
Printing 13-1

13Version 1.2 (Frozen)

PRINTING
Includes Demonstration Program PrintingPascal

The Printing Manager

The Printing Manager is a collection of system software routines that your application can use to print
to any type of connected printer using the same QuickDraw routines that your application uses for
screen display. When printing, your application calls the same Printing Manager routines regardless of
the type of printer selected by the user.

You can use the Printing Manager to:

• Print documents.

• Display and alter printing dialog boxes.

• Handle printing errors.

To use the Printing Manager, you must first initialise QuickDraw, the Font Manager, the Window
Manager, the Menu Manager, TextEdit, and the Dialog Manager.

Printer Drivers

The Printing Manager uses a printer driver to do the actual printing. A printer driver does any
necessary translation of QuickDraw drawing routines and, when requested by your application, sends
the translated instructions and data to the printer.

Printer drivers are stored in printer resource files, which are located in the Extensions folder inside
the System Folder. Each type of printer has its own printer driver. The current printer1 is the printer
driver that actually implements the routines defined by the Printing Manager.

Types and Characteristics of Printer Drivers

In general, there are two types of types of printer driver:

• QuickDraw printer drivers.

• PostScript printer drivers.

1The current printer is the printer that the user last selected from the Chooser.

13-2 Printing

QuickDraw Printer Drivers

QuickDraw printer drivers render images using QuickDraw and then send the rendered images to the
printer as bitmaps or pixel maps. Since they rely on the rendering capabilities of the Macintosh
computer, QuickDraw printers are not required to have any intelligent rendering capabilities. Instead,
they simply accept instructions from the printer driver to place dots on the page in specified places.

A QuickDraw printer captures the image of an entire page either in memory or in a temporary disk file
known as a spool file, translates the pixels into dot placement instructions, and sends these
instructions to the printer.

Given that over 7 million pixels are required to render an 8-by-10-inch image at 300 dots per inch,
QuickDraw printers are relatively slow; accordingly, many QuickDraw printers use some form of data
compression to improve their performance. The large memory requirements involved in printing to a
colour printer using 8 bits per pixel may require the driver to process the image in horizontal strips,
which further impairs printing speed.

PostScript Printers

Unlike QuickDraw printers, PostScript printers have their own rendering capabilities. Instead of
rendering the entire page on the Macintosh computer and sending all the pixels to the printer,
PostScript printer drivers convert QuickDraw operations into equivalent PostScript operations and
send the resulting drawing commands directly to the printer. The printer then renders the images by
interpreting these commands. In this way, image processing is offloaded from the computer.

Whereas QuickDraw printer drivers must capture an entire page before sending any of it to the printer,
PostScript printer drivers are able to send commands as soon as they are generated. Although this
results in faster printing, it does not allow the driver to examine entire pages for their use of colour,
fonts, or other resources that the printer needs to have specially processed. Accordingly, some
PostScript printer drivers may capture page images in a spool file so that the driver can analyse the
pages before sending them to the printer.

Background Printing, Deferred Printing, and Spool Files

Some printer drivers allow users to specify background printing, which allows a user to work with
an application while documents are printing in the background. These printer drivers send printing
data to a spool file in the PrintMonitor Documents folder in the System Folder.

Some QuickDraw printer drivers provide two methods of printing documents: deferred printing and
draft-quality. Deferred printing was designed to allow ImageWriter printers to spool a page image to
disk when printing under the low memory conditions of the original 128 KB Macintosh. With deferred
printing, a printer driver records each page of the document's printed image in a structure similar to a
QuickDraw picture, which the printer driver writes to a spool file. PrPicFile is then used to instruct
these drivers to turn the QuickDraw picture into bit images and send them to the printer.

Do not confuse the different uses of spool files. With background printing, print files are spooled to
disk so that the user can work with an application while documents are printing. You do not need to
use PrPicFile to send these spool files to the printer — in fact, there is no reliable way to determine
whether a printer driver is using a spool file for background printing. A spool file created by a printer
driver using deferred printing is another matter. (As will be seen, you can readily determine whether a
printer driver is using deferred printing.)

Printer Drivers and Picture Comments

For most applications, sending QuickDraw's picture-drawing routines to the printer driver is sufficient.
However, some applications may rely on printer drivers to provide several features (for example,
rotated text or dashed lines) which are not available, or which are difficult to achieve, using
QuickDraw. If your application requires these features, you may want to create two versions of your
drawing code: one that uses picture comments to take advantage of these features on capable printers,
and another that provides QuickDraw approximations of those features.

Printing 13-3

Picture comments are data or commands, created with the QuickDraw routine PicComment, used for
special processing by output devices such as printer drivers. They may be included in the code an
application sends to a printer driver or they may be stored in the definition of a picture.

Printer Resolution

Resolution is usually specified in dots-per-inch (dpi) in the x and y directions.

A printer driver supports either discrete resolution or variable resolution. If a printer driver
supports discrete resolution, an application can choose from only a limited number of resolutions pre-
defined by the printer driver. If a printer driver supports variable resolution, an application can define
any resolution within a range bounded by maximum and minimum values defined by the printer
driver.

Page and Paper Rectangles

When printing a document, you should consider the physical size of the paper and the area of the
paper that the printer can use to format the document. This is usually smaller than the physical sheet
of paper, generally because of the mechanical limitations of the printer.

Page Rectangle

The page rectangle (see Fig 1) represents the boundaries of the printable area of the page. Its upper-
left coordinates are always (0,0). The coordinates of the lower-right corner give the maximum page
height and width attainable on the given printer. These coordinates are specified by the units used to
express the resolution of the printing graphics port (see below). For example, the lower-right corner of
a page rectangle used by the PostScript LaserWriter printer driver for an 8.5-by-11-inch page is
(730,552) at 72 dpi.

Your application should always use the page rectangle sizes provided by the printer driver and should
not attempt to change them or add new ones.

FIG 1 - PAPER AND PAGE RECTANGLES

PAPER RECTANGLE PAGE RECTANGLE

(0,0)

LOWER-RIGHT
COORDINATES
DEPEND ON
PAPER SIZE

Paper Rectangle

The paper rectangle (see Fig 1) gives the physical paper size, defined in the same coordinate system as
the page rectangle. Thus the upper left coordinates of the paper rectangle are typically negative, and its
lower-right coordinates are greater than those of the page rectangle.

13-4 Printing

Job Dialog Box, Style Dialog Box, and the TPrint Record

Job Dialog Box and Style Dialog Box

If it is likely that the user will want to print the data created with your application, you should support
both the Page Setup… command and the Print… command in your application's File menu.

In response to the Page Setup… command, your application should display the current printer's style
dialog box, which allows the user to specify printing options, such as paper size and printing
orientation, that your application needs for formatting the document in the frontmost window. Each
printer driver defines its own style dialog box. Fig 2 shows the style dialog box for the Color
StyleWriter 2500 printer.

FIG 2 - STYLE DIALOG BOX FOR STYLEWRITER II PRINTER

In response to the Print… command, your application should display the current printer's job dialog
box , which solicits printing information from the user (such as the number of copies to print, the print
quality and the range of pages to print) for the document in the frontmost window. Each printer driver
defines its own job dialog box. Fig 3 shows the job dialog box for the Color StyleWriter 2500 printer.

FIG 3 - JOB DIALOG BOX FOR STYLEWRITER II PRINTER

Note that many applications add items to the basic style and job dialog boxes so as to provide the user
with additional control over printing operations within that application.

Preserving the User's Printing Preferences

The only information you should preserve each time the user prints the document should be that
obtained via the style dialog box. The information supplied by the user through the job dialog box
should pertain to the document only while the document prints, and you should not re-use this
information if the user prints the document again.

A TPrint record (see below) stores information about the user's choices made via the style (and the job)
dialog box. Thus you can preserve the information obtained via the style dialog box by saving the
TPrint record associated with a document in that document's data or resource fork.

Printing 13-5

The values specified by the user through the style dialog box apply only to the printing of the
document in the active window. In general, the user should have to specify these values only once per
document (although the user can, of course, choose to change the settings at any time).

Displaying the Style and Job Dialog Boxes

PrStlDialog is used to display the style dialog box defined by the resource file for the current printer.
PrJobDialog is used to display the job dialog box defined by the resource file for the current printer.
These functions handle all user interaction in the items defined by the printer driver until the user
clicks the OK or Cancel button. You must call PrOpen before calling PrStlDialog because the current
printer driver must be open for your application to successfully call PrStlDialog.

Customising the Style and Job Dialog
Boxes

If you wish to customise the style and/or job dialog boxes so as to solicit additional information from
the user, you must provide a function that handles events such as mouse clicks in any items that you
add to the dialog box. You must also provide an event filter function to handle events not handled by
the Dialog Manager in a modal dialog box.

Note that PrDlgMain, not PrStlDialog and PrJobDialog, is used to display a customised style or job
dialog box

The TPrint Record

To print a document, you need to create a print record. The TPrint record is a data structure of type
TPrint. Most Printing Manager routines require that you provide a handle to a TPrint record as a
parameter.

You application allocates the memory for a TPrint record itself, using NewHandle, and then initialises
the TPrint record using PrintDefault. Your application may also use an existing TPrint record, in
which case you can validate the record using PrValidate. (PrValidate checks all fields of the TPrint
record to ensure compatibility with the current printer.)

When the user chooses the Print… command, your application passes a handle to a TPrint record to
PrJobDialog (or PrDlgMain in the case of customised job dialog boxes) to display a job dialog box to the
user. PrJobDialog (or PrDlgMain) alters the prJob field (a TPrJob record) of the TPrint record according
to the user's responses.

