
Porting to the Power Macintosh 23-1

23Version 1.2 (Frozen)

PORTING TO THE POWER MACINTOSH

Introduction

The first system software release for Power Macintoshes provided the ability to execute applications
that use the native instruction set of the Power Macintosh's PowerPC microprocessor and applications
which use the 680x0 instruction set.

Although your 680x0 application can be run in emulation (see below) on a Power Macintosh, you will
need to re-compile your application's source code into a PowerPC application, using a compiler capable
of producing native PowerPC code, if you want to take advantage of the greater processing speed of
the PowerPC microprocessor. Because the native PowerPC run-time environment is significantly
different from that of the 680x0, you may need to re-write certain areas of your code before you can
compile it as PowerPC code.

This chapter addresses matters relevant to running 680x0 applications on a Power Macintosh and to
modifying the source code of an existing 680x0 application so that the application can be compiled into
a PowerPC application.

The 68LC040 Emulator

The capability to execute applications which use the PowerPC instruction set and applications which
use the 680x0 instruction set is provided by an emulator (the 68LC040 Emulator). The emulator
provides an execution environment which is virtually identical to the execution environment found on
680x0-based Macintoshes. More specifically, the emulator:

• Converts 680x0 instructions into PowerPC instructions and issues those instructions to the
PowerPC processor.

• Updates the emulated environment (such as the emulated 680x0 registers) in response to the
operations of the PowerPC processor.

Under the emulator, all existing 680x0 applications and other software modules will execute without
modification on Power Macintoshes provided that they:

• Are 32-bit clean.

• Are compatible with operations of the Virtual Memory Manager.

• Are able to operate smoothly in the cooperative multitasking environment maintained by the
Process Manager.

23-2 Porting to the Power Macintosh

• Conform to the general requirements of Macintosh software as documented in Inside Macintosh.

The emulator also makes it possible for parts of the system software to remain as 680x0 code while
other parts of the system software are re-implemented, primarily for reasons of speed, as native
PowerPC code. (The Memory Manager and QuickDraw, for example, were re-implemented as native
PowerPC in the first system software release for Power Macintoshes.)

The emulator has some limitations. Possibly the most significant of these is that it does not support the
instruction sets of the 68881 or 68882 co-processors or of the 68851 PMMU.

The Mixed Mode Manager

The emulator works together with a new manager called the Mixed Mode Manager. The Mixed
Mode Manager manages mode switches between code in different instruction set architectures
(ISAs), switching the execution context between the CPU's native PowerPC context and the 68LC040
emulator.

Mode Switches

Mode switches are required when an application calls a system software routine (or, indeed, any other
code) that exists in a different ISA. For example:

• When a 680x0 application running under the emulator calls a system software routine that exists
as native PowerPC code, a mode switch is required to move out of the emulator and into the
native PowerPC environment. Then, when that system software routine completes, another
mode switch is required to return to the emulator and to allow the 680x0 application to continue
executing.

• When a PowerPC application invokes a system software routine or other code that exists only as
680x0 code, a mode switch is required to move from the native environment to the emulator
environment. Then, when that system software routine completes, another mode switch is
required to return from the emulator to the PowerPC environment to allow the PowerPC
application to continue executing.

The Mixed Mode Manager is intended to operate transparently to most applications and other types of
software, meaning that most cross-mode calls (calls to code in a different ISA from the caller's ISA) are
detected automatically by the Mixed Mode Manager and handled without intervention by the calling
software.

Occasionally, however, some executable code needs to interact directly with the Mixed Mode Manager
to ensure that a mode switch occurs at the correct time. Because the emulator is designed to allow
existing 680x0 applications to execute without modification, it is always the responsibility of native
applications to implement any changes necessary to interact with the Mixed Mode Manager.

Intervention in Mode Switching

When writing native PowerPC code, you only have to intervene in the mode-switching process when
you execute code whose ISA might be different from the calling code. For example, when you pass the
address of a callback routine to the system software, it is possible that the ISA of the code whose
address you are passing is different from the ISA of the routine you are passing it to. In such cases, you
must ensure that the Mixed Mode Manager is called to make the necessary mode switch. You do this
by explicitly signalling:

• The type of code you are passing.

• The code's calling conventions.

Porting to the Power Macintosh 23-3

An Example - Callback Routines

As an example, suppose you are writing a native PowerPC application that calls the Control Manager
routine TrackControl. Recall from Chapter 5 — Controls that TrackControl accepts as one of its
parameters the address of an action procedure that is called repeatedly while the mouse button remains
down. TrackControl has no way of determining in advance the ISA of the code whose address you
will pass to it. Moreover, your application has no way of determining in advance the ISA of the
TrackControl routine, so you cannot know whether your action procedure and the TrackControl
procedure are of the same ISA.

Because of all this, you must explicitly indicate the ISA of any callback routines whose addresses you
pass to system software routines such as TrackControl.

Indicating the ISA of a Callback Routine —
Routine Descriptors

You indicate the ISA of a particular routine by creating a routine descriptor for that routine (see Fig
1). The first field of a routine descriptor (goMixedModeTrap) is an executable 680x0 instruction which
invokes the Mixed Mode Manager. When the Mixed Mode Manager is called, it inspects the remaining
fields of the routine descriptor — in particular, the routineRecords field — to determine whether a
mode switch is required. The routineRecords field is an array of routine records, each element of
which describes a single routine. In the simplest case, the array of routine records contains a single
element.

type
RoutineDescriptor = packed record
goMixedModeTrap: UInt16; { Mixed-mode A-Trap }
version: SInt8;
routineDescriptorFlags: RDFlagsType;
reserved1: UInt32;
reserved2: UInt8;
selectorInfo:UInt8;
routineCount:UInt16;
routineRecords:array [0..0] of RoutineRecord;{ The individual routines }
end;

RoutineDescriptorPtr = ^RoutineDescriptor;
RoutineDescriptorHandle = ^RoutineDescriptorPtr;

FIG 1 -THE ROUTINE DESCRIPTOR RECORD AND ROUTINE RECORD

type
RoutineRecord = record
procInfo:ProcInfoType; { calling conventions }
reserved1:SInt8; (* UInt8 *)
ISA:ISAType; { Instruction Set Architecture }
routineFlags:RoutineFlagsType;
procDescriptor:ProcPtr; { Where is the thing we’re calling? }
reserved2:UInt32;
selector:UInt32;
end;

RoutineRecordPtr = ^RoutineRecord;
RoutineRecordHandle = ^RoutineRecordPtr;

The most important fields in a routine record are the procInfo field and the ISA field:

• ISA Field. The ISA field encodes the ISA of the routine being described. It always contains
one of these two constants, which are defined in the Universal Interfaces file MixedMode.p:

kM68kISA = 0 { MC680x0 architecture. }
kPowerPCISA = 1 { PowerPC Architecture. }

• procInfo Field. The procInfo field contains the routine's procedure information, which
encodes the routine's calling conventions and information about the number and location of the

23-4 Porting to the Power Macintosh

routine's parameters. For the standard kinds of callback routines and other types of "detached"
code, the Universal Interfaces files include definitions of procedure information. For example,
the interface file Controls.p includes this definition:

uppControlActionProcInfo = $000002C0; { procedure (4 byte param, 2 byte param); }

This procedure information specification indicates that a control action procedure follows
standard Pascal calling conventions and takes two stack-based parameters (a control handle and
a part code) and returns no result.

Creating a Routine Descriptor

You can create a routine descriptor by calling the Mixed Mode Manager function
NewRoutineDescriptor, for example:

myActionProc : UniversalProcPtr;
myActionProc := NewRoutineDescriptor(ProcPtr(myAction),uppControlActionProcInfo,

GetCurrentISA());

In this example, myAction is the address of your control action procedure and GetCurrentISA is a
constant (determined at compile-time) which represents the current ISA. The effect of a call to
NewRoutineDescriptor depends on whether it is executed in the 680x0 environment or the PowerPC
environment:

• In the 680x0 environment, NewRoutineDescriptor simply returns its first parameter.

• In the PowerPC environment, NewRoutineDescriptor creates a routine descriptor in your
application heap and returns the address of that routine descriptor.

