
Color QuickDraw 11-1

11Version 1.2 (Frozen)

COLOR QUICKDRAW
Includes Demonstration Program ColorQuickDrawPascal

Introduction

Color QuickDraw is a collection of system software routines your application can use to display
hundreds, thousands and even millions of colours on screens with those capabilities. Only those older
Macintoshes based on the Motorola 68000 processor provide no support for Color QuickDraw.

You can draw into a colour graphics port using the eight predefined colours provided by basic
QuickDraw. Color QuickDraw, however, provides for a greatly increased number of colours, the
actual number available to your application depending on the user's computer system. In addition,
Color QuickDraw allows you to define your own colours, and it provides a consistent way for your
application to deal with colour regardless of the user's screen and software configuration.

RGB Colours

When using Color QuickDraw, you specify colours as RGB colours. An RGB (red-green-blue) colour
is defined by its red, green and blue components. For example, when each of the red, green and blue
components of a colour are at their maximum intensity ($FFFF), the result is the colour white. When
each of the components has zero intensity ($0000), the result is the colour black.

You specify a colour to Color QuickDraw by creating an RGBColor record in which you use three 16-bit
unsigned integers to assign intensity values for the three additive primary colours. The RGBColor data
type is defined as follows:

TYPE
RGBColor = record
red: integer; {magnitude of red component}
green: integer; {magnitude of green component}
blue: integer; {magnitude of blue component}
end;

The Colour Drawing Environment - Colour Graphics Ports

A colour graphics port is automatically created when you use the Window Manager functions
GetNewCWindow and NewCWindow. Colour graphics ports are also automatically created when your
application provides the colour-awareness resources 'dctb' and 'actb' and then uses the Dialog
Manager routines GetNewDialog and Alert.

A colour graphics port is defined in a CGrafPort record:

11-2 Color QuickDraw

type
CGrafPort = record

device: integer; {Device-specific information.}
portPixMap: PixMapHandle; {Handle to pixel map.}
portVersion: integer; {Flags.}
grafVars: Handle; {Handle to additional colour fields.}
chExtra: integer; {Fractional horizontal pen position.}
portRect: Rect; {Port Rectangle.}
visRgn: RgnHandle; {Visible region.}
clipRgn: RgnHandle; {Clipping region.}
bkPixPat: PixPatHandle; {Background pattern.}
rgbFgColor: RGBColor; {RGB components of fg.}
rgbBkColor: RGBColor; {RGB components of bk.}
pnLoc: Point; {Pen location.}
pnSize: Point; {Pen size.}
pnMode: integer; {Pen mode.}
pnPixPat: PixPatHandle; {Pen pattern.}
fillPixPat: PixPatHandle; {Fill pattern.}
pnVis: integer; {Pen visibility.}
txFont: integer; {Font number for text.}
txFace: Style; {Text's font style.}
txMode: integer; {Transfer mode for text.}
txSize: integer; {Font size for text.}
spExtra: Fixed; {Extra width added to space characters.}
fgColor: longint; {Foreground colour.}
bkColor: longint; {Background colour.}
colrBit: integer; {Colour bit (reserved).}
patStretch: integer; {(Used internally.)}
picSave: Handle; {Picture being saved. (Used internally.)}
rgnSave: Handle; {Region being saved. (Used internally.)}
polySave: Handle; {Polygon being saved. (Used internally.)}
grafProcs: CQDProcsPtr; {Pointer to low-level drawing routines.}
end;

CGrafPtr = ^CGrafPort;
CWindowPtr = CGrafPtr;

Differences Between a CGrafPort Record and a GrafPort Record

A CGrafPort record is the same size as a GrafPort record. The important differences between these
two data types are as follows:

• In a GrafPort record, the portBits field contains a complete 14-byte bitMap record. In a
CGrafPort record, this field is partly replaced by the four-byte portPixMap field, which contains a
handle to a PixMap record (see Fig 1).

FIG 1 - FIRST 27 BYTES OF GrafPort AND CGrafPort RECORDS

baseAddr

bounds

portRect

visRgn

portPixMap

grafVars

chExtra
pnLocHFrac

portRect

visRgn

device device

GrafPort CGrafPort

portBits
portVersionrowBytes

• In what would be the rowBytes field of the BitMap record in the portBits field of the GrafPort
record, a CGrafPort record has a two-byte portVersion field (see Fig 1) in which the two high
bits are always set. QuickDraw uses these two bits to distinguish CGrafPort records from
GrafPort records. (In GrafPort records, the two high bits of the rowBytes field are always clear.)

Color QuickDraw 11-3

• Following the portVersion field in the CGrafPort record is the grafVars field, which contains a
handle to a GrafVars record (see Fig 1). The GrafVars records contains colour information used
by Color QuickDraw and the Palette Manager.

• Following the grafVars field are the chExtra field, which holds the width of non-space
characters in a font, and the pnLocHFrac field, which holds the fractional horizontal pen position
used when drawing text.

• In a GrafPort record, the bkPat, fillPat, and pnPat fields hold eight-byte bit patterns. In a
CGrafPort record, these fields are partly replaced by three four-byte handles to pixel patterns.
The resulting 12 bytes of additional space are taken up by the rgbFgColor and rgbBkColor fields,
which contain six-byte RGBColor records specifying the optimal foreground and background
colours for the colour graphics port. (See Fig 2.) Note that the closest matching available
colours, which Color QuickDraw actually uses for the foreground and background, are stored in
the fgColor and bkColor fields of the CGrafPort record.

FIG 2 - BYTES 27 - 62 OF GrafPort AND CGrafPort RECORDS

pnSize

rgbBkColor

pnLoc

pnMode

pnPixPat

fillPixPat

fillPat

pnLoc

pnSize

pnPat

bkPixPat

rgbFgColor

bkPat

GrafPort CGrafPort

Working with a CGrafPort record is much like working with a GrafPort record. The routines SetPort,
GetPort, PortSize, SetOrigin, SetPortBits and MovePortTo operate on either port type, and the
global variable thePort points to the current graphics port no matter what type it is.

If you find it necessary, you can use type coercion to convert between GrafPtr and CGrafPtr records,
for example:

CGrafPtr^.myPort;
SetPort(GrafPtr(myPort));

You can use all QuickDraw drawing commands to draw into a graphics port created with a CGrafPort
record, and you can use all Color QuickDraw drawing commands (such as FillCRect) when drawing
into a graphics port created with a GrafPort record. However, Color QuickDraw drawing commands
used with a GrafPort record do not take advantage of Color QuickDraw's colour features.

Pixel Maps

Just as basic QuickDraw does all of its drawing into a bitmap, Color QuickDraw draws in a pixel map.
The portPixMap field of the CGrafPort record contains a handle to a pixel map, a data structure of type
PixMap.

The representation of a colour image in memory is a pixel image, analogous to the bit image used by
basic QuickDraw. A PixMap record contains a pointer to a pixel image, its dimensions, storage format,
depth, resolution, and colour usage.

11-4 Color QuickDraw

The PixMap record is as follows:

type
PixMap = record

baseAddr: Ptr; {Pointer to image data.}
rowBytes: integer; {Flags, and bytes in a row.}
bounds: Rect; {Boundary rectangle.}
pmVersion: integer; {Pixel Map version number.}
packType: integer; {Defines packing format.}
packSize: longint; {Size of data in packed state.}
hRes: Fixed; {Horizontal resolution in dots per inch.}
vRes: Fixed; {Vertical resolution in dots per inch.}
pixelType: integer; {Format of pixel image.}
pixelSize: integer; {Physical bits per pixel.}
cmpCount: integer; {Number of components in each pixel.}
cmpSize: integer; {Number of bits in each component.}
planeBytes: longint; {Offset to next plane.}
pmTable: CTabHandle; {Handle to a colour table for this image.}
pmReserved: longint; {Reserved for future use. Must be 0.}
end;

PixMapPtr = ^PixMap;
PixMapHandle = ^PixMapPtr;

Field Descriptions

baseAddr Contains a pointer to the beginning of the onscreen pixel image for a pixel map. The pixel
image that appears on the screen is normally stored on a graphics card rather than in
main memory. (Note that there can be several pixel maps pointing to the same pixel
image, each imposing its own coordinate system on it.)

rowBytes The offset in bytes from one row of the image to the next. The value must be even and
less than $4000. For best performance it should be a multiple of 4.

The high two bits are used as flags. If bit 15 = 1, the data structure pointed to is a PixMap
record, otherwise it is a BitMap record.

bounds As with a bitmap, the pixel map's boundary rectangle is initially set to the size of the main
screen.

pmVersion The version number of Color QuickDraw that created this PixMap record. The value is
normally 0. If it is 4, Color QuickDraw treats the baseAddr field as 32-bit clean. Most
applications never need to set this field.

packType The packing algorithm used to compress image data. Color QuickDraw currently
supports a packType of 0 (no packing) and values of 1 to 4 for packing direct pixels.

packSize The size of the packed image in bytes. (When packType is 0, this field is set to 0.)

hRes The horizontal resolution of the image in pixels per inch, abbreviated as dpi (dots per
inch). The value of this field is of type Fixed. By default, the dpi is 72, but Color
QuickDraw supports PixMap records of other resolutions. For example, PixMap records for
scanners can have dpi resolutions of 150, 200, 300, or greater.

vRes Describes the vertical resolution. (See hRes).

pixelType Specifies the format (indexed or direct) used to hold the pixels in the image. For indexed
devices, the value is 0. For direct devices, the value is 16, which can be represented by the
constant RGBDirect.

pixelSize Specifies the pixel depth, that is, the number of bits per pixel in the pixel image. Indexed
devices can be 1, 2, 4, or 8 bits deep. (A pixel image that is 1 bit deep is equivalent to a bit

Color QuickDraw 11-5

image.) Direct devices can be 16 or 32 bits deep. (Even if your application creates a basic
graphics port on a direct device, pixels are never less than one of these two depths.)1

cmpCount Together with cmpSize, describes how the pixel values are organised. For pixels on
indexed devices, the colour component count is 1 (for the index into the graphic's device's
CLUT, where the colours are stored). For pixels in direct devices, the colour component
count is 3 (for the red, green and blue components of each pixel).

cmpSize Specifies how large each colour component is. For indexed devices, it is the same value as
that in the pixelSize field, that is, 1, 2, 4, or 8 bits. For direct devices, each of the three
colour components can be either 5 bits for a 16-bit pixel (one of these 16 bits is unused), or
8 bits for a 32 bit pixel (8 of these 32 bits are unused).

planeBytes Specifies an offset in bytes from one plane to another. Since Color QuickDraw does not
support multiple-plane images, the value of this field is always 0.

pmTable Contains a handle to the ColorTable record. ColorTable records define the colours
available for pixel images on indexed devices. (The Color Manager stores a colour table
for the currently available colours in the graphic's device's CLUT. You use the Palette
Manager to assign different colour tables to your different windows.)