When the user chooses the Page Setup… command, your application passes a handle to a TPrint
record to PrStlDialog (or PrDlgMain in the case of customised style dialog boxes) to display a style
dialog box to the user. PrStlDialog (or PrDlgMain) alters the prInfo field (a TPrInfo record) of the
TPrint record according to the user's responses.

The TPrint record, including its constituent TPrJob and TPrInfo records, is shown at Fig 4. Note also
the prInfo field (a TPrInfo record), which contains resolution and page rectangle information.

13-6 Printing

FIG 4 -THE TPrint RECORD

TPrint = record
iPrVersion:integer;{ (Reserved)}
prInfo:TPrInfo; { PrInfo data associated with the current style.}
rPaper:Rect; { Paper rectangle (offset from rPage).}
prStl:TPrStl; { This print request's style.}
prInfoPT:TPrInfo; { (Reserved)}
prXInfo:TPrXInfo; { (Reserved)}
prJob:TPrJob; { Print Job request.}
case integer of
0: (
printX:array [1..19] of integer; { (Reserved)}
);
1: (
prFlag1:TPrFlag1;
iZoomMin:integer;
iZoomMax:integer;
hDocName:StringHandle;
);
end;

TPPrint = ^TPrint;
THPrint = ^TPPrint;

NOTE: Some
printer drivers
always set the
iCopies field
to 1, regardless
of the user's
entry in the job
dialog box, and
handle multiple
copies internally.

TPrJob = record
iFstPage:integer; { First page of page range.}
iLstPage:integer; { Last page of page range.}
iCopies:integer; { Number of copies.}
bJDocLoop:SInt8; { Printing method - draft or deferred.}
fFromUsr:boolean; { (Reserved)}
pIdleProc:PrIdleUPP;{ Pointer to an idle procedure.}
pFileName:StringPtr; { Spool file name: NIL for default.}
iFileVol:integer; { Spool file volume, set to 0 initially}
bFileVers:SInt8; { Spool file version, set to 0 initially}
bJobX:SInt8; { (Reserved)}
end;

TPPrJob = ^TPrJob;

TPrStl = record
wDev:integer; { Device number of printer.}
iPageV:integer; { (Reserved)}
iPageH:integer; { (Reserved)}
bPort:SInt8; { (Reserved)}
feed:TFeed; { Feed type.}
end;

TPPrStl = ^TPrStl;

TPrInfo = record
iDev:integer; { (Reserved)}
iVRes:integer;{ Vertical resolution of printer in dpi.}
iHRes:integer;{ Horizontal resolution of printer in dpi.}
rPage:Rect;{ Page (printable) rectangle - device coordinates.}
end;

TPPrInfo = ^TPrInfo;

The Printing Graphics Port

PrOpenDoc, which opens a printing graphics port, returns a pointer to a TPrPort record. The TPrPort
record, which defines a printing graphics port, is as follows:

type
TPrPort = record

gPort: GrafPort; { Printer's graphics port record.}
gProcs: QDProcs; { Procedures for printing in the graphics port.}
... { More fields for internal use.}

end;

TPPrPort = ^TPrPort;
 struct TPrPort

Printing 13-7

Field Descriptions

gPort A graphics port record, which may be either a CGrafPort or a GrafPort record, depending
on whether the current printer supports colour and greyscale, and whether Color
QuickDraw is available on the computer.2

gProcs A QDProcs record, which contains pointers to routines which the printer driver may have
designated to take the place of QuickDraw routines.

You print text and graphics by drawing into the printing graphics port using QuickDraw
drawing routines, just as if you were drawing on the screen. The printer driver installs its
own versions of QuickDraw's low-level drawing routines in this field.

Print Status Dialog Boxes and Idle Procedure

Because the user must wait for a document to print (that is, the application must draw the data in the
printing graphics port and the data must be sent either to the printer or a spool file before the user can
continue working), many printer drivers display a print status dialog box informing the user that the
printing process is under way and that the process may be aborted by pressing Command-period.

A user should always be able to cancel printing by pressing Command-period. To determine whether
the user has cancelled printing, the printer driver periodically runs an idle procedure.

The TPrJob record contains a pointer to an idle procedure in its pIdleProc field (see Fig 4). If this field
contains the value NULL, then the printer driver uses its default idle procedure. The default idle
procedure checks for Command-period keyboard events and sets the iPrAbort error code if one occurs
so that your application can cancel the print job at the user's request. Note, however, that the default
idle procedure does not display a print status dialog box. It is up to the printer driver or your
application to display a print status dialog box.

To handle update information in your status dialog box during the printing operation, you should
install your own idle procedure in the pIdleProc field of the TPrJob record. Your idle procedure
should also check whether the user has pressed Command-period, in which case your application
should stop its printing operation. If your status dialog box contains a button to cancel the printing
operation, your idle procedure should also check for clicks in the button and respond accordingly.

If you do not provide your own idle procedure, you can determine whether the user has cancelled
printing by calling PrError to check for the iPrAbort error code after each call to a Printing Manager
routine.

Printing a Document - The Printing Loop

That part of your application's code which handles printing is referred to as the printing loop. A
printing loop calls all the Printing Manager routines necessary to print a document, checking for
printing errors at every step. In general, the printing loop should perform the following tasks:

• Unload Unused Code Segments. Unused code segments3 should be unloaded to ensure
that the maximum possible memory is available for printing.

• Open the Printing Manager and Current Printer Driver. Use PrOpen to initialise the
Printing Manager and to open the printer driver for the current printer (that is, the printer the
user last selected in the Chooser).

2If you need to determine the type of graphics port, you can check the high bit of the rowBytes field. If this bit is set, the printing graphics
port is based on a CGrafPort record.
3See Chapter 21 — Miscellany.

13-8 Printing

• Create or Validate a TPrint Record. Use NewHandle to allocate storage for a TPrint record,
and then initialise that TPrint record using PrintDefault. Alternatively, if you are using an
existing TPrint record, use PrValidate to check that the record is compatible with the current
printer and its driver.

• Display the Job Dialog Box. Use PrJobDialog to display the job dialog box4 and to handle
all user interaction in the standard dialog items until the user clicks the Print or Cancel button.
Your application should print the document in the active window if the user clicks the Print
button in the job dialog box.

• Determine the Number of Copies and Number of Pages to Print. Determine the
number of copies to print, and the number of pages required to print the requested range of
pages, by examining the fields of the TPrint record. (Note that, depending on the page rectangle
of the current printer, the amount of data you can fit on a physical page of paper may differ from
that displayed on the screen, although it is usually the same.)

• Display a Status Dialog Box (Optional). If required, display a printing status dialog box
indicating to the user the status of the current printing operation.

• Install an Idle Procedure (Optional). If a status dialog box is used, install an idle procedure
in the pIdleProc field of the TPrJob record to update information in the status dialog box and to
check whether the user wants to cancel the printing operation.

• Print the Requested Range of Pages. Print the requested range of pages for each
requested copy as follows:

• Open a Printing Graphics Port. Call PrOpenDoc to open a printing graphics port if the
current page number is the first page or a multiple of the value represented by the
constant iPFMaxPgs (maximum pages in a spool file).5

• Open a Page for Printing. Call PrOpenPage to set up the printing graphics port for the
page. (PrOpenPage initialises the fields of the graphics port, and must be called for every
page to be printed.)

• Draw in the Printing Graphics Port. Use appropriate QuickDraw routines to draw
into the printing graphics port.

• Close the Page. When your application has finished drawing into the page, close the
page using PrClosePage.

• Close the Printing Graphics Port. Call PrCloseDoc to close the printing graphics port
and begin printing the requested range of pages

• Check for Deferred Printing. Check whether the printer driver is using deferred
printing and, if so, call PrPicFile to send the spool file to the printer. (The bjDocLoop
field of the TPrJob record is set to bDraftLoop (0) for draft and bSpoolLoop (1) for deferred
printing.)

• Close the Printing Manager. The printing loop should then close the Printing Manager
using PrClose. PrClose releases the Printing Manager dialog and other resources, but it leaves
the printer driver open. (The printer driver may be closed using PrDrvrClose.)

Creating and Validating the TPrint Record

The following example shows how to create a TPrint record. Note that PrintDefault is called to
initialise the fields of the TPrint record according to the current printer's default values. (The default
values are stored in the printer driver's resource file.)

4The PrDlgMain function is used to display a customized job dialog box.
5 The value represented by iPFMaxPgs is 128.

Printing 13-9

tPrintHdl: THPrint;
...

tPrintHdl := THPrint(NewHandleClear(sizeof(TPrint)));
if (tPrintHdl <> NIL) then

begin
PrintDefault(tPrintHdl); { Sets appropriate default values for current driver.}
printError := PrError
if (printError <> noErr) then

DoPrintError(printError);
end

else
; { Handle error.}

You can also use an existing TPrint record (for example, one saved with a document). The following
example application-defined function reads a record that the application has saved with a document as
a resource of type 'SPRC'. Note that PrValidate is called to make sure that the TPrint record is valid
for the current version of the Printing Manager and for the current printer driver.

function DoGetPrintRecord(refNum:longint; tPrintHdl:THPrint;
var prRecChanged : Boolean): OSErr;

var
saveResFile : longint;
result : OSErr;

begin
saveResFile := CurResFile;
UseResFile(refNum);

tPrintHdl := THPrint(Get1Resource('SPRC', kDocPrintRec));
if(tPrintHdl <> nil) then
begin

DetachResource(Handle(tPrintHdl));
prRecChanged := PrValidate(tPrintHdl); { Check validity of TPrint record.}
UseResFile(saveResFile);
DoGetPrintRecord := OSErr(PrError);

end
else begin

UseResFile(saveResFile);
DoGetPrintRecord := kNilHandlePrintErr;

end;
end;

{of function DoGetPrintRecord}

Drawing in the Graphics Port

Observe the following general rules when drawing in the printing graphics port:

• Do not depend on values in the printing graphics port remaining identical from page to page.
With each new page, you generally get re-initialised font information and other characteristics
for the printing graphics port.

