
More On Resources 15-1

15Version 1.2 (Frozen)

MORE ON RESOURCES
Includes Demonstration Program MoreResourcesPascal

Introduction

Chapter 1 — System Software, Memory, and Resources covered the basics of creating standard
resources for an application's resource file and with reading in standard resources from application
files and the System file. In addition, the demonstration programs in preceding chapters have all
involved the reading in of standard resources from those files.

This chapter is concerned with aspects of resources not covered at Chapter 1, including search paths,
detaching and copying resources, creating, opening and closing resource files, and reading from and
writing to resource files. In addition, the accompanying demonstration program demonstrates the
creation of custom resources, together with reading such resources from, and writing them to, the
resource forks of files other than application and System files.

Search Path for Resources

Preamble

When your application uses a Resource Manager routine to read, or perform an operation on, a
resource, the Resource Manager follows a defined search path to find the resource. The different files
whose resource forks may constitute the search path are therefore of some relevance. The following
summarises the typical locations of resources used by an application:

Resource Fork
of:

Typical Resources Therein Comments

System file Sounds, icons, cursors, and other
elements available for use by all
applications.
Code resources which manage user
interface elements such as menus,
controls and windows.

On startup, the system software calls
InitResources to initialise the Resource Manager,
which creates a special heap zone within the
system heap and builds a resource map which
points to ROM-resident resources. The Resource
Manager then opens the resource fork of the
System file and reads its resource map into
memory.

Application file Descriptions of menus, windows,
controls, icons, and other elements.
Static data such as text used in dialog
boxes or help balloons.

When a user opens an application, system software
automatically opens the application's resource fork.

Application's
preferences file

Data which encodes the user's global
preferences for the application.

An application should typically open the
preferences file at application launch, and leave it
open.

15-2 More On Resources

Application's
document file

Data which defines characteristics
specific only to this document, such as
its window's last size and location.

When an application opens a document file, it
should typically opens the file's resource fork as
well as its data fork.

Current Resource File

The first file whose resource fork is searched is called the current resource file. Whenever your
application opens the resource fork of a file, that file becomes the current resource file.1 Thus the
current resource file usually corresponds to the file whose resource fork was opened most recently.

Most Resource Manager routines assume that the current resource file is the file on which they should
operate or, in the case of a search, the file in which to begin the search.

Default Search Order

During its search for a resource, if the Resource Manager cannot find the resource in the current
resource file, it continues searching until it either finds the resource or has searched all files in the
search path.

Specifically, when the Resource Manager searches for a resource, it normally looks first in the resource
map in memory of the last resource fork your application opened. If the Resource Manager does not
find the resource there, it continues to search the resource maps of each resource open to your
application in reverse order of opening. After looking in the resource maps of the resource files your
application has opened, the Resource Manager searches your application's resource map. If it does not
find the resource there, it searches the System file's resource map.

Implications of the Default Search Order

The implications of this search order are that it allows your application to:

• Access resources defined in the System file.

• Override resources defined in the System file.

• Override application-defined resources with document-specific resources.

• Share a single resource amongst several files by storing it in the application's resource fork.

Setting the Current Resource File To Dictate the Search Order

Although you can take advantage of the Resource Manager's search order to find a particular resource,
your application should generally set the current resource file to the file containing the desired resource
before reading and writing resource data. This ensures that that file will be searched first, thus possibly
obviating unnecessary searches of other files.

UseResFile is used to set the current resource file. Note that UseResFile takes as its single parameter a
file reference number, which is a unique number identifying an access path to the resource fork. The
Resource Manager assigns a resource file a file reference number when it opens that file. (Your
application should keep track of the file reference numbers of all resource files it opens.) CurResFile
may be used to get the file reference number of the current resource file.

Restricting the Search to the Current Resource File

The search path may be restricted to the current resource file by using Resource Manager routines
(such as Get1Resource) which look only in the current resource file's resource map when searching for a
specific resource.

1The resource fork of a file is also called the resource file because, in some respects, you can treat it as if it were a separate file.

More On Resources 15-3

Detaching and Copying Resources

When you have finished using a resource, you typically call ReleaseResource, which releases the
memory associated with that resource and sets the handle's master pointer to NIL, thus making your
application's handle to the resource invalid. If the application needs the resource later, it must get a
valid handle to the resource by reading the resource into memory again using a routine such as
GetResource.

Your application can use DetachResource to replace a resource's handle in the resource map with NIL
without releasing the associated memory. DetachResource may thus be used when you want your
application to access the resource's data directly, without the aid of the Resource Manager, or when
you need to pass the handle to a routine which does not accept a resource handle. For example, the
AddResource routine, which makes arbitrary data in memory into a resource, requires a handle to data,
not a handle to a resource.

DetachResource is useful when you want to copy a resource. The procedure is to read in the resource
using GetResource, detach the resource to disassociate it from its resource file, and then copy the
resource to a destination file using AddResource.

Creating, Opening and Closing Resource Forks

Opening an Application's Resource Fork

The system software automatically opens your application's resource fork at application launch. Your
application should simply call CurResFile early in its initialisation procedure to save the file reference
number for the application's resource fork.

Creating and Opening a Resource Fork

Creating a Resource Fork

To save resources to the resource fork of a file, you must first create the resource fork (if it does not
already exist) and obtain a file reference number for it. You use FSpCreateResFile to create a resource
fork. FSpCreateResFile requires four parameters: a file system specification record, the signature of the
application creating the file, the file type, and the script code for the file. The effect of
FSpCreateResFile varies as follows:

• If the file specified by the file system specification record does not already exist (that is, the file
has neither a data fork nor a resource fork), FSpCreateResFile:

• Creates a file with an empty resource fork and resource map.

• Sets the creator, type, and script code fields of the file's catalog information record to the
specified values.

• If the data fork of the file specified by the file system specification record already exists but the
file has a zero-length resource fork, FSpCreateResFile:

• Creates an empty resource fork and resource map.

• Changes the creator, type, and script code fields of the catalog information record of the
file to the specified values.

• If the file specified by the file system specification record already exists and includes a resource
fork with a resource map, FSpCreateResFile does nothing, and ResError returns an appropriate
result code.

15-4 More On Resources

Opening a Resource Fork

After creating a resource fork, and before attempting to write to it, you must open it using
FSpOpenResFile. FSpOpenResFile returns a file reference number2 which, as previously stated, may be
used to change or limit the Resource Manager's search order.

When you open a resource fork, the Resource Manager resets the search path so that the file whose
resource fork you just opened becomes the current resource file.

After opening a resource fork, you can use Resource Manager routines to write resources to it.3

Closing a Resource Fork

When you are finished using a resource fork that your application explicitly opened, you should close
it using CloseResFile. Note that the Resource Manager automatically closes any resource forks opened
by your application that are still open when your application calls ExitToShell.

Reading and Manipulating Resources

The Resource Manager provides a number of routines which read resources from a resource fork.
Depending on which routine is used, you specify the resource to be read by either its resource type and
resource ID or its resource type and resource name.

Reading From the Resource Map Without Loading the Resource

Those Resource Manager routines which return handles to resources normally read the resource data
into memory if it is not already there. Sometimes, however, you may want to read, say, resource types
and attributes from the resource map without reading the resource data into memory. Calling
SetResLoad with the load parameter set to false causes subsequent calls to those routines which return
handles to resources to not load the resource data to memory. (To read the resource data into memory
after a call to SetResLoad with the load parameter set to false, call LoadResource.)

If you call SetResLoad with the load parameter set to false, be sure to call it again with the parameter
set to true as soon as possible. Other parts of the system software that call the Resource Manager rely
on the default setting (that is, the load parameter set to true), and some routines will not work properly
if resources are not loaded automatically.

Indexing Through Resources

The Resource Manager provides routines which let you index through all resources of a given type (for
example, using CountResources and GetIndResource). This can be useful when you want to read all
resources of a given type.

Writing Resources

After opening a resource fork, you can write resources to it. You can write resources only to the current
resource file.

To specify the data for a new resource, you usually use AddResource, which creates a new entry for the
resource in the resource map in memory (but not on the disk) and sets the entry's location to refer to the
resource's data. UpdateResFile or WriteResFile may then be used to write the resource to disk. Note
that AddResource always adds the resource to the resource map in memory which corresponds to the

2Note that, although the file reference number for the data fork and the resource fork usually match, you should not assume that this is
always the case.
3It is possible to write to the resource fork using File Manager routines. However, in general, you should always use Resource Manager
routines.

