
Version 2.1

1
SYSTEM SOFTWARE,

MEMORY, AND RESOURCES
 Includes Demonstration Program SysMemRes

Macintosh System Software
All Macintosh applications make many calls,  for many purposes,  to Macintosh system
software routines.  Such purposes include, for example, the creation of standard user
interface elements such as windows and menus, the drawing of text and graphics, and
the coordination of the application's actions with other open applications.1

The  majority  of  system  software  routines  are  components  of  either  the  Macintosh
Toolbox or the Macintosh Operating System.  In essence:

• Toolbox routines have to do with mediating your application with the user.  They
relate, in general, to the management of elements of the user interface.

• Operating System routines  have to do with mediating your application with the
Macintosh hardware, performing such basic low-level tasks as file input and output,
memory management and process and device control.

Managers

The entire collection of system software routines is further divided into functional groups
which are usually known as managers.2  

Toolbox

The main Toolbox managers are as follows:

1 The main other open application that an application needs to work with is the Finder, which is responsible for keeping
track  of  files  and managing the user’s  desktop.   The Finder is  not  really  part  of  the system software,  although it  is
sometimes difficult to tell where the Finder ends and the system software begins.
2 For historical reasons,  some collections of system software functions are referred to as  packages.  In general, the
distinction between managers and packages is unimportant.  Packages are nowadays generally referred to as managers.
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Operating System

The main Operating System managers are as follows:

PROCESS MANAGER MEMORY MANAGER  VIRTUAL MEMORY 
MANAGER FILE MANAGER DISK INITIALIZATION 

MANAGER DEVICE MANAGER

 SCSI MANAGER TIME MANAGER SHUTDOWN 
MANAGER ALIAS MANAGER  VERTICAL RETRACE 

MANAGER

Additional System Software

The  system  software  also  includes  a  number  of  other  components  which  do  not
historically  belong  to  either  the  Macintosh  Toolbox  or  Macintosh  Operating  System.
These are categorised as follows:

• Text Handling.  Text handling on the Macintosh is fundamentally graphic in that
text is drawn as a sequence of graphic elements, and is designed to support more
than  one  script  (writing  system).   In  addition  to  QuickDraw  (see  above),  the
components of the Macintosh script management system (that is, the essential text
handling managers) are as follows:

FONT MANAGER TEXT UTILITIES  SCRIPT MANAGER  TEXT SERVICES 
MANAGER

• Interapplication  Communication.  The  interapplication  communications
architecture (IAC) provides a mechanism for communication between Macintosh
applications.  It comprises the following:

APPLE EVENT 
MANAGER  EVENT MANAGER PROGRAM-TO-PROGRAM 

COMMUNICATIONS TOOLBOX

• QuickTime.  QuickTime is  a  collection  of  managers  and  other  system software
components which allow an application to control time-based data such as video
clips, animation sequences and sound sequences.  It comprises:

MOVIE TOOLBOX  IMAGE COMPRESSION 
MANAGER

A SET OF PREDEFINED 
COMPONENTS

• Communications Toolbox.  The Communications Toolbox is a collection of system
software  managers  which  provide  an  application  with  basic  networking  and
communications services.  It comprises the following:

CONNECTION 
MANAGER TERMINAL MANAGER FILE TRANSFER 

MANAGER
 COMMUNICATIONS 

RESOURCE MANAGER

System Software Routines

Routines in ROM

System software routines, which are also called traps, reside mainly in ROM (read-only
memory).  When an application calls a routine, the Operating System intercepts the call
and, ordinarily, executes the relevant code contained in ROM.
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Routines in RAM — Patches

A patch is an additional component of the system software, and is usually stored in the
System  file,  which  is  located  in  the  System  folder.   To  understand  patches,  some
background is necessary.

The mechanism of the Operating System intercepting the call to the ROM-based code
provides a simple way for the Operating System to substitute the code that is executed in
response to a call to a particular trap.

All traps are numbered, and a  trap dispatch table in RAM (random-access memory)
matches each trap's number to its address.  One advantage of this arrangement is that it
makes it easy to correct bugs in the ROM-based code without replacing the ROM.3  When
a particular trap is called, the trap dispatch table can cause the Operating System to load
some substitute code into RAM and execute that code instead of the ROM-based code.
This RAM-based replacement code is called a patch.

Routines in RAM — Extensions

The System file also contains system software components which are not in ROM.  These
routines are like patches except that, when loaded, they do not replace existing ROM-
based routines.  The current method for adding capabilities to the system software is to
include the code of the new routines as a system extension.  Extensions are located in
the Extensions folder and are loaded into memory at startup.

The Appearance Manager, a system software component introduced with Mac OS 8, is
unique as a manager in that it is actually delivered as an extension.

Glue Routines

Some routines declared in a particular development system’s header files are provided
by the development system itself, not by the system software.  These routines are known
as glue routines and are constructed by modifying available system software routines in
some  way.   Knowing  whether  a  particular  routine  is  implemented  as  glue  code  is
generally only relevant to low-level assembly level debugging.

Memory
In the Macintosh’s cooperative multitasking environment,  an application can use only
part of the available RAM.  When the Operating System starts up, it divides the available
RAM into the system partition and the remainder of RAM, the latter being available for
applications  or  other  software  components.   When  an  application  is  launched,  the
Operating System allocates to it a section of RAM known as an application partition.
Application partitions are loaded into the top part of RAM first.

Organisation of Memory - 680x0 Run-Time Environment

Macintosh  computers  use  the  Motorola  680x0  microprocessor.   Power  Macintosh
computers use the PowerPC microprocessor.  Although there are broad similarities, the
organisation of memory in the 680x0 microprocessor run-time environment differs from
that in the PowerPC microprocessor run-time environment.

Fig 1 illustrates the arrangement of memory in the 680x0 run-time environment4 when
several applications are open at once.  Basically, system partition occupies the lowest

3 The other key advantage of this arrangement is that it overcomes the unavoidable difficulty of maintaining the same
address for a particular trap as newer versions of the system software are developed.  (It is easy to keep the trap number
the same over time but difficult to ensure that its address remains forever unchanged.) 
4 A run-time environment is a set of conventions which determine how code is to be loaded into memory, where it is to be
stored, how it is to be addressed, and how routines call other routines and system software routines.
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memory address space and the remaining space is allocated to the Process Manager,
which creates a partition for each open application.

FIG 1 - MEMORY ORGANIZATION - 680x0 RUN-TIME ENVIRONMENT
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System Heap

The system heap (see Fig 1) is reserved for the exclusive use of the system, which loads
into it various items such as system resources, system code segments, and system data
structures.  System patches and system extensions are loaded during startup.  Hardware
device drivers are loaded when the driver is opened.5

System Global Variables

The Operating System uses system global variables to maintain information about the
operating environment.  Most of these variables contain information of use to the system
software, for example:

• Ticks, which contains the number of ticks since system startup.  (A tick is 1/60th of a
second.)

• MBarHeight, which contains the height of the menu bar.

• Pointers to the heads of various operating system queues.

Other  system global  variables  contain  information  about  the  current  application,  for
example:

• ApplZone,  which contains  the  address  of  the  first  byte  of  the  active  application's
memory partition (see Fig 1).

• ApplLimit, which contains the address of the last byte the active application's heap
can expand to include (see Fig 1).

5 Patches are stored as  code resources  of type  'INIT'.  Device drivers are stored as code resources of type  'DRVR'. (See
Resources, below.)
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• CurrentA5,  which  contains  the  address  of  the  boundary  between  the  active
application's global variables and its application parameters (see Fig 1 and Fig 2).

Application Partitions

As shown at Fig 1, an application's stack expands downwards towards the heap, which
expands upwards as necessary during program execution.  The  ApplLimit global variable
marks the upper limit to which the heap can grow.  The Memory Manager will never
allow the heap to grow beyond ApplLimit.

The Stack

The application stack is  used for  memory allocation associated with the execution of
routines.  When an application calls a routine, space is automatically allocated on the
stack for a  stack frame, which contains the routine's parameters, local variables and
return address.  Once the call is executed, the local variables and routine parameters are
popped off the stack.6

Unlike the heap, the stack is not bounded by ApplLimit.  It is important to understand that
the Memory Manager has no way of preventing the stack from growing beyond ApplLimit
and possibly encroaching on, and corrupting, the heap.7

By default, the stack can grow to 24KB.  Accordingly, unless your application uses heavy
recursion (one routine repeatedly calling itself), you almost certainly will never need to
worry about the possibility of stack overflow.8

If necessary, you can change the default size of the stack using the routine  SetApplLimit.
When, for example, you call  SetApplLimit to  increase the size of the stack, you are simply
reducing the maximum size to which the heap can grow by changing the value in the
system global variable  ApplLimit (see Fig 1).  This gives extra space to the stack at the
expense of the heap.