• Do not make calls which do not do anything on the printer. For example, QuickDraw erase
routines are quite time-consuming and normally are not needed on the printer. Paper does not
need to be erased the way the screen does.

• Do not use clipping to select text to be printed. There are a number of subtle differences
between the way text appears on the screen and the way it appears on the printer, and you
cannot count on knowing the exact dimensions of the rectangle occupied by the text.

• Do not use fixed-width fonts to align columns. Explicitly move the pen to where you want it.

• Do not use the outline font to create white text on a black background.

• Avoid changing fonts frequently.

13-10 Printing

Note that, because of the way rectangle intersections are determined, you slow printing substantially if
your clipping region falls outside the rectangle given by the rPage field of the TPrInfo record.

Handling Printing Errors

The Printing Manager must necessarily bear the heavy burden of maintaining backward compatibility
with early Apple printer models and of maintaining compatibility with over a hundred existing printer
drivers. For this reason, you must be especially wary of, and defensive about, possible error conditions
when using Printing Manager routines and data structures.

PrError returns the result of the last Printing Manager function call. PrError returns noErr if no error
occurred.

If you determine that an error has occurred after the completion of a printing routine, stop printing and
call the close routine that matches any open routine you have called. For example, if you call PrOpenDoc
and receive an error, skip to the next call to PrCloseDoc. If you call PrOpenPage and get an error, skip to
the next calls to PrClosePage and PrCloseDoc.

Do not display an alert or dialog box to report an error until the end of the printing loop. Once at the
end of the loop, check for the error again. If there is no error, assume that the printing completed
normally. If the error is still present, alert the user. This technique is important for two reasons:

• If you display a dialog box in the middle of a printing loop, it could cause errors that might
terminate an otherwise normal printing operation.

• The printer driver may have already displayed its own dialog box in response to an error. In
this instance, the printer driver posts an error to let the application know that something went
wrong and that it should cancel printing.

An Example Printing Loop

The following is an example of a printing loop:

procedure PrintLoop(docToPrint : DocumentRecordHld; displayJobDialog : boolean);

var
oldPort : GrafPtr;
numberOfPages, numberOfCopies : longint;
userClickedOK : boolean;
firstPage, lastPage, copy, page : longint;
tprStatus : TPrStatus;
printError : longint;

begin
GetPort(oldPort);
DoUnloadSegments;

PrOpen;
if (OSErr(PrError) = noErr) then

begin
gPrintResFile := CurResFile;
gTPrintHdl := docToPrint^.docPrintRecordHdl;
changed := PrValidate(gTPrintHdl);

if (OSErr(PrError) = noErr) then
begin
numberOfPages := DoCalulateNumberOfPages(gTPrintHdl^^.prInfo.rPage);

if (displayJobDialog) then
userClickedOK := PrJobDialog(gTPrintHdl)

else
userClickedOK := DoJobMerge(gTPrintHdl);

if (userClickedOK) then
begin
numberOfCopies := gTPrintHdl^.prJob.iCopies;

Printing 13-11

firstPage := gTPrintHdl^^.prJob.iFstPage;
lastPage := gTPrintHdl^^.prJob.iLstPage;

gTPrintHdl^^.prJob.iFstPage := 1;
gTPrintHdl^^.prJob.iLstPage := iPrPgMax;

if (numberOfPages < lastPage) then
lastPage := numberOfPages;

DoActivateFrontWindow(false, oldPort); { Optional }
gPrintStatusDlg := GetNewDialog(rPrintStatus, NIL, WindowPtr(-1)); { Optional }
DoDialogBoxItems(docToPrint); { Optional }
ShowWindow(gPrintStatusDlg); { Optional }
gTPrintHdl^^.prJob.pIdleProc := @DoPrintIdle; { Optional }

for copy := 1 to numberOfCopies do
begin
UseResFile(gPrintResFile);

for page := firstPage to lastPage do
begin
if (((page - firstPage) mod iPFMaxPgs) = 0)

begin
if (page <> firstPage) then

begin
PrCloseDoc(gPrintPortPtr);

if ((gTPrintHdl^^.prJob.bJDocLoop = bSpoolLoop) and (PrError = 0))
then PrPicFile(gTPrintHdl, NIL, NIL, NIL, tprStatus);

end;
gPrintPortPtr := PrOpenDoc(gTPrintHdl, NIL, NIL);
end;

if (OSErr(PrError) = noErr) then
begin
PrOpenPage(gPrintPortPtr, NIL);
if(OSErr(PrError) = noErr) then

DoDrawPrintPage(gTPrintHdl^^.prInfo.rPage,docToPrint,
GrafPtr(gPrintPortPtr), page);

PrClosePage(gPrintPortPtr);
end;

end;

PrCloseDoc(gPrintPortPtr);

if ((gTPrintHdl^^.prJob.bJDocLoop = bSpoolLoop) and (OSErr(PrError) = noErr))
then PrPicFile(gTPrintHdl, NIL, NIL, NIL, tprStatus);

end;
end;

end;
end;

printError := PrError;

PrClose;

if (OSErr(printError) <> noErr) then
DoPrintError(printError);

DisposeDialog(gPrintStatusDlg);
SetPort(oldPort);
DoActivateFrontWindow(true, oldPort);
end;
{of procedure PrintLoop}

Preliminaries

PrintLoop begins by saving a pointer to the current graphics port and swapping out code segments not
required during printing. It then opens the Printing Manager, together with the current printer driver
and its resource file, by calling PrOpen. Note that the current resource file is now the printer driver's
resource file. Assuming no error, the current resource file is saved so that, if printLoop's idle procedure
changes the resource chain in any way, it can restore the current resource file before returning.

13-12 Printing

PrValidate is then used to change any values in the TPrint record associated with the document to
match those specified by the current driver. (PrValidate, rather than PrDefault, is used so as to
preserve any values the user may have previously set through the style dialog box.)

Calculate Number of Pages

The application-defined function DoCalculateNumberOfPages is called to divide the data in the file into
sections that fit within the printable page rectangle stored in the rPage field of the TPrInfo record and,
by so doing, to determine the number of pages required to print the document.

Display Job Dialog Box or Perform Job
Merge

If the calling routine so specifies, the job dialog box is then displayed. (If the user prints multiple
documents at once, the calling routine sets the displayJobDialog parameter to true for the first
document and false for the rest. This allows the user to specify the values in the job dialog box only
once when printing multiple documents. It also facilitates the printing of documents in the background
(for example, as the result of responding to the required Apple event Print Documents) without
requiring the application to display the job dialog box.)

If displayJobDialog was set to false by the calling routine, the application-defined function
DoJobMerge would, amongst other things, use PrJobMerge to copy data from the first print record to the
print record for the document about to be printed.

Get First Page, Last Page, and Number of
Copies

If true is returned by either the call to PrJobDialog (that is, the user clicked the Print (OK) button) or
the call to DoJobMerge (that is, there is another document to print), the number of copies, first page and
last page are retrieved from the relevant fields of the TPrJob record. Since the only information which
should be preserved between separate printings of the same document is that obtained via the style
dialog box, the fields of the TPrJob record which store the first and last page numbers are then set back
to 1 and iPrPgMax (9999) respectively.

If the last page number specified by the user exceeds the total number of pages in the document, the
variable holding the last page value is set to the actual number of pages.

Display a "Print Status" Dialog Box and
Install an Idle Procedure (Optional)

Before sending the pages off to be printed, a "print status" dialog is displayed to inform the user of the
current status of the printing operation. If the dialog provides a button, or reports on the progress of
the printing operation, an idle procedure must be installed to handle events in the dialog. The printer
driver calls the idle procedure periodically during the printing process.

The following is an example of an application-defined idle procedure which assumes the use of a
modal dialog box to display printing status information:

procedure DoPrintIdle;

var
oldPort : GrafPtr;
event : EventRecord;
gotEvent : boolean;
itemHit : longint;
handled, cancelled : boolean;

begin
GetPort(oldPort);
SetPort(gPrintStatusDlg);

gotEvent := WaitNextEvent(everyEvent, event, 15, NIL);

Printing 13-13

if (gotEvent) then
begin

{ doHandleEvent should handle update and activate events. This also enables }
{ background applications to receive update events while the "print status" modal }

{ dialog is open.}

handled := DoHandleEvent(gPrintStatusDlg, event, itemHit);

{ doDidUserCancel should scan for Command-period key-down events (see Chapter 22 - }
{ Miscellany) and also for mouse-down events indicating that the user clicked the }
{ Stop Printing button. }

cancelled := DoDidUserCancel; { Scan for Command-period or Cancel button click.}
if (cancelled) then

itemHit := kStopButton;

{ To handle hits in the "print status" dialog, doHandleHitsInStatusBox should }
{ simply check the item number passed to it. For the Stop Printing button, it }
{ should call PrSetError, specifying the error code iPrAbort. For hits in other }
{ items, it should set the cursor to a spinning wristwatch cursor. }

handled := DoHandleHitsInStatusBox(itemHit);
end;

{ doUpdateStatus should update those items in "print status" dialog box that report }
{ printing status the user. }

DoUpdateStatusInformation(cancelled); { Update items in status dialog box.}

SetPort(oldPort);
end;
{of procedure DoPrintIdle}

The following guidelines should be followed when writing your own idle procedure:

• If you draw anything within the idle procedure, save the printing graphics port upon entry to
the idle procedure and restore it upon exit, as shown in the example.

