
Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-1

12Version 1.2 (Frozen)

OFFSCREEN GRAPHICS WORLDS,
PICTURES, CURSORS, AND ICONS
Includes Demonstration Program GWorldPicCursIconPascal

Offscreen Graphics Worlds

Introduction

An offscreen graphics world may be regarded as a virtual screen on which your application can
draw a complex image without the user seeing the various steps your application takes before
completing the image. The image in an offscreen graphics world is drawn into a part of memory not
used by the video device. It therefore remains hidden from the user.

One of the key advantages of using an offscreen graphics ports is that it allows you to improve on-
screen drawing speed and visual smoothness. For example, suppose your application draws multiple
graphics objects in a window and then needs to update part of that window. If your image is very
complex, your application can copy it from an offscreen graphics world to the screen faster than it can
repeat all of the steps necessary to draw the image on-screen. At the same time, the inelegant visual
effects associated with the time-consuming drawing a large number of separate objects are avoided.

Another typical use for an offscreen graphics port is demonstrated at Chapter 19 — Custom Control
Definition Functions and VBL Tasks. In the demonstration program at that chapter, the images of two
parts of a slider control (the track and the "thumb") are assembled into a composite image in an
offscreen graphics port before being copied to the front window's graphics port. This happens
repeatedly while the slider is being moved. The continual erasing and redrawing of this composite
animated image is thus not visible to the user, who sees only the smooth, flicker-free final result.

Creating an Offscreen Graphics World

You create an offscreen graphics world with the NewGWorld function. NewGWorld creates a new offscreen
graphics port, a new offscreen pixel map, and (on computers which support Color QuickDraw) either a
new GDevice record or a link to an existing one. NewGWorld returns a pointer of type GWorldPtr which
points to a colour graphics port:

typedef CGrafPtr GWorldPtr;

When you use NewGWorld, you can specify a pixel depth, a boundary rectangle (which also becomes the
port rectangle), a colour table, a GDevice record, and option flags for memory allocation. Passing 0 as
the pixel depth, the window's port rectangle as the offscreen world's boundary rectangle, NULL for both
the colour table and the GDevice record and 0 as the options flags:

• Provides your application with the default behaviour of NewGWorld.

• Supports computers running only basic QuickDraw.

12-2 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

• Allows QuickDraw to optimise the CopyBits, CopyMask, and CopyDeepMask routines used to copy
the image into the window's port rectangle.

Setting the Graphics Port for an Offscreen Graphics World

Before drawing into the offscreen graphics port, you should save the graphics port for the front
window by calling GetGWorld, which saves the current graphics port and its GDevice record. The
offscreen graphics world should then be made the current port by a call to SetGWorld. After drawing
into the offscreen graphics world, you use SetGWorld to restore the active window as the current
graphics port.

Note that SetGWorld sets the port specified in its port parameter as the current port and the device
specified in its gdh parameter as the current device.

GetGWorld and SetGWorld save and restore both basic and colour graphics ports.

Preparing to Draw Into an Offscreen Graphics World

After setting the offscreen graphics world as the current port, you should use the GetGWorldPixMap
function to get a handle to the offscreen pixel map. This is required as the parameter in a call to the
LockPixels function, which you must call before drawing to, or copying from, an offscreen graphics
world.

LockPixels prevents the base address of an offscreen pixel image from being moved while you draw
into it or copy from it. If the base address for an offscreen pixel image has not been purged by the
Memory Manager, or if its base address is not purgeable, LockPixels returns true. If LockPixels
returns false, your application should either call the UpdateGWorld function to reallocate the offscreen
pixel image and then reconstruct it, or draw directly into an onscreen graphics port.

GetGWorldPixMap and Basic QuickDraw

Note that on a system running only basic QuickDraw, GetGWorldPixMap returns the handle to a 1-bit
pixel map that your application can supply as a parameter to the other routines related to offscreen
graphics worlds described in this section. On a basic QuickDraw system, however, your application
should not supply this handle to Color QuickDraw routines.

Copying an Offscreen Image into a Window

After drawing the image in the offscreen graphics world, your application should call SetGWorld to
restore the active window as the current graphics port.

The image is copied from the offscreen graphics world into the window using CopyBits (or, if masking
is required, CopyMask or CopyDeepMask). Specify the offscreen graphics world as the source image for
CopyBits and specify the window as its destination. Note that CopyBits expects its source and
destination parameters to be pointers to bitmaps. Accordingly, you must coerce the offscreen graphic's
world's GWorldPtr data type to a data structure of type GrafPtr. Similarly, whenever a colour graphics
port is your destination, you must coerce the window's CGrafPtr data type to data type GrafPtr.1

As long as you are drawing into an offscreen graphics world or copying an image from it, you must
leave its pixel image locked. When you are finished drawing into, and copying from, an offscreen
graphics world, call UnlockPixels. (Calling UnlockPixels will assist in preventing heap
fragmentation.)

1As a related matter, note that the baseAddr field of the PixMap record for an offscreen graphics world contains a handle, whereas the
baseAddr field for an onscreen pixel map contains a pointer. You must use the GetPixBaseAddr function to obtain a pointer to the PixMap
record for an offscreen graphics world.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-3

Updating an Offscreen Graphics World

If, for example, you are using an offscreen graphics world to support the window updating process,
you can use UpdateGWorld to carry certain changes affecting the window (for example, resizing,
changes to the pixel depth of the screen, or modifications to the colour table) through to the offscreen
graphics world. UpdateGWorld allows you to change the pixel depth, boundary rectangle, or colour
table for an existing offscreen graphics world without recreating it and redrawing its contents.

Disposing of an Offscreen Graphics World

Call DisposeGWorld when your application no longer needs the offscreen graphics world.

Pictures

Introduction

QuickDraw provides a simple set of routines for recording a collection of its drawing commands and
then playing the recording back later. Such a collection of drawing commands, as well as the resulting
image, is called a picture. Pictures provide a common medium for the sharing of image data. They
make it easier for your application to draw complex images defined in other applications, and vice
versa.

Pictures can be created in colour or black-and-white. Macintoshes using only basic QuickDraw use
black-and-white to display pictures created in colour.

When you use OpenCPicture or OpenPicture2 to begin defining a picture, QuickDraw collects your
subsequent drawing commands in a data structure of type Picture. By using DrawPicture, you can
draw onscreen the picture defined by the instructions stored in the Picture record.

Picture Formats

During QuickDraw's evolution, three different formats have evolved for the data contained in a
Picture record:

• The original format, the version 1 format, which is created by the OpenPicture function on
machines without Color QuickDraw or whenever the current graphics port is a basic graphics
port. Pictures created in this format support only black-and-white drawing operations at 72 dpi
(dots per inch).

• The version 2 format, which is created by the OpenPicture function on machines with Color
QuickDraw when the current graphics port is a colour graphics port. Pictures created in this
format support colour drawing operations at 72 dpi.

• The extended version 2 format, which is created by the OpenCPicture function on all
Macintosh computers running System 7, including those supporting only basic QuickDraw.
This format permits your application to specify resolutions for pictures in colour or black-and-
white.

Generally, your application should create pictures in the extended version 2 format.

2The OpenPicture function, which is similar to the OpenCPicture function, was created for earlier versions of the system software. Because
of its support for higher resolutions, you should use OpenCPicture rather than OpenPicture to create a picture.

12-4 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

The Picture Record

The Picture record is as follows:

type
Picture = record

picSize: integer; {For a version 1 picture: its size.}
picFrame: Rect; {Bounding rectangle for the picture.}
… {Picture definition (variable length).}
end;

PicPtr = ^Picture;
PicHandle = ^PicPtr;

Field Descriptions

picSize The information in this field is useful only for version 1 pictures, which cannot exceed 32 KB
in size. Version 2 and extended version 2 pictures can be larger than 32 KB. To maintain
compatibility with the version 1 picture format, the picSize field was not changed for
version 2 or extended version 2 picture formats.

(You should use the Memory Manager function GetHandleSize to determine the size of a
picture in memory, the File Manager function PBGetFInfo to determine the size of a picture in
a file of type 'PICT', and the Resource Manager function MaxSizeResource to determine the
size of a picture in a resource of type 'PICT'.)

picFrame Contains the bounding rectangle for the picture. DrawPicture uses this rectangle to scale the
picture when you draw into a differently sized rectangle.

... Compact drawing commands and picture comments constitute the rest of the record, which
is of variable length.

Opcodes: Drawing Commands and Picture Comments

The variable length field in a Picture record contains data in the form of opcodes, which are values
that DrawPicture uses to determine what objects to draw or what mode to change for subsequent
drawing.

In addition to compact drawing commands, opcodes can also specify picture comments, which are
created using PicComment. A picture comment contains data or commands for special processing by
output devices, such as PostScript printers. If your application requires capability beyond that
provided by QuickDraw drawing routines, PicComment allows your application to pass data or
commands direct to the output device.

You typically use QuickDraw commands when drawing to the screen and picture comments to include
special drawing commands for printers only.

Colour Pictures in Basic Graphics Ports

You can use Color QuickDraw drawing commands to create a colour picture on a computer supporting
Color QuickDraw. If the user were to cut the picture and paste it into an application that draws into a
basic graphics port, the picture would lose some detail, but should be sufficient for most purposes.

'PICT' Files, 'PICT' Resources, and 'PICT' Scrap Format

QuickDraw provides routines for creating and drawing pictures. File Manager and Resource Manager
routines are used to read pictures from, and write pictures to, a disk. Scrap Manager routines are used
to read pictures from, and write pictures to, the scrap3.

3See Chapter 16 — Scrap.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-5

A picture can be stored in the data fork of a file of type 'PICT'. A picture can also be stored as a 'PICT'
resource in the resource fork of any file type. Note that the data fork of a 'PICT' file contains a 512-
byte header that applications can use for their own purposes.

For each application, the Scrap Manager maintains a storage area to hold the last data cut or copied by
the user. The area that is available to your application for this purpose is called the scrap. All
applications that support copy-and-paste operations read data from, and write data to, the scrap. The
'PICT' scrap format is one of two standard scrap formats. (The other is 'TEXT'.)

The Picture Utilities

In addition to the QuickDraw routines for creating and drawing pictures, system software provides a
group of routines called the Picture Utilities for examining the content of pictures. You typically use
the Picture Utilities before displaying a picture.

The Picture utilities allow you to gather colour, comment, font, resolution, and other information about
pictures. You might use the Picture Utilities, for example, to determine the 256 most-used colours in a
picture, and then use the Palette Manager to make those colours available for the window in which the
application needs to draw the picture.

The Picture Utilities also collect information from black-and-white pictures and bitmaps. They are
supported in System 7 even by computers running only basic QuickDraw. However, when collecting
colour information on a computer running only basic QuickDraw, the Picture Utilities return NIL
instead of handles to Palette and ColorTable records.

Creating Pictures

Use the OpenCPicture function to begin defining a picture. OpenCPicture collects your subsequent
drawing commands in a new Picture record. To complete the collection of drawing (and picture
comment) commands which define your picture, call ClosePicture.

You pass information to OpenCPicture in the form of an OpenCPicParams record:

type
OpenCPicParams = record

srcRect: Rect; {Optimal bounding rectangle.}
hRes: Fixed; {Best horizontal resolution.}
vRes: Fixed; {Best vertical resolution.}
version: integer; {Set to -2.}
reserved1: integer; {(Reserved. Set to 0.)}
reserved2: longint; {(Reserved. Set to 0.)}
end;

This record provides a simple mechanism for specifying resolutions when creating images. For
example, applications that create pictures from scanned images can specify resolutions higher than 72
dpi.

Clipping Region. You should always use ClipRect to specify a clipping region appropriate to your
picture before calling OpenCPicture. If you do not specify a clipping region, OpenCPicture uses the
clipping region specified in the current graphics port. If this region is very large (as it is when the
graphics port is initialised, being set to the size of the coordinate plane by that initialisation) and you
scale the picture when drawing it, the clipping region can become invalid when DrawPicture scales the
clipping region, in which case your picture will not be drawn. On the other hand, if the graphics port
specifies a small clipping region, part of your drawing may be clipped when you draw it. Setting the
clipping region equal to the port rectangle of the current graphics port always sets a valid clipping
region.

When the picture has been drawn with QuickDraw drawing commands, a call to ClosePicture
concludes the picture definition.

12-6 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Opening and Drawing Pictures

Using File Manager routines, your application can retrieve pictures saved in 'PICT' files.4 Using the
GetPicture function, your application can retrieve pictures saved in the resource forks of other file
types. Using the Scrap Manager function GetScrap, your application can retrieve pictures stored in the
scrap.