The Heap

The application heap is the area of the application partition in which space is dynamically
allocated and released on demand.  It contains:

• The application's executable code segments.

• Those of the application's  resources (see below) which are currently loaded into
memory.

• Other dynamically allocated items such as window structures,  dialog structures,
document data, etc.

Space within  the  heap is  allocated,  in blocks,  by both direct  or  indirect  calls  to  the
Memory Manager.  An indirect allocation arises from a call to a routine which itself calls
a Memory Manager memory allocation routine.

6 The compiler generates the code that creates and deletes stack frames for each procedure call.
7 However, every sixtieth of a second an Operating System task checks whether the stack has moved into the heap.  If it
has, the task, known as the stack sniffer, generates a system error (System Error 28), which is useful during de-bugging.
8 The reason that recursion increases  the risk is that, each time the routine calls  itself,  a  new  copy of that routine's
parameters and variables is pushed onto the stack.
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The A5 World

The A5 World contains four kinds of data:

• The application's  jump table,  which contains an entry for each of  those of the
application's routines that are called by code in another code segment, and which
is  used  by  the  Segment  Manager  to  determine  the  address  of  any  externally
referenced routines called by a code segment.

• Application parameters, which are 32 bytes of memory reserved for use by the
Operating System, and of which the first long word is a pointer to the application's
QuickDraw global variables (see below).

• The application global variables.

• Application  QuickDraw global  variables,  which  contain  information  about  the
application's drawing environment (for example, a pointer to the current graphics
port).

JUMP  TABLE

APPLICATION  PARAMETERS
pointer to QUICKDRAW  GLOBAL  VARIABLES

APPLICATION  GLOBAL  VARIABLES

QUICKDRAW  GLOBAL  VARIABLES

CurrentA5

FIG 2 - THE A5 WORLD - 680x0 RUN-TIME ENVIRONMENT

Fig 2 shows the organisation of this data.  Note that the system global variable CurrentA5
points  to  the  boundary  between  the  current  application's  global  variables  and  its
application  parameters.   The  jump  table,  application  parameters,  application  global
variables  and  QuickDraw  global  variables  are  known  collectively  as  the  A5  World
because the Operating System uses the microprocessor's  A5 register to point to that
boundary.

Virtual Memory

The  Operating  System can  extend  the  address  space  by  using  part  of  the  available
secondary storage (that is, part of the hard disk) to hold portions of applications and data
that are not currently needed in RAM.  When some of those portions of memory are
needed, the Operating System swaps out unneeded parts of applications or data to the
secondary storage, thereby making room for the parts that are needed.  The secondary
storage area is known as virtual memory.

Organisation of Memory - PowerPC Run-Time Environment

The organisation of memory in the PowerPC run-time environment is reasonably similar
to the organisation of memory in the 680x0 run-time environment in that:

• The  system  partition  occupies  the  lowest  memory  address  and  most  of  the
remaining space is allocated to the Process Manager, which creates a partition for
each open application.

• The organisation of an application partition is somewhat the same as that for an
application  partition  in  the  680x0  run-time  environment.   In  each  application
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partition, there is a stack and a heap, as well as space for the application's global
variables.

The two main differences between 680x0 memory organisation and PowerPC memory
organisation concern the location of an application's code section and an application's
global variables.

A  PowerPC  application's  executable  code  and  global  data  are  typically  stored  in  a
fragment container in the application's  data fork (see  Resources,  below).   When the
application is launched, its code section and data section are loaded into memory.  The
data section is loaded into the application's heap.  However, the location of the code
section varies, depending on whether or not virtual memory is enabled.

Code Section Location - Virtual Memory Off

If virtual memory is not enabled, the code section of an application is loaded into the
application  heap.   The  Finder  and  Process  Manager  automatically  expand  your
application partition as necessary to hold the code section.  The code sections of other
fragments  are  put  into  part  of  the  Process  Manager's  heap  known  as  temporary
memory.  If no temporary memory is available, code sections are loaded into the system
heap.  

Application partitions (including the application's stack, heap, and global variables) are
loaded  into  the  Process  Manager  heap.   Code  sections  of  applications  and  import
libraries are loaded either into the Process Manager partition or (less commonly) into the
system heap.

Fig 3 illustrates the general organisation of memory when virtual memory is not enabled.

FIG 3 - ORGANIZATION OF MEMORY - POWERPC RUNTIME ENVIRONMENT - 
VIRTUAL MEMORY IS NOT ENABLED
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Code Section Location - Virtual Memory On

If  virtual memory is  enabled,  the Virtual Memory Manager uses a scheme called  file
mapping to map your application's fragment into memory.  It uses the data fork of your
application  as  the  paging file for  your  application's  code  section.   The  entire  code
fragment is  mapped into the logical address space, though only the needed portions of
the code are actually loaded into physical memory.
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An advantage of this file mapping methodology is that, when it is time to remove some of
your  application's  code  from  memory  (to  page  other  code  and  data  in),  the  Virtual
Memory Manager does not need to write the pages back to a paging file. 9  Instead, it
simply purges  the code from the needed pages,  because it  can always read the file-
mapped code back from the paging file (your application's data fork). 

Fig 4 illustrates the general organisation of memory when virtual memory is enabled.
The virtual addresses occupied by the file-mapped pages of an application's (or an import
library's) code are located outside both the system partition and the Process Manager
partition.   As  a  result,  an  application's  file-mapped  code  is  never  located  in  the
application's heap itself.

Application partitions (including the application's heap, stack, and global variables) are
loaded into the Process  Manager heap,  which is  paged to and from the system-wide
backing store file.  Code sections and import libraries are paged directly from the data
fork of the application or import library.

FIG 4 - ORGANIZATION OF MEMORY -  POWERPC RUNTIME ENVIRONMENT - 
VIRTUAL MEMORY ENABLED
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Structure of the System Partition

To  support  existing  680x0  applications  and  other  software  modules  which  access
documented  system  global  variables,  the  structure  of  much  of  the  system  partition
remains unchanged in the PowerPC environment.

Structure of Application Partitions

The organisation of the application partition in the PowerPC environment is substantially
simpler than in the 680x0 environment, comprising only a stack and a heap (see Fig 5).

9 In the 680x0 environment, all unused pages of memory are written into a single system-wide backing-store file and re-
read from there when needed.  This often results in prolonged application launch, because an application's code is loaded
into memory and sometimes immediately written out to the backing-store file.
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FIG 5 - STRUCTURE OF A POWERPC APPLICATION PARTITION
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Demise of the A5 World

The A5 world which occupies part of a 680x0 application partition is largely absent from
the  PowerPC  environment.   The  information  maintained  in  the  A5  world  for  680x0
applications is either not needed by PowerPC applications or is maintained elsewhere
(usually in the application heap).

Recall that the A5 world of a 680x0 application contains four kinds of data.  The four
kinds of data and their fate in the PowerPC environment, are as follows.

• Jump Table.  A 680x0 application's jump table contains an entry for each of the
application's routines called by code in another segment.  Because the executable
code in a PowerPC application is not segmented, there is no need for a jump table
in a PowerPC application.

• Application Global  Variables.  In PowerPC applications,  the  application's  global
variables  are  part  of  the  fragment's  data  section,  which  the  Code  Fragment
Manager loads into the application's  heap (see Fig 5).   The application's  global
variables are always located in a single nonrelocatable block.

• Application Parameters.  The application parameters in a 680x0 application occupy
32 bytes, the first four bytes of which are a pointer to the application's QuickDraw
global  variables.   In  PowerPC  applications,  the  application  parameters  are
maintained privately by the Operating System.

• QuickDraw  Global  Variables.  The  QuickDraw  global  variables  in  a  PowerPC
application are stored as part of the application's global variables.

The Mini-A5 World

QuickDraw has been ported to native PowerPC code.  However, even for applications
which have themselves been ported to native PowerPC code, there must be a minimal A5
world to support some non-ported system software which accesses the QuickDraw global
variables relative to the application's A5 value.  This  mini-A5 world contains nothing
more than a pointer to the application's QuickDraw global variables which, as previously
stated,  reside  in  the  application's  global  data  section  in  PowerPC applications.   The
Process  Manager  creates  a  mini-A5  world  for  each  native  PowerPC  application  at
application launch time.

Inside the Heap — Nonrelocatable and Relocatable Memory Blocks

An application may use the Memory Manager to allocate two different types of memory
blocks: a nonrelocatable block and a relocatable block.

Nonrelocatable Blocks

Nonrelocatable blocks are blocks whose location in the heap is fixed.  In its attempts to
avoid heap fragmentation (see  below),  the Memory Manager allocates  nonrelocatable
blocks as low in the heap as possible, where necessary moving relocatable blocks upward
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to make space.  Nonrelocatable blocks are referenced using a pointer variable of data
type Ptr.  Ptr is defined as follows:

type
Ptr = ^SInt8; // A pointer to a signed 8-bit integer.