You can create colour tables using either ColorTable records or 'clut' resources. Pixel
images on direct devices do not need a colour table because the colours are stored right in
the pixel values. In such cases, pmTable points to a dummy colour table.

Translation of RGB Colours to Pixel Values

The baseAddr field of the CGrafPort record contains a pointer to the beginning of the onscreen pixel
image. When your application specifies an RGB colour for a pixel in the pixel image, Color
QuickDraw translates that colour into a value appropriate for display on the user's screen. Color
QuickDraw stores this value in the pixel. The pixel value is a number used by system software and a
graphics device to represent a colour. The translation from the colour you specify in an RGBColor
record to a pixel value is performed at the time you draw the colour. The process differs for direct and
indexed devices as follows:

• When drawing on indexed devices, Color QuickDraw calls the Color Manager to supply the
index to the colour that most closely matches the requested colour in the current device's CLUT.
This index becomes the pixel value for that colour.

• When drawing on direct devices, Color QuickDraw truncates the least significant bits from the
red, green and blue fields of the RGBColor record. The result becomes the pixel value that Color
QuickDraw sends to the graphics device.

Your application never needs to handle pixel values. However, to clarify the relationship between
RGBColor records and the pixels that are actually displayed, the following presents some examples of
the derivation of pixel values from RGBColor records.

1Note that, when a user uses the Monitors control panel to set a 16-bit or 32-bit device to use 2, 4, 16 or 256 colours as a grayscale or colour
device, the direct device creates a CLUT and operates like an indexed device.

11-6 Color QuickDraw

Derivation of Pixel Values on Indexed Devices

Fig 3 shows the translation of an RGBColor record to an 8-bit pixel value on an indexed device.

RGBColor RECORD
INDEX NUMBERS

CLUT
0

161

R G B

0x3206 0x9038 0x013D

PIXEL VALUE (161) 255

CLOSEST
COLOUR MATCH
IS AT TABLE
ENTRY 161

0x3333 0x9999 0x0000

FIG 3 - TRANSLATING AN RGBColor RECORD TO AN 8-BIT PIXEL VALUE ON AN INDEXED DEVICE

1

160

162

The application might later use GetCPixel to determine the colour of a particular pixel. As shown at
Fig 4, the Color Manager uses the index number stored as the pixel value to find the RGBColor record
stored in the CLUT for that pixel's colour. Also as shown at Fig 4, this is not necessarily the exact
colour first specified.

RGBColor RECORD
INDEX NUMBERS

CLUT
0

161

R G B

0x3333 0x9999 0x0000

PIXEL VALUE (161) 255

0x3333 0x9999 0x0000

FIG 4 - TRANSLATING AN 8-BIT PIXEL VALUE ON AN IDEXED DEVICE TO AN RGBColor RECORD

1

160

162

Derivation of Pixel Values on Direct Devices

Fig 5 shows how Color QuickDraw converts an RBGColor record into a 16-bit pixel value on a direct
device by storing the most significant 5 bits of each 16-bit field of the 48-bit RGBColor record in the
lower 15 bits of the pixel value, leaving an unused high bit. Fig 5 also shows how Color QuickDraw
expands a 16-bit pixel value to a 48-bit RGBColor record by dropping the unused high bit of the pixel
value and inserting three copies of each 5-bit component and a copy of the most significant bit into each
16-bit field of the RGBColor record. Note that the result differs, in the least significant 11 bits, from the
original 48-bit value.

FIG 5 - TRANSLATING AN RGBColor RECORD TO A 16 BIT PIXEL VALUE,
AND FROM A 16-BIT PIXEL VALUE TO AN RGBRecord, ON A DIRECT DEVICE

16-BIT RED COMPONENT
0x3206

16-BIT GREEN COMPONENT
0x9038

16-BIT BLUE COMPONENT
0x013D

(UNUSED)

0x318C 0x9495 0x0000

R 0x06 G 0x12 B 0x00

Fig 6 shows how Color QuickDraw converts an RBGColor record into a 32-bit pixel value on a direct
device by storing the most significant 8 bits of each 16-bit field of the record into the lower 3 bytes of
the pixel value, leaving 8 unused bits in the high byte of the pixel value. Fig 6 also shows how Color
QuickDraw expands a 32-bit pixel value to an RBGColor record by dropping the unused high byte of the
pixel value and doubling each of its 8-bit components. Note that the resulting 48-bit value differs in the
least significant 8 bits of each component from the original RBGColor record.

Color QuickDraw 11-7

FIG 6 - TRANSLATING AN RGBColor RECORD TO A 32 BIT PIXEL VALUE,
AND FROM A 32-BIT PIXEL VALUE TO AN RGBRecord, ON A DIRECT DEVICE

16-BIT RED COMPONENT
0x3206

16-BIT GREEN COMPONENT
0x9038

16-BIT BLUE COMPONENT
0x013D

B 0x01(UNUSED)

0x3232 0x9090 0x0101

R 0x32 G 0x90

Colours on Grayscale Screens

When Color QuickDraw displays a colour on a grayscale screen, it computes the luminance, or
intensity of light, of the desired colour and uses that value to determine the appropriate gray value to
draw.

A grayscale device can be a colour graphics device that the user sets to grayscale by using the Monitors
control panel. For such a graphics device, Colour QuickDraw places an evenly spaced set of grays in
the graphics device's CLUT.

By using the GetCTable function, your application can obtain the default colour tables for various
graphics devices, including grayscale devices.

Pixel Patterns

Color QuickDraw supplements the black-and-white bit patterns of basic QuickDraw with pixel
patterns. Pixel patterns, which define a repeating design, can use colours at any pixel depth, and can
be of any width and height that is a power of 2. You can create your own pixel patterns in your
program code, but it is usually simpler and more convenient to store them in resources of type 'ppat'.

Pen Pixel Pattern

As with bit patterns, your application can use pixel patterns to draw lines and shapes on the screen. In
a colour graphics port, the graphics pen has a pixel pattern specified in the pnPixPat field of the
CGrafPort record. The pixels in the pattern interact with the pixels in the pixel map according to the
pattern mode of the graphics pen.

Initially, every graphics pen is assigned an all black pattern, but you can use PenPixPat to assign a
different pixel pattern to the graphics pen.

FrameRect, FrameRoundRect, FrameArc, FramePoly, FrameRgn, PaintRect, PaintRoundRect, PaintArc,
PaintPoly, and PaintRgn are used to draw with the pattern specified in the pnPixPat field.

Fill Pixel Pattern

FillCRect, FillCRoundRect, FillCArc, FillCPoly, and FillCRgn are used to draw shapes with the pixel
pattern specified as the parameter in the call to these routines. The pixel pattern specified in the call is
stored in the fillPixPat field of the CGrafPort record.

Background Pixel Pattern

The colour graphics port also has a background pattern which is used when an area is erased (for
example, by EraseRect, EraseRoundRect, EraseArc, ErasePoly, and EraseRgn) and when pixels are
scrolled out of an area by ScrollRect. The background pattern is stored in the bkPixPat field of the
CGrafPort record. It can be changed using BackPixPat.

11-8 Color QuickDraw

Creating Pseudo Colours With Pixel Patterns

Pixel patterns can be used to create colours otherwise unavailable on indexed devices. For example, if
your application draws to an indexed device that supports 4 bits per pixel, your application has a
maximum of 16 colours available. However, if your application uses MakeRGBPat to create patterns that
use these 16 colours in different combinations, and then draws using that pattern, your application can
have as many as 109 additional (pseudo) colours at its disposal.

Testing For the Existence of Color QuickDraw

Before using Color QuickDraw routines, your application should check for the existence of Color
QuickDraw by using the Gestalt function. The Gestalt function is used to acquire information about
the operating environment2. It has two parameters: a selector and a response.

When testing for the existence of Color QuickDraw, Gestalt should be called with the
gestaltQuickDrawVersion selector. The low-order word in the four-byte value returned in the response
parameter contains QuickDraw version data. In that low-order word, the high byte gives the major
revision number and the low byte gives the minor revision number. If the value returned in the
response parameter is equal to the constant gestalt32BitQD13, then the system supports the System 7
version of Color QuickDraw.

The following are the constants, and the values they represent, which indicate the various versions of
Color QuickDraw:

Constant Value Version
gestalt8BitQD $100 8-bit Color QuickDraw
gestalt32BitQD $200 32-bit Color QuickDraw
gestalt32BitQD11 $210 32-bit Color QuickDraw v1.1
gestalt32BitQD12 $220 32-bit Color QuickDraw v1.2
gestalt32BitQD13 $230 System 7: 32-bit Color QuickDraw v1.3

Your application can also use the Gestalt function with the selector gestaltQuickDrawFeatures to
determine whether the user's system supports various QuickDraw features. If the bits indicated in the
following constants are set in the response parameter, the associated features are available:

Constant Value Feature
gestaltHasColor 0 Color QuickDraw is present.
gestaltHasDeepGWorlds 1 GWorlds deeper than one bit.
gestaltHasDirectPixMaps 2 PixMaps can be direct - 16-bit or 32-bit
gestaltHasGrayishTextOr 3 Supports text mode grayishTextOr

Working with Color QuickDraw

All of the basic QuickDraw routines work with Color QuickDraw.

Creating Colour Graphics Ports

Your application creates a colour graphics port using either the GetNewCWindow, the NewCWindow
function, or the NewGWorld function. These function automatically call OpenCPort (which opens the
port) and InitCPort (which and initialises the port).

You can use GetNewCWindow or NewCWindow to create colour graphics ports whether or not a colour
monitor is currently installed. So that most of your window-handling code can handle colour windows
and black-and-white windows identically, GetNewCWindow returns a pointer of type WindowPtr, not of

2The Gestalt function is explained in detail at Chapter 22— Miscellany.

Color QuickDraw 11-9

type CWindowPtr. A pointer of type WindowPtr points to a GrafPort record. Thus, if you want to check
the fields of the colour graphics port associated with a window, you must coerce the pointer to the
GrafPort record into a pointer to a CGrafPort record.

Drawing with Different Foreground Colours

If your application uses the Palette Manager, it should set the foreground and background colours with
the Palette Manager routines PmForeColor and PmBackColor. Otherwise, you application should use
Color QuickDraw's RGBForeColor and RGBBackColor routines.

To specify a foreground colour, create an RGBColor record and use that record as the RGBForeColor
parameter in the call, for example:

darkBlue : RGBColor;
...
darkBlue.red := $0000;
darkBlue.green := $0000;
darkBlue.blue := $9999;

RGBForeColor(darkBlue);

RGBForeColor supplies the rgbFgColor field of the CGrafPort record with this record, and it places the
closest available match in the fgColor field. The colour in the fgColor field is the colour actually used
as the foreground colour.