• If your idle procedure changes the resource chain6, save the reference number of the printer
driver's resource file by calling CurResFile at the beginning of your idle procedure. Upon exit,
restore the resource chain using UseResFile.

• Avoid calling PrError within the idle procedure.

Copies Loop

Before beginning the actual printing process, PrintLoop displays its own status dialog box and installs
its own idle procedure. A loop, which will cycle once for each of the specified number of copies, is then
entered. The current resource file is restored to the printer driver's resource file at the top of this loop.

Pages Loop

A nested loop is then entered for the printing of each page. The maximum number of pages that can be
printed at a time is represented by the constant iPFMaxPgs (128). If 128 pages have been printed, the
printing graphics port is closed by a call to PrCloseDoc and, if the printer driver is using deferred
printing, PrPicFile is called to send the spool file to the printer. If this is either the first page of all or
the first page after the first 128 have been printed, PrOpenDoc is called to initialise a printing graphics
port and make it the current port.

For each page, PrOpenPage is called to initialise the printing graphics port, the application-defined
routine DoDrawPrintPage is called to draw the page in the printing graphics port, and PrClosePage is
called to wrap up printing of the current page. (Note that the parameters taken by DoDrawPrintPage are
the size of the page rectangle, the document containing the page to print, the printing graphics port in

6See Chapter 15 — More on Resources.

13-14 Printing

which to draw, and the page number. This allows the application to use the same code to print a page
as it uses to draw the same page on the screen.)

Exit From the Copies Loop

When all pages have been printed, PrCloseDoc is called to close the printing graphics port. If the
printer driver is using deferred printing, PrPicFile is called to send the spool file to the printer.
Finally, PrClose is called to release memory associated with the Printing Manager (except the printer
driver). It then remains to dispose of the status dialog, reset the current graphics port and activate the
application's front window.

Getting and Setting Printer Information

By using PrGeneral you can determine the resolution of the printer, set the printer resolution, ascertain
if the user has set landscape printing, and force enhanced draft-quality printing.

To achieve these ends, you use PrGeneral with one of five opcodes: getRslDataOp, setRslOp, getRotnOp,
draftBitsOp, or noDraftBitsOp. These opcodes have data structures associated with them. When you
call PrGeneral, PrGeneral, in turn, calls the current printer driver to get or set the desired information.

Checking Whether the Current Printer Driver Supports PrGeneral

Note that not all printer drivers support all of the features provided by PrGeneral. The following
example application-defined function checks whether the current printer driver supports PrGeneral.

function DoIsPrGeneralThere : boolean;

var
getRotRec : TGetRotnBlk;
printError : OSErr;

begin
printError := 0;
getRotRec.iOpCode := getRotnOp; { Set opcode used to determine if landscape chosen.}
getRotRec.hPrint := gTPrintHdl; { TPrint record this operation applies to.}

PrGeneral(Ptr(@getRotRec));

printError := OSErr(PrError);
PrSetError(noErr);

if (printError = resNotFound) then
DoIsPrGeneralThere := false

else
DoIsPrGeneralThere := true;

end;

Using PrGeneral to Determine Page Orientation

The principal use of PrGeneral is probably to determine page orientation. This can be useful where, for
example, an image will only fit on the page in landscape orientation, the user has not selected
landscape, and you want your application to remind the user to select landscape before printing so as
to avoid a clipped printed image. The following is an example application-defined function which
returns a value indicating whether the user has selected landscape orientation:

function DoGetPageOrientation : integer;

var
TGetRotnBlk getRotRec;

begin
if(doIsPrGeneralThere)
then begin
getRotRec.iOpCode = getRotnOp;
getRotRec.hPrint = gTPrintHdl;

Printing 13-15

PrGeneral((Ptr) &getRotRec);
if ((getRotRec.iError = noErr) and (OSErr(PrError) = noErr) and getRotRec.fLandscape)

then DoGetPageOrientation := kInLandscapeOrientation
else

DoGetPageOrientation := kInPortraitOrientation;
end
else DoGetPageOrientation := kPrGeneralAbsent;
end;

Error Handling

When using PrError and PrGeneral, be prepared to receive the errors noSuchRsl (printer does not
support the requested resolution), opNotImpl (printer does not support the PrGeneral opcode selected)
and resNotFound (current printer driver does not support PrGeneral). If you receive a resNotFound
result code, clear the error by calling PrSetError with a value of noErr.

Text on the Screen and the Printed Page

At the application level, printing on the Macintosh computer is not fundamentally different from
drawing on the screen. That said, printing text poses special challenges.

A common complication results from the difference in resolution and pixel size between screen and
printer. QuickDraw measurements are theoretically in terms of points, which are nominally
equivalent to screen pixels. High resolution printers have very much smaller pixels, although printer
drivers are expected to take this into account so that the same QuickDraw calls will produce text lines
of the same width on the screen and on the printer. Nevertheless, this higher resolution, and the fact
that printers can use different fonts from those used for screen display, can result in some loss of
fidelity from the screen to the printed page. In this regard, the following is relevant:

• QuickDraw places text glyphs7 on the screen at screen pixel intervals, whereas a printer can
provide much finer placements on the printed page. This situation presents a choice between
optimising the appearance of text on the screen or on the printed page. In effect, that choice is
whether to specify fractional glyph widths or integer glyph widths.

Fractional glyph widths are measurements of a glyph's width which can include fractions of a
pixel. Using fractional glyph widths improves the appearance of printed text because it makes it
possible for the printer, with its very high resolution, to print with better spacing. However,
because screen glyphs are made up of whole pixels, QuickDraw cannot draw a fractional glyph
on the screen, so it rounds off the fractional parts. This results in some degradation in the
appearance of the text, in terms of character spacing, on the screen.

The alternative (integer glyph widths) gives more pleasing screen results because the characters
are drawn with regular pixel spacing, but this may possibly be at the price of a printed page
which is typographically unacceptable.

The Font Manager routine SetFractEnable is used to turn fractional glyph widths on and off.
SetFractEnable affects routines which draw text and which calculate text and character widths.

• Printer drivers attempt to reproduce faithfully the text formatting as drawn by QuickDraw on
the screen, including keeping the same intended character spacing, line breaks and page breaks.
However, because printers can have resident fonts that are different from the fonts that
QuickDraw uses, because the drivers may handle text layout somewhat differently than
QuickDraw, and because font metrics do not always scale linearly, fidelity may not always be
achieved. Typically, identical line breaks and page breaks can be maintained, but character
spacing can be noticeaby different.

7A glyph is the visual representation of a character. See Chapter 17 -— Text. and TextEdit.

13-16 Printing

Altering the Style or Job Dialog Box

You may want to add additional options to the style and job dialog boxes so that the user can further
customise the printing process. For example, you might want to add a "skip blank pages" checkbox to a
job dialog box. You can customise a style or job dialog box by taking the following steps:

• Use PrOpen to open the Printing Manager.

• Use PrStlInit or PrJobInit to initialise a TprDlg record. (This record contains the information
needed to set up the style or job dialog box.)

• Define an initialisation routine that appends items to the printer driver's style or job dialog box.
The initialisation routine should:

• Use AppendDITL to add items to the dialog box whose TprDlg record you have initialised
with PrStlInit or PrJobInit.

• Install two functions in the TprDlg record, one in the pFltrProc field for handling events
(such as update events for background applications) that the Dialog manager does not
handle in a modal dialog box, and one in the pItemProc field for handling events in the
items added to the dialog box.

• Return a pointer to the TPrDlg record.

• Pass the address of your initialisation routine to PrDlgMain to display the dialog box.

• Respond to the dialog box as appropriate.

• Use PrClose when you are finished using the Printing Manager.

Printing From the Finder

Users generally print documents that are open on the screen one at a time while the application that
created the document is running. However, users can also print one or more documents from the
Finder by selecting the documents and choosing Print… from the Finder's File menu. This causes the
Finder to launch the application and pass it a required Apple event (the Print Documents event)
indicating the documents to be printed. In response to a Print Documents event, your application
should:

• Open windows for the documents only if your application can interact with the user (see
Chapter 8 - Required Apple Events.)

• Use saved or default style settings instead of displaying the style dialog box.

• Display the job dialog box once only, and use PrJobMerge to apply the information specified by
the user to all of the selected documents. (Note that PrJobMerge preserves the fields of the
TPrint record that are specific to each document, that is, the fields that are set through the style
dialog box.)

• Remain open unless and until the Finder sends it a Quit Application event.

Main Printing Manager Constants, Data Types and Routines

Constants

iPFMaxPgs = 128 Maximum pages in spool file.
iPrPgFract = 120 Page scale factor.
iPrPgFst = 1 Page range constant - first page.

Printing 13-17

iPrPgMax = 9999 Page range constant - last page.
bDraftLoop = 0 Draft-quality printing.
bSpoolLoop = 1 Deferred printing.

PrGeneral Opcodes

getRslDataOp = 4 Get resolutions for current printer.
setRslOp = 5 Set resolutions for a TPrint record.
draftBitsOp = 6 Force enhanced draft-quality printing.
noDraftBitsOp = 7 Cancel enhanced draft-quality printing.
getRotnOp = 8 Get page orientation of a TPrint record.
NoSuchRsl = 1 Resolution not supported.