Notice that the result returned by NewRoutineDescriptor is of type UniversalProcPtr. A universal
procedure pointer is defined in the Universal Interfaces file Types.p to be a procedure pointer:

ProcPtr = Ptr;
Register68kProcPtr = ProcPtr; { procedure ; }
ProcHandle = ^ProcPtr;
UniversalProcPtr = ProcPtr;
UniversalProcHandle = ^ProcPtr;

Effect of the Routine Descriptor

Once you have created the routine descriptor, you can later call TrackControl like this:

TrackControl(myControl, myPoint, myActionProc);

If your application is a PowerPC application, the value passed in the myActionProc parameter is not the
address of your action procedure itself, but the address of the routine descriptor. When a 680x0 version
of TrackControl executes your action procedure, it begins by executing the instruction in the first field
of the routine descriptor. That instruction invokes the Mixed Mode Manager, which inspects the ISA of
the action routine (contained in the ISA field of the routine record). If that ISA differs from the
instruction set architecture of the TrackControl routine, the Mixed Mode Manager causes a mode
switch. Otherwise, if the ISAs are identical, the Mixed Mode Manager simply executes the action
procedure without switching modes.

Routines Requiring Routine Descriptors

Thus you satisfy the requirement to explicitly indicate a routine's ISA by creating routine descriptors
and by using the address of those routine descriptors where you would have used procedure pointers
in the 680x0 programming environment.

Remember, however, that you only need to do this when you need to pass the address of a routine to
some external piece of code (such as a system software routine or some other application) that might be
in a different ISA from that of the routine. You do not need to create routine descriptors for routines
that are called only by your application. More generally, if you know for certain that a routine is

Porting to the Power Macintosh 23-5

always called by code of the same ISA, you can and should continue to use procedure pointers instead
of universal procedure pointers.

Some of the typical routines for which you need to create routine descriptors are:

• Control action procedures.

• Event filter functions.

• VBL tasks.

Procedure Information Definitions, and
Other Routines for Creating Routine
Descriptors

The Universal Interfaces changed all references to parameters of type ProcPtr to references of type
UniversalProcPtr. In addition, the Universal Interfaces:

• Contain procedure information definitions for all of the standard kinds of callback routines.

• Define new routines for creating routine descriptors which you can use in lieu of the more
generalised method using NewRoutineDescriptor shown above. For example, the Universal
Interfaces file Controls.p contains this definition for the NewControlActionProc function:

{$IFC PROCTYPE }
ControlActionProcPtr = procedure (theControl: ControlRef; partCode:
ControlPartCode);
{$ELSEC}
ControlActionProcPtr = ProcPtr; { procedure ControlAction(theControl: ControlRef;
partCode: ControlPartCode); }
{$ENDC}

ControlActionUPP = UniversalProcPtr;

function NewControlActionProc(userRoutine: ControlActionProcPtr):
ControlActionUPP;

This enables you to replace the previous example with this simpler way to create the routine
descriptor for a control action procedure:

myActionUPP : ControlActionUPP;
myActionProc := NewControlActionProc(ControlActionProcPtr(@myAction));

Disposing of Routine Descriptors

Routine descriptors may be disposed of using DisposeRoutineDescriptor, although this is only
necessary or advisable if you know that you will not be using the descriptor any more during the
execution of your application or if you allocate a routine descriptor for temporary use only.

The PowerPC Native Environment

In the emulation environment provided by the 68LC040 emulator, the organisation of an application
partition, and the run-time behaviour of emulated software are identical to that provided on 680x0-
based Macintoshes. However, the run-time environment1 for native PowerPC software is significantly
different from that of standard 680x0 run-time environment. The PowerPC environment provides a
much simpler run-time model made possible by the use of fragments as the standard way of
organising executable code and data in memory

1A run-time environment is a set of conventions which determine how code is to be loaded into memory, where it is to be stored, how it is to
be addressed, and how functions call other functions and system software routines.

23-6 Porting to the Power Macintosh

Fragments

A fragment is any block of executable PowerPC code and its associated data. Fragments can be of any
size, and are complete, executable entities2. Amongst other things, they use a method of addressing the
data they contain that is different and more general than the A5-related method used by 680x0
applications to address their global data (see Chapter 1 — System Software, Memory, and Resources).
The natural consequence of this is that any PowerPC software packaged as a fragment has easy access
to global data3. In the PowerPC environment, any routine contained in an application has automatic
access to the application's global variables.

Categories of Fragments

There are three broad categories of fragments:

• Applications. An application is a fragment which can be launched by the user from the
Finder.

• Import Libraries. An import library is a fragment which contains code and data associated
with some other fragment or fragments. The system software, for example, is an import library.
When you link an import library with your application, the import library's code is not copied to
your application; rather, your application contains symbols known as imports which refer to
some code or data in the import library.

• Extensions. An extension is a fragment which extends the capabilities of some other fragment.
For example, your application might use external code modules like control definition functions.
Unlike import libraries, extensions must be explicitly connected to your application during
execution. There are two types of extensions, namely, application extensions and system
extensions. An application extension is an extension that is used by a single application.

Import libraries and system extensions are sometimes called shared libraries, because the code and
data they contain can be shared by multiple clients.

Fragment Storage and Loading

The physical storage for a fragment is a container, which can be any kind of object accessible by the
operating system. The system software import library, for example, is stored in ROM. The fragment
containing an application's executable code is stored in the application's data fork, which is a file of
type 'APPL'. A container can also be a resource.

The process of loading a fragment into memory and preparing it for execution is handled by the Code
Fragment Manager. The code and data sections of a loaded fragment are loaded into separate sections
of memory, which are generally not contiguous. Regardless of where it is loaded, however, there is no
segmentation within the code section of a fragment.

Even though a fragment's code and data sections can be loaded anywhere in memory, those sections
cannot be moved in memory once they have been loaded4.

Container Formats. The Code Fragment Loader recognises two kinds of container format:

• Extended Common Object File Format (XCOFF). XCOFF is a refinement of COFF, the
standard executable file format of many UNIX-based computers. XCOFF is supported primarily
because the early development tools produce executable code in the XCOFF format.

2The term "fragment" was chosen to avoid confusion with the terms already used in Inside Macintosh to describe executable code, such as
"component" and "module". The term is not intended to suggest that the block of code and data is small, detached or incomplete.
3In the 680x0-based system software, it is sometimes difficult to use global data within types of software other than applications. In addition,
it is often complicated for a routine installed by some code to gain access to the code's global variables. For example, you cannot, in the
current 680x0 environment, write a VBL task that uses your application's global variables without somehow passing your application's A5
value to the VBL task (see Chapter 19 — Custom Control Definition Functions and VBL Tasks).
4In the 680x0 environment, an application's code can be unloaded (by the Memory Manager) and later re-loaded into a different place in
memory.

Porting to the Power Macintosh 23-7

• Preferred Executable Format (PEF). PEF is an object file format developed by Apple
Computer. A container in the PEF format is dramatically smaller than the corresponding
container in the XCOFF format. PEF provides support for a fragment's optional initialisation
and termination routines and for the version checking performed by the Code Fragment
Manager when an import library is connected to a fragment.

Code Fragment Resource

As previously stated, the first version of the system software for PowerPC-based Macintosh computers
allows the user to run both 680x0 and PowerPC applications. Accordingly, the Process manager needs
some method of determining, at the time the user launches the application, what kind of application it
is. The Process Manager assumes that the application is a 680x0 application unless you indicate
otherwise. You do this, by including in the resource fork of your PowerPC application, a code
fragment resource (resource type 'cfrg') with a resource ID of 0. This resource indicates:

• The ISA of your application's executable code.

• The location of the code's container.

A typical code fragment resource, in Rez input format, is as follows:

#include "CodeFragment.Types.r"
resource 'cfrg' (0)
{

{
kPowerPC, /* Instruction set architecture */
kFullLib, /* No update level for apps */
kNoVersionNum, /* No implementation version number */
kDefaultStackSize /* No definition version number */
kNoAppSubFolder, /* Use default stack size */
kIsApp, /* No library directory */
kOnDiskFlat, /* Fragment is an application */
kZeroOffset, /* Fragment is on disk */
kWholeFork, /* Fragment starts at fork start */
"My Application" /* Fragment occupies entire fork */

}
};

Amongst other things, this resource specification indicates that the application consists of PowerPC
code, the code is contained in the application's data fork, and the code container occupies the entire
data fork.

You do not have to create the 'cfrg' resource yourself because CodeWarrior does this for you.