RGBForeColor and RGBBackColor also work in basic graphics ports created in System 7.

Drawing and Filling with Pixel Patterns

If you wish to draw with a colour other than the foreground colour, you can give the graphics pen a
pixel pattern using PenPixPat. To fill shapes with pixel patterns, you can use FillCRect,
FillCRoundRect, FillCOval, FillCArc, FillCPoly, and FillCRgn.3

You define a pixel pattern in a 'ppat' resource. To retrieve the pixel pattern stored in the 'ppat'
resource, you use the GetPixPat function. The handle to a pixPat data structure returned by GetPixPat
may then be used in a call to PenPixPat to assign the pattern to the pen.

The following is an example of the use of pixel patterns for painting and filling:

theRect : Rect ;
penPattern,fillPattern : PixPatHandle;
...
penPattern := GetPixPat(128);
PenPixPat(penPattern);
SetRect(theRect, 20, 20, 70, 70);
PaintRect(theRect);
DisposePixPat(penPattern);

fillPattern := GetPixPat(129);
SetRect(theRect, 90, 20, 140, 70);
FillCRect(theRect, fillPattern);
DisposePixPat(fillPattern);

Using Bit Patterns in Colour Graphics Ports

When you use basic QuickDraw's PenPat and BackPat routines in a colour graphics port, Color
QuickDraw constructs a pixel pattern equivalent to the bit pattern you specify to PenPat and BackPat.
The resulting pen pattern and background pattern use the graphics port's current foreground and
background colours.

3Note that, because a pixel pattern already contains colour, Color QuickDraw ignores the foreground and background colours when your
application draws with a pixel pattern.

11-10 Color QuickDraw

Boolean Pattern Modes with Colour Pixels

Pattern modes apply to the drawing of lines and shapes. When you use pattern modes in pixel maps
with depths greater than 1 bit, Color QuickDraw uses the foreground and background colour when
transferring bit patterns. For example, the patCopy mode applies the foreground colour to every
destination pixel that corresponds to a black pixel in a bit pattern, and it applies the background colour
to every destination pixel that corresponds to a white pixel in a bit pattern.

When your application draws with a pixel pattern, Color QuickDraw ignores the pattern mode and
simply transfers the pattern to the pixel map without regard to the foreground and background
colours.

Copying Pixels Between Colour Graphics Ports

Color QuickDraw provides extra capabilities for the CopyBits, CopyMask, and CopyDeepMask image-
processing routines described at Chapter 10 — Basic QuickDraw. In basic QuickDraw, CopyBits,
CopyMask, and CopyDeepMask are used to copy bit images between two basic graphics ports. In Color
QuickDraw, you can also use these routines to copy pixel images between two colour graphics ports.
In addition, the masks used by CopyMask and CopyDeepMask may be another pixel map whose pixels
indicate proportionate weights of the colours for the source and destination pixels.

Distinguishing Between Bit Maps and Pixel Maps

CopyBits, CopyMask, and CopyDeepMask expect a pointer to a bitmap in their source and destination
parameters. Accordingly, when you use these routines to copy pixel images between colour graphics
ports, you must coerce each port's CGrafPtr data type to a GrafPtr data type, dereference the portBits
fields of each and then pass these "bitmaps" in the srcBits and dstBits parameters. For example, if
your application copies a pixel image from a colour graphics port called, say, myColourPort, you could
specify GrafPtr(myColourPort)^.portBits in the srcBits parameter.

All this works because:

• In a CGrafPort record, the two high bits of the portVersion field are always set.

• These bits in a GrafPort record are the two high bits in portBits.rowBytes field, which are
always clear.

• By looking at these bits, CopyBits, CopyMask, and CopyDeepMask can establish that you have
passed the routines a handle to a pixel map rather than the base address of a bitmap.

CopyMask

With CopyMask, you supply a pixel map to act as the copying mask. The values of pixels in the mask act
as weights that proportionally select between source and destination pixel values.

On indexed devices, pixel images are always copied using the colour table of the source PixMap record
for source colour information, and using the colour table of the current GDevice record for destination
colour information. The colour table attached to the destination PixMap is ignored.

When the PixMap record for the mask is 1 bit deep, it has the same effect as a bitmap mask, that is, a
black bit in the mask means that the destination pixel will take the colour of the source pixel and a
white bit in the mask means that the destination pixel is to retain its current colour. When masks have
PixMap records with pixel depths greater than 1, Colour QuickDraw takes a weighted average between
the colours in the source and destination PixMap records. Within each pixel, the calculation is done in
RGB colour, on a colour component basis. As an example, a red mask (that is, one with high values for
the red components of all pixels) filters out red values coming from the source pixel image.

Color QuickDraw 11-11

Boolean Source Modes with Colour Pixels

When you use CopyBits, CopyMask, and CopyDeepMask to transfer images between pixel maps with
depths greater than 1 bit, Color QuickDraw performs the Boolean transfer operations as follows:

Source
Mode

Action On Destination Pixel

If source pixel is black If source pixel is white If source pixel is any other colour

srcCopy Apply foreground colour Apply background colour Apply weighted portions of
foreground and background colours

notSrcCopy Apply background colour Apply foreground colour Apply weighted portions of
foreground and background colours

srcOr Apply foreground colour Leave alone Apply weighted portions of
foreground colour

notSrcOr Leave alone Apply foreground colour Apply weighted portions of
foreground colour

srcXor Invert (undefined for
coloured destination pixel)

Leave alone Leave alone

notSrcXor Leave alone Invert (undefined for
coloured destination pixel)

Leave alone

srcBic Apply background colour Leave alone Apply weighted portion background
colour

notSrcBic Leave alone Apply background colour Apply weighted portion background
colour

In general, with pixel images, you will probably want to use srcCopy mode or one of the arithmetic
transfer modes (see below).

Because Color QuickDraw uses the foreground and background colours, instead of black and white,
when performing its Boolean source operations, the following effects are produced:

• The notSrcCopy mode reverses the foreground and background colours.

• Drawing into a white background with a black foreground always reproduces the source image,
regardless of the pixel depth.

• Drawing is faster if the foreground colour is black when you use srcOr and notSrcOr modes.

• If the background colour is white when you use the srcBic mode, the black portions of the
source are erased, resulting in white in the destination pixel map.

Applying a foreground colour other than black or a background colour other than white to the pixel
can produce an unexpected result. For consistent results, set the foreground colour to black and the
background colour to white before using CopyBits, CopyMask, or CopyDeepMask. (That said, using
RGBForeColor and RGBBackColor to set foreground and background colours to something other than
black or white can achieve some interesting colouration effects.)e e

Dithering

You can use dithering with CopyBits and CopyDeepMask. Dithering is a technique used by these
routines to mix existing colours together to create the illusion of a third colour that may be unavailable
on an indexed device, and to improve images that you shrink when copying them from a direct device
to an indexed device.

You can add dithering to any source mode by adding the following constant, or the value it represents,
to the source mode:

ditherCopy := 64 {Add to source mode for dithering.}

If you specify a destination rectangle that is smaller than the source rectangle when using CopyBits,
CopyMask, CopyDeepMask on an direct device, Color QuickDraw automatically uses an averaging

11-12 Color QuickDraw

technique to produce the destination pixels, maintaining high-quality images when shrinking them.
On indexed devices, Color QuickDraw averages these pixels only when you explicitly specify
dithering.

Dithering has drawbacks. Firstly, it slows the drawing operation. Secondly, a clipped dithering
operation does not provide pixel-for-pixel equivalence to the same unclipped dithering operation.

Arithmetic Transfer Modes

In addition to the Boolean transfer modes, Color QuickDraw offers a set of transfer modes that perform
arithmetic operations on the values of the red, green and blue components of the source and
destination pixels. Although rarely used by applications, these arithmetic transfer modes produce
predictable results on indexed devices because they work with RGB colours rather than with colour
table indexes. The arithmetic transfer modes are as follows:

Constant Value Description
blend 32 Replace destination pixel with a blend of the source and destination pixel colours. If the

destination is a bitmap or 1-bit pixel image, revert to srcCopy mode.

addPin 33 Replace destination pixel with the sum of the source and destination pixel colours up to a
maximum allowable value. If the destination is a bitmap or 1-bit pixel image, revert to
srcBic mode.

addOver 34 Replace destination pixel with the sum of the source and destination pixel colours, but if the
value of the red, green or blue component exceeds 65,536, then subtract 65,536 from that value.
If the destination is a bitmap or 1-bit pixel image, revert to srcXor mode.

subPin 35 Replace destination pixel with the difference of the source and destination pixel colours, but
not less than a minimum allowable value. If the destination is a bitmap or 1-bit pixel image,
revert to srcOr mode.

transparent 36 Replace the source and destination pixel with the source pixel if the source pixel is not equal to
the background colour.

addMax 37 Compare the source and destination pixels, and replace the destination pixel with the colour
containing the greater saturation of each of the RGB components. If the destination is a bitmap
or 1-bit pixel image, revert to srcBic mode.

subOver 38 Replace destination pixel with the difference of the source and destination pixel colours, but if
the value of the red, green or blue is less than 0, add the negative result to 65,536. If the
destination is a bitmap or 1-bit pixel image, revert to srcXor mode.

adMin 39 Compare the source and destination pixels, and replace the destination pixel with the colour
containing the lesser saturation of each of the RGB components. If the destination is a bitmap
or 1-bit pixel image, revert to srcOr mode

You can use the arithmetic modes for both drawing and image transfer operations, that is, your
application can pass them in parameters to PenMode and TextMode as well as CopyBits and
CopyDeepMask.

Highlighting

When using basic QuickDraw, you can use InvertRect, or any other image-copying routine that uses
the srcXor source mode, to invert objects on the screen. Inverting simply reverses the colours of all
pixels within the specified rectangle. Although this procedure can also be used on colour pixels in
colour graphics ports, the results are predictable only with direct pixels or 1-bit pixel maps.
Accordingly, with Color QuickDraw, you should use highlighting, rather than inverting, when
selecting and deselecting objects such as text or graphics.

TextEdit, for example, uses highlighting to indicate selected text. If the highlight colour is blue,
TextEdit draws the selected text, then uses InvertRgn to produce a blue background for the text.

The system highlight colour, which can be changed by the user using the Colour control panel, is
stored in a low memory global represented by the symbolic name HiliteRGB. It can be retrieved using
LMGetHiliteRGB. Basic graphics ports use this colour as the highlight colour. In the case of a colour
graphics port, you can override the default colour using HiliteColor. (Note that the current colour is
copied to the rgbHiliteColor field of the GrafVars record, a handle to which is stored in the grafVars
field of the CGrafPort record.)