When the picture is retrieved, DrawPicture is called to draw the picture. The second parameter taken
by DrawPicture is the destination rectangle. This rectangle should be specified in coordinates local to
the current graphics port. DrawPicture shrinks or stretches the picture as necessary to make it fit into
this rectangle.

When you are finished using a picture stored as a 'PICT' resource, you should use the resource
Manager routine ReleaseResource to release its memory.

Saving Pictures

After creating or changing pictures, your application should allow the user to save them. To save a
picture in a 'PICT' file, you should use the appropriate File Manager routines.4 (Remember that the
first 512 bytes of a 'PICT' file are reserved for your application's own purposes.) To save pictures in a
'PICT' resource, you should use the appropriate Resource Manager routines. To place a picture in the
Scrap (for example, to respond to the user choosing the Copy command to copy a picture to the
clipboard), you should use the Scrap Manager function PutScrap.

Gathering Picture Information

GetPictInfo may be used to gather information about a single picture, and GetPixMapInfo may be used
to gather colour information about a single pixel map or bitmap. Each of these functions returns colour
and resolution information in a PictInfo record. A PictInfo record can also contain information about
the drawing objects, fonts, and comments in a picture.

Cursors

Introduction

A cursor is a 256-pixel, black-and-white image in a 16-by-16 pixel square usually defined by an
application in a cursor ('CURS') or colour cursor ('crsr') resource.

Cursor Movement, Hot Spot, Visibility, Colour and Shape

Cursor Movement

Whenever the user moves the mouse, the low-level interrupt-driven mouse routines move the cursor to
a new location on the screen. Your application does not need to do anything to move the cursor.

Cursor Hot Spot

One point in the cursor's image is designated as the hot spot, which in turn points to a location on the
screen. The hot spot is the part of the pointer that must be positioned over a screen object before mouse
clicks can have an effect on that object. Fig 1 illustrates two cursors and their hot spot points. Note that
the hot spot is a point, not a bit.

4The demonstration program at Chapter 14 — Files shows how to read pictures from, and save pictures to, files of type 'PICT'.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-7

1

1

7

7

FIG 1 - HOT SPOTS IN CURSORS

Cursor Visibility

In general, you should always make the cursor visible to your application, although there are a few
cases where the cursor should not be visible. For example, in a text-editing application, the cursor
should be made invisible, and the insertion point made to blink, when the user begins entering text. In
such cases, the cursor should be made visible again only when the user moves the mouse.

Cursor Colour

When the cursor is used for choosing or selecting, it should remain black. You may want to display a
colour cursor when the user is drawing or typing in colour. To ensure visibility over any background,
colour cursors should generally be outlined in black.

Cursor Shape

Your application should change the shape of the cursor in the following circumstances:

• To indicate that the user is over a certain area of the screen. For example, when the cursor is in
the menu bar, it should usually have an arrow shape. When the user moves the cursor over a
text document, your application should change the cursor to the I-beam shape.

• To provide feedback about the status of the computer system. For example, if an operation will
take a second or two, you should provide feedback to the user by changing the cursor to the
wristwatch cursor (see Fig 2). If the operation takes several seconds and the user can do nothing
in your application but stop the operation, wait until it is completed, or switch to another
application, you should display an animated cursor.5

The System file in the System Folder contains 'CURS' resources for the common cursors shown at Fig 2.

FIG 2 - THE I-BEAM, CROSSHAIRS, PLUS SIGN, AND WRISTWATCH CURSORS

The following constants represent the 'CURS' resource IDs for the cursors shown at Fig 2:

iBeamCursor = 1 Used in text editing.
crossCursor = 2 Often used for manipulating graphics.
plusCursor = 3 Often used for selecting field in an array.
watchCursor = 4 Used when a short operation is in progress.

5If the operation takes longer than several seconds, you should display a status indicator to show the user the total and elapsed time for the
operation. (See Chapter 21 — Miscellany.)

12-8 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Creating Custom Non-Animated Cursors Resources

To create custom non-animated cursors, you need to:

• Define black-and-white cursors as 'CURS' resources in the resource file of your application. (You
use 'CURS' resources to create black-and-white cursors for display on black-and-white or colour
screens).

• If you want to display colour cursors, define colour cursors in 'crsr' resources in the resource
file of your application. (You use 'crsr' resources to create colour cursors to display on systems
supporting Color QuickDraw. Each 'crsr' resource also contains a black and white image that
Color QuickDraw displays on black and white screens.)6

Changing Cursor Shape and Hiding Cursors

Changing Cursor Shape

To change cursor shape, your application must get a handle to the relevant cursor (either a custom
cursor or one of the system cursors shown at Fig 2) by specifying its resource ID in a call to GetCursor
or GetCCursor. GetCursor returns a handle to a Cursor record. GetCCursor returns a handle to a CCrsr
record. The address of the Cursor or CCrsr record is then used in a call to SetCursor or SetCCursor to
change the cursor shape.

Your application is responsible for setting the initial appearance of the cursor and for changing the
appearance of the cursor as appropriate for your application.

In Response to Mouse-Moved Events. For example, most applications set the cursor to the I-
beam shape when the cursor is inside a text-editing area of a document, and they change the cursor to
an arrow when the cursor is inside the scroll bars. Your application can achieve this effect by
requesting that the Event Manager report mouse-moved events if the user moves the cursor out of a
region you specify in the mouseRgn parameter to the WaitNextEvent function. Then, when a mouse-
moved event is detected in your main event loop, you can use SetCursor or SetCCursor to change the
cursor to the appropriate shape.7

In Response to Resume Events. Your application also needs to adjust the cursor in response to
resume events.

Hiding Cursors

You can remove the cursor image from the screen using HideCursor. You can hide the cursor
temporarily using ObscureCursor or you can hide the cursor in a given rectangle by using
ShieldCursor. To display a hidden cursor, use ShowCursor. Note, however, that you do not need to
explicitly show the cursor after your application uses ObscureCursor because the cursor automatically
reappears when the user moves the mouse again.

Creating an Animated Cursor

To create an animated cursor, you should:

• Create a series of 'CURS' resources that make up the "frames" of the animation. (Typically, an
animated cursor uses four to seven frames.)

6Before using the routines which handle colour cursors (that is, GetCCursor, SetCCursor, and DisposeCCursor) you should test for the
existence of Color QuickDraw using the Gestalt function. Both basic and Color QuickDraw support all other routines described in this
chapter.
7Note that your application may also have to accommodate the cursor shape changing requirements of, say, dialog boxes with editable text
items.as well as its main windows.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-9

• Create an 'acur' resource. (The 'acur' resource collects and orders your 'CURS' frames into a
single animation. It specifies the IDs of the resources and the sequence for displaying them in
your animation.)

• Load the 'acur' resource into an application-defined structure which replicates the structure of
an 'acur' resource, for example:

Acur = record
n: integer; {Number of cursors ("frames of film").}
index: integer; {Next frame to show <for internal use>.}
frame1: integer; {'CURS' resource id for frame #1.}
fill1: integer; {<for internal use>.}
frame2: integer; {'CURS' resource id for frame #2.}
fill2: integer; {<for internal use>.}
frameN: integer; {'CURS' resource id for frame #N.}
fillN: integer; {<for internal use>.}
end;

acurPtr = ^Acur;
acurHandle = ^acurPtr;

• Load the 'CURS' resources using GetCursor and assign handles to the resulting Cursor structures
to the elements of the frame field.

• Call SetCursor to display each cursor, that is, each "frame", in rapid succession, returning to the
first frame after the last frame has been displayed. This can be achieved by incrementing the
frame at each null event (which means, of course, that the sleep parameter in the WaitNextEvent
call must be set to the required interval between frame updates)8.

Icons

Icons and the Finder

As stated at Chapter 7 — Finder Interface, the Finder uses icons to graphically represent objects, such
as files and directories, on the desktop. Chapter 7 also introduced the subject of icon families, and
stated that your application should provide the Finder with a family of specially designed icons for the
application file itself and for each of the document types created by the application.

The provision of a family of icon types for each desktop object, rather than just one icon type, enables
the Finder to automatically select the appropriate family member to display depending on the icon size
specified by the user and the bit depth of the display device. Chapter 7 described the components of an
icon family used by the Finder as follows:

Icon Size (Pixels) Resource in Which
Defined

Large black-and-white icon, and mask 32 by 32 Icon list ('ICN#').
Small black-and-white icon, and mask 16 by 16 Small icon list ('ics#')
Large colour icon with 4 bits of colour data per pixel 32 by 32 Large 4-bit colour icon ('icl4')
Small colour icon with 4 bits of colour data per pixel 16 by 16 Small 4-bit colour icon ('ics4')
Large colour icon with 8 bits of colour data per pixel 32 by 32 Large 8-bit colour icon ('icl8')
Small colour icon with 8 bits of colour data per pixel 16 by 16 Small 8-bit colour icon ('ics8')

Other Icons — Icons, Colour Icons, and Small Icons

Icon ('ICON'). The icon is defined in an 'ICON' resource, which contains a bitmap for a 32-by-32
pixel black-and-white icon. Because it is always displayed on a white background, it does not need a
mask.

8An alternative method for incrementing the frame, using vertical blanking tasks, is demonstrated at Chapter 19 — Custom Control Definition
Functions and VBL Tasks. But note that the vertical blanking task method is not recommended.

12-10 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Colour Icon ('cicn'). The colour icon is defined in a 'cicn' resource, which has a special format
which includes a pixel map, a bitmap, and a mask. You can use a 'cicn' resource to define a colour
icon with a width and height between 8 and 64 pixels. You can also define the bit depth for a colour
icon resource.

Small Icon ('SICN'). The small icon is defined in a 'SICN' resource. Small icons are 12 by 16 pixels
even though they are stored in a resource as 16-by-16 pixel bitmaps. A 'SICN' resource consists of a list
of 16-by-16 pixel bitmaps for black-and-white icons.9

Note that the Finder does not use or display these types of icon.

Icons in Windows, Menus, and Alert and Dialog Boxes

The icons provided by your application for the Finder (or the default system-suppled icons used by the
Finder if your application does not provide its own icons) are displayed on the desktop. Your
application can also display icons in its menus, dialog boxes and windows.

Icons in Windows

You can display icons of any kind in your windows using the appropriate Icon Utilities routines.

Icons in Menus

The Menu Manager allows you to display icons of resource types 'ICON' (icon) 'cicn' (colour icon),
and 'SICN' (small icon) in menu items. The procedure is as follows:

• Create the icon resource with a resource ID between 257 and 511. Subtract 256 from the resource
ID to get a value called the icon number. Specify the icon number in the Icon field of the menu
item definition.

• For an icon ('ICON'), specify $1D in the keyboard equivalent field of the menu item definition to
indicate to the Menu Manager that the icon should be reduced to fit into a 16-by-16 pixel
rectangle. Otherwise, specify a value of $00, or a value greater than $20, in the keyboard
equivalent field to cause the Menu Manager to expand the item's rectangle so as to display the
icon at its normal 32-by-32 pixel size. (A value greater than $20 in the keyboard equivalent field
specifies the item's keyboard equivalent.)

• For a colour icon ('cicn'), specify $00 or a value greater than $20 in the keyboard equivalent
field. The Menu Manager automatically enlarges the enclosing rectangle of the menu item
according to the rectangle specified in the 'cicn' resource. (Colour icons, unlike icons, can be
any height or width between 8 and 64 pixels.)

• For a small icon ('SICN'), specify $1E in the keyboard equivalent field. This indicates that the
item has an icon defined by a 'SICN' resource. The Menu Manager plots the icon in a 16-by-16
pixel rectangle.

The Menu Manager will then automatically display the icon whenever you display the menu using the
MenuSelect function. The Menu Manager first looks for a 'cicn' resource with the resource ID
calculated from the icon number and displays that icon if it is found.10 If a 'cicn' resource is not
found (or if the computer does not have Color QuickDraw) and the keyboard equivalent field specifies
$1E, the Menu Manager looks for a 'SICN' resource with the calculated resource ID. Otherwise, the
Menu Manager searches for an 'ICON' resource and plots it in either a 32-by-32 pixel rectangle or a 16-
by-16 bit rectangle, depending on the value in the menu item's keyboard equivalent field.11

9Typically, only the Finder and the Standard File Package use small icons.
10A colour icon ('cicn') resource contains a bitmap as well as a pixel map, which accounts for black-and-white displays.
11Note that, for the Apple and Application menus, the Menu Manager either automatically reduces the icon to fit within the enclosing
rectangle of the menu item or uses the appropriate icon from the application's icon family, such as the 'icl8' resource, if one is available.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-11

Displaying Other Icon Types. To display an icon of a resource type other than 'ICON', 'cicn', and
'SICN' in your menu items, you must write your own menu definition procedure.