Effect of the Code Fragment Resource

Typically, the code and data for a PowerPC application are contained in your application's data fork, as
shown at Fig 2. If your application does not contain a code fragment resource, the Process Manager
assumes that your application is a 680x0 application and calls the Segment Manager to load your
application's executable code from resources of type 'CODE' in your application's resource fork (see Fig
2).

FIG 2 - THE STRUCTURE OF 680x0 AND POWERPC APPLICATIONS

'CODE' 0

'CODE' 1

'CODE' n

'SIZE' -1

'DLOG'

'DITL'

etc

'WIND'

'cfgr' 0 'SIZE' -1

'WIND'

'DLOG'

'DITL'

etc

RESOURCE FORKDATA FORK RESOURCE FORKDATA FORK

POWERPC
CODE

FRAGMENT
CONTAINER

POWERPC APPLICATION 680x0 APPLICATION

23-8 Porting to the Power Macintosh

Fat Applications

The placement of an application's PowerPC code in the data fork makes it easy to create a fat
application. Fat applications contain both PowerPC code and 680x0 executable code, as shown at Fig
3.5

Chapter 2 (Application Projects) of the CodeWarrior manual Targeting Mac OS contains a section
(Creating FAT Applications) outlining the steps required to create a fat application.

FIG 3 - THE STRUCTURE OFA FAT APPLICATION

'CODE' 0

'CODE' 1

'CODE' n

'SIZE' -1

'DLOG'

'DITL'

etc

'WIND'

'cfgr' 0

RESOURCE FORKDATA FORK

POWERPC
CODE

FRAGMENT
CONTAINER

Accelerated Resources

As previously stated, it is possible to use resources as containers for executable PowerPC code. You
can put an executable PowerPC code fragment into a resource to obtain a PowerPC version of a 680x00
stand-alone code module. For example, you might re-compile an existing menu definition function
(which is stored in a resource of type 'MDEF') into PowerPC code.

Note that, because the Menu Manager code that calls your menu definition function might be 680x0
code, a mode switch to the PowerPC environment might be required before your definition procedure
can be executed. Accordingly, as shown at the left at Fig 4, you need to prepend a routine descriptor
onto the beginning of the resource.

FIG 4 - STRUCTURE OF ACCELERATED AND FAT CODE-BEARING RESOURCES

POWERPC CODE FRAGMENT

ROUTINE DESCRIPTOR

680x0 CODE

ROUTINE DESCRIPTOR

POWERPC CODE FRAGMENT

ACCELERATED RESOURCE FAT RESOURCE

These kinds of resources are called accelerated resources because they are faster implementations of
existing kinds of resources. An accelerated resource is any resource containing PowerPC code that has
a single entry point at the top (the routine descriptor) and that models the traditional behaviour of a
680x0 stand-alone code resource, for example:

• Menu definition functions (stored in a resources of type 'MDEF').

• Control definition functions (stored in a resources of type 'CDEF').

5Ideally, you should package your application as a fat application so as to afford users maximum flexibility. If, however, you decide not to
package your application as a fat application, you should at least include an executable 680x0 'CODE' resource which displays an alert box
informing the user that your application runs only on PowerPC-based Macintoshes.

Porting to the Power Macintosh 23-9

• Window definition functions (stored in a resources of type 'WDEF').

You can transparently replace 680x0 code resources with accelerated PowerPC code resources without
having to change the software (for example, an application) which uses them.

The creation of accelerated resources is described in the Codewarrior manual Targeting Mac OS at
Chapter 5 (Creating Code Resource Projects)/Creating a Code Resource/Creating a PowerPC code
resource project.

Fat Resources. As is shown at the right at Fig 4, it is also possible to create fat code-bearing
resources, that is, resources containing both 680x0 and PowerPC versions of the same routine. In this
case, the routine descriptor contains two routine records in its routineRecords field, one describing the
680x0 code and one describing the PowerPC code.6

Accelerated resources must not use global pointers (in C, pointers declared at extern or static) that are
either initialised at run time or contained in dynamically allocated data structures to point to code or
data in the resource itself. An accelerated resource can use uninitialised global data to point to objects
in the heap. In addition, an accelerated resource can use global pointers that are initialised at compile
time to point to functions, other global data, and literal strings, but these pointers cannot be modified at
run time.

Calling Conventions

In the 680x0 environment, there are many ways for one routine to call another, depending on whether
the called routine conforms to Pascal, C, Operating System, or other calling conventions. In the
PowerPC environment, there is only one calling convention, which is designed to reduce the amount of
time required to call another piece of code and to simplify the entire code calling process.

One significant feature of the new calling convention is that most parameters are passed in registers
dedicated for that purpose. The large number of general-purpose and floating-point registers makes
this goal quite easy to achieve. Parameters are passed on the stack only when they cannot be put into
registers.

The Organisation of Memory

The organisation of memory in the PowerPC run-time environment is reasonably similar to the
organisation of memory in the 680x0 run-time environment (see Chapter 1 — System Software,
Memory, and Resources) in that:

• The system partition occupies the lowest memory address and most of the remaining space is
allocated to the Process Manager, which creates a partition for each open application.

• The organisation of an application partition is reasonably similar to that for an application
partition in the 680x0 run-time environment. In each application partition, there is a stack and a
heap, as well as space for the application's global variables.

The two main differences between the 680x0 memory organisation and the PowerPC memory
organisation concern the location of an application's code section and an application's global variables.

As previously stated, an application's executable code and global data are typically stored in a
fragment container in the application's data fork. When the application is launched, the code and data
sections of that fragment are loaded into memory. The data section is loaded into the application's
heap. However, the location of the code section varies, depending on whether or not virtual memory is
enabled.

6CodeWarrior does not create fat code resources automatically. Information on creating fat code resources is contained on the Reference CD
at CodeWarrior Examples/Mac OS Examples/Code Resource Examples/Fat and Safe Code Resources.

23-10 Porting to the Power Macintosh

Code Section Location - Virtual Memory Off

If virtual memory is not enabled, the code section of an application is loaded into the application heap.
The Finder and Process Manager automatically expand your application partition as necessary to hold
the code section. The code sections of other fragments are put into part of the Process Manager's heap
known as temporary memory . If no temporary memory is available, code sections are loaded into the
system heap. Fig 5 illustrates the general organisation of memory when virtual memory is not enabled.

Application partitions (including the application's stack, heap, and global variables) are loaded into the
Process Manager heap. Code sections of applications and import libraries are loaded either into the
Process Manager partition or (less commonly) into the system heap.

FIG 5 - ORGANIZATION OF MEMORY WHEN VIRTUAL MEMORY IS NOT ENABLED

STACK

CODE SECTION

STACK

CODE SECTION

APPLICATION 1
PARTITION

APPLICATION 2
PARTITION

SYSTEM
PARTITION USED AREA

UNUSED AREA

CODE SECTION FOR IMPORT LIBRARY

CODE SECTION FOR IMPORT LIBRARY

PROCESS
MANAGER

PARTITION

Code Section Location - Virtual Memory On

If virtual memory is enabled, the Virtual Memory Manager uses a scheme called file mapping to map
your application's fragment into memory. It uses the data fork of your application as the paging file for
your application's code section. In the 680x0 environment, all unused pages of memory are written into
a single system-wide backing-store file and re-read from there when needed. This often results in
prolonged application launch, because an application's code is loaded into memory and sometimes
immediately written out to the backing-store file. In the PowerPC environment, the entire code
fragment is mapped into the logical address space, though only the needed portions of the code are
actually loaded into physical memory.

Another benefit of the file mapping methodology is that, when it is time to remove some of your
application's code from memory (to page other code and data in), the Virtual Memory Manager does
not need to write the pages back to the paging file. Instead, it simply purges the code from the needed
pages, because it can always read the file-mapped code back from the paging file (your application's
data fork).

Fig 6 illustrates the general organisation of memory when virtual memory is enabled.

The virtual addresses occupied by the file-mapped pages of an application's (or an import library's)
code are located outside both the system heap and the Process Manager's heap. As a result, an
application's file-mapped code is never located in the application's heap itself.

Application partitions (including the application's heap, stack, and global variables) are loaded into the
Process Manager heap, which is paged to and from the system-wide backing store file. Code sections
and import libraries are paged directly from the data fork of the application or import library.

