manager port. It must be called after InitGraf and InitFonts. It draws the
familiar rounded rectangle desktop with an empty menu bar at the top. The fill pattern used is the resource whose
resource ID is represented by the constant deskPatID. (If a different fill pattern is required, it can be specified in
the application's resource file.) The call establishes a nonrelocatable block (the Window Manager port) in the
application heap.

• InitMenus allocates heap storage for the menu list and draws an empty menu bar. (For some unknown reason,
InitWindows and InitMenus both draw the menu bar.) InitMenus must be called after InitGraf, InitFonts and
InitWindows.

• TEInit initialises TextEdit, the Text editing manager, by allocating an internal handle for the TextEdit scrap (not the
same as the "desk scrap" maintained by the Desk Manager). It should be called even if the application does not
explicitly use TextEdit functions, since it ensures that dialog boxes and alert boxes work correctly.

• InitDialogs initialises the Dialog Manager and optionally installs a function to get control after a fatal system error.
It installs the standard sound procedure (for alerts) and sets all text replacement parameters to empty strings (see
the function ParamText).

InitCursor sets the cursor shape to the standard arrow cursor and sets the cursor level to 0, making it visible. (The 68-byte
Cursor structure for the standard arrow cursor can be found in the QuickDraw data area.)

doNewWindow
doNewWindow creates a window.

NewPtr is used to allocate a nonrelocatable block of memory for the window structure. If the call is not successful, the
system alert sound is played and the program is terminated by a call to ExitToShell, which releases the heap and hands
control to the Finder. (Note that error handling here, and in the rest of the program, is thus somewhat rudimentary. Note
also that SysBeep's parameter is nowadays ignored, but must be included for historical reasons.)

The call to GetNewCWindow creates a window using the 'WIND' template resource specified in the first parameter, and
using the pointer to the nonrelocatable block already allocated for the window structure as the second parameter. (The
third parameter tells the Window Manager to open the window in front of all other windows.) The type, size, location,
appearance, title and visibility of the window are all established by the 'WIND' resource.

Recall that, as soon as the data from the 'WIND' template resource is copied to the window structure during the creation of
the window, the nonrelocatable block occupied by the template will automatically be marked as purgeable.

The call to SetPort makes the new window's graphics port the current port for drawing operations. The call to TextFont sets
the font for that port to the standard system default font (Chicago or Charcoal, depending on the setting in the Appearance
control panel).

doDrawPictAndString
doDrawPictAndString draws a picture and some text strings in the window.

GetPicture reads in the 'PICT' resource corresponding to the ID specified in the GetPicture call. If the call is not successful,
the system alert sound is played and the program terminates.

The SetRect call assigns values to the left, top, right and bottom fields of a Rect variable. This Rect is required for a later
call to DrawPicture.

The basic rules applying to the use of purgeable resources are to load it, immediately make it unpurgeable, use it
immediately, and immediately make it purgeable. Accordingly, the HNoPurge call makes the relocatable block occupied by
the resource unpurgeable, the DrawPicture call draws the picture in the window's graphics port, and the HPurge call makes
the relocatable block purgeable again.

Note that, because HNoPurge and HPurge expect a parameter of type Handle, pictureHdl (a variable of type PicHandle)
must be cast to a variable of type Handle.

GetString then reads in the specified 'STR ' resource. Once again, if the call is not successful, the system alert sound is
played and the program terminates. MoveTo moves the graphics "pen" to an appropriate position before DrawString draws

System Software, Memory and Resources 1-29

Version 2.1

the string in the window's graphics port. (Since the 'STR ' resource, unlike the 'PICT' resource, does not have the purgeable
bit set, there is no requirement to take the precaution of a call to HNoPurge in this case.)

Note the parameter in the call to DrawString. stringHdl, like any handle, is a pointer to a pointer. It contains the address of
a master pointer which, in turn, contains the address of the data. Dereferencing the handle twice, therefore, get the
required parameter for DrawString, which is a string.

The calls to ReleaseResource release the 'PICT' and 'STR ' resources. These calls release the memory occupied by the
resources and set the associated handles in the resource map in memory to nil.

The ResError call returns the error code of the most recent resource-related operation. If the call returns noErr (indicating
that no error occurred as a result of the most recent call by a Resource Manager function), some advisory text is drawn in
the graphics port.

The next six lines examine the result of the most recent call to a memory manager function and draw some advisory text if
no error occurred as a result of that call.

Note that the last two calls to DrawString utilise "hard-coded" strings. This sort of thing is discouraged in the Macintosh
programming environment. Such strings should ordinarily be stored in a 'STR#' (string list) resource rather than hard-
coded into the source code.

PASCAL AND C STRINGS

Pascal and C strings differ in their formats. A C string comprises the characters followed by a terminating 0 (or
NULL byte):

+---+---+---+---+---+---+---+---+---+---+
| M | Y | | S | T | R | I | N | G | 0 |

+---+---+---+---+---+---+---+---+---+---+

In a Pascal string, the first byte contains the length of the string, and the characters follow that byte:

+---+---+---+---+---+---+---+---+---+---+
| 9 | M | Y | | S | T | R | I | N | G |

+---+---+---+---+---+---+---+---+---+---+

Not surprisingly, then, Pascal strings are often referred to as "length-prefixed" strings.

In Chapter 3, you will encounter the data type Str255. Str255 is the name for a Pascal-style string capable of
holding up to 255 characters. As you would expect, the first byte of a Str255 holds the length of the string and the
following bytes hold the characters of the string.

Utilizing 256 bytes for a string will simply waste memory in many cases. Accordingly, the header file Types.p
defines the additional types Str63, Str32, Str31, Str27, and Str15, as well as the Str255 type:-

 TYPE
Str255 = STRING[255];
Str63 = STRING[63];
Str32 = STRING[32];
Str31 = STRING[31];
Str27 = STRING[27];
Str15 = STRING[15];

Note, then, that a variable of type Str255 holds the address of an array of 256 elements, each element being one
byte long.

As an aside, in some cases you may want to use C strings. Accordingly, be aware that functions exist (C2PStr,
P2CStr) to convert a string from one format to the other.

1-30 System Software, Memory and Resources