Icons in Alert and Dialog Boxes

The Dialog Manager allows you to display icons of resource types 'ICON' (icon) and 'cicn' (colour
icon) in alert and dialog boxes. The procedure is to define an item of type Icon and provide the
resource ID of the icon in the item list ('DITL') resource for the dialog. This will cause the Dialog
Manager to automatically display the icon whenever you display the alert or dialog box using Dialog
Manager routines.

If you provide a colour icon ('cicn') resource with the same resource ID as an icon ('ICON') resource,
the Dialog Manager displays the colour icon instead of the black-and-white icon.

Ordinarily, you would use the Alert function, which does not automatically draw a system-supplied
alert icon in the alert box, when you wish to display an alert containing your own icon (for example, in
your application's About… alert box). If you invoke an alert box with the NoteAlert, CautionAlert or
StopAlert functions, rather than the Alert function, the Dialog Manager draws the system-supplied
black-and-white icon as well as your icon. Since your icon is drawn last, you can obscure the system-
suppled icon by positioning your icon at the same coordinates.

Displaying Other Icon Types. To display an icon of a resource type other than 'ICON' and 'cicn'
in a dialog box, you must define an item of type userItem and use the appropriate Icon Utilities routine
to draw the icons.

Drawing and Manipulating Icons

The Icon Utilities allow your application (and the system software) to draw and manipulate icons of
any standard resource type in windows and, subject to the limitations and requirements previously
described, in menus and dialog boxes.

You need to use Icon Utilities routines only if:

• You wish to draw icons in your application's windows.

• You wish to draw icons which are not recognised by the Menu Manager and the Dialog Manager
in, respectively, menu items and dialog boxes.

Preamble - Icon Families, Suites, and
Caches

Icon Families. You can define individual icons of resource types 'ICON', 'cicn', and 'SICN' that are
not part of an icon family and use Icon Utilities routines to draw them as required. However, to
display an icon effectively at a variety of sizes and bit depths, you should provide an icon family12 in
the same way that you provide icon families for the Finder. The advantage of providing an icon family
is that you can then leave it to routines such as PlotIconID, which are used to draw icons, to
automatically determine which icon in the icon family is best suited to the specified destination
rectangle and current display bit depth.

Icon Suites. Some Icon Utilities routines take as a parameter a handle to an icon suite. An icon suite
typically consists of one or more handles to icon resources from a single icon family which have been
read into memory. The GetIconSuite function may be used to get a handle to an icon suite, which can
then be passed to routines such as PlotIconSuite to draw that icon in the icon suite best suited to the
destination rectangle and current display bit depth. An icon suite can contain handles to each of the six
icon resources that an icon family can contain, or it can contain handles to only a subset of the icon
resources in an icon family. For best results, an icon suite should always include a resource of type

12Each icon in an icon family shares the same resource ID as other icons in the family but has its own resource type identifying the icon data it
contains.

12-12 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

'ICN#' in addition to any other large icons you provide and a resource of type 'ics#' in addition to
any other small icons you provide.13

Icon Cache. An icon cache is like an icon suite except that it also contains a pointer to an
application-defined icon getter function and a pointer to data that is associated with the icon suite.
You can pass a handle to an icon cache to any of the Icon Utilities routines which accept a handle to an
icon suite. An icon cache typically does not contain handles to the icon resources for all icon family
members. Instead, if the icon cache does not contain an entry for a specific type of icon in an icon
family, the Icon Utilities routines call your application's icon getter function to retrieve the data for that
icon type.

Drawing an Icon Directly From a Resource

To draw an icon from an icon family without first creating an icon suite, use the PlotIconID function.
PlotIconID determines, from the size of the specified destination rectangle and the current bit depth of
the display device, which icon to draw. The icon drawn is as follows;

Destination Rectangle Size Icon Drawn
Width or height greater than or equal to 32. The 32-by-32 pixel icon with the appropriate bit depth.
Less than 32 by 32 pixels and greater than 16 pixels
wide or 12 pixels high.

The 16-by-16 pixel icon with the appropriate bit depth.

Height less than or equal to 12 pixels or width less
than or equal to 16 pixels.

The 12-by-16 pixel icon with the appropriate bit depth.

Icon Stretching and Shrinking. Depending on the size of the rectangle, PlotIconID may stretch or
shrink the icon to fit. To draw icons without stretching them, PlotIconID requires that the destination
rectangle have the same dimensions as one of the standard icons.

Icon Alignment and Transform. In addition to destination rectangle and resource ID parameters,
PlotIconID takes alignment and transform parameters. Icon Utilities routines can automatically align
an icon within its destination rectangle. (For example, an icon which is taller than it is wide can be
aligned to either the right or left of its destination rectangle.) These routines can also transform the
appearance of the icon in standard ways analogous to Finder states for icons.

Variables of type IconAlignmentType and IconTransformType should be declared and assigned values
representing alignment and transform requirements. Constants, such as atAbsoluteCenter and ttNone,
are available to specify alignment and transform requirements.

Getting an Icon Suite and Drawing One of
Its Icons

The GetIconSuite function, with the constant svAllAvailableData specified in the third parameter, is
used to get all icons from an icon family with a specified resource ID and to collect the handles to the
data for each icon into an icon suite. An icon from this suite may then be drawn using PlotIconSuite
which, like PlotIconID, takes destination rectangle, alignment and transform parameters and stretches
or shrinks the icon if necessary.

Drawing Specific Icons From an Icon
Family

If you need to plot a specific icon from an icon family rather than use the Icon Utilities to automatically
select a family member, you must first create an icon suite which contains only the icon of the desired
resource type together with its corresponding mask. Constants such as svLarge4Bit (an icon selector
mask for an 'icl4' icon) are used as the third parameter of the GetIconSuite call to retrieve the
required family member. You can then use PlotIconSuite to plot the icon.

13When you create an icon suite from icon family resources, the associated resource file should remain open while you use Icon Utilities
routines.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-13

Drawing Icons That Are Not Part of an Icon
Family

To draw icons of resource type 'ICON' and 'cicn' in menu items and dialog boxes, and icons of
resource type 'SICN' in menu items, you use Menu Manager and Dialog Manager routines such as
SetItemIcon and SetDialogItem.

To draw resources of resource type 'ICON', 'cicn', and 'SICN' in your application's windows, you use
the following routines:

Resource
Type

Routine to Get
Icon

Routines to Draw
Icon

'ICON' GetIcon PlotIconHandle
PlotIcon

'cicn' GetCIcon PlotCIconHandle
PlotCIcon

'SICN' GetResource PlotSICNHandle

The routines in this list ending in Handle allow you to specify alignment and transforms for the icon.

Manipulating Icons

The GetIconFromSuite function may be used to get a handle to the pixel data for a specific icon from an
icon suite. You can then use this handle to manipulate the icon data, for example, to alter its colour or
add three-dimensional shading.

The Icon Utilities also include routines which allow you to perform an action on one or more icons in
an icon suite and to perform hit testing on icons.

Main Constants, Data Types and Routines — Offscreen Graphics
Worlds

Constants

Flags for GWorldFlags Parameter

pixPurgeBit = 0 {Set to make base address for offscreen pixel image purgeable.}
noNewDeviceBit = 1 {Set to not create a new GDevice record for offscreen world.}
pixelsPurgeableBit = 6 {Set to make base address for pixel image purgeable.}
pixelsLockedBit = 7 {Set to lock base address for offscreen pixel image.}

Data Types

GWorldPtr = CGrafPtr;
GWorldFlags = longint;

Routines

Creating, Altering, and Disposing of Offscreen Graphics Worlds

function NewGWorld(var offscreenGWorld: GWorldPtr; PixelDepth: integer;
var boundsRect: Rect; cTable: CTabHandle; aGDevice: GDHandle;
flags: GWorldFlags): QDErr;

function UpdateGWorld(var offscreenGWorld: GWorldPtr; pixelDepth: integer;
var boundsRect: Rect; cTable: CTabHandle; aGDevice: GDHandle;
flags: GWorldFlags): GWorldFlags;

procedure DisposeGWorld(offscreenGWorld: GWorldPtr);

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

procedure GetGWorld(var port: CGrafPtr; var gdh: GDHandle);
procedure SetGWorld(port: CGrafPtr; gdh: GDHandle);

12-14 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Managing an Offscreen Graphics World's Pixel Image

function GetGWorldPixMap(offscreenGWorld: GWorldPtr): PixMapHandle;
function LockPixels(pm: PixMapHandle): boolean;
procedure UnlockPixels(pm: PixMapHandle);
procedure AllowPurgePixels(pm: PixMapHandle);
procedure NoPurgePixels(pm: PixMapHandle);
function GetPixelsState(pm: PixMapHandle): GWorldFlags;
procedure SetPixelsState(pm: PixMapHandle; state: GWorldFlags);
function GetPixBaseAddr(pm: PixMapHandle): Ptr;
function PixMap32Bit(pmHandle: PixMapHandle): boolean;

Main Constants, Data Types and Routines — Pictures

Constants

Verbs for the GetPictInfo , GetPixMapInfo , and NewPictInfo calls

returnColorTable = $0001Return a ColorTable record.
returnPalette = $0002Return a Palette record.
recordComments = $0004Return comment information.
recordFontInfo = $0008Return font information.
suppressBlackAndWhite = $0010Do not include black and white.

Data Types

Picture

type
Picture = record

picSize: integer; {For a version 1 picture: its size.}
picFrame: Rect; {Bounding rectangle for the picture.}
… {Picture definition (variable length).}
end;

PicPtr = ^Picture;
PicHandle = ^PicPtr;

OpenCPicParams

OpenCPicParams = record
srcRect: Rect; {Optimal bounding rectangle.}
hRes: Fixed; {Best horizontal resolution.}
vRes: Fixed; {Best vertical resolution.}
version: integer; {Set to -2.}
reserved1: integer; {(Reserved. Set to 0.)}
reserved2: longint; {(Reserved. Set to 0.)}
end;

PictInfo

PictInfo = record
version: integer; {This is always zero, for now.}
uniqueColors: longint; {The number of actual colors in picture(s)/pixmap(s)}
thePalette: PaletteHandle; {Handle to the palette information.}
theColorTable: CTabHandle; {Handle to the color table.}
hRes: Fixed; {Maximum horizontal resolution for all the pixmaps.}
vRes: Fixed; {Maximum vertical resolution for all the pixmaps.}
depth: integer; {Maximum depth for all the pixmaps (in the picture).}
sourceRect: Rect; {P frame rectangle (this contains entire picture).}
textCount: longint; {Total number of text strings in the picture.}
lineCount: longint; {Total number of lines in the picture.}
rectCount: longint; {Total number of rectangles in the picture.}
rRectCount: longint; {Total number of round rectangles in the picture.}
ovalCount: longint; {Total number of ovals in the picture.}
arcCount: longint; {Total number of arcs in the picture.}
polyCount: longint; {Total number of polygons in the picture.}
regionCount: longint; {Total number of regions in the picture.}
bitMapCount: longint; {Total number of bitmaps in the picture.}
pixMapCount: longint; {Total number of pixmaps in the picture.}
commentCount: longint; {Total number of comments in the picture.}

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-15

uniqueComments: longint; {The number of unique comments in the picture.}
commentHandle: CommentSpecHandle; {Handle to all the comment information.}
uniqueFonts: longint; {The number of unique fonts in the picture.}
fontHandle: FontSpecHandle; {Handle to the FontSpec information.}
fontNamesHandle: Handle; {Handle to the font names.}
reserved1: longint;
reserved2: longint;
end;

PictInfoPtr = ^PictInfo;
PictInfoHandle = ^PictInfoPtr;

CommentSpec

CommentSpec = record
count: integer; {Number of occurrances of this comment ID.}
ID: integer; {ID for the comment in the picture.}
end;

CommentSpecPtr = ^CommentSpec;
CommentSpecHandle = ^CommentSpecPtr;

FontSpec

FontSpec = record
pictFontID: integer; {ID of the font in the picture.}
sysFontID: integer; {ID of the same font in the current system file.}
size: array [0..3] of longint; {Bit array of all the sizes found (1..127)}

{(bit 0 means > 127).}
style: integer; {Combined style of all occurrances of the font.}
nameOffset: longint; {Offset into the fontNamesHdl handle for the font's}

