
Lists and Custom List Definition Functions 18-1

18Version 1.2 (Frozen)

LISTS AND CUSTOM LIST DEFINITION
FUNCTIONS
Includes Demonstration Program ListsPascal

Introduction to Lists

If you need the user to be able to select a single item from a small group of items, you typically provide a
pop-up menu. Pop-up menus, however, do not allow the user to select multiple items from a group of
items, are not especially suitable for the presentation of large numbers of items, cannot present items in
columns as well as rows, and are not suited to the presentation of graphics (such as icons) as items.
Furthermore, the items in a pop-up menu remain displayed only as long as the user holds the mouse
button down.

By using lists to present a group of items to the user, you can overcome these limitations. Although lists,
like pop-up menus, may be used to solicit the user's choices, they can also be used to simply present
information. Perhaps the most familiar example of such a list is that at the bottom of the window opened
when you choose About This Macintosh… from the Apple menu.

In essence, then, the List Manager allows you to create either one-column or multi-column scrollable lists
which may be used to simply present items of information or, more generally, to enable the user to select
one or more of a group of items.

By default, the List Manager creates lists which contain only monostyled text. However, with a little
additional effort, you can create lists which display items graphically (as does the list on the left side of the
window opened when you choose Chooser from the Apple menu), or which display more than one type of
information in each item (as does the list in the About This Macintosh… window).

List Manager Limitations

Although the List Manager can handle small, simple lists effectively, it is not suitable for displaying large
amounts of data such as, for example, those used by a spreadsheet application. The List Manager cannot
maintain lists whose data occupies more than 32 KB of memory.

A further minor limitation is that the List Manager expects all cells to be equal in size.

Appearance and Features of Lists

Fig 1 shows a dialog box with two typical single-column lists. The items in the list on the left are
exclusively text items and the items in the list on the right are recorded pictures comprising a graphic and
a title string. The list on the left supports the selection of multiple items.

18-2 Lists and Custom List Definition Functions

To create a list with graphical elements, such as the list at the right at Fig 1, you must write a custom list
definition procedure (see below), because the default list definition procedure only supports the display
of text.

FIG 1 - DIALOG BOX WITH TWO LISTS

Cells, Cell Font, and Cell Highlighting

Cells

A list is a series of items displayed within a rectangle. Each item is contained within an invisible
rectangular cell. All cells within a list are of the same size, but cells may contain different types of data.

Cell Font

Lists inherit the font of the graphics port associated with the window or dialog box in which they reside.
Ordinarily, your text-only lists should use the system font (Chicago) with a size of 12 points.

Regardless of the font your application uses, if a string is too long to fit in its cell using the current font, the
List Manager uses condensed type in an effort to make it fit. If the string is still too long, the List Manager
truncates the string an appends the ellipsis character.

Cell HighLighting

Your application may or may not allow the user to select one or more cells in a list. If your application
allows users to select cells, then, when the user selects a cell, the List Manager automatically highlights that
cell.

Scroll Bars and Size Boxes

Scroll Bars

Lists may contain a vertical scroll bar (see Fig 1), a horizontal scroll bar, or both. By using scroll bars, you
can include more items in a list than can fit within the list's display rectangle, and the user can then scroll
the list to view multiple items. If a list includes a scroll bar but the number of cells is such that they are all
visible, the List Manager automatically disables the scroll bar.

Size Box

Your application can specify whether the List Manager should leave room for a size box, although your
application is responsible for drawing the grow icon within that box. Usually, size boxes are useful only
for lists that are at the bottom of windows which contain them.

When you include a size box, your application should ensure that the user cannot shrink the window so
much that the list is no longer visible.

Lists and Custom List Definition Functions 18-3

Selection of Cells Using The Mouse

LClick

Your application must call LClick whenever a mouse-down occurs in an active list. LClick handles all
user interaction until the user releases the mouse button. This includes cell highlighting and, when the
user drags the mouse outside the list's display rectangle, automatic list scrolling. LClick also examines the
state of the Shift and Command keys, which are central to the process of multiple cell selection in lists.

Multiple Cell Selection Using the Default Cell-Selection Algorithm

The List Manager's cell-selection algorithm allows the user to select a contiguous range of cells, or even
several discontiguous ranges of cells, by using the Shift and Command keys in conjunction with the
mouse.1 The following describes the default cell-selection behaviour.2

Cell Selection With the Shift Key

The user can extend a selection of just one cell to several contiguous cells by pressing the Shift key and
clicking another item. By clicking and dragging with the Shift key down, the user can extend or shrink the
range of selected cells. If the cursor is dragged outside the list's display rectangle, the list will scroll so as
to enable the user to include cells which were not initially visible.

Cell Selection With the Command Key

To add or remove a range of cells from the current selection, the user can press the Command key and
then drag the cursor over the other cells. The List Manager determines whether to add or remove
selections in a range of cells by checking the status of the first cell clicked in. If that cell is initially selected,
then Command-dragging deselects all cells in the range over which the cursor passes. If, on the other
hand, that cell is initially not selected, Command-dragging selects all cells in the range over which the
cursor passes.

Once the user changes a cell's selection status by Command-dragging over a cell, the selection status of the
cell stays the same for the duration of the drag even if the user moves the cursor back over that cell. The
effect of the Command key thus differs from that of the Shift key in this respect.

Shift-Clicking — Discontiguous Cells Selected

If the user Shift-clicks a cell after having created discontiguous selection ranges, the discontiguity is lost.
The List Manager selects all cells in the range of the first selected cell (that is, the selected cell closest to the
top of the list) and the newly selected cell — unless the newly selected cell precedes the first selected cell,
in which case the List Manager selects all cells in the range of the newly selected cell and the last selected
cell (that is, the selected cell closest to the bottom of the list.)

Customising the Cell-Selection Algorithm

As will be seen, the List Manager's cell-selection algorithm may easily be customised so as to modify its
default behaviour. Probably the most common modification is to defeat multiple cell selection, allowing
the user to select only one cell.

Selection of Cells Using the Keyboard

Some users prefer to use the keyboard to select cells in lists. Your application should support the selection
of cells using the keyboard in two ways:

1If the user presses both the Shift and Command keys when clicking a cell, the Shift key is ignored.
2The default behaviour is somewhat complex and is probably best explored by experimenting with the text-only list in the demonstration
program. That list uses the default cell-selection algorythm.

18-4 Lists and Custom List Definition Functions

• Cell Selection Using Arrow Keys. Your application should support the use of the Arrow keys to
move and extend cell selections.

• Type Selection. If your application uses text-only lists (or lists whose items can be identified by text
strings), your application should allow the user to select an item by simply typing the text associated
with that item. This method of cell selection is known as type selection .

The List Manager does not provide any routines to support cell selection by Arrow key or type selection.
Accordingly, your application must supply all of the necessary code. The following describes what that
code should do.

Moving the Selection Using Arrow Keys

Shift and Command Keys Not Down

When the user presses an Arrow key, and is not at the same time pressing the Shift or Command key, the
user is attempting to move the selection by one cell.

If the user presses the Up Arrow, for example, your application should respond by selecting the cell which
is above the first selected cell and by deselecting all other selected cells. (Of course, if the first selected cell
is the topmost cell in the list, your application should respond by simply deselecting all cells other than the
first selected cell.) If necessary, your application should then scroll the list to ensure that the newly-
selected cell is visible.

Command Key Down

When the user presses an Arrow key while the Command key is down, your application should move the
first selected cell or the last selected cell, depending on which arrow key is used, as far as it can move in
the appropriate direction. For example, in a single-column list, pressing of the Up Arrow key should select
the first cell in the list and deselect all other cells. Once again, your application should scroll the list, if
necessary, to ensure that the newly-selected cell is visible.

Extending the Selection Using Arrow Keys

When the user presses an Arrow key while the Shift key is down, the user is attempting to extend the
selection. There are two different algorithms your application can use to respond to Shift-Arrow key
combinations: the extend algorithm and the anchor algorithm. The easiest one to implement is the
extend algorithm.

The Extend Algorithm

Using the extend algorithm, your application simply finds the first (or last) selected cell, and then selects
another cell in the direction of the Arrow key. For example, if the user presses Shift-Down Arrow in a
single-column list, the application should find the last selected cell and select the cell immediately below it,
or, if the user presses Shift-Up Arrow, the application should find the first selected cell and select the cell
above it. As always, the list should then be scrolled, if necessary, to make the newly-selected cell visible.

Type Selection

In a text-only list, when the user types the text of an item in a list, your application should respond by
scrolling to the cell containing that text and selecting it.

However, rather than requiring the user to type the entire text of the item before searching for a match,
your application should repeatedly search for a match as each character is entered. Accordingly, every
time the user types a character, your application should add it to a string. If this string is currently two
characters long, for example, your application should then walk the cells of the list, comparing these two
characters with the first two characters of the text in each cell. If a match is found, that cell should be
selected and the list scrolled, if necessary, to make the cell visible.

Lists and Custom List Definition Functions 18-5

Your application should automatically reset the internal string to a null string when the user has not
pressed a key for a given amount of time. To make your application consistent with other applications and
the Finder, this time should be twice the number of ticks contained in the low memory global KeyThresh or
120 ticks, whichever is the greater.3

Implementing Type Selection

To implement type selection, your application must keep a record of the characters the user has typed, the
time when the user last typed a character, the amount of time which must elapse since that last character
was typed before the type selection string is reset, and which list the last typed character affected. The
following shows the variables you might use for this purpose, together with their usage:

Variable Name Type Usage
gTSString Str255 Stores the string which represents current status of the type selection.
gTSThresh integer Stores the number of ticks after which type selection resets. For example,

if the user types "abcde'" but waits for more than gTSThresh, before
typing "f", the application should set gTSString to "f", not "abcdef".

gTSElapse longint Stores the time in ticks of the last key-down.
gTSLastListHit ListHandle Stores the list affected by the last typed character.

Creating, Disposing Of, and Managing Lists

The List Record

The list record, which the List Manager uses to keep track of information about a list, is central to the
creation and management of lists. In most cases, your application can get or set information in a list record
using List Manager routines.

Before describing the list record, however, it is necessary to describe another data type used exclusively by
the List Manager, that is, the Cell data type.

The Cell Data Type

Each cell in a list can be described by a data structure of type Cell, which has the same structure as the
Point data type:

typedef Point Cell;

The Cell data type's fields, however, have a different meaning from those of the Point data type. In the
Cell data type, the h field specifies the row number and the v field specifies the column number. The first
cell in a list is defined as cell (0,0). Fig 2 shows a multi-column list in which each cell's text is set to the
coordinates of the cell.

FIG 2 - COORDINATES OF CELLS

3The value in KeyThresh is set by the user at the "Delay Until Repeat" section of the Keyboard control panel.

18-6 Lists and Custom List Definition Functions

The ListRec Data Type

The list record is defined by the ListRec data type:

type

ListRec = record
rView: Rect;
port: GrafPtr;
indent: Point;
cellSize: Point;
visible: ListBounds;
vScroll: ControlRef;
hScroll: ControlRef;
selFlags: SInt8;
lActive: boolean;
lReserved: SInt8;
listFlags: SInt8;
clikTime: longint;
clikLoc: Point;
mouseLoc: Point;
lClickLoop: ListClickLoopUPP;
lastClick: Cell;
refCon: longint;
listDefProc: Handle;
userHandle: Handle;
dataBounds: ListBounds;
cells: DataHandle;
maxIndex: integer;
cellArray: array [0..0] of integer;

end;

ListPtr = ^ListRec;
ListHandle = ^ListPtr;
ListRef = ListHandle;

Field Descriptions

rView Specifies the list's display rectangle in the local coordinates of the graphics port specified by the
port field (see below). Note that the display rectangle does not include the area occupied by a
list's scroll bars.

port The graphics port of the window containing the list.

indent Indicates the location, relative to the upper left corner of the cell, at which drawing should begin.
For example, the default list definition procedure sets the vertical coordinate of this field to near
the bottom of the cell so that characters drawn with QuickDraw's DrawText procedure are
centred vertically in the cell.

cellSize Specifies the size in pixels of each cell in the list. For text-only lists, you usually let the List
Manager automatically calculate the cell dimensions. In this case, the List Manager determines
the vertical size of a cell by adding the ascent, descent and leading of the port's font (which
works out as 16 pixels for 12-point Chicago, for example). You should make the height of your
list equal to a multiple of this height. The default horizontal size of a cell is determined by
dividing the width of the list's display rectangle by the number of columns in the list.

visible The visible field specifies which cells in a list are visible within the rectangle specified by the
rView field. The List Manager sets the left and top fields to the coordinates of the first visible
cell, and it sets the right and bottom fields to so that each is one greater than the horizontal and
vertical coordinates of the last visible cell. For example, if a list contains 4 columns and 10 rows
but only the first two columns and five rows are visible (that is, the last visible cell has
coordinates (1,4), the List Manager sets the visible field to (0,0,2,5).

The List Manager sets the right and bottom fields to one greater than the horizontal and vertical
coordinates of the last visible cell so as to facilitate the use of QuickDraw's PtInRect routine to
determine whether a cell is currently visible. When PtInRect is used for this purpose, a Cell

Lists and Custom List Definition Functions 18-7

variable is passed as the first parameter and the visible field is passed as the second parameter.
Recall from Chapter 10 — Basic QuickDraw that the mathematical borders of a rectangle are
infinitely thin and that the displayed rectangle of pixels "hangs" down and to the right of the
mathematical rectangle. When PtInRect's parameters are expressed as cell coordinates, it is the
cells which "hang" down and to the right of the mathematical rectangle. Thus, in the above
example, if the cell passed as the first parameter to PtInRect specifies row 5 or higher or column
2 or higher, PtInRect returns false.