Data Types

Print Record

TPrint = record
iPrVersion: integer; { (Reserved)}
prInfo: TPrInfo; { PrInfo data associated with the current style.}
rPaper: Rect; { Paper rectangle (offset from rPage).}
prStl: TPrStl; { This print request's style.}
prInfoPT: TPrInfo; { (Reserved)}
prXInfo: TPrXInfo; { (Reserved)}
prJob: TPrJob; { Print Job request.}
case integer of
0: (
printX: array [1..19] of integer; { (Reserved)}
);
1: (
prFlag1: TPrFlag1;
iZoomMin: integer;
iZoomMax: integer;
hDocName: StringHandle;
);
end;

TPPrint = ^TPrint;
THPrint = ^TPPrint;

Printer Information Record

TPrInfo = record
iDev: integer; { (Reserved)}
iVRes: integer; { Vertical resolution of printer in dpi.}
iHRes: integer; { Horizontal resolution of printer in dpi.}
rPage: Rect; { Page (printable) rectangle in device coordinates.}
end;

TPPrInfo = ^TPrInfo;

Print Job Record

TPrJob = record
iFstPage: integer; { First page of page range.}
iLstPage: integer; { Last page of page range.}
iCopies: integer; { Number of copies.}
bJDocLoop: SInt8; { Printing method - draft or deferred.}
fFromUsr: boolean; { (Reserved)}
pIdleProc: PrIdleUPP; { Pointer to an idle procedure.}
pFileName: StringPtr; { Spool file name: NIL for default.}
iFileVol: integer; { Spool file volume, set to 0 initially}
bFileVers: SInt8; { Spool file version, set to 0 initially}
bJobX: SInt8; { (Reserved)}
end;

TPPrJob = ^TPrJob;

Printing Style Record

TPrStl = record
wDev: integer; { Device number of printer.}
iPageV: integer; { (Reserved)}
iPageH: integer; { (Reserved)}

13-18 Printing

bPort: SInt8; { (Reserved)}
feed: TFeed; { Feed type.}
end;

TPPrStl = ^TPrStl;

Printing Graphics Port Record

TPrPort = record
gPort: GrafPort; { Graphics port for printing.}
gProcs: QDProcs; { Procedures for printing in graphics port.}
lGParam1: longint; {16 bytes for private parameter storage.}
lGParam2: longint; { Reserved)}
lGParam3: longint; { Reserved)}
lGParam4: longint; { Reserved)}
fOurPtr: boolean; { Reserved)}
fOurBits: boolean; { Reserved)}
end;

TPPrPort = ^TPrPort;

Printing Status Record

TPrStatus = record
iTotPages: integer; { Total pages in Print File.}
iCurPage: integer; { Current page number}
iTotCopies: integer; { Current copies requested}
iCurCopy: integer; { Current copy number}
iTotBands: integer; { Total bands per page.}
iCurBand: integer; { Current band number}
fPgDirty: boolean; { True if current page has been written to.}
fImaging: boolean; { Set while in band's DrawPic call.}
hPrint: THPrint; { Handle to the active printer record}
pPrPort: TPPrPort; { Pointer to the active printing graphics port.}
hPic: PicHandle; { Handle to the active picture}
end;

Print Dialog Box Record

TPrDlg = record
Dlg: DialogRecord; { The dialog window}
pFltrProc: ModalFilterUPP; { The filter proc.}
pItemProc: PItemUPP; { The item evaluating proc.}
hPrintUsr: THPrint; { The user's print record.}
fDoIt: boolean; { true means user clicked OK.
fDone: boolean; { true means user clicked OK or Cancel}
lUser1: longint; { Four longs for apps to hang global data.}
lUser2: longint; { Plus more stuff needed by the particular }
lUser3: longint; { printing dialog.}
lUser4: longint;
end;

TPPrDlg = ^TPrDlg;
PDlgInitUPP = UniversalProcPtr;

Page Orientation Record

TGetRotnBlk = record
iOpCode: integer; { The getRotnOp opcode.}
iError: integer; { Result code returned by PrGeneral.}
lReserved: longint; { (Reserved)}
hPrint: THPrint; { Handle to current TPrint record.}
fLandscape: boolean; { true if user selected landscape printing.}
bXtra: SInt8; {(Reserved)}
end;

TPRect = ^Rect;
PrIdleProcPtr = UniversalProcPtr;
PItemUPP = UniversalProcPtr;

Printing 13-19

Routines

Opening and Closing the Printing Manager

procedure PrOpen;
procedure PrClose;

Initialising and Validating TPrint Records

procedure PrintDefault(hPrint: THPrint);
function PrValidate(hPrint: THPrint): boolean;

Displaying and Customising Print Dialog Boxes

function PrStlDialog(hPrint: THPrint): boolean;
function PrJobDialog(hPrint: THPrint): boolean;
function PrStlInit(hPrint: THPrint): TPPrDlgRef;
function PrJobInit(hPrint: THPrint): TPPrDlgRef;
procedure PrJobMerge(hPrintSrc: THPrint; hPrintDst: THPrint);
function PrDlgMain(hPrint: THPrint; pDlgInit: PDlgInitUPP): boolean;

Printing a Document

function PrOpenDoc(hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr): TPPrPort;
procedure PrCloseDoc(pPrPort: TPPrPort);
procedure PrOpenPage(pPrPort: TPPrPort; pPageFrame: TPRect);
procedure PrClosePage(pPrPort: TPPrPort);
procedure PrPicFile(hPrint: THPrint; pPrPort: TPPrPort; pIOBuf: Ptr; pDevBuf: Ptr;

VAR prStatus: TPrStatus);

Optimising Printing

procedure PrGeneral(pData: Ptr);

Handling Printing Errors

function PrError: integer;
procedure PrSetError(iErr: integer);

Demonstration Program
{ ##1

// PrintingPascal.p2

// ###3

//4

// This program:5

//6

// • Opens a window in which the contents of the main fields in the TPrint, TPrJob,7

// TPrStl and TPrInfo records are displayed.8

//9

// • Allows the user to note changes in these fields after invoking the style dialog10

// and job dialog boxes.11

//12

// • Allows the user to print a simulated document.13

//14

// • Quits when the user chooses Quit or clicks the window's close box.15

//16

// The program utilises the following resources:17

//18

// • 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).19

//20

// • A 'WIND' resource (purgeable).21

//22

// • An 'ALRT' resource and associated 'DITL' resource for an alert which reports23

// printing errors (purgeable).24

//25

// • A 'TEXT' resource (non-purgeable) used for printing.26

//27

// • A 'PICT' resource (non-purgeable) used for printing.28

//29

// ### }30

13-20 Printing

31

program PrintingPascal(input, output);32

33

{ ……… include the following Universal Interfaces }34

35

uses36

37

Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,38

Memory, Events, TextUtils, ToolUtils, OSUtils, Devices, Printing, Resources,39

SegLoad, Errors;40

41

{ ……… define the following constants }42

43

const44

45

mApple = 128;46

mFile = 129;47

iQuit = 11;48

iPageSetup = 8;49

iPrint = 9;50

rMenubar = 128;51

rWindow = 128;52

rText = 128;53

rPicture = 128;54

rPrintAlert = 128;55

kMargin = 90;56

kMaxLong = $7FFFFFFF;57

58

{ ……… global variables }59

60

var61

62

gTPrintHdl : THPrint;63

gWindowPtr : WindowPtr;64

gDone : boolean;65

gPrintRecordInited : boolean;66

gInhibitPrintRecordsInfo : boolean;67

gEditRecHdl : TEHandle;68

gTextHdl : Handle;69

gPictureHdl : PicHandle;70

menubarHdl : Handle;71

menuHdl : MenuHandle;72

eventRec : EventRecord;73

gotEvent : boolean;74

75

{ ### DoInitManagers }76

77

procedure DoInitManagers;78

79

begin80

MaxApplZone;81

MoreMasters;82

83

InitGraf(@qd.thePort);84

InitFonts;85

InitWindows;86

InitMenus;87

TEInit;88

InitDialogs(nil);89

90

InitCursor;91

FlushEvents(everyEvent, 0);92

end;93

{of procedure DoInitManagers}94

95

{ ### DoPrintError }96

97

procedure DoPrintError(printError : longint; fatal : boolean);98

99

var100

errorNumberString : string;101

ignored : OSErr;102

103

begin104

NumToString(printError, errorNumberString);105

ParamText(errorNumberString, '', '', '');106

if (fatal) then107

Printing 13-21

begin108

ignored := StopAlert(rPrintAlert, nil);109

ExitToShell;110

end111

else112

ignored := CautionAlert(rPrintAlert, nil);113

end;114

{of procedure DoPrintError}115

116

{ ### DoIsPrGeneralThere }117

118

function DoIsPrGeneralThere : boolean;119

120

var121

getRotRec : TGetRotnBlk;122

printError : OSErr;123

124

begin125

printError := 0;126

getRotRec.iOpCode := getRotnOp;127

getRotRec.hPrint := gTPrintHdl;128

129

PrGeneral(Ptr(@getRotRec));130

131

printError := PrError;132

PrSetError(noErr);133

134

if (printError = resNotFound) then135

DoIsPrGeneralThere := false136

else137

DoIsPrGeneralThere := true;138

end;139

{of function DoIsPrGeneralThere}140

141

{ ### DoGetPageOrientation }142

143

function DoGetPageOrientation : longint;144

145

var146

getRotRec : TGetRotnBlk;147

148

begin149

if (DoIsPrGeneralThere) then150

begin151

getRotRec.iOpCode := getRotnOp;152

getRotRec.hPrint := gTPrintHdl;153

PrGeneral(Ptr(@getRotRec));154

if ((getRotRec.iError = noErr) and (PrError = noErr) and (getRotRec.fLandscape))155