{name.}
end;

FontSpecPtr = ^FontSpec;
FontSpecHandle = ^FontSpecPtr;

Routines

Creating and Disposing of Pictures

function OpenCPicture(var newHeader: OpenCPicParams): PicHandle;
function OpenPicture(var picFrame: Rect): PicHandle;
procedure PicComment(kind: integer; dataSize: integer; dataHandle: Handle);
procedure ClosePicture;
procedure KillPicture(myPicture: PicHandle);

Drawing Pictures

procedure DrawPicture(myPicture: PicHandle; var dstRect: Rect);
function GetPicture(pictureID: integer): PicHandle;

Collecting Picture Information

function GetPictInfo(thePictHandle: PicHandle; var thePictInfo: PictInfo; verb: integer;
colorsRequested: integer; colorPickMethod: integer; version: integer): OSErr;

function GetPixMapInfo(thePixMapHandle: PixMapHandle; var thePictInfo: PictInfo;
verb: integer; colorsRequested: integer; colorPickMethod: integer;
version: integer): OSErr;

function NewPictInfo(var thePictInfoID: PictInfoID; verb: integer; colorsRequested: integer;
colorPickMethod: integer; version: integer): OSErr;

function RecordPictInfo(thePictInfoID: PictInfoID; thePictHandle: PicHandle): OSErr;
function RecordPixMapInfo(thePictInfoID: PictInfoID; thePixMapHandle: PixMapHandle): OSErr;
function RetrievePictInfo(thePictInfoID: PictInfoID; var thePictInfo: PictInfo;

colorsRequested: integer): OSErr;
function DisposePictInfo(thePictInfoID: PictInfoID): OSErr;

12-16 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Main Constants, Data Types and Routines — Cursors

Constants

iBeamCursor = 1
crossCursor = 2
plusCursor = 3
watchCursor = 4

Data Types

Cursor

Cursor = record
data: Bits16;
mask: Bits16;
hotSpot: Point;
end;

CursPtr = ^Cursor;
CursHandle = ^CursPtr;

CCrsr

CCrsr = record
crsrType: integer; {Type of cursor.}
crsrMap: PixMapHandle; {The cursor's pixmap.}
crsrData: Handle; {Cursor's data.}
crsrXData: Handle; {Expanded cursor data.}
crsrXValid: integer; {Depth of expanded data (0 if none).}
crsrXHandle: Handle; {Future use.}
crsr1Data: Bits16; {One-bit cursor.}
crsrMask: Bits16; {Cursor's mask.}
crsrHotSpot: Point; {Cursor's hotspot.}
crsrXTable: longint; {Private.}
crsrID: longint; {Private.}
end;

CCrsrPtr = ^CCrsr;
CCrsrHandle = ^CCrsrPtr;

Routines

Initialising Cursors

procedure InitCursor;
procedure InitCursorCtl(newCursors: UNIV acurHandle);

Changing Black-and-White Cursors

function GetCursor(cursorID: integer): CursHandle;
procedure SetCursor(var crsr: Cursor);

Changing Colour Cursors

function GetCCursor(crsrID: integer): CCrsrHandle;
procedure SetCCursor(cCrsr: CCrsrHandle);
procedure AllocCursor;
procedure DisposeCCursor(cCrsr: CCrsrHandle);

Hiding and Showing Cursors

procedure HideCursor;
procedure ShowCursor;
procedure ObscureCursor;
procedure ShieldCursor(var shieldRect: Rect; offsetPt: Point);

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-17

Main Constants, Data Types and Routines — Icons

Constants

Types for Icon Families

kLarge1BitMask = 'ICN#';
kLarge4BitData = 'icl4';
kLarge8BitData = 'icl8';
kSmall1BitMask = 'ics#';
kSmall4BitData = 'ics4';
kSmall8BitData = 'ics8';
kMini1BitMask = 'icm#';
kMini4BitData = 'icm4';
kMini8BitData = 'icm8';

IconAlignmentType Values

kAlignNone = $0;
kAlignVerticalCenter = $1;
kAlignTop = $2;
kAlignBottom = $3;
kAlignHorizontalCenter = $4;
kAlignAbsoluteCenter = kAlignVerticalCenter + kAlignHorizontalCenter;
kAlignCenterTop = kAlignTop + kAlignHorizontalCenter;
kAlignCenterBottom = kAlignBottom + kAlignHorizontalCenter;
kAlignLeft = $8;
kAlignCenterLeft = kAlignVerticalCenter + kAlignLeft;
kAlignTopLeft = kAlignTop + kAlignLeft;
kAlignBottomLeft = kAlignBottom + kAlignLeft;
kAlignRight = $C;
kAlignCenterRight = kAlignVerticalCenter + kAlignRight;
kAlignTopRight = kAlignTop + kAlignRight;
kAlignBottomRight = kAlignBottom + kAlignRight;

IconTransformType Values

kTransformNone = $0;
kTransformDisabled = $1;
kTransformOffline = $2;
kTransformOpen = $3;
kTransformLabel1 = $0100;
kTransformLabel2 = $0200;
kTransformLabel3 = $0300;
kTransformLabel4 = $0400;
kTransformLabel5 = $0500;
kTransformLabel6 = $0600;
kTransformLabel7 = $0700;
kTransformSelected = $4000;
kTransformSelectedDisabled = kTransformSelected + kTransformDisabled;
kTransformSelectedOffline = kTransformSelected + kTransformOffline;
kTransformSelectedOpen = kTransformSelected + kTransformOpen;

IconSelectorValue Masks

kSelectorLarge1Bit = $00000001; {'ICN#' resource.}
kSelectorLarge4Bit = $00000002; {'icl4' resource.}
kSelectorLarge8Bit = $00000004; {'icl8' resource.}
kSelectorSmall1Bit = $00000100; {'ics#' resource.}
kSelectorSmall4Bit = $00000200; {'ics4' resource.}
kSelectorSmall8Bit = $00000400; {'ics8' resource.}
kSelectorMini1Bit = $00010000; {'ism#' resource.}
kSelectorMini4Bit = $00020000; {'icm4' resource.}
kSelectorMini8Bit = $00040000; {'icm8' resource.}
kSelectorAllLargeData = $000000FF; {'ICN#', 'icl4', and 'icl8' resources.}
kSelectorAllSmallData = $0000FF00; {'ics#', 'ics4', and 'ics8' resources.}
kSelectorAllMiniData = $00FF0000; {'icm#', 'icm4', and 'icm8' resources.}
kSelectorAll1BitData = kSelectorLarge1Bit + kSelectorSmall1Bit + kSelectorMini1Bit;
kSelectorAll4BitData = kSelectorLarge4Bit + kSelectorSmall4Bit + kSelectorMini4Bit;
kSelectorAll8BitData = kSelectorLarge8Bit + kSelectorSmall8Bit + kSelectorMini8Bit;
kSelectorAllAvailableData = $FFFFFFFF; {All resources of given ID.}

12-18 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Data Types

IconAlignmentType = SInt16;
IconTransformType = SInt16;

CIcon

CIcon = record
iconPMap: PixMap; {The icon's pixMap}
iconMask: BitMap; {The icon's mask}
iconBMap: BitMap; {The icon's bitMap}
iconData: Handle; {The icon's data}
iconMaskData: array [0..0] of SInt16; {Icon's mask and BitMap data}
end;

CIconPtr = ^CIcon;
CIconHandle = ^CIconPtr;

Routines

Drawing Icons From Resources

function PlotIconID(var theRect: Rect; align: IconAlignmentType;
transform: IconTransformType; theResID: SInt16): OSErr;

procedure PlotIcon(var theRect: Rect; theIcon: Handle);
function PlotIconHandle(var theRect: Rect; align: IconAlignmentType;

transform: IconTransformType; theIcon: Handle): OSErr;
procedure PlotCIcon(var theRect: Rect; theIcon: CIconHandle);
function PlotCIconHandle(var theRect: Rect; align: IconAlignmentType;

transform: IconTransformType; theCIcon: CIconHandle): OSErr;
function PlotSICNHandle(var theRect: Rect; align: IconAlignmentType;

transform: IconTransformType; theSICN: Handle): OSErr;

Getting Icons From Resources Which do Not Belong to an Icon Family

function GetIcon(iconID: SInt16): Handle;
function GetCIcon(iconID: SInt16): CIconHandle;

Disposing of Icons

procedure DisposeCIcon(theIcon: CIconHandle);

Creating an Icon Suite

function GetIconSuite(var theIconSuite: Handle; theResID: Sint16;
selector: IconSelectorValue): OSErr;

function NewIconSuite(var theIconSuite: Handle): OSErr;
function AddIconToSuite(theIconData: Handle; theSuite: Handle; theType: ResType): OSErr;

Getting Icons From an Icon Suite

function GetIconFromSuite(var theIconData: Handle; theSuite: Handle;
theType: ResType): OSErr;

Drawing Icons From an Icon Suite

function PlotIconSuite(var theRect: Rect; align: IconAlignmentType; transform:
IconTransformType; theIconSuite: Handle): OSErr;

Performing Operations on Icons in an Icon Suite

function ForEachIconDo(theSuite: Handle; selector: IconSelectorValue; action: IconActionUPP;
yourDataPtr: UNIV Ptr): OSErr;

Disposing of Icon Suites

function DisposeIconSuite(theIconSuite: Handle; disposeData: boolean): OSErr;

Converting an Icon Mask to a Region

function IconIDToRgn(theRgn: RgnHandle; var iconRect: Rect; align: IconAlignmentType;
iconID: SInt16): OSErr;

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-19

function IconSuiteToRgn(theRgn: RgnHandle; var iconRect: Rect;
align: IconAlignmentType; theIconSuite: Handle): OSErr;

Determining Whether a Point or Rectangle is Within an Icon

function PtInIconID(testPt: Point; var iconRect: Rect; align: IconAlignmentType;
iconID: SInt16): boolean;

function PtInIconSuite(testPt: Point; var iconRect: Rect; align: IconAlignmentType;
theIconSuite: Handle): boolean;

function RectInIconID(var testRect: Rect; var iconRect: Rect;
align: IconAlignmentType; iconID: SInt16): boolean;

function RectInIconSuite(var testRect: Rect; var iconRect: Rect;
align: IconAlignmentType; theIconSuite: Handle): boolean;

Working With Icon Caches

function MakeIconCache(var theHandle: Handle; makeIcon: IconGetterUPP;
yourDataPtr: UNIV Ptr): OSErr;

function LoadIconCache(var theRect: Rect; align: IconAlignmentType;
transform: IconTransformType; theIconCache: Handle): OSErr;

Demonstration Program
{ ##1

// GWorldPicCursIconPascal.p2

// ###3

//4

// This program:5

//6

// • Opens a window in which the results of various drawing operations are displayed,7

// and in which regions are established for a cursor shape change demonstration.8

//9

// • Demonstrates offscreen graphics world, picture, cursor, animated cursor, and icon10

// operations as a result of the user choosing items from a Demonstration menu.11

//12

// • Quits when the user chooses Quit or clicks the window's close box.13

//14

// The program utilises the following resources:15

//16

// • 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).17

//18

// • A 'WIND' resource (purgeable) (initially visible).19

//20

// • An 'acur' resource (purgeable).21

//22

// • 'CURS' resources associated with the 'acur' resource (purgeable).23

//24

// • An 'ALRT' resource (purgeable) and associated 'DITL' resource (purgeable) for an25

// About GWorldPicCursIcon… alert box, which is used to demonstrate the display of26

// icons in alert boxes.27

//28

// • 'ICON', 'cicn', and 'SICN' resources (purgeable) for the display of icons in menu29

// items and the About GWorldPicCursIcon… alert box.30

//31

// • A 'SIZE' resource with the acceptSuspendResumeEvents & is32BitCompatible flags set.32

//33

// ### }34

35

program GWorldPicCursIconPascal(input, output);36

37

{ ……… include the following Universal Interfaces }38

39

uses40

41

Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,42

Memory, Events, TextUtils, ToolUtils, OSUtils, Devices, QDOffscreen, Resources, Icons,43