The fact that the visible field is set in this way also means that the number of visible rows and
columns may be determined by simply subtracting the value in the top field from the value in
the bottom field (rows) and the value in the left field from the value in the right field
(columns).

vScroll A handle to the vertical scroll bar, or nil if the list does not have a vertical scroll bar.

hScroll A handle to the horizontal scroll bar, or nil if the list does not have a horizontal scroll bar.

selFlags Specifies the algorithm the List Manager uses to select cells in response to a click in the list.

lActive true if a list is active or false if it is inactive. Do not change this field directly. Use LActivate to
activate or deactivate a list.

listFlags Indicates whether automatic vertical and horizontal scrolling is enabled. If automatic scrolling is
enabled, then a list scrolls when the user clicks a cell and then drags the cursor out of the
rectangle specified by the rView field. By default, the List Manager enables automatic scrolling if
the list has the associated scroll bar (horizontal or vertical). The following constants define bits
in this field which determine whether horizontal or vertical autoscrolling are enabled:

lDoVAutoscroll = 2, { Allows vertical scrolling.}
lDoHAutoscroll = 1, { Allows horizontal scrolling.}

clikTime Indicates the time when the user last clicked the mouse.

clikLoc Indicates the local coordinates of the last mouse click.

mouseLoc Indicates the current location of the cursor in local coordinates. Ordinarily you would use the
Event Manager's GetMouse routine to obtain this information, but this field may be more
convenient to access from within a click-loop procedure (see below).

lClikLoop Contains a pointer to a click-loop procedure continually called by LClick, or nil if the default
click loop procedure is to be used. Your application may place a pointer to a custom click-loop
procedure in this field.

It is unlikely that your application will need to define its own click-loop procedure because the
List Manager's default click-loop procedure uses a rather robust algorithm to respond to mouse
clicks. Your application needs a custom procedure only if it needs to perform some special
processing while the user drags the cursor after clicking in a list.

lastClik Indicates the cell coordinates of the last click. You can access the value in this field using
LLastClick. If your application depends on the accuracy of the information in this field and the
clikTime and clikLoc fields, and if your application treats keyboard selection of list items
identically to mouse selection of list items, then it should update the values of these fields after
highlighting a cell in response to a keyboard event.

refCon For your application's use.

listDefProcContains a handle to the code used by the list definition procedure.

userHandle For your application's use. Typically, an application uses this field to store a handle to some
additional storage associated with a list.

18-8 Lists and Custom List Definition Functions

dataBounds Specifies the total cell dimensions of the list, including cells which are not visible. It is similar to
the visible field in that its right and bottom fields are each set to one greater than the horizontal
and vertical coordinates of the last cell — except that, in this case, the "last cell" is the last cell in
the list, not the last cell in the display rectangle. For example, if a list contains 4 columns and 10
rows (that is, the last cell in the list has coordinates (3,9)), the List Manager sets the dataBounds
field to (0,0,4,10).

cells Contains a handle to a relocatable block used to store cell data. The handle is defined like this:

type
DataArray = packed array [0..32000] of char;

Because of the way the cells field is defined, therefore, no list can contain more than 32,000
bytes of data.

cellArray Used to store offsets to data in the relocatable block specified by the cells field. Your
application should not change the cells field directly or access the information in the cellArray
field directly. The List Manager provides routines for manipulating the information in the list.

The fields of a list record that you will be most concerned with are the rView, port, cellSize, visible, and
dataBounds fields.

Creating a List

LNew

You create a list using LNew:

function LNew(var rView: Rect; var dataBounds: ListBounds; cSize: Point;
 theProc: integer; theWindow: WindowRef; drawIt: boolean;
 hasGrow: boolean; scrollHoriz: boolean; scrollVert: boolean): ListRef;

rView The rectangle in which to display the list, in local coordinates. (Does not include the area
taken up by the list's scroll bars.)

dataBounds The initial data bounds for the list. Set the left and top fields to (0,0) and the right and
bottom fields to (kInitialColumns, kInitialRows), to create a list with kInitialColumns
columns and kInitialRows rows.

cSize The size of each cell in the list. If your application specifies (0,0) and is using the default
list definition procedure, the List Manager computes the size automatically, setting the v
field to the sum of the ascent, descent, and leading of the current font and the h field
using the following formula:

cSize.h = (rView.right - rView.left) / (dataBounds.right - dataBounds.left)

theProc The resource ID of the list definition procedure to use for the list. To use the default list
definition procedure, specify 0.

theWindow Pointer to the window in which to install the list.

drawIt Indicates whether automatic drawing mode is initially enabled. When automatic
redrawing is enabled (by setting this parameter to true), the list is automatically redrawn
whenever a change is made to it.

You can later change this setting using LSetDrawingMode. If your application chooses to
disable automatic drawing mode (for example, for aesthetic reasons while adding rows
and columns to a list) it should do so only for short periods of time.

hasGrow Indicates whether space should be left for a size box. (Recall that the List Manager does
not draw the grow icon. That is the responsibility of your application)

scrollHorizSpecify true if your list requires a horizontal scroll bar, otherwise specify false.

Lists and Custom List Definition Functions 18-9

scrollVert Specify true if your list requires a vertical scroll bar, otherwise specify false.

Drawing Borders Around the List

One-Pixel-Wide Border. The List Manager does not draw a border around the list. Accordingly, a one-
pixel-wide border should be drawn by your application. This should be one pixel outside the rectangle
stored in the rView field of the list record.

Two-Pixel-Wide Border. In a window with multiple lists, you need to indicate to the user which list is
the current list, that is, which list is the target of current mouse and keyboard activity.4 The convention is
to draw a 2-pixel-wide border around the current list, with one pixel of white space separating it from the
one-pixel-wide border (see the list on the right at Fig 1). The outline should be removed when the window
or dialog box containing the lists is deactivated.

Creating Lists in Dialog Boxes

List are often used in dialog boxes. Because the Control Manager does not define a control for lists, you
must define a list in a dialog item list as a user item.

Disposing of a List

When you are finished with a list, you should dispose of it using LDispose, which disposes of the list
record as well as the data associated with the list. LDispose does not, however, dispose of any application-
specific data you may have stored in a relocatable block specified by the userHandle field of the list record.
This should be separately disposed of before the call to LDispose.

Adding Rows and Columns to a List

When an application creates a list, it might choose to, for example, pre-allocate the columns it needs and
then add rows to the list one by one. It might also create the list and add both rows and columns to it later.

Rows are inserted into a list using LAddRow and deleted using LDelRow. Columns are inserted in a list using
LAddColumn and deleted using LDelColumn.

Disabling and Enabling the Automatic Drawing Mode

LSetDrawingMode should be used to turn off the automatic drawing mode before making changes to a list.
After the changes have been made LSetDrawingMode should be called again, this time to turn the automatic
drawing mode back on.

InvalRect should be called after the second call to LSetDrawingMode to invalidate the rectangle containing
the list and its scroll bars. (LUpdate, which should be called when your application receives an update
event, will then redraw the list.)

Responding to Events in a List

Mouse-Down Events

As previously stated, when a mouse-down event occurs in a list, including in the associated scroll bar
areas, your application must call LClick. If the click is outside the list's display rectangle or scroll bars,
LClick returns immediately, otherwise it handles all user interaction until the user releases the mouse
button. While the mouse button is down, the List Manager performs scrolling as necessary, selects or de-
selects cells as appropriate, and adjusts the scroll bars.

Note that LClick returns true if the click was a double click. If the list is in a dialog box, your application
should respond to a double click in the same way that it would respond to a click on the default (OK)
button.

4A single list in a window should also be outlined with a 2-pixel-wide outline if keyboard input could have some other effect in the window not
related to the list (for example, if the list is in a dialog box containing both a list and an editable text item).

18-10 Lists and Custom List Definition Functions

In the case of multiple lists, if the mouse-down occurs inside a non-current list's display rectangle or scroll
bar area, your application should call its application-defined routine for changing the current list.

Key-Down Events

If a key-down event is received, and assuming that your application supports cell selection by Arrow key
and/or type selection, your application should call its appropriate application-defined routines. In the
case of multiple lists, your application should also respond to Tab key presses by changing the current list.

Update Events

If an update event is received, your application must call LUpdate to redraw the list. The region specified
in the first parameter to the LUpdate call is usually the window's visible region as retrieved from the
graphics port's visRgn field.

Your application will also need to call its application-defined routines for drawing the one-pixel-wide list
border and, in the case of a window with multiple lists, the two-pixel-wide border around the current list.

Activate Events

If a window containing a list is activated or deactivated, your application must call LActivate to activate or
deactivate the list as appropriate. In addition, if the window contains multiple lists, the two-pixel wide
border around the current list should be erased when the window is being deactivated and drawn when
the window is being activated.

If your application supports type selection in a list, it will also need to reset certain type selection variables
when the window containing that list is activated.

Getting and Setting List Selections

The List Manager provides routines for determining which cells are currently selected and for selecting
and deselecting cells. LGetSelect is used to either determine whether a specified cell is selected or to keep
advancing from a specified starting cell until the next selected cell is found. LSetSelect is used to select or
deselect a specified cell.

LNextCell, which simply advances from one cell in a list to the next, is often used in application-defined
functions associated with getting and setting list selections.

Scrolling a List

LAutoScroll may be used to scroll the first selected cell to the upper-left corner of the list's display
rectangle.

LScroll allows your application to scroll the list by a specified number of rows and/or columns.
Typically, you would use LScroll when you want your application to scroll a list just enough so that a
certain cell (such as the cell the user has just selected using the an Arrow key or type selection) is visible.

Storing, Adding To, Getting, and Clearing Cell Data

Storing Data

Your application can store data in a cell using LSetCell. LSetCell's parameters include a pointer to the
data, the length of the data, the location of the cell whose data you wish to set, and a handle to the list
containing the cell. The data stored in a cell might be sourced from, for example, a string list resource.

Adding to Data

Your application can append data to a cell using LAddToCell.

Lists and Custom List Definition Functions 18-11

Getting Cell Data

LGetCell may be used to copy the contents of a cell into a buffer. LGetCellDataLocation may be used to
obtain the address and length of a cell's data. Unlike LGetCell, LGetCellDataLocation does not make a
copy of the data, and should thus be used when you want to access, but not manipulate, the data.

Clearing Data

Your application can remove all data from a cell using LClrCell.

Searching a List

Your application can use LSearch to search through a list for a particular item. LSearch takes, as one
parameter, a pointer to a match function. If nil is specified for this parameter, LSearch searches the list
for the first cell whose data matches the specified data, calling the Text Utilities IdenticalString routine
(old name IUMagIDString) to compare each cell's data with the specified data until IdenticalString
returns 0, indicating that a match has been found.

Custom Match Functions

The default match function is useful for text-only lists. Your application can use a different match function
to facilitate searches in other types of lists as long as that function is defined just like UMagIDString.

A common custom match function is one which supports type selection in lists, that is, one which works
like the default match function but which allows the cell data to be longer than the data being searched for.
For example, a search for the string "be" would match a cell containing the string "Beams".

Changing the Current List

As previously stated, when a window or dialog box contains multiple lists, your application should allow
the user to change the current list by clicking in one of the non-current lists or by pressing the Tab key or
Shift-Tab. In a window with more than two lists, Tab key presses should make the next list in a pre-
determined sequence the current list, and Shift-Tab should make the previous list in that sequence the
current list. The pre-determined sequence is best implemented using a linked ring.

Linked Ring

Your application can use the refCon field of each list record to create the linked ring. The refCon field of
the first list is assigned the handle to the second list, the refCon field of the second list is assigned the
handle to the third list, and so on, until the refCon field of the last list is assigned the handle to the first list.
Then, in response to a Tab key press in the current list, your application can determine the next list in the
sequence by looking at the current list's refCon field.

Responding to Shift-Tab is a little more complex. The following example application-defined function
shows how this can be done:

gCurrentListHdl : ListHandle;

procedure DoFindPreviousListInRing;

var
listHdl : ListHandle;

begin
listHdl := gCurrentListHdl;

while(ListHandle(listHdl^^.refCon) <> gCurrentList) do
listHdl := ListHandle(listHdl^^.refCon);

gCurrentListHdl := listHdl;
end;

18-12 Lists and Custom List Definition Functions

Customising the Cell-Selection Algorithm

You can modify the algorithm the List Manager uses to select cells in response to mouse clicking and
dragging by changing the value in the selFlags field of the list record. (Recall that, by default, mouse
clicks deselect all cells and select the current cell, Shift-click and Shift-drag extend the selection as a
rectangular range, and Command-click and Command drag toggle selections according to the selection
state of the initial cell.)

The bits in the selFlags field are represented by the following constants. Those constants, and the effect
the values they represent have on the cell-selection algorithm, are as follows:

Constant Value Effect
lOnlyOne 128 Allow only one cell to be selected at any one time.

lExtendDrag 64 Allow the user to select a range of cells by clicking the first cell and
dragging to the last cell without necessarily pressing the Shift or
Command key. (Ordinarily, dragging in this manner results in only the
last cell being selected.)

lNoDisjoint 32 Prevent discontiguous selections using the Command key, while still
allowing the user to select a contiguous range of cells.

lNoExtend 16 Cause all previously selected cells to be deselected when the user Shift-
clicks.

lNoRect 8 Disable the feature which allows the user to shrink a selection by Shift-
clicking to select a range of cells and then dragging the cursor to a
position within that range. (With this feature is disabled, all cells in the
cursor's path during a Shift-drag become selected even if the user drags
the cursor back over the cell.)

lUseSense 4 Allow the user to deselect a range of cells by Shift-dragging.
(Ordinarily, Shift-dragging causes cells to become selected even if the
first cell clicked is already selected.)

lNoNilHilite 2 Turn off the highlighting of cells which contain no data. (Note that the
this constant is somewhat different from the others in that it affects the
display of a list, not the way that the List Manager selects items in
response to a click.)

These constants are often used additively. For example, you could make the Shift key work just like the
Command key using the following code:

listHdl^^.selFlags := lNoRect + lNoExtend + lUseSense;

If your application customises the cell-selection algorithm in lists which allow multiple cell selection, it
should make the non-standard behaviour clear to the user. Typically, this is done by displaying
explanatory text above the list's display rectangle.