More On Resources 15-5

current resource file. For this reason, you usually need to set the current resource file to the desired file
before calling AddResource.

If you change a resource that is referenced through the resource map in memory, you use
ChangedResource to set the resChanged attribute of that resource's resource map entry.
ChangedResource reserves enough disk space to contain the changed resource. Immediately after
calling ChangedResource, you should call UpdateResFile or WriteResFile to write the changed resource
data to disk.

The difference between UpdateResFile and WriteResFile is as follows:

• UpdateResFile writes those resources which have been added or changed to disk. It also writes
the entire resource map to disk, overwriting its previous contents.

• WriteResFile writes only the resource data of a single resource to disk and does not update the
resource's entry in the resource map on disk.

Care with Purgeable Resources

Most applications do not make resources purgeable. However, if you are changing purgeable
resources, you should use the Memory Manager routine HNoPurge to ensure that the Resource Manager
does not purge the resource while your application is in the process of changing it.

Partial Resources

Some resources, such as 'snd ' and 'sfnt' resources, can be too large to fit into available memory.
ReadPartialResource and WritePartialResource allow you to read a portion of the resource into
memory or to alter a section of the resource while it is still on disk.

Preferences Files

Many applications allow the user to alter various settings to control the operation or configuration of
the application. You can create a preferences file in which to record user preferences, and your
application can retrieve the information in that file when the application is launched. Preferences
information should be saved as a custom resource to the resource fork of the preferences file.

In deciding how to structure your preferences file, it is important to distinguish document-specific
settings from application-specific settings. Some user-specifiable settings affect only a particular
document and should, therefore, be saved to the document file's resource fork. Other settings are not
specific to a particular document. You could store such settings in the application's resource fork, but it
is generally better to store them in a separate preferences file, the main reason being to avoid problems
which can arise if the application is located on a server volume.

The Operating System provides a special folder in the System Folder, called Preferences, where you can
store the preferences file.

Main Resource Manager Constants, Data Types and Routines

Constants

Resource Attributes

resSysHeap = 64 System or application heap?
resPurgeable = 32 Purgeable resource?
resLocked = 16 Load it in locked?
resProtected = 8 Protected?
resPreload = 4 Load in on OpenResFile?

15-6 More On Resources

resChanged = 2 Resource changed?

Data Types

FourCharCode = UNSIGNEDLONG;
ResType = FourCharCode;

Routines

Initialising the Resource Manager

function InitResources: integer;

Checking for Errors

function ResError: integer;

Creating an Empty Resource Fork

procedure FSpCreateResFile(VAR spec: FSSpec; creator: OSType; fileType: OSType;
scriptTag: ScriptCode);

Opening Resource Forks

function FSpOpenResFile(VAR spec: FSSpec; permission: ByteParameter): integer;

Getting and Setting the Current Resource File

procedure UseResFile(refNum: integer);
function CurResFile: integer;
function HomeResFile(theResource: Handle): integer;

Reading Resources Into Memory

function GetResource(theType: ResType; theID: integer): Handle;
function Get1Resource(theType: ResType; theID: integer): Handle;
function GetNamedResource(theType: ResType; name: ConstStr255Param): Handle;
function Get1NamedResource(theType: ResType; name: ConstStr255Param): Handle;
procedure SetResLoad(load: boolean);
procedure LoadResource(theResource: Handle);

Getting and Setting Resource Information

procedure GetResInfo(theResource: Handle; VAR theID: integer; VAR theType: ResType;
VAR name: Str255);

procedure SetResInfo(theResource: Handle; theID: integer; name: ConstStr255Param);
function GetResAttrs(theResource: Handle): integer;
procedure SetResAttrs(theResource: Handle; attrs: integer);

Modifying Resources

procedure ChangedResource(theResource: Handle);
procedure AddResource(theData: Handle; theType: ResType; theID: integer;

name: ConstStr255Param);

Writing to Resource Forks

procedure UpdateResFile(refNum: integer);
procedure WriteResource(theResource: Handle);

Getting a Unique Resource ID

function UniqueID(theType: ResType): integer;
function Unique1ID(theType: ResType): integer;

Counting and Listing Resource Types

function CountResources(theType: ResType): integer;
function Count1Resources(theType: ResType): integer;
function GetIndResource(theType: ResType; index: integer): Handle;
function Get1IndResource(theType: ResType; index: integer): Handle;

More On Resources 15-7

function CountTypes: integer;
function Count1Types: integer;
procedure GetIndType(VAR theType: ResType; index: integer);
procedure Get1IndType(VAR theType: ResType; index: integer);

Getting Resource Sizes

function GetResourceSizeOnDisk(theResource: Handle): longint;
function GetMaxResourceSize(theResource: Handle): longint;

Disposing of Resources and Closing Resource Forks

procedure ReleaseResource(theResource: Handle);
procedure DetachResource(theResource: Handle);
procedure RemoveResource(theResource: Handle);
procedure CloseResFile(refNum: integer);

Getting and Setting Resource Fork Attributes

function GetResFileAttrs(refNum: integer): integer;
procedure SetResFileAttrs(refNum: integer; attrs: integer);

Demonstration Program
{ ##1

// MoreResourcesPascal.p2

// ##3

//4

// This program uses custom resources to:5

//6

// • Store application preferences in the resource fork of a preferences file, and also7

// to assist in the initial creation of the preferences file.8

//9

// • Store, in the resource fork of a document file, the user state and current state of10

// the window associated with the document.11

//12

// • Store, in the resource fork of a document file, the width and height of the13

// printable area of the paper size chosen in the print Style dialog box.14

//15

// The program utilises the following standard resources:16

//17

// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Demonstration18

// menus (preload, non-purgeable).19

//20

// • A 'WIND' resource (purgeable) (initially invisible).21

//22

// • An 'ALRT' resource (purgeable) and associated 'DITL' resource (purgeable)23

// associated with the display of error messages.24

//25

// • A 'DLOG' resource (purgeable) and associated 'DITL' resource (purgeable) associated26

// with the display of, and user modification of, current application preferences.27

//28

// • A 'STR#' resource (purgeable) containing the required name of the preferences file29

// created by the program.30

//31

// • A 'STR ' resource (purgeable) containing the application-missing string, which is32

// copied to the resource fork of the preferences file.33

//34

// • A 'SIZE' resource with the acceptSuspendResumeEvents & is32BitCompatible flags set.35

//36

// The program utilises the following custom resources:37

//38

// • A 'PrFn' (preferences) resource comprising three boolean values, which is located39

// in the program's resource file, which contains default preference values, and which40

// is copied to the resource fork of a preferences file created when the program is41

// run for the first time. Thereafter, the 'PrFn' resource in the preferences file42

// is used for the storage and retrieval of application preferences set by the user.43

//44

// • A 'WiSt' (window state) resource, which is created in the resource fork of the45

// document file used by the program, and which is used to store the associated46

// window's user state rectangle (a Rect value) and zoom state (a Boolean value).47

//48

// • A 'PrAr' (printable area) resource, which is created in the resource fork of the49

15-8 More On Resources

// document file used by the program, and which is used to store the printable width50

// and height of the paper size chosen in the print Style dialog box.51

//52

// ### }53

54

program MoreResourcesPascal(input, output);55

56

{ ……… include the following Universal Interfaces }57

58

uses59

60

Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,61

Memory, Events, TextUtils, ToolUtils, OSUtils, Devices, Resources, StandardFile,62