GestaltEqu, PictUtils, SegLoad, Sound;44

45

{ ……… define the following constants }46

47

const48

49

mApple = 128;50

12-20 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

iAbout = 1;51

mFile = 129;52

iQuit = 11;53

mDemonstration = 131;54

iWithoutOffScreenGWorld = 1;55

iWithOffScreenGWorld = 2;56

iPicture = 3;57

iCursor = 4;58

iAnimatedCursor = 5;59

iIcon = 6;60

61

rAlert = 128;62

rMenubar = 128;63

rWindow = 128;64

rBeachBallCursor = 128;65

rIcon = 257;66

67

kBeachBallTickInterval = 5;68

69

kMaxLong = $7FFFFFFF;70

71

{ ……… type definitions }72

73

type74

75

animCurs = record76

numberOfFrames : integer;77

whichFrame : integer;78

frame : array [0..8] of CursHandle;79

end;80

animCursPtr = ^animCurs;81

animCursHandle = ^animCursPtr;82

83

{ ……… global variables }84

85

var86

87

gDone : boolean;88

gWindowPtr : WindowPtr;89

gSleepTime : longint;90

gCursorRegion : RgnHandle;91

gInBackground : boolean;92

gCursorRegionsActive : boolean;93

gAnimCursHdl : animCursHandle;94

gAnimCursActive : boolean;95

gAnimCursTickInterval : integer;96

gAnimCursLastTick : longint;97

menubarHdl : Handle;98

menuHdl : MenuHandle;99

100

{ ### DoInitManagers }101

102

procedure DoInitManagers;103

104

begin105

MaxApplZone;106

MoreMasters;107

108

InitGraf(@qd.thePort);109

InitFonts;110

InitWindows;111

InitMenus;112

TEInit;113

InitDialogs(nil);114

115

InitCursor;116

FlushEvents(everyEvent, 0);117

end;118

{of procedure DoInitManagers}119

120

{ ### DoIcon }121

122

procedure DoIcon;123

124

var125

theErr : OSErr;126

response : longint;127

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-21

finalTicks : UInt32;128

a : integer;129

theRect : Rect;130

iconHdl : Handle;131

cIconHdl : CIconHandle;132

133

begin134

BackColor(whiteColor);135

FillRect(gWindowPtr^.portRect, qd.white);136

137

SetRect(theRect, 2, 130, 34, 162);138

139

theErr := Gestalt(gestaltQuickdrawVersion, response);140

if (response < gestalt8BitQD)141

thenbegin142

iconHdl := GetIcon(rIcon);143

for a := 1 to 19 do144

begin145

PlotIcon(theRect, iconHdl);146

InsetRect(theRect, a*(-1), a*(-2));147

OffsetRect(theRect, a*4, 0);148

Delay(20, finalTicks);149

end150

end151

elsebegin152

cIconHdl := GetCIcon(rIcon);153

for a := 1 to 19 do154

begin155

PlotCIcon(theRect, cIconHdl);156

InsetRect(theRect, a*(-1), a*(-2));157

OffsetRect(theRect, a*4, 0);158

Delay(20, finalTicks);159

end;160

DisposeCIcon(cIconHdl);161

end;162

end;163

{of procedure DoIcon}164

165

{ ## ReleaseAnimCursor }166

167

procedure ReleaseAnimCursor;168

169

var170

a : integer;171

172

begin173

for a := 0 to (gAnimCursHdl^^.numberOfFrames - 1) do174

ReleaseResource(Handle(gAnimCursHdl^^.frame[a]));175

176

ReleaseResource(Handle(gAnimCursHdl));177

end;178

{of procedure ReleaseAnimCursor}179

180

{ ### SpinAnimCursor }181

182

procedure SpinAnimCursor;183

184

var185

newTick : longint;186

187

begin188

newTick := TickCount;189

if (newTick < (gAnimCursLastTick + gAnimCursTickInterval)) then190

Exit(SpinAnimCursor);191

192

SetCursor(gAnimCursHdl^^.frame[gAnimCursHdl^^.whichFrame]^^);193

gAnimCursHdl^^.whichFrame := gAnimCursHdl^^.whichFrame + 1;194

if (gAnimCursHdl^^.whichFrame = gAnimCursHdl^^.numberOfFrames) then195

gAnimCursHdl^^.whichFrame := 0;196

197

gAnimCursLastTick := newTick;198

end;199

{of procedure SpinAnimCursor}200

201

{ ## GetAnimCursor }202

203

function GetAnimCursor(resourceID, tickInterval : integer) : boolean;204

12-22 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

205

var206

cursorID, a : integer;207

noError : boolean;208

209

begin210

noError := false;211

a := 0;212

213

gAnimCursHdl := animCursHandle(GetResource('acur', resourceID));214

if (gAnimCursHdl <> nil) then215

begin216

noError := true;217

while ((a < gAnimCursHdl^^.numberOfFrames) and noError) do218

begin219

cursorID := integer(HiWord(longint(gAnimCursHdl^^.frame[a])));220

gAnimCursHdl^^.frame[a] := GetCursor(cursorID);221

if (gAnimCursHdl^^.frame[a] <> nil)222

then a := a + 1223

else noError := false;224

end;225

end;226

227

if (noError) then228

begin229

gAnimCursTickInterval := tickInterval;230

gAnimCursLastTick := TickCount;231

gAnimCursHdl^^.whichFrame := 0;232

end;233

234

GetAnimCursor := noError;235

end;236

{of function GetAnimCursor}237

238

{ ### DoAnimCursor }239

240

procedure DoAnimCursor;241

242

var243

animCursResourceID, animCursTickInterval : integer;244

245

begin246

BackColor(whiteColor);247

FillRect(gWindowPtr^.portRect, qd.white);248

249

animCursResourceID := rBeachBallCursor;250

animCursTickInterval := kBeachBallTickInterval;251

252

if (GetAnimCursor(animCursResourceID, animCursTickInterval))253

thenbegin254

gAnimCursActive := true;255

gSleepTime := animCursTickInterval;256

end257

elseSysBeep(10);258

end;259

{of procedure DoAnimCursor}260

261

{ ### ChangeCursor }262

263

procedure ChangeCursor(gWindowPtr : WindowPtr; cursorRegion : RgnHandle);264

265

var266

cursorRect : Rect;267

arrowCursorRgn : RgnHandle;268

ibeamCursorRgn : RgnHandle;269

crossCursorRgn : RgnHandle;270

plusCursorRgn : RgnHandle;271

mousePosition : Point;272

273

begin274

arrowCursorRgn := NewRgn;275

ibeamCursorRgn := NewRgn;276

crossCursorRgn := NewRgn;277

plusCursorRgn := NewRgn;278

279

SetRectRgn(arrowCursorRgn, -32768, -32768, 32766, 32766);280

281

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-23

cursorRect := gWindowPtr^.portRect;282

LocalToGlobal(cursorRect.topLeft);283

LocalToGlobal(cursorRect.botRight);284

285

InsetRect(cursorRect, 40, 40);286

RectRgn(ibeamCursorRgn, cursorRect);287

DiffRgn(arrowCursorRgn, ibeamCursorRgn, arrowCursorRgn);288

289

InsetRect(cursorRect, 40, 40);290

RectRgn(crossCursorRgn, cursorRect);291

DiffRgn(ibeamCursorRgn, crossCursorRgn, ibeamCursorRgn);292

293

InsetRect(cursorRect, 40, 40);294

RectRgn(plusCursorRgn, cursorRect);295

DiffRgn(crossCursorRgn, plusCursorRgn, crossCursorRgn);296

297

GetMouse(mousePosition);298

LocalToGlobal(mousePosition);299

300

if (PtInRgn(mousePosition, ibeamCursorRgn)) then301

begin302

SetCursor(GetCursor(iBeamCursor)^^);303

CopyRgn(ibeamCursorRgn, cursorRegion);304

end305

else if (PtInRgn(mousePosition, crossCursorRgn)) then306

begin307

SetCursor(GetCursor(crossCursor)^^);308

CopyRgn(crossCursorRgn, cursorRegion);309

end310

else if (PtInRgn(mousePosition, plusCursorRgn)) then311

begin312

SetCursor(GetCursor(plusCursor)^^);313

CopyRgn(plusCursorRgn, cursorRegion);314

end315

else316

begin317

SetCursor(qd.arrow);318

CopyRgn(arrowCursorRgn, cursorRegion);319

end;320

321

DisposeRgn(arrowCursorRgn);322

DisposeRgn(ibeamCursorRgn);323

DisposeRgn(crossCursorRgn);324

DisposeRgn(plusCursorRgn);325

end;326

{of procedure ChangeCursor}327

328

{ ### DoCursor }329

330

procedure DoCursor;331

332

var333

cursorRect : Rect;334

a : integer;335

336

begin337

BackColor(whiteColor);338

FillRect(gWindowPtr^.portRect, qd.white);339

340

cursorRect := gWindowPtr^.portRect;341

PenPat(qd.gray);342

PenSize(1, 1);343

ForeColor(redColor);344

345

for a := 0 to 2 do346

begin347

InsetRect(cursorRect, 40, 40);348

FrameRect(cursorRect);349

end;350

351

MoveTo(10, 20);352

DrawString('Arrow cursor region');353

MoveTo(50, 60);354

DrawString('IBeam cursor region');355

MoveTo(90, 100);356

DrawString('Cross cursor region');357

MoveTo(130, 140);358

12-24 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

DrawString('Plus cursor region');359

360

gCursorRegionsActive := true;361

gCursorRegion := NewRgn;362

end;363

{of procedure DoCursor}364

365

{ ## DoPicture }366

367

procedure DoPicture;368

369

var370

pictureRect : Rect;371

picParams : OpenCPicParams;372

pictureHdl : PicHandle;373

trianglePoly : PolyHandle;374

pictureInfo : PictInfo;375

pictInfoString : string;376

ignored : OSErr;377

378

begin379

BackColor(whiteColor);380

FillRect(gWindowPtr^.portRect, qd.white);381

382

pictureRect := gWindowPtr^.portRect;383

InsetRect(pictureRect, 50, 50);384

385

picParams.srcRect := pictureRect;386

picParams.hRes := $00480000;387

picParams.vRes := $00480000;388

picParams.version := -2;389

390

pictureHdl := OpenCPicture(picParams);391

392

ClipRect(gWindowPtr^.portRect);393

394

ForeColor(blueColor);395

FillRect(pictureRect, qd.dkGray);396

ForeColor(yellowColor);397

FillOval(pictureRect, qd.gray);398

399

trianglePoly := OpenPoly;400

MoveTo(pictureRect.left, pictureRect.bottom);401

LineTo(trunc(pictureRect.left + ((pictureRect.right - pictureRect.left) / 2)),402

 pictureRect.top);403

LineTo(pictureRect.right, pictureRect.bottom);404

ClosePoly;405

406

PenPat(qd.black);407

ForeColor(redColor);408

PaintPoly(trianglePoly);409

KillPoly(trianglePoly);410

411

ForeColor(blackColor);412

TextSize(30);413

TextFont(systemFont);414

MoveTo(115, 230);415

DrawString('Recorded Picture');416

ForeColor(whiteColor);417

MoveTo(112, 227);418

DrawString('Recorded Picture');419

420

ClosePicture;421

422

DrawPicture(pictureHdl, pictureRect);423

424

SetWTitle(gWindowPtr, 'Click Mouse for Picture Information');425

426

while not (Button) do ;427

428

FillRect(gWindowPtr^.portRect, qd.white);429

SetWTitle(gWindowPtr, 'Offscreen Graphics Worlds, Pictures and Cursors');430

431

TextFont(1);432

TextSize(10);433

434

ignored := GetPictInfo(pictureHdl, pictureInfo, returnPalette, 8, systemMethod, 0);435