Custom List Definition Procedures

As previously stated, the default list definition procedure supports the display of unstyled text only. If
your application needs to display items graphically, or display more than one type of information in each
cell5, you must create your own list definition procedure. After writing a list definition procedure, you
must compile it as a resource of type 'LDEF' and store it in the resource fork of the application that uses the
procedure.

Your custom list definition procedure must be defined like this:

procedure ListDef(lMessage: integer; lSelect: boolean; var lRect: Rect; lCell: Cell;
 lDataOffset: integer; lDataLen: integer; lHandle: ListRef);

5For example, the Finder's About This Macintosh... dialog box contains a single-column list of applications currently in use. Each cell in the list
contains an icon, the name of the application, the amount of memory in the application partition, and a graphical indication of how much of that
memory has been used.

Lists and Custom List Definition Functions 18-13

Messages Sent by List Manager

In essence, the sole requirement of your list definition procedure is to respond appropriately to four types
of messages sent to it by the List Manager, and which are received in the message parameter. The
following constants define the four message types:

Constant Value Meaning
lInitMsg 0 Do any special list initialisation.
lDrawMsg 1 Draw the cell.
lHiliteMsg 2 Invert the cell's highlight state.
lCloseMsg 3 Take any special disposal action.

The selected, cellRect, theCell, dataOffset, and dataLen parameters pass information to your list
definition procedure only when the value in the message parameter contains either the lDrawMsg or
lHiliteMsg constants. These parameters provide information about the cell affected by the message. The
selected parameter indicates whether the cell should be highlighted. The cellRect and theCell
parameters indicate the cell's rectangle and coordinates. The dataOffset and dataLen parameters specify
the offset and length of the cell's data within the relocatable block referenced by the cells field of the list
record.

Responding to the Initialisation Message

The List Manager automatically allocates memory for a list and fills out the fields of a list record before
calling your list definition procedure with an lInitMsg message. Your application might respond to the
initialisation message by changing, say, the cellSize and indent fields of the list record. However, many
list definition procedures do not need to perform any action in response to the lInitMsg message.

Responding to the Draw Message

The list definition procedure must respond to the draw message by examining the specified cell's data and
drawing the cell as appropriate, ensuring that the characteristics of the drawing environment are not
altered.

Responding to the HighLighting Message

Virtually every list definition procedure should respond to the lHiliteMsg message in the same way, that
is, by highlighting the cell's rectangle. The following example code shows a response which is compatible
with all Macintosh models, including those which do not support Color QuickDraw:

procedure DoLDEFHighlight(var cellRect : Rect);

var
hiliteVal : ByteParameter;

begin
hiliteVal := LMGetHiliteMode;
BitClr(Ptr(@hiliteVal), pHiliteBit);
LMSetHiliteMode(hiliteVal);

InvertRect(cellRect);
end;

Responding to the Close Message

The List Manager sends your list definition procedure the lCloseMsg immediately before disposing of the
memory occupied by list. Your list definition procedure needs to respond only if it needs to perform some
special processing before a list is disposed of, such as releasing memory associated with the list that would
not be released by LDispose.

18-14 Lists and Custom List Definition Functions

Main List Manager Constants, Data Types and Routines

Constants

Masks For listFlags Field of List Record

lDoVAutoscroll= 2 Allow vertical autoscrolling.
lDoHAutoscroll= 1 Allow horizontal autoscrolling.

Masks For selFlags Field of List Record

lOnlyOne = -128 Allow only one item to be selected at once.
lExtendDrag = 64 Enable multiple item selection without Shift.
lNoDisjoint = 32 Prevent discontiguous selections.
lNoExtend = 16 Reset list before responding to Shift-click.
lNoRect = 8 Shift-drag selects items passed by cursor.
lUseSense = 4 Allow use of Shift key to deselect items.
lNoNilHilite = 2 Disable highlighting of empty cells.

Messages to List Definition Procedure

lInitMsg = 0 Do any special list initialisation.
lDrawMsg = 1 Draw the cell.
lHiliteMsg = 2 Invert cell's highlight state.
lCloseMsg = 3 Take any special disposal action.

Data Types

type
ListRef = ListHandle;
Cell = Point;
ListBounds = Rect;
DataArray = packed array [0..32000] of CHAR;
DataPtr = ^DataArray;
DataHandle = ^DataPtr;

function ListSearch(aPtr: Ptr; bPtr: Ptr; aLen: integer; bLen: integer): integer;

List Record

ListRec = record
rView: Rect;
port: GrafPtr;
indent: Point;
cellSize: Point;
visible: ListBounds;
vScroll: ControlRef;
hScroll: ControlRef;
selFlags: SInt8;
lActive: boolean;
lReserved: SInt8;
listFlags: SInt8;
clikTime: longint;
clikLoc: Point;
mouseLoc: Point;
lClickLoop: ListClickLoopUPP;
lastClick: Cell;
refCon: longint;
listDefProc: Handle;
userHandle: Handle;
dataBounds: ListBounds;
cells: DataHandle;
maxIndex: integer;
cellArray: array [0..0] of integer;

end;

ListPtr = ^ListRec;
ListHandle = ^ListPtr;
ListRef = ListHandle;

Lists and Custom List Definition Functions 18-15

Routines

Creating and Disposing of Lists

function LNew(var rView: Rect; var dataBounds: ListBounds; cSize: Point; theProc: integer;
theWindow: WindowRef; drawIt: boolean; hasGrow: boolean; scrollHoriz: boolean;
scrollVert: boolean): ListRef;

procedure LDispose(lHandle: ListRef);

Adding and Deleting Rows and Columns

function LAddColumn(count: integer; colNum: integer; lHandle: ListRef): integer;
function LAddRow(count: integer; rowNum: integer; lHandle: ListRef): integer;
procedure LDelColumn(count: integer; colNum: integer; lHandle: ListRef);
procedure LDelRow(count: integer; rowNum: integer; lHandle: ListRef);

Determining or Changing a Selection

function LGetSelect(next: boolean; var theCell: Cell; lHandle: ListRef): boolean;
procedure LSetSelect(setIt: boolean; theCell: Cell; lHandle: ListRef);

Accessing and Manipulating Data Cells

procedure LSetCell(dataPtr: UNIV Ptr; dataLen: integer; theCell: Cell; lHandle: ListRef);
procedure LAddToCell(dataPtr: UNIV Ptr; dataLen: integer; theCell: Cell; lHandle: ListRef);
procedure LClrCell(theCell: Cell; lHandle: ListRef);
procedure LGetCell(dataPtr: UNIV Ptr; var dataLen: integer; theCell: Cell;

lHandle: ListRef);
procedure LGetCellDataLocation(var offset: integer; var len: integer; theCell: Cell; lHandle:
ListRef);

Responding to Events

function LClick(pt: Point; modifiers: integer; lHandle: ListRef): boolean;
procedure LUpdate(theRgn: RgnHandle; lHandle: ListRef);
procedure LActivate(act: boolean; lHandle: ListRef);

Modifying a List's Appearance

procedure LDraw(theCell: Cell; lHandle: ListRef);
procedure LSetDrawingMode(drawIt: boolean; lHandle: ListRef);
procedure LScroll(dCols: integer; dRows: integer; lHandle: ListRef);
procedure LAutoScroll(lHandle: ListRef);

Searching For a List Containing a Particular Item

function LSearch(dataPtr: UNIV Ptr; dataLen: integer; searchProc: ListSearchUPP;
var theCell: Cell; lHandle: ListRef): boolean;

Changing the Size of Cells and Lists

procedure LSize(listWidth: integer; listHeight: integer; lHandle: ListRef);
procedure LCellSize(cSize: Point; lHandle: ListRef);

Getting Information About Cells

function LNextCell(hNext: boolean; vNext: boolean; var theCell: Cell; lHandle: ListRef):
boolean;

procedure LRect(var cellRect: Rect; theCell: Cell; lHandle: ListRef);
function LLastClick(lHandle: ListRef): Cell;

18-16 Lists and Custom List Definition Functions

Demonstration Program
{ ##1

// ListsPascal.p2

// ###3

//4

// This program allows the user to open a dialog box by choosing the Dialog With Lists5

// item in the Demonstration menu.6

//7

// The dialog box contains two lists. The cells of one list contain text. The cells of8

// the other list contain icon-like pictures and their titles.9

//10

// The text list uses the default list definition procedure.11

//12

// The picture list uses a custom list definition procedure. The source code for the13

// custom list definition procedure is at the file LDEFPascal.p in the LDEFPascal folder.14

//15

// The currently active list is outlined by a two-pixel-wide border. The currently16

// active list can be changed by clicking in the non-active list or by pressing the tab17

// key.18

//19

// The text list uses the default cell-selection algorithm; accordingly, multiple cells,20

// including discontiguous multiple cells, may be selected. The picture list also21

// supports arrow key selection (of single or multiple cells) and type selection.22

//23

// The constant lOnlyOne is assigned to the selFlags field of the picture list's list24

// record. Accordingly, the selection of multiple items is not possible in this list.25

// Arrow key selection (of single cells) is, however, supported.26

//27

// When the dialog is dismissed by clicking on the OK button, or by double-clicking on a28

// cell in the active list, the user's selections are displayed in a window opened by the29

// program at program launch. (Note that the use of the Return, Enter, Esc and30

// Command-period keys as alternatives to clicking the OK and Cancel buttons in the31

// dialog box is not supported in this program.)32

//33

// The program utilises the following resources:34

//35

// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Demonstration36

// menus (preload, non-purgeable).37

//38

// • A 'WIND' resource (purgeable) (initially visible) for the window in which the39

// user's selections are displayed.40

//41

// • A'DLOG' resource (purgeable) and associated 'DITL' resource (purgeable) for the42

// dialog box.43

//44

// • 'STR#' resources (purgeable) containing the text strings for the text list.45

//46

// • 'PICT' resources (non-purgeable) containing the images for the picture list.47

//48

// • An 'LDEF' resource (non-purgeable) containing the custom list definition procedure49

// used by the picture list.50

//51

// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch, and52

// is32BitCompatible flags set.53

//54

// ### }55

56

program ListsPascal(input, output);57

58

{ ……… include the following Universal Interfaces }59

60

uses61

62

Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,63

Memory, Events, TextUtils, ToolUtils, OSUtils, Devices, Lists, LowMem, SegLoad, Sound;64

65

{ ……… define the following constants }66

67

const68

69

mApple = 128;70

Lists and Custom List Definition Functions 18-17

 iAbout = 1;71

mFile = 129;72

 iQuit = 11;73

mDemonstration = 131;74

 iDialog = 1;75

76

rMenubar = 128;77

rWindow = 128;78

rDialog = 129;79

 iOK = 1;80

 iCancel = 2;81

 iUserItemText = 3;82

 iUserItemPict = 4;83

rListCellStrings = 128;84

rListCellPicts = 128;85

rListCellPictTitles = 129;86

87

kUpArrow = $1e;88

kDownArrow = $1f;89

kTab = $09;90

kScrollBarWidth = 15;91

kMaxKeyThresh = 120;92

93

kSystemLDEF = 0;94

kCustomLDEF = 128;95

96

kMaxLong = $7FFFFFFF;97

98

{ ……… user-defined types }99

100

type101

102

ListsRec = record103

textListHdl : ListRef;104

pictListHdl : ListRef;105

end;106

107

ListsRecPtr = ^ListsRec;108

ListsRecHandle = ^ListsRecPtr;109

110

{ ……… global variables }111

112

var113

114

gDone : boolean;115

gInBackground : boolean;116

gWindowPtr : WindowPtr;117

gCurrentListHdl : ListRef;118

gTSString : string;119

gTSResetThreshold : integer;120

gTSLastKeyTime : longint;121

gTSLastListHit : ListRef;122

123

menubarHdl : Handle;124

menuHdl : MenuHandle;125

eventRec : EventRecord;126

127

{ ### DoInitManagers }128

129

procedure DoInitManagers;130

131

begin132

MaxApplZone;133

MoreMasters;134

135

InitGraf(@qd.thePort);136

InitFonts;137

InitWindows;138

InitMenus;139

TEInit;140

InitDialogs(nil);141

142

InitCursor;143

FlushEvents(everyEvent, 0);144

end;145

{of procedure DoInitManagers}146

147

18-18 Lists and Custom List Definition Functions

{ ## DoDrawDialogDefaultButton }148

149

procedure DoDrawDialogDefaultButton(theDialogPtr : DialogPtr);150

151

var152

oldPort : WindowPtr;153

oldPenState : PenState;154

itemType : integer;155

itemHandle : Handle;156

itemRect : Rect;157

buttonOval : integer;158

159

begin160

GetPort(oldPort);161

GetPenState(oldPenState);162

163

GetDialogItem(theDialogPtr, iOK, itemType, itemHandle, itemRect);164

SetPort(ControlHandle(itemHandle)^^.contrlOwner);165

InsetRect(itemRect, -4, -4);166

buttonOval := (itemRect.bottom - itemRect.top) div 2 + 2;167

168

if (ControlHandle(itemHandle)^^.contrlHilite = 255) then169

PenPat(qd.gray)170

else171

PenPat(qd.black);172

173

PenSize(3, 3);174

FrameRoundRect(itemRect, buttonOval, buttonOval);175

176

SetPenState(oldPenState);177

SetPort(oldPort);178

end;179

{of procedure DoDrawDialogDefaultButton}180

181

{ ### DoAddRowsAndDataToPictList }182

183

procedure DoAddRowsAndDataToPictList(pictListHdl : ListRef; pictListID : integer);184