Porting to the Power Macintosh 23-11

FIG 6 - ORGANIZATION OF MEMORY - VIRTUAL MEMORY ENABLED

STACK

STACK

HEAP

APPLICATION 1
PARTITION

APPLICATION 2
PARTITION

SYSTEM
PARTITION

USED AREA

UNUSED AREA

PROCESS
MANAGER

PARTITION

HEAP

HEAP

STACK

APPLICATION 3
PARTITION

CODE SECTION FOR IMPORT LIBRARY

CODE SECTION FOR APPLICATION 1

CODE SECTION FOR APPLICATION 3

CODE SECTION FOR APPLICATION 2
FILE-MAPPED

CODE
SECTIONS

Sometimes, however, parts of your application's executable code are loaded into your application's
partition, not into the file-mapped space. This happens, for example, when you store an application
extension (like a filter or a tool) as a resource in your application's resource fork. To make the code in
that extension available, you need to call the Resource Manager to load it into your application's heap.

Structure of the System Partition

To support existing 680x0 applications and other software modules which access documented system
global variables, the structure of much of the system partition remains unchanged.

Accessing System Global Variables

Note that the Universal Interfaces file LowMem.p contains declarations for routines that you can use to
access virtually all of the documented system global variables. By using the routines provided by the
system software, you can insulate your application or other software module from any future changes
in the arrangement of low memory.

Structure of Application Partitions

The organisation of the application partition in the PowerPC environment is substantially simpler than
in the 680x0 environment. However, the application partition for a PowerPC application (see Fig 7)
consists only of a stack and a heap.

FIG 7 - STRUCTURE OF A POWERPC APPLICATION PARTITION

APPLICATION
PARTITION

STACK

HEAP

MASTER POINTER BLOCKS (NONRELOCATABLE)

APPLICATION GLOBAL VARIABLES
(NONRELOCATABLE)

Demise of the A5 World

The A5 world which occupies part of a 680x0 application partition is largely absent from the PowerPC
environment. The information maintained in the A5 world for 680x0 applications is either no longer
needed by PowerPC applications or is maintained elsewhere (usually in the application heap). If your

23-12 Porting to the Power Macintosh

application previously depended on some information being in its A5 world (that is, accesses it
through the address in the A5 register), you will need to revise it to remove that dependence.

Recall from Chapter 1 — System Software, Memory, and Resources that the A5 world of a 680x0
application contains four kinds of data. The four kinds of data and their fate in the PowerPC
environment, are as follows.

• Jump Table. A 680x0 application's jump table contains an entry for each of the application's
routines that is called by code in another segment. Because the executable code in a PowerPC
application is not segmented, there is no need for a jump table in a PowerPC application.
Compilers which produce PowerPC code ignore any segmentation directives included in your
source code, and any calls you make to the Segment Manager's UnloadSeg routine (see Chapter
22 — Miscellany) are simply ignored. In a PowerPC application, the task of keeping required
code in memory is handled completely by the Virtual Memory Manager or the Process Manager,
not by your application. Note that in CodeWarrior Pascal the routine UnloadSeg is undefined
when compiling for PowerPC, requiring any calls to UnloadSeg to be conditionally compiled out
or removed from PowerPC projects.

• Application Global Variables. In PowerPC applications, the application's global variables
are part of the fragment's data section, which the Code Fragment Manager loads into the
application's heap (see Fig 7). The application's global variables are always located in a single
nonrelocatable block and are addressed through the fragment's table of contents7.

• Application Parameters. The application parameters in a 680x0 application occupy 32 bytes,
the first four bytes of which are a pointer to the application's QuickDraw global variables. In
PowerPC applications, the application parameters are maintained privately by the Operating
System.

• QuickDraw Global Variables. The QuickDraw global variables in a PowerPC application are
stored as part of the application's global variables.

Unless you have included the library MWCRuntime.Lib in your CodeWarrior PowerPC (and
almost all PowerPC projects should include MWCRuntime.Lib), you will need to reserve space
for the QuickDraw globals in your application and then pass the address to the InitGraf
routine. If, in this circumstance, you want to maintain a single source code base for both the
680x0 and PowerPC environment, you can use conditional compilation, for example:

{$IFC GENERATINGCFM }
qd : QDGlobals;
{$ENDC}

procedure DoInitManagers;
begin
InitGraf(@qd.thePort);
InitFonts;
...
end;

GENERATINGCFM is defined in the Universal Interfaces file ConditionalMacros.p.8

The Mini-A5 World

QuickDraw has been ported to native PowerPC code. However, even for applications which have
themselves been ported to native PowerPC code, there must be a minimal A5 world to support some
non-ported system software which accesses the QuickDraw global variables relative to the application's
A5 value. This mini-A5 world contains nothing more than a pointer to the application's QuickDraw

7A fragment's table of contents contains pointers to the fragment's own static data. The table of contents also contains the addresses of code
and data that the fragment imports, and which reside in some other fragment.
8The use of GENERATINGCFM (code being generated assumes CFM calling conventions), rather than GENERATINGPOWERPC (compiler is generating
PowerPC instructions) arises from the fact that Apple has stated that the run-time environment defined by the use of fragments might in the
future be available on 680x0-based Macintosh computers as well as PowerPC-based Macintosh computers. The new run-time environment
based on fragments is intended to be as processor-independent as possible.

Porting to the Power Macintosh 23-13

global variables which, as previously stated, reside in the application's global data section in PowerPC
applications. The Process Manager creates a mini-A5 world for each native application at application
launch time.

Accessing Global Variables From
"Detached" Code

In the 680x0 environment, you need to manage your A5 explicitly when you need to gain access to your
application's global variables or QuickDraw global variables from within some piece of "detached"
code installed by your application, such as a VBL task. Recall the following from Chapter 19 —
Custom Control Definition Functions and VBL Tasks:

Because VBL tasks are interrupt routines, they could well execute when the value in the A5 register does
not point to your application's A5 world. As a result, if you need to access your application's global
variables in a VBL task, you need to set the A5 register to its correct value when your VBL task begins
executing and restore the previous value upon exit.

To achieve this, your application should save its A5 using SetCurrentA5. Then, at interrupt time, the VBL
task can begin by calling SetA5 to, firstly, set the A5 register to this saved value and, secondly, save the
value that was in the A5 register immediately prior to the call. The VBL task should end with another
call to SetA5, this time to restore the initial value.

All this is necessary in 680x0 code. However, because a PowerPC application does not have an A5
world, you never need to explicitly set up and restore your application's A5 world. (Put another way,
your application's global variables are transparently available to any code compiled into your
application.) Accordingly your VBL task source code needs to be modified for compilation as PowerPC
code.

To maintain a single source code base for both the 680x0 and PowerPC environment, you can use
conditional compilation. For example, consider the following simple 680x0 VBL task:

function GetVBLRec : VBLRecPtr;
{$IFC NOT GENERATINGCFM}
INLINE $2E88; { MOVE.L A0,D0 }
{$ENDC}

...

procedure theVBLTask;
var
curA5 : Sint32; { For stored value of A5.}
vblRecPtr : VBLRecPtr; { Pointer to task record.}
ignoredLong : longint;

begin
taskRecPtr := GetVBLRec; { Get address of task record.}
currentA5 := SetA5(vblRecPtr^.thisAppsA5); { Set app's A5 and store old A5.}

gCounter := gCounter + 1; { MODIFY A GLOBAL varIABLE.}
taskRecPtr^.vblTaskRec.vblCount := kInterval; { Reset so function executes again.}

ignoredLong := SetA5(currentA5); { Restore the old A5 value.}
end;

At the first call to SetA5, the application's A5 is set and the current value in the A5 register is saved.
This saved value is re-installed at the second call to SetA5. For VBL tasks written as PowerPC code,
both of these steps are unnecessary. Furthermore, in the 680x0 environment, the address of the VBL
task record is passed in register A0. If you need that address in a high-level language, you must
retrieve it immediately upon entry into your VBL task (as is done in the above listing). In the PowerPC
environment, however, the address of the VBL task record can be passed to the task as an explicit
parameter. The following shows how the above code may be modified for conditional compilation:

{$IFC GENERATING68K }
function GetVBLRec : VBLRecPtr;

{$IFC NOT GENERATINGCFM}
INLINE $2E88; { MOVE.L A0,D0 }
{$ENDC}

{$ENDC}
...