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-25

ForeColor(blackColor);436

MoveTo(180, 50);437

DrawString('Some Picture Information:');438

439

MoveTo(180, 80);440

DrawString('TextStrings: ');441

NumToString(pictureInfo.textCount, pictInfoString);442

DrawString(pictInfoString);443

444

MoveTo(180, 95);445

DrawString('Rectangles: ');446

NumToString(pictureInfo.rectCount, pictInfoString);447

DrawString(pictInfoString);448

449

MoveTo(180, 110);450

DrawString('Round Rectangles: ');451

NumToString(pictureInfo.rRectCount, pictInfoString);452

DrawString(pictInfoString);453

454

MoveTo(180, 125);455

DrawString('Ovals: ');456

NumToString(pictureInfo.ovalCount, pictInfoString);457

DrawString(pictInfoString);458

459

MoveTo(180, 140);460

DrawString('Arcs: ');461

NumToString(pictureInfo.arcCount, pictInfoString);462

DrawString(pictInfoString);463

464

MoveTo(180, 155);465

DrawString('Polygons: ');466

NumToString(pictureInfo.polyCount, pictInfoString);467

DrawString(pictInfoString);468

469

MoveTo(180, 170);470

DrawString('Unique Fonts: ');471

NumToString(pictureInfo.uniqueFonts, pictInfoString);472

DrawString(pictInfoString);473

474

KillPicture(pictureHdl);475

476

TextFont(1);477

TextSize(10);478

479

end;480

{of procedure DoPicture}481

482

{ ## DoGWorldDrawing }483

484

procedure DoGWorldDrawing;485

486

var487

a, b, c, i, j : integer;488

theRect : Rect;489

490

begin491

PenPat(qd.black);492

PenSize(1, 1);493

494

for a := 0 to 7 do495

for i := 0 to 15 do496

begin497

b := i * 30 + 12;498

for j := 0 to 15 do499

begin500

c := j * 18 + 5;501

SetRect(theRect, b+a, c+a, b+28-a, c+16-a);502

if (a < 3)503

then ForeColor(redColor)504

else if ((a > 2) and (a < 6))505

then ForeColor(greenColor)506

else if(a > 5) then507

ForeColor(blueColor);508

FrameRect(theRect);509

end;510

{of j-for loop}511

end;512

12-26 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

{of i-for loop}513

end;514

{of procedure DoGWorldDrawing}515

516

{ ### DoWithoutOffScreenGWorld }517

518

procedure DoWithoutOffScreenGWorld;519

520

begin521

BackColor(whiteColor);522

FillRect(gWindowPtr^.portRect, qd.white);523

524

DoGWorldDrawing;525

end;526

{of procedure DoWithoutOffScreenGWorld}527

528

{ ## DoWithOffScreenGWorld }529

530

procedure DoWithOffScreenGWorld;531

532

var533

windowPortPtr : CGrafPtr;534

deviceHdl : GDHandle;535

quickDrawErr : QDErr;536

gworldPortPtr : GWorldPtr;537

gworldPixMapHdl : PixMapHandle;538

lockPixResult : boolean;539

sourceRect, destRect : Rect;540

541

begin542

BackColor(whiteColor);543

FillRect(gWindowPtr^.portRect, qd.white);544

545

ForeColor(blackColor);546

MoveTo(130, 140);547

DrawString('Please Wait. Drawing in offscreen graphics port.');548

549

SetCursor(GetCursor(watchCursor)^^);550

551

GetGWorld(windowPortPtr, deviceHdl);552

553

quickDrawErr := NewGWorld(gworldPortPtr, 0, gWindowPtr^.portRect, nil, nil, 0);554

if ((gworldPortPtr = nil) or (quickDrawErr <> noErr)) then555

begin556

SysBeep(10);557

Exit(DoWithOffScreenGWorld);558

end;559

560

SetGWorld(gworldPortPtr, nil);561

562

gworldPixMapHdl := GetGWorldPixMap(gworldPortPtr);563

564

lockPixResult := LockPixels(gworldPixMapHdl);565

if not (lockPixResult) then566

begin567

SysBeep(10);568

Exit(DoWithOffScreenGWorld);569

end;570

571

EraseRect(gworldPortPtr^.portRect);572

573

DoGWorldDrawing;574

575

SetGWorld(windowPortPtr, deviceHdl);576

577

sourceRect := gworldPortPtr^.portRect;578

destRect := windowPortPtr^.portRect;579

580

CopyBits(GrafPtr(gworldPortPtr)^.portBits, GrafPtr(windowPortPtr)^.portBits,581

 sourceRect, destRect, srcCopy, nil);582

583

if (QDError <> noErr) then584

SysBeep(10);585

586

UnlockPixels(gworldPixMapHdl);587

DisposeGWorld(gworldPortPtr);588

589

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-27

SetCursor(qd.arrow);590

591

end;592

{of procedure DoWithOffScreenGWorld}593

594

{ ### DoIdle }595

596

procedure DoIdle;597

598

begin599

if (gAnimCursActive = true) then600

SpinAnimCursor;601

end;602

{of procedure DoIdle}603

604

{ ## DoDemonstrationMenu }605

606

procedure DoDemonstrationMenu(menuItem : integer);607

608

begin609

case (menuItem) of610

611

iWithoutOffScreenGWorld:612

begin613

DoWithoutOffScreenGWorld;614

end;615

616

iWithOffScreenGWorld:617

begin618

DoWithOffScreenGWorld;619

end;620

621

iPicture:622

begin623

DoPicture;624

end;625

626

iCursor:627

begin628

DoCursor;629

end;630

631

iAnimatedCursor:632

begin633

DoAnimCursor;634

end;635

636

iIcon:637

begin638

DoIcon;639

end;640

end;641

{of case statement}642

end;643

 {of procedure DoDemonstrationMenu}644

645

{ ### DoMenuChoice }646

647

procedure DoMenuChoice(menuChoice : longint);648

649

var650

menuID, menuItem : integer;651

itemName : string;652

daDriverRefNum : integer;653

ignored : OSErr;654

655

begin656

menuID := HiWord(menuChoice);657

menuItem := LoWord(menuChoice);658

659

if (menuID = 0) then660

Exit(DoMenuChoice);661

662

if (gAnimCursActive = true) then663

begin664

gAnimCursActive := false;665

SetCursor(qd.arrow);666

12-28 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

ReleaseAnimCursor;667

gSleepTime := kMaxLong;668

end;669

670

if (gCursorRegionsActive = true) then671

begin672

gCursorRegionsActive := false;673

DisposeRgn(gCursorRegion);674

gCursorRegion := nil;675

end;676

677

case (menuID) of678

679

mApple:680

begin681

if (menuItem = iAbout)682

then ignored := Alert(rAlert, nil)683

else begin684

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);685

daDriverRefNum := OpenDeskAcc(itemName);686

end;687

end;688

689

mFile:690

begin691

if (menuItem = iQuit) then692

gDone := true;693

end;694

695

mDemonstration:696

begin697

DoDemonstrationMenu(menuItem);698

end;699

end;700

{of case statement}701

702

HiliteMenu(0);703

end;704

{of procedure DoMenuChoice}705

706

{ ## DoOSEvent }707

708

procedure DoOSEvent(var eventRec : EventRecord);709

710

begin711

case (BAnd(BSR(eventRec.message, 24), $000000FF)) of712

713

suspendResumeMessage:714

begin715

if (BAnd(eventRec.message, resumeFlag) = 1)716

then gInBackground := false717

else gInBackground := true;718

end;719

720

mouseMovedMessage:721

begin722

if (gCursorRegionsActive) then723

ChangeCursor(gWindowPtr, gCursorRegion);724

end;725

end;726

{of case statement}727

end;728

{of procedure DoOSEvent}729

730

{ ## DoMouseDown }731

732

procedure DoMouseDown(var eventRec : EventRecord);733

734

var735

theWindowPtr : WindowPtr;736

partCode : integer;737

738

begin739

partCode := FindWindow(eventRec.where, theWindowPtr);740

741

case (partCode) of742

743

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-29

inMenuBar:744

begin745

DoMenuChoice(MenuSelect(eventRec.where));746

end;747

748

inSysWindow:749

begin750

SystemClick(eventRec, theWindowPtr);751

end;752

753

inContent:754

begin755

if (theWindowPtr <> FrontWindow) then756

SelectWindow(theWindowPtr);757

end;758

759

inDrag:760

begin761

DragWindow(theWindowPtr, eventRec.where, qd.screenBits.bounds);762

end;763

764

inGoAway:765

begin766

if (TrackGoAway(theWindowPtr, eventRec.where)) then767

gDone := true;768

end;769

end;770

{of case statement}771

end;772

{of procedure DoMouseDown}773

774

{ ### DoEvents }775

776

procedure DoEvents(var eventRec : EventRecord);777

778

var779

theWindowPtr : WindowPtr;780

charCode : char;781

782

begin783

theWindowPtr := WindowPtr(eventRec.message);784

785

case (eventRec.what) of786

787

mouseDown:788

begin789

DoMouseDown(eventRec);790

end;791

792

keyDown, autoKey:793

begin794

charCode := chr(BAnd(eventRec.message, charCodeMask));795

if (BAnd(eventRec.modifiers, cmdKey) <> 0) then796

DoMenuChoice(MenuKey(charCode));797

end;798

799

updateEvt:800

begin801

BeginUpdate(theWindowPtr);802

EndUpdate(theWindowPtr);803

end;804

805

osEvt:806

begin807

DoOSEvent(eventRec);808

end;809

810

end;811

{of case statement}812

end;813

{of procedure DoEvents}814

815

{ ## EventLoop }816

817

procedure EventLoop;818

819

var820

12-30 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

eventRec : EventRecord;821

gotEvent : boolean;822

823

begin824

gDone := false;825

gSleepTime := kMaxLong;826

gCursorRegion := nil;827

828

while not (gDone) do829

begin830

gotEvent := WaitNextEvent(everyEvent, eventRec, gSleepTime, gCursorRegion);831

if (gotEvent)832

then DoEvents(eventRec)833

else DoIdle;834

end;835

end;836

{of procedure EventLoop}837

838

{ ## start of main program }839

840

begin841

842

gCursorRegionsActive := false;843

gAnimCursActive := false;844

845

{ …… initialise managers }846

847

DoInitManagers;848

849

{ …… set up menu bar and menus }850

851

menubarHdl := GetNewMBar(rMenubar);852

if (menubarHdl = nil) then853

ExitToShell;854

SetMenuBar(menubarHdl);855

DrawMenuBar;856

menuHdl := GetMenuHandle(mApple);857

if (menuHdl = nil)858

then ExitToShell859

else AppendResMenu(menuHdl, 'DRVR');860

861

{ …… open window }862

863

gWindowPtr := GetNewWindow(rWindow, nil, WindowPtr(-1));864

if (gWindowPtr = nil) then865

ExitToShell;866

867

SetPort(gWindowPtr);868

TextSize(10);869

870

{ ……… enter event loop }871

872

EventLoop;873

874

end.875

{of main program}876

877

{ ## }878

Demonstration Program Comments
When this program is run, the user should:

• Invoke the demonstrations by choosing items from the Demonstration menu and the About
GWorldPictCursIcon…item in the Apple menu.

• Note that both the About GWorldPicCursIcon… item in the Apple menu and the Icons item in
the Demonstration menu contain icons.

The resource ID for the 'SICN', 'ICON', and 'cicn' resources associated with these menu
items is 257.

$1E is specified in the keyboard equivalent field of the menu item definition for the
About GWorldPicCursIcon… item. This means that the 'SICN' resource with ID 257 will be

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-31

displayed on black-and-white Macintoshes, and the 'cicn' resource with the same ID,
scaled down to 16-by-16 pixels, will be displayed on Macintoshes with Color QuickDraw.

$36 (the ASCII character code for 6) is specified in the keyboard equivalent field of
the menu item definition for the Icon item. This means that the Menu Manager will
automatically enlarge the the menu item's enclosing rectangle to accommodate the 32-by-
32 pixel colour icon, that the 'ICON' resource with ID 257 will be displayed on black-
and-white Macintoshes, and that the 'cicn' resource with the same ID will be displayed
on Macintoshes with Color QuickDraw. It also means that the Command-key equivalent will
appear in the menu item along with the icon.

If the display device in a Color Quickdraw environment is set to pixel depths of 1 or 2,
the bitmap (black-and-white) component of the colour icon resource will be displayed.

• Click outside and inside the window when the cursor and animated cursor demonstrations
have been invoked.The constant declaration block

Lines 50-60 establish constants related to menu IDs and menu item numbers. Lines 62-66
establish constants related to alert, menu bar, window, cursor, and icon resources. Line 68
establishes a constant for the interval between frame changes for an animated cursor. Line 70
sets kMaxLong as the maximum possible long value. This value will be assigned to
WaitNextEvent's sleep parameter.

The type declaration block

Lines 76-82 define a data type which is identical to the structure of an 'acur' resource.

The variable declaration block

gDone controls exit from the main event loop and thus program termination. gWindowPtr will be
assigned the pointer to the window utilised by the demonstration.

In this program, the sleep and cursor region parameters in the WaitNextEvent call will be
changed during program execution. Hence the global variables gSleepTime and gCursorRegion.

gInBackground relates to foreground/background switching.

gCursorRegionActive and gAnimCursActive will be set to true during, respectively, the cursor
and animated cursor demonstrations. gAnimCursHdl will be assigned a handle to the animCurs
structure used during the animated cursor demonstration. gAnimCursTickInterval and
gAnimCursLastTick also relate to the animated cursor demonstration.

The procedure DoIcon

DoIcon draws an icon in the window at a size and location determined by a bounding rectangle.

Lines 134-135 clear the port rectangle to white. Line 137 sets the initial coordinates of the
top, left, bottom and right of the bounding rectangle.