A pointer  is  simply  the  address  of  an arbitrary  byte  in  memory,  and a  pointer  to  a
nonrelocatable block is simply a pointer to the first byte of that block.  Note that, if a
copy is made of the pointer variable after the block is created, and since the block cannot
be moved, that copy will correctly reference the block until it is disposed of.

The Memory Manager routine NewPtr allocates a nonrelocatable block, for example:
var
myPointer : Ptr;
...
myPointer := NewPtr(sizeof(WindowRecord));

Nonrelocatable blocks are disposed of by a call to DisposePtr.10 

Unlike relocatable blocks, there are only five things that your application can do with a
nonrelocatable block: create it; obtain its size; resize it; find which heap zone owns it;
dispose of it.

Relocatable Blocks

Relocatable blocks are blocks which can be moved within the heap — for example, during
heap compaction operations (see below).  To reference relocatable blocks, the Memory
Manager  uses  double  indirection,  that  is,  the  Memory  Manager  keeps  track  of  a
nonrelocatable  block with a  master pointer,  which is  itself  part of  a nonrelocatable
master pointer block  in the application heap.  When the Memory Manager moves a
relocatable block, it updates the master pointer so that it always contains the address of
the relocatable block. 

The Memory Manager  allocates  one  master  pointer  block,  which contains  64  master
pointers, for the application at launch time.  This block is located at the very bottom of
the application heap.  MoreMasters may be called by the application to allocate additional
master  pointer  blocks.   To  ensure  that  these  additional  (nonrelocatable)  blocks  are
allocated as low in the heap as possible, the calls to  MoreMasters should be made at the
beginning of the program.11 

Relocatable blocks are referenced using a handle variable of data type Handle.  A handle
contains the address of a master pointer,  as illustrated at Fig 6.  Handle is defined as
follows:

type
Handle = ^Ptr; // A pointer to a master pointer.

The Memory Manager routine NewHandle allocates a relocatable block, for example:
var
myHandle : Handle;
...
myHandle := NewHandle(sizeof(myDataStructure));

A relocatable block can be disposed of by a call to DisposeHandle.  Note, however, that the
Memory Manager  does  not  change the  value  of  any handle  variables  that  previously

10 Many system software routines can be accessed using more than one spelling of the function's name, depending on the
header files supported by the development environment.  For example, several years ago, the name for this function was
DisposPtr.
11 If these calls  are not made, the Memory Manager will  nonetheless  automatically allocate additional blocks  during
application execution if required.  However, since master pointer blocks are nonrelocatable, such allocation, which will not
be at the bottom of the heap, is a possible cause of heap fragmentation.  MoreMasters should thus be called enough times at
the beginning of the program to ensure that the Memory Manager never needs to call it for you.  For example, if your
application never allocates more than 300 relocatable blocks in its heap, then five calls to  MoreMasters should be enough.
(You can empirically determine how many times to call MoreMasters by using a low-level debugger.)
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referenced that deallocated block.  Instead, those variables still hold the address of what
was once the relocatable block's master pointer.  If you accidentally use a handle to a
block you have already disposed of, your application could crash or you could get garbled
data.  You can avoid these problems by assigning the value  NULL to the handle variable
after you dispose of the relocatable block.

FIG 6 - A HANDLE TO A RELOCATABLE BLOCK
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Heap Fragmentation, Compaction, and Purging

The  continuous  allocation  and  release  of  memory  blocks  which  occurs  during  an
application's execution can result in a condition called heap fragmentation.  The heap
is said to be fragmented when nonrelocatable blocks or locked relocatable blocks (see
below) are scattered about the heap, leaving "holes" of memory between those blocks.

The Memory Manager continuously  attempts  to create  more contiguous free  memory
space  through an  operation  known as  heap compaction,  which  involves  moving  all
relocatable  blocks  as  low  in  the  heap  as  possible.   However,  because  the  Memory
Manager  cannot  move  relocatable  blocks  "around"  nonrelocatable  blocks  and  locked
relocatable blocks, such blocks act like log-jams if there is free space below them.  In this
situation,  the  Memory Manager  may not  be able  to satisfy  a  new memory allocation
request because, although there may be enough total free memory space, that space is
broken up into small non-contiguous blocks.

Heap fragmentation would not occur if all memory blocks allocated by the application
were free to move during heap compaction.  However, there are two types of memory
block which are not free to move:  nonrelocatable blocks and relocatable blocks which
have been temporarily locked in place.

Locking and Unlocking Relocatable Blocks

Despite the potential of such action to inhibit the Memory Manager's heap compaction
activities,  it  is  nonetheless  necessary  to  lock  relocatable  blocks  in  place  in  certain
circumstances.

For example, suppose you dereference a handle to obtain a pointer (that is, a copy of the
master pointer) to a relocatable block and, for the sake of increased speed12, use that
pointer within a loop to read or write data to or from the block.  If, within that loop, you
call a routine which has the potential to move memory, and if that routine actually causes
the relocatable block to be moved, the master pointer will be correctly updated but your
copy (the pointer) will not.  The net result is that your pointer no longer points to the

12 Accessing a relocatable block by double indirection (that is, through its handle) instead of by single indirection (ie,
through its master pointer) requires an extra memory reference.
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data and becomes what is known as a dangling pointer.  This situation is illustrated at
Fig 7.

The documentation for system software routines indicates whether a particular routine
has the potential to move memory.  Generally, any routine that allocates space from the
application heap has this potential.  If such a routine is not called in a section of code,
you can safely assume that all blocks will remain stationary while that code executes.

FIG 7 - A DANGLING POINTER
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Relocatable blocks may be locked and unlocked using  HLock and  HUnlock.  The following
example illustrates the use of these routines.

type
MyRecord = record

intArray : array[0..1000] of integer;
ch : char;
end;

...
var
MyRecordPointer = ^MyRecord;
MyRecordHandle = ^MyRecordPointer;
...
procedure myRoutine;

var
theHdl : MyRecordHandle;
thePtr : MyRecordPointer;
count : integer;

begin
theHdl := MyRecordHandle(NewHandle(sizeof(MyRecord)));

HLock(theHdl); // Lock the relocatable block ...
thePtr := theHdl^; // because the handle has been dereferenced ...

for count := 0 to 1000 do
begin
thePtr^.intArray[count] := 0; // and used in this loop ...
DrawChar('A'); // which calls a routine which could cause
end; // the relocatable block to be moved.

HUnlock(theHdl); // On loop exit, unlock the relocatable block.
end;

Moving Relocatable Blocks High

The potential for a locked relocatable block to contribute to heap fragmentation may be
avoided by moving the block to the top of the heap before locking it.  This should be done
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if new nonrelocatable blocks are to be allocated while the relocatable block in question is
locked.

MoveHHi is used to move relocatable blocks to the top of the heap.  HLockHi is used to move
relocatable blocks to the top of the heap and then lock them.  Be aware, however, that
MoveHHi and HLockHi cannot move a block to the top of the heap if a nonrelocatable block or
locked relocatable block is located between its current location and the top of the heap.
In  this  situation,  the  block  will  be  moved  to  a  location  immediately  below  the
nonrelocatable block or locked relocatable block.

Purging and Reallocating Relocatable 
Blocks

In addition to compacting the heap in order to satisfy a memory allocation request, the
Memory  Manager  may  purge unlocked  relocatable  memory  blocks  which  have  been
made purgeable. 

HPurge and  HNoPurge change a relocatable block from unpurgeable to purgeable and vice
versa.  When you make a relocatable block purgeable, your program should subsequently
check the handle to that block before using it if calls are made to routines which could
move or purge memory.

If the handle's master pointer is set to  NULL, then the Operating System has purged its
block.  To use the information formerly in the block, space must then be reallocated for it
and its contents must be reconstructed.

Effect of a Relocatable Block’s Attributes

Two attributes of a relocatable block are whether the block is currently locked/unlocked
or purgeable/non-purgeable.  These attributes are stored in bits in the block’s master
pointer  tag  byte13.   The  following  summarises  the  effect  of  these  attributes  on  the
Memory Manager’s ability to move and/or purge a relocatable block:

Tag Byte  Indicates Block Is: The Memory Manager Can:
Locked Purgeable Move The Block Purge the Block

NO NO YES NO
NO YES YES YES
YES NO NO NO
YES YES NO NO

Note that a relocatable block created by a call to NewHandle is created initially 
unlocked and unpurgeable, and that locking a relocatable block will also make it
unpurgeable if it is currently purgeable.

