
Basic QuickDraw 10-1

10Version 1.2 (Frozen)

BASIC QUICKDRAW
Includes Demonstration Program BasicQuickDrawPascal

Mathematical Foundations of QuickDraw

QuickDraw defines the following mathematical constructs which are widely used in its routines and
data types:

• The coordinate plane.

• The point.

• The rectangle.

• The region.

The Coordinate Plane

QuickDraw maintains a global coordinate system for the entire potential drawing space. The screen
on which QuickDraw displays your images represents a small part of a large global coordinate plane.
The global coordinate plane is bounded by the limits of QuickDraw coordinates, which range from -
32768 to 32767. The (0, 0) origin point of the global coordinate plane is assigned to the upper-left corner
of the screen. From there, coordinate values decrease to the left and up and increase to the right and
down. Any pixel on the screen can be specified by a vertical coordinate (ordinarily labelled v) and a
horizontal coordinate (ordinarily labelled h).

FIG 1 - LOCAL AND GLOBAL COORDINATE SYSTEMS

- h

+ v

v

(h=0,v=0) IN GLOBAL COORDINATES

(h=70,v=60) IN GLOBAL COORDINATES
(h=0,v=0) IN LOCAL COORDINATES

- v

+ h

h

GLOBAL ORIGIN

WINDOW ORIGIN

10-2 Basic QuickDraw

In addition to the global coordinate system, QuickDraw maintains a local coordinate system for
every window. The relationship between global and local coordinates is shown at Fig 1.

Points

The intersection of (imaginary) horizontal and vertical grid lines on the coordinate plane marks a
point. There is a distinction between points on the coordinate grid and pixels (the dots which make
up the visible image on the screen). Points themselves are dimensionless whereas a pixel is not. As
shown at Fig 2, a pixel "hangs" down and to the right of the point by which it is addressed. A pixel
thus lies between the infinitely thin lines of the coordinate grid.

POINT

PIXEL

GRID LINES

FIG 2 - POINTS AND PIXELS

The data type for points is Point:

type
Point = record
case integer of
0: (

v:integer; {vertical coordinate.}
h:integer; {horizontal coordinate.}

);
1: (

vh: array [0..1] of integer;
);
end;

PointPtr = ^Point;

Rectangles

Rectangles are used to define active areas on the screen, to assign coordinate systems to graphics
entities, and to specify the sizes and locations for various graphics operations. Rectangles, like points,
are mathematical entities which have no direct representation on the screen. Just as points are
infinitely small, the borders of the rectangle are infinitely thin.

The data type for rectangles is Rect:

type
Rect = record
case integer of
0: (

top: integer;
left: integer;
bottom: integer;
right:integer;

);
1: (
topLeft:Point;
botRight: Point;
);
end;

RectPtr = ^Rect;

Basic QuickDraw 10-3

If the bottom coordinate of a rectangle is equal to or less than the top, or the right coordinate is less than
the left, the rectangle is an empty rectangle, that is, one that contains no data.

Regions

One of QuickDraw's most powerful features is to work with regions of arbitrary size, shape and
complexity. A region is an arbitrary area, or set of areas, the outline of which is one or more closed
loops. A region can be concave or convex, can consist of one connected area or many separate ones,
and can even have holes in the middle. In the examples at Fig 3, the region on the left has a hole and
the one on the right consists of two unconnected areas.

FIG 3 - TWO REGIONS

The data type for regions is Region:

type
Region = record

rgnSize: integer; {size in bytes}
rgnBBox: Rect; {enclosing rectangle}
… {More data if region is not rectangular.}
end;

RgnPtr = ^Region;
RgnHandle = ^RgnPtr;

The regionSize field contains the size, in bytes, of the region. The maximum size is 32 KB when using
Basic QuickDraw (64 KB when using Color QuickDraw). The rgnBBox field is a rectangle which
completely encloses the region.

The simplest region is a rectangle. In this case, the rgnBBox field defines the entire region, and there is
no optional region data. For rectangular regions (or empty regions), the rgnSize field contains 10. The
data for more complex regions is stored in a proprietary format.

Black and White Drawing: The Basic Graphics Port

The GrafPort Structure

Basic QuickDraw performs its operations in a graphics port based on a data structure of type GrafPort:

GrafPort = record
device: integer; {Device-specific information. (0 = screen.)}
portBits: BitMap; {BitMap.}
portRect: Rect; {Port Rectangle.}
visRgn: RgnHandle; {Visible region.}
clipRgn: RgnHandle; {Clipping region.}
bkPat: Pattern; {Background pattern.}
fillPat: Pattern; {Fill pattern.}
pnLoc: Point; {Pen location.}
pnSize: Point; {Pen size.}
pnMode: integer; {Pen mode.}
pnPat: Pattern; {Pen pattern.}
pnVis: integer; {Pen visibility.}
txFont: integer; {Font number for text.}
txFace: Style; {Text's font style.}
txMode: integer; {Transfer mode for text.}
txSize: integer; {Font size for text.}
spExtra: Fixed; {Spacing for full justification.}

10-4 Basic QuickDraw

fgColor: longint; {Foreground colour.}
bkColor: longint; {Background colour.}
colrBit: integer; {Colour bit}
patStretch: integer; {(Used internally.)}
picSave: Handle; {Picture being saved. (Used internally.)}
rgnSave: Handle; {Region being saved. (Used internally.)}
polySave: Handle; {Polygon being saved. (Used internally.)}
grafProcs: QDProcsPtr; {Low-level drawing routines.}
end;

GrafPtr = ^GrafPort;
WindowPtr = GrafPtr;

Field Descriptions

portBits The portBits field of a black-and-white graphics port contains the bitmap, a data structure
of type bitMap which defines a black-and-white physical image in terms of the QuickDraw
coordinate plane. The bitMap data type is as follows:

type
BitMap = record

baseAddr: Ptr; {Pointer to bit image.}
rowBytes: integer; {Row width.}
bounds: Rect; {Boundary rectangle.}
end;

BitMapPtr = ^BitMap;
BitMapHandle = ^BitMapPtr;

The baseAddr field contains a pointer to the beginning of the bit image.1 A bit image is a
collection of bits in memory that form a grid. Fig 4 illustrates a bit image, which can be
visualised as a matrix of rows and columns of bits with each row containing the same
number of bytes. A bit image can be any length that is a multiple of the row's width in
bytes.

FIG 4 - A BIT IMAGE

8 BITS

FIRST BYTE

LAST BYTE

ROWS TERMINATE ON A WORD BOUNDARY

The screen itself is one large visible bit image. On a Macintosh Classic, for example, the
screen is a 342-by-512 bit image, with a row width of 64 bytes. These 21,888 bytes of
memory are displayed as a matrix of 175,104 pixels on the screen. Each bit corresponds to
one screen pixel. If a bit's value is 0, its screen pixel is white; if the bit's value is 1, the
screen pixel is black.

The rowBytes field contains the width of a row in bytes. A bitmap must always begin on a
word boundary and contain an integral number of words in each row.

The bounds field is the bitmap's boundary rectangle. The boundary rectangle serves two
purposes. Its first purpose is to link the local coordinates system of a graphics port to
QuickDraw's global coordinate system (see Fig 5).

1There can be several bitMaps pointing to the same bit image, each imposing its own coordinate system on it.

Basic QuickDraw 10-5

FIG 5 - LOCAL AND GLOBAL COORDINATE SYSTEMS AND THE BOUNDARY RECTANGLE

- h

+ v

v

(h=0,v=0) IN GLOBAL COORDINATES

(h=70,v=60) IN GLOBAL COORDINATES
(h=0,v=0) IN LOCAL COORDINATES

- v

+ h

h
UPPER LEFT CORNER OF
BOUNDARY RECTANGLE:
h = - 70,v = - 60 IN LOCAL
COORDINATES

GLOBAL ORIGIN

WINDOW ORIGIN

The boundary rectangle's second purpose is to define the area of an image into which
QuickDraw can draw.

portRect The portRect field denotes the port rectangle that defines a subset of the bitmap to be used
for drawing. All drawing done by your application occurs inside the port rectangle. As
previously explained, the boundary rectangle defines the local coordinate system used by
the port rectangle. The port rectangle usually falls within the boundary rectangle, but it is
not required to do so.

visRgn The visRgn field designates the visible region of the graphics port. The visible region is the
region of the graphics port that is actually visible on screen, and is manipulated by the
Window Manager. For example, if the user moves one window in front of another, the
Window Manager logically removes the area of overlap from the visible region of the
window at the back. When you draw into the back window, whatever is being drawn is
clipped to the visible region so that it does not run over into the front window.

clipRgn The clipRgn field specifies the graphics port's clipping region, which you can use to limit
drawing to any region within the port rectangle. The initial clipping region is an arbitrarily
large rectangle covering the entire coordinate plane. You can set the clipping region to any
arbitrary region.

bkPat
fillPat

The bkPat and fillPat fields of a GrafPort record contain patterns used by certain
QuickDraw routines. The bkPat field contains the background pattern used when an area
is erased or when bits are scrolled out of it. When asked to fill an area with a specified
pattern, QuickDraw stores the given pattern in the fillPat field and then calls a low-level
drawing routine which uses the pattern stored in that field.