then DoGetPageOrientation := 1156

elseDoGetPageOrientation := 2;157

end158

else159

DoGetPageOrientation := 3;160

end;161

{of function DoGetPageOrientation}162

163

{ ## DoDrawPageOrientation }164

165

procedure DoDrawPageOrientation;166

167

var168

orientation : longint;169

170

begin171

MoveTo(20, 260);172

DrawString('Orientation selected:');173

174

orientation := DoGetPageOrientation;175

176

MoveTo(190, 260);177

if (orientation = 1) then178

DrawString('Landscape')179

else if (orientation = 2) then180

DrawString('Portrait')181

else182

DrawString('(PrGeneral not supported by driver)');183

end;184

13-22 Printing

{of procedure DoDrawPageOrientation}185

186

{ ## DoDrawRectStrings }187

188

procedure DoDrawRectStrings(s1: string; x1, y1: integer; s2: string; x2, y2: integer;189

 s3: string);190

191

begin192

MoveTo(x1, y1);193

DrawString(s1);194

MoveTo(x2, y2);195

DrawString('(');196

DrawString(s2);197

DrawString(', ');198

DrawString(s3);199

DrawString(')');200

end;201

{of procedure DoDrawRectStrings}202

203

{ ### DoPrintRecordsInfo }204

205

procedure DoPrintRecordsInfo;206

207

var208

s2, s3 : string;209

210

begin211

EraseRect(gWindowPtr^.portRect);212

213

MoveTo(20, 25);214

DrawString('From TPrint, TPrInfo and TPrStl records:');215

216

NumToString(integer(gTPrintHdl^^.rPaper.top), s2);217

NumToString(integer(gTPrintHdl^^.rPaper.left), s3);218

DoDrawRectStrings('Paper Rectangle (top, left):', 20, 45, s2, 190, 45, s3);219

220

NumToString(integer(gTPrintHdl^^.rPaper.bottom), s2);221

NumToString(integer(gTPrintHdl^^.rPaper.right), s3);222

DoDrawRectStrings('Paper Rectangle (bottom, right):', 20, 60, s2, 190, 60, s3);223

224

NumToString(integer(gTPrintHdl^^.prInfo.rPage.top), s2);225

NumToString(integer(gTPrintHdl^^.prInfo.rPage.left), s3);226

DoDrawRectStrings('Page Rectangle (top, left):', 20, 75, s2, 190, 75, s3);227

228

NumToString(integer(gTPrintHdl^^.prInfo.rPage.bottom), s2);229

NumToString(integer(gTPrintHdl^^.prInfo.rPage.right), s3);230

DoDrawRectStrings('Page Rectangle (bottom, right):', 20, 90, s2, 190, 90, s3);231

232

MoveTo(20, 105);233

DrawString('Feed Type:');234

MoveTo(190, 105);235

if (gTPrintHdl^^.prStl.feed = 0) then236

DrawString('Cut sheet')237

else if (gTPrintHdl^^.prStl.feed = 1) then238

DrawString('Fanfold');239

240

MoveTo(20, 120);241

DrawString('Vertical resolution:');242

NumToString(integer(gTPrintHdl^^.prInfo.iVRes), s2);243

MoveTo(190, 120);244

DrawString(s2);245

246

MoveTo(20, 135);247

DrawString('Horizontal resolution:');248

NumToString(integer(gTPrintHdl^^.prInfo.iHRes), s2);249

MoveTo(190, 135);250

DrawString(s2);251

252

MoveTo(20, 155);253

DrawString('From TPrJob Record:');254

255

MoveTo(20, 175);256

DrawString('First Page:');257

NumToString(integer(gTPrintHdl^^.prJob.iFstPage), s2);258

MoveTo(190, 175);259

DrawString(s2);260

261

Printing 13-23

MoveTo(20, 190);262

DrawString('Last Page:');263

NumToString(integer(gTPrintHdl^^.prJob.iLstPage), s2);264

MoveTo(190, 190);265

DrawString(s2);266

267

MoveTo(20, 205);268

DrawString('Number of Copies:');269

NumToString(integer(gTPrintHdl^^.prJob.iCopies), s2);270

MoveTo(190, 205);271

DrawString(s2);272

273

MoveTo(20, 225);274

DrawString('Note: Some printer drivers always set the iCopies field of the TPrJob');275

MoveTo(20, 240);276

DrawString('record to 1 and handle multiple copies internally.');277

end;278

{of procedure DoPrintRecordsInfo}279

280

{ ### DoActivateWindow }281

282

procedure DoActivateWindow;283

284

begin285

if ((FrontWindow = gWindowPtr) and gPrintRecordInited286

and not gInhibitPrintRecordsInfo) then287

DoPrintRecordsInfo;288

end;289

{of procedure DoActivateWindow}290

291

{ ### DoDrawPage }292

293

procedure DoDrawPage(pageRect : Rect; pageNumber, numberOfpages : integer);294

295

var296

297

destRect, pictureRect : Rect;298

heightDestRect, linesPerPage, numberOfLines, fontNum : SInt16;299

pageEditRecHdl : TEHandle;300

textHdl : Handle;301

startOffset, endOffset : SInt32;302

theString : Str255;303

304

begin305

SetRect(destRect, pageRect.left + kMargin, pageRect.top + (trunc(kMargin * 1.5)),306

pageRect.right - kMargin, pageRect.bottom - (trunc(kMargin * 1.5)));307

308

heightDestRect := destRect.bottom - destRect.top;309

linesPerPage := trunc(heightDestRect / gEditRecHdl^^.lineHeight);310

numberOfLines := gEditRecHdl^^.nLines;311

312

GetFNum('Geneva',fontNum);313

TextFont(fontNum);314

TextSize(10);315

316

pageEditRecHdl := TENew(destRect,destRect);317

textHdl := gEditRecHdl^^.hText;318

319

startOffset := gEditRecHdl^^.lineStarts[(pageNumber - 1) * linesPerPage];320

if (pageNumber = numberOfpages) then321

endOffset := gEditRecHdl^^.lineStarts[numberOfLines]322

else323

endOffset := gEditRecHdl^^.lineStarts[pageNumber * linesPerPage];324

325

HLock(textHdl);326

TEInsert(Ptr(SInt32(textHdl^) + startOffset),endOffset - startOffset,pageEditRecHdl);327

HUnlock(textHdl);328

329

if (pageNumber = 1) then330

begin331

SetRect(pictureRect, destRect.left, destRect.top,332

destRect.left + (gPictureHdl^^.picFrame.right - gPictureHdl^^.picFrame.left),333

destRect.top + (gPictureHdl^^.picFrame.bottom - gPictureHdl^^.picFrame.top));334

DrawPicture(gPictureHdl,pictureRect);335

end;336

337

MoveTo(destRect.left, pageRect.bottom - 25);338

13-24 Printing

NumToString(SInt32 (pageNumber), theString);339

DrawString(theString);340

end;341

{of procedure DoDrawPrintPage}342

343

{ ## DoCalcNumberOfPages }344

345

function DoCalcNumberOfPages(pageRect : Rect) : integer;346

347

var348

destRect, pictureRect : Rect;349

fontNum, heightDestRect, linesPerPage, numberOfPages : SInt16;350

351

begin352

EraseRect(gWindowPtr^.portRect);353

354

SetRect(destRect, pageRect.left + kMargin, pageRect.top + (trunc(kMargin * 1.5)),355