185

var186

rowNumber, pictIndex : integer;187

pictureHdl : PicHandle;188

theCell : Cell;189

190

begin191

rowNumber := pictListHdl^^.dataBounds.bottom;192

193

for pictIndex := pictListID to (pictListID + 5) do194

begin195

pictureHdl := GetPicture(pictIndex);196

197

rowNumber := LAddRow(1, rowNumber, pictListHdl);198

SetPt(theCell, 0, rowNumber);199

LSetCell(@pictureHdl, sizeof(PicHandle), theCell, pictListHdl);200

201

rowNumber := rowNumber + 1;202

end;203

end;204

{of procedure DoAddRowsAndDataToPictList}205

206

{ ### DoCreatePictList }207

208

function DoCreatePictList(theDialogPtr : DialogPtr; listRect : Rect;209

numCols, lDef : integer) : ListRef;210

211

var212

dataBounds : Rect;213

cellSize : Point;214

pictListHdl : ListRef;215

theCell : Cell;216

217

begin218

SetRect(dataBounds, 0, 0, numCols, 0);219

SetPt(cellSize, 48, 48);220

221

listRect.right := listRect.right - kScrollBarWidth;222

223

pictListHdl := LNew(listRect, dataBounds, cellSize, lDef, theDialogPtr, true,224

Lists and Custom List Definition Functions 18-19

false, false, true);225

226

pictListHdl^^.selFlags := lOnlyOne;227

228

DoAddRowsAndDataToPictList(pictListHdl, rListCellPicts);229

230

SetPt(theCell, 0, 0);231

LSetSelect(true, theCell, pictListHdl);232

233

DoCreatePictList := pictListHdl;234

end;235

{of function DoCreatePictList}236

237

{ ## DoAddTextItemAlphabetically }238

239

procedure DoAddTextItemAlphabetically(listHdl : ListRef; theString : string);240

241

var242

found : boolean;243

totalRows, currentRow, cellDataOffset, cellDataLength : integer;244

aCell : Cell;245

246

begin247

found := false;248

249

totalRows := listHdl^^.dataBounds.bottom - listHdl^^.dataBounds.top;250

currentRow := -1;251

252

while not (found) do253

begin254

currentRow := currentRow + 1;255

if (currentRow = totalRows) then256

found := true257

else begin258

SetPt(aCell, 0, currentRow);259

LGetCellDataLocation(cellDataOffset, cellDataLength, aCell, listHdl);260

261

MoveHHi(Handle(listHdl^^.cells));262

HLock(Handle(listHdl^^.cells));263

264

if (IUMagPString(Ptr(longint(@theString) + 1),265

(Ptr(longint(@listHdl^^.cells) + cellDataOffset)),266

integer(theString[0]), cellDataLength, nil) = -1) then267

begin268

found := true;269

end;270

271

HUnlock(Handle(listHdl^^.cells));272

end;273

end;274

275

currentRow := LAddRow(1, currentRow, listHdl);276

SetPt(aCell, 0, currentRow);277

278

LSetCell((Ptr(longint(@theString) + 1)), integer(theString[0]), aCell, listHdl);279

end;280

{of procedure DoAddTextAlphabetically}281

282

{ ### DoAddRowsAndDataToTextList }283

284

procedure DoAddRowsAndDataToTextList(textListHdl : ListRef; stringListID : integer);285

286

var287

stringIndex : integer;288

theString : string;289

290

begin291

for stringIndex := 1 to 15 do292

begin293

GetIndString(theString, stringListID, stringIndex);294

DoAddTextItemAlphabetically(textListHdl, theString);295

end;296

end;297

{of procedure DoAddRowsAndDataToTextList}298

299

{ ### DoResetTypeSelection }300

301

18-20 Lists and Custom List Definition Functions

procedure DoResetTypeSelection;302

303

begin304

gTSString[0] := char(0);305

gTSLastListHit := nil;306

gTSLastKeyTime := 0;307

gTSResetThreshold := 2 * LMGetKeyThresh;308

if (gTSResetThreshold > kMaxKeyThresh) then309

gTSResetThreshold := kMaxKeyThresh;310

end;311

{of procedure DoResetTypeSelection}312

313

{ ### DoCreateTextList }314

315

function DoCreateTextList(theDialogPtr : DialogPtr; listRect : Rect;316

numCols, lDef : integer) : ListRef;317

318

var319

dataBounds : Rect;320

cellSize : Point;321

textListHdl : ListRef;322

theCell : Cell;323

324

begin325

SetRect(dataBounds, 0, 0, numCols, 0);326

SetPt(cellSize, 0, 0);327

328

listRect.right := listRect.right - kScrollBarWidth;329

330

textListHdl := LNew(listRect, dataBounds, cellSize, lDef, theDialogPtr,331

true, false, false, true);332

333

DoAddRowsAndDataToTextList(textListHdl, rListCellStrings);334

335

SetPt(theCell, 0, 0);336

LSetSelect(true, theCell, textListHdl);337

338

DoResetTypeSelection;339

340

DoCreateTextList := textListHdl;341

end;342

{of function DoCreateTextList}343

344

{ ## DoAdjustMenus }345

346

procedure DoAdjustMenus;347

348

var349

fileMenuHdl, demoMenuHdl : MenuHandle;350

351

begin352

fileMenuHdl := GetMenuHandle(mFile);353

demoMenuHdl := GetMenuHandle(mDemonstration);354

355

if (WindowPeek(FrontWindow)^.windowKind = dialogKind) then356

begin357

DisableItem(fileMenuHdl, 0);358

DisableItem(demoMenuHdl, 0);359

end360

else begin361

EnableItem(fileMenuHdl, 0);362

EnableItem(demoMenuHdl, 0);363

end;364

365

DrawMenuBar;366

end;367

{of procedure DoAdjustMenus}368

369

{ ## DoCreateDialogWithLists }370

371

procedure DoCreateDialogWithLists;372

373

var374

modalDlgPtr : DialogPtr;375

listsRecHdl : ListsRecHandle;376

fontNum, itemType : integer;377

itemHdl : Handle;378

Lists and Custom List Definition Functions 18-21

itemRect : Rect;379

textListHdl, pictListHdl : ListRef;380

381

begin382

modalDlgPtr := GetNewDialog(rDialog, nil, WindowPtr(-1));383

if (modalDlgPtr = nil) then384

ExitToShell;385

386

listsRecHdl := ListsRecHandle(NewHandle(sizeof(ListsRec)));387

if (listsRecHdl = nil) then388

ExitToShell;389

SetWRefCon(modalDlgPtr, longint(listsRecHdl));390

391

SetPort(modalDlgPtr);392

393

GetFNum('Chicago', fontNum);394

TextFont(fontNum);395

TextSize(12);396

397

GetDialogItem(modalDlgPtr, iUserItemText, itemType, itemHdl, itemRect);398

textListHdl := DoCreateTextList(modalDlgPtr, itemRect, 1, kSystemLDEF);399

400

GetDialogItem(modalDlgPtr, iUserItemPict, itemType, itemHdl, itemRect);401

pictListHdl := DoCreatePictList(modalDlgPtr, itemRect, 1, kCustomLDEF);402

403

listsRecHdl^^.textListHdl := textListHdl;404

listsRecHdl^^.pictListHdl := pictListHdl;405

406

textListHdl^^.refCon := longint(pictListHdl);407

pictListHdl^^.refCon := longint(textListHdl);408

409

gCurrentListHdl := textListHdl;410

411

ShowWindow(modalDlgPtr);412

DoAdjustMenus;413

414

end;415

{of procedure DoCreateDialogWithLists}416

417

{ ### DoMenuChoice }418

419

procedure DoMenuChoice(menuChoice : longint);420

421

var422

menuID, menuItem : integer;423

itemName : string;424

daDriverRefNum : integer;425

426

begin427

menuID := HiWord(menuChoice);428

menuItem := LoWord(menuChoice);429

430

if (menuID = 0) then431

Exit(DoMenuChoice);432

433

case (menuID) of434

435

mApple: begin436

if (menuItem = iAbout) then437

SysBeep(10)438

else begin439

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);440

daDriverRefNum := OpenDeskAcc(itemName);441

end;442

end;443

444

mFile: begin445

if (menuItem = iQuit) then446

gDone := true;447

end;448

449

mDemonstration: begin450

if (menuItem = iDialog) then451

begin452

SetPort(gWindowPtr);453

EraseRect(gWindowPtr^.portRect);454

DoCreateDialogWithLists;455

18-22 Lists and Custom List Definition Functions

end;456

end;457

end;458

{of case statement}459

460

HiliteMenu(0);461

end;462

{of procedure DoMenuChoice}463

464

{ ## DoDisplaySelections }465

466

procedure DoDisplaySelections;467

468

var469

listsRecHdl : ListsRecHandle;470

textListHdl, pictListHdl : ListRef;471

nextLine, cellIndex : integer;472

theCell : Cell;473

theString : string;474

offset, dataLen : integer;475

ignored : boolean;476

477

begin478

nextLine := 15;479

listsRecHdl := ListsRecHandle(GetWRefCon(FrontWindow));480

textListHdl := listsRecHdl^^.textListHdl;481

pictListHdl := listsRecHdl^^.pictListHdl;482

483

HideWindow(FrontWindow);484

SetPort(gWindowPtr);485

486

MoveTo(10, nextLine);487

DrawString('INGREDIENTS:');488

MoveTo(120, nextLine);489

DrawString('DICE WITH:');490

491

for cellIndex := 0 to (textListHdl^^.dataBounds.bottom - 1) do492

begin493

SetPt(theCell, 0, cellIndex);494

if (LGetSelect(false, theCell, textListHdl)) then495

begin496

LGetCellDataLocation(offset, dataLen, theCell, textListHdl);497

LGetCell(Ptr(longint(@theString) + 1), dataLen, theCell, textListHdl);498

theString[0] := char(dataLen);499

500

nextLine := nextLine + 15;501

MoveTo(10, nextLine);502

DrawString(theString);503

end;504

end;505

506

SetPt(theCell, 0, 0);507

ignored := LGetSelect(true, theCell, pictListHdl);508

GetIndString(theString, rListCellPictTitles, theCell.v + 1);509

MoveTo(120, 30);510

DrawString(theString);511

end;512

{of procedure DoDisplaySelections}513

514

{ ### DoDrawActiveListBorder }515

516

procedure DoDrawActiveListBorder(listHdl : ListRef);517

518

var519

oldPenState : PenState;520

borderRect : Rect;521

522

begin523

GetPenState(oldPenState);524

PenSize(2, 2);525

526

borderRect := listHdl^^.rView;527

borderRect.right := borderRect.right + kScrollBarWidth;528

InsetRect(borderRect, -4, -4);529

530

if ((listHdl = gCurrentListHdl) and listHdl^^.lActive) then531

PenPat(qd.black)532

Lists and Custom List Definition Functions 18-23

else533

PenPat(qd.white);534

535

FrameRect(borderRect);536

537

SetPenState(oldPenState);538

end;539

{of procedure DoDrawActiveListBorder}540

541

{ ### DoDrawListsBorders }542

543

procedure DoDrawListsBorders(textListHdl, pictListHdl : ListRef);544

545

var546

oldPenState : PenState;547

borderRect : Rect;548

549

begin550

GetPenState(oldPenState);551

PenSize(1, 1);552

553

borderRect := textListHdl^^.rView;554

InsetRect(borderRect, -1, -1);555

FrameRect(borderRect);556

557

borderRect := pictListHdl^^.rView;558

InsetRect(borderRect, -1, -1);559

FrameRect(borderRect);560

561

SetPenState(oldPenState);562

end;563

{of procedure DoDrawListsBorders}564

565

{ ## DoRotateCurrentList }566

567

procedure DoRotateCurrentList;568

569

var570

myWindowPtr : WindowPtr;571

oldListHdl, newListHdl : ListRef;572

573

begin574

myWindowPtr := FrontWindow;575

if (WindowPeek(myWindowPtr)^.windowKind <> dialogKind) then576

Exit(DoRotateCurrentList);577

578

oldListHdl := gCurrentListHdl;579

newListHdl := ListRef(gCurrentListHdl^^.refCon);580

gCurrentListHdl := newListHdl;581

582

DoDrawActiveListBorder(oldListHdl);583

DoDrawActiveListBorder(newListHdl);584

end;585

{of procedure DoRotateCurrentList}586

587

{ ### DoFindNewCellLoc }588

589

procedure DoFindNewCellLoc(listHdl : ListRef; oldCellLoc : Cell; var newCellLoc : Cell;590

charCode : UInt8; moveToTopBottom : boolean);591

592

var593

listRows : integer;594

595

begin596

listRows := listHdl^^.dataBounds.bottom - listHdl^^.dataBounds.top;597

newCellLoc := oldCellLoc;598

599

if (moveToTopBottom) then600

 begin601

if (charCode = kUpArrow) then602

newCellLoc.v := 0603

else if (charCode = kDownArrow) then604

newCellLoc.v := listRows - 1;605

end606

else begin607

if (charCode = kUpArrow) then608

begin609

18-24 Lists and Custom List Definition Functions

if (oldCellLoc.v <> 0) then610

newCellLoc.v := oldCellLoc.v - 1;611

end612

else if (charCode = kDownArrow) then613

begin614

if (oldCellLoc.v <> listRows - 1) then615

newCellLoc.v := oldCellLoc.v + 1;616

end;617

end;618

end;619

{of procedure DoFindNewCellLoc}620

621

{ ## DoFindFirstSelectedCell }622

623

function DoFindFirstSelectedCell(listHdl : ListRef; var theCell : Cell) : boolean;624