Folders, Printing, Files, Errors, Script, Controls, Segload;63

64

{ ……… define the following constants }65

66

const67

68

mApple = 128;69

mFile = 129;70

iOpen = 2;71

iClose = 4;72

iPageSetup = 8;73

iQuit = 11;74

mDemonstration = 131;75

iPreferences = 1;76

77

rNewWindow = 128;78

rMenubar = 128;79

rAlertBox = 128;80

rModalDialog = 129;81

iSoundOn = 4;82

iFullScreenOn = 5;83

iAutoScrollOn = 6;84

rStringList = 128;85

iPrefsFileName = 1;86

rTypePrintRect = 'PrAr';87

kPrintRectID = 128;88

rTypeWinState = 'WiSt';89

kWinStateID = 128;90

rTypePrefs = 'PrFn';91

kPrefsID = 128;92

rTypeAppMiss = 'STR ';93

kAppMissID = -16397;94

95

kMaxLong = $7FFFFFFF;96

97

{ ……… user defined types }98

99

type100

101

DocRecord = record102

fileFSSpec : FSSpec;103

end;104

DocRecordPointer = ^DocRecord;105

DocRecordHandle = ^DocRecordPointer;106

107

AppPrefs = record108

soundOn : boolean;109

fullScreenOn : boolean;110

autoScrollOn : boolean;111

end;112

AppPrefsPointer = ^AppPrefs;113

AppPrefsHandle = ^AppPrefsPointer;114

115

WinState = record116

userStateRect : Rect;117

zoomState : boolean;118

end;119

WinStatePtr = ^WinState;120

WinStateHandle = ^WinStatePtr;121

122

RectHandle = ^RectPtr;123

124

{ ……… global variables }125

126

More On Resources 15-9

var127

128

gDone : boolean;129

gInBackground : boolean;130

gTPrintHdl : THPrint;131

gWindowPtr : WindowPtr;132

gWindowOpen : boolean;133

gPrintStyleChanged : boolean;134

gPrintRect : Rect;135

gSoundOn : boolean;136

gFullScreenOn : boolean;137

gAutoScrollOn : boolean;138

gAppResFileRefNum : integer;139

gPrefsFileRefNum : integer;140

menubarHdl : Handle;141

menuHdl : MenuHandle;142

eventRec : EventRecord;143

144

{ ### DoInitManagers }145

146

procedure DoInitManagers;147

148

begin149

MaxApplZone;150

MoreMasters;151

152

InitGraf(@qd.thePort);153

InitFonts;154

InitWindows;155

InitMenus;156

TEInit;157

InitDialogs(nil);158

159

InitCursor;160

FlushEvents(everyEvent, 0);161

end;162

{of procedure DoInitManagers}163

164

{ ## DoError }165

166

procedure DoError(errorCode : integer);167

168

var169

errorString : string;170

ignored : OSErr;171

172

begin173

NumToString(errorCode, errorString);174

ParamText(errorString, '', '', '');175

176

if (errorCode = memFullErr) then177

begin178

ignored := StopAlert(rAlertBox, nil);179

ExitToShell;180

end181

else182

ignored := CautionAlert(rAlertBox, nil);183

end;184

{of procedure DoError}185

186

{ ## DoSavePrintableSize }187

188

procedure DoSavePrintableSize(myWindowPtr : WindowPtr);189

190

var191

docRecHdl : DocRecordHandle;192

fileRefNum : integer;193

printRectHdl : RectHandle;194

osError : OSErr;195

196

begin197

docRecHdl := DocRecordHandle(GetWRefCon(myWindowPtr));198

199

fileRefNum := FSpOpenResFile(docRecHdl^^.fileFSSpec, fsRdWrPerm);200

if (fileRefNum < 0) then201

begin202

osError := ResError;203

15-10 More On Resources

DoError(osError);204

Exit(DoSavePrintableSize);205

end;206

207

printRectHdl := RectHandle(Get1Resource(rTypePrintRect, kPrintRectID));208

if (printRectHdl <> nil) then209

begin210

printRectHdl^^ := gTPrintHdl^^.prInfo.rPage;211

ChangedResource(Handle(printRectHdl));212

osError := ResError;213

if (osError <> noErr) then214

DoError(osError);215

end216

else217

begin218

printRectHdl := RectHandle(NewHandle(sizeof(Rect)));219

if (printRectHdl <> nil) then220

begin221

printRectHdl^^ := gTPrintHdl^^.prInfo.rPage;222

AddResource(Handle(printRectHdl), rTypePrintRect, kPrintRectID,223

'Print rectangle');224

end;225

end;226

227

if (printRectHdl <> nil) then228

begin229

UpdateResFile(fileRefNum);230

osError := ResError;231

if (osError <> noErr) then232

DoError(osError);233

234

ReleaseResource(Handle(printRectHdl));235

end;236

237

gPrintStyleChanged := false;238

239

CloseResFile(fileRefNum);240

end;241

{of procedure DoSavePrintableSize}242

243

{ ### DoGetPrintableSize }244

245

procedure DoGetPrintableSize(myWindowPtr : WindowPtr);246

247

var248

docRecHdl : DocRecordHandle;249

fileRefNum : integer;250

osError : OSErr;251

printRectHdl : RectHandle;252

253

begin254

docRecHdl := DocRecordHandle(GetWRefCon(myWindowPtr));255

256

fileRefNum := FSpOpenResFile(docRecHdl^^.fileFSSpec, fsRdWrPerm);257

if (fileRefNum < 0) then258

begin259

osError := ResError;260

DoError(osError);261

Exit(DoGetPrintableSize);262

end;263

264

printRectHdl := RectHandle(Get1Resource(rTypePrintRect, kPrintRectID));265

if (printRectHdl <> nil) then266

begin267

gPrintRect := printRectHdl^^;268

ReleaseResource(Handle(printRectHdl));269

end;270

271

CloseResFile(fileRefNum);272

end;273

{of procedure DoGetPrintableSize}274

275

{ ### DoSetWindowState }276

277

procedure DoSetWindowState(myWindowPtr : WindowPtr; userStateRect, stdStateRect : Rect);278

279

var280

More On Resources 15-11

windowRecPtr : WindowPeek;281

winStateDataPtr : WStateDataPtr;282

283

begin284

windowRecPtr := WindowPeek(myWindowPtr);285

winStateDataPtr := WStateDataPtr(windowRecPtr^.dataHandle^);286

winStateDataPtr^.userState := userStateRect;287

winStateDataPtr^.stdState := stdStateRect;288

end;289

{of procedure DoSetWindowState}290

291

{ ### DoSaveWindowPosition }292

293

procedure DoSaveWindowPosition(myWindowPtr : WindowPtr);294

295

var296

docRecHdl : DocRecordHandle;297

fileRefNum : integer;298

windowRecPtr : WindowPeek;299

winStateDataPtr : WStateDataPtr;300

stdRect, userRect : Rect;301

contentRgnHdl : RgnHandle;302

userRectAndZoomState : WinState;303

winStateHdl : WinStateHandle;304

osError : OSErr;305

306

begin307

docRecHdl := DocRecordHandle(GetWRefCon(myWindowPtr));308

309

fileRefNum := FSpOpenResFile(docRecHdl^^.fileFSSpec, fsRdWrPerm);310

if (fileRefNum < 0) then311

 begin312

osError := ResError;313

DoError(osError);314

Exit(DoSaveWindowPosition);315

end;316

317

windowRecPtr := WindowPeek(myWindowPtr);318

winStateDataPtr := WStateDataPtr(windowRecPtr^.dataHandle^);319

stdRect := winStateDataPtr^.stdState;320

userRect := winStateDataPtr^.userState;321

322

contentRgnHdl := windowRecPtr^.contRgn;323

userRectAndZoomState.userStateRect := contentRgnHdl^^.rgnBBox;324

userRectAndZoomState.zoomState := EqualRect(userRectAndZoomState.userStateRect, stdRect);325