pageRect.right - kMargin, pageRect.bottom - (trunc(kMargin * 1.5)));356

OffsetRect(destRect, - (kMargin - 5), - ((trunc(kMargin * 1.5)) - 5));357

358

GetFNum('Geneva',fontNum);359

TextFont(fontNum);360

TextSize(10);361

362

gEditRecHdl := TENew(destRect, destRect);363

TEInsert(gTextHdl^, GetHandleSize(gTextHdl), gEditRecHdl);364

365

heightDestRect := destRect.bottom - destRect.top;366

linesPerPage := trunc(heightDestRect / gEditRecHdl^^.lineHeight);367

numberOfPages := trunc((gEditRecHdl^^.nLines / linesPerPage) + 1);368

369

SetRect(pictureRect,destRect.left, destRect.top,370

destRect.left + (gPictureHdl^^.picFrame.right - gPictureHdl^^.picFrame.left),371

destRect.top + (gPictureHdl^^.picFrame.bottom - gPictureHdl^^.picFrame.top));372

DrawPicture(gPictureHdl,pictureRect);373

374

DoCalcNumberOfPages := numberOfPages;375

end;376

{of procedure DoCalcNumberOfPages}377

378

{ ## DoCreatePrintRecord }379

380

 function DoCreatePrintRecord : OSErr;381

382

var383

printError : integer;384

385

begin386

gTPrintHdl := THPrint(NewHandleClear(sizeof(TPrint)));387

if (gTPrintHdl <> nil) then388

begin389

PrintDefault(gTPrintHdl);390

printError := PrError;391

if (printError = noErr) then392

gPrintRecordInited := true;393

DoCreatePrintRecord := printError;394

end395

else396

ExitToShell;397

end;398

{of procedure DoCreatePrintRecord}399

400

{ ## DoPrStyleDialog }401

402

procedure DoPrStyleDialog;403

404

var405

printError : OSErr;406

ignored : boolean;407

408

begin409

PrOpen;410

printError := PrError;411

412

if (printError = noErr) then413

begin414

if not (gPrintRecordInited) then415

Printing 13-25

begin416

printError := DoCreatePrintRecord;417

if (printError <> noErr) then418

DoPrintError(printError, true);419

end;420

ignored := PrStlDialog(gTPrintHdl);421

end422

else423

DoPrintError(printError, false);424

425

PrClose;426

end;427

{of procedure DoPrStyleDialog}428

429

{ ## PrintLoop }430

431

procedure PrintLoop;432

433

var434

oldPort : GrafPtr;435

printError : integer;436

numberOfPages, numberOfCopies : integer;437

userClickedOK : Boolean;438

firstPage, lastPage, copy, page : integer;439

printPortPtr : TPPrPort;440

printStatus : TPPrStatus;441

442

begin443

GetPort(oldPort);444

445

PrOpen;446

if (PrError = noErr) then447

begin448

if not (gPrintRecordInited) then449

printError := DoCreatePrintRecord450

else451

printError := noErr;452

453

if (printError = noErr) then454

begin455

numberOfPages := DoCalcNumberOfPages(gTPrintHdl^^.prInfo.rPage);456

457

userClickedOK := PrJobDialog(gTPrintHdl);458

if (userClickedOK) then459

begin460

DoPrintRecordsInfo;461

DoDrawPageOrientation;462

gInhibitPrintRecordsInfo := true;463

464

numberOfCopies := gTPrintHdl^^.prJob.iCopies;465

firstPage := gTPrintHdl^^.prJob.iFstPage;466

lastPage := gTPrintHdl^^.prJob.iLstPage;467

468

gTPrintHdl^^.prJob.iFstPage := 1;469

gTPrintHdl^^.prJob.iLstPage := iPrPgMax;470

471

if (numberOfPages < lastPage) then472

lastPage := numberOfPages;473

474

for copy := 1 to numberOfCopies do475

begin476

for page := firstPage to lastPage do477

begin478

if ((page - firstPage) mod iPFMaxPgs = 0) then479

begin480

if (page <> firstPage) then481

begin482

PrCloseDoc(printPortPtr);483

484

if ((gTPrintHdl^^.prJob.bJDocLoop = bSpoolLoop) and (PrError = noErr)) then485

PrPicFile(gTPrintHdl, nil, nil, nil, printStatus);486

end;487

printPortPtr := PrOpenDoc(gTPrintHdl, nil, nil);488

end;489

if (PrError = noErr) then490

begin491

PrOpenPage(printPortPtr, nil);492

13-26 Printing

if (PrError = noErr) then493

DoDrawPage(gTPrintHdl^^.prInfo.rPage, page,numberOfPages);494

PrClosePage(printPortPtr);495

end;496

end;497

498

PrCloseDoc(printPortPtr);499

500

if ((gTPrintHdl^^.prJob.bJDocLoop = bSpoolLoop) and (PrError = noErr)) then501

PrPicFile(gTPrintHdl, nil, nil, nil, printStatus);502

end;503

end;504

end;505

end;506

507

printError := PrError;508

509

PrClose;510

511

if ((printError <> noErr) and (printError <> iPrAbort)) then512

DoPrintError(printError, false);513

514

SetPort(oldPort);515

DoActivateWindow;516

517

end;518

{of procedure PrintLoop}519

520

{ ### DoMenuChoice }521

522

procedure DoMenuChoice(menuChoice : longint);523

524

var525

menuID, menuItem : integer;526

itemName : string;527

daDriverRefNum : integer;528

529

begin530

menuID := HiWord(menuChoice);531

menuItem := LoWord(menuChoice);532

533

if (menuID = 0) then534

Exit(DoMenuChoice);535

536

case (menuID) of537

538

mApple:539

begin540

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);541

daDriverRefNum := OpenDeskAcc(itemName);542

end;543

544

mFile:545

begin546

if (menuItem = iPageSetup) then547

begin548

gInhibitPrintRecordsInfo := false;549

DoPrStyleDialog;550

end551

else if (menuItem = iPrint) then552

PrintLoop553

else if (menuItem = iQuit) then554

gDone := true;555

end;556

end;557

{of case statement}558

559

HiliteMenu(0);560

end;561

{of procedure DoMenuChoice}562

563

{ ## DoMouseDown }564

565

procedure DoMouseDown(eventRec : EventRecord);566

567

var568

myWindowPtr : WindowPtr;569

Printing 13-27

partCode : integer;570

571

begin572

partCode := FindWindow(eventRec.where, myWindowPtr);573

574

case (partCode) of575

576

inMenuBar:577

begin578

DoMenuChoice(MenuSelect(eventRec.where));579

end;580

581

inSysWindow:582

begin583

SystemClick(eventRec, myWindowPtr);584

end;585

586

inContent:587

begin588

if (myWindowPtr <> FrontWindow) then589

SelectWindow(myWindowPtr);590

end;591

592

inDrag:593

begin594

DragWindow(myWindowPtr, eventRec.where, qd.screenBits.bounds);595

end;596

597

inGoAway:598

begin599

if (TrackGoAway(myWindowPtr, eventRec.where)) then600

gDone := true;601

end;602

end;603

{of case statement}604

end;605

{of procedure DoMouseDown}606

607

{ ### DoEvents }608

609

procedure DoEvents(eventRec : EventRecord);610

611

 var612

myWindowPtr : WindowPtr;613

charCode : char;614

615

begin616

myWindowPtr := WindowPtr(eventRec.message);617

618

case (eventRec.what) of619

620

mouseDown:621

begin622

DoMouseDown(eventRec);623

end;624

625

keyDown, autoKey:626

begin627

charCode := chr(BAnd(eventRec.message, charCodeMask));628

if (BAnd(eventRec.modifiers, cmdKey) <> 0) then629

DoMenuChoice(MenuKey(charCode));630

end;631

632

updateEvt:633

begin634

BeginUpdate(myWindowPtr);635

EndUpdate(myWindowPtr);636

end;637

638

activateEvt:639

begin640

DoActivateWindow;641

end;642

end;643

{of case statement}644

end;645

{of procedure DoEvents}646

13-28 Printing

647

{ ## start of main program }648

649

begin650

651

{ …… initialize managers }652

653

DoInitManagers;654

gPrintRecordInited := false;655

gInhibitPrintRecordsInfo := false;656

657

{ …… set up menu bar and menus }658

659

menubarHdl := GetNewMBar(rMenubar);660

if (menubarHdl = nil) then661

ExitToShell;662

SetMenuBar(menubarHdl);663

DrawMenuBar;664

menuHdl := GetMenuHandle(mApple);665

if (menuHdl = nil)666

thenExitToShell667

elseAppendResMenu(menuHdl, 'DRVR');668

669

{ …… open window }670

671

gWindowPtr := GetNewWindow(rWindow, nil, WindowPtr(-1));672

if (gWindowPtr = nil) then673

ExitToShell;674

675

SetPort(gWindowPtr);676

TextSize(10);677

678

{ ……… load 'TEXT' and 'PICT' resources }679

680

gTextHdl := GetResource('TEXT',rText);681

if (gTextHdl = nil) then682

ExitToShell;683

684

gPictureHdl := GetPicture(rPicture);685

if (gPictureHdl = nil) then686

ExitToShell;687

688

{ ……… event loop }689

690

gDone := false;691

692

while not (gDone) do693

begin694

gotEvent := WaitNextEvent(everyEvent, eventRec, kMaxLong, nil);695

if (gotEvent) then696

DoEvents(eventRec);697

end;698

end.699

700

{ ## }701

Demonstration Program Comments
When the program is run, the user should:

• Choose Page Setup… from the File menu, make changes in the style dialog, and observe the
resulting contents of the main fields of the Tprint, TPrJob, TPrStyl, and TPrInfo
records in the window.

• Choose Print… from the File menu, make changes in the job dialog, observe the results in
the window, and observe the printout of the simulated document.

The user should print the simulated document several times using different page size, scaling,
and orientation settings in the style dialog, and occasionally limiting the printout to one
page only by changing the page range settings in the job dialog.

Printing 13-29

The constant declaration block

Lines 46-55 establish constants related to menu IDs, menu item numbers and resources. The
constant at Line 56 will be used to set the margins for the printout of a text document. Line
57 defines kMaxLong as the maximum possible longint value.

The variable declaration block

gTPrintHdl will be assigned a handle to a TPrint record. gWindowPtr will be assigned the
pointer to the window. gDone controls the exit from the main loop and thus program
termination. gPrintRecordInited will be set to true when a TPrint record has been created and
initialised.

gInhibitPrintRecordsInfo is a flag which will prevent the display of information in the window
in certain circumstances. gEditRecHdl will be assigned a handle to a TextEdit edit record.
gTextHdl will be assigned a handle to the text used for printout. gPictureHdl will be
assigned a handle to the picture used for printout.

The procedure DoPrintError

DoPrintError is called from PrintLoop and DoPrStyleDialog if an error code is generated
following a call to a Printing Manager routine. Depending on the nature of the error, either
a Stop alert (Line 109) or a Caution alert (Line 113) is displayed, each containing the
reported error code. In the case of a Stop alert, the program terminates when the user clicks
the OK button (Line 110).

The function DoIsPrGeneralThere

DoIsPrGeneralThere is called by DoGetPageOrientation to determine whether the current printer
driver supports PrGeneral. The procedure is similar to that in DoGetPageOrientation, except
that here we are interested only in the error code generated by a call to PrGeneral. If that
error is the error represented by the constant resNotFound (-192), PrGeneral is not supported
and false is returned (Line 136), otherwise true is returned (Line 138).

Note that, at Line 133, PrSetError is used to set the value in the low-memory global PrintErr
to noErr in case PrGeneral generated an error code other than noErr. PrintErr holds the most
recent Printing Manager error code and, since an actual printing error did not occur, it is
necessary to ensure that PrintErr reflects that fact.

The function DoGetPageOrientation

DoGetPageOrientation uses PrGeneral to establish the page orientation setting to be used for
printing. A TGetRotnBlk record (Line 147) is used when PrGeneral is used to determine whether
landscape orientation has been specified.

After establishing that the current printer driver supports PrGeneral (Line 150), the iopCode
field of the TGetRotnBlk record is assigned the opcode getRtnOp and the hPrint field is
assigned the handle to the TPrintRecord (Lines 152-153). PrGeneral is then called (Line 154)
with the address of the TGetRotnBlk record as its argument.

