
Miscellany 22-1

22Version 1.2 (Frozen)

MISCELLANY
Includes Demonstration Program MiscellanyPascal

Code Segmentation and Heap Space Optimisation

As stated in the CodeWarrior User's Guide, most Macintosh programs are made up of several segments.
The Macintosh system software limits segments to 32K; accordingly, if you are writing a large program,
you must segment your code.

Observing the 32K limit is, however, not the only reason for segmenting your code. Segments equate, in
the built application, to units of executable code which are stored in resources of type 'CODE' and which
are loaded into your application's heap as relocatable blocks. Because these resources are loaded into
memory only when required, and because your application can cause them to be marked as purgeable
when no longer needed, segmentation allows you to optimise your application's heap space. Put another
way, segmentation allows you to provide the user with the maximum possible heap space to accommodate
the windows and user data, etc, created while the application is running.

The main segment (that is, the segment containing the main function) is loaded and locked by the system
when the application is launched. Thereafter, when the application makes a call to a routine in one of the
remaining segments, the Segment Loader, with no help from the application, automatically loads that
segment, moves it high in the application's heap, locks it, and passes control to the called routine.

Ultimately, of course, all code segments will be brought into memory and locked, creating the same
memory-hogging situation as would obtain if the application had not been segmented. To prevent that
situation, your application should, at the appropriate time, unlock these blocks and make them purgeable.
Note that this applies to all but the main code segment, which must never be unlocked or made purgeable.
The following describes an appropriate methodology for unlocking and marking as purgeable the other
code segments of your application:

• Create a new stub, or “do nothing” routine, for each of the code segments you want to unload. For
example, this is a stub for a code segment called updateSegment:

procedure updateSegment;
begin
end;

• Include each stub in its associated code segment.

• Write a routine called, say, DoUnloadSegments which calls the Segment Loader routine UnloadSeg for
each of the stubs. The following is an example:

procedure DoUnloadSegments;
begin
UnloadSeg(updateSegment);
UnloadSeg(activateSegment);
{ Other UnloadSeg calls here as required.}
end;

22-2 Miscellany

Note that each UnloadSeg call looks up the code segment that contains the stub routine in its input
parameter, unlocks that segment, and makes it purgeable. Note also that you could pass any of the
segment's routines as the parameter to the UnloadSeg call; however, it is preferable to use stubs
dedicated to this purpose because the other routines in the segment could well be moved to another
segment during future updating of the code.

• Place the DoUnloadSegments routine in the main code segment and call it at the bottom of the main
event loop (which should also be located in the main code segment) so that all code segments
specified in the routine will be unlocked and marked as purgeable after a received event has been
handled to completion. The following is an example:

begin
...
while not(gDone) do

begin
if (WaitNextEvent(everyEvent, eventRec, kMaxLong, nil)) then

DoEvents(eventRec);

UnloadSegments;
end;

end;
{of main program block}

One or more of the unlocked and purgeable code segments may then be purged by the Memory Manager
if this becomes necessary in order to satisfy a memory allocation request. When a call is subsequently
made to a routine contained in one of the purged segments, the Segment Loader once again loads that
segment into your application's heap as a relocatable block.

Status Bars and Scanning for a Command-Period Event

Status Bars

Operations within an application which tie up the machine for relatively brief periods of time should be
accompanied by a cursor shape change to the watch cursor, or perhaps to an animated cursor. On the
other hand, lengthy operations should be accompanied by the display of a status bar, which should
indicate visually to the user the current state of progress in that operation.

Ordinarily, status bars should be displayed within a modal dialog box. Static text within the dialog box
should advise the user how to terminate the operation (ordinarily by using the Command-period
combination) before it completes of its own accord.

Scanning for a Command-Period Event

As stated at Chapter 2 — Low and Operating System Events, your application should allow the user to
cancel a lengthy operation using the Command-period key combination. One way to satisfy this
requirement is to periodically call an application-defined function which scans the event queue for a
Command-period keyboard event. This function should return true if a Command-period keyboard event
is found.

The application-defined function should first get a pointer to the first queue element. It should then scan
the queue for a key-down event. If a key-down event is found, the next step is to determine whether the
Command key was down at the time of the key press. If it was, a check should be made as to whether the
key pressed was the period key. If these checks reveal that a Command-period keyboard event has
occurred, the function should return immediately, returning true to the calling function. The calling
function should, in turn, terminate the lengthy operation.

Miscellany 22-3

Notification From Applications in the Background

The Need for the Notification Manager

Applications running in the background cannot use the standard methods of communicating with the
user, such as alert or dialog boxes, because such windows might easily be obscured by the windows of
other applications. Furthermore, even if these windows are visible, the background application cannot be
certain that the user has actually received the communication. Accordingly, some more reliable method
must be used to manage communication between a background application and the user. The Notification
Manager provides such a method.

Examples of Notifications - PrintMonitor and Alarm Clock

You may have noticed that, if you are attempting to print in the background and the printer is not turned
on, the printer cable is disconnected, or the printer is out of paper:

• An alert box is presented advising you that there is a printing problem.

• The PrintMonitor icon begins alternating with the current application's icon on the right of the
menu bar.

• A mark appears on the left of the PrintMonitor item in the Application menu1.

You may also have noticed that, when the Alarm Clock alarm goes off, the system alert sound plays and
the Alarm Clock icon begins alternating with the Apple menu icon on the left of the menu bar.

These are two instances of the Notification Manager at work. The Notification Manager allows
applications running in the background (in these examples the PrintMonitor and Alarm Clock
applications) to communicate with the user.

The Notification Manager provides a one-way communications path from the application to the user.
There is no provision for carrying information back from the user to the application.

Elements of a Notification

In addition to the alert box, the icon rotation, the mark, and the playing of the system alert sound, the
Notification Manager also provides for the playing of a sound from a specified 'snd ' resource and for the
specification of a response procedure, which is a procedure executed as the final step in a notification. In
short, a notification comprises one or more of five possible elements.

The elements of a notification, assuming they have been specified, occur in the following sequence:

• The mark appears. (Note that the mark only appears while the application posting the
notification remains in the background. The mark is replaced by the familiar mark when that
application is brought to the foreground.)

• The icon alternation begins. (Typically, the icon which alternates with the foreground application's
icon is the posting application's small icon. Note that several applications might post notifications,
so there might be a series of alternating icons. Note also that the location of each icon in the menu
bar is determined by the posting application's mark (if any). If the application posting the
notification is marked by either a mark or a mark in the Application menu, the icon flashes
above the Application menu; otherwise the icon flashes above the Apple menu.)

• The Sound Manager plays the sound. (The application posting the notification can request that the
system alert sound be used or it can specify its own sound by passing the Notification Manager a
handle to a 'snd ' resource.)

1The mark is intended to prompt the user to switch the marked application to the foreground.

22-4 Miscellany

• The alert box appears, and the user dismisses it. (The application posting the notification specifies
the text for the alert box.)

• The response procedure executes. (The response procedure can be used to remove the notification
request from the notification queue (see below) or to perform other processing. For example, it can
be used to set a global variable to record that the notification was received.)

Suggested Notification Strategy

Apple's suggested notification strategy is to allow the user to set the desired level of notification at one of
three levels, as follows:

• Level 1. Display the mark next to the name of the application in the Application menu.2

• Level 2. Display the mark next to the name of the application in the Application menu and
alternate the icons. (This is the suggested default setting.)

• Level 3. Display the mark next to the name of the application in the Application menu, alternate
the icons and invoke an alert box to notify the user that something needs to be done.

A sound might also be played at levels 2 and 3, but the user should have the option of turning the sound
off. In addition, the user should be provided with the option of turning notification off altogether, except
in cases where damage might occur or data would be lost.

That said, Apple accepts that this suggested strategy might not be appropriate for your application.
(Indeed, notifications provided by the system software itself do not follow these guidelines.)

Notifications in Action

Overview

The Notification Manager is automatically initialised at system startup.

To issue a notification to the user, you need to create a notification request and install it into the
notification queue, which is a standard Macintosh queue. The Notification Manager interprets the
request and presents the notification to the user at the earliest possible time.

Eventually, you will need to remove the notification request from the notification queue. You can do this
in the response procedure or when your application returns to the foreground.

Creating a Notification Request

The Notification Record

When installing a request into the notification queue, your application must supply a pointer to a
notification record, a static and nonrelocatable record of type NMRec which indicates the type of
notification you require. Each entry in the notification queue is, in fact, a notification record. The
notification record is as follows:

NMRec = record
qLink: QElemPtr; { Address of next element in queue. (Used internally.)}
qType: integer; { Type of data. (8 = nmType).}
nmFlags: integer; { (Reserved.)}
nmPrivate: longint; { (Reserved.)}
nmReserved: integer; { (Reserved.)}
nmMark: integer; { Application to identify with mark.}
nmIcon: Handle; { Handle to small icon.}
nmSound: Handle; { Handle to sound record.}

2Note that displaying the mark is only possible if the requesting software is listed in the Application Menu (and thus represents a process which
is loaded into memory). The requesting software may not be an application. In addition to applications, other software that is largely invisible to
the user can use the Notification Manager. Such software includes device drivers, vertical blanking (VBL) tasks, Time Manager tasks, and code
which executes during the system startup sequence, such as code contained in extensions.

Miscellany 22-5

nmStr: StringPtr; { Pointer to string to appear in alert.}
nmResp: NMUPP; { Pointer to response routine.}
nmRefCon: longint; { Available for application use.}
end;

NMRecPtr = ^NMRec;

Field Descriptions:

To set up a notification request, you need to fill in at least the first six of the following fields:

qType Indicates the type of operating system queue. Set to nmType (8).

nmMark Indicates whether to place a mark next to the name of the application in the Application
menu. If nmMark is 0, no mark appears. If nmMark is 1, the mark appears next to the name of
the calling application. If nmMark is neither 0 nor 1, it is interpreted as the reference number
of a desk accessory. An application should set nmMark to 1 and a driver or detached
background task (such as a VBL task or Time Manager task) should set nmMark to 0.

nmIcon A handle to a small icon, or to an icon family containing a small colour icon, that is to
alternate periodically in the menu bar. If nmIcon is set to nil, no icon appears in the menu
bar. If nmIcon is not nil, the Notification Manager determines whether it is a handle to a
small icon or to an icon family containing a small colour icon. This handle must be valid at
the time the notification occurs. It does not need to be locked, but it must be non-
purgeable.

nmSound A handle to a sound resource to be played with SndPlay. If nmSound is set to nil, no sound
is produced. If nmSound is set to -1 , the system alert sound is played. This handle does not
need to be locked, but it must be non-purgeable.

nmStr Points to a string which appears in the alert box. If nmStr is set to '' , no alert box appears.
Note that the Notification Manager does not make a copy of this string, so your application
should not dispose of this storage until it removes the notification request.

nmResp Pointer to a response procedure. If nmResp is set to nil, no response procedure executes
when the notification is posted. If nmResp is set to -1 , then a pre-defined procedure
removes the notification request immediately after it has completed.

If you do not need to do any processing in response to the notification, you should set
nmResp to nil. If you supply the address of your own response procedure, the Notification
Manager passes it one parameter, a pointer to your notification record. For example, this is
how you would declare a response procedure having the name theResponse:

procedure theResponse(nmRecordPtr: NMUPP);

You can use response procedures to remove notification requests from the notification
queue, free any memory3, or set a global variable in your application to record that the
notification was posted4. If you are setting a global variable to enable you to determine
that the user actually received the notification, you need to request an alert notification.
This is because the response procedure executes only after the user has clicked the OK
button in the alert box.