Avoiding Heap Fragmentation

The  ideal  heap  is  one  with  all  nonrelocatable  blocks  at  the  bottom of  the  heap,  all
unlocked relocatable blocks above that, free space above that, and all relocatable blocks
which must be locked for significant periods at the top of the heap.  This ideal can be
approached, and significant heap fragmentation avoided, by adherence to the following
rules:

• At the beginning of the program, call MaxApplZone to expand the heap immediately to
ApplLimit.  (If  MaxApplZone is not called, the Memory Manager gradually expands the
heap towards ApplLimit  as memory needs dictate.  This gradual expansion can result
in significant heap fragmentation if relocatable blocks have previously been moved
to the previous top of the heap and locked.)14

13 The tag byte is the high byte of a master pointer.  If Bit 5 of the tag byte is set, the block is a resource block (see
below).  If Bit 6 is set, the block is purgeable.  If Bit 7 is set, the block is locked.
14 Another reason for calling MaxApplZone at the beginning of the program is that the number of purgeable memory blocks
that may need to be purged by the Memory Manager to satisfy a new memory request is reduced.  (The Memory Manager
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• At the beginning of the program, call MoreMasters enough times to allocate all of the
(nonrelocatable) master pointer blocks required during execution.

• Allocate  all  other  required  nonrelocatable  blocks  at  the  beginning  of  the
application's execution.

• Avoid  disposing  of,  and  then  reallocating,  nonrelocatable  blocks  during  the
application's execution.

• When allocating relocatable blocks that will need to be locked for long periods of
time, use ReserveMem at the beginning of the program to reserve memory for them as
close to the bottom of the heap as possible, and lock the blocks immediately after
allocating them.

• If a relocatable block is to be locked for a short period of time and nonrelocatable
blocks are to be allocated while it is locked, call MoveHHi to move the block to the top
of the heap and then lock it.  When the block no longer needs to be locked, unlock
it.

Also bear in mind that, in memory management terms, a relocatable block that is always
locked is worse than a nonrelocatable block in that nonrelocatable blocks are always
allocated  as  low  in  the  heap  as  possible,  whereas  a  relocatable  block  is  allocated
wherever the Memory Manager finds it convenient.

Master Pointer Tag Byte - HGetState and HSetState

There are  certain  circumstances  where  you will  want to save,  and later  restore,  the
current value of a relocatable block's master pointer tag byte.  Consider the following
example, which involves three of an imaginary application's routines, namely, Procedure
A, Procedure B, and Procedure C:

• Procedure A creates a relocatable block.  For reasons of its own, Procedure A locks
the block before executing a few lines of code. Procedure A then calls Procedure C,
passing the handle to that routine as a formal parameter.

• Procedure B also calls Procedure C at some point, passing the relocatable block's
handle to it as a formal parameter.  The difference in this instance is that, due to
certain machinations in other areas of the application, the block is unlocked when
the call to Procedure C is made.

• Procedure C, for reasons of its own, needs to ensure that the block is locked before
executing a few lines of code, so it makes a call to  HLock.  Those lines executed,
Procedure C then unlocks the block before returning to the calling routine.  This
will not be of great concern if the return is to Procedure B, which expects the block
to be still unlocked.  However, if the return is to Procedure A, and if Procedure A
now executes  some  lines  of  code  which  assume  that  the  block  is  still  locked,
disaster could strike.

This is where the Memory Manager routines HGetState and HSetState come in.  The sequence
of events in Procedure C should have been as follows:

theTagByte : SInt8;
...
theTagByte := HGetState(myHandle); // Whatever the current state is, save it.
HLock(myHandle); // Redundant if Function A is calling, but no harm.

(Bulk of the Procedure C code, which requires handle to be locked.)

HSetState(myHandle,theTagByte) // Leave it the way it was found.  (It could have 
// been locked.  It could have been unlocked.)

expands the heap to fulfill a memory request only after it has exhausted other methods of obtaining the required amount of
space, including compacting the heap and purging blocks marked as purgeable.)  Also, since calling MaxApplZone means that
the heap is  expanded only once during the application's  execution,  memory  allocation operations  can be significantly
faster.
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This is an example of a of what might be called a “well-mannered routine”.   It  is an
example of a rule that you may wish to apply whenever you write a routine that takes a
handle to a relocatable block as a formal parameter:  If that routine calls HLock, make sure
that it leaves the block's tag byte (and thus the locked/unlocked bit) in the condition in
which it found it.15

Addressing Modes

Early versions of the system software used 24-bit addressing, where the upper eight bits
of memory addresses were ignored or used as flag bits.   24-bit addressing limits the
address space to 16MB, 8MB of which is reserved for I/O space, ROM and slot space.
The largest contiguous program address space under 24-bit addressing is thus 8MB.

On  suitably  equipped  Macintosh  computers  (that  is,  those  with  a  32-bit  Memory
Manager), the Operating System supports 32-bit addressing, under which the maximum
program address space is 1GB.

For compatibility reasons, systems with a 32-bit Memory Manager also contain a 24-bit
Memory Manager.  In order for an application to work when the machine is using 32-bit
addressing, it must be  32-bit clean.  Some applications are not 32-bit clean because
they use flag bits in master pointers and manipulate those bits directly (for example, to
mark the associated memory blocks as locked or purgeable) instead of using Memory
Manager routines to achieve the same results.  You must avoid such practices if your
application is to be 32-bit clean.

Memory Leaks

When you have no further use for a block of memory, you ordinarily return that memory
to the Memory Manager by calling DisposePtr or DisposeHandle (or ReleaseResource (see below)).
In certain circumstances, not disposing of a block which is no longer required can result
in what is known as a memory leak.

Memory leaks can have unfortunate consequences for your application.  For example,
consider the following routine:

procedure  theRoutine;

var
thePointer : Ptr;
osError : OSErr;

begin
thePointer := NewPtr(10000);
if (MemError = memFullErr) then

begin
doErrorAlert(eOutOfMemory);
end;

// The nonrelocatable block is used for some temporary purpose here, but is not
// disposed of before the routine returns.
end;

When theRoutine returns, the 10000-byte nonrelocatable block will still exist (even though,
incidentally,  the local  variable which previously pointed to it  will  not).   Thus a large
nonrelocatable block for which you have no further use remains in memory (at what is
now, incidentally, an unknown location).  If theRoutine is called several more times, a new
nonrelocatable block will be created by each call and the size of the memory leak will
grow, perhaps eventually causing MemErr to return memFullErr.  In this way, memory leaks

15 Of course,  this  save/restore  precaution will  not really be necessary if you are absolutely certain that  the block in
question will be in a particular state (locked or unlocked) every time Procedure C is called. But there is nothing wrong
with a little coding overkill to protect yourself from, for example, some future source code modifications which may add
other functions which call Procedure C, and which may assume that the block's attributes will  be handed back in the
condition in which Procedure C found them.
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can bring you application to a standstill  and may, in some circumstances, cause it to
crash.16

Memory Manager Errors

The  low-memory  address  0x0220,  which  is  represented  by  the  symbolic  name  MemErr,
contains the error code resulting from the last call to a Memory Manager routine.  This
error code may be retrieved by calling the function  MemError.  Some of the error codes
which may be returned by MemError are as follows:

Error Code Constant Description
0 noErr No error occurred.
-108 memFullErr No room in heap.
-109 nilHandleErr Illegal operation on a nil handle.

Resources
In order to meet various requirements of  the system software,  your application must
provide its own resources, for example, resources which describe the application's user
interface  elements  such  as  menus,  windows,  controls,  dialog  boxes  and  icons.   In
addition, the system software itself provides a number of resources (for example, fonts,
patterns, icons, etc.) which may be used by your application.

The concept  of  resources  reflects  the fact  that,  in the  Macintosh environment,  inter-
mixing code and data in a program is not encouraged.  For example, it is usual practise
to separate changeable data, such as message strings which may need to be changed in a
foreign-language  version  of  the  application,  from the  application's  code.   All  that  is
required in such a case is to create a resource containing the foreign language version of
the message strings.  There is thus no necessity to change and recompile the source code
in order to produce a foreign-language version of the application.

The subject of resources is closely related to the subject of files.  A brief digression into
the world of files is thus necessary.

About Files — The Data Fork and the Resource Fork

On the Macintosh, a file is a named, ordered sequence of bytes stored on a volume and
divided into two forks: 

• The Data Fork.  The data fork typically  contains data created by the user.

• The Resource Fork.  The resource fork of  a file contains  resources,  which are
collections of data of a defined structure and type.

All Macintosh files contain both a resource fork and a data fork, although one or both of
these forks may be empty.  Note that the resource fork of a file is also called a resource
file, because in some respects you can treat it as if it were a separate file.

The resource fork of a document file contains any document-specific resources, such as
the size and location of the document's window when the document was last closed.  The
resource  fork  of  an  application  file  includes  the  application's  executable  code  and,
typically,  resources which describe the application's  windows, menus, controls,  dialog
boxes, icons, etc.   Fig 8 illustrates the typical contents of the data and resource forks of
an application file and a document file.