PnLoc
pnSize
pnMode
pnPat
pnVis

The PnLoc, pnSize, pnMode, pnPat, and pnVis fields of a graphics port relate to the graphics
pen. Each graphics port has one, and only one, such pen, which is used for drawing lines,
shapes and text. The pen has four characteristics: a location, a size (height and width), a
drawing mode, and a drawing pattern.

txFont
txFace
txMode
txSize
spExtra

The txFont, txFace, txMode, txSize, and spExtra fields of a graphics port determine how
text is drawn, that is, the typeface, font style, font size and how they are placed in a bit
image. QuickDraw can draw characters as quickly and easily as it draws lines and shapes.
Text is drawn with the baseline positioned at the pen location.

fgColor
bkColor
colorBit

The fgColor, bkColor, and colorBit fields contain values for drawing in the eight-colour
system available with basic QuickDraw. (On a colour screen, you can draw with these
eight colours even when you are using a basic graphics port.)

10-6 Basic QuickDraw

The fgColor field contains the graphics port foreground colour (the default is black) and
bkColor contains its background colour (the default is white). You can use ForeColor and
BackColor to change these fields. The colorBit field tells the colour imaging software
which plane of the colour picture to draw into.

Note that these colours are recorded when drawing into a QuickDraw picture2 (so that the
picture can be reconstructed using the specified colours) but they cannot be stored in a
bitmap.

More on The Boundary Rectangle, Port Rectangle, Visible Region and
Clipping Region

All drawing in a graphics port occurs in the intersection of the boundary rectangle and the port
rectangle and, within that intersection, all drawing is cropped to the graphics port's visible region and
its clipping region. Fig 6 illustrates the relationship between these rectangles and regions.

As shown at Fig 6, QuickDraw assigns the entire screen as the boundary rectangle of window A. The
boundary rectangle shares the same local coordinate system as the port rectangle of window A. The
upper-left corner (that is, the window origin) of this port rectangle has a horizontal coordinate of 0 and
a vertical coordinate of 0, whereas the upper-left corner for window A's boundary rectangle has a
horizontal coordinate of -60 and a vertical coordinate of -40. The clipping region shown has been set by
the program, using SetClip, to exclude the scroll bar areas of Window B. This ensures that any
drawing in Window B will not over-write the scroll bars.

WINDOW A

WINDOW B

TWO GRAPHICS PORTS

BOUNDARY RECTANGLE OF WINDOW A PORT RECTANGLE OF WINDOW A

VISIBLE REGION OF WINDOW A CLIPPING REGION OF WINDOW B

FIG 6 - BOUNDARY RECTANGLE, PORT RECTANGLE, VISIBLE REGION AND CLIPPING REGION

Drawing in Basic Graphics Ports

The QuickDraw routines described in the following operate in both a basic graphics port and a colour
graphics port. Many of these routines have additional capabilities when performed in the more
sophisticated colour environment provided by Color QuickDraw. However, if your application does
not use colour, or uses only a few colours, you may find it unnecessary to create the Color QuickDraw
environment.

2See Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and Icons.

Basic QuickDraw 10-7

The Graphics Pen

The metaphorical graphics pen used for drawing in the graphics port is rectangular in shape and its
size (that is, its height and width) is measured in pixels. The pen's default size is one-by-one pixel;
however, PenSize can be used to change the size and shape up to a 32 767-by-32 767 pixel square. Note
that, if either the width or height is set to 0, the pen does not draw.

Graphics Pen Characteristics

Whenever you draw into a graphics port, the characteristics of the graphics pen determine how the
drawing looks. Those characteristics are:

• Pen location, specified in local coordinates stored in the pnLoc field of the graphics port.

• Pen size , specified by the width and height (in pixels) stored in the pnSize field of the graphics
port.

• Pen pattern, which defines, in effect, the "ink" that the pen draws with, and which is stored in
the pnPat field of the graphics port. The pen pattern, which can range from solid black to
intricate patterns, is defined in a bit pattern.

• Pattern mode (also called transfer mode), which specifies how the pen pattern interacts with
white or any existing drawing that the pattern overlays, and which is stored in the pnMode field
of the graphics port.

• Pen visibility, specified by an integer stored in the pnVis field of the graphics port, indicating
whether drawing operations will actually appear. For example, for 0 or negative values, the pen
draws with "invisible ink".

The following QuickDraw routines relate to the graphics pen:

Routine Description
MoveTo
Move

Change the pen's location. The graphics pen can be located anywhere on the local coordinate
plane of the graphics port.

GetPen Determine the pen's current location.

PenPat Change the pen's bit pattern (see below).

PenMode Change the pen's pattern mode. (A pattern mode determines how the pen's bit pattern interacts
with the existing bit image according to one of eight Boolean operations.)

GetPenState Determine the size, location, pattern and pattern mode of the graphics pen. Returns a PenState
record.

SetPenState Restore the size, location, pattern and pattern mode retrieved by GetPenState after temporarily
changing those characteristics.

Bit Patterns

As previously stated, one characteristic of the graphics pen is the pen pattern, which is defined in a bit-
pattern. A bit-pattern is a 64-pixel image, organised as an 8-by-8 pixel square, which defines a
repeating design. The patterns defined in a bit pattern are usually black and white, although any two
of basic QuickDraw's eight colours can be used on a colour screen. Bit patterns are defined in data
structures of type Pattern.

Patterns were originally defined as:

Pattern = packed array [0..7] of 0..255;

With the introduction of the Universal Headers, the definition was changed to:

Pattern = record
pat: packed array [0..7] of SInt8;

end;

10-8 Basic QuickDraw

The old array definition of Pattern would cause 68000 based CPU's to crash in certain
circumstances. The new definition may require changes to older source code in order to
compile.

You can use bit patterns to draw lines and shapes. So that adjacent areas of the same pattern form a
continuous coordinated pattern, all patterns are drawn relative to the origin of the graphics port.

Five bit patterns are predefined as QuickDraw global variables (see Fig 7). The pattern white is the
default pattern for graphics ports.

white black dkGray gray ltGray

FIG 7 - RECTANGLES DRAWN USING THE FIVE BIT PATTERNS PREDEFINED AS GLOBAL VARIABLES

Other Bit Patterns

You can create your own bit patterns in your program code, but it is usually simpler and more
convenient to store them in resources of type 'PAT ' or 'PAT#'. You can use GetPattern and
GetIndPattern to access bit patterns stored as system resources.

The five predefined patterns are available not only through the global variables provided by
QuickDraw but also as system resources stored in the system resource file. A total of 38 bit patterns,
including the five basic patterns, are stored in the system resource file. Some are shown at Fig 8

FIG 8 - RECTANGLES DRAWN USING OTHER BIT PATTERNS IN THE SYSTEM RESOURCE FILE

Boolean Transfer Modes With 1-Bit Pixels

Another characteristic of the graphics pen is the transfer mode. Boolean transfer modes, which apply
to the one-bit pixels in the black-and-white drawing environment, describe an interaction between the
pixels that your application draws and the pixels that are already in the destination bitmap.

Note that these modes apply to the process of copying bits from one graphics port to another as well as
drawing with the graphics pen. Black-and-white drawing thus uses two types of Boolean transfer
modes:

• Pattern Modes. Pattern modes apply to drawing with the graphics pen. The penMode field of a
graphics port stores the pattern mode for the graphics pen.