Color QuickDraw 11-13

Color QuickDraw implements highlighting by replacing the background colour with the highlight
colour. Another low memory global, represented by the symbolic name HiliteMode, contains a byte
which represents the current highlight mode. One bit in that byte, represented by the constant
pHiliteBit, is used to toggle the background and highlight colours.

Color QuickDraw resets the highlight bit after performing each drawing operation, so your application
should always clear the highlight bit immediately before calling InvertRgn (or any of the other drawing
or image-copying routine that uses the patXor or srcXor transfer mode.) The highlight mode can be
retrieved and set using LMGetHiliteMode and LMSetHiliteMode, and BitClr may be used to clear the
highlight bit:

hiliteMode : UInt8;
...
hiliteMode := LMGetHiliteMode;
BitClr(hiliteMode, pHiliteBit);
LMSetHiliteMode(hiliteMode);

Another way to use highlighting is to add this constant or its value to the mode you specify to the
PenMode, CopyBits, CopyDeepMask and TextMode routines:

hilite := 50 {Add to source or pattern mode for highlighting.}

Color QuickDraw and Text

When drawing text using Color QuickDraw, the following information, in addition to that in Chapter
10 — Basic QuickDraw, is relevant:

• As previously stated, there is an additional text-related field in the colour graphics port record
(the chExtra field. The value in this field may be changed using CharExtra.

• The arithmetic transfer modes apply to the drawing of text as well as other forms of graphics.

• When the default transfer mode (srcOr) is used, the colour of the glyph is determined by the
foreground colour.

• The non-standard text drawing transfer mode grayishTextOr (which is useful for displaying
disabled user interface items) produces a blend of the foreground and background colours on a
colour destination device.

Main Color QuickDraw Constants, Data Types and Routines

Constants

Checking for Color QuickDraw and its Features

gestalt8BitQD = $100 8-bit Color QuickDraw.
gestalt32BitQD = $200 32-bit Color QuickDraw.
gestalt32BitQD11 = $210 32-bit Color QuickDraw v1.1.
gestalt32BitQD12 = $220 32-bit Color QuickDraw v1.2.
gestalt32BitQD13 = $230 System 7: 32-bit Color QuickDraw v1.3.
gestaltQuickDrawFeatures = 'qdrw' Gestalt selector for Color QuickDraw features.
gestaltHasColor = 0 Color QuickDraw is present
gestaltHasDeepGWorlds = 1 GWorlds deeper than 1 bit.
gestaltHasDirectPixMaps = 2 PixMaps can be direct - 16 or 32 bits.
gestaltHasGrayishTextOr = 3 Supports text mode grayishTextOr.

Arithmetic Transfer Modes

blend = 32
addPin = 33
addOver = 34
subPin = 35
transparent = 36

11-14 Color QuickDraw

addMax = 37
subOver = 38
adMin = 39
ditherCopy = 64

Highlighting

hilite = 50
hiliteBit = 7
pHiliteBit = 0

Resource ID of 'clut' Resource for Default QuickDraw Colours

defQDColors = 127

Pixel Type

RGBDirect = 16 16 and 32 bits-per-pixel pixelType value.

Data Types

PixelType = SInt8;

CGrafPort

CGrafPort = record
device: integer; {Device-specific information.}
portPixMap: PixMapHandle; {Handle to pixel map.}
portVersion: integer; {Flags.}
grafVars: Handle; {Handle to additional colour fields.}
chExtra: integer; {Extra width added to non-space characters.}
pnLocHFrac: integer; {Fractional horizontal pen position.}
portRect: Rect; {Port Rectangle.}
visRgn: RgnHandle; {Visible region.}
clipRgn: RgnHandle; {Clipping region.}
bkPixPat: PixPatHandle; {Background pattern.}
rgbFgColor: RGBColor; {RGB components of fg.}
rgbBkColor: RGBColor; {RGB components of bk.}
pnLoc: Point; {Pen location.}
pnSize: Point; {Pen size.}
pnMode: integer; {Pen mode.}
pnPixPat: PixPatHandle; {Pen pattern.}
fillPixPat: PixPatHandle; {Fill pattern.}
pnVis: integer; {Pen visibility.}
txFont: integer; {Font number for text.}
txFace: Style; {Text's font style.}
txMode: integer; {Transfer mode for text.}
txSize: integer; {Font size for text.}
spExtra: Fixed; {Extra width added to space charcaters.}
fgColor: longint; {Foreground colour.}
bkColor: longint; {Background colour.}
colrBit: integer; {Colour bit (reserved).}
patStretch: integer; {(Used internally.)}
picSave: Handle; {Picture being saved. (Used internally.)}
rgnSave: Handle; {Region being saved. (Used internally.)}
polySave: Handle; {Polygon being saved. (Used internally.)}
grafProcs: CQDProcsPtr; {Pointer to low-level drawing routines.}
end;

CGrafPtr = ^CGrafPort;
CWindowPtr = CGrafPtr;

PixMap

PixMap = record
baseAddr: Ptr; {Pointer to image data.}
rowBytes: integer; {Flags, and bytes in a row.}
bounds: Rect; {Boundary rectangle.}
pmVersion: integer; {Pixel Map version number.}
packType: integer; {Defines packing format.}
packSize: longint; {Size of data in packed state.}
hRes: Fixed; {Horizontal resolution in dots per inch.}
vRes: Fixed; {Vertical resolution in dots per inch.}
pixelType: integer; {Format of pixel image.}

Color QuickDraw 11-15

pixelSize: integer; {Physical bits per pixel.}
cmpCount: integer; {Number of components in each pixel.}
cmpSize: integer; {Number of bits in each component.}
planeBytes: longint; {Offset to next plane.}
pmTable: CTabHandle; {Handle to a colour table for this image.}
pmReserved: longint; {Reserved for future use. Must be 0.}
end;

PixMapPtr = ^PixMap;
PixMapHandle = ^PixMapPtr;

GrafVars

GrafVars = record
rgbOpColor: RGBColor; {Colour for addPin, subPin and average.}
rgbHiliteColor: RGBColor; {Colour for highlighting.}
pmFgColor: Handle; {Palette Handle for foreground colour.}
pmFgIndex: integer; {Index value for foreground.}
pmBkColor: Handle; {Palette Handle for background colour.}
pmBkIndex: integer; {Index value for background.}
pmFlags: integer; {Flags for Palette Manager.}
end;

GVarPtr = ^GrafVars;
GVarHandle = ^GVarPtr;

ColorSpec

TYPE
ColorSpec = record
value: integer; {Index or other value.}
rgb: RGBColor; {True colour.}
end;

ColorSpecPtr = ^ColorSpec;
CSpecArray = array [0..0] of ColorSpec;

ColorTable

ColorTable = record
ctSeed: longint; {Unique identifier for table.}
ctFlags: integer; {High bit: 0 = PixMap; 1 = device.}
ctSize: integer; {Number of entries in CTTable.}
ctTable: CSpecArray; {Array [0..0] of ColorSpec.}
end;

CTabPtr = ^ColorTable;
CTabHandle = ^CTabPtr;

PixPat

PixPat = record
patType: integer; {Type of pattern.}
patMap: PixMapHandle; {The pattern's pixMap.}
patData: Handle; {Pixmap's data.}
patXData: Handle; {Expanded Pattern data.}
patXValid: integer; {Flags whether expanded Pattern valid.}
patXMap: Handle; {Handle to expanded Pattern data.}
pat1Data: Pattern; {Old-Style pattern/RGB colour.}
end;

PixPatPtr = ^PixPat;
PixPatHandle = ^PixPatPtr;

RGBColor

RGBColor = record
red: integer; {Magnitude of red component.}
green: integer; {Magnitude of green component.}
blue: integer; {Magnitude of blue component.}
end;

RGBColorPtr = ^RGBColor;
RGBColorHdl = ^RGBColorPtr;

11-16 Color QuickDraw

Routines

Opening and Closing Colour Graphics Ports

procedure OpenCPort(port: CGrafPtr);
procedure InitCPort(port: CGrafPtr);
procedure CloseCPort(port: CGrafPtr);

Managing a Colour Graphics Pen

procedure PenPixPat(pp: PixPatHandle);

Changing the Background Pixel pattern

procedure BackPixPat(pp: PixPatHandle);

Drawing with Color QuickDraw Colours

procedure RGBForeColor(var color: RGBColor);
procedure RGBBackColor(var color: RGBColor);
procedure SetCPixel(h: integer; v: integer; var cPix: RGBColor);
procedure FillCRect(var r: Rect; pp: PixPatHandle);
procedure FillCOval(var r: Rect; pp: PixPatHandle);
procedure FillCRoundRect(var r: Rect; ovalWidth: integer; ovalHeight: integer;

pp: PixPatHandle);
procedure FillCArc(var r: Rect; startAngle: integer; arcAngle: integer; pp: PixPatHandle);
procedure FillCRgn(rgn: RgnHandle; pp: PixPatHandle);
procedure FillCPoly(poly: PolyHandle; pp: PixPatHandle);
procedure OpColor(var color: RGBColor);
procedure HiliteColor(var color: RGBColor);

Determining Current Colours and Best Intermediate Colours

procedure GetForeColor(var color: RGBColor);
procedure GetBackColor(var color: RGBColor);
procedure GetCPixel(h: integer; v: integer; var cPix: RGBColor);
function GetGray(device: GDHandle; var backGround: RGBColor;

var foreGround: RGBColor): boolean;

Creating, Setting and Disposing of Pixel Maps

function NewPixMap: PixMapHandle;
procedure CopyPixMap(srcPM: PixMapHandle; dstPM: PixMapHandle);
procedure SetPortPix(pm: PixMapHandle);
procedure DisposePixMap(pm: PixMapHandle);

Creating and Disposing of Pixel Patterns

function GetPixPat(patID: integer): PixPatHandle;
function NewPixPat: PixPatHandle;
procedure CopyPixPat(srcPP: PixPatHandle; dstPP: PixPatHandle);
procedure MakeRGBPat(pp: PixPatHandle; var myColor: RGBColor);
procedure DisposePixPat(pp: PixPatHandle);

Creating and Disposing of Colour Tables

function GetCTable(ctID: integer): CTabHandle;
procedure DisposeCTable(cTable: CTabHandle);

Retrieving Color QuickDraw Result Codes

function QDError: integer;

Getting and Setting the Highlight Colour and HighLight Mode (Defined in LowMem.h)

procedure LMGetHiliteRGB(var hiliteRGBValue: RGBColor);
procedure LMSetHiliteRGB(var hiliteRGBValue: RGBColor);
function LMGetHiliteMode : ByteParameter;
procedure LMSetHiliteMode(value: ByteParameter);