16 The dynamic memory inspection tool ZoneRanger, which is included with Metrowerks CodeWarrior, can be used to
check your application for memory leaks.
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FIG 8 - TYPICAL CONTENTS OF DATA FORKS AND RESOURCE FORKS IN APPLICATION AND  DOCUMENT FILES 
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The data fork can contain any kind of data organised in any fashion.  Your application can
store data in the data fork of a document file in whatever way it deems appropriate, but it
needs to keep track of the exact byte location of each particular piece of saved data in
order to be able to access that data when required.  The resource fork, on the other
hand, is  highly structured.   As will  be seen,  all  resource forks  contain a map which,
amongst other things, lists the location of all resources in the resource fork.  This greatly
simplifies the task of accessing those resources.

Resources and the Application

During its execution, an application may read resources from:

• The application's resource file, which is opened automatically when the application
is launched.

• The System file, which is opened by the Operating System at startup and which
contains resources which are shared by all applications (for example, fonts, icons,
sounds,  etc.)  and  resources  which  applications  may  use  to  help  present  the
standard user interface.

• Other resource files, such as a preferences file in the Preferences folder holding
the user's application-specific preferences, or the resource fork of a document file,
which might define certain document-specific preferences.

The Resource Manager provides routines which allow your application to read in these
resources and, in addition, to create, delete, open, modify and write resources in, from
and to  any  Macintosh  file.   The  following,  however,  is  concerned  only  with  creating
resources for the application's  resource file and with reading in  standard resources
from the application and System files.   Other aspects of resources,  including  custom
resources and  resources  in  files  other  than  the  application  and  System  files,  are
addressed at Chapter 17 — More on Resources.

Resource Types and Resource IDs

An  application  refers  to  a  resource  by  passing  the  Resource  Manager  a  resource
specification, which consists of the resource type and a resource ID:

• Resource Type.  A resource type is specified by any sequence of four alphanumeric
characters, including the space character, which uniquely identifies a specific type
of  resource.   Both uppercase  and lowercase  characters  are used.   Some of  the
standard resource types defined by the system software are as follows:

Type Description Type Description
'ALRT' Alert box template. 'CODE' Application code segment.
'DITL' Item list in dialog or alert box. 'DLOG' Dialog box template.
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'FONT' Bitmapped font. 'ICON' Large black-and-white icon.
'MBAR' Menu bar. 'PAT ' Pattern. (Space character is required.)
'PICT' QuickDraw picture. 'SIZE' Size of application's partition and other

info.
'STR#' String list. 'WIND' Window template.
'snd ' Sound. (Space character is 

required.)
'sfnt' Outline font.

You can also  create  your  own custom resource  types  if  your  application  needs
resources other than the standard types.  An example would be a custom resource
type for application-specific preferences stored in a preferences file.17

• Resource ID.  A resource  ID   identifies  a  specific  resource  of  a  given  type  by
number.  System resource IDs range from -32768 to 127.  In general, resource IDs
from 128 to 32767 are available for resources that you create yourself, although
the numbers you can use for some types of resources (for example, font families)
are more restricted.  An application's definition functions (see below) should use
IDs between 128 and 4095.

Creating a Resource

At  the  very  least,  you will  need  to  create  resources  for  the  standard  user  interface
elements used by your application.  You typically define the user interface elements in
resources and then use Menu Manager, Window Manager, Dialog Manager or Control
Manager routines  to create  these  elements,  based  on their  resource  descriptions,  as
needed.

You can create resource descriptions using a resource editor such as Resorcerer (which
uses  the  familiar  point-and-click  approach),  or  you  can  provide  a  textual,  formal
description of  resources  in a file  and then use  a  resource compiler,  such as  Rez,  to
compile  the  description  into  a  resource.18 An  example  of  a  resource  definition  for  a
window in Rez input format is as follows:

resource 'WIND' (128, preload, purgeable)
{

{64,60,314,460}, /* Window rectangle. (Initial window size and location.) */
kWindowDocumentProc, /* Window definition ID. */
invisible, /* Window is initially invisible. */
goAway, /* Window has a close box. */
0x0, /* Reference constant. */
"untitled", /* Window title. */
staggerParentWindowScreen /* Optional positioning specification. */

};

The structure of the compiled 'WIND' resource is shown at Fig 9.

17 When choosing the characters to identify your custom resource types, note that Apple reserves for its own use resource
types consisting entirely of  lowercase  characters  and special  symbols.   Your  custom resource types should therefore
contain at least one uppercase character.
18  Macintosh  Pascal  assumes  the  use  of  Resorcerer,  and  all  demonstration  program  reources  were  created  using
Resorcerer.
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FIG 9 - STRUCTURE OF A COMPILED WINDOW ('WIND ' ) RESOURCE
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Resource Attributes 

Note the words preload and purgeable in the preceding 'WIND' resource definition.  These are
constants representing  resource attributes,  which are flags which tell  the Resource
Manager how to handle the resource.  Resource attributes are described by bits in the
low-order byte of an integer value: 

Bit Constant Description
1 resChanged Resource has been changed.
2 resPreload Resource is to be read into memory immediately after the resource fork is 

opened.
3 resProtected Application cannot change the resource ID, modify the resource's contents or

remove the resource from the resource fork.
4 resLocked Relocatable block occupied by the resource is to be locked.  (Overrides the 

resPurgeable attribute.)
5 resPurgeable Relocatable block occupied by the resource is to be purgeable.
6 resSysHeap Read the resource into the system heap rather than the application heap.

Note that, if both the resPreload and the resLocked attributes are set, the Resource Manager
loads the resource as low as possible in the heap.

Resources Which Must Be Unpurgeable.  Some resources must not be made purgeable.
For example, the Menu Manager expects menu resources to remain in memory at all
times.

Resources  Which  May  Be  Purgeable.  Other  resources,  such  as  those  relating  to
windows,  controls,  and  dialog  boxes,  do  not  have  to  remain  in  memory  once  the
corresponding  user  interface  element  has  been  created.   You  may therefore  set  the
purgeable  attribute  for  those  kinds  of  resources  if  you  so  desire.   The  following
considerations  apply to the  decision as  to whether  to make a  resource purgeable  or
unpurgeable:

• The concept of purgeable resources dates back to the time when RAM was limited
and programmers had to be very careful about allowing resources which were not
in use to continue to occupy precious memory.  Nowadays, however, RAM is not so
limited, and programmers need not be overly concerned about, say, a few  'DLOG'
resources (24 bytes each) remaining in memory when they are not required.

• Some resources (for example, large 'PICT' resources and 'snd ' resources) do require a
lot  of  memory,  even  by today's  standards.   Accordingly,  such resources  should
generally be made purgeable.
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• As will  be seen, there are certain hazards associated with the use of purgeable
resources.   These  hazards  must  be  negated  by  careful  programming  involving
additional lines of code.

Given  these  considerations,  a  sound  policy  would  be  to  make  all  small  and  basic
resources unpurgeable and set the resPurgeable attribute only in the case of comparatively
large resources which are not required to remain permanently in memory.

Template Resources and Definition Resources

The  'WIND' resource defined above is an example of a  template resource.  A template
resource defines the characteristics of a desktop object,  in this case a window's size,
location,  etc.,  and  the  window  definition  function (specified  by  the  constant
kWindowDocumentProc) to be used to draw it.  Definition functions, which determine the look
and  behaviour  of  a  desktop  object,  are  executable  code  segments  contained  within
another kind of resource called a definition resource. 

The definition routine specified by the constant kWindowDocumentProc is contained within the
'WDEF'  resource with ID 0 in the System file.  Note that it is possible to write your own
custom  window  definition  routine  (and,  indeed,  custom  definition  routines  for  other
desktop objects such as menus), store it in a 'WDEF'  resource in you application file, and
specify it in the relevant field of your 'WIND' resource definitions.

Resources in Action

The Resource Map

Your  application  file's  resource  fork  contains,  in  addition  to  the  resources  you  have
created for your application, an automatically created resource map.  The resource map
contains entries for each resource in the resource fork.

When your application is launched, the system first gets the Memory Manager to create
the application heap and allocate a block of master pointers at the bottom of the heap.
The Resource Manager then opens your application file's resource fork and reads in the
resource map, followed by those resources which have the resPreload attribute set.

The handles to the resources which have been loaded are stored in the resource map in
memory.  The following is a diagrammatic representation of a simple resource map in
memory immediately  after  the  resource  map, together  with those  resources  with the
preload attribute set, have been loaded.

Type ID Attributes Handle
Preload Lock Purgeable

CODE 1 • • 1234
CODE 2 • NULL
MENU 128 • 123C
WIND 128 • NULL
PICT 128 • NULL
PICT 129 • NULL

Note that the handle entry in the resource map contains NULL for those resources which
have not  yet  been loaded.   Note  also that  this  handle  entry  is  filled  in only when a
resource is loaded for the first time, and that that entry remains even if a purgeable
resource is later purged by the Memory Manager.