• Source Modes. You use the source modes when using CopyBits (see below) to copy a bit
image from one graphics port to another, and also when drawing text. (The source mode for
text is stored in the textMode field of graphics port.

For both pattern and source modes, there are four Boolean operations: COPY, OR, XOR, and BIC (for
bit clear). Each of these operations has an inverse variant in which the pattern or source is inverted
before the transfer, so in fact there are eight operations in all. These eight operations have names
defined as constants. Those constants, and the effects of the transfer modes they represent on a one-bit
destination pixels, are as follows:

Basic QuickDraw 10-9

Pattern Mode Source Mode Action On Destination Pixel
If pattern or source
pixel is black

If pattern or source
pixel is white

patCopy srcCopy Force black Force white
notPatCopy notSrcCopy Force white Force black
patOr srcOr Force black Leave alone
notPatOr notSrcOr Leave alone Force black
patXor srcXor Invert Leave alone
notPatXor notSrcXor Leave alone Invert
patBic srcBic Force white Leave alone
notPatBic notSrcBic Leave alone Force white

Adding Dithering to Source Modes

You can add dithering to any source mode by adding the following constant, or the value it represents,
to the source mode:

ditherCopy = 64

Dithering primarily applies to colour environments, where it may be used to create additional (pseudo)
colours on indexed devices. Dithering also improves images that you shrink while copying them from
one graphics port to another, or that you copy from a direct pixel device to an indexed device. In the
black-and-white environment, using dithering when shrinking 1-bit images between basic graphics
ports can produce much better representations of the original images.

Drawing Lines, Rectangles, Ovals, Arcs and Wedges

By starting at a particular position and moving the graphics pen, you can use QuickDraw routines to
define and directly draw a number of graphics shapes using the size and pattern of the graphics pen.
The following describes how various graphics shapes are drawn with the graphics pen.

Lines

Using QuickDraw routines, you can draw lines onscreen using the size, pattern and pattern mode of
the graphics pen for the current graphics port. A line is defined by two points: the current location of
the graphics pen and its destination. The pen "hangs" below and to the right of the defining points, as
shown at Fig 9.

FIG 9 - A LINE DRAWN WITH A BIT PATTERN

POINT

POINT

PEN SIZE 20
BY 40 PIXELS

Rectangles

To give a rectangle a shape that can be drawn on the screen, you must use QuickDraw rectangle
drawing routines, all of which take a Rect as a parameter. All drawing by these routines is contained
within the rectangle defined by the Rect parameter. Fig 10 shows a rectangle drawn with the
QuickDraw routine FrameRect using the same graphics pen used at Fig 9. (Note that the black line
representing the rectangle defined in the Rect parameter used by FrameRect is shown for illustrative
purposes only.)

10-10 Basic QuickDraw

RECTANGLE
AS DEFINED
BY Rect

RECTANGLE AS DRAWN
BY FrameRect WITH 20
BY 40 GRAPHICS PEN

FIG 10 - A RECTANGLE DRAWN BY THE FrameRect PROCEDURE

Bounding Rectangles

You use rectangles known as bounding rectangles to define the outermost limits of other shapes, such
as rounded rectangles, ovals, arcs, and wedges. Bounding rectangles completely enclose the shapes
they bound, that is, no pixels extend outside the infinitely thin lines of the bounding rectangle.

Rounded Rectangles

A rounded rectangle is a rectangle with rounded corners. The figure is defined by a bounding
rectangle, along with the width and height of the ovals forming the corners (called the diameters of
curvature).

DIAMETER OF
CURVATURE

BOUNDING
RECTANGLE

ROUNDED
RECTANGLE

FIG 11 - A ROUNDED RECTANGLE

The corner width and corner height are limited to the width and height of the rectangle itself. If they
are longer, the rounded rectangle becomes an oval. Fig 11 shows a rounded rectangle drawn with the
QuickDraw routine FrameRoundRect.

Ovals, Arcs and Wedges

Ovals. An oval is a circular or elliptical shape defined by the bounding rectangle that encloses it.

Arcs and Wedges. An arc is a portion of the circumference of an oval bounded by a pair or radii
joining at the oval's centre. An arc does not include the bounding radii or any part of the oval's
interior. A wedge is a pie-shaped segment of an oval bounded by a pair of radii joining at the oval's
centre. A wedge includes part of the oval's interior. Arcs and wedges are defined by the bounding
rectangle that encloses the oval, along with a pair of angles marking the positions of the bounding
radii. Fig 12 shows an arc (drawn using the QuickDraw routine FrameArc) and a wedge (drawn using
the QuickDraw routine PaintArc).

FIG 12 - AN ARC AND A WEDGE

ARC

WEDGE

BOUNDING RADIUS

BOUNDING RECTANGLE

BOUNDING
RADIUS

BOUNDING
RADIUS

BOUNDING RADIUS

BOUNDING RECTANGLE

Basic QuickDraw 10-11

Drawing Polygons, Regions and Pictures

Three types of graphics objects — polygons, regions and pictures — require you to call several routines
to create and draw them. You begin by calling a routine that collects drawing commands into a
definition for the object. You then use a series of drawing routines to define the object before calling a
routine which signals the end of the object definition. Finally, you use a routine which draws your
newly-defined object.

Polygons

You use lines to define a polygon. First, however, you must call OpenPoly and then call LineTo a
number of times to create lines from the first vertex to the second, from the second vertex to the third,
and so on. You then call ClosePoly, which completes the definition process. After defining a polygon
in this way, you can draw the polygon using one of the framing, painting, filling, erasing or inverting
routines for polygons (see below).

FIG 13 - DRAWING A POLYGON

Fig 13 shows the same polygon drawn with FramePoly (on the left) and FillPoly (on the right). In this
particular polygon, the final defining line from the last vertex back to the first vertex was not drawn. In
this situation, FillPoly, in effect, completes the polygon, whereas FramePoly does not. Note also that,
as in line drawing, FramePoly hangs the pen down and to the right of the infinitely thin lines that define
the polygon.

Regions

To define a region, you can use any set of lines or shapes, including other regions, so long as the
region's outline consists of one or more closed loops. First, however, you must call NewRgn and OpenRgn.
You then use line, shape, or region drawing commands to define the region. When you have finished
collecting commands to define the outline of the region, you call CloseRgn. You can then draw the
region using one of the framing, painting, filling, erasing or inverting routines for regions (see below).

Fig 14 shows a region comprising two rectangles and an overlapping oval, drawn using PaintRgn.
Note that, where two figures overlap, the additional area is added to the region and the overlap is
removed from the region.

FIG 14 - DRAWING A REGION

Pictures

Your application can record a sequence of QuickDraw drawing operations in a picture and play its
image back later. Pictures provide a form of graphic data exchange: one program can draw something

10-12 Basic QuickDraw

that was defined in another program, with great flexibility and without having to know any details
about what is being drawn. Fig 15 shows an example of a simple picture containing a rectangle and an
oval.

FIG 15 - A SIMPLE QUICKDRAW PICTURE

TEXT

The subject of pictures is addressed in more detail at Chapter 12 — Offscreen Graphics Worlds,
Pictures, Cursors, and Icons.

Routines for Drawing Lines

You specify where to begin drawing a line by using MoveTo or Move to place the graphics pen at some
point in the window's local coordinate system. You then call LineTo or Line to draw the line from there
to another point. MoveTo and LineTo require you to specify a point in the local coordinate system of the
current graphics port. Move and Line require relative horizontal and vertical distances.

Routines for Drawing Shapes — Framing, Painting, Filling, Erasing, and
Inverting

QuickDraw routines for drawing shapes may be divided into five groups as follows:

• Framing. Framing a shape draws its outline only, using the current pen size, pen pattern, and
pattern mode. The interior of the shape in unaffected.

• Painting and Filling. Painting a shape fills both its outline and its interior with the current
pen pattern. Filling a shape fills both its outline and its interior with the pattern specified in the
fillPat field of the basic graphics port.

• Erasing. Erasing a shape fills both its outline and its interior with the current background
pattern, that is, the pattern specified in the bkPat field of the basic graphics port

• Inverting. Inverting a shape reverses the colours of all pixels within its boundary. On a black-
and-white monitor, all the black pixels become white and vice versa.