23-14 Porting to the Power Macintosh

{$IFC GENERATING68K }
procedure theVBLTask;
{$ELSEC}
procedure theVBLTask(vblRecPtr : VBLTaskPtr);
{$ENDC}
{
{$IFC GENERATING68K }

var
curA5 : longint; { For stored value of A5.}
vblRecPtr : VBLRecPtr; { Pointer to task record.}
ignoredLong : longint;

{$ENDC}

begin

$IFC GENERATING68K }
taskRecPtr := GetVBLRec; { Get address of task record.}
currentA5 := SetA5(vblRecPtr^.thisAppsA5); { Set app's A5 and store old A5.}

{$ENDC}

gCounter := gCounter + 1; { MODIFY A GLOBAL varIABLE.}
taskRecPtr^.vblTaskRec.vblCount := kInterval; { Reset so function executes again.}

{$IFC GENERATING68K }
ignoredLong := SetA5(currentA5); { Restore the old A5 value.}

{$ENDC}
end;

GENERATING68K (compiler is generating 68K family instructions) is defined in the Universal Interfaces
file ConditionalMacros.p.

Data Alignment

Unless told to do otherwise, a compiler arranges a data structure in memory so as to minimise the
amount of time required to access the fields of the structure, which is generally what you would like to
have happen. PowerPC and 680x0 compilers follow different conventions concerning the alignment of
data in memory. Those conventions are as follows

• 680x0 Data Alignment Conventions. A 680x0 processor places very few restrictions on the
alignment of data in memory. The processor can read or write a byte, word, or long word value
at any even address in memory. In addition, the processor can read byte values at any location
in memory. As a result, the only padding required might be a single byte to align two-byte or
larger fields to even boundaries or to make the size of an entire data structure an even number of
bytes.

• PowerPC Data Alignment Conventions. The PowerPC processor prefers to access data in
memory according to its natural alignment, which depends on the size of the data. A 1-byte
value is always aligned in memory. A 2-byte value is aligned at an even address. A 4-byte value
is aligned on any address that is divisible by 4, and so on. A PowerPC processor can access data
that is not aligned on its natural boundary, but it performs aligned memory accesses more
efficiently. As a result, PowerPC processors usually insert pad bytes into data structures to
enforce the preferred data alignment. For example, consider this data structure, which would
occupy 8 bytes in the 680x0 environment:

myStruct = record
version : integer; {16-bits}
address : longint; {32-bits}
count : integer; {16-bits}
end;

To achieve the desired alignment of the address field in the PowerPC environment onto a 4-byte
boundary, 2 bytes of padding are inserted after the version field. In addition, the structure itself
is padded to a word boundary (a word on PowerPC processors being 4 bytes, not 2 bytes as is
the case on 680x0 processors). As a result, the structure occupies 12 bytes of memory in the
PowerPC environment.

Porting to the Power Macintosh 23-15

In general, these different data alignment conventions should be transparent to your application. You
need to worry about the differences only when you need to transfer data between the two
environments, for example, when:

• Your application creates files containing data structures and the user copies those files from a
PowerPC-based Macintosh to a 680x0-base Macintosh (or vice versa).

• Your PowerPC application creates a data structure and passes it to some code running under the
68LC040 Emulator.

To ensure that data can be transferred successfully in such cases, it is sufficient to simply instruct the
PowerPC compiler to use 680x0 data alignment conventions. You can do this by choosing 68K in the
Struct Alignment pop-up menu in the PPC Processor section of CodeWarrior's Project Settings dialog.

You should make sure, however, that you use 680x0 alignment only when absolutely necessary. The
PowerPC processor is less efficient when accessing misaligned data.

Summary — Modifying 680x0 Code

In general, it is relatively easy to modify existing Pascal source code that successfully compiles and
runs on 680x0-based Macintoshes so that it can be compiled and run on PowerPC-based Macintoshes.
Most of the intricate work required to make your application compatible with the new PowerPC run-
time environment is performed automatically by your development system's compiler and linker and
by the Code Fragment Manager. The changes you need to make to your source code are summarised
as follows:

• Create routine descriptors for any routines whose addresses you pass to code of an unknown
type.

• Where there are dependencies on specific features of the 680x0 A5 world or the 680x0 run-time
environment, modify your code for conditional compilation so as to exclude that dependency
from the compiled PowerPC code.

• Where there are dependencies on information being passed in specific 680x0 registers, modify
your code for conditional compilation so as to exclude that dependency from the compiled
PowerPC code.

• Use 680x0 alignment for any data that is passed between environments.

In addition, you should minimise any dependencies on system global variables by using the new set of
accessor routines defined in the Universal Interfaces file LowMem.p.

You also need to account for the fact that neither the PowerPC Floating-Point Unit nor the PowerPC
numerics support Motorola's 80/96-bit extended type. This means that you will need to use Apple-
supplied conversion utilities to move to and from extended (see below).

If you choose not to rebuild your application for the PowerPC environment, you should at least make
certain that it does not violate any of the known limitations of the emulator.

Source Code Changes — Chapter 1 - 22 Demonstration Programs

The following source code changes are those required to:

• Enable the Macintosh Pascal demonstration programs to be compiled as either 680x0 code or
PowerPC code.

• Enable the custom definition functions to be compiled as accelerated resources.

23-16 Porting to the Power Macintosh

Routine Descriptors

Source Code File Controls2Pascal.p (Chapter 5)

In the global variables section, add:

actionProcedureRD : ControlActionUPP; { For PowerPC }

Immediately after DoInitManagers in the main program block, add:

{ …… create routine descriptor }

actionProcedureRD := NewControlActionProc(ProcPtr(@ActionProcedure)); { For PowerPC }

In the DoScrollBars function, change the last call to TrackControl to:

then ignored := TrackControl(controlHdl, mouseXY, actionProcedureRD) { For PowerPC }

Source Code File DialogsAndAlertsPascal.p (Chapter 6)

In the global variables section, add:

eventFilterRD : ModalFilterUPP; { For PowerPC }
drawDefaultButtonOutlineRD : UserItemUPP; { For PowerPC }

Immediately after DoInitManagers in the main program block, add:

{ …… create routine descriptors }

eventFilterRD := NewModalFilterProc(ProcPtr(@EventFilter)); { For PowerPC }
drawDefaultButtonOutlineRD := NewUserItemProc(ProcPtr(@DrawDefaultButtonOutline));

In the DoDemonstrationMenu function, change the call to NoteAlert to:

ignored := NoteAlert(rAlert, eventFilterRD); { For PowerPC }

In the DoModalDialog function, change the calls to SetDialogItem and ModalDialog to:

SetDialogItem(modalDlgPtr, iUserItem, itemType, Handle(drawDefaultButtonOutlineRD),
 itemRect); { For PowerPC }

ModalDialog(eventFilterRD, itemHit); { For PowerPC }

In the DoMovableModal function, change the call to SetDialogItem to:

SetDialogItem(modalDlgPtr, iUserItem, itemType, Handle(drawDefaultButtonOutlineRD),
 itemRect); { For PowerPC }

In the DoModelessDialog function, change the call to SetDialogItem to:

SetDialogItem(gModelessDlgPtr, iUserItem, itemType,
 Handle(drawDefaultButtonOutlineRD), itemRect); { For PowerPC }

Source Code File AppleEventsPascal.p (Chapter 8)

In the global variables section, add:

doOpenAppEventRD : AEEventHandlerUPP; { For PowerPC }
doOpenDocsEventRD : AEEventHandlerUPP; { For PowerPC }
doPrintDocsEventRD : AEEventHandlerUPP; { For PowerPC }
doQuitAppEventRD : AEEventHandlerUPP; { For PowerPC }

Immediately after DoInitManagers in the main program block, add:

{ …… create routine decriptors }

doOpenAppEventRD := NewAEEventHandlerProc(ProcPtr(@DoOpenAppEvent)); { For PowerPC }
doOpenDocsEventRD := NewAEEventHandlerProc(ProcPtr(@DoOpenDocsEvent)); { For PowerPC }
doPrintDocsEventRD:= NewAEEventHandlerProc(ProcPtr(@DoPrintDocsEvent)); { For PowerPC }
doQuitAppEventRD := NewAEEventHandlerProc(ProcPtr(@DoQuitAppEvent)); { For PowerPC }

Porting to the Power Macintosh 23-17

Change the indicated lines in the function DoInstallAEHandlers as follows:

err := AEInstallEventHandler(kCoreEventClass, kAEOpenApplication,
NewAEEventHandlerProc(AEEventHandlerProcPtr(@DoOpenAppEvent)), 0, false);

 { For PowerPC }
if (err <> noErr) then

 DoError(eInstallHandler);

err := AEInstallEventHandler(kCoreEventClass, kAEOpenDocuments,
NewAEEventHandlerProc(AEEventHandlerProcPtr(@DoOpenDocsEvent)), 0, false);

 { For PowerPC }
if (err <> noErr) then

 DoError(eInstallHandler);

err := AEInstallEventHandler(kCoreEventClass, kAEPrintDocuments,
NewAEEventHandlerProc(AEEventHandlerProcPtr(@DoPrintDocsEvent)), 0, false);

 { For PowerPC }
if (err <> noErr) then

DoError(eInstallHandler);

err := AEInstallEventHandler(kCoreEventClass, kAEQuitApplication,
NewAEEventHandlerProc(AEEventHandlerProcPtr(@DoQuitAppEvent)), 0, false);

 { For PowerPC }
if (err <> noErr) then

 DoError(eInstallHandler);

Source Code File FilesPascal.p (Chapter 14)

Make the same changes as for the source code file AppleEvents, but excluding code relating to the Print
Documents event.