If you choose audible or alert notifications, you should probably set nmResp to -1 so that the
notification record is removed from the queue as soon as the sound has finished or the user
has dismissed the alert box. However, if either nmMark or nmIcon is non-zero, do not set
nmResp to -1 , because the Notification Manager will remove the mark or the icon before
the user sees it.

3Note that an nmResp value of -1 does not free the memory block containing the queue element; it merely removes that element from the
notification queue.
4When the Notification Manager calls your response procedure, it does not set up A5 or low-memory globals for you. If you need to access your
application's global variables, you should save its A5 in the nmRefCon field.

22-6 Miscellany

nmRefCon A long integer available for your application's own use.

Installing a Notification Request

NMInstall is used to add a notification request to the notification queue. The following is an example call:

osErr := NMInstall(@notificationRecord);

Before calling NMInstall, you should make sure that your application is running in the background. If
your application is in the foreground, you simply use standard alert methods, rather than the Notification
Manager, to gain the user's attention.

Removing a Notification Request

NMRemove is used to remove a notification request from the notification queue. The following is an example
call:

osErr := NMRemove(@notificationRecord);

You can remove requests at any time, either before or after the notification actually occurs.

Soliciting a Colour Choice From the User - The Color Picker

The Color Picker Utilities provide your application with:

• A standard dialog box, called the Color Picker, for soliciting a colour choice from the user.

• Routines for converting colour specifications from one colour model to another.

Preamble - Colour Models

In the world of colour, three main colour models are used to specify a particular colour. These are the RGB
(red, green, blue) model, the CYMK (cyan, magenta, yellow, black) model, and the HSL or HSV (hue,
saturation, lightness, or hue, saturation, value) models.

RGB Model

The RGB model is used where light-produced colours are involved, as in the case of a television set,
computer monitor, or stage lighting. In this model, the three primary colours involved (red, green, and
blue) are said to be additive because, the more of each colour you add, the closer the resulting colour is to
white.

CYMK Model

The CYMK model is closely associated with printing, that is, putting colour on a white page. In this
model, the three primary colours (cyan, yellow, and magenta5) are said to be subtractive because, the more
of each colour you add, the closer the resulting colour is to black. (The inclusion of black in the model
accounts for the fact that the colours of printer's inks may vary slightly from true cyan, yellow, and
magenta, meaning that a true black may not be achievable with just a CYM model.)

HSL and HSV Models

The HSL and HSV models separate colour (that is, hue) from saturation and brightness. Saturation is a
measure of the amount of white in a colour (the less white, the more saturated the colour). Lightness is the
measure of the amount of black in a colour. (The less black, the lighter the colour). The amount of black is
specified by the lightness (L) value in the HSL model and by the value (V) value in the HSV model.

5Cyan, magenta and yellow are the complements of red, green, and blue.

Miscellany 22-7

The HLS/HLV model may be represented diagrammatically by the HLS/HLV colour cone shown at Fig 1.
In this colour cone, hue is represented by an angle between 0˚ and 360˚.

FIG 1 - HSL/HSV COLOUR CONE

BLACK

RED

BLUE

GREEN
WHITE

GREYS

INCREASING SATURATION

INCREASING
LIGHTNESS

INCREASING
HUE

0°

The Color Picker

The Color Picker allows the user to specify a colour using either the HSL or RGB models. A somewhat
refined version of Color Picker was introduced with System 7.5, and it is this version which is described
below. (The previous version is broadly similar in that it allows the user to specify a colour using either
the HSL or RGB models.)

Using the Color Picker HSL Mode

When first opened, the Color Picker defaults to the HSL display as shown at Fig 2. Hue is specified by an
angle, which may be entered at Hue Angle: . Saturation is specified by percentage, which may be entered at
Saturation:. Lightness is also specified by a percentage, which may be entered at Lightness:.
Alternatively, hue and saturation may be selected simultaneously by clicking at the desired point within
the coloured disc, and lightness may be set with the slider control.

FIG 2 - COLOR PICKER DIALOG IN HSL MODE

22-8 Miscellany

To relate Fig 2 to Fig 1, the coloured disc at Fig 2 may be considered as the HSL/HSV cone as viewed from
above. The lightness slider control can then be conceived of as moving the disc up or down the axis of the
cone from the apex (black) to the base (white).

Using the Color Picker RGB Mode

By clicking on the More Choices button, a list opens up showing the colour models available. Clicking on
the Apple RGB item in the list results in the RGB display shown at Fig 3. The desired red, green and blue
values may be set using the three slider controls or may be entered directly in the fields on the right of the
sliders.

FIG 3 - COLOR PICKER DIALOG IN RGB MODE

Invoking the Color Picker

The Color Picker is invoked using the GetColor function:

function GetColor(where: Point; prompt: ConstStr255Param; var inColor: RGBColor;
 var outColor: RGBColor): boolean;

where Dialog's upper-left corner. (0,0) causes the dialog box to positioned centrally on the main
screen.

prompt A prompt string, which is displayed in the upper left corner of the dialog box.

inColor The starting colour, which the user may want for comparison, and which is displayed
against Original: in the top right corner of the dialog box.

outColor Initially set to equal inColor. Assigned a new value when the user picks a colour. The
colour stored in this parameter is displayed at the top right of the dialog box against New:.)

Returns: A Boolean value indicating whether the user clicked on the OK button or Cancel button.

If the user clicks the OK button in the Color Picker dialog, your application should adopt the outColor
value as the colour chosen by the user. If the user clicks the Cancel button, your application should
assume that the user has decided to make no colour change, that is, the colour should remain as that
represented by the inColor parameter.

Miscellany 22-9

Ensuring Compatibility with the Operating Environment

If your application is to run successfully in all of the software and hardware environments that may be
present in the full range of Macintosh models, it must be able to acquire information about a large number
of machine-dependent features and, where appropriate, act on that information. For example, the
demonstration program which accompanies this chapter uses different blocks of code to draw a status bar
depending on whether or not Color QuickDraw is present.

Getting Operating Environment Information - The Gestalt Function

The Gestalt function may be used to acquire a wide range of information about the operating
environment6:

function Gestalt(selector: OSType; var response: longint): OSErr;

selector Selector code.

response 4-byte return result which provides the requested information. When all four bytes are not
needed, the result is expressed in the low-order byte.

Returns: Error code. (0 = no error.)

The types of information capable of being retrieved by Gestalt are as follows:

• The type of machine.

• The version of the System file currently running.

• The type of CPU.

• The type of keyboard attached to the machine.

• The type of floating-point unit (FPU) installed, if any.

• The type of memory management unit (MMU).

• The size of the available RAM.

• The amount of available virtual memory.

• The version of QuickDraw currently present.

• The versions and features of various drivers and managers.

Gestalt Selectors

To use Gestalt, you pass it a selector, which specifies exactly what information your application is
seeking. Of those selectors which are pre-defined by the Gestalt Manager, there are two sub-types:

• Environmental Selectors. Environmental selectors are those which return information about
the existence, or otherwise, of a feature. This information can be used by your application to guide
its actions. Some examples of the many available environmental selectors, and the information
returned in the reponse parameter, are as follows:

6Although the Gestalt function can provide your application with most of the basic information it needs about hardware and software features,
you may still need to call other routines to determine more specific features. For example, if you need to determine the resolution of the main
Macintosh screen, you will need to use the ScreenRes routine.

22-10 Miscellany

Selector Information
Returned

gestaltFPUType FPU type.
gestaltKeyboardType Keyboard type.
gestaltLogicalRAMSize Logical RAM size.
gestaltPhysicalRAMSize Physical RAM size.
gestaltQuickdrawVersion QuickDraw version.
gestaltTextEditVersion TextEdit version.

• Informational Selectors. Informational selectors are those which provide information which
should be used for the user's enlightenment only. This information should never be used as proof
positive of some feature's existence, nor should it be used to guide your application's actions. Some
example of informational selectors, and the information they return, are as follows:

Selector Information
Returned

gestaltMachineType Machine type.
gestaltROMVersion ROM version.
gestaltSystemVersion System file version.

Gestalt Responses

In almost all cases, the last few characters in the selector's name form a suffix which indicates the type of
value that will be returned in the response parameter. The following shows the meaningful suffixes:

Suffix Returned Value
Attr A range of 32 bits, the meaning of which must be determined by comparison with a list of constants.
Count A number indicating how many of the indicated type of items exist.
Size A size, usually in bytes.
Table Base address of a table.
Type An index describing a particular type of feature.
Version A version number. Implied decimal points may separate digits of the returned value. For example, a

value of 0x0750 returned in response to the gestaltSystemVersion selector means that system
software version 7.5.0 is present.

Using Gestalt — Examples

The interface file GestaltEqu.p defines and describes Gestalt Manager selectors, together with the many
constants which may be used to test the response parameter.

Example 1

For example, when Gestalt is used to check for the existence of Color QuickDraw, the value returned in
the response parameter may be compared with gestalt8BitQD as follows:

osErr : OSErr;
response : longint;
colorQuickDrawPresent : boolean;

colorQuickDrawPresent := true;

osErr := Gestalt(gestaltQuickdrawVersion, response);
if (osErr = noErr) then

begin
if (response < gestalt8BitQD) then

colorQuickDrawPresent := false;
end;

Example 2

Many constants in Gestalt.h represent bit numbers. In this example, the value returned in the response
parameter is tested to determine whether bit number 5 (gestaltHasSoundInputDevice) is set:

Miscellany 22-11

osErr : OSErr;
response : longint;
hasSoundInputDevice : boolean;

hasSoundInputDevice := false;

osErr := Gestalt(gestaltSoundAttr, response);
if (osErr = noErr) then

gHasSoundInputDevice := BitTst(response, 31 - gestaltHasSoundInputDevice);

Note that the function BitTst is used to determine whether the specified bit is set. Bit numbering with
BitTst is the opposite of the usual MC680x0 numbering scheme used by Gestalt. Thus the bit to be tested
must be subtracted from 31. This is illustrated in the following:

Bit numbering as used in BitTst
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bit as numbered in MC68000 CPU operations, and used by Gestalt
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gestaltHasSoundInputDevice = 5
31 - 5 = 26

Determining Whether a Trap is Available

If you call a system routine (that is, a trap) on a machine which does not implement it, your application
will crash. Before your application calls a trap that may not be available on all machines, therefore, it
needs to determine that trap's availability in the current operating environment.

One way to do this, of course, is to use the Gestalt function. If you happen to know that the trap has been
included in the system software from a particular version number onwards, you could have your
application call the Gestalt function to ascertain what version of the relevant driver or manager is present.

There are several cases, however, where you cannot use Gestalt for this purpose. For example, the trap
for whose existence you wish to test might not be included in any manager, or there may not be a Gestalt
selector code for the particular manager concerned. In this situation you must test directly for the
existence of the trap. Unfortunately, this is not as simple a procedure as you might suppose; however, the
demonstration program shows how it can be done.

Coping With Multiple Monitors

Overview

Many Macintosh models can accommodate more than one monitor. In a multi-monitor system, the
Monitors control panel allows the user to specify which of the attached monitors is to be the main screen
(that is, the screen containing the menu bar) and to set the position of the other screen, or screens, relative
to the main screen.

The maximum number of colours capable of being displayed by a given Macintosh at the one time is
determined by the video capability of that particular Macintosh. The maximum number of colours capable
of being displayed on a given screen at the one time depends on settings made by the user using the
Monitors control panel. The user can set the maximum number of colours (or grays) to be displayed to
black-and-white (pixel depth = 1), four colours/grays (pixel depth = 2), sixteen colours/grays (pixel depth
= 4), and so on up to that pixel depth which equates to the computer's maximum video capability. These
settings are made separately for each individual screen. In a multi-monitor environment, therefore, it is
possible for each screen to be set to a different pixel depth.