The following lists the available framing, painting, filling and erasing routines:

Frame Paint & Fill Erase Invert Shape
Drawn/Erased/Inverted

FrameRect PaintRect
FillRect

EraseRect InvertRect A rectangle. Position and size are
defined by a Rect structure.

FrameOval PaintOval
FillOval

EraseOval InvertOval An oval. Position and size are
determined by a bounding rectangle
specified by a Rect structure.

FrameRoundRect PaintRoundRect
FillRoundRect

EraseRoundRect InvertRoundRec
t

A rounded rectangle. Position and
size are determined by a bounding
rectangle specified by a Rect
structure. Curvature of the corners
is defined by ovalWidth and
ovalHeight parameters.

FrameArc PaintArc
FillArc

EraseArc InvertArc An arc. Position and size are
determined by a bounding rectangle
specified by a Rect structure.
Starting point and arc extent are
determined by startAngle and
arcAngle parameters.

Basic QuickDraw 10-13

FramePoly PaintPoly
FillPoly

ErasePoly InvertPoly A polygon. Draws the polygon by
"playing back" all the line drawing
calls that define it.

FrameRgn PaintRgn
FillRgn

EraseRgn InvertRgn As defined by the specified region.

Drawing Text

On the Macintosh, text is just another form of graphics, as is evidenced by the basic graphics port text-
related fields txFont, txFace, TxSize, txMode, and spExtra. QuickDraw routines are available for
changing the values in these fields.

Setting the Font

The font used to draw text in a graphics port may be set using TextFont. TextFont takes a single
parameter, of type short, which may be either a predefined constant or a font family ID number. The
predefined constants3 are as follows:

systemFont = 0 { System font (Chicago). Used to draw text in menus, dialog boxes,}
{etc. The Chicago font family ID is 0.}

applFont = 1 {Default application font (Geneva). Suggested default font for use by}
{applications which do not support user selection of fonts.}

newYork = 2
geneva = 3
monaco = 4
venice = 5
london = 6
athens = 7
sanFran = 8
toronto = 9
cairo = 11
losAngeles = 12
times = 20
helvetica = 21
courier = 22
symbol = 23
mobile = 24

For fonts not represented by these predefined constants, if you know the font name, you can get the
font family ID4 using GetFNum.5 For example, the following sets the current font to Palatino:

fontNum: integer;

GetFNum("Palatino", fontNum);
TextFont(fontNum);

Note that the system font and the application font have special font designators. The system font's
special font designator is 0 and the application font's special font designator is 1. These special
designators are not actual font family (resource) ID numbers and cannot be used as such in Resource
Manager calls; however, they can be used in place of the font family ID in the txFont field of the
graphics port and in text-related calls that take a font family ID. The system maps the special
designators to the actual font family IDs.

Do not use the font family ID of 0 to specify the Chicago font because the ID can vary on localised
systems. To specify the Chicago font, follow the same procedure as in the example for Palatino, above.

3The predefined constants should be used with caution, since most of the fonts they represent have become obsolete.
4Fonts are resources, and the font family ID is a resource ID.
5If you know the font family ID, you can get its name by calling the Font Manager's GetFontName procedure. If you do not know either the
font family ID or the font name, you can use the Resource Manager's GetIndResource function followed by the GetResInfo function to
determine the names and IDs of all available fonts.

10-14 Basic QuickDraw

Setting and Modifying the Text Style

You use TextFace to change the text style, using any combination of the constants bold, italic,
underline, outline, shadow, condense, and extend. Some examples of usage are as follows:

TextFace(bold); {Set to bold.}
TextFace(bold + italic); {Set to bold and italic.)}
TextFace(thePort^.txFace + bold); {Add bold to existing.}
TextFace(thePort^.txFace - bold); {Remove bold.}
TextFace(normal); {Set to plain.}

Setting the Font Size

You use TextSize to change the font size in typographical points . A point is approximately 1/72 inch,
which is very close to the size of a screen pixel.

Changing the Width of Characters

Widening and narrowing space and non-space characters lets you meet special formatting
requirements. You use SpaceExtra to specify the extra pixels to be added to or subtracted from the
standard width of the space character. SpaceExtra is ordinarily used in application-defined text-
justification routines.

Specifying the Transfer Mode

The transfer mode may be set using TextMode. By default, the transfer mode is set to srcOr, which
causes drawn text to overlay the existing graphics. This mode produces the best results for drawing
text because it writes only those bits which make up the actual glyph.6

While all of the transfer modes apply to the drawing of text, you should generally use either srcOr or
srcBic when drawing text, because all other transfer modes can result in the clipping of glyphs by
adjacent glyphs.

The grayishTextOr Text Transfer Mode. The non-standard text drawing transfer
modegrayishTextOr is useful for displaying disabled user interface items.7 This mode produces a
dithered black and white glyph on a black and white destination device.

Drawing Other Graphics Entities

In addition to drawing lines, rectangles, rounded rectangles, ovals, arcs, wedges, polygons and regions,
and text, you can also use QuickDraw to draw the following:

• Cursors, which are 16-by-16 pixel images which map the user's movements of the mouse to
relative locations on the screen.

• Icons, which are images (usually 32-by-32 or 16-by-16 pixels) which represents an object,
concept, or message. Icons are stored as resources.

Cursors and Icons are addressed at Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and
Icons.)

Manipulating Rectangles and Regions

QuickDraw provides many routines for manipulating rectangles and regions. You can use the routines
which manipulate rectangles to manipulate any shape based on a rectangle, that is, rounded rectangles,
ovals , arcs, and wedges.

6A glyph is the visual representation of a character.
7The grayishTextOr mode is considered non-standard because it is not stored in pictures and printing with it is undefined.

Basic QuickDraw 10-15

For example, you could define a rectangle to bound an oval and then frame the oval. You could then
use OffsetRect to move the oval's bounding rectangle downwards. Using the offset bounding
rectangle, you could frame a second, connected oval to form a figure eight with the first oval. You
could then use that shape to help define a region. You could create a second region, and then use
UnionRgn to create a region from the union of the two.

Manipulating Rectangles

The following summarises the routines for manipulating, and performing calculations on, rectangles:

Routine Description
EmptyRect Determine whether a rectangle is an empty rectangle.
EqualRect Determine whether two rectangles are equal.
InsetRect Shrinks or expands a rectangle.
OffsetRect Moves a rectangle.
PtInRect Determines whether a pixel is enclosed in a rectangle.
PtToAngle Calculates the angle from the middle of a rectangle to a point.
Pt2Rect Determines the smallest rectangle that encloses two points.
SectRect Determines whether two rectangles intersect.
UnionRect Calculates the smallest rectangle that encloses two rectangles.

Manipulating Regions

The following summarises the routines for manipulating, and performing calculations on, regions:

Routine Description
CopyRgn Makes a copy of a region.
DiffRgn Subtracts one region from another.
EmptyRgn Determines whether a region is empty.
EqualRgn Determines whether two regions have identical sizes, shapes, and locations.
InsetRgn Shrinks or expands a region.
OffsetRgn Moves a region.
PtInRgn Determines whether a pixel is within a region.
RectInRgn Determines whether a rectangle intersects a region.
RectRgn Changes the structure of an existing region to that of a rectangle (using a Rect).
SectRgn Calculates the intersection of two regions.
SetEmptyRgn Sets a region to empty.
SetRectRgn Changes the structure of an existing region to that of a rectangle (using coordinates).
UnionRgn Calculates the union of two regions.
XorRgn Calculates the difference between the union and the intersection of two regions.

Manipulating Polygons

Note that, while you can use OffSetPoly to move a polygon, QuickDraw provides no other routines for
calculating or manipulating polygons.

Scaling Shapes and Regions Within the Same Graphics Port

To scale shapes and regions within the same graphics port, you can use the routines ScalePt, MapPt,
MapRect, MapRgn, and MapPoly.

Copying Bits Between Graphics Ports

QuickDraw provides the following three primary image-processing routines:

• CopyBits, which copies a bitmap image to another graphics port, with facilities for:

• Resizing the image.

10-16 Basic QuickDraw

• Modifying the image with transfer modes.

• Clipping the image to a region.

• CopyMask, which copies a bitmap image to another graphics port, with facilities for:

• Resizing the image.

• Modifying the image by passing it through a mask.

• CopyDeepMask, which combines the effects of CopyBits and CopyMask, allowing you to:

• Resize the image.