Line 139 tests for the presence of Color QuickDraw. If Color QuickDraw is not present, Lines
141-150 execute. The call to GetIcon reads the specified 'ICON' resource from disk and
returns a handle to a 128-byte bit image of the icon. Lines 143-149 use PlotIcon to plot the
icon a number of times, with the location, size and shape of the icon being changed each time
through the loop.

If Color QuickDraw is present, Lines 151-161 execute. The call to GetCIcon at Line 152
obtains a CIcon data structure and initialises it with data from the specified 'cicn'
resource. Lines 153-159 use PlotCIcon to plot the icon a number of times, with the location,
size and shape of the icon being changed each time through the loop.

Line 160 removes all data structures created by the call to GetCIcon. This is important
because GetCIcon creates a new Cicon data structure each time it is called.

The procedure ReleaseAnimCursor

ReleaseAnimCursor deallocates the memory occupied by the Cursor structures (Lines 173-174) and
the 'acur' resource (Line 176).

Recall that releaseAnimCursor is called when the user clicks in the menu bar and that, at the
same time, the gAnimCursActive flag is set to false, the cursor is reset to the standard arrow
shape, and WaitNextEvent's sleep parameter is reset to the maximum possible value.

12-32 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

The procedure SpinAnimCursor

SpinAnimCursor is called whenever null events are received (that is, in this demonstration,
every 5 ticks assuming no other events intervene).

Line 188 assigns the number of ticks since system startup to newTick. Line 189 checks whether
5 ticks have elapsed since Line 230 was executed (first call to SpinAnimCursor) or since
SpinAnimCursor last exited (subsequent calls to SpinAnimCursor - see Line 197). If 5 ticks
have not elapsed, the function simply returns (Line 190). Otherwise, Line 192 sets the cursor
shape to that represented by the handle stored in the specified element of the frame[] field
of the animCurs structure. Line 193 increments the frame counter field (whichFrame) of the
animCurs structure. If Line 192 set the cursor to the last cursor in the series (Line 194),
Line 195 resets the frame counter to 0. Line 197 retrieves and stores the tick count at exit
for use at Line 189 next time the function is called.

The function GetAnimCursor

GetAnimatedCursor retrieves the data in the specified 'acur' resource and stores it in an
animCurs structure, retrieves the 'CURS' resources specified in the 'acur' resource and
assigns the handles to the resulting Cursor structures to elements in an array in the animCurs
structure, establishes the frame rate for the cursor, and sets the starting frame number.

Line 213 calls GetResource to read the 'acur' resource into memory and return a handle to the
resource. The handle is cast to type animCursHandle and assigned to the global variable
gAnimCursHdl (a handle to a structure of type animCurs, which is identical to the structure of
an 'acur' resource). If this call is not successful (that is, GetResource returns NIL), the
function will simply exit, returning false to DoAnimCursor. If the call is successful,
noError is set to true (Line 216) before Line 217 sets up a loop which will cycle once for
each of the 'CURS' resources specified in the 'acur' resource - assuming that noError is not
set to false at some time during this process.

The ID of each cursor is stored in the high word of the specified element of the frame[] field
of the animCurs structure, and this is retrieved at Line 219. The cursor ID is then used in
the call to GetCursor at Line 220 to read in the resource from disk (if necessary) and assign
the handle to the resulting 68-byte Cursor structure to the specified element of the frame[]
field of the animCurs structure. If this pass through the loop was successful, the array
index is incremented (Lines 221-222); otherwise, noError is set to false (Line 223), causing
the loop and the function to exit, returning false to DoAnimCursor.

Line 229 assigns the ticks value passed to getAnimCursor to a global variable which will be
utilised in the function SpinCursor. Line 230 assigns the number of ticks since system
startup to another variable which will also be utilised in the function SpinAnimCursor. Line
231 sets the starting frame number.

At this stage, the animated cursor has been initialised and DoIdle will call SpinAnimCursor
whenever null events are received.

The procedure DoAnimCursor

DoAnimCursor responds to the user's selection of the Animated Cursor item from the
Demonstration menu.

In this demonstration, application-defined functions are utilised to retrieve 'acur' and
'CURS' resources, spin the cursor, and deallocate the memory associated with the animated
cursor when the cursor is no longer required. These functions are generic in that they may be
used to initialise, spin and release any animated cursor passed to the getAnimCursor function
as a formal parameter. A "beach-ball" cursor is utilised in this demonstration.
doAnimCursor's major role is simply to call GetAnimCursor with the beach-ball 'acur' resource
as a parameter.

Lines 246-247 clear the window to white. Line 249 assigns the resource ID of the beach-ball
'acur' resource to the variable used as the first parameter in the GetAnimCursor call at Line
252. Line 250 assigns a value represented by a constant to the second parameter in the
GetAnimCursor call. This value controls the frame rate of the cursor, that is, the number of
ticks which must elapse before the next frame (cursor) is displayed. (The best frame rate
depends on the type of animated cursor used.)

Line 252 calls the GetAnimCursor function. If the call is successful, the flag
gAnimCursActive is set to true (Line 254) and, importantly, the sleep parameter in the
WaitNextEvent call is set to the same ticks value as that used to control the cursor's frame
rate (Line 255). This latter will cause null events to be generated at that tick interval
(assuming, of course, that no other events intervene). Recall that the DoIdle function is
called whenever a null event is received and that, if the flag gAnimCursActive is set to true,
DoIdle calls the SpinAnimCursor function.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-33

If the call to GetAnimCursor fails, DoAnimCursor simply plays the system alert sound and
returns (Lines 257).

COLOUR ANIMATED CURSOR

For a colour animated cursor:

• Replace the 'CURS' resource with a 'crsr' resource.

• Replace Line 79 with:

frame : array [0..8] of CCursHandle;

• Replace Line 192 with:

SetCCursor (gAnimCursHdl^^.frame[gAnimCursHdl^^.whichFrame]^^);

• Replace Line 220 with:

gAnimCursHdl^^.frame[a] := GetCCursor(cursorID);

• Replace Line 174 with:

DisposeCIcon (gAnimCursHdl^^.frame[a]^^);

The procedure ChangeCursor

ChangeCursor is called whenever a mouse-moved message is reported (see Lines 720-724). Recall
that mouse-moved messages are generated only when the mouse is not within the region specified
in the last parameter to the WaitNextEvent call.

Lines 274-277 create new empty regions to serve as the regions within which the cursor shape
will be changed to, respectively, the system arrow, the system I-beam, the system cross, and
the system plus.

Line 279 sets the arrow cursor region to, initially, the boundaries of the coordinate plane.
Lines 281-283 establish a rectangle equivalent to the window's port rectangle and change this
rectangle's coordinates from local to global coordinates. Line 285 insets this rectangle by
40 pixels all round and Line 286 establishes this as the I-beam region. Line 287, in effect,
cuts the rectangle represented by the I-beam region from the arrow region, leaving a hollow
arrow region.

Lines 289-295 use the same procedure to establish a rectangular hollow region for the cross
cursor and an interior rectangular region for the plus cursor. The result of all this is a
rectangular plus cursor region in the centre of the window, surrounded by (but not overlapped
by) a hollow rectangular cross cursor region, this surrounded by (but not overlapped by) a
hollow rectangular I-beam cursor region, this surrounded by (but not overlapped by) a hollow
rectangular arrow cursor region the outside of which equates to the boundaries of the
coordinate plane.

Line 297 gets the point representing the mouse's current position. Since GetMouse returns
this point in local coordinates, Line 298 converts it to global coordinates.

The next task is to determine the region in which the cursor is currently located (its
movement to that region having generated by the mouse-moved event which resulted in the call
to this function in the first place). The calls to PtInRgn at Lines 300, 305 and 310 are made
for that purpose. Depending on which region is established as the region in which the cursor
in currently located, the cursor is set to the appropriate shape and that region is assigned
to WaitNextEvent's mouseRgn parameter. This latter means that, since the cursor is now within
the region assigned to the mouseRgn parameter, mouse-moved events will cease to be generated
until the mouse is moved out of that region.

That accomplished, Lines 321-324 deallocate the memory associated with the regions created
earlier in the function.

The procedure DoCursor

DoCursor is called when the user selects Cursors from the Demonstration menu. Its chief
purpose is to assign true to the global variable gCursorRegionActive, which will cause a
mouse-moved message to result in a call to ChangeCursor (see Lines 720-724). In addition, it
draws some rectangles in the window which visually represent to the user some cursor regions
which will later be established by the changeCursor function.

12-34 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Lines 337-338 clear the port rectangle to white. Lines 340-358 draw the rectangles and
descriptive text in the window.

Line 360 sets the gCursorRegionsActive flag to true and Line 361 creates an empty region for
the last parameter of the WaitNextEvent call.

The procedure DoPicture

DoPicture demonstrates recording and playing back a picture.

Lines 379-383 clear the window to white and establish a rectangle 50 pixels inside the port
rectangle. Lines 385-388 assign values to the fields of an OpenCPicParams record. These
specify the rectangle established at Line 382, 72 pixels per inch resolution horizontally, and
72 pixels per inch resolution vertically. The version field should always be set to -2.
Using this record as its parameter, OpenCPicture initiates the recording of the picture
definition (Line 390).

Line 392 establishes the clipping region as equivalent to the port rectangle. (Before this
call, the clipping region is very large. In fact, it is as large as the coordinate plane. If
the clipping region is very large and you scale the picture while drawing it, the clipping
region can become invalid when DrawPicture scales the clipping region - in which case the
picture will not be drawn.)

Lines 394-418 "draw" a simple picture comprising a rectangle, an oval, a triangle and some
text. (Because of the previous call to OpenCPicture, these drawing instructions are simply
"recorded" in the Picture record. Nothing appears in the window.)

Line 420 terminates picture recording and Line 422 draws the picture by "playing back" the
"recording" stored in the specified Picture structure.

When the user responds to the invitation to click the mouse (Lines 424-426), Line 434 returns
information about the picture in a picture information record. Lines 435-472 extract some of
the information from this record and print it in the window.

Line 474 deallocates the memory associated with the picture record.

The procedure DoGWorldDrawing

DoGWorldDrawing is called by both DoWithoutOffScreenWorld and DoWithOffScreenWorld to draw
some graphics.

The procedure DoWithoutOffScreenGWorld

DoWithoutOffScreenGWorld is the first demonstration. It is included only as a contrast to the
offscreen graphics world demonstration DoWithOffScreenWorld. It simply fills the window's
port rectangle with white pixels and then calls DoGWorldDrawing to execute some drawing
designed to take a short but nonetheless perceptible period of time.

The procedure DoWithOffScreenGWorld

DoWithOffScreenGWorld demonstrates the use of an offscreen graphics world to execute the same
drawing operation as does DoWithoutOffScreenWorld.

At Lines 542-547, the window's port rectangle is cleared to white and some advisory text is
drawn in the window indicating that drawing is taking place in an offscreen graphics world.
To further indicate to the user that the application has not just drifted away, Line 549 sets
the cursor to the system's familiar watch cursor.

Line 551 saves the current graphics world, that is, the current graphics port and the current
device.

Line 553 creates an offscreen graphics world. The gworldPortPtr parameter receives a pointer
to the offscreen graphics world's graphics port. 0 in the second parameter means that the
offscreen world's pixel depth will be set to the deepest device intersecting the rectangle
passed as the third parameter. The third parameter becomes the offscreen port's portRect, the
offscreen pixel map's bounds and the offscreen device's gdRect value. NIL in the fourth
parameter causes the default colour table for the pixel depth to be used. The fifth parameter
is set to NIL because the noNewDevice flag is not set. 0 in the sixth parameter means that,
in fact, no flags are set.

Line 560 sets the graphics port pointed to by gworldPortPtr as the current graphics port.
(When the first parameter is a GWorldPtr, the current device is set to the device attached to
the offscreen world and the second paramter is ignored.)

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-35

Lines 562-564 reflect the requirement to call LockPixels to prevent the base address of an
offscreen pixel image from being moved when it is drawn into or copied from. Line 562 gets a
handle to the offscreen world's pixel map and Line 564 locks that buffer in memory.

Line 571 clears the offscreen graphics port before Line 573 calls the application-defined
function doGWorldDrawing to draw some graphics in the offscreen port.

Line 575 sets the window's graphics port as the current port and sets the current device to
that saved at Line 409.

Lines 577-578 establish the source and destination rectangles (required by the CopyBits call
at Line 580) as equivalent to the offscreen graphics world and window port rectangles
respectively.