625

var626

result : boolean;627

628

begin629

SetPt(theCell, 0, 0);630

result := LGetSelect(true, theCell, listHdl);631

632

DoFindFirstSelectedCell := result;633

end;634

{of function DoFindFirstSelectedCell}635

636

{ ### DoFindLastSelectedCell }637

638

procedure DoFindLastSelectedCell(listHdl : ListRef; var theCell : Cell);639

640

var641

aCell : Cell;642

moreCellsInList : boolean;643

644

begin645

if (DoFindFirstSelectedCell(listHdl, aCell)) then646

begin647

while (LGetSelect(true, aCell, listHdl)) do648

begin649

theCell := aCell;650

moreCellsInList := LNextCell(true, true, aCell, listHdl);651

end;652

end;653

end;654

{of procedure DoFindLastSelectedCell}655

656

{ ## DoMakeCellVisible }657

658

procedure DoMakeCellVisible(listHdl : ListRef; newSelection : Cell);659

660

var661

visibleRect : Rect;662

dRows : integer;663

664

begin665

visibleRect := listHdl^^.visible;666

667

if not(PtInRect(newSelection, visibleRect)) then668

begin669

if (newSelection.v > visibleRect.bottom - 1) then670

dRows := newSelection.v - visibleRect.bottom + 1671

else if (newSelection.v < visibleRect.top) then672

dRows := newSelection.v - visibleRect.top;673

674

LScroll(0, dRows, listHdl);675

end;676

end;677

{of procedure DoMakeCellVisible}678

679

{ ## DoSelectOneCell }680

681

procedure DoSelectOneCell(listHdl : ListRef; theCell : Cell) ;682

683

var684

nextSelectedCell : Cell;685

moreCellsInList : boolean;686

Lists and Custom List Definition Functions 18-25

687

begin688

if (DoFindFirstSelectedCell(listHdl, nextSelectedCell)) then689

begin690

while(LGetSelect(true, nextSelectedCell, listHdl)) do691

begin692

if (nextSelectedCell.v <> theCell.v) then693

LSetSelect(false, nextSelectedCell, listHdl)694

else695

moreCellsInList := LNextCell(true, true, nextSelectedCell, listHdl);696

end;697

698

LSetSelect(true, theCell, listHdl);699

end;700

end;701

{of procedure DoSelectOneCell}702

703

{ ### DoSearchPartialMatch }704

705

function DoSearchPartialMatch(searchDataPtr, cellDataPtr : Ptr;706

 cellDataLen, searchDataLen : integer) : integer;707

708

var709

result : integer;710

711

begin712

if ((cellDataLen > 0) and (cellDataLen >= searchDataLen)) then713

result := IUMagIDString(cellDataPtr, searchDataPtr, searchDataLen, searchDataLen)714

else715

result := 1;716

717

DoSearchPartialMatch := result;718

end;719

{of function DoSearchPartialMatch}720

721

{ ### DoTypeSelectSearch }722

723

procedure DoTypeSelectSearch(listHdl : ListRef; var theEvent : EventRecord);724

725

var726

newChar : char;727

theCell : Cell;728

729

begin730

newChar := chr(BAnd(theEvent.message, charCodeMask));731

732

if ((gTSLastListHit <> listHdl) or ((theEvent.when - gTSLastKeyTime) >=733

 gTSResetThreshold) or (integer(gTSString[0]) = 255)) then734

DoResetTypeSelection;735

736

gTSLastListHit := listHdl;737

gTSLastKeyTime := theEvent.when;738

739

gTSString[0] := char(integer(gTSString[0]) + 1);740

gTSString[integer(gTSString[0])] := newChar;741

742

SetPt(theCell, 0, 0);743

744

if (LSearch(Ptr(longint(@gTSString) + 1), integer(gTSString[0]), @DoSearchPartialMatch,745

theCell, listHdl)) then746

begin747

LSetSelect(true, theCell, listHdl);748

DoSelectOneCell(listHdl, theCell);749

DoMakeCellVisible(listHdl, theCell);750

end;751

end;752

{of procedure DoTypeSelectSearch}753

754

{ ## DoArrowKeyExtendSelection }755

756

procedure DoArrowKeyExtendSelection(listHdl : ListRef; charCode : UInt8;757

moveToTopBottom : boolean);758

759

var760

currentSelection, newSelection : Cell;761

762

begin763

18-26 Lists and Custom List Definition Functions

if (DoFindFirstSelectedCell(listHdl, currentSelection)) then764

begin765

if (charCode = kDownArrow) then766

DoFindLastSelectedCell(listHdl, currentSelection);767

768

DoFindNewCellLoc(listHdl, currentSelection, newSelection, charCode,769

moveToTopBottom);770

771

if not (LGetSelect(false, newSelection, listHdl)) then772

LSetSelect(true, newSelection, listHdl);773

774

DoMakeCellVisible(listHdl, newSelection);775

end;776

end;777

{of procedure DoArrowKeyExtendSelection}778

779

{ ## DoArrowKeyMoveSelection }780

781

procedure DoArrowKeyMoveSelection(listHdl : ListRef; charCode : UInt8;782

moveToTopBottom : boolean);783

784

var785

currentSelection, newSelection : Cell;786

787

begin788

if (DoFindFirstSelectedCell(listHdl, currentSelection)) then789

begin790

if (charCode = kDownArrow) then791

DoFindLastSelectedCell(listHdl, currentSelection);792

793

DoFindNewCellLoc(listHdl, currentSelection, newSelection, charCode,794

moveToTopBottom);795

796

DoSelectOneCell(listHdl, newSelection);797

DoMakeCellVisible(listHdl, newSelection);798

end;799

end;800

{of procedure DoArrowKeyMoveSelection}801

802

{ ### DoHandleArrowKey }803

804

procedure DoHandleArrowKey(charCode : UInt8; var theEvent : EventRecord;805

allowExtendSelect : boolean);806

807

var808

moveToTopBottom : boolean;809

810

begin811

moveToTopBottom := false;812

813

if (BAnd(theEvent.modifiers, cmdKey) <> 0) then814

moveToTopBottom := true;815

816

if (allowExtendSelect and (BAnd(theEvent.modifiers, shiftKey) <> 0)) then817

DoArrowKeyExtendSelection(gCurrentListHdl, charCode, moveToTopBottom)818

else819

DoArrowKeyMoveSelection(gCurrentListHdl, charCode, moveToTopBottom);820

end;821

{of procedure DoHandleArrowKey}822

823

{ ## DoItemHitInDialog }824

825

procedure DoItemHitInDialog(myDialogPtr : DialogPtr; itemHit : integer);826

827

var828

listsRecHdl : ListsRecHandle;829

830

begin831

if ((itemHit = iOK) or (itemHit = iCancel)) then832

begin833

if (itemHit = iOK) then834

DoDisplaySelections;835

836

listsRecHdl := ListsRecHandle(GetWRefCon(myDialogPtr));837

838

LDispose(listsRecHdl^^.textListHdl);839

LDispose(listsRecHdl^^.pictListHdl);840

Lists and Custom List Definition Functions 18-27

DisposeHandle(Handle(listsRecHdl));841

DisposeDialog(myDialogPtr);842

843

DoAdjustMenus;844

end;845

end;846

{of procedure DoItemHitInDialog}847

848

{ ## DoInContent }849

850

procedure DoInContent(var theEvent : EventRecord);851

852

var853

oldPort : GrafPtr;854

listsRecHdl : ListsRecHandle;855

textListHdl, pictListHdl : ListRef;856

textListRect, pictListRect, gCurrentListRect : Rect;857

mouseXY : Point;858

isDoubleClick : boolean;859

theDialogPtr : DialogPtr;860

itemHit : integer;861

862

begin863

GetPort(oldPort);864

865

listsRecHdl := ListsRecHandle(GetWRefCon(FrontWindow));866

textListHdl := listsRecHdl^^.textListHdl;867

pictListHdl := listsRecHdl^^.pictListHdl;868

869

textListRect := listsRecHdl^^.textListHdl^^.rView;870

pictListRect := listsRecHdl^^.pictListHdl^^.rView;871

gCurrentListRect := gCurrentListHdl^^.rView;872

textListRect.right := textListRect.right + kScrollBarWidth;873

pictListRect.right := pictListRect.right + kScrollBarWidth;874

gCurrentListRect.right := gCurrentListRect.right + kScrollBarWidth;875

876

mouseXY := theEvent.where;877

GlobalToLocal(mouseXY);878

879

if ((PtInRect(mouseXY, textListRect) and (gCurrentListHdl <> textListHdl)) or880

 (PtInRect(mouseXY, pictListRect) and (gCurrentListHdl <> pictListHdl))) then881

begin882

DoRotateCurrentList;883

end884

else if (PtInRect(mouseXY, gCurrentListRect)) then885

begin886

SetPort(gCurrentListHdl^^.port);887

isDoubleClick := LClick(mouseXY, theEvent.modifiers, gCurrentListHdl);888

if (isDoubleClick) then889

DoItemHitInDialog(FrontWindow, iOK);890

end891

else begin892

if (DialogSelect(theEvent, theDialogPtr, itemHit)) then893

DoItemHitInDialog(theDialogPtr, itemHit);894

end;895

896

SetPort(oldPort);897

898

end;899

{of procedure DoInContent}900

901

{ ### DoActivateDialog }902

903

procedure DoActivateDialog(myWindowPtr : WindowPtr; becomingActive : Boolean);904