• Clip the image to a region.

• Specify a transfer mode.

• Modify the image by passing it through a mask.

When copying images between basic graphics ports using CopyBits, you specify a source bitmap and a
destination bitmap. If you specify different sized source and destination rectangles, CopyBits scales the
source image to fit the destination. The manner by which CopyBits transfers the bits between bitmaps
depends on the source mode that you specify in the CopyBits call.

To copy only certain bits from a bitmap, you can use CopyMask, which is a specialised variant of
CopyBits. CopyMask transfers bits only where the corresponding bits of another bit image, which serves
as a mask, are set to 1 (that is, black). Note that CopyMask, unlike CopyDeepMask, does not allow scaling
or resizing.

Use of Offscreen Graphics Worlds

To gracefully display complex images, your application should construct the image in an offscreen
graphics world and then use CopyBits to transfer the image to the onscreen graphics port. (Offscreen
graphics worlds are addressed at Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and
Icons.)

Scrolling Pixels in the Port Rectangle

You can use ScrollRect to scroll the pixels in the port rectangle. ScrollRect takes four parameters: the
rectangle to scroll, a horizontal distance to scroll, a vertical distance to scroll, and a region handle.

Main Basic QuickDraw Constants, Data Types and Routines

Constants

Basic QuickDraw Colours

whiteColor = 30
blackColor = 33
yellowColor = 69
magentaColor = 137
redColor = 205
cyanColor = 273
greenColor = 341
blueColor = 409

Pattern Modes

patCopy = 8
patOr = 9
patXor = 10

Basic QuickDraw 10-17

patBic = 11
notPatCopy = 12
notPatOr = 13
notPatXor = 14
notPatBic = 15

Source Modes

srcCopy = 0
srcOr = 1
srcXor = 2
srcBic = 3
notSrcCopy = 4
notSrcOr = 5
notSrcXor = 6
notSrcBic = 7
ditherCopy = 64

Special Text Transfer Mode

grayishTextOr = 49;

Pattern List Resource ID for Patterns in the System File

sysPatListID= 0;

Data Types

Pattern

Pattern = record
pat: packed array [0..7] of SInt8;
end;

PatPtr = ^Pattern;
PatHandle = ^PatPtr;

Patterns were originally defined as:

Pattern = packed array [0..7] of 0..255;

The old array definition of Pattern would cause 68000 based CPU's to crash in certain circumstances. The new
definition may require changes to older source code in order to compile.

Point

Point = record
CASE integer of
0: (

v: integer; {vertical coordinate.}
h: integer; {horizontal coordinate.}

);
1: (

vh: array [0..1] of integer;
);
end;

PointPtr = ^Point;

Rect

Rect = record
CASE integer of
0: (

top: integer;
left: integer;
bottom: integer;
right: integer;

);
1: (

10-18 Basic QuickDraw

topLeft: Point;
botRight: Point;

);
end;

RectPtr = ^Rect;

Region

Region = record
rgnSize: integer; {size in bytes}
rgnBBox: Rect; {enclosing rectangle}
… {More data if region is not rectangular.}
end;

RgnPtr = ^Region;
RgnHandle = ^RgnPtr;

GrafPort

GrafPort = record
device: integer; {Device-specific information. (0 = screen.)}
portBits: BitMap; {BitMap.}
portRect: Rect; {Port Rectangle.}
visRgn: RgnHandle; {Visible region.}
clipRgn: RgnHandle; {Clipping region.}
bkPat: Pattern; {Background pattern.}
fillPat: Pattern; {Fill pattern.}
pnLoc: Point; {Pen location.}
pnSize: Point; {Pen size.}
pnMode: integer; {Pen mode.}
pnPat: Pattern; {Pen pattern.}
pnVis: integer; {Pen visibility.}
txFont: integer; {Font number for text.}
txFace: Style; {Text's font style.}
txMode: integer; {Transfer mode for text.}
txSize: integer; {Font size for text.}
spExtra: Fixed; {Spacing for full justification.}
fgColor: longint; {Foreground colour.}
bkColor: longint; {Background colour.}
colrBit: integer; {Colour bit}
patStretch: integer; {(Used internally.)}
picSave: Handle; {Picture being saved. (Used internally.)}
rgnSave: Handle; {Region being saved. (Used internally.)}
polySave: Handle; {Polygon being saved. (Used internally.)}
grafProcs: QDProcsPtr; {Low-level drawing routines.}
end;

GrafPtr = ^GrafPort;
WindowPtr = GrafPtr;

BitMap

BitMap = record
baseAddr: Ptr; {Pointer to bit image.}
rowBytes: integer; {Row width.}
bounds: Rect; {Boundary rectangle.}
end;

BitMapPtr = ^BitMap;
BitMapHandle = ^BitMapPtr;

Polygon

Polygon = record
polySize: integer;
polyBBox: Rect;
polyPoints:array [0..0] of Point;
end;

PolyPtr = ^Polygon;
PolyHandle = ^PolyPtr;

Basic QuickDraw 10-19

PenState

PenState = record
pnLoc: Point;
pnSize: Point;
pnMode: integer;
pnPat: Pattern;
end;

Routines

Initialising QuickDraw

procedure InitGraf(globalPtr: UNIV Ptr);

Opening and Closing Basic Graphics Ports

procedure OpenPort(port: GrafPtr);
procedure InitPort(port: GrafPtr);
procedure ClosePort(port: GrafPtr);

Saving and Restoring Graphics Ports

procedure SetPort(port: GrafPtr);
procedure GetPort(var port: GrafPtr);

Managing BitMaps, Port Rectangles and Clipping Regions

procedure ScrollRect(var r: Rect; dh: integer; dv: integer; updateRgn: RgnHandle);
procedure SetOrigin(h: integer; v: integer);
procedure PortSize(width: integer; height: integer);
procedure MovePortTo(leftGlobal: integer; topGlobal: integer);
procedure SetClip(rgn: RgnHandle);
procedure GetClip(rgn: RgnHandle);
procedure ClipRect(var r: Rect);
function BitMapToRegionGlue(region: RgnHandle; var bMap: BitMap): OSErr;
procedure SetPortBits(var bm: BitMap);

Manipulating Points in Graphics Ports

procedure LocalToGlobal(var pt: Point);
procedure GlobalToLocal(var pt: Point); void AddPt(Point src,Point *dst);
procedure SubPt(src: Point; var dst: Point);
procedure SetPt(var pt: Point; h: integer; v: integer);
function EqualPt(pt1: Point; pt2: Point): boolean;
function GetPixel(h: integer; v: integer): boolean;

Managing the Graphics Pen

procedure HidePen;
procedure ShowPen;
procedure GetPen(var pt: Point);
procedure GetPenState(var pnState: PenState);
procedure SetPenState(var pnState: PenState);
procedure PenSize(width: integer; height: integer); void HidePen(void);
procedure PenMode(mode: integer);
procedure PenPat(var pat: Pattern);
procedure PenNormal;

Changing the BackGround Bit Pattern

procedure BackPat(var pat: Pattern);

Drawing Lines

procedure MoveTo(h: integer; v: integer);
procedure Move(dh: integer; dv: integer);
procedure LineTo(h: integer; v: integer);
procedure Line(dh: integer; dv: integer);

10-20 Basic QuickDraw

Creating and Managing Rectangles

procedure SetRect(var r: Rect; left: integer; top: integer; right: integer; bottom: integer);
procedure OffsetRect(var r: Rect; dh: integer; dv: integer);
procedure InsetRect(var r: Rect; dh: integer; dv: integer);
function SectRect(var src1: Rect; var src2: Rect; var dstRect: Rect): boolean;
procedure UnionRect(var src1: Rect; var src2: Rect; var dstRect: Rect);
function PtInRect(pt: Point; var r: Rect): boolean;
procedure Pt2Rect(pt1: Point; pt2: Point; var dstRect: Rect);
procedure PtToAngle(var r: Rect; pt: Point; var angle: integer);
function EqualRect(var rect1: Rect; var rect2: Rect): boolean;
function EmptyRect(var r: Rect): boolean;

Drawing Rectangles

procedure FrameRect(var r: Rect);
procedure PaintRect(var r: Rect);
procedure EraseRect(var r: Rect);
procedure InvertRect(var r: Rect);
procedure FillRect(var r: Rect; var pat: Pattern);