In more technical terms, a Monitors control panel colours/grays setting sets the pixel depth of a particular
video device. A brief review of the subject of video devices is therefore appropriate at this point.

22-12 Miscellany

Video Devices Revisited

As stated at Chapter 9 — QuickDraw Preliminaries:

• A graphics device is anything into which QuickDraw can draw, a video device (such as a plug-in
video card or a built-in video interface) is a graphics device that controls screens, Color QuickDraw
stores information about video devices in GDevice records, the system creates and initialises a
GDevice record for each video device found during start-up7, all records are linked together in a list
called the device list, and the global variable DeviceList holds a handle to the first record in the
list.

• At any given time, one, and only one, graphics device is the current device8, that is, the one in
which the drawing is taking place. A handle to the current device's GDevice record is placed in the
global variable TheGDevice.

By default, the GDevice record corresponding to the first video device found at start up is marked as the
(initial) current device, and all other graphics devices in the list are initially marked as inactive. When the
user moves a window to, or creates a window on, another screen, and your application draws into that
window, Color QuickDraw automatically makes the video device for that screen the current device and
stores that information in TheGDevice. As Color QuickDraw draws across a user's video devices, it keeps
switching to the GDevice record for the video device on which it is actively drawing.

Also recall from Chapter 9 — QuickDraw Preliminaries that two of the fields in a GDevice record are:

• gdMap, which contains a handle to a pixel map which, in turn, contains a field (PixelSize) containing
the device's pixel depth (that is, the number of bits per pixel).

• gdRect, which contains the device's global boundaries.

Requirements of the Application

Accommodating a multi-monitor environment requires that you address the following two issues:

• Image Optimisation. To draw a particular graphic, your application may have to call different
drawing routines for that graphic depending on the pixel depth of the video device intersecting
your window's drawing region, the aim being to optimise the appearance of the image regardless of
whether it is being displayed on a device set to a pixel depth of 1 or a device set to a pixel depth of,
say, 8. For example, in the case of a device set to a pixel depth of 1 (black-and-white), you might
elect to draw a specific part of the image using the pattern dkGray whereas in the case of a device set
to a pixel depth of 4, 8 or 16 you might elect to draw the same part in dark blue.

• Window Zooming. The second issue is window zooming. For example, if the user drags a
window currently zoomed to the user state so that it spans two screens, and then clicks the zoom
box to zoom the window to the standard state, your application will need to determine which
screen contains the largest area of the window, calculate the standard state for that screen (which
will depend, amongst other things, on whether that screen contains the menu bar), and finally zoom
the window out to the standard state for that particular screen.

Image Optimisation

The DeviceLoop routine is central to the matter of optimising the appearance of your images. DeviceLoop
searches for graphics devices which intersect your window's drawing region, informing your application
of each graphics device it finds and providing your application with information about the current device's

7The Monitors control panel stores the pixel depth and other configuration information in a resource of type 'scrn' (resource ID 0). This resource
contains an array of data structures which are analogous to GDevice records. Each element of this array contains information about a different
video device. When InitGraf is called to initialize QuickDraw, it checks the System file for the 'scrn' resource. If the resource is found, and if it
matches the hardware, InitGraf organizes the video devices according to the resource's contents. If the resource is not found, QuickDraw uses
only the video device of the startup screen.
8The current device is sometimes referred to as the active device.

Miscellany 22-13

pixel depth and other attributes. Armed with the pixel depth information, your application can then
invoke whichever of its drawing routines is optimised for that particular colour resolution.

DeviceLoop's second parameter is a pointer to an application-defined function. That function must be
defined like this:

procedure DeviceLoopDrawing(depth: integer; deviceFlags: integer;
 targetDevice: GDHandle; userData: longint);

DeviceLoop calls this function for each dissimilar video device it finds. If it encounters similar devices (that
is, devices having the same pixel depth, colour table seeds, etc) it will make only one call to MyDrawingProc,
pointing to the first such device encountered. DeviceLoop's behaviour can, however, be modified by
supplying the flags parameter with one of the following values:

Value Meaning
singleDevices Do not group similar devices when calling drawing procedure.

dontMatchSeeds Do not consider ctSeed fields of ColorTable records for graphics devices when comparing
them.

allDevices Ignore value of drawingRgn parameter and instead call drawing procedure for every screen.

Window Zooming

Handling window zooming in a multi-monitors environment requires that your application provide a
special application-defined function. The user may have moved a window to a different screen, or to a
position where it spans two separate screens, since it was last zoomed. When the user elects to zoom that
window to the standard state9, your application-defined function must first determine the screen on
which the zoomed window is to appear and the appropriate standard state for that screen.

The screen on which the zoomed window should appear should be the screen on which the window is
currently displayed or, if the window spans screens, the screen containing the largest area of the window.
The appropriate standard state will depend on:

• The device's global boundaries, as contained in the gdRect field of the gDevice record.

• The requirements of the application. (As stated at Chapter 4 — Windows, the standard state on the
main screen is typically the gray area of the screen minus three pixels all round.)

• Whether the screen on which the zoomed window is to appear contains the menu bar.

After determining the screen on which the zoomed window is to appear and calculating the standard state,
your application-defined function should call ZoomWindow to redraw the window frame in its new location
and, finally, redraw the window's content region.

An Image Optimisation Short Cut — Default Button Bold Outline

Recall that the demonstration program at Chapter 6 — Dialogs and Alerts contains an action procedure
which draws the bold outline around the default button in a dialog box, that a pointer to that routine is
installed in a user item in the dialog box, and that, as a result, the action procedure is called whenever the
user item is part of the dialog box's update region during a dialog box update.

When the default button is inactive, and if the draw is to a basic graphics port, the action procedure draws
the bold outline in the gray pattern; however, if the draw is to a colour graphics port, GetGray is called to
get an intermediate RGB colour between the current foreground and background colours. Assuming the
GetGray call is successful, the colour returned is the best intermediate colour available on the device
specified in the first parameter of the GetGray call, and the bold outline is drawn in that intermediate
colour. The relevant lines of code (Lines 1137-1149 at Chapter 6) are as follows:

if (isColour) { If drawing to a colour graphics port.}
begin

9See Chapter 4 — Windows for a description of standard state, user state, and the state data record.

22-14 Miscellany

...
targetDevice := LMGetMainDevice();
newGray := GetGray(targetDevice, backColour, newForeColour);
end;

if (newGray) then { If the GetGray call gets an intermediate colour ...}
RGBForeColor(newForeColour) { ... the draw will be in this colour ...}
else { ... otherwise ...}
PenPat(gray); { ... the draw will be in this pattern.}

Note that the device specified in the GetGray call is that associated with the main screen (the screen with
the menu bar). This is a satisfactory approach in a single monitor environment; however, it is not
satisfactory in a multi-monitor environment. If for, example, the main screen's pixel depth is 1, the second
screen's pixel depth is 8, and the movable modal or modeless dialog box has been dragged to the second
screen, the bold outline will be drawn using the gray pattern rather than an intermediate colour. (GetGray
will return false when the specified device's pixel depth is 1.)

The solution for a multi-monitors environment is to specify to GetGray the device on which the OK button,
or the greater part of that button, is currently being displayed. Accordingly, the line before the GetGray
call should be replaced by:

targetDevice := DoGetRectsDevice(ControlHandle(itemHandle)^^.contrlRect);

and the following function should be included:

function DoGetRectsDevice(theRect : Rect) : GDHandle;

var
SInt32 greatestArea, intersectArea;
GDHandledeviceHdl, deviceHdlToReturn;
Rect intersectRect;
sectFlag : boolean;

begin
LocalToGlobal(theRect.topLeft);
LocalToGlobal(theRect.botRight);

deviceHdl := LMGetDeviceList;
greatestArea := 0;

while (deviceHdl <> nil) do
begin
if (TestDeviceAttribute(deviceHdl, screenDevice)) then

if (TestDeviceAttribute(deviceHdl, screenActive)) then
begin
sectFlag := SectRect(theRect, deviceHdl^^.gdRect, intersectRect);

intersectArea := longint((intersectRect.right - intersectRect.left) *
 (intersectRect.bottom - intersectRect.top));

if (intersectArea > greatestArea) then
begin
greatestArea := intersectArea;
deviceHdlToReturn := deviceHdl;
end;

deviceHdl := GetNextDevice(deviceHdl);
end;

end;

DoGetRectsDevice := deviceHdlToReturn;
end;

This function checks the default button's rectangle against the boundary rectangle of all active video
devices in the device list and determines which device contains the greater part of the button's rectangle.
The code is essentially identical to that used in the doZoomWindowMultiMonitor function in this chapter's
demonstration program to check a window's rectangle against the boundary rectangle of all active video
devices in order to determine which device contains the greater part of the window's rectangle.

This image-optimisation example has been termed a "short cut" because it does not involve the use of
DeviceLoop, which means that it will produce the required result only if the default button does not span

Miscellany 22-15

two screens, one of those screens being set to a pixel depth of 1 and the other to some higher pixel depth.
This simplified approach may, nonetheless, be considered acceptable in the case of a small and relatively
insignificant image like the default button outline, given the low probability of the user positioning a
movable modal or modeless dialog box such that the default button spans two screens and/or setting the
pixel depth of one of those screens to 1.

Main Segment Loader Routines

Unlock Code Segments and Make Purgeable

procedure UnloadSeg(routineAddr: UNIV Ptr);

Terminate Caller, Release Heap, and Launch Finder

procedure ExitToShell;

Main Event Manager Data Types and Routines

Data Types

QHdr (Defines the Queue Header)

QHdr = record
qFlags: integer;
qHead: QElemPtr;
qTail: QElemPtr;
end;

QHdrPtr = ^QHdr;

QElem

QElem = record
qLink: QElemPtr;
qType: integer;
qData: array [0..0] of integer;
end;

QElemPtr = ^QElem;

EvQEl (Defines an Entry in the Operating System Event Queue)

EvQEl = record
qLink: QElemPtr;
qType: integer;
evtQWhat: EventKind; { this part is identical to the EventRecord as... }
evtQMessage: UInt32; { defined above }
evtQWhen: UInt32;
evtQWhere: Point;
evtQModifiers:EventModifiers;
end;

EvQElPtr = ^EvQEl;

Routines

Get Address of Event Queue Header

function LMGetEventQueue: QHdrPtr;

22-16 Miscellany

Main Notification Manager Data Types and Routines

Data Types

Notification Record

NMRec = record
qLink: QElemPtr; { next queue entry}
qType: integer; { queue type -- ORD(nmType) = 8}
nmFlags: integer; { reserved}
nmPrivate: longint; { reserved}
nmReserved: integer; { reserved}
nmMark: integer; { item to mark in Apple menu}
nmIcon: Handle; { handle to small icon}
nmSound: Handle; { handle to sound record}
nmStr: StringPtr; { string to appear in alert}
nmResp: NMUPP; { pointer to response routine}
nmRefCon: longint; { for application use}
end;

NMRecPtr = ^NMRec;

Routines

Add Notification Request to the Notification Queue

function NMInstall(nmReqPtr: NMRecPtr): OSErr;

Remove Notification Request from the Notification Queue

function NMRemove(nmReqPtr: NMRecPtr): OSErr;

Main Process Manager Data Types and Routines

Data Types

Process Serial Number

ProcessSerialNumber = record
highLongOfPSN: longint;
lowLongOfPSN: longint;
end;

ProcessSerialNumberPtr = ^ProcessSerialNumber;