905

var906

listRecsHdl : ListsRecHandle;907

textListHdl, pictListHdl : ListRef;908

itemType : integer;909

itemHdl : Handle;910

itemRect : Rect;911

912

begin913

listRecsHdl := ListsRecHandle(GetWRefCon(myWindowPtr));914

textListHdl := listRecsHdl^^.textListHdl;915

pictListHdl := listRecsHdl^^.pictListHdl;916

917

18-28 Lists and Custom List Definition Functions

if (becomingActive) then918

begin919

GetDialogItem(DialogPtr(myWindowPtr), iOK, itemType, itemHdl, itemRect);920

HiliteControl(ControlHandle(itemHdl), 0);921

GetDialogItem(DialogPtr(myWindowPtr), iCancel, itemType, itemHdl, itemRect);922

HiliteControl(ControlHandle(itemHdl), 0);923

DoDrawDialogDefaultButton(myWindowPtr);924

925

LActivate(true, textListHdl);926

LActivate(true, pictListHdl);927

928

DoDrawActiveListBorder(gCurrentListHdl);929

DoResetTypeSelection;930

end931

else begin932

GetDialogItem(DialogPtr(myWindowPtr), iOK, itemType, itemHdl, itemRect);933

HiliteControl(ControlHandle(itemHdl), 255);934

GetDialogItem(DialogPtr(myWindowPtr), iCancel, itemType, itemHdl, itemRect);935

HiliteControl(ControlHandle(itemHdl), 255);936

DoDrawDialogDefaultButton(myWindowPtr);937

938

LActivate(false, textListHdl);939

LActivate(false, pictListHdl);940

941

DoDrawActiveListBorder(gCurrentListHdl);942

end;943

end;944

{of procedure DoActivateDialog}945

946

{ ## DoOSEvent }947

948

procedure DoOSEvent(var theEvent : EventRecord);949

950

begin951

case BAnd(BSR(theEvent.message, 24), $000000FF) of952

953

suspendResumeMessage:954

begin955

gInBackground := BAnd(theEvent.message, resumeFlag) = 0;956

if (WindowPeek(FrontWindow)^.windowKind = dialogKind) then957

DoActivateDialog(FrontWindow, not (gInBackground));958

end;959

960

mouseMovedMessage:961

begin962

end;963

end;964

{of case statement}965

end;966

{of procedure DoOSEvent}967

968

{ ### DoActivate }969

970

procedure DoActivate(var theEvent : EventRecord);971

972

var973

myWindowPtr : WindowPtr;974

becomingActive : boolean;975

976

begin977

myWindowPtr := WindowPtr(theEvent.message);978

becomingActive := (BAnd(theEvent.modifiers, activeFlag) = activeFlag);979

980

if (WindowPeek(myWindowPtr)^.windowKind = dialogKind) then981

DoActivateDialog(myWindowPtr, becomingActive);982

end;983

{of procedure DoActivate}984

985

{ ## DoUpdateLists }986

987

procedure DoUpdateLists(myWindowPtr : WindowPtr);988

989

var990

listsRecHdl : ListsRecHandle;991

textListHdl, pictListHdl : ListRef;992

993

begin994

Lists and Custom List Definition Functions 18-29

listsRecHdl := ListsRecHandle(GetWRefCon(myWindowPtr));995

996

textListHdl := listsRecHdl^^.textListHdl;997

pictListHdl := listsRecHdl^^.pictListHdl;998

999

SetPort(textListHdl^^.port);1000

1001

LUpdate(textListHdl^^.port^.visRgn, textListHdl);1002

LUpdate(pictListHdl^^.port^.visRgn, pictListHdl);1003

1004

DoDrawListsBorders(textListHdl, pictListHdl);1005

DoDrawActiveListBorder(textListHdl);1006

DoDrawActiveListBorder(pictListHdl);1007

end;1008

{of procedure DoUpdateLists}1009

1010

{ ### DoUpdate }1011

1012

procedure DoUpdate(var theEvent : EventRecord);1013

1014

var1015

myWindowPtr : WindowPtr;1016

1017

begin1018

myWindowPtr := WindowPtr(theEvent.message);1019

1020

BeginUpdate(myWindowPtr);1021

1022

if (WindowPeek(myWindowPtr)^.windowKind = dialogKind) then1023

begin1024

UpdateDialog(myWindowPtr, myWindowPtr^.visRgn);1025

DoDrawDialogDefaultButton(myWindowPtr);1026

DoUpdateLists(myWindowPtr);1027

end;1028

1029

EndUpdate(myWindowPtr);1030

1031

end;1032

{of procedure DoUpdate}1033

1034

{ ## DoKeyDown }1035

1036

procedure DoKeyDown(charCode : UInt8; var theEvent : EventRecord);1037

1038

var1039

listsRecHdl : ListsRecHandle;1040

allowExtendSelect : boolean;1041

1042

begin1043

if (WindowPeek(FrontWindow)^.windowKind = dialogKind) then1044

begin1045

listsRecHdl := ListsRecHandle(GetWRefCon(FrontWindow));1046

1047

if (charCode = kTab) then1048

DoRotateCurrentList1049

else if ((charCode = kUpArrow) or (charCode = kDownArrow)) then1050

begin1051

if (gCurrentListHdl = listsRecHdl^^.textListHdl) then1052

allowExtendSelect := true1053

else1054

allowExtendSelect := false;1055

DoHandleArrowKey(charCode, theEvent, allowExtendSelect);1056

end1057

else begin1058

if (gCurrentListHdl = listsRecHdl^^.textListHdl) then1059

DoTypeSelectSearch(listsRecHdl^^.textListHdl, theEvent);1060

end;1061

end;1062

end;1063

{of procedure DoKeyDown}1064

{ ## DoMouseDown }1065

1066

procedure DoMouseDown(var theEvent : EventRecord);1067

1068

var1069

partCode : integer;1070

myWindowPtr : WindowPtr;1071

18-30 Lists and Custom List Definition Functions

1072

begin1073

partCode := FindWindow(theEvent.where, myWindowPtr);1074

1075

case (partCode) of1076

1077

inMenuBar: begin1078

DoAdjustMenus;1079

DoMenuChoice(MenuSelect(theEvent.where));1080

end;1081

1082

inSysWindow: begin1083

SystemClick(theEvent, myWindowPtr);1084

end;1085

1086

inContent: begin1087

if (myWindowPtr <> FrontWindow) then1088

begin1089

if (WindowPeek(FrontWindow)^.windowKind = dialogKind) then1090

 SysBeep(10)1091

else SelectWindow(myWindowPtr);1092

end1093

else begin1094

if (WindowPeek(FrontWindow)^.windowKind = dialogKind) then1095

DoInContent(theEvent);1096

end;1097

end;1098

1099

inDrag: begin1100

if ((WindowPeek(FrontWindow)^.windowKind = dialogKind) and1101

 (WindowPeek(myWindowPtr)^.windowKind <> dialogKind)) then1102

begin1103

SysBeep(10);1104

Exit(DoMouseDown);1105

end;1106

DragWindow(myWindowPtr, theEvent.where, qd.screenBits.bounds);1107

end;1108

end;1109

{of statement}1110

end;1111

{of procedure DoMouseDown}1112

1113

{ ### DoEvents }1114

1115

procedure DoEvents(var theEvent : EventRecord);1116

1117

var1118

charCode : UInt8;1119

1120

begin1121

case (theEvent.what) of1122

1123

mouseDown: begin1124

DoMouseDown(theEvent);1125

end;1126

1127

keyDown, autoKey: begin1128

charCode := UInt8(BAnd(theEvent.message, charCodeMask));1129

if (BAnd(theEvent.modifiers, cmdKey) <> 0) then1130

begin1131

DoAdjustMenus;1132

DoMenuChoice(MenuKey(char(charCode)));1133

end;1134

DoKeyDown(charCode, theEvent);1135

end;1136

1137

updateEvt: begin1138

DoUpdate(theEvent);1139

end;1140

1141

activateEvt: begin1142

DoActivate(theEvent);1143

end;1144

1145

osEvt: begin1146

DoOSEvent(theEvent);1147

HiliteMenu(0);1148

Lists and Custom List Definition Functions 18-31

end;1149

end;1150

{of case statement}1151

end;1152

{of procedure DoEvents}1153

1154

{ ## start of main program }1155

1156

begin1157

1158

{ …… initialise managers }1159

1160

DoInitManagers;1161

1162

{ …… set up menu bar and menus }1163

1164

menubarHdl := GetNewMBar(rMenubar);1165

if (menubarHdl = nil) then1166

ExitToShell;1167

SetMenuBar(menubarHdl);1168

DrawMenuBar;1169

1170

menuHdl := GetMenuHandle(mApple);1171

if (menuHdl = nil) then1172

ExitToShell1173

else1174

AppendResMenu(menuHdl, 'DRVR');1175

1176

{ …… open window }1177

1178

gWindowPtr := GetNewWindow(rWindow, nil, WindowPtr(-1));1179

if (gWindowPtr = nil) then1180

ExitToShell;1181

1182

SetPort(gWindowPtr);1183

TextSize(10);1184

1185

{ …… enter eventLoop }1186

1187

gDone := false;1188

1189

while not (gDone) do1190

begin1191

if (WaitNextEvent(everyEvent, eventRec, kMaxLong, nil)) then1192

DoEvents(eventRec);1193

end;1194

1195

end.1196

1197

{ ## }1198

1199

{ ###1200

// LDEFPascal.p Custom List Definition Procedure for Lists Demonstration Program1201

// ##1202

//1203

// The default list definition procedure supports the display of unstyled text only. The1204

// default list definition procedure is used by the text list (the list at the left of1205

// the dialog box) in the Lists demonstration program.1206

//1207

// The list at the right of the dialog box in the Lists demonstration program displays1208

// icons. This custom list definition procedure is used by that list.1209

//1210

// ### }1211

1212

unit LDEFPascal;1213

1214

{ ……… unit interface section }1215

1216

interface1217

1218

{ ……… include the following Universal Interfaces }1219

1220

uses1221

1222

Quickdraw, QuickdrawText, Types, Events, ToolUtils, OSUtils, Lists, LowMem;1223

1224

{ ……… procedure interfaces }1225

18-32 Lists and Custom List Definition Functions

1226

{$MAIN}1227

procedure main(message : integer; selected : Boolean; var cellRect : Rect; theCell : Cell;1228

dataOffset : integer; dataLen : integer; theList : ListHandle);1229

1230

procedure DoLDEFDraw(selected : Boolean; var cellRect : Rect; theCell : Cell;1231

dataLen : integer; theList : ListHandle);1232

1233

procedure DoLDEFHighlight(var cellRect : Rect);1234

1235

{ …… unit implementation section }1236

1237

implementation1238

1239

{ ### main }1240

1241

procedure main(message : integer; selected : Boolean; var cellRect : Rect; theCell : Cell;1242

dataOffset : integer; dataLen : integer; theList : ListHandle);1243

1244

begin1245

case (message) of1246

lDrawMsg:1247

begin1248

DoLDEFDraw(selected, cellRect, theCell, dataLen, theList);1249

end;1250

1251

lHiliteMsg:1252

begin1253

DoLDEFHighlight(cellRect);1254

end;1255

end;1256

{of case statement}1257

end;1258

{of procedure main}1259

1260

{ ### DoLDEFDraw }1261

1262

procedure DoLDEFDraw(selected : Boolean; var cellRect : Rect; theCell : Cell;1263

dataLen : integer; theList : ListHandle);1264

1265

var1266

oldPort : GrafPtr;1267

oldClip : RgnHandle;1268

oldPenState : PenState;1269

drawRect : Rect;1270

pictureHdl : PicHandle;1271

1272

begin1273

GetPort(oldPort);1274

SetPort(theList^^.port);1275

1276

oldClip := NewRgn;1277

GetClip(oldClip);1278

1279

GetPenState(oldPenState);1280

PenNormal;1281

1282

EraseRect(cellRect);1283

1284

drawRect := cellRect;1285

1286

if (dataLen = sizeof(PicHandle)) then1287

begin1288

LGetCell(@pictureHdl, dataLen, theCell, theList);1289

DrawPicture(pictureHdl, drawRect);1290

end;1291

1292

if (selected) then1293

DoLDEFHighlight(cellRect);1294

1295

SetPort(oldPort);1296

1297

SetClip(oldClip);1298

DisposeRgn(oldClip);1299

SetPenState(oldPenState);1300

end;1301

{of procedure DoLDEFDraw}1302

Lists and Custom List Definition Functions 18-33

1303

{ ## DoLDEFHighlight }1304

1305

procedure DoLDEFHighlight(var cellRect : Rect);1306

1307

var1308

hiliteVal : ByteParameter;1309

1310

begin1311

hiliteVal := LMGetHiliteMode;1312

BitClr(Ptr(@hiliteVal), pHiliteBit);1313

LMSetHiliteMode(hiliteVal);1314

1315

InvertRect(cellRect);1316

end;1317

{of procedure DoLDEFHighlight}1318

1319

end.1320

{of unit LDEFPascal}1321

1322

{ ## }1323

Demonstration Program Comments
When this program is run, the user should open the dialog box by choosing the Dialog With Lists
item in the Demonstration menu. With the dialog open, the user should manipulate the two lists
in the dialog box, noting their behaviour in the following circumstances:

• Changing the active list (that is, the current target of mouse and keyboard activity) by
clicking in the non-active list and by using the Tab key to cycle between the two lists.

• Scrolling the active list using the vertical scroll bars, including dragging the scroll box
and clicking in the scroll arrows and gray areas.

• Clicking, and clicking and dragging, in the active list so as to select a particular cell,
including dragging the cursor above and below the list to automatically scroll the list to
the desired cell.

• Shift-clicking and dragging in the text list to make contiguous multiple cell selections.
(Note that the picture list does not allow multiple cell selections.)

• Command-clicking and dragging in the text list to make discontiguous multiple cell
selections, noting the differing effects depending on whether the cell initially clicked is
selected or not selected.

• Shift-clicking in the text list outside a block of multiple cell selections, including
between two fairly widely separated discontiguous selected cells.

• Double-clicking on a cell in the active list.

• Pressing the Up-Arrow and Down-Arrow keys, noting that this action changes the selected
cell and, where necessary, scrolls the list to make the newly-selected cell visible.

• Pressing the Shift-key as well as the Up-Arrow and Down-Arrow keys, noting that this
results in multiple cell selections in the text list (but not in the picture list).

• Pressing the Command-key as well as the Up-Arrow and Down-Arrow keys, noting that, in both
the text list and the picture list, this results in the top-most or bottom-most cell being
selected.

• When the text list is the active list, typing the text of a particular cell so as to select
that cell by type selection, noting the effects of any excessive delay between keystrokes.

The user should also send the program to the background and bring it to the foreground again,
noting the list deactivation/activation effects.

When the dialog is dismissed by either clicking on the OK button or double-clicking a cell in the
active list, the user should note that the text or picture title of the selected cells are
displayed in a window opened by the program.

18-34 Lists and Custom List Definition Functions

The constant declaration block

Lines 70-75 define constants relating to menu IDs and menu items. Lines 77-86 define constants
relating to menu bar, window, dialog, string and picture resources, and to dialog box items.
Lines 88-90 define constants relating to character codes returned by the Up Arrow, Down Arrow,
and Tab keys. Lines 91-92 define constants used in the type selection routines. Lines 94-95
defines constants for the resource IDs of default and custom list definition procedures.

The type declaration block

Lines 103-109 define a data type which will be used to store the handles to the two list records
associated with the two lists created by the program. As will be seen, the handle to this record
will be assigned to the refCon field of the dialog box's window record.

The variable declaration block

gDone controls program termination. gInBackground relates to foreground/background switching.
gWindowPtr will be assigned the pointer to the window opened by the program. gCurrentListHandle
will be assigned the handle to the list record associated with the currently active list. The
remaining four global variables are associated with the type selection routines.

The procedure DoDrawDialogDefaultButton

DoDrawDialogDefaultButton draws the bold outline around the default (OK) button in the dialog
box.

The procedure DoAddRowsAndDataToPictList

DoAddRowsAndDataToPictList adds 6 rows to the picture list and stores a handle to a recorded
picture in each of the 6 cells.

Line 192 sets the variable rowNumber to the current number of rows, which is 0.

The loop entered at Line 194 executes 6 times Each time through the loop, the following occurs:

• A picture resource is read in from a 'PICT' resource (Line 196).

• Line 198 inserts a new row in the list at the location specified by the variable rowNumber.
Line 199 sets this cell and Line 200 stores the handle to the recorded picture as the
cell's data. Line 202 increments the variable rowNumber.

The function DoCreatePictList

DoCreatePictList, supported by the following procedure (DoAddRowsAndDataToPictList), creates the
picture list.

Line 219 sets the rectangle which will be passed as the rDataBnds parameter of the LNew call to
specify one column and (initially) no rows. Line 220 sets the variable which will be passed as
the cellSize parameter so as to specify that the List Manager should make the cell size of all
cells 48 by 48 pixels. Line 222 adjusts the list rectangle to reflect the area occupied by the
vertical scroll bar.

The call to LNew at Line 224 creates the list. The parameters specify that the List Manager is
to make all cell sizes 48 by 48 pixels, a custom list definition procedure is to be used,
automatic drawing mode is to be enabled, no room is to be left for a size box, the list is not to
have a horizontal scroll bar, and the list is to have a vertical scroll bar.

Line 227 assigns lOnlyOne to the selFlags field of the list record, meaning that the List
manager's cell selection algorithm is modified so as to allow only one cell to be selected at any
one time.

Line 229 calls an application-defined function which adds rows to the list and stores data in its
cells.

Lines 231-232 selects the cell at the topmost row as the initially-selected cell. Line 234
returns the handle to the list.

The procedure DoAddTextItemAlphabetically

DoAddTextItemAlphabetically does the heavy work in the process of adding the rows to the text
list and storing the text. The bulk of the code is concerned with building the list in such a
way that the cells are arranged in alphabetical order.

Lists and Custom List Definition Functions 18-35

Line 248 sets the variable found to false. Line 250 sets the variable totalRows to the number of
rows in the list. (In this program, this is initially 0.) Line 251 sets the variable currentRow
to -1. The loop entered at Line 253 executes until the variable found is set to true.

Within the loop, Line 255 increments currentRow to 0. The first time this function is called,
currentRow will equal totalRows at this point (Lines 256-257) and the loop will thus immediately
exit to Line 276. Line 276 adds one row to the list, inserting it before the row specified by
currentRow. The list now has one row (cell (0,0)). Line 279 copies the string to this cell. The
function then exits, to be called another 14 times by DoAddRowsAndDataToTextList.

The second time the function is called, Line 255 again sets currentRow to 0. This time, however,
Line 256 does not execute because totalRows is now 1. Thus Line 259 sets the variable aCell to
(0,0) and LGetCellDataLocation is then called at Line 260 to retrieve the offset and length of
the data in cell (0,0). This allows the string in this cell to be alphabetically compared with
the "incoming" string (Line 265). If the incoming string is "less than" the string in cell
(0,0), IUMagPString returns -1, in which case:

• The loop exits to Line 276. Line 276 inserts one row before cell(0,0) and the old cell
(0,0) thus becomes cell(0,1). The list now contains two rows.