Source Code File Text1Pascal.p (Chapter 17)

In the global variables section add:

scrollActionProcRD : ControlActionUPP; external; { For PowerPC }
customClickLoopRD : TEClickLoopUPP; external; { For PowerPC }

Immediately after DoInitManagers in main function, add:

{ ……… create routine descriptors }

scrollActionProcRD := NewControlActionProc(ProcPtr(@ScrollActionProc)); { For PowerPC }
customClickLoopRD := NewTEClickLoopProc(ProcPtr(@CustomClikLoop)); { For PowerPC }

Source Code File UText1Pascal.p (Chapter 17)

In the exported global variables section add:

scrollActionProcRD : ControlActionUPP; { For PowerPC }
customClickLoopRD : TEClickLoopUPP; { For PowerPC }

In the DoInContent function, change the first call to TrackControl to:

ignored := TrackControl(controlHdl, mouseXY, scrollActionProcRD); { For PowerPC }

In the DoNewDocWindow function, change the call to TESetClickLoop to:

TESetClickLoop(customClickLoopRD, docRecHdl^^.editRecHdl); { For PowerPC }

Source Code File UHelpDialogPascal.p (Chapter 17)

In global variables section add:

helpDialogFilterRD : ModalFilterUPP; { For PowerPC }
drawHelpRD : UserItemUPP; { For PowerPC }
actionProcedureRD : ControlActionUPP; { For PowerPC }

23-18 Porting to the Power Macintosh

At the bottom of the function interfaces section add:

procedure DisposeDescriptors; forward; { For PowerPC }

Immediately after the local variables in the DoHelp function, add:

helpDialogFilterRD := NewModalFilterProc(ProcPtr(@HelpDialogFilter)); { For PowerPC }
drawHelpRD := NewUserItemProc(ProcPtr(@DrawHelp)); { For PowerPC }
actionProcedureRD := NewControlActionProc(ProcPtr(@ActionProcedure)); { For PowerPC }

Immediately after all calls to DoErrorAlert and CloseHelp in the DoHelp function, add:

DisposeDescriptors; { For PowerPC }

In the DoHelp function, change the call to SetDialogItem to:

SetDialogItem(modalDlgPtr, iTextUserItem, itemType,
 Handle(drawHelpRD), userItemRect); { For PowerPC }

In the DoHelp function, change the call to ModalDialog to:

ModalDialog(helpDialogFilterRD, itemHit); { For PowerPC }

In the HandleScrollBar function, change the call to TrackControl to:

ignored := TrackControl(docRecHdl^^.scrollbarHdl,mouseXY,actionProcedureRD);{ For PowerPC }

Add this new procedure:

{ ## DisposeDescriptors }

procedure DisposeDescriptors;

begin
DisposeRoutineDescriptor(helpDialogFilterRD); { For PowerPC }
DisposeRoutineDescriptor(drawHelpRD); { For PowerPC }
DisposeRoutineDescriptor(actionProcedureRD); { For PowerPC }
end;

{of procedure DisposeDescriptors}

Source Code File ListsPascal.p (Chapter 18)

In the global variables section, add:

doSearchPartialMatchRD : ListSearchUPP; { For PowerPC }

Immediately after DoInitManagers in the main program block, add:

{ ……… create routine descriptors }

doSearchPartialMatchRD := NewListSearchProc(ProcPtr(@DoSearchPartialMatch));
 { For PowerPC }

In the DoTypeSelectSearch function, change the call to LSearch to:

if (LSearch(Ptr(longint(@gTSString) + 1), integer(gTSString[0]),
doSearchPartialMatchRD, theCell, listHdl)) then { For PowerPC }

Source Code File CDEFandVBLPascal.p (Chapter 19)

In the global variables section, add:

animCursVBLTaskRD : VBLUPP; { For PowerPC }

Porting to the Power Macintosh 23-19

Immediately after DoInitManagers in the main program block, add:

{ ……… create routine descriptor }

animCursVBLTaskRD := NewVBLProc(ProcPtr(@AnimCursVBLTask)); { For PowerPC }

In the DoInstallSystemVBLTask procedure, change the third line to:

gVBLRec.vblTaskRec.vblAddr := animCursVBLTaskRD; { For PowerPC }

Source Code File CDEF2Pascal.p (Chapter 19)

Immediately after the type declaration block, add:

{ …… global variables }

var

theVBLTaskRD : VBLUPP; { For PowerPC }
gVBLRec : VBLRec; { For PowerPC }

Immediately after the local variables in the DoInitMessage function, add:

theVBLTaskRD := NewVBLProc(ProcPtr(@TheVBLTask)); { For PowerPC }

In the InstallVBLTask function, change the fifth line to:

gVBLRec.vblTaskRec.vblAddr := theVBLTaskRD; { For PowerPC }

Immediately after the local variable in the DoDisposeMessage function, add:

DisposeRoutineDescriptor(theVBLTaskRD); { For PowerPC }

Source Code File SoundPascal.p (Chapter 21)

In the global variables section, add:

drawDialogRD : UserItemUPP; { For PowerPC }

Immediately after doInitManagers in the main program block, add:

{ ……… create routine descriptor }

drawDialogRD := NewUserItemProc(ProcPtr(@DrawDialog)); { For PowerPC }

In the DoSetUpDialog function, change the call to SetDialogItem to:

SetDialogItem(gDialogPtr, iSynchSoundRect, itemType,
 Handle(drawDialogRD), itemRect); { For PowerPC }

Source Code File UDemos.p (Chapter 22)

In the global variables section, add:

doDeviceLoopDrawRD : DeviceLoopDrawingUPP; { For PowerPC }

Source Code File MiscellanyPascal.p (Chapter 22)

In the global variables section, add:

doDeviceLoopDrawRD : DeviceLoopDrawingUPP; external; { For PowerPC }

Immediately after DoInitManagers in the main program block, add:
{ ……… create routine descriptor }

doDeviceLoopDrawRD := NewDeviceLoopDrawingProc(ProcPtr(@DoDeviceLoopDraw)); { For PowerPC }

23-20 Porting to the Power Macintosh

Source Code File UMain.p (Chapter 22)

In the global variables section, add:

doDeviceLoopDrawRD : DeviceLoopDrawingUPP; external; { For PowerPC }

In the DoEvents procedure in the unit UMain.p, change the call to DeviceLoop to:

DeviceLoop(theWindowPtr^.visRgn, doDeviceLoopDrawRD, userData, 0); { For PowerPC }

Note: If the Chapter 22 notification demonstration had utilised a response procedure, a global variable of
type NMUPP would have had to be declared, a routine descriptor would have had to be created by a call to
NewNMProc, and the routine descriptor would have had to be assigned to the nmResp field of the Notification
Record.

Conditional Compilation — A5 World Dependency (QuickDraw Globals)

All PowerPC projects for all Macintosh Pascal demonstration programs should include the library
MWCRuntime.Lib. Accordingly, there is no requirement for any of the demonstration programs to
explicitly reserve space for the QuickDraw globals, and there is thus no requirement for conditional
compilation directives on that account.