Routines

Get Process Serial Number of a Particular Process

functionGetCurrentProcess(var PSN: ProcessSerialNumber): OSErr;

Get Process Serial Number of Foreground Process

functionGetFrontProcess(var PSN: ProcessSerialNumber): OSErr;

Compare Two Process Serial Numbers

functionSameProcess(var PSN1: ProcessSerialNumber; var PSN2: ProcessSerialNumber; var result:
boolean): OSErr;

Miscellany 22-17

Main Gestalt Manager Constants and Routines

Constants

Gestalt Error Codes

gestaltUnknownErr = -5550, { Value returned if Gestalt doesn't know the answer.}
gestaltUndefSelectorErr = -5551, { Undefined selector was passed to Gestalt.}

Environment Selectors

gestaltAddressingModeAttr 'addr' { Addressing mode attributes.}
gestalt32BitAddressing = 0 { Using 32-bit addressing mode.}
gestalt32BitSysZone = 1 { 32-bit compatible system zone.}
gestalt32BitCapable = 2 { Machine is 32-bit capable.}

gestaltFPUType 'fpu ' { FPU type.}
gestaltNoFPU = 0 { No FPU.}
gestalt68881 = 1 { 68881 FPU.}
gestalt68882 = 2 { 68882 FPU.}
gestalt68040FPU = 3 { 68040 built-in FPU.}

gestaltKeyboardType 'kbd ' { Keyboard type.}
gestaltMacKbd = 1
gestaltMacAndPad = 2
gestaltMacPlusKbd = 3
gestaltExtADBKbd = 4
gestaltStdADBKbd = 5
gestaltPrtblADBKbd = 6
gestaltPrtblISOKbd = 7
gestaltStdISOADBKbd = 8
gestaltExtISOADBKbd = 9
gestaltADBKbdII = 10
gestaltADBISOKbdII = 11
gestaltPwrBookADBKbd = 12
gestaltPwrBookISOADBKbd = 13

gestaltProcessorType 'proc' { Processor type.}
gestalt68000 = 1
gestalt68010 = 2
gestalt68020 = 3
gestalt68030 = 4
gestalt68040 = 5

gestaltQuickdrawVersion 'qd ' { QuickDraw version.}
gestaltOriginalQD = $000 { Original 1-bit QD.}
gestalt8BitQD = $100 { 8-bit color QD.}
gestalt32BitQD = $200 { 32-bit color QD.}
gestalt32BitQD11 = $210 { 32-bit color QDv1.1.}
gestalt32BitQD12 = $220 { 32-bit color QDv1.2.}
gestalt32BitQD13 = $230 { 32-bit color QDv1.3.}

gestaltQuickdrawFeatures 'qdrw' { QuickDraw features.}
gestaltHasColor = 0 { Color QuickDraw present.}
gestaltHasDeepGWorlds = 1 { GWorlds can be deeper than 1-bit.}
gestaltHasDirectPixMaps = 2 { PixMaps can be direct (16 or 32 bit).}
gestaltHasGrayishTextOr = 3 { supports text mode grayishTextOr.}

gestaltPhysicalRAMSize 'ram ' { Physical RAM size.

gestaltSoundAttr 'snd ' { Sound attributes.
gestaltStereoCapability = 0 { Sound hardware has stereo capability.}
gestaltStereoMixing = 1 { Stereo mixing on external speaker.}
gestaltSoundIOMgrPresent = 3 { The Sound I/O Manager is present.}
gestaltBuiltInSoundInput = 4 { Built-in Sound Input hardware is present.}
gestaltHasSoundInputDevice = 5 { Sound Input device available.}

Information-only Selectors

gestaltMachineType 'mach' { Machine type.}
kMachineNameStrID = -16395
gestaltClassic = 1
gestaltMacXL = 2
gestaltMac512KE = 3

22-18 Miscellany

gestaltMacPlus = 4
gestaltMacSE = 5
gestaltMacII = 6
gestaltMacIIx = 7
gestaltMacIIcx = 8
gestaltMacSE030 = 9
gestaltPortable = 10
gestaltMacIIci = 11
gestaltMacIIfx = 13
gestaltMacClassic = 17
gestaltMacIIsi = 18
gestaltMacLC = 19
gestaltQuadra900 = 20
gestaltPowerBook170 = 21
gestaltQuadra700 = 22
gestaltClassicII = 23
gestaltPowerBook100 = 24
gestaltPowerBook140 = 25

gestaltSystemVersion 'sysv' { System version.}

Routines

function Gestalt(selector: OSType; var response: longint): OSErr;

Relevant QuickDraw Constants and Routines

Constants

Flag Bits for gdFlags Field of GDevice Record

mainScreen = 11 { Graphics device is main screen.}
screenDevice = 13 { Graphics device is a screen device.}
screenActive = 15 { Graphics device is current device.}

Routines

Getting Available Graphics Devices

function LMGetDeviceList : GDHandle;
function LMGetMainDevice : GDHandle;
function GetNextDevice(curDevice: GDHandle): GDHandle;

Determining the Characteristics of a Video Device

procedure DeviceLoop(drawingRgn: RgnHandle; drawingProc: DeviceLoopDrawingUPP;
userData: longint; flags: DeviceLoopFlags);

function TestDeviceAttribute(gdh: GDHandle; attribute: integer): boolean;

Getting the Intersection Between Two Rectangles and Determining the Overlap

function SectRect(var src1: Rect; var src2: Rect; var dstRect: Rect): boolean;

Demonstration Program
{ ###1

// MiscellanyPascal.p2

// ##3

//4

// Miscellany source code is contained in three files, namely, UMain.p, UDemos.p and5

// MiscellanyPascal.p Within the CodeWarrior project, MiscellanyPascal.p and UMain.p6

// are in Segment 1, while UDemos.p is in Segment 2.7

// (Note that this small program does not really require such segmentation; the8

// code is segmented only to facilitate demonstration of the Segment Loader aspects.9

//10

// This program demonstrates:11

//12

// • The use of stubs in code segments, together with a function which uses those stubs13

Miscellany 22-19

// to unlock code segments and make them purgeable.14

//15

// • The use of a status bar to graphically indicate the current status of a time-16

// consuming operation.17

//18

// • The use of the Command-period key combination to terminate a time-consuming19

// operation before it concludes.20

//21

// • The use of the Notification Manager to allow an application running in the22

// background to communicate with the foreground application.23

//24

// • The determination of whether a particular application is currently the foreground25

// application.26

//27

// • The use of the Color Picker to solicit a choice of colour from the user.28

//29

// • The determination of whether a particular trap is available.30

//31

// • Image drawing optimisation and window zooming in a multi-monitors environment.32

//33

// The program utilises the following resources:34

//35

// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Demonstration36

// menus (preload, non-purgeable).37

//38

// • A 'WIND' resource (purgeable) (initially visible) for a window in which graphics39

// and information relevant to the demonstrations is displayed.40

//41

// • An 'ALRT' resource (purgeable), and associated 'DITL' resource (purgeable), for42

// displaying a message to the user from within the Notification Manager demonstration.43

//44

// • A 'DLOG' resource (purgeable), and associated 'DITL' and 'dctb' resources45

// (purgeable), for a dialog box in which the status bar is displayed.46

//47

// • 'icn#', 'ics4', and 'ics8' resources (non-purgeable) which contain the Miscellany48

// application icon displayed in the Application menu during the Notification Manager49

// demonstration.50

//51

// • A 'snd ' resource (non-purgeable) used in the Notification Manager demonstration.52

//53

// • A 'STR ' resource (non-purgeable) containing the text displayed in the alert box54

// invoked by the Notification Manager.55

//56

// • A 'SIZE' resource with the acceptSuspendResumeEvents doesActivateOnFGSwitch,57

// canBackgound, and is32BitCompatible flags set.58

//59

// ### }60

61

program MiscellanyPascal(input, output);62

63

{ ……… include the following Universal Interfaces }64

65

uses66

67

Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,68

Memory, Events, TextUtils, ToolUtils, OSUtils, Devices, TextUtils,69

70

{ ……… include the following user-defined units }71

72

UMain, UDemos;73

74

{ ……… global variables }75

76

var77

78

gColorQuickDraw : boolean; external;79

gDone : boolean; external;80

gWindowPtr : WindowPtr; external;81

gProcessSerNum : ProcessSerialNumber; external;82

gMultiMonitorsDrawDemo : boolean; external;83

84

theErr : OSErr;85

response : longint;86

menubarHdl : Handle;87

menuHdl : MenuHandle;88

theEvent : EventRecord;89

90

22-20 Miscellany

{ ## start of main program }91

92

begin93

94

gMultiMonitorsDrawDemo := false;95

96

{ …… initialie managers }97

98

DoInitManagers;99

100

{ …… check for Color QuickDraw }101

102

gColorQuickDraw := true;103

104

theErr := Gestalt(gestaltQuickdrawVersion, response);105

if (response < gestalt8BitQD) then106

gColorQuickDraw := false;107

108

{ …… set up menu bar and menus }109

110

menubarHdl := GetNewMBar(rMenubar);111

if (menubarHdl = nil) then112

ExitToShell;113

SetMenuBar(menubarHdl);114

DrawMenuBar;115

116

menuHdl := GetMenuHandle(mApple);117

if (menuHdl = nil) then118

ExitToShell119

else120

AppendResMenu(menuHdl,'DRVR');121

122

{ …… open window }123

124

if (gColorQuickDraw) then125

gWindowPtr := GetNewCWindow(rWindow, nil, WindowPtr(-1))126

else127

gWindowPtr := GetNewWindow(rWindow, nil, WindowPtr(-1));128

129

if (gWindowPtr = nil) then130

ExitToShell;131

132

SetPort(gWindowPtr);133

TextSize(10);134

135

{ …… get process serial number of this process }136

137

theErr := GetCurrentProcess(gProcessSerNum);138

139

{ …… enter EventLoop }140

141

gDone := false;142

143

while not (gDone) do144

begin145

if (WaitNextEvent(everyEvent, theEvent, 30, nil)) then146

DoEvents(theEvent)147

else148

DoNullEvent;149

150

UnloadSegments;151

end;152

153

end.154

155

{ ## }156

157

{ ##158

// UMain.p159

// ### }160

161

unit UMain;162

163

164

165

interface166

167

Miscellany 22-21

{ ……… include the following Universal Interfaces }168

169

uses170

171

Windows, Fonts, Menus, TextEdit, Dialogs, SegLoad, ToolUtils, Devices, GestaltEqu,172