Following the call, the fLandscape field of the TGetRotnBlk structure will contain true if
landscape orientation has been selected. In this case (and assuming no errors), a value
representing landscape orientation is returned to the calling function (Line 156), otherwise a
value representing portrait orientation is returned (Line 157).

If the current printer driver does not support PrGeneral, a value representing this situation
is returned (Line 160).

The procedure DoDrawPageOrientation

DoDrawPageOrientation ascertains the page orientation selected by the user in the style dialog
box and prints it in the window. It gets a value representing the orientation via a call to
the application-defined function DoGetPageOrientation at Line 169.

The procedure DoPrintRecordsInfo

DoPrintRecordsInfo extracts information from the TPrint, TPrInfo, TPrStyl and TPrJob records
and prints it in the window. DoDrawRectStrings supports DoPrintRecords.

13-30 Printing

doActivateWindow

doActivateWindow is called when an activate event is received. Its purpose is simply to
redraw the text in the program's window when the style and job dialog boxes, and any other
dialog or alert boxes presented by the system during printing operations, are dismissed. The
flag gInhibitPrintRecordsInfo will defeat the drawing of this text if set to true.

The procedure DoDrawPage

doDrawPage is called by printLoop to draw a specified page in the printing graphics port.

Lines 306-307 establish a rectangle equal to the received page rectangle less 180 pixels in
width and 270 pixels in height. This smaller rectangle is centered on the page rectangle both
laterally and vertically.

Line 309-310 calculate the number of lines of text that will fit into the height of that
rectangle. Line 311 gets the total number of lines in the monostyled edit record created in
the function doCalcNumberOfPages.

Lines 313-314 set the printing graphics port's font to Geneva 10 point (the same font and size
used to calculate the number of pages).

Line 317 creates a new monostyled edit record with the rectangle established at Lines 306-307
passed in both the destination rectangle parameter and the view rectangle parameter. Line 318
gets a handle to the text in the monostyled edit record created in the function
doCalcNumberOfPages.

Line 320 gets the starting offset, that is, the offset from the first character in the block
of text to the first character in the first line of text for the specified page number. Lines
321-324 get the ending offset, that is, the offset to the last character in the last line of
text for the specified page. Using these offsets, Line 327 then inserts the text for the page
into the newly created edit record, an action which causes that text to be drawn in the
printing graphics port.

If this is the first page, Lines 330-336 draw the previously loaded picture at the top left of
the rectangle established at Lines 306-307.

Lines 338-340 draw the page number at the bottom left of that rectangle.

The procedure DoCalcNumberOfPages

doCalcNumberOfPages is called by printLoop to calculate the number of pages in the (simulated)
document.

The simulated document is provided by a 'TEXT' resource, which will be inserted into a
TextEdit monostyled edit record. TextEdit is not addressed until Chapter 17 — Text and
TextEdit; however, to facilitate an understanding of what is to follow, it is sufficient at
this stage to understand that a monostyled edit record contains the following fields:

destRect The destination rectangle into which text is drawn. The bottom of the
destination rectangle can extend to accommodate the end of the text. In
other words, you can think of the destination rectangle as bottomless.

viewRect The rectangle within which text is actually displayed.

hText A handle to the text.

lineHeight The vertical spacing, in pixels, of the lines of text.

nLines The total number of lines of text.

linestarts An array with a number of elements corresponding to the number of lines of
text. Each element contains the offset of the first character in each line.

Line 353 erases the window preparatory to the simulated document being drawn in the window.

Lines 355-366 establish a rectangle equal to the received page rectangle less 180 pixels in
width and 270 pixels in height. (Note that this is the same size as the rectangle used in the
drawing of each page in the printing graphics port.) Line 357 simply offsets this rectangle
so that, when the document is drawn in the window, the top and right margins will be reduced
to five pixels.

Lines 359-361 ensure that the window's font is set to Geneva 10 point.

Printing 13-31

Line 363 creates a new monostyled edit record with the rectangle established at Lines 355-357
passed in both the destination rectangle parameter and the view rectangle parameter. Line 364
inserts the previously loaded 'TEXT' resource into the edit record. The hText field of the
edit record is now a handle to that text. The call to TEInsert also causes the text to be
drawn in the window. (A 'TEXT' resource, rather than a 'TEXT' file, is used in this
demonstration simply to keep that part of the source code that is not related to printing per
se to a minimum.)

The matter of the actual calculation of the number of pages now follows. Line 366 gets the
height of the rectangle established at Lines 355-356. Line 367 calculates how many lines of
text will fit into that height. Line 368 then calculates the total number of rectangles (and
thus the number of pages) required to accommodate the whole of the text.

Before the calculated number of pages is returned to the calling function (Line 375), Lines
370-373 draw the previously loaded picture at the top of the destination rectangle. This
latter is simply to display the full contents of the top of the simulated document in the
window. (Space for the picture is accounted for by the fact that the first 11 lines in the
'TEXT' resource are carriage returns.)

The edit record is retained because it will be used in the following function.

The procedure DoCreatePrintRecord

DoCreatePrintRecord creates and initialises a TPrint record.

Memory is allocated at Line 387.

If the call to allocate memory is successful, Line 390 initialises the TPrint record to the
system standard settings. If this call is successful, the global variable which indicates
that an initialised TPrint record exists is set to true (Lines 392-393). The result of the
PrError call is returned to the calling function (Line 394).

If the call to allocate memory is not successful, Line 397 simply closes down the program.

The procedure DoPrStyleDialog

doPrStyleDialog is called when the user chooses Page Setup… from the File menu.

The call to PrOpen at Line 410 opens the Printing Manager and printer driver.

If the call is successful, Line 415 checks a new TPrint record currently exists. If not,
doCreatePrintRecord is called to create a new Tprint record (Line 417). If
doCreatePrintRecord does not return noErr (Line 418), Line 419 invokes a Stop alert. Line 421
opens the style dialog box.

If the call to PrOpen at Line 410 was not successful, a Caution alert is invoked (Lines 423-
424).

Either way, Line 426 closes the Printing Manager (but not the printer driver), releasing the
associated memory.

The procedure PrintLoop

PrintLoop is the printing loop. It supports printers using deferred printing. However, it
does not use a saved TPrint record (but rather creates one for the print job), and does not
use a custom status dialog box and associated idle procedure. Also, it does not unload
unneeded code segments at the beginning.

Line 444 saves a pointer to the current graphics port. Line 446 opens the Printing Manager,
together with the current printer driver.

If the TPrint record has not already been created (Line 449), Line 450 calls an application-
defined function to create and initialise a TPrint record. If this call is successful (Line
454), another application-defined function is called to calculate the number of pages (Line
456.

The job dialog box is then displayed (Line 458). If false is returned by the call to
PrJobDialog (that is, the user clicked the Cancel button), the printing loop is bypassed.
Otherwise, the first action is to retrieve the number of copies, the first page and the last
page from the relevant fields of the TPrJob record (Lines 465-467). (Lines 461-463 are for
demonstration program purposes only. Line 461 redraws the information in the window after the
job dialog box disappears and Line 462 prints the selected page orientation in the bottom of
the window.)

13-32 Printing

Since the only information which should be preserved between separate printings of the same
document is that obtained via the style dialog box, the fields of the TPrJob record which
store the first and last page numbers are set back to 1 and iPrPgMax (9999) respectively
(Lines 469-470) before proceeding further.

If the last page number specified by the user exceeds the total number of pages in the
document, the variable holding the last page value is set to the actual number of pages (Lines
472-473).

The copies loop is entered at Line 475 and the nested pages loop is entered at Line 477. The
maximum number of pages that can be printed at a time is represented by the constant iPFMaxPgs
(128). Lines 479 and 481 determine if this is the first or the 129th time around the pages
loop. If it is the 129th (that is, 128 pages have been printed), Line 483 closes the printing
graphics port and, if the printer driver is using deferred printing (Line 485), Line 486 sends
the spool file to the printer. If this is either the first page of all or the first page
after the first 128 have been printed, Line 488 initialises a new printing graphics port and
makes it the current port.

For each page, Line 492 re-initialises the printing graphics port, the application-defined
procedure DoDrawPage is called to draw that page's contents in the printing graphics port
(Line 494), and Line 495 wraps up the printing of the current page.

When all pages have been printed, Line 499 closes the printing graphics port and, if the
printer driver is using deferred printing (Line 501), Line 502 sends the spool file to the
printer.

When all copies have been printed (or if control fell through to Line 508 as a result of an
error), Line 510 releases memory associated with the Printing Manager (except the printer
driver), and the result of a call to PrError at Line 508 is examined at Line 512. If an error
occurred, and provided that error was not the error that is reported when the user (or the
application) requests an abort, a Note alert is displayed advising the user of the error and
error number (Line 513).

Finally, the saved graphics port is restored (Line 515) and the window is activated (Line
516).

The procedure DoMenuChoice

DoMenuChoice handles menu choices from the Apple and File menus.

Note that, if the user chooses Page Setup… from the File menu, the application-defined
function DoPrStyleDialog is called. Note also that, if the user chooses Print… from the File
menu, the application-defined function printLoop is called.

The procedures DoMouseDown and
DoEvents

DoEvents and DoMouseDown perform minimal event handling consistent with the satisfactory
performance of the demonstration aspects of the program. Note that, at Line 598, an activate
event results in a call to the procedure DoActivateWindow.

The main program block

The main function initialises the system software managers (Line 654), sets up the menus
(Lines 660-668), opens a window (Line 672), sets the window's graphics port as the current
port (Line 676), sets the text size to 10 (Line 677), loads a 'TEXT' resource and a 'PICT'
resource (Lines 681-687), and enters the main event loop (Lines 691-698).

Note that, in this program, error handling of all errors other than Printing Manager errors is
somewhat rudimentary. The program simply exits.