Color QuickDraw 11-17

Demonstration Program
{ ##1

2

// ColorQuickDrawPascal.p3

// ###4

//5

// This program:6

//7

// • Opens a window in which the results of various basic Color QuickDraw drawing8

// operations are displayed.9

//10

// Individual drawing operations are selected from a pull-down menu titled11

// 'Demonstration'.)12

//13

// • Quits when the user selects Quit from the File menu or clicks the window's close14

// box.15

//16

// The program utilises the following resources:17

//18

// • An 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).19

//20

// • 'WIND' resources (purgeable) (initially visible) for the main window, and for small21

// windows used for the CopyDeepMask and Transfer Modes demonstrations.22

//23

// • An 'ALRT' resource and associated 'DITL' resource (purgeable).24

//25

// • Three 'PICT' resources (purgeable).26

//27

// • Two 'pltt' resources (purgeable).28

//29

// • Two 'ppat' resources (purgeable);30

//31

// • A 'STR#' resource (purgeable).32

//33

// ### }34

35

program ColorQuickDrawPascal(input, output);36

37

{ ……… include the following Universal Interfaces }38

39

uses40

41

Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,42

Memory, Events, TextUtils, ToolUtils, OSUtils, Devices, Palettes, QDOffscreen,43

Resources, LowMem, GestaltEqu, Segload;44

45

{ ……… define the following constants }46

47

const48

49

mApple = 128;50

mFile = 129;51

iQuit = 11;52

mDemonstration = 131;53

iBitPattern = 1;54

iPixelPattern = 2;55

iCopyDeepMask = 3;56

iTransferModes = 4;57

iHighlighting = 5;58

iColorTable = 6;59

rWindow = 128;60

rImageWindow = 129;61

rMenubar = 128;62

rAlert = 128;63

rIndexedStrings = 128;64

rPaletteBaseID = 128;65

rPixelPattern1 = 128;66

rPixelPattern2 = 129;67

rPicture = 128;68

sColorQuickdraw = 1;69

sSettingMonitor = 2;70

sNeedMonitor = 3;71

sRestoringMonitor = 4;72

73

kMaxLong = $7FFFFFFF;74

11-18 Color QuickDraw

75

{ ……… global variables }76

77

var78

79

gDone : boolean;80

gWindowPtr : WindowPtr;81

gWhiteColour : RGBColor;82

gBlackColour : RGBColor;83

gOchreColour : RGBColor;84

gGreenColour : RGBColor;85

theErr, ignored : OSErr;86

response : longint;87

alertString : string;88

menubarHdl : Handle;89

menuHdl : MenuHandle;90

eventRec : EventRecord;91

gotEvent : boolean;92

93

{ ### DoInitManagers }94

95

procedure DoInitManagers;96

97

begin98

MaxApplZone;99

MoreMasters;100

101

InitGraf(@qd.thePort);102

InitFonts;103

InitWindows;104

InitMenus;105

TEInit;106

InitDialogs(nil);107

108

InitCursor;109

FlushEvents(everyEvent, 0);110

end;111

{of procedure DoInitManagers}112

113

{ ### DoBitPattern }114

115

procedure DoBitPattern;116

117

var118

a : integer;119

paletteHdl : PaletteHandle;120

theRect : Rect;121

sysPattern : Pattern;122

theString : string;123

124

begin125

for a := 0 to 1 do126

begin127

paletteHdl := GetNewPalette(rPaletteBaseID + a);128

SetPalette(gWindowPtr, paletteHdl, true);129

130

PmBackColor(2);131

FillRect(gWindowPtr^.portRect, qd.white);132

133

SetRect(theRect, 10, 30, 245, 150);134

PenSize(10, 20);135

GetIndPattern(sysPattern, sysPatListID, 16);136

PenPat(sysPattern);137

PmForeColor(35);138

PmBackColor(229);139

FrameRect(theRect);140

141

OffsetRect(theRect, 245, 0);142

GetIndPattern(sysPattern, sysPatListID, 37);143

PenPat(sysPattern);144

PmForeColor(229);145

PmBackColor(210);146

PaintRect(theRect);147

148

OffsetRect(theRect, -245, 130);149

GetIndPattern(sysPattern, sysPatListID, 18);150

PmForeColor(210);151

Color QuickDraw 11-19

PmBackColor(11);152

FillRoundRect(theRect, 50, 50, sysPattern);153

154

OffsetRect(theRect, 245, 0);155

GetIndPattern(sysPattern, sysPatListID, 19);156

PmForeColor(1);157

PmBackColor(0);158

FillOval(theRect, sysPattern);159

160

MoveTo(10, 20);161

PmForeColor(1);162

DrawString('Foreground background colours set with PmForeColor PmBackColor');163

NumToString(longint(a+1), theString);164

DrawString(' Palette No ');165

DrawString(theString);166

167

if (a = 0) then168

begin169

SetWTitle(gWindowPtr, 'Click mouse for another palette');170

while not (Button) do ;171

DisposePalette(paletteHdl);172

end;173

end;174

{of for loop}175

176

SetWTitle(gWindowPtr, 'Color QuickDraw');177

DisposePalette(paletteHdl);178

PenPat(qd.black);179

end;180

{of procedure DoBitPattern}181

182

{ ### DoPixelPattern }183

184

procedure DoPixelPattern;185

186

var187

pixpat1Hdl, pixpat2Hdl : PixPatHandle;188

theRect : Rect;189

oldClipHdl, regionAHdl, regionBHdl, regionCHdl, scrollRegionHdl : RgnHandle;190

a : integer;191

192

begin193

RGBBackColor(gWhiteColour);194

FillRect(gWindowPtr^.portRect, qd.white);195

196

pixpat1Hdl := GetPixPat(rPixelPattern1);197

if (pixpat1Hdl = nil) then198

ExitToShell;199

PenPixPat(pixpat1Hdl);200

PenSize(50, 0);201

SetRect(theRect, 15, 15, 240, 280);202

FrameRect(theRect);203

SetRect(theRect, 260, 15, 485, 280);204

FillCRect(theRect, pixpat1Hdl);205

206

pixpat2Hdl := GetPixPat(rPixelPattern2);207

if (pixpat2Hdl = nil) then208

ExitToShell;209

BackPixPat(pixpat2Hdl);210

211

regionAHdl := NewRgn;212

regionBHdl := NewRgn;213

regionCHdl := NewRgn;214

SetRect(theRect, 65, 15, 190, 280);215

RectRgn(regionAHdl, theRect);216

SetRect(theRect, 260, 15, 485, 280);217

RectRgn(regionBHdl, theRect);218

UnionRgn(regionAHdl, regionBHdl, regionCHdl);219

220

oldClipHdl := NewRgn;221

GetClip(oldClipHdl);222

SetClip(regionCHdl);223

224

SetRect(theRect, 65, 15, 485, 280);225

226

scrollRegionHdl := NewRgn;227

228

11-20 Color QuickDraw

for a := 0 to 279 do229

begin230

ScrollRect(theRect, 0, 1, scrollRegionHdl);231

theRect.top := theRect.top + 1;232

end;233

234

SetRect(theRect, 65, 15, 485, 280);235

BackPixPat(pixpat1Hdl);236

237

for a := 0 to 279 do238

begin239

ScrollRect(theRect, 0, -1, scrollRegionHdl);240

theRect.bottom := theRect.bottom - 1;241

end;242

243

SetClip(oldClipHdl);244

245

DisposePixPat(pixpat1Hdl);246

DisposePixPat(pixpat2Hdl);247

DisposeRgn(oldClipHdl);248

DisposeRgn(regionAHdl);249

DisposeRgn(regionBHdl);250

DisposeRgn(regionCHdl);251

DisposeRgn(scrollRegionHdl);252

253

PenPat(qd.black);254

end;255

{of procedure DoPixelPattern}256

257

{ ### DoCopyDeepMask }258

259

procedure DoCopyDeepMask;260

261

var262

sourceWindowPtr : WindowPtr;263

picture1Hdl, picture2Hdl : PicHandle;264

sourceRect, maskRect, destRect, maskDisplayRect : Rect;265

windowPortPtr : CGrafPtr;266

deviceHdl : GDHandle;267

gworldPortPtr : GWorldPtr;268

gworldPixMapHdl : PixMapHandle;269

regionHdl : RgnHandle;270

finalTicks : UInt32;271

ignored : OSErr;272

alsoIgnored : boolean;273

274

begin275

RGBForeColor(gBlackColour);276

RGBBackColor(gWhiteColour);277

FillRect(gWindowPtr^.portRect, qd.white);278

279

sourceWindowPtr := GetNewCWindow(rImageWindow, nil, WindowPtr(-1));280

if (sourceWindowPtr = nil) then281

ExitToShell;282

SetPort(sourceWindowPtr);283

284

picture1Hdl := GetPicture(rPicture);285

if (picture1Hdl = nil) then286

ExitToShell;287

HNoPurge(Handle(picture1Hdl));288

SetRect(sourceRect, 10, 10, 167, 122);289

DrawPicture(picture1Hdl, sourceRect);290

HPurge(Handle(picture1Hdl));291

292

SetRect(maskRect, 0, 0, 157, 112);293

GetGWorld(windowPortPtr, deviceHdl);294

ignored := NewGWorld(gworldPortPtr, 0, maskRect, nil, nil, 0);295

SetGWorld(gworldPortPtr, nil);296

gworldPixMapHdl := GetGWorldPixMap(gworldPortPtr);297

alsoIgnored := LockPixels(gworldPixMapHdl);298

EraseRect(gworldPortPtr^.portRect);299

picture2Hdl := GetPicture(rPicture+1);300

if (picture2Hdl = nil) then301

ExitToShell;302

HNoPurge(Handle(picture2Hdl));303

DrawPicture(picture2Hdl, maskRect);304

SetGWorld(windowPortPtr, deviceHdl);305

Color QuickDraw 11-21

306

SetPort(gWindowPtr);307

SetRect(maskDisplayRect, 19, 165, 176, 277);308

DrawPicture(picture2Hdl, maskDisplayRect);309

HPurge(Handle(picture2Hdl));310

MoveTo(43, 160);311

DrawString('Copy of offscreen mask');312

313

SetRect(destRect, 220, 20, 470, 275);314

regionHdl := NewRgn;315

OpenRgn;316

FrameOval(destRect);317

CloseRgn(regionHdl);318

319

PenSize(1, 1);320

PenPat(qd.ltGray);321

FrameRgn(regionHdl);322

MoveTo(315, 150);323

DrawString('The region');324

325

SetWTitle(sourceWindowPtr, 'Click Mouse to Copy');326

while not (Button) do ;327

FillRect(destRect, qd.white);328

329

CopyDeepMask(GrafPtr(sourceWindowPtr)^.portBits, GrafPtr(gworldPortPtr)^.portBits,330