Resources, Sound, Notification, Icons, Processes, ColorPicker, Traps, LowMem,173

174

{ ……… include the following user-defined units }175

176

UDemos;177

178

{ ……… define the following constants }179

180

const181

182

mApple = 128;183

 iAbout = 1;184

mFile = 129;185

 iQuit = 11;186

mDemonstration = 131;187

 iCommandPeriod = 1;188

 iNotification = 2;189

 iColourPicker = 3;190

 iTrapAvailable = 4;191

 iMultiMonitors = 5;192

193

rMenubar = 128;194

rWindow = 128;195

rAlert = 128;196

rDialog = 129;197

 iUserItem = 1;198

rIconFamily = 128;199

rBarkSound = 8192;200

rString = 128;201

202

{ ……… global variables }203

204

var205

206

gColorQuickDraw : boolean;207

gDone : boolean;208

gWindowPtr : WindowPtr;209

gProcessSerNum : ProcessSerialNumber;210

gMultiMonitorsDrawDemo : boolean;211

212

{ …… function and procedure interfaces }213

214

procedure DoInitManagers;215

procedure DoEvents(theEvent : EventRecord);216

procedure DoMouseDown(theEvent : EventRecord);217

procedure DoMenuChoice(menuChoice : longint);218

procedure UnloadSegments;219

220

221

222

implementation223

224

{ ### DoInitManagers }225

226

procedure DoInitManagers;227

228

begin229

MaxApplZone;230

MoreMasters;231

232

InitGraf(@qd.thePort);233

InitFonts;234

InitWindows;235

InitMenus;236

TEInit;237

InitDialogs(nil);238

239

InitCursor;240

FlushEvents(everyEvent, 0);241

end;242

{of procedure DoInitManagers}243

244

22-22 Miscellany

{ ### DoEvents }245

246

procedure DoEvents(theEvent : EventRecord);247

248

var249

theWindowPtr : WindowPtr;250

userData : longint;251

252

begin253

case (theEvent.what) of254

255

mouseDown: begin256

DoMouseDown(theEvent);257

end;258

259

updateEvt: begin260

theWindowPtr := WindowPtr(theEvent.message);261

262

BeginUpdate(theWindowPtr);263

if (gMultiMonitorsDrawDemo = true) then264

begin265

userData := longint(theWindowPtr);266

DeviceLoop(theWindowPtr^.visRgn, DeviceLoopDrawingUPP(@DoDeviceLoopDraw),267

userData, 0);268

end;269

EndUpdate(theWindowPtr);270

end;271

272

osEvt: begin273

DoOSEvent(theEvent);274

HiliteMenu(0);275

end;276

end;277

{of case statement}278

end;279

{of procedure DoInitManagers}280

281

{ ## DoMouseDown }282

283

procedure DoMouseDown(theEvent : EventRecord);284

285

var286

partCode : integer;287

theWindowPtr : WindowPtr;288

289

begin290

partCode := FindWindow(theEvent.where, theWindowPtr);291

292

case (partCode) of293

294

inMenuBar: begin295

DoMenuChoice(MenuSelect(theEvent.where));296

end;297

298

inSysWindow: begin299

SystemClick(theEvent, theWindowPtr);300

end;301

302

inContent: begin303

if (theWindowPtr <> FrontWindow) then304

SelectWindow(theWindowPtr);305

end;306

307

inDrag: begin308

DragWindow(theWindowPtr, theEvent.where, qd.screenBits.bounds);309

end;310

311

inZoomIn, inZoomOut: begin312

if (TrackBox(theWindowPtr, theEvent.where, partCode)) then313

DoZoomWindowMultiMonitors(theWindowPtr, partCode);314

end;315

end;316

{of case statement}317

end;318

{of procedure DoMouseDown}319

320

{ ### DoMenuChoice }321

Miscellany 22-23

322

procedure DoMenuChoice(menuChoice : longint);323

324

var325

menuID, menuItem : integer;326

itemName : string;327

daDriverRefNum : integer;328

329

begin330

menuID := HiWord(menuChoice);331

menuItem := LoWord(menuChoice);332

333

if (menuID = 0) then334

Exit(DoMenuChoice);335

336

case (menuID) of337

338

mApple: begin339

if (menuItem = iAbout) then340

SysBeep(10)341

else begin342

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);343

daDriverRefNum := OpenDeskAcc(itemName);344

end;345

end;346

347

mFile: begin348

if (menuItem = iQuit) then349

gDone := true;350

end;351

352

mDemonstration: begin353

gMultiMonitorsDrawDemo := false;354

case (menuItem) of355

356

iCommandPeriod: begin357

DoCommandPeriodAndStatusBar;358

end;359

360

iNotification: begin361

EraseRect(gWindowPtr^.portRect);362

DoSetUpNotification;363

end;364

365

iColourPicker: begin366

DoColourPicker;367

end;368

369

iTrapAvailable: begin370

EraseRect(gWindowPtr^.portRect);371

MoveTo(150, 110);372

if (DoCheckSlotVInstallAvailable) then373

DrawString('Trap is available')374

else375

DrawString('Trap is not available');376

end;377

378

iMultiMonitors: begin379

EraseRect(gWindowPtr^.portRect);380

gMultiMonitorsDrawDemo := true;381

InvalRect(gWindowPtr^.portRect);382

end;383

end;384

{of case statement}385

end;386

end;387

{of case statement}388

389

HiliteMenu(0);390

end;391

{of procedure DoMenuChoice}392

393

{ ### UnloadSegments }394

395

procedure UnloadSegments;396

397

begin398

22-24 Miscellany

UnloadSeg(@DemosSegment);399

end;400

{of procedure UnloadSegments}401

402

end.403

{of unit UMain}404

405

{ ## }406

407

{ ##408

// UDemos.p409

// ### }410

411

unit UDemos;412

413

414

415

interface416

417

{ ……… include the following Universal Interfaces }418

419

uses420

421

Windows, Fonts, Menus, TextEdit, Dialogs, SegLoad, ToolUtils, Devices, GestaltEqu,422

Resources, Sound, Notification, Icons, Processes, ColorPicker, Traps, LowMem;423

424

{ ……… global variables }425

426

var427

428

gNotificationRecord : NMRec;429

gStartingTickCount : longint;430

gNotificationDemoInvoked : boolean;431

gNotificationInQueue : boolean;432

gInBackground : boolean;433

434

gWindowPtr : WindowPtr; external;435

gColorQuickDraw : boolean; external;436

gProcessSerNum : ProcessSerialNumber; external;437

438

{ …… function and procedure interfaces }439

440

procedure DemosSegment;441

procedure DoCommandPeriodAndStatusBar;442

procedure DoSetUpNotification;443

procedure DoDeviceLoopDraw(depth, deviceFlags : integer; targetDeviceHdl : GDHandle;444

userData : longint);445

procedure DoNullEvent;446

procedure DoOSEvent(theEvent : EventRecord);447

procedure DoColourPicker;448

function DoCheckSlotVInstallAvailable : boolean;449

procedure DoZoomWindowMultiMonitors(theWindowPtr : WindowPtr;450

zoomInOrOut : longint);451

452

453

454

implementation455

456

uses457

458

{ ……… include the following user-defined units }459

460

UMain;461

462

{ …… function and procedure interfaces }463

464

procedure DoDrawStatusBar(modalDlgPtr : DialogPtr; barRect : Rect;465

statusCurrent, statusMax : integer); forward;466

function DoCheckForCommandPeriod : boolean; forward;467

procedure DoPrepareNotificationRecord; forward;468

procedure DoDisplayMessageToUser; forward;469

function DoDecimalToHexadecimal(decimalNumber : UInt16) : string; forward;470

function TrapAvailable(theTrap : integer) : boolean; forward;471

procedure DoRedoWindowContent(theWindowPtr : WindowPtr); forward;472

473

{ ### DemosSegment }474

475

Miscellany 22-25

procedure DemosSegment;476

477

begin478

end;479

{of procedure DemosSegment}480

481

{ ## DoCommandPeriodAndStatusBar }482

483

procedure DoCommandPeriodAndStatusBar;484

485

var486

modalDlgPtr : DialogPtr;487

barBackColour, barColour : RGBColor;488

itemType : integer;489

itemHdl : Handle;490

itemRect : Rect;491

a, b, c, temp1, temp2 : integer;492

soundHdl : Handle;493

theRect : Rect;494

statusMax, statusCurrent : integer;495

finalTicks : UInt32;496

ignored : OSErr;497

498

begin499

EraseRect(gWindowPtr^.portRect);500

501

modalDlgPtr := GetNewDialog(rDialog, nil, WindowPtr(-1));502

if (modalDlgPtr = nil) then503

ExitToShell;504

505

DrawDialog(modalDlgPtr);506

SetPort(modalDlgPtr);507

508

if (gColorQuickDraw) then509

begin510

barBackColour.red := $BFFF;511

barBackColour.green := $BFFF;512

barBackColour.blue := $FFFF;513

514

barColour.red := $6FFF;515

barColour.green := $6FFF;516

barColour.blue := $6FFF;517

end;518

519

GetDialogItem(modalDlgPtr, iUserItem, itemType, itemHdl, itemRect);520

InsetRect(itemRect, -1, -1);521

FrameRect(itemRect);522

InsetRect(itemRect, 1, 1);523

524

if (gColorQuickDraw) then525

begin526

RGBBackColor(barBackColour);527

FillRect(itemRect, qd.white);528

RGBForeColor(barColour);529

end;530

531

SetPort(gWindowPtr);532

533

statusMax := 2184;534

statusCurrent := 0;535

536

for a := 0 to 7 do537

begin538

if (DoCheckForCommandPeriod) then539

begin540

soundHdl := GetResource('snd ', rBarkSound);541

ignored := SndPlay(nil, SndListHandle(soundHdl), false);542

ReleaseResource(soundHdl);543

DisposeDialog(modalDlgPtr);544

545

SetPort(gWindowPtr);546

EraseRect(gWindowPtr^.portRect);547

MoveTo(115, 110);548

ForeColor(blackColor);549

DrawString('Operation cancelled at user request');550

551

Exit(DoCommandPeriodAndStatusBar);552

22-26 Miscellany

end;553

for temp1 := 0 to 20 do554

begin555

b := temp1 * 18 + 12;556

for temp2 := 0 to 12 do557

begin558

c := temp2 * 18 + 8;559

SetRect(theRect, b + a, c + a, b + 16 - a, c + 16 - a);560

if (a < 3) then561

ForeColor(redColor)562

else if ((a > 2) and (a < 6)) then563

ForeColor(greenColor)564

else if (a > 5) then565

ForeColor(blueColor);566

FrameRect(theRect);567

568

DoDrawStatusBar(modalDlgPtr, itemRect, statusCurrent, statusMax);569

statusCurrent := statusCurrent + 1;570

end;571

Delay(2, finalTicks);572

end;573

end;574

575

DisposeDialog(modalDlgPtr);576

EraseRect(gWindowPtr^.portRect);577

MoveTo(150, 110);578

ForeColor(blackColor);579

DrawString('Operation completed');580

end;581

{of procedure DoCommandPeriodAndStatusBar}582

583

{ ## DoDrawStatusBar }584

585

procedure DoDrawStatusBar(modalDlgPtr : DialogPtr; barRect : Rect;586

statusCurrent, statusMax : integer);587

588

var589

barMaxWidth : integer;590

barRequiredWidth : real;591

592

begin593

SetPort(modalDlgPtr);594

595

barMaxWidth := barRect.right - barRect.left;596

barRequiredWidth := (statusCurrent / statusMax) * barMaxWidth;597

barRect.right := barRect.left + trunc(barRequiredWidth);598

599

if (gColorQuickDraw) then600

FillRect(barRect, qd.black)601

else602

FillRect(barRect, qd.gray);603

604

SetPort(gWindowPtr);605

end;606

{of procedure DoDrawStatusBar}607

608

{ ## DoCheckForCommandPeriod }609

610

function DoCheckForCommandPeriod : boolean;611

612

var613

foundCommandPeriod : boolean;614

eventQHdrPtr : QHdrPtr;615

eventQElPtr : EvQElPtr;616

keyCode : longint;617

commandKeyDown : longint;618

619

begin620

foundCommandPeriod := false;621

622

eventQHdrPtr := GetEvQHdr;623

eventQElPtr := EvQElPtr(eventQHdrPtr^.qHead);624

625

while ((eventQElPtr <> nil) and not (foundCommandPeriod)) do626

begin627

if (eventQElPtr^.evtQWhat = keyDown) then628

begin629

Miscellany 22-27

keyCode := BAnd(eventQElPtr^.evtQMessage, charCodeMask);630

631

commandKeyDown := BAnd(eventQElPtr^.evtQModifiers, cmdKey);632

633

if (commandKeyDown <> 0) then634

if (keyCode = ord('.')) then635

foundCommandPeriod := true;636

end;637

638

if not (foundCommandPeriod) then639

eventQElPtr := EvQElPtr(eventQElPtr^.qLink);640

end;641

642

DoCheckForCommandPeriod := foundCommandPeriod;643

end;644

{of function DoCheckForCommandPeriod}645

646

{ ## DoSetUpNotification }647

648

procedure DoSetUpNotification;649

650

begin651

DoPrepareNotificationRecord;652

gNotificationDemoInvoked := true;653

654

gStartingTickCount := TickCount;655

656

MoveTo(12, 100);657

DrawString('Please click on the desktop now to make the Finder ');658

DrawString('the frontmost application.');659

MoveTo(42, 120);660

DrawString('(This application will post a notification 10 seconds from now.)');661