if (userRectAndZoomState.zoomState) then326

userRectAndZoomState.userStateRect := userRect;327

328

winStateHdl := WinStateHandle(Get1Resource(rTypeWinState, kWinStateID));329

if (winStateHdl <> nil) then330

begin331

winStateHdl^^ := userRectAndZoomState;332

ChangedResource(Handle(winStateHdl));333

osError := ResError;334

if (osError <> noErr) then335

DoError(osError);336

end337

else338

begin339

winStateHdl := WinStateHandle(NewHandle(sizeof(WinState)));340

if (winStateHdl <> nil) then341

begin342

winStateHdl^^ := userRectAndZoomState;343

AddResource(Handle(winStateHdl), rTypeWinState, kWinStateID,344

'Last window state');345

end;346

end;347

348

if (winStateHdl <> nil) then349

begin350

UpdateResFile(fileRefNum);351

osError := ResError;352

if (osError <> noErr) then353

DoError(osError);354

355

ReleaseResource(Handle(winStateHdl));356

end;357

15-12 More On Resources

358

CloseResFile(fileRefNum);359

end;360

{of procedure DoSaveWindowPosition}361

362

{ ## DoGetandSetWindowPosition }363

364

procedure DoGetandSetWindowPosition(myWindowPtr : WindowPtr);365

366

var367

userStateRect, stdStateRect, displayRect : Rect;368

docRecHdl : DocRecordHandle;369

fileRefNum : integer;370

winStateHdl : WinStateHandle;371

gotResource : boolean;372

osError : OSErr;373

374

begin375

userStateRect := qd.screenBits.bounds;376

SetRect(userStateRect, userStateRect.left + 3, userStateRect.top + 42,377

userStateRect.right - 40, userStateRect.bottom - 6);378

379

stdStateRect := qd.screenBits.bounds;380

SetRect(stdStateRect, stdStateRect.left + 3, stdStateRect.top + 42,381

stdStateRect.right - 3, stdStateRect.bottom - 6);382

383

docRecHdl := DocRecordHandle(GetWRefCon(myWindowPtr));384

385

fileRefNum := FSpOpenResFile(docRecHdl^^.fileFSSpec, fsRdWrPerm);386

if (fileRefNum < 0) then387

begin388

osError := ResError;389

DoError(osError);390

Exit(DoGetandSetWindowPosition);391

end;392

393

winStateHdl := WinStateHandle(Get1Resource(rTypeWinState, kWinStateID));394

if (winStateHdl <> nil) then395

begin396

gotResource := true;397

userStateRect := winStateHdl^^.userStateRect;398

end399

else400

gotResource := false;401

402

if (gotResource) then403

begin404

if (winStateHdl^^.zoomState) then405

displayRect := stdStateRect406

else407

displayRect := userStateRect;408

end409

else410

begin411

displayRect := userStateRect;412

end;413

414

MoveWindow(myWindowPtr, displayRect.left, displayRect.top, false);415

416

GlobalToLocal(displayRect.topLeft);417

GlobalToLocal(displayRect.botRight);418

SizeWindow(myWindowPtr, displayRect.right, displayRect.bottom, true);419

420

DoSetWindowState(myWindowPtr, userStateRect, stdStateRect);421

422

ReleaseResource(Handle(winStateHdl));423

CloseResFile(fileRefNum);424

end;425

{of procedure DoGetandSetWindowPosition}426

427

{ ## DoSavePreferences }428

429

procedure DoSavePreferences;430

431

var432

appPrefsHdl : AppPrefsHandle;433

existingResHdl : Handle;434

More On Resources 15-13

resourceName : string;435

436

begin437

resourceName := 'Preferences';438

if (gPrefsFileRefNum = -1) then439

Exit(DoSavePreferences);440

441

appPrefsHdl := AppPrefsHandle(NewHandleClear(sizeof(AppPrefs)));442

443

HLock(Handle(appPrefsHdl));444

445

appPrefsHdl^^.soundOn := gSoundOn;446

appPrefsHdl^^.fullScreenOn := gFullScreenOn;447

appPrefsHdl^^.autoScrollOn := gAutoScrollOn;448

449

UseResFile(gPrefsFileRefNum);450

451

existingResHdl := Get1Resource(rTypePrefs, kPrefsID);452

if (existingResHdl <> nil) then453

begin454

RemoveResource(existingResHdl);455

if (ResError = noErr) then456

AddResource(Handle(appPrefsHdl), rTypePrefs, kPrefsID, resourceName);457

if (ResError = noErr) then458

WriteResource(Handle(appPrefsHdl));459

end;460

461

HUnlock(Handle(appPrefsHdl));462

463

ReleaseResource(Handle(appPrefsHdl));464

UseResFile(gAppResFileRefNum);465

end;466

{of procedure DoSavePreferences}467

468

{ ### DoCopyResource }469

470

function DoCopyResource(rsrcType : ResType; resID, sourceFileRefNum,471

destFileRefNum : integer) : OSErr;472

473

var474

oldResFileRefNum : integer;475

sourceResourceHdl : Handle;476

ignoredType : ResType;477

ignoredID : integer;478

resourceName : string;479

resAttributes : integer;480

osError : OSErr;481

482

begin483

oldResFileRefNum := CurResFile;484

UseResFile(sourceFileRefNum);485

486

sourceResourceHdl := Get1Resource(rsrcType, resID);487

488

if (sourceResourceHdl <> nil) then489

begin490

GetResInfo(sourceResourceHdl, ignoredID, ignoredType, resourceName);491

resAttributes := GetResAttrs(sourceResourceHdl);492

DetachResource(sourceResourceHdl);493

UseResFile(destFileRefNum);494

if (ResError = noErr) then495

AddResource(sourceResourceHdl, rsrcType, resID, resourceName);496

if (ResError = noErr) then497

SetResAttrs(sourceResourceHdl, resAttributes);498

if (ResError = noErr) then499

ChangedResource(sourceResourceHdl);500

if (ResError = noErr) then501

WriteResource(sourceResourceHdl);502

end;503

504

osError := ResError;505

506

ReleaseResource(sourceResourceHdl);507

UseResFile(oldResFileRefNum);508

509

DoCopyResource := osError;510

end;511

15-14 More On Resources

{of function DoCopyResource}512

513

{ ### DoGetPreferences }514

515

procedure DoGetPreferences;516

517

var518

prefsFileName : string;519

osError : OSErr;520

volRefNum : integer;521

directoryID : longint;522

fileSSpec : FSSpec;523

fileRefNum : integer;524

appPrefsHdl : AppPrefsHandle;525

526

begin527

GetIndString(prefsFileName, rStringList, iPrefsFileName);528

529

osError := FindFolder(kOnSystemDisk, kPreferencesFolderType, kDontCreateFolder,530