Drawing Rounded Rectangles

procedure FrameRoundRect(var r: Rect; ovalWidth: integer; ovalHeight: integer);
procedure PaintRoundRect(var r: Rect; ovalWidth: integer; ovalHeight: integer);
procedure EraseRoundRect(var r: Rect; ovalWidth: integer; ovalHeight: integer);
procedure InvertRoundRect(var r: Rect; ovalWidth: integer; ovalHeight: integer);
procedure FillRoundRect(var r: Rect; ovalWidth: integer; ovalHeight: integer;

var pat: Pattern);

Drawing Ovals

procedure PaintOval(var r: Rect);
procedure EraseOval(var r: Rect);
procedure InvertOval(var r: Rect);
procedure FillOval(var r: Rect; var pat: Pattern);

Drawing Arcs and Wedges

procedure FrameArc(var r: Rect; startAngle: integer; arcAngle: integer);
procedure PaintArc(var r: Rect; startAngle: integer; arcAngle: integer);
procedure EraseArc(var r: Rect; startAngle: integer; arcAngle: integer);
procedure InvertArc(var r: Rect; startAngle: integer; arcAngle: integer);
procedure FillArc(var r: Rect; startAngle: integer; arcAngle: integer; var pat: Pattern);

Creating and Managing Polygons

function OpenPoly: PolyHandle;
procedure ClosePoly;
procedure KillPoly(poly: PolyHandle);
procedure OffsetPoly(poly: PolyHandle; dh: integer; dv: integer);

Drawing and Painting Polygons

procedure FramePoly(poly: PolyHandle);
procedure PaintPoly(poly: PolyHandle);
procedure ErasePoly(poly: PolyHandle);
procedure InvertPoly(poly: PolyHandle);
procedure FillPoly(poly: PolyHandle; var pat: Pattern); PolyHandle OpenPoly(void);

Creating and Managing Regions

function NewRgn: RgnHandle;
procedure OpenRgn;
procedure CloseRgn(dstRgn: RgnHandle);
procedure DisposeRgn(rgn: RgnHandle);
procedure CopyRgn(srcRgn: RgnHandle; dstRgn: RgnHandle);
procedure SetEmptyRgn(rgn: RgnHandle);
procedure SetRectRgn(rgn: RgnHandle; left: integer; top: integer; right: integer;

bottom: integer);
procedure RectRgn(rgn: RgnHandle; var r: Rect);
procedure OffsetRgn(rgn: RgnHandle; dh: integer; dv: integer);
procedure InsetRgn(rgn: RgnHandle; dh: integer; dv: integer);
procedure SectRgn(srcRgnA: RgnHandle; srcRgnB: RgnHandle; dstRgn: RgnHandle);

Basic QuickDraw 10-21

procedure UnionRgn(srcRgnA: RgnHandle; srcRgnB: RgnHandle; dstRgn: RgnHandle);
procedure DiffRgn(srcRgnA: RgnHandle; srcRgnB: RgnHandle; dstRgn: RgnHandle); void

DisposeRgn(RgnHandle rgn);
procedure XorRgn(srcRgnA: RgnHandle; srcRgnB: RgnHandle; dstRgn: RgnHandle);
function PtInRgn(pt: Point; rgn: RgnHandle): boolean;
function RectInRgn(var r: Rect; rgn: RgnHandle): boolean;
function EqualRgn(rgnA: RgnHandle; rgnB: RgnHandle): boolean;
function EmptyRgn(rgn: RgnHandle): boolean;
function BitMapToRegion(region: RgnHandle; var bMap: BitMap): OSErr;

Drawing Regions

procedure FrameRgn(rgn: RgnHandle);
procedure PaintRgn(rgn: RgnHandle);
procedure EraseRgn(rgn: RgnHandle);
procedure InvertRgn(rgn: RgnHandle);
procedure FillRgn(rgn: RgnHandle; var pat: Pattern);

Setting Text Characteristics

procedure TextFont(font: integer);
procedure TextFace(face: Style);
procedure TextMode(mode: integer);
procedure TextSize(size: integer);
procedure SpaceExtra(extra: Fixed);
procedure GetFontInfo(var info: FontInfo);

Drawing Text

procedure DrawChar(ch: char);
procedure DrawString(s: ConstStr255Param);
procedure DrawText(textBuf: UNIV Ptr; firstByte: integer; byteCount: integer);

Measuring Text

function CharWidth(ch: char): integer;
function StringWidth(s: ConstStr255Param): integer;
function TextWidth(textBuf: UNIV Ptr; firstByte: integer; byteCount: integer): integer;

Scaling and Mapping Points, Rectangles, Polygons, and Regions

procedure ScalePt(var pt: Point; var srcRect: Rect; var dstRect: Rect);
procedure MapPt(var pt: Point; var srcRect: Rect; var dstRect: Rect);
procedure MapRect(var r: Rect; var srcRect: Rect; var dstRect: Rect);
procedure MapRgn(rgn: RgnHandle; var srcRect: Rect; var dstRect: Rect);
procedure MapPoly(poly: PolyHandle; var srcRect: Rect; var dstRect: Rect);

Copying Images

procedure CopyBits(var srcBits: BitMap; var dstBits: BitMap; var srcRect: Rect;
var dstRect: Rect; mode: integer; maskRgn: RgnHandle);

procedure CopyMask(var srcBits: BitMap; var maskBits: BitMap;
var dstBits: BitMap; var srcRect: Rect; var maskRect: Rect;
var dstRect: Rect);

procedure CopyDeepMask(var srcBits: BitMap; var maskBits: BitMap; var dstBits: BitMap;
var srcRect: Rect; var maskRect: Rect; var dstRect: Rect; mode: integer;
maskRgn: RgnHandle);

Drawing With the Eight-Color System

procedure ForeColor(color: longint);
procedure BackColor(color: longint);
procedure ColorBit(whichBit: integer);

Determining Whether QuickDraw has Finished Drawing

function QDDone(port: GrafPtr): boolean;

Getting Pattern Resources

function GetPattern(patternID: integer): PatHandle;
procedure GetIndPattern(var thePat: Pattern; patternListID: integer; index: integer);

10-22 Basic QuickDraw

Demonstration Program
{ ##1

// BasicQuickdrawPascal.p2

// ###3

//4

// This program:5

//6

// • Opens a window in which the results of various basic QuickDraw drawing operations7

// are displayed.8

//9

// Individual drawing operations (eg, draw lines, draw rectangles, draw polygons, etc)10

// are selected from a pull-down menu titled 'Demonstration'.11

//12

// • Quits when the user selects Quit from the File menu or clicks the window's close13

// box.14

//15

// The program utilizes the following resources:16

//17

// • 'WIND' resources for the main window, and a small window used for the CopyBits18

// demonstration (purgeable) (initially visible).19

//20

// • An 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).21

//22

// • Two 'ICON' resources (purgeable) used for the transfer modes demonstration.23

//24

// • A 'PICT' resource (purgeable) used for the CopyBits demonstration.25

//26

// • 'STR#' resources (purgeable) containing strings used by the CopyBits and text27