end;662

{of procedure DoSetUpNotification}663

664

{ ## DoPrepareNotificationRecord }665

666

procedure DoPrepareNotificationRecord;667

668

var669

iconSuiteHdl : Handle;670

soundHdl : Handle;671

stringHdl : StringHandle;672

ignored : OSErr;673

674

begin675

ignored := GetIconSuite(iconSuiteHdl, rIconFamily, svAllSmallData);676

soundHdl := GetResource('snd ', rBarkSound);677

stringHdl := GetString(rString);678

679

gNotificationRecord.qType := nmType;680

gNotificationRecord.nmMark := 1;681

gNotificationRecord.nmIcon := iconSuiteHdl;682

gNotificationRecord.nmSound := soundHdl;683

gNotificationRecord.nmStr := stringHdl^;684

gNotificationRecord.nmResp := nil;685

gNotificationRecord.nmRefCon := 0;686

end;687

{of procedure DoPrepareNotificationRecord}688

689

{ ## DoNullEvent }690

691

procedure DoNullEvent;692

693

var694

frontProcessSerNum : ProcessSerialNumber;695

isSameProcess : boolean;696

ignored : OSErr;697

698

begin699

if (gNotificationDemoInvoked) then700

begin701

if (TickCount > (gStartingTickCount + 600)) then702

begin703

ignored := GetFrontProcess(frontProcessSerNum);704

ignored := SameProcess(frontProcessSerNum, gProcessSerNum, isSameProcess);705

if not (isSameProcess) then706

22-28 Miscellany

begin707

ignored := NMInstall(NMRecPtr(@gNotificationRecord));708

gNotificationDemoInvoked := false;709

gNotificationInQueue := true;710

end711

else begin712

DoDisplayMessageToUser;713

gNotificationDemoInvoked := false;714

end;715

716

EraseRect(gWindowPtr^.portRect);717

end;718

end;719

end;720

{of procedure DoNullEvent}721

722

{ ## DoOSEvent }723

724

procedure DoOSEvent(theEvent : EventRecord);725

726

begin727

case (BAnd(BSR(theEvent.message, 24), $000000FF)) of728

729

suspendResumeMessage: begin730

gInBackground := BAnd(theEvent.message, resumeFlag) = 0;731

if (not (gInBackground) and gNotificationInQueue) then732

DoDisplayMessageToUser;733

end;734

735

mouseMovedMessage: begin736

end;737

end;738

{of case statement}739

end;740

{of procedure DoOSEvent}741

742

{ ### DoDisplayMessageToUser }743

744

procedure DoDisplayMessageToUser;745

746

var747

ignored : OSErr;748

749

begin750

if (gNotificationInQueue) then751

begin752

ignored := NMRemove(NMRecPtr(@gNotificationRecord));753

gNotificationInQueue := false;754

end;755

756

ignored := NoteAlert(rAlert, nil);757

758

ignored := DisposeIconSuite(gNotificationRecord.nmIcon, false);759

ReleaseResource(gNotificationRecord.nmSound);760

ReleaseResource(Handle(gNotificationRecord.nmStr));761

end;762

{of procedure DoDisplayMessageToUser}763

764

{ ### DoColourPicker }765

766

procedure DoColourPicker;767

768

var769

inColour, outColour, blackColour : RGBColor;770

theRect : Rect;771

where : Point;772

prompt : Str255;773

okButton : boolean;774

theString : string;775

776

begin777

prompt := 'Choose a rectangle colour:';778

EraseRect(gWindowPtr^.portRect);779

780

inColour.red := $FFFF;781

inColour.green := $0000;782

inColour.blue := $0000;783

Miscellany 22-29

784

blackColour.red := $0000;785

blackColour.green := $0000;786

blackColour.blue := $0000;787

788

theRect := gWindowPtr^.portRect;789

InsetRect(theRect, 50, 50);790

RGBForeColor(inColour);791

FillRect(theRect, qd.black);792

793

where.v := 0;794

where.h := 0;795

796

okButton := GetColor(where, prompt, inColour, outColour);797

798

if (okButton) then799

begin800

RGBForeColor(outColour);801

FillRect(theRect, qd.black);802

RGBForeColor(blackColour);803

804

MoveTo(50, 20);805

DrawString('Red Value: ');806

theString := DoDecimalToHexadecimal(outColour.red);807

MoveTo(115, 20);808

DrawString(theString);809

810

MoveTo(50, 33);811

DrawString('Green Value: ');812

theString := DoDecimalToHexadecimal(outColour.green);813

MoveTo(115, 33);814

DrawString(theString);815

816

MoveTo(50, 46);817

DrawString('Blue Value: ');818

theString := DoDecimalToHexadecimal(outColour.blue);819

MoveTo(115, 46);820

DrawString(theString);821

end822

else begin823

RGBForeColor(inColour);824

FillRect(theRect, qd.black);825

RGBForeColor(blackColour);826

MoveTo(75, 125);827

DrawString('Cancel button was clicked. Rectangle remains red.');828

end;829

end;830

{of procedure DoColourPicker}831

832

{ ### DoDecimalToHexadecimal }833

834

function DoDecimalToHexadecimal(decimalNumber : UInt16) : string;835

836

var837

theString : string;838

hexCharas : string;839

a : integer;840

841

begin842

theString := 'OxXXXX';843

hexCharas := '0123456789ABCDEF';844

845

for a := 0 to 3 do846

begin847

theString[6 - a] := hexCharas[BAnd(decimalNumber, $F) + 1];848

decimalNumber := BSR(decimalNumber, 4);849

end;850

851

DoDecimalToHexadecimal := theString;852

end;853

{of function DoDecimalToHexadecimal}854

855

{ ### DoCheckSlotVInstallAvailable }856

857

function DoCheckSlotVInstallAvailable : boolean;858

859

begin860

22-30 Miscellany

DoCheckSlotVInstallAvailable := TrapAvailable(_SlotVInstall);861

end;862

{of function DoCheckSlotVInstallAvailable}863

864

{ ## TrapAvailable }865

866

function TrapAvailable(theTrap : integer) : boolean;867

868

var869

theTrapType : TrapType;870

trapMask : integer;871

numToolboxTraps : integer;872

873

begin874

trapMask := $0800;875

876

if (BAnd(theTrap, trapMask) > 0) then877

theTrapType := ToolTrap878

else879

theTrapType := OSTrap;880

881

if (theTrapType = ToolTrap) then882

theTrap := BAnd(theTrap, $07FF);883

884

if (NGetTrapAddress(_InitGraf, ToolTrap) = NGetTrapAddress($AA6E, ToolTrap)) then885

numToolboxTraps := $0200886

else887

numToolboxTraps := $0400;888

889

if (theTrap >= numToolboxTraps) then890

theTrap := _Unimplemented;891

892

TrapAvailable :=893

 NGetTrapAddress(theTrap, theTrapType) <> NGetTrapAddress(_Unimplemented, ToolTrap);894

end;895

{of function TrapAvailable}896

897

{ ### DoDeviceLoopDraw }898

899

procedure DoDeviceLoopDraw(depth, deviceFlags : integer; targetDeviceHdl : GDHandle;900

userData : longint);901

902

var903

theWindowPtr : WindowPtr;904

theRect : Rect;905

oldForeColour : RGBColor;906

green: RGBColor;907

red : RGBColor;908

blue : RGBColor;909

910

begin911

green.red := $6666;912

green.green := $FFFF;913

green.blue := $6666;914

red.red := $FFFF;915

red.green := $6666;916

red.blue := $6666;917

blue.red := $9999;918

blue.green := $9999;919

blue.blue := $FFFF;920

921

theWindowPtr := WindowPtr(userData);922

EraseRect(theWindowPtr^.portRect);923

924

case (depth) of925

926

1, 2: begin927

SetRect(theRect, 70, 40, 320, 200);928

FillRect(theRect, qd.ltGray);929

InsetRect(theRect, 30, 30);930

FillRect(theRect, qd.gray);931

InsetRect(theRect, 30, 30);932

FillRect(theRect, qd.dkGray);933

end;934

935

4, 8, 16, 32: begin936

GetForeColor(oldForeColour);937

Miscellany 22-31

SetRect(theRect, 70, 40, 320, 200);938

RGBForeColor(green);939

PaintRect(theRect);940

InsetRect(theRect, 30, 30);941

RGBForeColor(red);942

PaintRect(theRect);943

InsetRect(theRect, 30, 30);944

RGBForeColor(blue);945

PaintRect(theRect);946

RGBForeColor(oldForeColour);947

end;948

end;949

{of case statement}950

end;951

{of procedure DoDeviceLoopDraw}952

953

{ ## DoZoomWindowMultiMonitors }954

955

procedure DoZoomWindowMultiMonitors(theWindowPtr : WindowPtr; zoomInOrOut : longint);956

957

var958

oldPort : GrafPtr;959

windRect, intersectRect, zoomRect : Rect;960

titleBarHeight : integer;961

winStateDataPtr : WStateDataPtr;962

deviceHdl, zoomDeviceHdl : GDHandle;963

intersectArea, greatestArea : longint;964

sectFlag : boolean;965

966

begin967

GetPort(oldPort);968

SetPort(theWindowPtr);969

970

EraseRect(theWindowPtr^.portRect);971

972

windRect := theWindowPtr^.portRect;973

LocalToGlobal(windRect.topLeft);974

LocalToGlobal(windRect.botRight);975

titleBarHeight := windRect.top - WindowPeek(theWindowPtr)^.strucRgn^^.rgnBBox.top - 1;976

977

if (zoomInOrOut = inZoomOut) then978

begin979

if not (gColorQuickDraw) then980

begin981

zoomRect := qd.screenBits.bounds;982

zoomRect.top := zoomRect.top + LMGetMBarHeight + titleBarHeight;983

InsetRect(zoomRect, 3, 3);984

985

winStateDataPtr := WStateDataPtr(WindowPeek(theWindowPtr)^.dataHandle);986

winStateDataPtr^.stdState := zoomRect;987

end988

else begin989

windRect.top := windRect.top - titleBarHeight;990

991

deviceHdl := LMGetDeviceList;992

greatestArea := 0;993

994

while (deviceHdl <> nil) do995

begin996

if (TestDeviceAttribute(deviceHdl, screenDevice)) then997

if (TestDeviceAttribute(deviceHdl, screenActive)) then998

begin999

sectFlag := SectRect(windRect, deviceHdl^^.gdRect, intersectRect);1000

1001

intersectArea := longint((intersectRect.right - intersectRect.left) *1002

 (intersectRect.bottom - intersectRect.top));1003

1004

if (intersectArea > greatestArea) then1005

begin1006

greatestArea := intersectArea;1007

zoomDeviceHdl := deviceHdl;1008

end;1009

1010

deviceHdl := GetNextDevice(deviceHdl);1011

end;1012

end;1013

1014

22-32 Miscellany

if (zoomDeviceHdl = LMGetMainDevice) then1015

titleBarHeight := titleBarHeight + LMGetMBarHeight;1016

1017

SetRect(zoomRect, zoomDeviceHdl^^.gdRect.left + 3,1018

zoomDeviceHdl^^.gdRect.top + titleBarHeight + 3,1019

zoomDeviceHdl^^.gdRect.right - 3,1020

zoomDeviceHdl^^.gdRect.bottom - 3);1021

1022

winStateDataPtr := WStateDataPtr(WindowPeek(theWindowPtr)^.dataHandle);1023

winStateDataPtr^.stdState := zoomRect;1024

end;1025

end;1026

1027

ZoomWindow(theWindowPtr, zoomInOrOut, theWindowPtr = FrontWindow);1028

DoRedoWindowContent(theWindowPtr);1029

SetPort(oldPort);1030

end;1031

{of procedure DoZoomWindowMultiMonitors}1032

1033

{ ## DoRedoWindowContent }1034

1035

procedure DoRedoWindowContent(theWindowPtr : WindowPtr);1036

1037

begin1038

{ Do scroll bar and TextEdit, etc, adjustments here as appropriate. }1039

1040

InvalRect(theWindowPtr^.portRect);1041

end;1042

{of procedure DoRedoWindowContent}1043

1044

end.1045

{of unit UDemos}1046

1047

{ ### }1048

Demonstration Program Comments
When this program is run, the user should make choices from the Demonstration menu, taking the
following actions and making the following observations:

• Choose the Command-Period and Status Bar item, noting that the status bar dialog box is
disposed of when the (simulated) time-consuming task concludes.