Reading in Non-Preloaded Resources

Some system software managers use the Resource Manager to read in resources for you.
Using the  'WIND' resource listed in the above resource map as an example,  when the
Window Manager routine GetNewCWindow is called to create a new window (specifying 128
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as the resource ID), GetNewCWindow, in turn, calls the Resource Manager routine GetResource.
GetResource loads the resource (assuming that it is not currently in memory), returns the
handle to  GetNewCWindow, and copies the handle to the appropriate entry in the resource
map.  This is an example of an indirect call to the Resource Manager.

Other resources are read in by direct calls to the Resource Manager.  For example, the
'PICT' resources listed in the above example resource map would be read in by calling
another of the Get… family of resource-getting routines directly, for example:

const
rPicture1 = 128;
rPicture2 = 129;
...
var
pic1Hdl : PicHandle;
pic2Hdl : PicHandle;
...
pic1Hdl := GetPicture(rPicture1);
pic2Hdl := GetPicture(rPicture2);

Once  again,  and  assuming  that  the  resources  have  not  previously  been  loaded,  the
handle returned by each GetPicture call is copied to the appropriate entry in the resource
map.

Purgeable Resources

When a resource which has the resPurgeable attribute set has been loaded for the first time,
the handle to that resource is copied to the appropriate entry in the resource map in the
normal  way.   If  the  Memory Manager  later  purges  the  resource,  the  master  pointer
pointing to that resource is set to NULL by the Memory Manager but the handle entry in
the resource map remains.  This creates what is known as an empty handle.

If the application subsequently calls up the resource, the Resource Manager first checks
the resource map handle entry to determine whether the resource has ever been loaded
(and  thus  whether  a  master  pointer  exists  for  the  resource).   If  the  resource  map
indicates  that  the  resource  has  never  been loaded,  the  Resource  Manager loads  the
resource, returns its handle to the calling routine, and copies the handle to the resource
map.

If, on the other hand, the resource map indicates that the resource has previously been
loaded (that is, the handle entry in the resource map contains the address of a master
pointer),  the  Resource  Manager  checks  the  master  pointer.   If  the  master  pointer
contains  NULL,  the Resource Manager knows that the resource has been purged, so it
reloads the resource and updates the master pointer.  Having satisfied itself  that the
resource  is  in  memory,  the  Resource  Manager  returns  the  resource's  handle  to  the
application.

Problems with Purgeable Resources

Using  purgeable  resources  optimises  heap  space;  however,  misuse  of  purgeable
resources can crash an application.  For example, consider the following code example,
which  loads  two  purgeable  'PICT' resources  and  then  uses  the  drawing  instructions
contained in those resources to draw each picture.

pic1Hdl := GetPicture(rPicture1); // Load first 'PICT' resource.
pic2Hdl := GetPicture(rPicture2); // Load second 'PICT' resource.
if(pic1Hdl <> nil) then // If the handle to first resource is not nil ...

begin
DrawPicture(pic1Hdl,...); // ... draw the second picture.
end;

if(pic2Hdl <> nil) then // If the handle to second resource is not nil
begin
DrawPicture(pic2Hdl,...); // ... draw the second picture.
end;
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GetPicture is one of the many routines that can cause memory to move.  When memory is
moved, the Memory Manager may purge memory to obtain more heap space.  If heap
space is extremely limited at the time of the second call to GetPicture, the first resource will
be  purged  by  the  Memory  Manager,  which  will  set  the  master  pointer  to  the  first
resource to NULL to reflect this condition.  The variable pic1Hdl will now contain an empty
handle.  Passing an empty handle to DrawPicture just about guarantees a system crash.

There is a second problem with this code.  Like GetPicture, DrawPicture also has the potential
to move memory blocks.  If the second call to GetPicture did not result in the first resource
being purged, the possibility remains that it will be purged while it is being used (that is,
during the execution of the DrawPicture routine). 

To  avoid  such  problems  when  using  purgeable  resources,  you  should  observe  these
steps:

• Get (that is, load) the resource only when it is needed.

• Immediately make the resource unpurgeable.

• Use the resource immediately after making it unpurgeable.

• Immediately after using the resource, make it purgeable.

The following revised version of the above code demonstrates this approach:
pic1Hdl := GetPicture(rPicture1); // Load first 'PICT' resource.
if (pic1Hdl <> nil) then // If the resource was successfully loaded ...

begin
HNoPurge(Handle(pic1Hdl)); // make the resource unpurgeable ...
DrawPicture(pic1Hdl,...); // draw the first picture ...
HPurge(Handle(pic1Hdl)); // and make the resource purgeable again.
end;

pic2Hdl := GetResource(rPicture2); // Repeat for the second 'PICT' resource.
if (pic2Hdl <> nil) then

begin
HNoPurge(Handle(pic2Hdl));
DrawPicture(pic2Hdl ,...);
HPurge(Handle(pic2Hdl));
end;

Note that this procedure only applies when you use routines which get resources directly
(for  example  GetResource,  GetPicture,  etc.).   It  is  not  required  when  you  call  GetResource
indirectly (for example, when you call the Window Manager routine GetNewWindow) because
routines like GetNewWindow know how to treat purgeable resources properly.

Note also that LoadResource may be used to ensure that a previously loaded, but purgeable,
resource is in memory before an attempt is made to use it.  If the specified resource is
not in memory, LoadResource will load it.  The essential difference between LoadResource and
the  Get… family  of  resource-getting  routines  is  that  the  latter  return a  handle  to the
resource (loading the resource if  necessary),  whereas  LoadResource takes a  handle to a
resource as a parameter and loads the resource if necessary.

Releasing Resources

When you have  finished  using a  resource  loaded  by  a  routine  which  gets  resources
directly, you should call the appropriate routine to release the memory associated with
that resource.  For example, ReleaseResource is used in the case of generic handles obtained
with  the  GetResource routine.   ReleaseResource frees  up  all  the  memory  occupied  by  the
resource and sets the resource's handle in the resource map to nil.

You do not need to be concerned with explicitly releasing resources loaded indirectly (for
example, by a call to GetNewCWindow).  Using the case of a window resource template as an
example, the sequence of events following a call to GetNewCWindow is as follows:
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• GetNewCWindow calls  GetResource to read in the window resource template whose ID is
specified in the GetNewCWindow call.

• A relocatable block is created for the template resource and marked as purgeable,
as  specified  by  the  resource's  attributes.   (You  should  always  specify  window
template resources as purgeable.)

• The window template's block is then temporarily marked as unpurgeable while:

• A nonrelocatable block is created for a data structure known as a window
structure.

• Data is copied from the resource template into certain fields in the window
structure.

• The window template's block is then marked as purgeable.

Resource Manager Errors

The  low-memory  address  0x0A60,  which  is  represented  by  the  symbolic  name  ResErr,
contains the error code resulting from the last call to a Resource Manager routine.  This
error code may be retrieved by calling the function  ResError.   Some of the error codes
which may be returned by ResError are as follows:

Error Code Constant Description
0 noErr No error occurred.
-192 resNotFound Resource not found.
-193 resFNotFound Resource file not 

found.

Main Memory Manager Data Types and Functions

Data Types
Ptr = ^SInt8; // Pointer to nonrelocatable block.
Handle = ^Ptr; // Handle to relocatable block.
Size = LONGINT; // Size of a block in bytes.

Functions

Setting Up the Application Heap

PROCEDURE MaxApplZone;
PROCEDURE MoreMasters;
FUNCTION  GetApplLimit: Ptr;
PROCEDURE SetApplLimit(zoneLimit: UNIV Ptr);

Allocating and Releasing NonRelocatable Blocks of Memory

FUNCTION NewPtr(byteCount: Size): Ptr;
FUNCTION NewPtrClear(byteCount: Size): Ptr;
FUNCTION NewPtrSys(byteCount: Size): Ptr;
FUNCTION NewPtrSysClear(byteCount: Size): Ptr;
void DisposePtr(Ptr p);

Allocating and Releasing Relocatable Blocks of Memory

FUNCTION  NewHandle(byteCount: Size): Handle;
FUNCTION  NewHandleClear(byteCount: Size): Handle;
FUNCTION  NewHandleSys(byteCount: Size): Handle;
FUNCTION  NewHandleSysClear(byteCount: Size): Handle;
FUNCTION  NewEmptyHandle: Handle;
FUNCTION  NewEmptyHandleSys: Handle;
PROCEDURE DisposeHandle(h: Handle);
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Changing the Sizes of Nonrelocatable and Relocatable Blocks

FUNCTION  GetPtrSize(p: Ptr): Size;
PROCEDURE SetPtrSize(p: Ptr; newSize: Size);
FUNCTION  GetHandleSize(h: Handle): Size;
PROCEDURE SetHandleSize(h: Handle; newSize: Size);