GrafPtr(gWindowPtr)^.portBits, sourceRect, maskRect,331

destRect, srcCopy+ditherCopy, regionHdl);332

333

SetWTitle(sourceWindowPtr, 'Click Mouse to Close');334

Delay(60, finalTicks);335

336

while not (Button) do ;337

FillRect(gWindowPtr^.portRect, qd.white);338

339

UnlockPixels(gworldPixMapHdl);340

DisposeGWorld(gworldPortPtr);341

342

ReleaseResource(Handle(picture1Hdl));343

ReleaseResource(Handle(picture2Hdl));344

DisposeRgn(regionHdl);345

DisposeWindow(sourceWindowPtr);346

347

PenPat(qd.black);348

end;349

{of procedure DoCopyDeepMask}350

351

{ ### DoCheckMonitor }352

353

function DoCheckMonitor : integer;354

355

var356

mainDeviceHdl : GDHandle;357

result : integer;358

alertString : string;359

pixMapHdl : PixMapHandle;360

pixelDepth : integer;361

ignored : OSErr;362

363

begin364

mainDeviceHdl := LMGetMainDevice;365

result := HasDepth(mainDeviceHdl, 16, 0, 0);366

367

if (result = 0)368

thenbegin369

GetIndString(alertString, rIndexedStrings, sNeedMonitor);370

ParamText(alertString, '', '', '');371

ignored := NoteAlert(rAlert, nil);372

DoCheckMonitor := 0;373

Exit(DoCheckMonitor);374

end375

376

elsebegin377

pixMapHdl := mainDeviceHdl^^.gdPMap;378

pixelDepth := pixMapHdl^^.pixelSize;379

if (pixelDepth < 16) then380

begin381

GetIndString(alertString, rIndexedStrings, sSettingMonitor);382

11-22 Color QuickDraw

ParamText(alertString, '', '', '');383

ignored := NoteAlert(rAlert, nil);384

ignored := SetDepth(mainDeviceHdl, 16, 0, 0);385

DoCheckMonitor := pixelDepth;386

Exit(DoCheckMonitor);387

end;388

DoCheckMonitor := 2;389

end;390

end;391

{of function DoCheckMonitor}392

393

{ ### DoRestoreMonitor }394

395

procedure DoRestoreMonitor(monitorCheckResult : integer);396

397

var398

alertString : string;399

mainDeviceHdl : GDHandle;400

ignored : OSErr;401

402

begin403

GetIndString(alertString, rIndexedStrings, sRestoringMonitor);404

ParamText(alertString, '', '', '');405

ignored := NoteAlert(rAlert, nil);406

407

mainDeviceHdl := LMGetMainDevice;408

ignored := SetDepth(mainDeviceHdl, monitorCheckResult, 0, 0);409

end;410

{of procedure DoRestoreMonitor}411

412

{ ## DoTransferModes }413

414

procedure DoTransferModes;415

416

var417

monitorCheckResult, transferMode, stringIndex : integer;418

sourceWindowPtr : WindowPtr;419

sourceHdl, destinationHdl : PicHandle;420

sourceRect, destRect, blankRect : Rect;421

modeString : string;422

finalTicks : UInt32;423

424

begin425

monitorCheckResult := DoCheckMonitor;426

if (monitorCheckResult = 0) then427

Exit(DoTransferModes);428

429

RGBForeColor(gBlackColour);430

RGBBackColor(gWhiteColour);431

FillRect(gWindowPtr^.portRect, qd.white);432

433

sourceWindowPtr := GetNewCWindow(rImageWindow, nil, WindowPtr(-1));434

if (sourceWindowPtr = nil) then435

ExitToShell;436

SetWTitle(sourceWindowPtr, 'Source Image');437

438

SetPort(sourceWindowPtr);439

sourceHdl := GetPicture(rPicture);440

if (sourceHdl = nil) then441

ExitToShell;442

HNoPurge(Handle(sourceHdl));443

SetRect(sourceRect, 10, 10, 167, 122);444

DrawPicture(sourceHdl, sourceRect);445

HPurge(Handle(sourceHdl));446

447

SetPort(gWindowPtr);448

destinationHdl := GetPicture(rPicture+2);449

if (destinationHdl = nil) then450

ExitToShell;451

HNoPurge(Handle(destinationHdl));452

SetRect(destRect, 19, 165, 176, 277);453

DrawPicture(destinationHdl, destRect);454

MoveTo(55, 160);455

DrawString('Destination Image');456

457

SetRect(destRect, 270, 95, 427, 207);458

DrawPicture(destinationHdl, destRect);459

Color QuickDraw 11-23

SetRect(blankRect, 270, 50, 427, 207);460

461

stringIndex := 5;462

for transferMode := 0 to 39 do463

begin464

if (transferMode = 8) then465

transferMode := 32;466

467

GetIndString(modeString, rIndexedStrings, stringIndex);468

MoveTo(270, 70);469

DrawString('Click Mouse for ');470

DrawString(modeString);471

472

while not (Button) do ;473

474

FillRect(blankRect, qd.white);475

DrawPicture(destinationHdl, destRect);476

Delay(30, finalTicks);477

478

CopyBits(GrafPtr(sourceWindowPtr)^.portBits, GrafPtr(gWindowPtr)^.portBits,479

 sourceRect, destRect, transferMode + ditherCopy, nil);480

481

MoveTo(270, 92);482

if (transferMode < 8)483

thenDrawString('Boolean mode: ')484

elseDrawString('Arithmetic mode: ');485

DrawString(modeString);486

Delay(60, finalTicks);487

stringIndex := stringIndex + 1;488

end;489

{of for loop}490

491

MoveTo(270, 70);492

DrawString('Click Mouse to exit');493

while not (Button) do ;494

495

FillRect(gWindowPtr^.portRect, qd.white);496

497

ReleaseResource(Handle(sourceHdl));498

ReleaseResource(Handle(destinationHdl));499

DisposeWindow(sourceWindowPtr);500

501

if (monitorCheckResult <> 2) then502

DoRestoreMonitor(monitorCheckResult);503

end;504

{of procedure DoTransferModes}505

506

{ ### DoHighlighting }507

508

procedure DoHighlighting;509

510

var511

grafVarsHdl : GVarHandle;512

oldHighlightColour : RGBColor;513

a : integer;514

theRect : Rect;515

hiliteVal : ByteParameter;516

finalTicks : UInt32;517

518

begin519

RGBBackColor(gWhiteColour);520

FillRect(gWindowPtr^.portRect, qd.white);521

522

grafVarsHdl := GVarHandle (CGrafPtr(gWindowPtr)^.grafVars);523

oldHighlightColour := grafVarsHdl^^.rgbHiliteColor;524

525

for a := 0 to 2 do526

begin527

MoveTo(20, a*80+40);528

DrawString('Clearing the highlight bit and calling InvertRect.');529

Delay(60, finalTicks);530

SetRect(theRect, 10, a * 80 + 20, 490, a * 80 + 80);531

532

hiliteVal := LMGetHiliteMode;533

BitClr(Ptr(@hiliteVal), pHiliteBit);534

LMSetHiliteMode(hiliteVal);535

536

11-24 Color QuickDraw

if (a = 1)537

thenHiliteColor(gOchreColour)538

else if (a = 2) then539

HiliteColor(gGreenColour);540

InvertRect(theRect);541

542

MoveTo(20, a*80+55);543

Delay(60, finalTicks);544

DrawString('Click mouse to unhighlight. ');545

DrawString('(Note: The call to EraseRect reset the highlight bit ...');546

547

while not (Button) do ;548

549

MoveTo(20, a*80+70);550

DrawString('... so we clear the highlight bit again before calling InvertRect.)');551