• Choose the Command-Period and Status Bar item again, and this time press the Command-period
key combination before the (simulated) time-consuming task concludes. Note that the status
bar dialog box is disposed of when the Command-period key combination is pressed.

• Choose the Notification item and, observing the instructions in the window, click the
desktop immediately to make the Finder the foreground application. A notification will be
posted by Miscellany about 10 seconds after the Notification item choice is made. Note
that, when about 10 seconds have elapsed, the Notification Manager invokes an alert box and
alternates the Finder and Miscellany icons in the menu bar above the Application menu.
Observing the instructions in the alert box, dismiss the alert and then choose the
Miscellany item in the Application menu, noting the mark to the left of the item name.
When Miscellany comes to the foreground, note that the icon alternation concludes and that
an alert (invoked by Miscellany) appears. Dismiss this second alert box.

• Choose the Notification item again and, this time, leave Miscellany in the foreground.
Note that only the alert box invoked by Miscellany appears on this occasion.

• Choose the Notification item again and, this time, click on the desktop and then in the
Miscellany window before 10 seconds elapse. Note again that only the alert box invoked by
Miscellany appears.

• Choose the Color Picker item and make colour choices using both the HSL and RGB modes.
Note that, when the Color Picker is dismissed by clicking the OK button, the RGB colour
values for the chosen colour are displayed in hexadecimal, together with a rectangle in
that colour, in the Miscellany window.

• Choose the Trap Available Check item, noting the result returned by the functions which
perform this check. For the purposes of demonstration, the trap checked for is
_SlotVInstall, which is not available on black-and-white Macintoshes.

Miscellany 22-33

• Choose the Multiple Monitors Draw item, noting that the drawing of the simple demonstration
image is optimied as follows:

• On a monitor set to bit depths of 1 (black-and-white) and 2 (four colours), the image
is drawn in black-and-white using the patterns ltGray, Gray, and dkGray.

• On a monitor set to bit depths of 4 (16 colours) and higher, the image is drawn in
three colours.

(If the user's system does not have more than one monitor, this aspect of multiple monitors
handling can nonetheless be demonstrated by opening the Monitors control panel after the
Multiple Monitors Draw item has been chosen, selecting various colours and grays settings
(and the black-and-white setting), and observing the effects on the demonstration image.)

If the user's system has more than one monitor, the user should zoom the window in and out when
the window is on the main monitor, when it has been dragged to the second monitor, and when it
has been dragged to a position where it is partially displayed on both monitors, noting the
standard state, and the monitor, zoomed to in each case.

Note that the notification demonstration follows the same notification sequence as does
PrintMonitor. This particular demonstration does not, therefore, involve a response procedure.

Organisation of the source code files

Because the source code is divided into three files (UMain.p and UDemos.p), constants and global
variables used by all three files have been placed in UMain.p.

MiscellanyPascal.p

The main program block

The main function initialises the system software managers (Line 99), establishes whether Color
QuickDraw is present (Lines 103-107), sets up the menus (Lines 111-121), opens a window and sets
the text size (Lines 125-134), gets the process serial number of this process (Line 138), and
enters the main event loop (Lines 144-152).

Note that, at Line 151, the application-defined procedure UnloadSegments is called at the bottom
of the event loop after the event received by WaitNextEvent has been handled to completion.

UMain.p

The constant declaration block

Lines 183-192 establish constants relating to menu and window resource IDs, and to menu item
numbers. Lines 194-201 establish constants relating to resources.

The variable declaration block

gColorQuickDraw will be set to true if Color QuickDraw is present. gDone controls program
termination. gWindowPtr will be assigned the pointer to the window opened by the program.
gProcessSerialNum will be assigned the process serial number of the MiscellanyPascal application.
gMultiMonitorsDrawDemo will be set to true when the Multiple Monitors Draw item in the
Demonstration menu is chosen.

The procedures DoEvents and DoMouseDown

DoEvents and DoMouseDown perform minimal initial event handling consistent with the satisfactory
execution of the demonstration.

Note that, in the case of an update event which occurs after the Multiple Monitors Draw item in
the Demonstration menu has been chosen (Line 264), a call is made to DeviceLoop and the address
of the application-defined drawing procedure DoDeviceLoopDraw is passed as the second parameter
in this call (Lines 266-268).

Also note that, in the case of a mouseDown event in the window's zoom box, the application-
defined procedure DoZoomWindowMultiMonitors is called if the cursor is still within the zoom box
when the mouse button is released (Lines 313-314).

The procedure DoMenuChoice

DoMenuChoice further processes menu choices.

22-34 Miscellany

Lines 354-386 respond to choices from the Demonstration menu. Note that, at Lines 373-376, one
string or other will be drawn in the window depending on whether the trap-available check returns
true or false. Also note that, when the Multiple Monitors Draw item is chosen, the global
variable gMultiMonitorsDrawDemo is set to true and the window's port rectangle is invalidated so
as to force an update event and consequential call to DeviceLoop (Lines 380-382).

The procedure UnloadSegments

UnloadSegments unlocks, and marks as purgeable, the specified code segment, that is, the segment
in which the stub ("do nothing" routine) DemosSegment resides.

UDemos.p

The variable declaration block

gNotificationRecord's fields will be assigned values prior to the installation of the
notification request into the notification queue. gStartingTickCount will be assigned the number
of ticks since system startup, and gNotificationDemoInvoked will be set to true, at the time that
the user chooses Notification from the Demonstration menu. gNotificationInQueue will be set to
true after NMInstall is called to install the notification request in the queue. gInBackground
relates to foreground/background switching.

The procedure DemosSegment

DemosSegment is the stub, or "do nothing" routine, called by UnloadSegments at the bottom of the
main event loop.

The procedure
DoCommandPeriodAndStatusBar

DoCommandPeriodAndStatusBar is called when the user chooses Command-Period and Status Bar from
the Demonstration menu.

Line 500 erases the window's content region. Line 502 opens a dialog box using the specified
resource. Line 506 draws the contents of the dialog box (two static text items) and Line 507
sets the dialog box's graphics port as the current port preparatory to the drawing of the status
bar's box. If Color QuickDraw is present (Line 509), Lines 511-517 establish the colours to be
used for the status bar's background colour (light blue) and the moving status bar itself (grey).

One dialog box item is a user item. This item's rectangle is used to define the size and
location of the status bar's box. The call to GetDialogItem at Line 520 gets this rectangle.
Line 521 then expands this rectangle by one pixel all around before Line 522 draws a rectangle
frame. Line 523 returns the rectangle to its original size. If Color QuickDraw is present (Line
525), Lines 527-529 fill the rectangle with the status bar background colour and then set the
foreground colour to the moving status bar colour. That done, Line 532 sets the window's
graphics port as the current port.

Lines 537-574 will perform a simulated time-consuming task, represented to the user by the
drawing of a large number of coloured rectangles in the window. The task involves 2184 calls to
FrameRect. Accordingly, Line 534 assigns a value representing the number of steps in the task to
a variable. Line 535 sets a variable to indicate that none of these steps has yet been
completed.

Within the outer loop initiated at Line 537, Line 539 calls an application-defined function which
checks whether the user has pressed the Command-period key combination. If this key press has
occurred, Lines 541-552 execute. Specifically, Lines 541-542 load a 'snd ' resource and play the
sound, Line 543 frees the memory occupied by the 'snd ' resource, Line 544 disposes of the dialog
box, Lines 546-550 draw an advisory message in the window, and Line 552 causes
DoCommandPeriodAndStatusBar to exit.

Within the inner of the three loops, the rectangles are drawn (Lines 557-571). Each time round
this inner loop, an application-defined procedure is called (Line 569) to redraw the moving
status bar according to the value in the variable statusCurrent, which is incremented on each
cycle of the inner loop.

When the outer loop exits (that is, when the Command-period key combination is not pressed before
the simulated time-consuming task completes) Line 576 disposes of the dialog, and Lines 577-580
draw an advisory message in the window.

The procedure DoDrawStatusBar

DoDrawStatusBar draws the moving status bar.

Miscellany 22-35

Line 594 sets the dialog box's graphics port as the current graphics port. Lines 596-598 define
a rectangle so that the left, top, and bottom fields equate to those of the user item rectangle,
with the right field being assigned a value which bears the same relationship to the total width
of the status bar's box as does the variable statusCurrent to the variable statusMax. Lines 600-
603 draw the moving status bar in the previously set grey colour (Color QuickDraw present) or in
the gray pattern (Color QuickDraw not present). That done, Line 605 sets the window's graphics
port as the current graphics port.

The function DoCheckForCommandPeriod

DoCheckForCommandPeriod scans the event queue for a Command-period keyboard event.

Line 621 sets a variable so as to begin by assuming that such an event is not in the queue.

Line 623 gets a pointer to the event queue header. Line 624 gets a pointer to first queue
element. Line 626 initiates a loop which will scan the whole of the event queue, exiting only
when a Command-period key event is found in the queue or, if no such event is found, the entire
queue has been scanned.

Inside the loop, if a key-down event is found (Line 628), Line 630 gets the key code and Line 632
checks whether the Command key was down. If the Command key was down (Line 634), and if the
period key was the key pressed (Line 635), the variable foundCommandPeriod set to true (Line
636), causing the loop to exit. Otherwise, the loop calls up the next queue entry for
examination (Lines 639-640).

Line 643 returns the result of the search.

The procedure DoSetUpNotification

DoSetUpNotification is called when the user chooses Notification from the Demonstration menu.

Line 652 calls an application defined function which fills in the relevant fields of a
notification record. That done, Line 653 assigns true to a global variable which records that
the Notification item has been chosen by the user.

Line 655 saves the system tick count at the time that the user chose the Notification item. This
value is used later to determine when 10 seconds have elapsed following the execution of Line
655. Lines 657-661 simply draw some advisory text in the window.

The procedure DoPrepareNotificationRecord

DoPrepareNotificationRecord fills in the relevant fields of the notification record.