// demonstrations.28

//29

// ### }30

31

program BasicQuickdrawPascal(input, output);32

33

{ ……… include the following Universal Interfaces }34

35

uses36

37

Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,38

Memory, Events, TextUtils, ToolUtils, OSUtils, Devices, Icons, Segload, Sound;39

40

{ ……… define the following constants }41

42

const43

44

mApple = 128;45

mFile = 129;46

iQuit = 11;47

mDemonstration = 131;48

iLine = 1;49

iRectAndOval = 2;50

iArcAndWedge = 3;51

iPolygon = 4;52

iRegion = 5;53

iTransferMode = 6;54

iCopyBits = 7;55

iText = 8;56

iBasicColour = 9;57

iDrawWithMouse = 10;58

rMenubar = 128;59

rWindow = 128;60

rSmallWindow = 129;61

rCrossIcon = 128;62

rSquareIcon = 129;63

rModeStringList = 128;64

rTextStringList = 129;65

rPicture = 128;66

kMaxLong = $7FFFFFFF;67

68

{ ……… global variables }69

70

var71

72

gDone : boolean;73

gWindowPtr : WindowPtr;74

Basic QuickDraw 10-23

gDrawWithMouseActivated: boolean;75

menubarHdl : Handle;76

menuHdl : MenuHandle;77

eventRec : EventRecord;78

gotEvent : boolean;79

80

{ ### DoInitManagers }81

82

procedure DoInitManagers;83

84

begin85

MaxApplZone;86

MoreMasters;87

88

InitGraf(@qd.thePort);89

InitFonts;90

InitWindows;91

InitMenus;92

TEInit;93

InitDialogs(nil);94

95

InitCursor;96

FlushEvents(everyEvent, 0);97

end;98

{of procedure DoInitManagers}99

100

{ ### DoRandomNumber }101

102

function DoRandomNumber(range : integer) : integer;103

104

begin105

DoRandomNumber := (Abs(Random) mod (range + 1));106

end;107

{of function DoRandomNumber}108

109

{ ### DoRectOval }110

111

procedure DoRectOval;112

113

var114

theRect : Rect;115

finalTicks : UInt32;116

systemPattern : Pattern;117

118

begin119

FillRect(gWindowPtr^.portRect, qd.white);120

121

PenPat(qd.black);122

PenSize(10, 20);123

PenMode(patCopy);124

125

SetRect(theRect, 10, 20, 245, 130);126

127

MoveTo(10, 15);128

DrawString('FrameRect');129

FrameRect(theRect);130

Delay(30, finalTicks);131

132

MoveTo(255, 15);133

DrawString('PaintRect');134

OffsetRect(theRect, 245, 0);135

PenPat(qd.ltGray);136

PaintRect(theRect);137

Delay(30, finalTicks);138

139

MoveTo(10, 154);140

DrawString('FillRoundRect');141

OffsetRect(theRect, -245, 140);142

GetIndPattern(systemPattern, sysPatListID, 12);143

FillRoundRect(theRect, 120, 60, systemPattern);144

Delay(30, finalTicks);145

146

MoveTo(255, 154);147

DrawString('FrameOval');148

OffsetRect(theRect, 245, 0);149

PenSize(40, 20);150

PenPat(qd.dkGray);151

10-24 Basic QuickDraw

FrameOval(theRect);152

153

SetWTitle(gWindowPtr, 'Click Mouse For Invert and Erase');154

while not (Button) do ;155

SetWTitle(gWindowPtr, 'Basic QuickDraw');156

SetRect(theRect, 10, 145, 490, 154);157

EraseRect(theRect);158

SetRect(theRect, 255, 160, 490, 270);159

Delay(30, finalTicks);160

161

MoveTo(10, 154);162

DrawString('InvertRoundRect');163

OffsetRect(theRect, -245, 0);164

InvertRoundRect(theRect, 120, 60);165

Delay(30, finalTicks);166

167

MoveTo(255, 154);168

DrawString('EraseOval');169

OffsetRect(theRect, 245, 0);170

EraseOval(theRect);171

Delay(30, finalTicks);172

end;173

174

{ ### DoArcWedge }175

176

procedure DoArcWedge;177

178

var179

theRect : Rect;180

a : integer;181

finalTicks : UInt32;182

systemPattern : Pattern;183

184

begin185

FillRect(gWindowPtr^.portRect, qd.white);186

187

PenSize(60, 10);188

PenPat(qd.dkGray);189

PenMode(patCopy);190

191

SetRect(theRect, 10, 20, 245, 278);192

193

MoveTo(10, 15);194

DrawString('FrameArc');195

for a := 0 to 269 do196

FrameArc(theRect, 135, a);197

Delay(30, finalTicks);198

199

MoveTo(255, 15);200

DrawString('FillArc');201

OffsetRect(theRect, 245, 0);202

GetIndPattern(systemPattern, sysPatListID, 16);203

FillArc(theRect, 315, 270, systemPattern);204

Delay(30, finalTicks);205

OffsetRect(theRect, -30, 0);206

FillArc(theRect, 225, 90, systemPattern);207

end;208

{of procedure DoArcWedge}209

210

{ ## DoPolygon }211

212

procedure DoPolygon;213

214

var215

polygonHdl : PolyHandle;216

finalTicks : UInt32;217

systemPattern : Pattern;218

219

begin220

FillRect(gWindowPtr^.portRect, qd.white);221

222

PenSize(10, 30);223

PenPat(qd.gray);224

PenMode(patCopy);225

226

polygonHdl := OpenPoly;227

MoveTo(10, 20);228

Basic QuickDraw 10-25

LineTo(225, 40);229

LineTo(100, 120);230

LineTo(215, 248);231

LineTo(10, 248);232

LineTo(50, 200);233

ClosePoly;234

235

MoveTo(10, 15);236

DrawString('FramePoly');237

FramePoly(polygonHdl);238

Delay(30, finalTicks);239

240

MoveTo(265, 15);241

DrawString('FillPoly');242

OffsetPoly(polygonHdl, 255, 0);243

GetIndPattern(systemPattern, sysPatListID, 9);244

FillPoly(polygonHdl, systemPattern);245

246

KillPoly(polygonHdl);247

end;248

{of procedure DoPoly}249

250

{ ### DoRegion }251

252

procedure DoRegion;253

254

var255

regionHdl : RgnHandle;256

theRect : Rect;257

finalTicks : UInt32;258

259

begin260

FillRect(gWindowPtr^.portRect, qd.white);261

PenPat(qd.gray);262

PenMode(patCopy);263

264

regionHdl := NewRgn;265

266

OpenRgn;267

SetRect(theRect, 10, 20, 100, 130);268

FrameRect(theRect);269

SetRect(theRect, 155, 20, 245, 130);270

FrameRect(theRect);271

SetRect(theRect, 55, 30, 200, 120);272

FrameOval(theRect);273

CloseRgn(regionHdl);274

275

MoveTo(10, 15);276

DrawString('FrameRgn');277

PenPat(qd.black);278

PenSize(10, 20);279

FrameRgn(regionHdl);280

Delay(30, finalTicks);281

282

MoveTo(255, 15);283

DrawString('1. FillRgn');284

OffsetRgn(regionHdl, 245, 0);285

FillRgn(regionHdl, qd.dkGray);286

Delay(30, finalTicks);287

288

MoveTo(10, 154);289

DrawString('2. InsetRgn (10 horizontal, 10 vertical)');290

OffsetRgn(regionHdl, -245, 140);291

InsetRgn(regionHdl, 10, 10);292

PenPat(qd.dkGray);293

PaintRgn(regionHdl);294

Delay(30, finalTicks);295

296

MoveTo(255, 154);297

DrawString('3. InsetRgn (-10 horizontal, -10 vertical)');298

OffsetRgn(regionHdl, 245, 0);299

InsetRgn(regionHdl, -10, -10);300

PenPat(qd.dkGray);301

PaintRgn(regionHdl);302

303

DisposeRgn(regionHdl);304

end;305

10-26 Basic QuickDraw

{of procedure DoRegion306

307

{ ### DoTransferMode }308

309

procedure DoTransferMode;310

311

var312

crossIconHdl, squareIconHdl : Handle;313

destRect : Rect;314

a, b, i, j : integer;315

squareIconMap : BitMap;316

finalTicks : UInt32;317

sourceMode : integer;318

sourceString : string;319

320

begin321

sourceMode := 0;322

FillRect(gWindowPtr^.portRect, qd.white);323

324

PenSize(1, 1);325

PenPat(qd.gray);326

PenMode(patOr);327

328

crossIconHdl := GetIcon(rCrossIcon);329

if (crossIconHdl = nil) then330

begin331

SysBeep(10);332

Exit(DoTransferMode);333

end;334

335

squareIconHdl := GetIcon(rSquareIcon);336

if (squareIconHdl = nil) then337

begin338

SysBeep(10);339

Exit(DoTransferMode);340

end;341

342

SetRect(destRect, 120, 8, 190, 78);343

PlotIcon(destRect, crossIconHdl);344

FrameRect(destRect);345

MoveTo(200, 48);346