Setting the Properties of Relocatable Blocks

PROCEDURE HLock(h: Handle);
PROCEDURE HUnlock(h: Handle);
PROCEDURE HPurge(h: Handle);
PROCEDURE HNoPurge(h: Handle);
FUNCTION  HGetState(h: Handle): SInt8;
PROCEDURE HSetState(h: Handle; flags: SInt8);

Managing Relocatable Blocks

PROCEDURE EmptyHandle(h: Handle);
PROCEDURE ReallocateHandle(h: Handle; byteCount: Size);
FUNCTION  RecoverHandle(p: Ptr): Handle;
PROCEDURE ReserveMem(cbNeeded: Size);
PROCEDURE ReserveMemSys(cbNeeded: Size);
PROCEDURE MoveHHi(h: Handle);
PROCEDURE HLockHi(h: Handle);

Manipulating Blocks of Memory

PROCEDURE BlockMove(srcPtr: UNIV Ptr; destPtr: UNIV Ptr; byteCount: Size);
PROCEDURE BlockMoveData(srcPtr: UNIV Ptr; destPtr: UNIV Ptr; byteCount: Size);
FUNCTION  PtrToHand(srcPtr: UNIV Ptr; VAR dstHndl: Handle; size: LONGINT): OSErr;
FUNCTION  PtrToXHand(srcPtr: UNIV Ptr; dstHndl: Handle; size: LONGINT): OSErr;
FUNCTION  HandToHand(VAR theHndl: Handle): OSErr;
FUNCTION  HandAndHand(hand1: Handle; hand2: Handle): OSErr;
FUNCTION  PtrAndHand(ptr1: UNIV Ptr; hand2: Handle; size: LONGINT): OSErr;

Accessing Memory Conditions

FUNCTION  FreeMem: LONGINT;
FUNCTION  FreeMemSys: LONGINT;
FUNCTION  MaxBlock: LONGINT;
FUNCTION  MaxBlockSys: LONGINT;
PROCEDURE PurgeSpace(VAR total: LONGINT; VAR contig: LONGINT);
FUNCTION  StackSpace: LONGINT;

Freeing Memory

FUNCTION  CompactMem(cbNeeded: Size): Size;
FUNCTION  CompactMemSys(cbNeeded: Size): Size;
PROCEDURE PurgeMem(cbNeeded: Size);
PROCEDURE PurgeMemSys(cbNeeded: Size);
FUNCTION  MaxMem(VAR grow: Size): Size;
FUNCTION  MaxMemSys(VAR grow: Size): Size;

Allocating Temporary Memory

FUNCTION  TempNewHandle(logicalSize: Size; VAR resultCode: OSErr): Handle;
FUNCTION  TempMaxMem(VAR grow: Size): Size;
FUNCTION  TempFreeMem: LONGINT;

Checking for Errors

FUNCTION  MemError: OSErr;

Main Resource Manager Constants, Data Types, and Functions

Constants

Resource Attributes

resSysHeap = 64 System or application heap?
resPurgeable = 32 Purgeable resource?
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resLocked = 16 Load it in locked?
resProtected = 8 Protected?
resPreload = 4 Load in on OpenResFile?
resChanged = 2 Resource changed?

Data Types
FourCharCode = UNSIGNEDLONG;
ResType = FourCharCode;

Functions

Reading Resources Into Memory

FUNCTION  GetResource(theType: ResType; theID: INTEGER): Handle;
FUNCTION  Get1Resource(theType: ResType; theID: INTEGER): Handle;
PROCEDURE LoadResource(theResource: Handle);

Disposing of Resources

PROCEDURE ReleaseResource(theResource: Handle);

Checking for Errors

FUNCTION  ResError: OSErr;

Demonstration Program
// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
// SysMemRes.p
// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
//
// This program:
//
// • Initialises the system software managers.
//
// • Creates a nonrelocatable block of memory for a window structure.
//
// • Loads a window template ('WIND') resource and creates a window.
//
// • Loads a purgeable 'PICT' resource and a non-purgeable 'STR ' resource and draws
// them in the window.
//
// • Checks if any error codes were generated as a result of calls to Memory Manager and
// Resource Manager functions.
//
// • Terminates when the mouse button is clicked.
//
// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

program SysResMem;

// 
……………………………………………………………………………………………………………………………………………………………………
……………………………………… includes

uses

{ Universal Interfaces. }
Dialogs, Fonts, Menus, Processes, Resources, Sound, TextUtils;

// 
……………………………………………………………………………………………………………………………………………………………………
…………………………………… constants

const

rWindowResourceID = 128;
rStringResourceID = 128;
rPictureResourceID = 128;
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// 
……………………………………………………………………………………………………………………………………………………………………
……… routine declarations

procedure doInitManagers; forward;
procedure doNewWindow; forward;
procedure doDrawPictAndString; forward;

// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ initManagers

procedure doInitManagers;

begin
MaxApplZone;
MoreMasters;

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

InitCursor;
end;

// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ doNewWindow

procedure doNewWindow;

var
windowPtr : WindowPtr;
windowRecPtr : Ptr;

begin
windowRecPtr := NewPtr(sizeof(WindowRecord));
if (windowRecPtr = nil) then

begin
SysBeep(10);
ExitToShell;
end;

windowPtr := GetNewCWindow(rWindowResourceID, windowRecPtr, WindowPtr(-1));
if (windowPtr = nil) then

begin
SysBeep(10);
ExitToShell;
end;

SetPort(windowPtr);
TextFont(systemFont);
end;

{ of procedure doNewWindow }

// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ doDrawPictAndString

procedure doDrawPictAndString;

var
pictureHdl : PicHandle;
stringHdl : StringHandle;
pictureRect : Rect;
resourceError : SInt16;
memoryError : OSErr;

begin
pictureHdl := GetPicture(rPictureResourceID);
if (pictureHdl = nil) then

begin
SysBeep(10);
ExitToShell;
end;

SetRect(pictureRect,148,25,353,170);

HNoPurge(Handle(pictureHdl));
DrawPicture(pictureHdl,pictureRect);
HPurge(Handle(pictureHdl));

stringHdl := GetString(rStringResourceID);
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if(stringHdl = nil) then
begin
SysBeep(10);
ExitToShell;
end;

MoveTo(105,210);
DrawString(stringHdl^^);

ReleaseResource(Handle(pictureHdl));
ReleaseResource(Handle(stringHdl));

resourceError := ResError;
if (resourceError = noErr) then

begin
MoveTo(162,240);
DrawString('No Resource Manager errors');
end;

memoryError := MemError;
if (memoryError = noErr) then

begin
MoveTo(165,255);
DrawString('No Memory Manager errors');
end;

end;
{ of procedure doDrawPictAndString }

// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊ main

begin

doInitManagers;
doNewWindow;
doDrawPictAndString;
while not Button do 

begin
end;

end.
{ of main program }

// ◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

Demonstration Program Comments

uses
The following explains the inclusion of each of the specified interface files:

Dialogs.p Routines: InitDialogs

Dialogs.p itself includes TextEdit.p, which includes
Routines: TEInit

Dialogs.hp itself includes MacWindows.p, which contains:
Routines: InitWindows  GetNewCWindow
Data Types: WindowRecord

MacWindows.p also includes Events.p, which contains:
Routines: Button

MacWindows.p also includes Types.p, which contains:
DataTypes: SInt16

Fonts.p Routines: InitFonts
Constants: systemFont

Menus.p Routines: InitMenus

Menus.p itself includes MacMemory.p, which contains:
Routines: MaxApplZone  NewPtr  HNoPurge  HPurge  MemError

MacMemory.h itself includes Types.p, which contains:
Data Types: Ptr  StringHandle  Rect  OSErr  Handle
Constants: noErr
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Menus.p also includes Quickdraw.p, which contains:
Routines: InitGraf  InitCursor  SetPort  SetRect  DrawPicture  

MoveTo  GetPicture
Data Types: WindowPtr  PicHandle
QuickDraw Global Variable: thePort

Quickdraw.p itself includes QuickdrawText.p, which contains:
Routines: TextFont  DrawString

Processes.p Routines: ExitToShell

Resources.p Routines: ReleaseResource  ResError

Sound.p Routines: SysBeep

TextUtils.p Routines: GetString

constants
Constants are established for the resource IDs of the 'WIND', 'PICT' and 'STR ' resources.

main
The main program calls the application-defined functions which initialise the system software managers, create a window, 
and draw a picture and text in the window.  It then waits for a button click before terminating the program.

doInitManagers
doInitManagers grows the application heap, creates a block of master pointers, initialises the system software managers, 
and sets the cursor to the standard arrow shape.

Note that the routine name is somewhat of a misnomer in that it does more than initialise the system software managers.  
However, since growing the heap, creating additional master pointer blocks, and setting the standard arrow cursor shape 
are invariably part of an application's setting up process, it is convenient to attend to those matters within the 
doInitManagers routine.  This practice will continue in all other demonstration programs.