Conditional Compilation — A5 World Dependency (VBL Tasks)

Source Code File CDEFandVBLPascal.p (Chapter 19)

Include conditional compilation directives as follows:

{ …… in-line glue for GetVBLRec }

{$IFC GENERATING68K} { For PowerPC }
function GetVBLRec : longint;
{$IFC NOT GENERATINGCFM}
inline $2E88;
{$ENDC}

{$ENDC} { For PowerPC }

{ ## DoInstallSystemVBLTask }

procedure DoInstallSystemVBLTask;

var
ignored : OSErr;

begin
gVBLRec.vblTaskRec.qType := vType;
gVBLRec.vblTaskRec.vblAddr := animCursVBLTaskRD; { For PowerPC }
gVBLRec.vblTaskRec.vblCount := gVBLCount;
gVBLRec.vblTaskRec.vblPhase := 0;

{$IFC GENERATING68K} { For PowerPC }
gVBLRec.thisApplicationsA5 := SetCurrentA5;
{$ENDC} { For PowerPC }

ignored := VInstall(QElemPtr(@gVBLRec.vblTaskRec));
end;

{of procedure DoInstallSystemVBLTask}

{ ### AnimCursVBLTask }

procedure AnimCursVBLTask;

{$IFC GENERATING68K} { For PowerPC }
var
theVBLRecPtr : VBLRecPtr;
currentA5 : longint;
{$ENDC} { For PowerPC }

Porting to the Power Macintosh 23-21

begin
{$IFC GENERATING68K} { For PowerPC }
theVBLRecPtr := VBLRecPtr(GetVBLRec);
currentA5 := SetA5(theVBLRecPtr^.thisApplicationsA5);
{$ENDC} { For PowerPC }

SetCursor(gAnimCursHdl^^.frame[gAnimCursHdl^^.whichFrame]^^);
gAnimCursHdl^^.whichFrame := gAnimCursHdl^^.whichFrame + 1;

if (gAnimCursHdl^^.whichFrame = gAnimCursHdl^^.numberOfFrames) then
gAnimCursHdl^^.whichFrame := 0;

{$IFC GENERATING68K} { For PowerPC }
theVBLRecPtr^.vblTaskRec.vblCount := gVBLCount;
{$ELSEC} { For PowerPC }
gVBLRec.vblTaskRec.vblCount := gVBLCount; { For PowerPC }
{$ENDC} { For PowerPC }

{$IFC GENERATING68K} { For PowerPC }
currentA5 := SetA5(currentA5);
{$ENDC} { For PowerPC }
end;

{of procedure AnimCursVBLTask}

Source Code File CDEF2Pascal.p (Chapter 19)

Include conditional compilation directives as follows:

{ …… in-line glue for GetVBLRec }

{$IFC GENERATING68K} { For PowerPC }
function GetVBLRec : longint;
{$IFC NOT GENERATINGCFM}
INLINE $2E88;
{$ENDC}

{$ENDC} { For PowerPC }

{ ## InstallVBLTask }

function InstallVBLTask(theControl : ControlHandle) : OSErr;

var
theErr : OSErr;
theSliderDataHdl : SliderDataHdl;

begin
theSliderDataHdl := SliderDataHdl(theControl^^.contrlData);
gVBLRec.inVBlankPeriod := false;

gVBLRec.vblTaskRec.qType := vType;
gVBLRec.vblTaskRec.vblAddr := theVBLTaskRD; { For PowerPC }
gVBLRec.vblTaskRec.vblCount := 1;
gVBLRec.vblTaskRec.vblPhase := 0;

{$IFC GENERATING68K} { For PowerPC }
gVBLRec.thisApplicationsA5 := SetCurrentA5;
{$ENDC} { For PowerPC }

if (theSliderDataHdl^^.slotVInstallPresent) then
theErr := SlotVInstall(QElemPtr(@gVBLRec.vblTaskRec),

theSliderDataHdl^^.mainSlotNumber)
else

theErr := VInstall(QElemPtr(@gVBLRec.vblTaskRec));

InstallVBLTask := theErr;
end;

{of function InstallVBLTask}

{ ## TheVBLTask }

procedure TheVBLTask;

{$IFC GENERATING68K} { For PowerPC }
var
theVBLRecPtr : VBLRecPtr;
currentA5 : longint;

23-22 Porting to the Power Macintosh

ignoredLong : longint;
{$ENDC} { For PowerPC }

begin
{$IFC GENERATING68K} { For PowerPC }
theVBLRecPtr := VBLRecPtr(GetVBLRec);
currentA5 := SetA5(theVBLRecPtr^.thisApplicationsA5);
{$ENDC} { For PowerPC }

{$IFC GENERATING68K} { For PowerPC }
theVBLRecPtr^.inVBlankPeriod := true;
theVBLRecPtr^.vblTaskRec.vblCount := 1;
{$ELSEC} { For PowerPC }
gVBLRec.inVBlankPeriod := true; { For PowerPC }
gVBLRec.vblTaskRec.vblCount := 1; { For PowerPC }
{$ENDC} { For PowerPC }

{$IFC GENERATING68K} { For PowerPC }
ignoredLong := SetA5(currentA5);
{$ENDC} { For PowerPC }
end;

{of function TheVBLTask}

Conditional Compilation — A4 Register Dependency

Include the the following conditional compilation directives in the main functions in the source code files
for the two custom CDEFs at Chapter 19 and the custom WDEF at Chapter 20:

{$IFC GENERATING68k} { For PowerPC }
oldA4, ignored : longint;
{$ENDC} { For PowerPC }

{$IFC GENERATING68K } { For PowerPC }
oldA4 := SetCurrentA4;
{$ENDC} { For PowerPC }

{$IFC GENERATING68K } { For PowerPC }
ignored := SetA4(oldA4);
{$ENDC} { For PowerPC }

Conditional Compilation — Code Segmentation

In CodeWarrior Pascal, the procedure UnloagSeg is undefined when compiling for PowerPC (see the
comments in the Universal Interface file SegLoad.p), so any calls to UnloagSeg should be compiled out.
Thus in Chapter 22 (Miscellany), the UnloagSegments procedure needs to have the following conditional
compilation directives added:

{ ## UnloadSegments }

procedure UnloadSegments;

begin
{$IFC GENERATING68K } { For PowerPC }
UnloadSeg(@DemosSegment);
{$ENDC} { For PowerPC }
end;

{of procedure UnloadSegments}

Accessor Routines for System Global Variables

No changes are required because the correct accessor routines are already used in all the source code files,
specifically:

• LMGetCaretTime in the source code files DialogsAndAlertsPascal.p, Text1Pascal.p, and
Text2Pascal.p.

• LMGetHiliteRGB, LMGetHiliteMode, and LMSetHiliteMode in the source code files
ColorQuickDrawPascal.p (Chapter 11) and ListsPascal.p (Chapter 18).

Porting to the Power Macintosh 23-23

• LMGetKeyThresh in the source code file ListsPascal.p (Chapter 18).

• LMGetWindowList and LMSetWindowList in the source code file FloatRoutinesPascal.p (Chapter 20).

• LMGetMainDevice in the source code files GDevicePascal.p (Chapter 9), ColorQuickDrawPascal.p
(Chapter 11), WDEFPascal.p (Chapter 19), and UDemos.p (Chapter 22).

• LMGetEventQueue, LMGetDeviceList and LMGetMBarHeight in the source code file UDemos.p (Chapter
22).

Floating Point Arithmetic

The PowerPC-based Macintosh follows the IEEE 754 standard for floating-point arithmetic. In this
standard, float is 32 bits, and double is 64 bits. (Apple has added a 128 bit long double type.) However,
the PowerPC Floating-Point Unit does not support Motorola's 80/96-bit extended type, and neither do the
PowerPC numerics. To accommodate this, you can use Apple-supplied conversion utilities to move to and
from extended.