Delay(60, finalTicks);552

553

BitClr(Ptr(@hiliteVal), pHiliteBit);554

LMSetHiliteMode(hiliteVal);555

556

InvertRect(theRect);557

end;558

{of for loop}559

560

HiliteColor(oldHighlightColour);561

Delay(60, finalTicks);562

MoveTo(20, 260);563

DrawString('Original highlight colour has been reset.');564

end;565

{of procedure DoHighlighting}566

567

{ ## DoColourTable }568

569

procedure DoColourTable;570

571

var572

pixMapHdl : PixMapHandle;573

colorTableHdl : CTabHandle;574

entries, a, b, c, i, j : integer;575

theRect : Rect;576

theColour : RGBColor;577

578

begin579

entries := 0;580

a := 0;581

b := 0;582

c := 0;583

RGBForeColor(gBlackColour);584

FillRect(gWindowPtr^.portRect, qd.black);585

586

pixMapHdl := CGrafPtr(gWindowPtr)^.portPixMap;587

colorTableHdl := pixMapHdl^^.pmTable;588

entries := colorTableHdl^^.ctSize;589

590

if (entries = 0)591

thenbegin592

RGBForeColor(gWhiteColour);593

MoveTo(90,135);594

DrawString('You need to set the monitor to 256 colours or less to get some');595

MoveTo(90,150);596

DrawString('entries in the colour table. At present, we have zero entries.');597

end;598

599

for i := 0 to 15 do600

begin601

a := i * 30 + 12;602

for j := 0 to 15 do603

begin604

b := j * 18 + 5;605

if (c > entries) then Exit(DoColourTable);606

SetRect(theRect, a, b, a+28, b+17);607

theColour := colorTableHdl^^.ctTable[c].rgb;608

c := c + 1;609

RGBForeColor(theColour);610

PaintRect(theRect);611

end;612

end;613

Color QuickDraw 11-25

end;614

{of procedure DoColourTable}615

616

{ ### DoRGBColours }617

618

procedure DoRGBColours;619

620

begin621

gWhiteColour.red := $FFFF;622

gWhiteColour.green := $FFFF;623

gWhiteColour.blue := $FFFF;624

625

gBlackColour.red := $0000;626

gBlackColour.green := $0000;627

gBlackColour.blue := $0000;628

629

gOchreColour.red := $CCCC;630

gOchreColour.green := $71FC;631

gOchreColour.blue := $6A28;632

633

gGreenColour.red := $460D;634

gGreenColour.green := $CCCC;635

gGreenColour.blue := $6BE2;636

end;637

{of procedure DoRGBColours}638

639

{ ## DoDemonstrationMenu }640

641

procedure DoDemonstrationMenu(menuItem : integer);642

643

begin644

case (menuItem) of645

646

iBitPattern:647

begin648

DoBitPattern;649

end;650

651

iPixelPattern:652

begin653

DoPixelPattern;654

end;655

656

iCopyDeepMask:657

begin658

DoCopyDeepMask;659

end;660

661

iTransferModes:662

begin663

DoTransferModes;664

end;665

666

iHighlighting:667

begin668

DoHighlighting;669

end;670

671

iColorTable:672

begin673

DoColourTable;674

end;675

676

end;677

{of case statement}678

end;679

{of procedure DoDemonstrationMenu}680

681

{ ### DoMenuChoice }682

683

procedure DoMenuChoice(menuChoice : longint);684

685

var686

menuID, menuItem : integer;687

itemName : string;688

daDriverRefNum : integer;689

690

11-26 Color QuickDraw

begin691

menuID := HiWord(menuChoice);692

menuItem := LoWord(menuChoice);693

694

if (menuID = 0) then695

Exit(DoMenuChoice);696

697

case (menuID) of698

699

mApple:700

begin701

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);702

daDriverRefNum := OpenDeskAcc(itemName);703

end;704

705

mFile:706

begin707

if (menuItem = iQuit) then708

gDone := true;709

end;710

711

mDemonstration:712

begin713

DoDemonstrationMenu(menuItem);714

end;715

716

end;717

{of case statement}718

719

HiliteMenu(0);720

end;721

{of procedure DoMenuChoice}722

723

{ ## DoMouseDown }724

725

procedure DoMouseDown(var eventRec : EventRecord);726

727

var728

myWindowPtr : WindowPtr;729

partCode : integer;730

731

begin732

partCode := FindWindow(eventRec.where, myWindowPtr);733

734

case (partCode) of735

736

inMenuBar:737

begin738

DoMenuChoice(MenuSelect(eventRec.where));739

end;740

741

inSysWindow:742

begin743

SystemClick(eventRec, myWindowPtr);744

end;745

746

inContent:747

begin748

if (myWindowPtr <> FrontWindow) then749

SelectWindow(myWindowPtr);750

end;751

752

inDrag:753

begin754

DragWindow(myWindowPtr, eventRec.where, qd.screenBits.bounds);755

end;756

757

inGoAway:758

begin759

if (TrackGoAway(myWindowPtr, eventRec.where)) then760

gDone := true;761

end;762

763

end;764

{of case statement}765

end;766

{of procedure DoMouseDown}767

Color QuickDraw 11-27

768

{ ### DoEvents }769

770

procedure DoEvents(var eventRec : EventRecord);771

772

var773

myWindowPtr : WindowPtr;774

charCode : char;775

776

begin777

myWindowPtr := WindowPtr(eventRec.message);778

779

case (eventRec.what) of780

781

mouseDown:782

begin783

DoMouseDown(eventRec);784

end;785

786

keyDown, autoKey:787

begin788

charCode := chr(BAnd(eventRec.message, charCodeMask));789

if (BAnd(eventRec.modifiers, cmdKey) <> 0) then790

DoMenuChoice(MenuKey(charCode));791

end;792

793

updateEvt:794

begin795

BeginUpdate(myWindowPtr);796

EndUpdate(myWindowPtr);797

end;798

799

end;800

{of case statement}801

end;802

{of procedure DoEvents}803

804

{ ## start of main program }805

806

begin807

808

{ …… initialise managers }809

810

DoInitManagers;811

812

{ …… check for Color QuickDraw }813

814

theErr := Gestalt(gestaltQuickdrawVersion, response);815

if (response < gestalt8BitQD) then816

begin817

GetIndString(alertString, rIndexedStrings, sColorQuickdraw);818

ParamText(alertString, '', '', '');819

ignored := StopAlert(rAlert, nil);820

ExitToShell;821

end;822

823

{ …… set up menu bar and menus }824

825

menubarHdl := GetNewMBar(rMenubar);826

if (menubarHdl = nil) then827

ExitToShell;828

SetMenuBar(menubarHdl);829

DrawMenuBar;830

831

menuHdl := GetMenuHandle(mApple);832

if (menuHdl = nil)833

thenExitToShell834

elseAppendResMenu(menuHdl, 'DRVR');835

836

{ …… open window }837

838

gWindowPtr := GetNewCWindow(rWindow, nil, WindowPtr(-1));839

if (gWindowPtr = nil) then840

ExitToShell;841

842

SetPort(gWindowPtr);843

TextSize(10);844

11-28 Color QuickDraw

845

{ …… create some RGB colours }846

847

DoRGBColours;848

849

{ …… eventLoop }850

851

gDone := false;852

853

while not (gDone) do854

begin855

gotEvent := WaitNextEvent(everyEvent, eventRec, kMaxLong, nil);856

if (gotEvent) then857

DoEvents(eventRec);858

end;859

860

end.861

862

{ ## }863

Demonstration Program Comments
When this program is run, the user should invoke demonstrations of various Color QuickDraw
drawing operations by choosing items from the Demonstration menu. One demonstration (Transfer
Modes) will not be invoked unless the user's machine is capable of displaying at least 16-bit
colour.

The constant declaration block

Lines 50-59 establish constants related to menu IDs and item numbers. Lines 60-68 establish
constants related to resource IDs. The constants at Lines 69-72 are used to index the 'STR#'
resource. Line 74 defines kMaxLong as the maximum possible long value. This value will be
assigned to WaitNextEvent's sleep parameter.

The variable declaration block

gDone controls program termination. gWindowPtr will be assigned a pointer to the main window.
The remaining globals will be assigned RGB colour values for black, white, ochre and green.

The procedure DoBitPattern

DoBitPattern is the first demonstration. It demonstrates the use of bit patterns in Color
QuickDraw. It also demonstrates the use of palettes and Palette Manager routines to specify
colours.

Note that, as is the case with all drawing demonstration functions in this program, some of
the code is related to program execution (for example, delays, setting the window title,
waiting for mouse clicks before proceeding, etc) and not to drawing operations per se. Those
parts of the code will generally be disregarded in the following comments.

Line 126 initiates a loop which will cycle twice. The first time through, some shapes will be
drawn using one palette's colours. The second time through, the same shapes will be drawn
using the same colour index numbers, but with another palette.

Line 128 retrieves a palette from a 'pltt' resource, allocating and initialising a new Palette
data structure. Line 129 applies that palette's values to the specified window.

Line 131 uses the Palette Manager routine PmBackColor to set the background colour, and Line
131 fills the port rectangle with that colour.

Lines 136-140 retrieve one of the system patterns, set the pen pattern to that pattern, set
the foreground and background colours to particular values, and draw a framed rectangle.
Lines 142-159 change the pen pattern and colours between painting a rectangle, filling a round
rectangle and filling an oval.

At Line 172, and during the first passage through the loop only, the memory occupied by the
Palette data structure is deallocated. When the loop repeats, a second palette's values will
be applied to the window (Lines 128-129). The memory occupied by the second Palette data
structure is deallocated at Line 178.

Color QuickDraw 11-29

The procedure DoPixelPattern

DoPixelPattern demonstrates pixel patterns. A framed and a filled rectangle are drawn. The
ScrollRect routine is then used to scroll the foreground out of the rectangles, replacing the
scrolled areas with a background pixel pattern, the drawing associated with the scrolling
being restricted by a clipping region comprising two separate rectangles.

Lines 194-195 set all pixels in the port rectangle to white.

At Line 197-200, a pixel pattern is retrieved from a 'ppat' resource and assigned to the pen.
A framed rectangle is then drawn (Line 203). Note that the pen height is set to zero (Line
201), meaning that the two sides of the rectangle will be drawn but not the top and bottom.

Lines 204-205 draw a filled rectangle using the retrieved pixel pattern. Note that, under
Color QuickDraw, the FillCRect, not the FillRect routine is used.

At Line 207, a new pixel pattern is retrieved from another 'ppat' resource. At Line 210, this
new pixel pattern becomes the background pattern.

Lines 212-219 create a region comprising two separate rectangles (one coincident with the
"inside" of the framed rectangle and the other coincident with the whole of the filled
rectangle). The current clipping region is then saved and the newly created region is
established as the clipping region (Lines 221-223).

Line 225 establishes a rectangle for the ScrollRect routine. Laterally, this extends from the
left inside of the framed rectangle to the right hand side of the filled rectangle. Line 227
creates the empty region required by the ScrollRect call.

Lines 229-233 scroll the rectangle downwards, the top of the rectangle being incremented
downwards between calls to ScrollRect. ScrollRect fills the "vacated" areas within the
clipping region with the background pattern .

Lines 235-236 reset the rectangle and change the background pattern to the first pattern. The
scrolling operation is then repeated, this time in an upwards direction (Lines 238-242).

Line 244 resets the clipping region to the region saved at Line 222. Lines 246-252 deallocate
the memory associated with the pixel patterns and regions.

The procedure DoCopyDeepMask

DoCopyDeepMask demonstrates the CopyDeepMask routine. A 16-bit source picture in one pixel
map is copied through a 16-bit mask in another (offscreen) pixel map to a destination. The
resulting image is scaled up and clipped to an oval-shaped region.

Firstly, at Lines 276-277, the foreground and background colours are set to black and white
respectively. (This should always be done before a call to CopyBits, CopyMask or
CopyDeepMask.) The window's port is then cleared to white.

Line 280 opens a small window, which will be used for the source image. Lines 283-291 set the
current port to this window's port, retrieve the source picture from a 'PICT' resource and
draw the picture in the window. (Since the 'PICT' resource has the purgeable bit set, it is
made non-purgeable immediately after it is retrieved, used immediately, and made purgeable
immediately after it is used.)

The mask pixel map cannot come from the screen. Accordingly, Lines 293-305 create an
offscreen graphics world, retrieve from a resource the picture to be used as the mask, and
draw the picture in the offscreen graphics port. (Note: Offscreen graphics world are
addressed at Chapter 12 - Offscreen Graphics Worlds, Pictures, Cursors and Icons. The code
here is "bare bones" and does not check for errors.)

Lines 307-310 set the drawing graphics port to the main window, draws the mask image in the
main window (simply so that the user can see what it looks like) and makes the associated
'PICT' resource purgeable now that it has been used for the last time.

Lines 314-318 create an oval-shaped region. So that the user can see this otherwise invisible
region, its outline is drawn in the main window at Lines 320-324.

When the user clicks the mouse button (Line 327), CopyDeepMask is called (Line 330). Note the
coercion to a GrafPtr in the first three parameters, the source mode specified (srcCopy +
ditherCopy) and the region specified in the last parameter.

When the user again clicks the mouse button (Line 337), the window is cleared to white, the
offscreen graphics world is disposed of (Lines 340-341), memory associated with the pictures
and the region is deallocated (Lines 341-345), and the small source window is disposed of
(Line 346).

11-30 Color QuickDraw

The procedure DoCheckMonitor

DoCheckMonitor checks if the user's main display device can display at least 16-bit direct
colour. If it cannot, the function informs the user via a dialog box and returns. If it can,
but if the pixel depth is currently set to a value lower than 16, the pixel depth is set to 16
after the user is informed of this imminent action via an Alert box. If the pixel depth is
currently at least 16, the function simply returns.