The call to MaxApplZone is really not required for this simple program.  However, it should be the first call in any serious 
application.  The call grows the heap immediately to the maximum permissible size, assisting in the prevention of heap 
fragmentation, reducing the number of blocks which the Memory Manager has to purge when satisfying a memory request 
and speeding up memory allocation operations.

The call to MoreMasters to allocate a block of master pointers is really not required in this simple program because the 
Operating System automatically allocates one block of master pointers at application launch.  However, in larger 
applications where more than 64 master pointers are required, the call, or calls, to MoreMasters should be made here so 
that all master pointer (nonrelocatable) blocks are located at the bottom of the heap.  This will assist in preventing heap 
fragmentation.

The next six lines initialise certain system software managers.  Not all of the data structures and variables inititialised by 
these calls will be used by this simple program; however, any serious application will require the full initialisation shown.  It
is also relevant that some managers require the use of information in other managers, so those other managers need to be 
initialised at least for that purpose.  Some explanatory notes on the various calls are as follows:

• InitGraf initialises the QuickDraw global variables.  The first element in the QuickDraw global data area is a pointer 
(thePort) to the current graphics port.  Because it is the first QuickDraw global, passing its address to InitGraf tells 
QuickDraw where all the other QuickDraw globals are located.  Other QuickDraw globals initialised by InitGraf are:

• The pattern variables qd.white, qd.black, qd.gray, qd.ltGray, qd.dkGray.

• qd.arrow, which contains the standard cursor arrow shape and which can be passed as an argument to 
QuickDraw's cursor functions.

• qd.screenBits, a data structure which describes the main screen.  The field screenBits.bounds contains a 
rectangle which encloses the main screen.

• qd.randSeed, which is used to seed the random number generator.

Note:  The header file Quickdraw.p defines the following data type:

TYPE
QDGlobalsPtr = ^QDGlobals;
QDGlobals = RECORD

privates: PACKED ARRAY [0..75] OF CHAR;
randSeed: LONGINT;
screenBits: BitMap;
arrow: Cursor;
dkGray: Pattern;
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ltGray: Pattern;
gray: Pattern;
black: Pattern;
white: Pattern;
thePort: GrafPtr;

END;

QDGlobalsHdl = ^QDGlobalsPtr;

In the 680x0 environment, the runtime libraries define the QuickDraw global variable qd.  There is no need for your 
application to do this.

• InitFont initialises the Font Manager and loads the system font into memory.  Since the Window Manager uses the 
Font Manager to draw the window's title, etc., InitFonts must be called before InitWindows. Also, it must be called 
after InitGraf.

• InitWindows initialises the Window Manager port.  It must be called after InitGraf and InitFonts.  It draws the 
familiar rounded rectangle desktop with an empty menu bar at the top.  The fill pattern used is the resource whose 
resource ID is represented by the constant deskPatID.  (If a different fill pattern is required, it can be specified in 
the application's resource file.)  The call establishes a nonrelocatable block (the Window Manager port) in the 
application heap.

• InitMenus allocates heap storage for the menu list and draws an empty menu bar.  (For some unknown reason, 
InitWindows and InitMenus both draw the menu bar.)  InitMenus must be called after InitGraf, InitFonts and 
InitWindows.

• TEInit initialises TextEdit, the Text editing manager, by allocating an internal handle for the TextEdit scrap (not the 
same as the "desk scrap" maintained by the Desk Manager).  It should be called even if the application does not 
explicitly use TextEdit functions, since it ensures that dialog boxes and alert boxes work correctly.

• InitDialogs initialises the Dialog Manager and optionally installs a function to get control after a fatal system error.  
It installs the standard sound procedure (for alerts) and sets all text replacement parameters to empty strings (see 
the function ParamText).

InitCursor sets the cursor shape to the standard arrow cursor and sets the cursor level to 0, making it visible.  (The 68-byte 
Cursor structure for the standard arrow cursor can be found in the QuickDraw data area.)

doNewWindow
doNewWindow creates a window.

NewPtr is used to allocate a nonrelocatable block of memory for the window structure.  If the call is not successful, the 
system alert sound is played and the program is terminated by a call to ExitToShell, which releases the heap and hands 
control to the Finder.  (Note that error handling here, and in the rest of the program, is thus somewhat rudimentary.  Note 
also that SysBeep's parameter is nowadays ignored, but must be included for historical reasons.)

The call to GetNewCWindow creates a window using the 'WIND' template resource  specified in the first parameter, and 
using the pointer to the nonrelocatable block already allocated for the window structure as the second parameter.  (The 
third parameter tells the Window Manager to open the window in front of all other windows.)  The type, size, location, 
appearance, title and visibility of the window are all established by the 'WIND' resource.

Recall that, as soon as the data from the 'WIND' template resource is copied to the window structure during the creation of 
the window, the nonrelocatable block occupied by the template will automatically be marked as purgeable.

The call to SetPort makes the new window's graphics port the current port for drawing operations.  The call to TextFont sets
the font for that port to the standard system default font (Chicago or Charcoal, depending on the setting in the Appearance 
control panel).

doDrawPictAndString
doDrawPictAndString draws a picture and some text strings in the window.

GetPicture reads in the 'PICT' resource corresponding to the ID specified in the GetPicture call.  If the call is not successful, 
the system alert sound is played and the program terminates.

The SetRect call assigns values to the left, top, right and bottom fields of a Rect variable.  This Rect is required for a later 
call to DrawPicture.

The basic rules applying to the use of purgeable resources are to load it, immediately make it unpurgeable, use it 
immediately, and immediately make it purgeable.  Accordingly, the HNoPurge call makes the relocatable block occupied by
the resource unpurgeable, the DrawPicture call draws the picture in the window's graphics port, and the HPurge call makes 
the relocatable block purgeable again.

Note that, because HNoPurge and HPurge expect a parameter of type Handle, pictureHdl (a variable of type PicHandle) 
must be cast to a variable of type Handle.

GetString then reads in the specified 'STR ' resource.  Once again, if the call is not successful, the system alert sound is 
played and the program terminates.  MoveTo moves the graphics "pen" to an appropriate position before DrawString draws
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the string in the window's graphics port.  (Since the 'STR ' resource, unlike the 'PICT' resource, does not have the purgeable
bit set, there is no requirement to take the precaution of a call to HNoPurge in this case.)

Note the parameter in the call to DrawString.  stringHdl, like any handle, is a pointer to a pointer.  It contains the address of
a master pointer which, in turn, contains the address of the data.  Dereferencing the handle twice, therefore, get the 
required parameter for DrawString, which is a string.

The calls to ReleaseResource release the 'PICT' and 'STR ' resources.  These calls release the memory occupied by the 
resources and set the associated handles in the resource map in memory to nil.

The ResError call returns the error code of the most recent resource-related operation.  If the call returns noErr (indicating 
that no error occurred as a result of the most recent call by a Resource Manager function), some advisory text is drawn in 
the graphics port.

The next six lines examine the result of the most recent call to a memory manager function and draw some advisory text if 
no error occurred as a result of that call.

Note that the last two calls to DrawString utilise "hard-coded" strings.  This sort of thing is discouraged in the Macintosh 
programming environment.  Such strings should ordinarily be stored in a 'STR#' (string list) resource rather than hard-
coded into the source code.

PASCAL AND C STRINGS

Pascal and C strings differ in their formats.  A C string comprises the characters followed by a terminating 0 (or 
NULL byte):

+---+---+---+---+---+---+---+---+---+---+
| M | Y |   | S | T | R | I | N | G | 0 |

+---+---+---+---+---+---+---+---+---+---+

In a Pascal string, the first byte contains the length of the string, and the characters follow that byte:

+---+---+---+---+---+---+---+---+---+---+
| 9 | M | Y |   | S | T | R | I | N | G |

+---+---+---+---+---+---+---+---+---+---+

Not surprisingly, then, Pascal strings are often referred to as "length-prefixed" strings.

In Chapter 3, you will encounter the data type Str255.  Str255 is the name for a Pascal-style string capable of 
holding up to 255 characters.  As you would expect, the first byte of a Str255 holds the length of the string and the 
following bytes hold the characters of the string.

Utilizing 256 bytes for a string will simply waste memory in many cases.  Accordingly, the header file Types.p 
defines the additional types Str63, Str32, Str31, Str27, and Str15, as well as the Str255 type:-

 TYPE
Str255 = STRING[255];
Str63 = STRING[63];
Str32 = STRING[32];
Str31 = STRING[31];
Str27 = STRING[27];
Str15 = STRING[15];

    
Note, then, that a variable of type Str255 holds the address of an array of 256 elements, each element being one 
byte long.

As an aside, in some cases you may want to use C strings.  Accordingly, be aware that functions exist (C2PStr, 
P2CStr) to convert a string from one format to the other.
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