• Line 277 sets cell (0,0) and Line 279 copies the "incoming" string to that cell. The
"incoming" string, which was alphabetically "less than" the first string, is thus assigned
to the correct cell in the alphabetical sense.

• The function then exits, to be called another 13 times by DoAddRowsAndDataToTextList.

If, on the other hand, IUMagPString returns 0 (strings equal) or 1 ("incoming" string "greater
than" the string in cell (0,0), the loop repeats. At Line 255, currentRow is incremented to 1,
which is equal to totalRows. Accordingly, the loop exits immediately, Line 276 inserts a row
before cell (0,1) (that is, cell (0,1) is created), Line 279 copies the "incoming" string to that
cell, and the function exits, to be called another 13 times by DoAddRowsAndDataToTextList.

During the next 13 calls to this function, 13 rows are inserted into the list at a point
dependent on the value of the "incoming" string. The ultimate result is an alphabetically
ordered list of 15 rows.

The procedure
DoAddRowsAndDataToTextList

DoAddRowsAndDataToTextList adds rows to the text list and stores data in its cells. The data is
retrieved from a 'STR#' resource.

The loop at Lines 292-296 copies 16 strings from the specified 'STR#' resource and passes each
string as a parameter in a call to an application-defined function which inserts a new row into
the list and copies the string to that cell.

Note that the strings are not arranged alphabetically in the 'STR#' resource.

The procedure DoResetTypeSelection

DoResetTypeSelection resets the global variables which are central to the operation of the type
selection function doTypeSelectSearch.

Line 305, in effect, makes the type selection string an empty string. Line 306 sets the variable
which holds the handle to the list which is the target of the current key press to nil. Line 307
sets the variable which holds the number of ticks since the last key press to 0. Line 308 sets
the variable which holds the type selection reset threshold to twice the value stored in the low
memory global variable KeyThresh. However, if this value is greater than the value represented
by the constant kMaxKeyThresh, the variable is made equal to kMaxKeyThresh (Lines 309-310).

The procedure DoCreateTextList

DoCreateTextList, supported by two previous procedures, creates the text list.

Line 326 sets the rectangle which will be passed as the rDataBnds parameter of the LNew call to
specify one column and (initially) no rows. Line 327 sets the variable which will be passed as
the cellSize parameter so as to specify that the List Manager should automatically calculate the
cell size. Line 329 adjusts the list rectangle to reflect the area occupied by the vertical
scroll bar.

The call to LNew at Line 331 creates the list. The parameters specify that the List Manager is
to calculate the cell size, the default list definition procedure is to be used, automatic
drawing mode is to be enabled, no room is to be left for a size box, the list is not to have a
horizontal scroll bar, and the list is to have a vertical scroll bar.

18-36 Lists and Custom List Definition Functions

Line 334 calls an application-defined procedure which adds rows to the list and stores data in
its cells.

Lines 336-337 selects the cell at the topmost row as the initially-selected cell. Line 339 calls
an application-defined function which initialises certain variables used by the type selection
routines. Line 341 returns the handle to the list.

The procedure DoAdjustMenus

DoAdjustMenus enables and disables menus as appropriate.

The procedure DoCreateDialogWithLists

DoCreateDialogWithLists creates the dialog box and initiates the creation of the associated
lists.

Line 383 creates a dialog from the specified resource. Line 387 allocates a relocatable block
for the lists record and assigns the handle to this record to the refCon field of the dialog's
window record. Line 392 sets the dialog's graphics port as the current port and Lines 394-396
set the font for this port as 12 point Chicago.

The calls to GetDialogItem at Lines 398 and 401 are made simply to retrieve the two user item
rectangles which will eventually be passed as the rView parameter in the LNew calls which create
the lists.

Lines 399 and 402 call the application-defined functions which creates the text list and the
picture list. The last three parameters in the function call specify the display rectangle, the
number of columns and the resource ID of the list definition procedure to be used by the list.

The returned handles to the two newly-created lists are assigned to the appropriate fields of the
lists record (Lines 404-405).

Line 407 assigns the picture list's handle to the refCon field of the text list's list record and
Line 408 assigns the text list's handle to the refCon field of the picture list's list record.
This establishes the "linked ring" which will be used to facilitate the rotation of the active
list via Tab key presses.

Line 410 establishes the text list as the currently active list.

Line 412 un-hides the dialog box and Line 413 disables the File and Demonstration menus to accord
with user-interface guidelines for the display of a movable modal dialog.

The procedure DoMenuChoice

DoMenuChoice handles menu choices. Note that, at Lines 451-455, choosing the item in the
Demonstration menu causes the window to be erased and the function which creates the dialogs and
lists to be called.

The procedure DoDisplaySelections

DoDisplaySelections is called when the user dismisses the dialog by either clicking on the OK
button or double clicking an item in a list. It displays the user's list selections in the
window opened by the program.

Lines 480-482 get the handles to the lists. Lines 484-485 hide the dialog box and set the
window's graphics port as the current port. Lines 487-490 draw the list titles in the window.

Lines 492-505 get the data from the selected cells in the text list and display it in the window.
Line 492 sets up a loop which will be traversed once for each cell in the list. Line 494
increments the v coordinate of the variable theCell. If the specified cell is selected (Line
495), LGetCellDataLocation is called to get the length of the data in the cell (Line 497),
LGetCell is called to get the cell's data into a Str255 variable (Line 498), the length byte of
this variable is set (Line 499), and the string is drawn in the window (Lines 502-503).

Lines 507-511 gets the selected cell in the picture list and displays the title of the selected
picture. Line 507 sets the starting cell for the LGetSelect search initiated at Line 508. The
cell identified by LGetSelect is used to index a string in the picture titles 'STR#' resource,
which is then read in and drawn (Lines 509-511).

The procedure DoDrawActiveListBorder

DoDrawActiveListBorder draws and erases the 2-pixel-wide border which identifies the active list
to the user. The list's display rectangle (which does not include the scroll bar area) is
copied, expanded to the right by the scroll bar width, and drawn with a pen pattern of either

Lists and Custom List Definition Functions 18-37

black or white depending on whether the target list is, or is not, both the current list and
currently active.

The procedure DoDrawListsBorders

DoDrawListsBorders draws the 1-pixel-wide border around each list. The list's display rectangle
is copied, expanded by 1 pixel all round, and then drawn.

The procedure DoRotateCurrentList

DoRotateCurrentList rotates the currently active list in response to the Tab key and to mouse-
downs in the non-active list.

Line 579 saves the handle to the currently active list. Line 580 retrieves the handle to the new
list to be activated from the refCon field of the currently active list's list record. Line 581
makes the new list the currently active list. Lines 583-584 erase the 2-pixel-wide border around
the previously active list and draw the border around the new active list.

The procedure DoFindNewCellLoc

DoFindNewCellLoc finds the new cell to be selected in response to Arrow key presses. That cell
will be either one up or one down from the cell specified in the oldCellLoc parameter (if the
Command key was not down at the time of the Arrow key press) or the top or bottom cell (if the
Command key was down).

Line 597 gets the number of rows in the list. (Recall that the List Manager sets the
dataBounds.bottom coordinate to one more than the vertical coordinate of the last cell.)

If the Command key was down (Line 600) and the key pressed was the Up Arrow (Line 602, the new
cell to be selected is the top cell in the list (Line 603). If the key pressed was the Down
Arrow key, the new cell to be selected is the bottom cell in the list (Lines 604-605).

If the Command key was not down and the key pressed was the Up Arrow key (Lines 607-608), and if
the first selected cell is the top cell in the list, the new cell to be selected remains as set
at Line 598; otherwise, the new cell to be selected is set as the cell above the first selected
cell (Lines 610-611). If the key pressed was the Down Arrow key (Line 613), and if the last
selected cell is the bottom cell in the list, the new cell to be selected remains as set at Line
598; otherwise, the new cell to be selected is set as the cell below the last selected cell
(Lines 615-616).

The procedure DoFindFirstSelectedCell

DoFindFirstSelectedCell and the following four functions are general utility functions called by
the previous Arrow key handling and type selection functions. DoFindFirstSelectedCell searches
for the first selected cell in a list, returning true if a selected cell is found and providing
the cell's coordinates to the calling function.

Line 630 sets the starting cell for the LGetSelect call at Line 631. Since the first parameter
in the LGetSelect call is set to true, LGetSelect will continue to search the list until a
selected cell is found or until all cells have been examined.

DoFindFirstSelectedCell returns true when and if a selected cell is found.

The procedure DoFindLastSelectedCell

DoFindLastSelectedCell finds the last selected cell in a list (which could, of course, also be
the first selected cell if only one cell is selected).

If the call to DoFindFirstSelectedCell at Line 646 reveals that no cells are currently selected,
DoFindlastSelectedCell simply returns. If, however, DoFindFirstSelectedCell finds a selected
cell, that cell is passed as the starting cell in the LGetSelect call at Line 648.

As an example of how the rest of this function works, assume that the first selected cell is
(0,1), and that cell (0,4) is the only other selected cell. At Line 648, LGetSelect examines
this cell and returns true, causing the loop to execute. Line 650 thus assigns (0,1) to theCell
and Line 651 increments aCell to (0,2). LGetSelect starts another search using (0,2) as the
starting cell. Because cells (0,2) and (0,3) are not selected, LGetSelect advances to cell (0,4)
before it returns. Since it has found another selected cell, LGetSelect again returns true, so
the loop executes again. aCell now contains (0,4), and Line 650 assigns that to theCell. Once
again, Line 651 increments aCell, this time to (0,5).

This time, however, LGetSelect will return false because neither cell (0,5) nor any cell below it
is selected. The loop thus terminates, theCell containing (0,4), which is the last selected
cell.

18-38 Lists and Custom List Definition Functions

The procedure DoMakeCellVisible

DoMakeCellVisible checks whether a specified cell is within the list's display rectangle and, if
not, scrolls the list until that cell is visible.

Line 666 gets a copy of the rectangle which encompasses the currently visible cells. (Note that
his rectangle is in cell coordinates.) Line 668 tests whether the specified cell is within this
rectangle. If it is not, the list is scrolled as follows:

• If the specified cell is "below" the bottom of the display rectangle, the variable dRows is
set to the difference between the cell's v coordinate and the value in the bottom field of
the display rectangle, plus 1 (Lines 670-671). (Recall that the List Manager sets the
bottom field to one greater than the v coordinate of the last visible cell.)

• If the specified cell is "above" the top of the display rectangle, the variable dRows is
set to the difference between the cell's v coordinate and the value in the top field of the
display rectangle (Lines 672-673).

With the number of cells to scroll, and the direction to scroll, established, LScroll is called
at Line 675 to effect the scroll.

The procedure DoSelectOneCell

DoSelectOneCell deselects all cells in the specified list and selects the specified cell.

If no cells in the list are selected, the function returns immediately (Line 689). Otherwise,
the first selected cell is passed as the starting cell in the call to LGetSelect at Line 691.

The loop entered at Line 691 will continue to execute while a selected cell exists between the
starting cell specified in the LGetSelect call and the end of the list. Within the loop, if the
current LGetSelect starting cell is not the cell specified for selection, that cell is deselected
(Lines 693-694). When the loop exits, Line 699 selects the cell specified for selection.

Note that defeating the de-selection of the cell specified for selection if it is already
selected (Line 693) prevents the unsightly flickering which would occur as a result of that cell
being deselected inside the loop and then selected again after the loop exits.

The function DoSearchPartialMatch

DoSearchPartialMatch is the custom callback function used by LSearch, in the previous function,
to attempt to find a match to the current type selection string. For the default function to
return a match, the type selection string would have to match an entire cell's text.
DoSearchPartialMatch, however, only compares the characters of the type selection string with the
same number of characters in the cell's text. For example, if the type selection string is
currently "ba" and a cell with the text "Banana" exists, doSearchPartialMatch will report a
match.

A comparison by IUMagIDString (which returns 0 if the strings being compared are equal) is only
made if the cell contains data and the length of that data is greater than or equal to the
current length of the type selection string (Line 713). If these conditions do not prevail,
DoSearchPartialMatch returns 1 (no match found). If these conditions do prevail, IUMagIDString
is called (Line 714) with, importantly, both the third and fourth parameters set to the current
length of the type selection string. IUMagIDString will return 0 if the strings match or 1 if
they do not match.

The procedure DoTypeSelectSearch

DoTypeSelectSearch is the main type selection function. It is called from DoKeyDown whenever a
key-down or auto-key event is received and the key pressed is not the Tab key, the Up Arrow key
or the Down Arrow key.

The global variables gTSString, gTSResetThreshold, gTSLastKeyTime, and gTSLastListHit are central
to the operation of DoTypeSelectSearch. gTSString holds the current type selection search string
entered by the user. gTSResetThreshold holds the number of ticks which must elapse before type
selection resets, and is dependent on the value the user sets in the "Delay Until Repeat" section
of the Keyboard control panel. gTSLastKeyTime holds the time in ticks of the last key press.
gTSLastListHit holds a handle to the last list that type selection affected.

Line 731 extracts the character code from the message field of the event record.

Lines 733-735 will cause the application-defined function which resets type selection to be
called if either of the following situations prevail: if the list which is the target of the
current key press is not he same as the list which was the target of the previous key press; if a
number of ticks since the last key press is greater than the number stored in gTSResetThreshold;
if the current length of the type selection string is 255 characters.

Lists and Custom List Definition Functions 18-39

Line 737 stores the handle to the list which is the target of the current key press in
gTSLastListHit so as to facilitate the comparison at Line 733 next time the function is called.
Line 738 stores the time of the current key press in gTSLastKeyTime for the same purpose. Line
740 increments the length byte of the type selection string and Line 741 adds the received
character to the type selection string. That string now holds all the characters received since
the last type selection reset.