volRefNum, directoryID);531

532

if (osError = noErr) then533

osError := FSMakeFSSpec(volRefNum, directoryID, prefsFileName, fileSSpec);534

if ((osError = noErr) or (osError = fnfErr)) then535

fileRefNum := FSpOpenResFile(fileSSpec, fsCurPerm);536

537

if (fileRefNum = -1) then538

begin539

FSpCreateResFile(fileSSpec, 'PpPp', 'pref', smSystemScript);540

osError := ResError;541

542

if (osError = noErr) then543

begin544

fileRefNum := FSpOpenResFile(fileSSpec, fsCurPerm);545

if (fileRefNum <> -1) then546

begin547

UseResFile(gAppResFileRefNum);548

549

osError := DoCopyResource(rTypePrefs, kPrefsID, gAppResFileRefNum,550

fileRefNum);551

if (osError = noErr) then552

osError := DoCopyResource(rTypeAppMiss, kAppMissID, gAppResFileRefNum,553

fileRefNum);554

if (osError <> noErr) then555

begin556

CloseResFile(fileRefNum);557

osError := FSpDelete(fileSSpec);558

fileRefNum := -1;559

end;560

end;561

end;562

end;563

564

if (fileRefNum <> -1) then565

begin566

UseResFile(fileRefNum);567

568

appPrefsHdl := AppPrefsHandle(Get1Resource(rTypePrefs, kPrefsID));569

if (appPrefsHdl = nil) then570

Exit(DoGetPreferences);571

572

gSoundOn := appPrefsHdl^^.soundOn;573

gFullScreenOn := appPrefsHdl^^.fullScreenOn;574

gAutoScrollOn := appPrefsHdl^^.autoScrollOn;575

576

gPrefsFileRefNum := fileRefNum;577

578

UseResFile(gAppResFileRefNum);579

end;580

end;581

{of procedure DoGetPreferences}582

583

{ ### DoPrintStyleDialog }584

585

procedure DoPrintStyleDialog;586

587

begin588

More On Resources 15-15

PrOpen;589

590

if (PrStlDialog(gTPrintHdl)) then591

begin592

gPrintStyleChanged := true;593

gPrintRect := gTPrintHdl^^.prInfo.rPage;594

InvalRect(gWindowPtr^.portRect);595

end;596

597

PrClose;598

end;599

{of procedure DoPrintStyleDialog}600

601

{ ## DoPreferencesDialog }602

603

procedure DoPreferencesDialog;604

605

var606

modalDlgPtr : DialogPtr;607

oldPort : GrafPtr;608

oldPenState : PenState;609

buttonOval, itemHit, itemType, temp : integer;610

itemHdl : Handle;611

itemRect : Rect;612

613

begin614

modalDlgPtr := GetNewDialog(rModalDialog, nil, WindowPtr(-1));615

if (modalDlgPtr = nil) then616

Exit(DoPreferencesDialog);617

618

GetDialogItem(modalDlgPtr, iSoundOn, itemType, itemHdl, itemRect);619

if gSoundOn620

then temp := 1621

else temp := 0;622

SetControlValue(ControlRef(itemHdl), temp);623

GetDialogItem(modalDlgPtr, iFullScreenOn, itemType, itemHdl, itemRect);624

if gFullScreenOn625

then temp := 1626

else temp := 0;627

SetControlValue(ControlRef(itemHdl), temp);628

GetDialogItem(modalDlgPtr, iAutoScrollOn, itemType, itemHdl, itemRect);629

if gAutoScrollOn630

then temp := 1631

else temp := 0;632

SetControlValue(ControlRef(itemHdl), temp);633

634

ShowWindow(modalDlgPtr);635

636

GetPort(oldPort);637

GetPenState(oldPenState);638

GetDialogItem(modalDlgPtr, 1, itemType, itemHdl, itemRect);639

SetPort(ControlHandle(itemHdl)^^.contrlOwner);640

InsetRect(itemRect, -4, -4);641

PenPat(qd.black);642

PenSize(3, 3);643

buttonOval := trunc((itemRect.bottom - itemRect.top) / 2) + 2;644

FrameRoundRect(itemRect, buttonOval, buttonOval);645

SetPenState(oldPenState);646

SetPort(oldPort);647

648

repeat649

ModalDialog(nil, itemHit);650

GetDialogItem(modalDlgPtr, itemHit, itemType, itemHdl, itemRect);651

if GetControlValue(ControlRef(itemHdl)) = 0652

then temp := 1653

else temp := 0;654

SetControlValue(ControlRef(itemHdl), temp);655

until ((itemHit = 1) or (itemHit = 2));656

657

if (itemHit = 1) then658

begin659

GetDialogItem(modalDlgPtr, iSoundOn, itemType, itemHdl, itemRect);660

if GetControlValue(ControlRef(itemHdl)) = 1661

then gSoundOn := true662

else gSoundOn := false;663

664

GetDialogItem(modalDlgPtr, iFullScreenOn, itemType, itemHdl, itemRect);665

15-16 More On Resources

if GetControlValue(ControlRef(itemHdl)) = 1666

then gFullScreenOn := true667

else gFullScreenOn := false;668

669

GetDialogItem(modalDlgPtr, iAutoScrollOn, itemType, itemHdl, itemRect);670

if GetControlValue(ControlRef(itemHdl)) = 1671

then gAutoScrollOn := true672

else gAutoScrollOn := false;673

end;674

675

DisposeDialog(modalDlgPtr);676

677

if (gWindowPtr <> nil) then678

InvalRect(gWindowPtr^.portRect);679

680

DoSavePreferences;681

end;682

{of procedure DoPreferencesDialog}683

684

{ ### DoCloseCommand }685

686

procedure DoCloseCommand;687

688

var689

myWindowPtr : WindowPtr;690

docRecHdl : DocRecordHandle;691

osError : OSErr;692

693

begin694

osError := 0;695

myWindowPtr := FrontWindow;696

docRecHdl := DocRecordHandle(GetWRefCon(myWindowPtr));697

698

DoSaveWindowPosition(myWindowPtr);699

700

if (gPrintStyleChanged) then701

DoSavePrintableSize(gWindowPtr);702

703

DisposeHandle(Handle(docRecHdl));704

DisposeWindow(myWindowPtr);705

gWindowOpen := false;706

end;707

{of procedure DoCloseCommand}708

709

{ ## DoOpenCommand }710

711

procedure DoOpenCommand;712

713

var714

fileTypes : SFTypeList;715

fileReply : StandardFileReply;716

docRecHdl : DocRecordHandle;717

osError : OSErr;718

719

begin720

osError := 0;721

fileTypes[0] := 'TEXT';722

723

StandardGetFile(nil, 1, @fileTypes, fileReply);724

if not (fileReply.sfGood) then725

Exit(DoOpenCommand);726

727

gWindowPtr := GetNewWindow(rNewWindow, nil, WindowPtr(-1));728

if (gWindowPtr = nil) then729

Exit(DoOpenCommand);730

731

docRecHdl := DocRecordHandle(NewHandle(sizeof(DocRecord)));732

if (docRecHdl = nil) then733

begin734

DisposeWindow(gWindowPtr);735

Exit(DoOpenCommand);736

end;737

738

gWindowOpen := true;739

SetPort(gWindowPtr);740

741

SetWRefCon(gWindowPtr, longint(docRecHdl));742

More On Resources 15-17

docRecHdl^^.fileFSSpec := fileReply.sfFile;743

SetWTitle(gWindowPtr, docRecHdl^^.fileFSSpec.name);744

745

DoGetandSetWindowPosition(gWindowPtr);746

DoGetPrintableSize(gWindowPtr);747

748

ShowWindow(gWindowPtr);749

end;750

{of procedure DoOpenCommand}751

752

{ ## InvalidateScrollBarArea }753

754

procedure InvalidateScrollBarArea(myWindowPtr : WindowPtr);755

756

var757

tempRect : Rect;758

759

begin760

SetPort(myWindowPtr);761

762

tempRect := myWindowPtr^.portRect;763

tempRect.left := tempRect.right - 15;764

InvalRect(tempRect);765

766

tempRect := myWindowPtr^.portRect;767

tempRect.top := tempRect.bottom - 15;768

InvalRect(tempRect);769

end;770

{of procedure InvalidateScrollBarArea}771

772

{ ### DoFileMenu }773

774

procedure DoFileMenu(menuItem : integer);775

776

begin777

case (menuItem) of778

779

iClose:780

begin781

DoCloseCommand;782

end;783

784

iOpen:785

begin786

DoOpenCommand;787

end;788

789

iPageSetup:790

begin791

DoPrintStyleDialog;792

end;793

794

iQuit:795

begin796

while (FrontWindow <> nil) do797

DoCloseCommand;798

gDone := true;799

end;800

end;801

{of case statement}802

end;803

{of procedure DoFileMenu}804

805

{ ### DoMenuChoice }806

807

procedure DoMenuChoice(menuChoice : longint);808

809

var810

menuID, menuItem : integer;811

itemName : string;812

daDriverRefNum : integer;813

814

begin815

menuID := HiWord(menuChoice);816

menuItem := LoWord(menuChoice);817

818

if (menuID = 0) then819

15-18 More On Resources

Exit(DoMenuChoice);820

821

case (menuID) of822

823

mApple:824

begin825

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);826

daDriverRefNum := OpenDeskAcc(itemName);827

end;828

829

mFile:830

begin831

DoFileMenu(menuItem);832

end;833

834

mDemonstration:835

begin836

if (menuItem = iPreferences) then837

DoPreferencesDialog;838

end;839

end;840

{of case statement}841

842

HiliteMenu(0);843

end;844

{of procedure DoMenuChoice}845

846

{ ## DoAdjustMenus }847

848

procedure DoAdjustMenus;849

850

var851

menuHdl : MenuHandle;852

853

begin854

if (gWindowOpen) then855

begin856

menuHdl := GetMenuHandle(mFile);857

DisableItem(menuHdl, iOpen);858

EnableItem(menuHdl, iClose);859

EnableItem(menuHdl, iPageSetup);860

end861

else862

begin863

menuHdl := GetMenuHandle(mFile);864

EnableItem(menuHdl, iOpen);865

DisableItem(menuHdl, iClose);866

DisableItem(menuHdl, iPageSetup);867

end;868

869

DrawMenuBar;870

end;871

{of procedure DoAdjustMenus}872

873