Line 365 gets a handle to the startup device. Line 366 checks whether the device supports a
pixel depth of 16. Lines 368-375 deal with the case of a device which does not support direct
colour.

The next step, if we are dealing with a direct device (Line 377), is to check the current
pixel depth setting. The method used here is to extract this value from the pixelSize field
of the PixMap record (Lines 378-379). If the value is less than 16 (Line 380), an advisory
Alert box is called up (Lines 382-384), SetDepth is called at Line 385 to set the device to a
pixel depth of 16, and the old pixel depth is returned to the calling function (Line 386).

If the pixel depth is already at least 16, Line 389 simply returns a positive value to the
calling function, no action having been taken by DoCheckMonitor.

The procedure DoRestoreMonitor

If DoCheckMonitor changed the pixel depth of the user's display device, DoRestoreMonitor is
called to return that device to the pixel depth setting prior to DoCheckMonitor being called.
This value is passed to DoRestoreMonitor as a formal parameter, having been passed to the
calling function at Line 386 of the DoCheckMonitor function.

Lines 404-406 first notify the user of the intended action via an Alert box. Lines 408-410
effect the change.

The procedure DoTransferModes

DoTransferModes demonstrates the Boolean and arithmetic transfer modes. At each click of the
user's mouse, a 16-bit source image is copied from one graphics port to another, overwriting
an image in the destination port. Each time the image is copied (using CopyBits), the
transfer mode is changed.

Firstly, at Line 426, a check is made of the user's display device. If the device is not
capable of displaying at least 16-bit colour, the function is exited (Line 428) following
DoCheckMonitor's advice to the user via an Alert box. If the device is capable of displaying
at least 16-bit colour, but is currently set to 256 colours or less, DoCheckMonitor will reset
the device's pixel depth to 16, advising the user of this action via an Alert box.

Since CopyBits will be called, Lines 430-431 set the foreground and background colours to
black and white respectively. Line 432 clears the window to white.

Line 434 opens a small window for the source image. Lines 440-445 retrieve a picture from a
'PICT' resource and draw the picture in the small window. (Since the 'PICT' resource is
purgeable, it is made non-purgeable immediately it is retrieved, used immediately, and
immediately made purgeable again.) Lines 449-454 retrieve another picture from a 'PICT'
resource and draw it into the bottom left of the main window. Lines 458-459 draw the same
picture in the right-middle of the main window. (The first draw is simply to continually
display to the user the appearance of the "destination" image. The second draw is the actual
destination to which the source pixel image will be copied.)

Line 462 establishes a loop which will be traversed once for each of the Boolean and
arithmetic transfer modes, with each traverse being initiated by the user clicking the mouse
button. The name of the transfer mode invoked during each traverse is printed in the window.

When the user clicks the mouse button (Line 473), the destination image is re-drawn in the
right-middle of the display window (Line 476). CopyBits is then called at Line 479 to copy
the source pixel image to the destination. Note that the transfer mode specified in this call
is changed every time around the loop.

When the loop exits and the user responds to a request for a terminating click of the mouse
button (Lines 493-494), the port rectangle is filled with the background colour (Line 496),
memory associated with the pictures is deallocated (Lines 498-499), and the small window is
disposed of (Line 500).

If Line 426 resulted in the program resetting the device's pixel depth, Lines 502-503 reset
the device to the old pixel depth saved at Line 426.

Color QuickDraw 11-31

The procedure DoHighlighting

DoHighlighting demonstrates highlighting, first with the colour set by the user in the Colour
control panel, and then with two colours set by the program.

Firstly, at Lines 523-524, the current highlight colour is saved.

Line 526 then initiates a loop which will be traversed three times. On the second and third
traverses, the highlight colour will be changed.

Within the loop, at Lines 533-535, a copy of the value at the low memory global HiliteMode is
acquired, BitClr is called to clear the highlight bit, and HiliteMode is set to this new
value. At Lines 539-540, the highlight colour is changed if this is the second or third time
around the loop. With the highlight bit cleared, InvertRect is called at Line 541 to invert a
specified rectangle.

Note that the call to InvertRect (Line 541) resets the highlight bit. Accordingly, when the
user clicks the mouse button (Line 548), the highlight bit is cleared once again (Lines 554-
555) before InvertRect is called once again. This second call restores the colour in the
specified rectangle to the background colour.

Before the DoHighLighting function returns, it sets the highlight colour (Line 561) to the
original highlight colour saved at Line 524.

The procedure DoColourTable

DoColourTable draws small rectangles in the window, one for each of the entries in the current
colour table. The trail to those entries, which are stored in an array, is from the CGrafPort
record to the PixMap record to the ColorTable record, and thence to each of the ColorSpec
records in the ctTable field (an array of type CSpecArray) of that ColorTable record.

Note that there will be no entries in the colour table unless the device has been set to 256
colours or less at some time during the current session.

Line 587 retrieves the handle to the PixMap record from the colour graphics port record. Line
589 gets the handle to the ColorTable record. Line 589 retrieves the number of entries in the
colour table.

If the colour table contains no entries (Line 591), a message is drawn in the window advising
the user that the monitor needs to be set to 256 colours or lessin order to view a colour
table (Lines 592-598).

The loop entered at Line 600 draws a rectangle for each array element in the ctTable field of
the ColorTable record. The variable c, which is incremented each time around the loop until
it is greater than the number of colour table entries, controls the exit from loop (Line 606).
The variable c also controls which RGBColor entry in the colour table is assigned as the
foreground colour each time through the loop (Lines 609-610).

The procedure DoRGBColours

DoRGBColours assigns colours to the global variables declared at Lines 82-85.

The procedures DoDemonstrationMenu,
DoMenuChoice

DoMenuChoice and DoDemonstrationMenu handle menu choices from the Apple, File and
Demonstration menus.

The procedures DoMouseDown, DoEvents

DoEvents and DoMouseDown perform minimal event handling consistent with the satisfactory
operation of the drawing aspects of the demonstration.

The main program block

The main function initialises the system software managers (Line 811) and then checks whether
the Color QuickDraw is available (Lines 815-816). If it is not, Lines 818-821 invoke a Stop
alert advising the user that the program requires Color QuickDraw. When the user clicks the
OK button, the program terminates.

Lines 826-835 set up the menus.

11-32 Color QuickDraw

Line 839 opens the main window. Since GetNewCWindow is used, the window will be created with a
colour graphics port.

Line 843 sets this window's colour graphics port as the current port for drawing and Line 844
sets the text size to 10 points.

Line 848 calls the application-defined routine doRGBColours to assign colour values to the
global variables declared at Lines 82-85.

The main event loop is entered at Line 854. It terminates when gDone is set to true.

Note that here, as in other areas of the program, error handling is somewhat rudimentary: the
program simply terminates.

Creating 'pltt' and 'ppat' Resources Using ResEdit

Creating 'pltt' Resources

The procedure for creating the two 'pltt' resources is as follows:

• Open BasicQuickDraw.µ.rsrc in ResEdit. Choose Resource/Create New Resource. A small
dialog opens. Click the pltt item in the scrolling list, and then click the dialog's OK button. The
pltts from ColorQuickDraw.µ.rsrc window opens, followed by the pltt ID = 128 from
ColorQuickDraw.µ.rsrc window. (ResEdit automatically assigns 128 as the resource ID of the
first 'pltt' resource you create.) Note that the palette is currently empty.

• Choose pltt/Load Colors…. A dialog opens. Click on the pltt radio button. Click on the items
in the list to explore the palettes. Click on the item ResEdit Standard Colors and click the OK
button. The dialog closes and the palette appears in the pltt ID = 128 from
ColorQuickDraw.µ.rsrc window. Before clicking the go-away box to close that window, note the
following:

• When you click a single colour patch, you can change its value by typing new numbers
into the Red, Green, and Blue editable text items, or by clicking the up and down arrows.

• You can create a colour ramp by Shift-clicking two colour patches to create a selection and
then choosing pltt/Blend.

• Other pltt menu items enable you to complement a colour and change the colour model
from Red/Green/Blue to Cyan/Magenta/Yellow, Hue/Saturation/Brightness, or
Hue/Lightness/Saturation.4

• Resource menu items are available for inserting a new colour and opening the colour
picker. Background menu items enable you to change the background to black, white, or
gray.

• Click the go-away box to close the pltt ID = 128 from ColorQuickDraw.µ.rsrc window. Choose
Resource/Create New Resource. The pltt ID = 129 from ColorQuickDraw.µ.rsrc window
opens. (ResEdit automatically increments the resource ID.)

• Choose pltt/Load Colors… . A dialog opens. This time, click on the clut radio button.5 Click on
the items in the list to explore the cluts. Click on the first item Unnamed and click the OK button.
A dialog appears advising you that 'pltt' resources must always have white and black as the
first two entries. Click the OK button. The dialog closes and the palette appears in the pltt ID =
129 from ColorQuickDraw.µ.rsrc window.

4Colour models are explained at Chapter 22 — Miscellany.
5'clut' and 'pltt' resources are largely interchangeable, but the 'pltt' resource also contains usage information. Palettes are associated
with windows.

Color QuickDraw 11-33

• Close the the pltt ID = 129 from ColorQuickDraw.µ.rsrc window. Close the pltts from
ColorQuickDraw.µ.rsrc window. A pltt icon representing the resources just created appears in
the ColorQuickDraw.µ.rsrc window.

Creating 'ppat' Resources

The procedure for creating the two 'ppat' resources is as follows:

• Choose Resource/Create New Resource. A small dialog opens. Click the ppat item in the
scrolling list, and then click the dialog's OK button. The ppats from ColorQuickDraw.µ.rsrc
window opened, followed by the ppat ID = 128 from ColorQuickDraw.µ.rsrc window. (ResEdit
automatically assigns 128 as the resource ID of the first 'ppat' resource you create.)

• Choose ppat/Pattern Size… . In the resulting dialog, click on the box representing the desired
pixel pattern size, then click the Resize button.

• Back in the ppat ID = 128 from ColorQuickDraw.µ.rsrc window, use the drawing tools provided
to draw the pixel pattern in the centre box. Then close the ppat ID = 128 from
ColorQuickDraw.µ.rsrc window.

• Choose Resource/Create New Resource. The ppat ID = 129 from ColorQuickDraw.µ.rsrc
window opens. (ResEdit automatically increments the resource ID.) Repeat the previous two
steps to create the pixel pattern, then close the ppat ID = 129 from ColorQuickDraw.µ.rsrc
window.

Close the ppats from ColorQuickDraw.µ.rsrc window. A pltt icon representing the resources just
created appears in the ColorQuickDraw.µ.rsrc window. Close the ColorQuickDraw.µ.rsrc window,
saving ColorQuickDraw.µ.rsrc.