First, however, Line 676 creates an icon family based on the specified resource ID and the third
parameter, which limits the family to 'ics#', 'ics4' and 'ics8' icons. The GetIconSuite call
returns the handle to the suite in its first parameter. Line 677 loads the specified 'snd '
resource and gets its handle. Line 678 loads the specified 'STR ' resource and gets its handle.

Line 680 specifies the type of operating system queue. Line 681 specifies that the mark is to
appear next to the application's name in the Application menu. Lines 682-684 assign the icon
suite, sound and string handles previously obtained. Line 685 specifies that no response
procedure is required to be executed when the notification is posted.

The procedure DoNullEvent

DoNullEvent is called from the main event loop when a null event is received. (Note from Line
209 that the sleep parameter in the WaitNextEvent call is set to 30 (half a second) so that
DoNullEvent is called fairly frequently. Also, recall that the canBackground flag is set,
meaning that the application will receive null events when it is in the background.)

If the user has not just chosen the Notification item in the Demonstration menu (Line 700),
DoNullEvent simply returns immediately.

If, however, that item has just been chosen (Line 700), and if 10 seconds have elapsed since that
choice was made (Line 702), the following occurs:

• Lines 704-705 determine whether the current foreground process is Miscellany. If it is
not, the notification request is installed in the notification queue (Line 708) and a
global variable is set to indicate that a request has been placed in the queue by
Miscellany (Line 710). Also, Line 709 resets the gNotificationDemoInvoked variable to
false so as to ensure that Lines 702-717 only execute once after the Notification item is
chosen.

22-36 Miscellany

• If, however, the current foreground process is Miscellany (Line 712), an application-
defined procedure is called to present the required message to the user, via an alert box,
in the normal way (Line 713). Once again gNotificationDemoInvoked is reset to false so as
to ensure that Lines 702-717 only execute once after the Notification item is chosen.

The procedure DoOSEvent

DoOSEvent handles operating system events.

If the event is a resume event (that is, Miscellany is now in the foreground) and if the
notification request is still in the notification queue (Line 732), an application-defined
function is called to remove the notification request from the queue and have Miscellany convey
the required message to the user via an alert box (Line 733).

The procedure DoDisplayMessageToUser

DoDisplayMessageToUser is called by DoOSEvent and DoNullEvent in the circumstances previously
described.

If a Miscellany notification request is in the queue (Line 751), Lines 753-754 remove it from the
queue and set the gNotificationInQueue variable to reflect this condition. (Recall that, if the
nmResp field of the notification record is not assigned -1, the application itself must remove
the queue element from the queue.)

Regardless of whether there was a notification in the queue or not, Miscellany presents its alert
at Line 757 and the notification's icon suite, sound and string resources are released/disposed
of (Lines 759-761).

The procedure DoColourPicker

DoColourPicker is called when the user chooses Color Picker from the Demonstration menu.

Line 779 erases the window's content region. Lines 781-783 assign red to the RGBColor variable
to be specified as the inColor parameter of the GetColor call at Line 797. Lines 785-787 assign
black to another RGB colour variable.

Lines 789-792 draw a filled rectangle in the window in the inColor colour (red). Lines 794-795
assign 0 to the fields of the Point variable used as the first parameter in the GetColor call at
Line 797. ((0,0) will cause the Color Picker to be centred on the main screen.)

Line 797 displays the Color Picker's dialog box. GetColor retains control until the user clicks
either the OK button or the Cancel button.

If the user clicks the OK button (Line 799), Lines 801-821 draw a filled rectangle in the window
in the colour returned in GetColor's outColor parameter, and the values representing the red,
green, and blue components of this colour are displayed at the top of the window in hexadecimal.
Note that Lines 807, 813, and 819 call an application-defined function to convert the decimal
(unsigned 16-bit integer) values in the fields of the RGBColor variable outColor to hexadecimal.

If the user clicks the Cancel button (Line 823), a filled rectangle is drawn in the window in the
colour returned in GetColor's outColor parameter. (In this instance, since the Cancel button was
clicked, GetColor simply assigns the value in inColour to outColour. The rectangle is thus drawn
in the original red.)

The function DoDecimalToHexadecimal

DoDecimalToHexadecimal converts an unsigned 16-bit integer to a hexadecimal string.

The function DoCheckSlotVInstallAvailable

DoCheckSlotVInstallAvailable is called when the user chooses Trap Available Check from the
Demonstration Menu. It specifies the trap SlotVInstall, calls the application-defined function
which checks whether that trap is available, and returns the result of the check.

The function TrapAvailable

TrapAvailable checks for the existence of the trap passed to it in the theTrap parameter.

Before explaining the code, some backgound is necessary. All system routines are numbered, and
their addresses are contained in a table in RAM called the trap dispatch table. Routines which
are not implemented are also included in this table . Unimplemented routines contain the address
of a special "unimplemented trap" handler. This means that you can determine whether a trap is

Miscellany 22-37

implemented by finding its address and comparing it with the address of the unimplemented trap
handler. If the two are the same, the trap in question is not implemented.

There is, however, a complication: there are two different sizes of trap tables. The original
trap table had room for 512 Toolbox traps; the newer trap table has room for 1024.

With the introduction of the larger trap table, bit 9 of the trap word was used to distinguish
between the original traps and the newly-defined traps. Now, it so happens that, if you call
NGetTrapAddress to get the address of one of the new traps on a machine with the old-size trap
table, NGetTrapAddress will turn off bit 9 of the value passed in the trapNum parameter before
looking up and returning the address. You can take advantage of this behaviour to determine
which sized trap table is present.

The procedure is to call NGetTrapAddress twice, using two traps which differ only in their
setting of bit 9, and compare the result. (You must ensure, of course, that at least one of
these traps is sure to exist regardless of the trap table size present. _InitGraf ($A86E) is a
good choice in this regard. If you use _InitGraf in the first call, the second call would use
$AA6E (that is, $A86E with bit nine set).) If the addresses returned by NGetTrapAddress are the
same, then NGetTrapAddress must have turned off bit 9 of the trapNum parameter in the second
call, meaning that the new size trap table is not present.

One further detail remains: there are two types of traps (Toolbox traps and Operating System
traps) and you must pass the appropriate type in NGetTrapAddress' trapType parameter. Resolving
this issue is relatively straightforward, however. Operating System traps are numbered in the
range $A000 to $A7FF and Toolbox traps are numbered in the range $A800 to $AFFF. Thus bit 11 of
the trap word will be on if the trap is a Toolbox trap but not if it is an Operating System trap.
Accordingly, all that is required is to test bit 11 of the trap number.

Also of relevance is the fact that all system routines on the 680X0 Macintosh are implemented as
so-called A-traps, that is, Motorola 68000 instructions which begin with the digit $A. 68000
instructions are 16 bits long and the $A takes the first four bits, leaving the least significant
12 bits to define the rest of the trap.

Now to the code.

Lines 877-880 determine whether the trap is a Toolbox trap or an Operating System trap by testing
bit 11.

If the trap is a Toolbox trap, Lines 882-883 change the value in theTrap to the value which would
obtain if Toolbox traps were numbered from $A000 rather than from $A800.

Lines 885-888 get the size of the trap table. If the value in the variable theTrap is such that
the trap cannot be present in a table of this size (Line 890), then the trap is clearly not
present. Accordingly, Line 891 changes the value in theTrap to _Unimplemented, in which case
Line 894 will return false.

On the other hand, even if the trap number is within the size of the trap table present, the
check at Line 894 is still required. In this case, Line 894 will only return true if the
addresses returned by the two calls to NGetTrapAddress are equal.

POSSIBLE OBSOLETE CODE

As stated above, the original trap table had room for 512 Toolbox traps, while the newer trap
table has room for 1024. This latter has been the case since Color QuickDraw was introduced.
Accordingly, if your application is not intended for machines without Color QuickDraw, Line
872 and Lines 875-891 (which check for the expanded trap table) may be regarded as obsolete
code and may thus be deleted.

The procedure DoDeviceLoopDraw

DoDeviceLoopDraw is the drawing procedure whose address is passed as the second parameter in the
DeviceLoop call at Line 256. (Recall that the DeviceLoop call is made whenever the Multiple
Monitors Draw item in the Demonstration menu has been selected and an update event is received.)
DeviceLoop scans all active video devices, calling DoDeviceLoopDraw whenever it encounters a
device which intersects the drawing region, and passing certain information to DoDeviceLoopDraw.

Line 922 typecasts the long value received in the userData parameter to a WindowPtr. Line 923
erases the port rectangle of the specified window.

Line 925 branches according to the value received in the depth parameter. If the depth parameter
indicates a pixel depth of 1 or 2, three overlapping rectangles are drawn using the ltGray, Gray,
and dkGray patterns. If the depth parameter indicates a pixel depth of 4 to 32, the same
rectangles are drawn, but in the colours green, red, and blue.

22-38 Miscellany

The procedure DoZoomWindowMultiMonitors

DoZoomWindowMultiMonitors is called when the user clicks in the window's zoom box.

Lines 968-969 save and set the current graphics port. Line 971 erases the window's port
rectangle prior to the zoom so as to avoid flicker. Lines 973-976 get the height of the window's
title bar, which will be used later if the window is being zoomed "out" to the standard state.

Lines 979-1026 execute only if (Line 978) the direction of the zoom is "out" to the standard
state . The purpose of this block of code is to determine the standard state rectangle and, in a
multi-monitors environment, which monitor the zoomed window is to be displayed on.

Multiple monitors cannot be supported unless Color QuickDraw is present. Accordingly, Line 980
determines if multiple monitors have to be catered for. If not, Lines 982-987 simply establish a
rectangle three pixels inside the screen's gray area and assign this rectangle to the stdState
field of the window's state data record.

If, on the other hand, the possibility of multiple monitors has to be catered for (that is, Color
QuickDraw is present) (Line 989):

• Line 990 establishes a rectangle equal to the window's port rectangle, plus the window's
title bar, in global coordinates. Line 992 gets a handle to the first gDevice record in
the device list and Line 993 sets the variable greatestArea to 0. The while loop entered
at Line 995 then walks the device list. For each active video device the associated
gDevice record's gdRect field is compared to the window's rectangle by a call to SectRect.
If the two rectangles intersect:

• The coordinates of the intersection are assigned to the intersectRect variable.

• The area of the intersection rectangle is calculated and stored in the variable
intersectArea (Line 1002).

• If the new value in intersectArea is greater than that calculated during any previous
pass through the loop, the variable zoomDeviceHdl is assigned the GDHandle of the
device currently being examined (Line 1008).

• Line 1011 gets the handle to the next device in the device list. The while loop exits when
this call returns NULL. When the while loop exits, the contents of the variable
zoomDeviceHdl represents the video device on which the window should be zoomed to the
standard state, that is, the device on which the largest area of the window currently
appears.

• If this device is the main device (Line 1015), the height of the menu bar is added to the
value in the variable which holds the window's title bar height.

• Lines 1018-1021 then establish the standard state rectangle. This is three pixels inside
the rectangle contained in the gdRect field of the device's gDevice record, but with the
top adjusted to account for the height of the title bar (and the menu bar if the device is
the main device). Lines 1023-1024 then assign this rectangle to the stdState field of the
window's state data record.

Line 1028 calls ZoomWindow to zoom the window in the appropriate direction, following which an
application-defined procedure is called (Line 1029) to redraw the window contents as appropriate.
Finally, the saved graphics port is restored (Line 1030).

The procedure DoRedoWindowContent

DoRedoWindowContent is called by DoZoomWindowMultiMonitors to redraw the content region of a
newly-zoomed window. Line 1041 invalidates the window's port rectangle, forcing an update event.