The CopyBits call at Line 580 copies the image from the offscreen world to the window. (Note
that, because a basic, rather than a colour, graphics port is being drawn to, there is no need
to set the foreground colour to black and the background colour to white before the CopyBits
call.) Line 583 checks for any error resulting from the last QuickDraw call (in this case,
CopyBits).

Line 586 unlocks the offscreen pixel image buffer and Line 587 deallocates all of the memory
previously allocated for the offscreen graphics world.

Finally, Line 589 sets the cursor back to the standard arrow cursor.

The procedure DoIdle

DoIdle is called from the main event loop when a null event is received. If the active
demonstration is the animated cursor demonstration (Line 599), the application defined
function SpinAnimCursor is called (Line 600).

The procedure DoDemonstrationMenu

DoDemonstrationMenu handles choices from the Demonstration menu.

The procedure DoMenuChoice

DoMenuChoice processes Apple and File menu choices to completion and calls a subsidiary
function to handle Demonstration menu choices.

Lines 662-675 are invoked if the user chooses a menu item while either the animated cursor
demonstration or the normal cursor demonstration is the active demonstration. In these cases:

• If the animated cursor demonstration is currently the active demonstration (Line 662),
the flag which indicates this condition is set to false (Line 664), the cursor is set to
the standard arrow cursor (Line 665), memory associated with the animated cursor is
deallocated (Line 666) and WaitNextEvent's sleep parameter is set to the maximum
possible value (Line 667).

• If the normal cursor demonstration is currently the active demonstration (Line 670), the
flag which indicates this condition is set to false (Line 672), the cursor region
associated with the last parameter of the WaitNextEvent call is disposed of (Line 673)
and that parameter is set to NIL (Line 674) to defeat mouse-moved event reporting.

If the user chooses the About… item in the Apple menu, an alert box is invoked (Lines 681-
682). (Note that the Icon item in the alert box's 'DITL' resource specifies the icon
resource with ID 257.)

The procedure DoOSEvents

DoOSEvents handles Operating System events.

In the event of a mouse-moved event (Line 720), and if the current demonstration is the
standard cursors demonstration (Line 722), the application-defined function ChangeCursor is
called (Line 723). The function is passed the pointer to the window and a pointer to the
region used as the last parameter in the WaitNextEvent call.

(As an aside, note that this cursor shape adjustment strategy differs from that used in the
demonstration program at Chapter 2 - Low Level and Operating System events, where the cursor
adjustment function was called immediately before the WaitNextEvent call in the main event
loop (provided a mouse-moved event had occurred). If the strategy shown in this program is
used (that is, call the cursor adjustment function when a mouse-moved event is received), you
must also call the cursor adjustment function when a new window is opened and whenever a
window activation event is received.)

12-36 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

The procedures DoMouseDown, DoEvents

DoEvents and DoMouseDown perform minimal initial event handling consistent with the
satisfactory execution of the demonstration aspects of the program.

The procedure EventLoop

EventLoop contains the main event loop. The event loop terminates when gDone is set to true.

Before the loop is entered, gSleepTime is set to kMaxLong and gCursorRegion is set to NIL
(Lines 825-826). Initially, therefore:

• The sleep parameter in the WaitNextEvent call at Line 830 will be set to the maximum
possible value, meaning that null events will virtually never occur.

• The mouseRegion parameter in the WaitNextEvent call will cause mouse-moved events not to
occur.

Note that, if a null event is received (Line 833), the application-defined function DoIdle is
called. (As will be seen, null events will occur every five ticks during the animated cursor
demonstration, when WaitNextEvent's sleep parameter will be assigned the constant defined at
Line 68.)

The main program block

The main function initialises the system software managers (Line 847), sets up the menus
(Lines 851-859), opens a window (Line 863), sets the window's graphics port as the current
port for drawing (Line 867) and sets the text size to 10 points (Line 868). The main event
loop is then entered (Line 872).

Note that error handling here and in other areas of the program is somewhat rudimentary: the
program simply terminates.

Creating Cursor and Icon Resources, and Assigning Icons to
Menu Items, Using ResEdit

Creating Cursor and Icon Resources

Creating the 'acur' Resource

The procedure for creating the 'acur' resource is as follows:

• Open GWorldPicCursIcon.µ.rsrc in ResEdit. Choose Resource/Create New Resource. A small
dialog opens. Click the acur item in the scrolling list, and then click the dialog's OK button. The
acurs from GWorldPicCursIcon.µ.rsrc window opens, followed by the acur ID = 128 from
GWorldPicCursIcon.µ.rsrc window. (ResEdit automatically assigns 128 as the resource ID of the
first 'acur' resource you create.)

• Choose Resource/GetResource Info . In the Info for acur = 128 from GWorldPicCursIcon.u.rsrc
window, check the Purgeable checkbox. Close the window.

• Enter 8 in the Number of "frames" (cursors) item.

• Enter the 'CURS' resource IDs by successively clicking on the next) ***** item, choosing
Resource/Insert New Field(s), and entering the appropriate 'CURS' resource ID in the resulting
'CURS' Resource Id item.

• Close the acur ID = 128 from GWorldPicCursIcon.u.rsrc window. Close the acurs from
GWorldPicCursIcon.u.rsrc window. An acur icon representing the resource just created appears
in the GWorldPicCursIcon.µ.rsrc window.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-37

Creating the 'CURS' Resources

The procedure for creating the 'CURS' resources is as follows:

• Choose Resource/Create New Resource, select CURS in the resulting dialog, and click the OK
button. The CURSs from GWorldPicCursIcon.u.rsrc window opens, followed by the CURS ID =
128 from GWorldPicCursIcon.u.rsrc window.

• Choose Resource/GetResource Info. In the Info for CURS = 128 from GWorldPicCursIcon.u.rsrc
window, check the Purgeable checkbox. Close the window.

• Using the tools in the panel at the left of the CURS ID = 128 from GWorldPicCursIcon.u.rsrc
window, draw the cursor image in the large centre panel. Then drag the thumbnail of this
image in the small box titled Pointer into the small box titled Mask to automatically create the
mask. Close the CURS ID = 128 from GWorldPicCursIcon.u.rsrc window. A thumbnail image of
the cursor, labelled with the resource ID, appears in the CURSs from GWorldPicCursIcon.u.rsrc
window.

• Choose Resource/Create New Resource again. The CURS ID = 129 from GWorldPicCursIcon.u.
rsrc window opens. Repeat the previous process to create the second 'CURS' resource.

• Create the remaining six 'CURS' resources in the same way. Then close the CURSs from
GWorldPicCursIcon.u.rsrc window. A CURS icon representing the resources just created
appears in the GWorldPicCursIcon.µ.rsrc window.

Creating the 'cicn' Resource

The procedure for creating the 'cicn' resource is much the same as for the 'CURS' resources except
that:

• cicn should be selected in the Resource/Create New Resource dialog.

• When the cicn ID = 128 from GWorldPicCursIcon.u.rsrc window opens, choose cicn/Icon Size…
and enter the required width and height of the colour icon in the resulting dialog.

• While the Info for CURS = 128 from GWorldPicCursIcon.u.rsrc window is open, change the
resource's ID to 257 as well as checking the Purgeable checkbox. (When the window is closed,
the cicn ID = 128 from GWorldPicCursIcon.u.rsrc window becomes the cicn ID = 257 from
GWorldPicCursIcon.u.rsrc window.)

• After drawing the image, drag the thumbnail of the completed image in the small box titled
Color to both the B & W and Mask boxes to automatically create the bitmap version and the
mask.

Creating the 'ICON' Resource

The procedure for creating the 'ICON' resource is much the same as for the 'cicn' resource except that
ICON is selected in the Resource/Create New Resource dialog and no mask creation is required.

Creating the 'SICN' Resource

The procedure for creating the 'SICN' resource is much the same as for the 'ICON' resource except that
SICN is selected in the Resource/Create New Resource dialog.

Assigning Icons to Menu Items

About GWorldPicCursIcon… Menu Item

The procedure for assigning the small icon ('SICN') to the About GWorldPicCursIcon… menu item in
the Apple menu is as follows:

12-38 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

• In the GWorldPicCursIcon.µ.rsrc window, double-click the MENU icon. The MENUs From
GWorldPicCursIcon.µ.rsrc window opens. With the thumbnail of the Apple menu (ID 128)
selected, choose Resource/Open Using Hex Editor. The MENU = 128 From
GWorldPicCursIcon.µ.rsrc window opens. The bottom three lines of the display are as follows:

000018 576F 726C 6450 6963 WorldPic
000020 4375 7273 4963 6F6C CursIcon
000028 C900 0000 0000 …¤¤¤¤¤

Note that the second and third words in the bottom row are both 00 . The second word is for the
icon resource ID (if any). The third word is for the keyboard equivalent (if any). Close the
window.

• In the MENUs From GWorldPicCursIcon.µ.rsrc window, double-click the Apple menu thumbnail.
The MENU = 128 From GWorldPicCursIcon.µ.rsrc window opens. Click the About
GWorldPicCursIcon… item to highlight it and choose MENU/Choose Icon…. Click the Small
Icons (SICN) radio button. The 'SICN' resource with ID 257 appears in the list box. Click that
item to highlight it, then click the OK button. Back in the MENU = 128 From
GWorldPicCursIcon.µ.rsrc window, note that the Cmd-Key: item is now dimmed. (A menu item
that has a small icon cannot have a keyboard equivalent.)

• Close the MENU = 128 From GWorldPicCursIcon.µ.rsrc window. Notice in the MENUs From
GWorldPicCursIcon.µ.rsrc window that either the small icon (Color QuickDraw not present) or a
scaled down version of the colour icon (Color QuickDraw present) appears in the About
GWorldPicCursIcon… item in the Apple menu thumbnail.

• With the Apple menu thumbnail selected, choose Resource/Open Using Hex Editor . The MENU =
128 From GWorldPicCursIcon.µ.rsrc window opens. The bottom three lines of the display are as
now as follows:

000018 576F 726C 6450 6963 WorldPic
000020 4375 7273 4963 6F6C CursIcon
000028 C901 1E00 0000 …¤¤¤¤¤

Notice that the keyboard equivalent word is now 1E , which indicates that the item has an icon
defined in a 'SICN' resource. Note also that the icon resource ID word contains 01 (257-256).14

Close the MENU = 128 From GWorldPicCursIcon.µ.rsrc window.

Icon Menu Item

The procedure for assigning the colour icon ('cicn') to the Icon menu item in the Demonstration menu
is as follows:

• In the MENUs From GWorldPicCursIcon.µ.rsrc window, double-click the Demonstration menu
thumbnail. The MENU = 131 From GWorldPicCursIcon.µ.rsrc window opens. Note that the
Cmd-Key: item contains 6 (the keyboard equivalent).

• Click the Icon menu item to highlight it, and then choose MENU/Choose Icon…. In the resulting
dialog, click the Normal Icons (ICON) radio button. The 'ICON' resource with ID 257 appears in
the list box. Click the icon and then click the OK button. Back in the MENU = 131 From
GWorldPicCursIcon.µ.rsrc window, note that the Cmd-Key: item is not dimmed. (A menu item
that has a normal icon can also have a have a keyboard equivalent.)

• Close the MENU = 131 From GWorldPicCursIcon.µ.rsrc window. Notice in the MENUs From
GWorldPicCursIcon.µ.rsrc window that either the icon (Color QuickDraw not present) or the
colour icon (Color QuickDraw present) appears in the Icon item in the Demonstration menu
thumbnail. Note also that the item's enclosing rectangle has been expanded to accommodate the
32-by-32 pixel icon/colour icon, and that the item has a keyboard equivalent.

14Recall from Footnote 8 at Chapter 3 — Menus that the Menu Manager adds 256 to the resource ID specified and uses the result as the icon's
rersource ID.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-39

• With the Demonstration menu thumbnail selected, choose Resource/Open Using Template. In
the resulting dialog, select MENU and click the OK button. The MENU 131= From
GWorldPicCursIcon.µ.rsrc window opens. Scroll down to the last menu item and note the Key
equiv item. This item will only accept and display a single character, which is why the Hex
Editor was used to display the 0x1E keyboard equivalent in the About GWorldPicCursIcon…
item. (The Hex Editor can also be used to enter non-single character keyboard equivalents.)
Note also the Icon # item, which contains the icon's resource ID (257-256).

• Close the MENU 131= From GWorldPicCursIcon.µ.rsrc window. Close the MENUs From
GWorldPicCursIcon.µ.rsrc window. Close the GWorldPicCursIcon.µ.rsrc window, saving the
file.