{ ### DoUpdateWindow }874

875

procedure DoUpdateWindow(myWindowPtr : WindowPtr);876

877

var878

str : string;879

oldPort : GrafPtr;880

881

begin882

SetPort(myWindowPtr);883

884

MoveTo(10, 20);885

DrawString('Current Application Preferences:');886

MoveTo(10, 35);887

DrawString('Sound On: ');888

if (gSoundOn) then889

DrawString('YES')890

else891

DrawString('NO');892

893

MoveTo(10, 50);894

DrawString('Full Screen On: ');895

if (gFullScreenOn) then896

More On Resources 15-19

DrawString('YES')897

else898

DrawString('NO');899

900

MoveTo(10, 65);901

DrawString('AutoScroll On: ');902

if (gAutoScrollOn) then903

DrawString('YES')904

else905

DrawString('NO');906

907

if (gPrintRect.bottom <> 0) then908

begin909

MoveTo(10, 85);910

DrawString('Information from printable area ("PrAr") resource:');911

NumToString(longint(gPrintRect.bottom), str);912

MoveTo(10, 100);913

DrawString('Page print area height in screen pixels: ');914

DrawString(str);915

NumToString(longint(gPrintRect.right), str);916

MoveTo(10, 115);917

DrawString('Page print area width in screen pixels: ');918

DrawString(str);919

end920

else921

begin922

MoveTo(10, 85);923

DrawString('No printable area ("PrAr") resource saved yet');924

end;925

926

end;927

{of procedure DoUpdateWindow}928

929

{ ## DoMouseDown }930

931

procedure DoMouseDown(var eventRec : EventRecord);932

933

var934

myWindowPtr : WindowPtr;935

partCode : integer;936

growRect : Rect;937

newSize : longint;938

939

begin940

partCode := FindWindow(eventRec.where, myWindowPtr);941

942

case (partCode) of943

944

inMenuBar:945

begin946

DoAdjustMenus;947

DoMenuChoice(MenuSelect(eventRec.where));948

end;949

950

inSysWindow:951

begin952

SystemClick(eventRec, myWindowPtr);953

end;954

955

inContent:956

begin957

if (myWindowPtr <> FrontWindow) then958

SelectWindow(myWindowPtr);959

end;960

961

inDrag:962

begin963

DragWindow(myWindowPtr, eventRec.where, qd.screenBits.bounds);964

end;965

966

inGoAway:967

begin968

if (TrackGoAway(myWindowPtr, eventRec.where)) then969

DoCloseCommand;970

end;971

972

inGrow:973

15-20 More On Resources

begin974

growRect := qd.screenBits.bounds;975

growRect.top := 145;976

growRect.left := 345;977

newSize := GrowWindow(myWindowPtr, eventRec.where, growRect);978

if (newSize <> 0) then979

begin980

InvalidateScrollBarArea(myWindowPtr);981

SizeWindow(myWindowPtr, LoWord(newSize), HiWord(newSize), true);982

InvalidateScrollBarArea(myWindowPtr);983

end;984

end;985

986

inZoomIn, inZoomOut:987

begin988

if (TrackBox(myWindowPtr, eventRec.where, partCode)) then989

begin990

SetPort(myWindowPtr);991

EraseRect(myWindowPtr^.portRect);992

ZoomWindow(myWindowPtr, partCode, false);993

InvalRect(myWindowPtr^.portRect);994

end;995

end;996

end;997

{of case statement}998

end;999

{of procedure DoMouseDown}1000

1001

{ ### DoEvents }1002

1003

procedure DoEvents(var eventRec : EventRecord);1004

1005

var1006

myWindowPtr : WindowPtr;1007

charCode : char;1008

1009

begin1010

myWindowPtr := WindowPtr(eventRec.message);1011

1012

case (eventRec.what) of1013

1014

mouseDown:1015

begin1016

DoMouseDown(eventRec);1017

end;1018

1019

keyDown, autoKey:1020

begin1021

charCode := chr(BAnd(eventRec.message, charCodeMask));1022

if (BAnd(eventRec.modifiers, cmdKey) <> 0) then1023

begin1024

DoAdjustMenus;1025

DoMenuChoice(MenuKey(charCode));1026

end;1027

end;1028

1029

updateEvt:1030

begin1031

BeginUpdate(myWindowPtr);1032

EraseRgn(myWindowPtr^.visRgn);1033

DoUpdateWindow(myWindowPtr);1034

DrawGrowIcon(myWindowPtr);1035

EndUpdate(myWindowPtr);1036

end;1037

1038

osEvt:1039

begin1040

case (BAnd(BSR(eventRec.message, 24), $000000FF)) of1041

1042

suspendResumeMessage:1043

begin1044

gInBackground := (BAnd(eventRec.message, resumeFlag) = 0);1045

end;1046

end;1047

{of inner case statement}1048

HiliteMenu(0);1049

end;1050

More On Resources 15-21

end;1051

{of outer case statement}1052

end;1053

{of procedure DoEvents}1054

1055

{ ## start of main program }1056

1057

begin1058

1059

{ …… initialise managers }1060

1061

DoInitManagers;1062

gWindowOpen := false;1063

gPrintStyleChanged := false;1064

gPrefsFileRefNum := 0;1065

1066

{ ……………………………………………………………………… set current resource file to application resource fork }1067

1068

gAppResFileRefNum := CurResFile;1069

1070

{ …… set up menu bar and menus }1071

1072

menubarHdl := GetNewMBar(rMenubar);1073

if (menubarHdl = nil) then1074

DoError(MemError);1075

SetMenuBar(menubarHdl);1076

DrawMenuBar;1077

1078

menuHdl := GetMenuHandle(mApple);1079

if (menuHdl = nil) then1080

DoError(MemError)1081

else1082

AppendResMenu(menuHdl, 'DRVR');1083

1084

{ …… create and initialise a TPrint record }1085

1086

PrOpen;1087

gTPrintHdl := THPrint(NewHandleClear(sizeof(TPrint)));1088

PrintDefault(gTPrintHdl);1089

PrClose;1090

1091

{ …… read in application preferences }1092

1093

DoGetPreferences;1094

1095

{ ……… enter event loop }1096

1097

gDone := false;1098

1099

while not (gDone) do1100

begin1101

if (WaitNextEvent(everyEvent, eventRec, kMaxLong, nil)) then1102

DoEvents(eventRec);1103

end;1104

end.1105

1106

{ ## }1107

Demonstration Program Comments
When this program is run for the first time, a preferences file (titled "MoreResources
Preferences") is created in the Preferences folder in the System folder and two resources are
copied to the resource fork of that file from the program's resource file. These two
resources are a custom preferences ('PrFn') resource and a "application missing" 'STR '
resource. Thereafter, the preferences resource will be read in from the preferences file
every time the program is run and replaced whenever the user invokes the Preferences dialog
box to change the application preferences settings. In addition, if the user double clicks on
the preferences file's icon, an alert box is invoked displaying the text contained in the
"application missing" 'STR ' resource. (Note that this latter will not occur when the program
is run under system software version 7.5 or later and automatic document translation is
selected to on in the Macintosh Easy Open control panel.)

After the program is launched, the user should choose Open from the File menu to open the
included demonstration document file titled "Document"). The resource fork of this file

15-22 More on Resources

contains two custom resources, namely, a 'WiSt' resource containing the last saved window user
state and zoom state, and a 'PrAr' resource containing the last saved printable area rectangle
of the currently chosen paper size. These two resources are read in whenever the document
file is opened and written to whenever the file is closed. (Actually, the 'PrAr' resource is
written to only if the user invoked the print Style dialog box while the document was open.)

No data is read in from the document's data fork. Instead, the window is used to display the
current preferences settings and the current printable area (that is, page rectangle) values.

The user should choose different paper size, scaling and orientation settings in the print
style dialog box, resize or zoom the window, close the file, re-open the file, and note that,
firstly, the saved printable area values are correctly retrieved and, secondly, the window is
re-opened in the size and zoom state in which is was closed. The user should also change the
application preferences settings via the Preferences dialog box (which is invoked when the
single item in the Demonstration menu is chosen), quit the program, re-launch the program, and
note that the last saved preferences settings are retrieved at program launch.

The user may also care to remove the 'WiSt' and 'PrAr' resources from the document file, run
the program, force a 'PrAr' resource to be created and written to by invoking the print Style
dialog box while the document file is open, quit the program, and re-run the program, noting
that 'WiSt' and 'PrAr' resources are created in the document file's resource fork if they do
not already exist.

When done, the user should remove the preferences file from the Preferences folder in the
System folder.