If the source code file Text2Pascal.p (Chapter 17), include the Universal Interfaces file fp.p, the import
library MathLib and, in the procedure DoAcceptValueField:

• Add the following local variable:

valueDouble : Double; { For PowerPC }

• Replace the line value80Bit := value80Bit * quantity; with the following:

valueDouble := x80tod(value80Bit); { For PowerPC }
valueDouble := valueDouble * quantity; { For PowerPC }
dtox80(valueDouble, value80Bit); { For PowerPC }

Relevant Constants, Data Types, Routines and Definitions

Contants

Instruction Set Architectures

kM68kISA = 0 { 680x0 architecture. }
kPowerPCISA = 1 { PowerPC architecture. }

Procedure Information

kPascalStackBased = 0
kCStackBased = 1
kRegisterBased = 2

Data Types

type
ISAType = SInt8;
CallingConventionType = integer;
ProcInfoType = longint;

Routine Descriptor

type
RoutineDescriptor = packed record
goMixedModeTrap: UInt16; { Our A-Trap }
version: SInt8; { Current Routine Descriptor version }
routineDescriptorFlags: RDFlagsType; { Routine Descriptor Flags }
reserved1: UInt32; { Unused, must be zero }
reserved2: Uint8; { Unused, must be zero }
selectorInfo: Uint8 { If a dispatched routine, calling convention, else 0 }

23-24 Porting to the Power Macintosh

routineCount: UInt16; { Number of routines in this RD }
routineRecords: array [0..0] of RoutineRecord; { The individual routines }
end;

RoutineDescriptorPtr = ^RoutineDescriptor;
RoutineDescriptorHandle = ^RoutineDescriptorPtr;

Routine Record

type
RoutineRecord = record
procInfo: ProcInfoType; { calling conventions }
reserved1: SInt8; (* UInt8 *) { Must be 0 }
ISA: ISAType; { Instruction Set Architecture }
routineFlags: RoutineFlagsType; { Flags for each routine }
procDescriptor: ProcPtr; { Where is the thing we’re calling? }
reserved2: UInt32; { Must be 0 }
selector: UInt32; { For dispatched routines, the selector }
end;

RoutineRecordPtr = ^RoutineRecord;
RoutineRecordHandle = ^RoutineRecordPtr;

Type Definitions Relevant to Routine Descriptors

type

ProcPtr = Ptr;
Register68kProcPtr = ProcPtr; { procedure ; }
ProcHandle = ^ProcPtr;
UniversalProcPtr = ProcPtr;
UniversalProcHandle = ^ProcPtr;

AEEventHandlerUPP = UniversalProcPtr;
ControlActionUPP = UniversalProcPtr;
ControlDefUPP = UniversalProcPtr;
DeviceLoopDrawingUPP = UniversalProcPtr;
ListDefUPP = UniversalProcPtr;
ListSearchUPP = UniversalProcPtr;
MenuDefUPP = UniversalProcPtr;
ModalFilterUPP = UniversalProcPtr;
TEClickLoopUPP = UniversalProcPtr;
UserItemUPP = UniversalProcPtr;
VBLUPP = UniversalProcPtr;
WindowDefUPP = UniversalProcPtr;

{$IFC PROCTYPE }
AEEventHandlerProcPtr = function (var theAppleEvent: AppleEvent; var reply: AppleEvent;

handlerRefcon: longint): OSErr;
ControlActionProcPtr = procedure (theControl: ControlRef; partCode: ControlPartCode);
ControlDefProcPtr = function (varCode: SInt16; theControl: ControlRef;

message: ControlDefProcMessage; param: SInt32): SInt32;
DeviceLoopDrawingProcPtr = procedure (depth: integer; deviceFlags: integer;

targetDevice: GDHandle; userData: longint);
ListDefProcPtr = procedure (lMessage: integer; lSelect: boolean; var lRect: Rect; lCell: Cell;

lDataOffset: integer; lDataLen: integer; lHandle: ListRef);
ListSearchProcPtr = function (aPtr: Ptr; bPtr: Ptr; aLen: integer; bLen: integer): integer;
MenuDefProcPtr = procedure (message: integer; theMenu: MenuRef; var menuRect: Rect;

hitPt: Point; var whichItem: integer);
ModalFilterProcPtr = function (theDialog: DialogPtr; var theEvent: EventRecord;

var itemHit: integer): boolean;
UserItemProcPtr = procedure (theWindow: WindowPtr; itemNo: integer);
WindowDefProcPtr = function (varCode: integer; theWindow: WindowRef; message: integer;

param: longint): longint;
{$ELSEC}
AEEventHandlerProcPtr = ProcPtr;
ControlActionProcPtr = ProcPtr;
ControlDefProcPtr = ProcPtr;
DeviceLoopDrawingProcPtr = ProcPtr;
ListDefProcPtr = ProcPtr;
ListSearchProcPtr = ProcPtr;
MenuDefProcPtr = ProcPtr;
ModalFilterProcPtr = ProcPtr;

Porting to the Power Macintosh 23-25

UserItemProcPtr = ProcPtr;
WindowDefProcPtr = ProcPtr;
{$ENDC}

Routines

Calling Routines Via Universal Procedure Pointers

function CallUniversalProc(theProcPtr: UniversalProcPtr; procInfo: ProcInfoType; ...):
 longint; C; external;

Determining Instruction Set Architectures

{$IFC GENERATINGPOWERPC }
GetCurrentISA = kPowerPCISA;
GetCurrentRTA = kPowerPCRTA;

{$ELSEC}
{$IFC GENERATINGCFM }

GetCurrentISA = kM68kISA;
GetCurrentRTA = kCFM68kRTA;

{$ELSEC}
GetCurrentISA = kM68kISA;
GetCurrentRTA = kOld68kRTA;

{$ENDC}
{$ENDC}

GetCurrentArchitecture = 0+(GetCurrentISA + GetCurrentRTA);

Creating and Disposing of Routine Descriptors

function NewRoutineDescriptor(theProc: ProcPtr; theProcInfo: ProcInfoType;
theISA: ByteParameter): UniversalProcPtr;

function NewFatRoutineDescriptor(theM68kProc: ProcPtr; thePowerPCProc: ProcPtr;
theProcInfo: ProcInfoType): UniversalProcPtr;

procedure DisposeRoutineDescriptor(theProcPtr: UniversalProcPtr);

function NewControlActionProc(userRoutine: ControlActionProcPtr): ControlActionUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

function NewControlDefProc(userRoutine: ControlDefProcPtr): ControlDefUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

function NewModalFilterProc(userRoutine: ModalFilterProcPtr): ModalFilterUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

function NewUserItemProc(userRoutine: UserItemProcPtr): UserItemUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

function NewListDefProc(userRoutine: ListDefProcPtr): ListDefUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

function NewWindowDefProc(userRoutine: WindowDefProcPtr): WindowDefUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

function NewMenuDefProc(userRoutine: MenuDefProcPtr): MenuDefUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

23-26 Porting to the Power Macintosh

function NewTEClickLoopProc(userRoutine: TEClickLoopProcPtr): TEClickLoopUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

function NewAEEventHandlerProc(userRoutine: AEEventHandlerProcPtr): AEEventHandlerUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

function NewListSearchProc(userRoutine: ListSearchProcPtr): ListSearchUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

function NewDeviceLoopDrawingProc(userRoutine: DeviceLoopDrawingProcPtr):
DeviceLoopDrawingUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

function NewVBLProc(userRoutine: VBLProcPtr): VBLUPP;
{$IFC NOT GENERATINGCFM }
INLINE $2E9F;
{$ENDC}

Procedure Information Definitions

const

uppControlActionProcInfo = $000002C0;
{ procedure (4 byte param, 2 byte param); }

uppControlDefProcInfo = $00003BB0;
{ function (2 byte param, 4 byte param, 2 byte param, 4 byte param): 4 byte result; }

uppListDefProcInfo = $000EBD80;
{ procedure (2 byte param, 1 byte param, 4 byte param, 4 byte param, 2 byte param,

2 byte param, 4 byte param); }

uppMenuDefProcInfo = $0000FF80;
{ procedure (2 byte param, 4 byte param, 4 byte param, 4 byte param, 4 byte param); }

uppTEClickLoopProcInfo = $0000F812;
{ Register function (4 bytes in A3): 1 byte in D0; }

uppWindowDefProcInfo = $00003BB0;
{ function (2 byte param, 4 byte param, 2 byte param, 4 byte param): 4 byte result; }

uppAEEventHandlerProcInfo = $00000FE0;
{ function (4 byte param, 4 byte param, 4 byte param): 2 byte result; }

uppModalFilterProcInfo = $00000FD0;
{ function (4 byte param, 4 byte param, 4 byte param): 1 byte result; }

uppUserItemProcInfo = $000002C0;
{ procedure (4 byte param, 2 byte param); }

uppListSearchProcInfo = $00002BE0;
{ function (4 byte param, 4 byte param, 2 byte param, 2 byte param): 2 byte result; }

uppDeviceLoopDrawingProcInfo = $00003E80;
{ procedure (2 byte param, 2 byte param, 4 byte param, 4 byte param); }

uppVBLProcInfo = $00009802;
{ Register procedure (4 bytes in A0); }