Line 743 sets the variable theCell to represent the first cell in the list. This is passed as a
parameter in the LSearch call at Line 745, and specifies the first cell to examine. LSearch
examines this cell and all subsequent cells in an attempt to find a match to the type selection
string. If a match exists, the cell in which the first match is found will be returned in
theCell parameter, LSearch will return true and the following three lines will execute.

Of those three lines, ordinarily only Line 748 (which deselects all currently selected cells and
selects the specified cell) and Line 750 (which, if necessary, scrolls the list so that the
newly-selected cell is visible in the display rectangle) would be necessary. However, because
the application-defined function DoSelectOneCell has no effect unless there is currently at least
one selected cell in the list, Line 749 is included to account for the situation where the user
may have deselected all of the text list cells using Command-clicking or dragging.

The actual matching task is performed by the callback function at the third parameter to the
LSearch call. Note that the default callback function has been replaced by the custom callback
function DoSearchPartialMatch.

The procedure DoArrowKeyExtendSelection

DoArrowKeyExtendSelection is similar to the previous function except that it adds additional
cells to the currently selected cells. This function is called only when the text list is the
active list and the Shift key was down at the time of the Arrow key press.

After Lines 764-767 execute, the variable currentSelection will hold either the only cell
currently selected, the first cell selected (if more than one cell is currently selected and the
key pressed was the Up Arrow), or the last cell selected (if more than one cell is currently
selected and the key pressed was the Down Arrow).

Line 769 calls the application-defined function which determines the next cell to select, which
will depend on, amongst other things, whether the Command key was down at the time of the key
press (that is, on whether the moveToTopBottom parameter is true or false). The variable
newSelection will contain the results of that determination. The similarities between this
function and DoArrowKeyMoveSelection end there.

Line 772 calls LGetSelect to check whether the cell specified by the variable newSelection is
selected. If it is not, Line 773 selects it. (This check by LGetSelect is advisable because,
for example, the first-selected cell as this function is entered might be cell (0,0), that is,
the very top row. If the Up-Arrow was pressed in this circumstance, and as will be seen,
DoFindNewCellLoc (Line 769) returns cell (0,0) in the newSelection variable. There is no point
in selecting a cell which is already selected.)

It is possible that the newly-selected cell will be outside the list's display rectangle.
Accordingly, Line 775 calls an application-defined function which, if necessary, scrolls the list
until the newly-selected cell appears at the top or the bottom of the display rectangle.

The procedure DoArrowKeyMoveSelection

DoArrowKeyMoveSelection further processes those Arrow key presses which occurred when either list
was the active list but the Shift key was not down. The effect of this function is to deselect
all currently selected cells and to select the appropriate cell according to, firstly, which
Arrow key was pressed (Up or Down) and, secondly, whether the Command key was down at the same
time.

Line 789 calls an application-defined function which searches for the first selected cell in the
specified list. That function returns true if a selected cell is found, or false if the list
contains no selected cells.

If true is returned by that call, the variable currentSelection will hold the first selected
cell. However, this could be changed by Line 792 if the key pressed was the Down-Arrow. Line
792 calls an application-defined function which finds the last selected cell (which could, of
course, well be the same cell as the first selected cell if only one cell is currently selected).
Either way, the variable currentSelection will now hold either the only cell currently selected,
the first cell selected (if more than one cell is currently selected and the key pressed was the
Up Arrow), or the last cell selected (if more than one cell is currently selected and the key
pressed was the Down Arrow).

18-40 Lists and Custom List Definition Functions

With that established, Line 794 calls an application-defined function which determines the next
cell to select, which will depend on, amongst other things, whether the Command key was down at
the time of the key press (that is, on whether the moveToTopBottom parameter is true or false).
The variable newSelection will contain the results of that determination.

Line 797 then calls an application-defined function which deselects all currently selected cells
and selects the cell specified by the variable newSelection.

It is possible that the newly-selected cell will be outside the list's display rectangle.
Accordingly, Line 798 calls an application-defined function which, if necessary, scrolls the list
until the newly-selected cell appears at the top or the bottom of the display rectangle.

The procedure DoHandleArrowKey

DoHandleArrowKey further processes Down Arrow and Up Arrow key presses.

Recall that DoHandleArrowKey's third parameter (allowExtendSelect) is set to true by the calling
function (doKeyDown) only if the text list is the currently active list.

Line 812 sets the variable moveToTopBottom to false, which can be regarded as the default. If
the Command key was also down at the time of the Arrow key press, this variable is set to true
(Lines 814-815).

At Lines 817-818, if the text list is the currently active list, and if the Shift key was down,
the application-defined procedure DoArrowKeyExtendSelection is called; otherwise, the
application-defined procedure DoArrowKeyMoveSelection is called.

The procedure DoItemHitInDialog

DoItemHitInDialog handles mouse-down events which occur in the dialog box's buttons. It is also
called when the user double clicks on a cell in the active list.

If the item clicked was one of the two buttons (Line 832), and if the button was the OK button
(or the user double clicked on a cell in the active list) (Line 834), an application-defined
function is called to draw the current list selections in the window (Line 835). In addition,
the list records are disposed of (Lines 837-840), the lists record is disposed of (Line 841), and
the dialog is disposed of (Line 842).

Line 844 enables the File and Demonstration menus which, in accordance with human interface
guidelines, are disabled while the movable dialog box is open.

The procedure DoInContent

DoInContent further processes mouse-down events in the content region of the dialog box.

Line 864 saves the pointer to the current graphics port. Lines 866-868 get the handles to the
two lists. Lines 870-872 get copies of the lists' display rectangles. Since these rectangles do
not include the scroll bars, Lines 873-875 expand them to the right encompass the scroll bar
area. Lines 877-878 convert the mouse coordinates to local coordinates to facilitate comparisons
with the adjusted list display rectangles.

If the mouse click was in the text list's rectangle and the text list is not the active list, or
if the mouse click was in the picture list's rectangle and the picture list is not the current
list, the application-defined function which changes the active list is called (Lines 880-884).

If the mouse click was in the currently active list (Line 885), the current graphics port is set
to that associated with the window in which the list resides (Line 887) before the call to LClick
at Line 888. If a click is outside a list's display rectangle and scroll bar, LClick returns
immediately, otherwise it handles all user action until the mouse-button is released. In
addition, LClick returns true if a double-click occurred. In this program, if a double-click
occurred, an application-defined function is called to perform the same action as would apply if
the user had clicked the dialog box's OK button (Lines 889-890).

If the click was not in the display rectangle plus scroll bar area of the active list (Line 892),
DialogSelect is called at Line 893 to determine whether the click was on an enabled item, that
is, on either the OK or the Cancel button. If it was, an application-defined function is called
to handle that situation.

(As an aside, note that the dialog box contains a user item associated with each list, that the
user item rectangles encompass both the list and its scroll bar, that the user item rectangles
are retrieved and used to specify the list display rectangles when the lists are created, and
that the user items are not activated. An alternative to the foregoing approach to determining
whether the mouse-down occurred in a list would be to activate/deactivate the user items along
with the dialog's buttons and rely on the DialogSelect call to establish whether the mouse-down
occurred in an active list.)

Lists and Custom List Definition Functions 18-41

The procedure DoActivateDialog

DoActivateDialog further processes the activate event.

Lines 914-916 get the handles to the two list records.

If the dialog box is becoming active (Line 918), the OK and Cancel buttons are highlighted and
made active (Lines 920-924) and the two lists are activated (Lines 926-927). (Activating the
lists causes previously selected cells to be highlighted and the scroll bars to be shown.) In
addition, the two-pixel-wide border is drawn around the active list (Line 929) and an
application-defined function is called to reset certain variables used in the type selection
routines (Line 930). (This latter is necessary because it is possible that, while the program
was in the background, the user changed the "Delay Until Repeat" setting using the Keyboard
control panel, a value which is used by the type selection routines.)

If the dialog box is being deactivated (Line 932), the OK and Cancel buttons are unhighlighted
and made inactive (Lines 933-937) and the two lists are deactivated (Lines 939-940.
(Deactivating the lists causes the selected cells to be unhighlighted and the scroll bars to be
hidden.) In addition, the two-pixel-wide border around the active list is erased (Line 942).

The procedure DoOSEvent

DoOSEvent handles operating system events. Recall that the acceptSuspendResumeEvents and
doesActivateOnFGSwitch flags in the program's 'SIZE' resource are set. Accordingly, when a
suspend/resume event is received when the dialog box is the front window, doActivateDialog is
called to ensure that the dialog box is activated on receipt of a resume event.

The procedure DoActivate

DoActivate handles activate events, and is concerned only with activate events in the dialog box.
The function determines whether the window in question is to be activated or deactivated (Line
979) and, if the window is the dialog box (Line 981), passes that determination as a parameter in
an application-defined function which further processes the event (Line 982).

The procedure DoUpdateLists

DoUpdateLists updates the lists in the dialog box.

Line 995 gets the handle to the lists record, allowing Lines 997-998 to retrieve the handles to
the list records. Lines 1002-1003 then call LUpdate to redraw those parts of the lists which
need updating and to update the scroll bars if necessary.

Line 1005 calls an application-defined function which draws the one-pixel outline around each
list. Lines 1006-1007 call, for each list, an application defined function which either draws or
erases (as appropriate) the two-pixel-wide active list border.

The procedure DoUpdate

DoUpdate handles update events. Between the usual calls to BeginUpdate and EndUpdate, and if the
window being updated is the dialog box (Line 1023), UpdateDialog is called to redraw the dialog
box (Line 1025), an application-defined function is called to draw the bold outline around the
default (OK) button (Line 1026), and an application-defined function is called to update the
lists (Line 1027).

The procedure DoKeyDown

DoKeyDown further processes key-down and auto-key events, and is concerned only with key-down and
auto-key events in the dialog box (Line 1044).

Line 1046 gets the handle to the lists record (note the plural) which, as will be seen, is stored
in the refCon field of the dialog box's window record. (The lists record stores the handles to
the list records associated with the two lists contained in the dialog box.)

If the key pressed was the Tab key, an application-defined function is called to change the
currently active list (Lines 1048-1049).

If the key pressed was either the Up Arrow or the Down Arrow key (Line 1050), and if the current
list is the text list (Line 1052), a variable which specifies whether multiple cell selections
via the keyboard are permitted is set to true (Line 1053). If the current list is the picture
list, this variable is set to false (Line 1054). This variable is then passed as a parameter in
a call to an application-defined procedure which further processes the Arrow key event (Line
1056).

18-42 Lists and Custom List Definition Functions

If the key pressed was neither the Tab key, the Up Arrow key, or the Down Arrow key (Line 1058),
and if the active list is the text list (Line 1059), the event is passed to an application-
defined type selection procedure for further processing (Line 1060).

The procedures DoMouseDown and DoEvents

DoMouseDown further processes mouse-down events. Note that, if the event is in the content
region of the active window (Line 1087), and if that window is the dialog box (Line 1090), the
application-defined function DoInContent is called (Line 1096).

DoEvents performs initial event handling.

The main program block

The main function initialises the system software managers (Line 1161), sets up the menus (Lines
1165-1175), opens a window and sets the text size for that window (Lines 1179-1184), and enters
the main event loop (Lines 1188-1194).

Note that error handling here and in other areas of the program is somewhat rudimentary in that
the program simply terminates.

Custom List Definition Procedure

The procedure main

The List Manager sends a list definition procedure four types of messages in the message
parameter. The main function calls the appropriate function to handle each message type.

The procedure DoLDEFDraw

DoLDEFDraw handles the lDrawMsg message, which relates to a specific cell.

Lines 1274-1275 save the current drawing environment and set the graphics port. Line 1281 sets
the pen size, mode and pattern to the defaults. Line 1283 erases the cell rectangle.

Lines 1285 gets a copy of the 48 pixel by 48 pixel cell rectangle.

Line 1287 checks whether the cell's data is 4 bytes long (the size of a handle to a picture
record). If it is, LGetCell is called at Line 1289 to get the cells's data into the variable
pictureHdl and DrawPicture is called at Line 1290 to draw the picture. (Recall that the 'PICT'
resources have been made non-purgeable. Hence there are no calls to HNoPurge and HPurge.)

If the lDrawMsg message indicated that the cell was selected, the cell highlighting function is
called (Lines 1293-1294).

Lines 1296-1300 restore the saved drawing environment.

The procedure DoLDEFHighlight

DoLDEFHighlight handles the lHiliteMsg message. Lines 1312-1314 will cause the highlight colour
to be used if this is possible. (A copy of the value at the low memory global HiliteMode is
acquired, BitClr is called to clear the highlight bit, and HiliteMode is set to this new value.)
Either way, Line 1316 will either highlight the cell or, on a black and white display, simply
invert its pixels.

Creating the LDEF Resource

Creating the LDEF resource means creating a code resource. The Code Resource Projects section of the
Creating Mac OS Projects chapter of the CodeWarrior manual Targetting Mac OS is therefore relevant. In
brief, to create an LDEF resource using source code such as that at Lines 1111-1206:

• Create a new project in the normal way, adding the source code file and the library MacOS.lib to the
project.

• Choose Project Settings from the Edit menu. Then click 68K Project to bring up the project
settings panel. Set the Project Type to Code Resource, enter a File Name and Resource Name as
required, enter LDEF as the ResType, enter the ResID (resource ID number) as required, set the Header

Lists and Custom List Definition Functions 18-43

Type as Standard, and set the Resource Flags Locked and Preload. The project panel should then
appear as shown in the Project Settings window below. Note that entering a Resource Name is
optional.

• Click on 68K Processor to bring up the processor settings panel. In the Code Model pop-up menu,
choose Small.

• Click on 68K Linker to bring up the linker settings panel. Select the Link Single Segment checkbox.

• Click on OK and then choose Make from the Project menu. The code resource is built and saved to
the project folder.

• Within ResEdit, open the project folder. Then open the code resource file (titled LDEF, or whatever
was entered in the File Name field in the Project Preferences panel). A ResEdit window opens showing
the 'LDEF' resource icon. Open your program's resource file within ResEdit and copy the 'LDEF'
resource to it.