The constant declaration block

Lines 69-76 establish constants relating to menu IDs and menu item numbers. Lines 78-80
establish constants relating to window, menubar and alert resource IDs.

The constants at Lines 81-84 relate to the Preferences dialog box resource and associated
checkbox item numbers. Lines 85-86 represent the resource ID and index for the string
containing the name of the application's preferences file. Lines 87-94 represent resource
types and IDs for the custom printable area resource, the custom window state resource, the
custom preferences resource, and the application missing string resource.

Line 96 defines kMaxLong as the maximum possible long value.

The type declaration block

The DocRecord data type (Lines 102-106) is for the document record. In this demonstration,
the only field required is that for a file system specification.

The AppPrefs data type (Lines 108-114) is for the application preferences settings. The three
Boolean values are set by checkboxes in the Preferences dialog box.

The WinState data type (Lines 116-121) is for the window user state (a rectangle) and zoom
state (a Boolean value indicating whether the window is in the standard (zoomed out) or user
(zoomed in) state).

The RectHandle data type (Line 123) will be used in the functions related to the getting and
saving of the printable area width and height.

The variable declaration block

gDone controls exit from the main event loop and thus program termination. gInBackground
relates to foreground/background switching. gTPrintHdl will be assigned a handle to a TPrint
record, the latter being required because of the use by the program of the print style dialog.
gWindowPtr will be assigned the pointer to the window's graphics port. gWindowOpen is used to
control File menu item enabling/disabling according to whether the window is open or closed.

gPrintStyleChanged is set to true when the print style dialog is invoked, and determines
whether a new printable area resource will be written to the document file when the file is
closed. gPrintRect will be assigned the rectangle representing the printable area.

gSoundOn, gFullScreenOn, and gAutoScrollOn will hold the application preferences settings.

gAppResFileRefNum will be assigned the file reference number for the application file's
resource fork. gPrefsFileRefNum will be assigned the file reference number for the
preferences file's resource fork.

More on Resources 15-23

The procedure DoError

DoError presents an alert box displaying the error code passed to it. In the case of a
memFullErr code, a stop alert is presented and the program is terminated when the user clicks
the OK button. In all other cases, a caution alert is presented and the program continues
when the user clicks the OK button.

The procedure DoSavePrintableSize

DoSavePrintableSize saves the printable area rectangle for the currently chosen paper size to
a 'PrAr' resource in the document file's resource fork. The function is called when the file
is closed if the user invoked the print Style dialog while the document was open and dismissed
the dialog by clicking the OK button.

Line 198 gets a handle to the window's document record so that the document file's file system
specification can be retrieved and used in the call to FSpOpenResFile at Line 200. If the
call is not successful, an error alert box is presented and the function simply returns (Lines
203-205).

Line 208 attempts to read the 'PrAr' resource from the document's resource fork into memory.
If the Get1Resource call is successful, the resource in memory is made equal to the rectangle
in the prPage field of the prInfo record, which is itself part of the TPrint record, and the
resource is tagged as changed (Lines 211-215). If the Get1Resource call is not successful
(that is, the document file's resource fork does not yet contain a 'PrAr' resource), Line 219
allocates a block of memory for a Rect, Line 222 copies the rectangle in the prPage field of
the prInfo record to this block, and Line 223 makes this data in memory into a 'PrAr'
resource.

If an existing 'PrAr' resource was successfully read in, or if a new 'PrAr' resource was
successfully created in memory (Line 228), Line 230 writes the resource map and data to disk,
and Line 235 discards the resource in memory. The document file's resource fork is then
closed (Line 240).

The procedure DoGetPrintableSize

DoGetPrintableSize gets the rectangle representing the printable area of the chosen page size
from the 'PrAr' resource in the document file's resource fork. The function is called when
the document is opened.

Line 255 gets a handle to the window's document record so that the document file's file system
specification can be retrieved and used in the call to FSpOpenResFile at Line 257. If the
call is not successful, an error alert box is presented and the function simply returns (Lines
260-262).

If the resource fork is successfully opened, the call to Get1Resource at Line 265 attempts to
read in the resource. If the call is successful (Line 266), Line 268 assigns the data in the
resource in memory to the global variable which stores the current printable area rectangle.
The resource in memory is then discarded (Line 269) and the document file's resource fork is
closed (Line 272).

The procedure DoSetWindowState

DoSetWindowState is called by DoGetandSetWindowPosition to assign the user and standard state
rectangles defined by that function to the userState and stdState fields of the window's
WStateData record.

The procedure DoSaveWindowPosition

DoSaveWindowPosition saves the current user state rectangle and zoom state to the document
file's resource fork. The function is called when the associated window is closed by the
user.

Line 308 gets a handle to the window's document record so that the document file's file system
specification can be retrieved and used in the FSpOpenResFile call at Line 310. If the
resource fork cannot be opened, an error alert is presented and the function simply returns
(Lines 313-315).

Line 318 gets a pointer to the window record, allowing Line 319 to get a pointer to the
WStateData record. Lines 320-321 retrieve the current standard state and user state
rectangles from the WStateData record.

The next step is to determine whether the window is currently in the "zoomed out" (standard)
state or the "zoomed in" (user) state. Lines 323-324 get a rectangle equal to the content
region of the window. Line 324 sets up a forthcoming test by assigning this rectangle to the

15-24 More on Resources

userStateRect field of a window state record. The test is at the next line: If the content
region rectangle equals the current standard state rectangle, the call to EqualRect at Line
325 will return true, in which case:

• The zoomstate field of the window state record is assigned a value indicating that the
window is in the standard state.

• The userStateRect field of the window state record is assigned the current user state
rectangle.

If, on the other hand, the content region rectangle does not equal the current standard state
rectangle, the call to EqualRect at Line 325 will return false, in which case:

• The zoomstate field of the window state record is assigned a value indicating that the
window is in the user state.

• The userStateRect field of the window state record retains the rectangle it was assigned
at Line 324 which, not being equal to the standard state rectangle (Line 326), must be
equal to the current user state rectangle.

Line 329 attempts to read the 'WiSt' resource from the document's resource fork into memory.
If the Get1Resource call is successful, the resource in memory is made equal to the previously
"filled-in" window state record (Line 332) and the resource is tagged as changed (Line 333).
If the Get1Resource call is not successful (that is, the document file's resource fork does
not yet contain a 'WiSt' resource), Line 340 creates a new window state record, Line 343 makes
this record equal to the previously "filled-in" window state record, and Line 344 makes this
data in memory into a 'WiSt' resource.

If an existing 'WiSt' resource was successfully read in, or if a new 'WiSt' resource was
successfully created in memory (Line 349), Line 351 writes the resource map and data to disk,
and Line 356 discards the resource in memory. The document file's resource fork is then
closed (Line 359).

The procedure
DoGetandSetWindowPosition

DoGetandSetWindowPosition gets the window state ('WiSt') resource from the resource fork of
the document file and moves and sizes the window according to retrieved user state and zoom
state data.

Lines 376-377 establish a default user state rectangle to cater for the possibility that the
document file may not yet have a 'WiSt' resource in its resource fork. Lines 380-381
establish the standard state rectangle as desired by the application.

Line 384 gets a handle to the window's document record so that the file system specification
can be retrieved and used in the FSpOpenResFile call (Line 386) to open the document file's
resource fork.

Line 394 attempts to read in the 'WiSt' resource. If the Get1Resource call is successful
(Line 395), a "success" flag is set and the user state rectangle is set to that retrieved from
the resource (Lines 397-398). If the call is not successful, the "success" flag is unset
(Lines 401-820) and the user state rectangle remains as the default rectangle defined at Lines
376-377.

If the Get1Resource call was successful, the zoom state is also retrieved from the resource
(Lines 405). If the zoom state is "zoomed out" to the standard state, the rectangle to be
used to display the window is set to the standard state (Line 406). If the zoom state is
"zoomed in" to the user state, the rectangle to be used to display the window is set to the
user state (Line 408). If the Get1Resource call was not successful (Line 412) the display
rectangle is set to the user state rectangle, which will be the default defined at Lines 376-
377.

Line 415 moves the window to the specified coordinates, keeping it inactive. Lines 417-419
size the window to the specified size, adding any area added to the content region to the
update region.

Line 421 calls an application-defined function which assigns the specified rectangles to the
userState and stdState fields of the WStateData record for the window. With this action
completed, Line 423 discards the 'WiSt' resource in memory. Line 424 then closes the document
file's resource fork.

More on Resources 15-25

The procedure DoSavePreferences

DoSavePreferences is called when the user dismisses the preferences dialog box to save the new
preference settings to the preferences file. It assumes that the preferences file is already
open.

If DoGetPreferences was not successful in opening the preferences file at program launch, the
function simply returns (Lines 439-440).

Lines 442-448 create a new preferences record and assign to its fields the values in the
global variables which store the current preference settings. Line 450 makes the preferences
file's resource fork the current resource file. The Get1Resource call at Line 452 gets a
handle to the existing preferences resource. Assuming the call is successful (that is, the
preferences resource exists), RemoveResource is called to remove the resource from the
resource map (Line 455), AddResource is called to make the preferences record in memory into a
resource (Line 457), and WriteResource is called to write the resource to disk (Line 459).

With the resource written to disk, Line 464 disposes of the preferences record in memory and
Line 465 resets the application's resource fork as the current resource file.

The function DoCopyResource

DoCopyResource is called by DoGetPreferences to copy the default preferences and application
missing string to the newly-created preferences file from the application file.

Line 484 saves the current resource file's file reference number and Line 485 sets the
application's resource fork as the current resource file. This will be the "source" file.

The Get1Resource call at Line 487 reads the specified resource into memory. Line 491 gets the
resource's name and Line 492 gets the resource's attributes. The call to DetachResource at
Line 493 replaces the resource's handle with NULL without releasing the associated memory.
The resource data is now simply arbitrary data in memory.

Line 494 sets the preferences file's resource fork as the current resource file. The
AddResource call (Line 496) makes the arbitrary data in memory into a resource, assigning it
the specified type, ID and name. Line 498 sets the resource attributes in the resource map.
The ChangedResource call (Line 500) tags the resource for update and pre-allocates the
required disk space. The WriteResource call (Line 502) then writes the resource to disk.

With the resource written to disk, Line 507 discards the resource in memory and Line 508
resets the resource file saved at Line 484 as the current resource file.

The procedure DoGetPreferences

DoGetPreferences, which is called from the main function immediately after program launch, is
the first of those application-defined functions which are central to the demonstration
aspects of the program. Its purpose is to create the preferences file if it does not already
exist, copying the default preferences resource and the missing application resource to that
file as part of the creation process, and to read in the preferences resource from the
previously existing or newly-created preferences file.

Line 528 retrieves from the application's resource file the resource containing the required
name of the preferences file ("MoreResources Preferences"). Line 530 finds the location of
the Preferences folder, returning the volume reference number and directory ID in the last two
parameters.

Line 534 makes a file system specification from the preferences file name, volume reference
number and directory ID. This file system specification is used in the FSpOpenResFile call
(Line 536) to open the resource fork of the preferences file with exclusive read/write
permission.

If the specified file does not exist, FSpOpenResFile returns -1. In this case, Lines 540-541
create the preferences file. The call to FSpCreateResFile (Line 540) creates the file of the
specified type on the specified volume in the specified directory and with the specified name
and creator. (Note that the creator is set to an arbitrary signature which no other
application known to the Finder is likely to have. This is so that a double click on the
preferences file icon will cause the Finder to immediately display the missing application
alert box. Note also that, if 'pref' is used as the fileType parameter, the icon used for the
file will be the system-supplied preferences document icon, which looks like this (unless
you've hacked your System file... /kdg):

15-26 More on Resources

If the file is created successfully, the resource fork of the file is opened (Line 545) and
the master preferences ('PrFn') and application missing 'STR ' resources are copied to the
resource fork from the application's resource file (Lines 550 and 552). If the resources are
not successfully copied (Line 555), the resource fork of the new file is closed (Line 557),
the file is deleted (Line 558), and the fileRefNum variable is set to indicate that the file
does not exist (line 559).

If the preferences file exists (either previously or newly-created) (Line 565), the resource
fork of that file is set as the current resource file (Line 567), the preferences resource is
read in from the resource fork (Line 569) and, if the read was successful, the three Boolean
values are assigned to the global variables which store those values (Lines 573-575). (Note
that, in this program, the function Get1Resource is used to read in resources so as to
restrict the Resource Manager's search for the specified resource to the current resource
file.)

Line 577 assigns the file reference number for the open preferences file resource fork to a
global variable (the fork is left open), and Line 579 resets the application's resource fork
as the current resource file.

The procedure DoPrintStyleDialog

DoPrintStyleDialog is called when the user chooses the Page Setup… item in the File menu. It
presents the print style dialog box (Line 591).

If the user dismisses the dialog with a click on the OK button, the flag which indicates that
a print style change has been made is set to true (Line 593), and the global variable which
holds the printable rectangle is assigned the value in the rPage (printable page size) field
of the TPrInfo record, a handle to which is at the prInfo field of the TPrint record (Line
594). In addition, the window's port rectangle is invalidated (Line 595) to force an update
of the window, thus ensuring that the new printable area values are displayed immediately.

The procedure DoPreferencesDialog

DoPreferencesDialog is called when the user chooses the Preferences item in the Demonstration
menu. The function presents the Preferences dialog box and sets the values in the global
variables which hold the current application preferences according to the settings of the
dialog's checkboxes.

Note that, at Line 681, a call is made to the application-defined function which saves the
dialog box's preference settings to the resource fork of the preferences file.

The procedure DoCloseCommand

DoCloseCommand is a much simplified version of the actions normally taken when a user chooses
the Close command from a File menu.

At Lines 696-697, a pointer to the front window, and a handle to the associated document
record, are retrieved.

Line 699 calls the application-defined function which saves the window's user state and zoom
state to the window state resource in the document's resource fork. If the print Style dialog
was invoked while the window was open, and if the user dismissed the dialog by clicking the OK
button (Line 701), a call is made to the application-defined function which saves the
printable area rectangle to the printable area resource in the document file's resource fork
(Line 702).

Line 704 disposes of the document record, Line 705 disposes of the window record, and Line 706
sets the "window is open" flag to indicate that the window is not open.

The procedure DoOpenCommand

DoOpenCommand is a much simplified version of the actions normally taken when a user chooses
the Open command from a File menu.

The standard Open dialog box is presented (Line 724) and, if the user clicks the Cancel
button, the function simply returns. If the user clicks the OK button, a window is opened
(Line 728), a document record is created (Line 732), a flag is set to indicate that the window
is open (Line 739), the window's graphics port is set as the current port for drawing (Line
740), the document record is connected to the window record (Line 742), the file system
specification for the chosen file is assigned to the document record's file system
specification field (Line 743), and the window's title is set (Line 744).

At that point, the application-defined function which reads in the window state resource from
the document's resource fork, and positions and sizes the window accordingly, is called (Line

More on Resources 15-27

746). In addition, the application-defined function which reads in the printable area
resource from the document's resource fork is called (Line 747).

With the window positioned and sized, ShowWindow is called (Line 749) to make the window
visible. (The window's 'WIND' resource specifies that the window is to be initially
invisible.)

The procedure InvalidateScrollBarArea

InvalidateScrollBarArea invalidates the areas occupied by the scroll bars whenever the window
is resized.

The procedures DoFileMenu,
DoMenuChoice, and DoAdjustMenus

DoAdjustMenus controls File menu item enabling and disabling according to whether the document
window is opened or closed. DoMenuChoice and DoFileMenu handle menu choices from the Apple,
File and Demonstration menus.

The procedures DoUpdateWindow,
DoMouseDown, and DoEvents

DoEvents and DoMouseDown perform such event processing as is necessary for the satisfactory
execution of the demonstration aspects of the program.

DoUpdateWindow simply prints the current preferences and printable area information in the
window for the information of the user.

The main program block

The main function initialises the system software managers (Line 1062), sets the application's
resource fork as the current resource file (Line 1069), sets up the menus (Lines 1073-1083),
and creates and initialises a TPrint record (1087-1090). Then, before the main loop (Lines
1100-1104) is entered, main calls the application-defined function which reads in the
application preferences settings from the preferences file (Line 1094). (As will be seen, if
the preferences file does not exist, a preferences file will be created, default preferences
settings will be copied to it from the application file, and these default settings will then
be read in from the newly-created file.)