DrawString('Destination');347

348

SetRect(destRect, 270, 8, 340, 78);349

PlotIcon(destRect, squareIconHdl);350

FrameRect(destRect);351

MoveTo(350, 48);352

DrawString('Source');353

354

for i := 0 to 1 do355

begin356

a := i * 100 + 91;357

for j := 0 to 3 do358

begin359

b := j * 120 + 30;360

SetRect(destRect, b, a, b+70, a+70);361

PlotIcon(destRect, crossIconHdl);362

end;363

end;364

365

HLock(squareIconHdl);366

367

squareIconMap.baseAddr := squareIconHdl^;368

squareIconMap.rowBytes := 4;369

SetRect(squareIconMap.bounds, 0, 0, 31, 31);370

371

for i := 0 to 1 do372

begin373

a := i * 100 + 91;374

for j := 0 to 3 do375

begin376

b := j * 120 + 30;377

Delay(30, finalTicks);378

SetRect(destRect, b, a, b+70, a+70);379

CopyBits(squareIconMap, qd.thePort^.portBits, squareIconMap.bounds,380

destRect, sourceMode, nil);381

sourceMode := sourceMode + 1;382

Basic QuickDraw 10-27

GetIndString(sourceString, rModeStringList, sourceMode);383

MoveTo(b, a + 82);384

DrawString(sourceString);385

end;386

end;387

388

HUnlock(squareIconHdl);389

end;390

{of procedure DoTransferMode}391

392

{ ### DoCopyBits }393

394

procedure DoCopyBits;395

396

var397

myWindowPtr : WindowPtr;398

oldPort : GrafPtr;399

pictureHdl : PicHandle;400

sourceRect, destRect : Rect;401

finalTicks : UInt32;402

403

begin404

FillRect(gWindowPtr^.portRect, qd.white);405

406

myWindowPtr := GetNewWindow(rSmallWindow, nil, WindowPtr(-1));407

if (myWindowPtr = nil) then408

ExitToShell;409

410

GetPort(oldPort);411

SetPort(myWindowPtr);412

413

pictureHdl := GetPicture(rPicture);414

if (pictureHdl = nil) then415

begin416

DisposeWindow(myWindowPtr);417

SysBeep(10);418

Exit(DoCopyBits);419

end;420

421

HNoPurge(Handle(pictureHdl));422

SetRect(sourceRect, 65, 40, 165, 182);423

DrawPicture(pictureHdl, sourceRect);424

HPurge(Handle(pictureHdl));425

426

SetWTitle(myWindowPtr, 'Click Mouse for CopyBits');427

while not (Button) do ;428

429

SetRect(destRect, 20, 21, 210, 272);430

431

CopyBits(myWindowPtr^.portBits, oldPort^.portBits, sourceRect, destRect,432

 srcCopy, nil);433

434

SetWTitle(myWindowPtr, 'Click Mouse to Close');435

Delay(60, finalTicks);436

while not (Button) do ;437

438

DisposeWindow(myWindowPtr);439

SetPort(oldPort);440

end;441

{of procedure DoCopyBits}442

443

{ ### DoText }444

445

procedure DoText;446

447

var448

windowCentre, a, fontNum, widthOfString : integer;449

textString : string;450

theWindow : WindowRef;451

452

begin453

FillRect(gWindowPtr^.portRect, qd.white);454

455

theWindow := FrontWindow;456

windowCentre := trunc((theWindow^.portRect.right - theWindow^.portRect.left) / 2);457

458

for a := 1 to 8 do459

10-28 Basic QuickDraw

begin460

if (a = 1) then 461

begin462

GetFNum('Geneva', fontNum);463

TextFont(fontNum);464

TextFace([]);465

end466

467

else if (a = 2) then468

TextFace([bold])469

470

else if (a = 3) then471

begin472

GetFNum('Times', fontNum);473

TextFont(fontNum);474

TextFace([italic]);475

end476

477

else if (a = 4) then478

TextFace([underline])479

480

else if (a = 5) then481

begin482

GetFNum('Helvetica', fontNum);483

TextFont(fontNum);484

TextFace([outline]);485

end486

487

else if (a = 6) then488

TextFace([shadow])489

490

else if (a = 7) then491

begin492

GetFNum('Chicago', fontNum);493

TextFont(fontNum);494

TextFace([condense]);495

end496

497

else if (a = 8) then498

begin499

TextFace([extend]);500

TextMode(grayishTextOr);501

end;502

503

if (a < 7)504

thenTextSize(a * 2 + 10)505

elseTextSize(12);506

507

GetIndString(textString, rTextStringList, a);508

widthOfString := StringWidth(textString);509

MoveTo(trunc(windowCentre - (widthOfString / 2)), a * 35 - 10);510

DrawString(textString);511

end;512

{of for loop}513

514

GetFNum('Geneva', fontNum);515

TextFont(fontNum);516

TextSize(10);517

TextMode(srcOr);518

TextFace(Style(0));519

end;520

{of procedure DoText}521

522

{ ### DoBasicColours }523

524

procedure DoBasicColours;525

526

var527

a : integer;528

theRect : Rect;529

finalTicks : UInt32;530

531

begin532

FillRect(gWindowPtr^.portRect, qd.dkGray);533

PenPat(qd.black);534

PenMode(patCopy);535

536

Basic QuickDraw 10-29

for a := 1 to 8 do537

begin538

Delay(30, finalTicks);539

if (a = 1) then ForeColor(blackColor);540

if (a = 2) then ForeColor(whiteColor);541

if (a = 3) then ForeColor(redColor);542

if (a = 4) then ForeColor(greenColor);543

if (a = 5) then ForeColor(blueColor);544

if (a = 6) then ForeColor(cyanColor);545

if (a = 7) then ForeColor(magentaColor);546

if (a = 8) then ForeColor(yellowColor);547

548

SetRect(theRect, 35, a*28, 465, a*28+23);549

PaintRect(theRect);550

end;551

552

ForeColor(blackColor);553

end;554

{of procedure DoBasicColours}555

556

{ ## DoLines }557

558

procedure DoLines;559

560

var561

top, left, bottom, right, a, b, c : integer;562

oldClipRgn : RgnHandle;563

newClipRect : Rect;564

systemPattern : Pattern;565

finalTicks : UInt32;566

567

begin568

FillRect(gWindowPtr^.portRect, qd.white);569

570

PenMode(patCopy);571

572

left := gWindowPtr^.portRect.left + 10;573

top := gWindowPtr^.portRect.top + 10;574

right := gWindowPtr^.portRect.right - 10;575

bottom := gWindowPtr^.portRect.bottom - 10;576

577

oldClipRgn := NewRgn;578

GetClip(oldClipRgn);579

SetRect(newClipRect, left, top, right, bottom);580

ClipRect(newClipRect);581

582

for a := 1 to 38 do583

begin584

b := DoRandomNumber(gWindowPtr^.portRect.right - gWindowPtr^.portRect.left);585

c := DoRandomNumber(gWindowPtr^.portRect.right - gWindowPtr^.portRect.left);586

587

GetIndPattern(systemPattern, sysPatListID, a);588

PenPat(systemPattern);589

PenSize(a * 2, 1);590

591

MoveTo(b, gWindowPtr^.portRect.top);592

LineTo(c, gWindowPtr^.portRect.bottom);593

594

Delay(15, finalTicks);595

end;596

597

SetClip(oldClipRgn);598

DisposeRgn(oldClipRgn);599

600

SetWTitle(gWindowPtr, 'Click Mouse for More Lines');601

while not (Button) do ;602

SetWTitle(gWindowPtr, 'Basic QuickDraw');603

604

FillRect(gWindowPtr^.portRect, qd.white);605

PenSize(1, 1);606

PenPat(qd.black);607

PenMode(patXor);608

609

b := right;610

for a := left to (right + 1) do611

begin612

MoveTo(a, top);613

10-30 Basic QuickDraw

LineTo(b, bottom);614

b := b - 1;615

end;616

617

a := bottom;618

for b := top to (bottom + 1) do619

begin620

MoveTo(left, a);621

LineTo(right, b);622

a := a - 1;623

end;624

end;625

{of procedure DoLines}626

627

{ ## DoDrawWithMouse }628

629

procedure DoDrawWithMouse;630

631

var632

mouseDownMouse, previousMouse, currentMouse : Point;633

drawRect : Rect;634

thePattern : Pattern;635

636

begin637

PenSize(1, 1);638

PenPat(qd.gray);639

PenMode(patXor);640

641

GetMouse(mouseDownMouse);642

643

drawRect.left := mouseDownMouse.h;644

drawRect.right := mouseDownMouse.h;645

drawRect.top := mouseDownMouse.v;646

drawRect.bottom := mouseDownMouse.v;647

648

GetMouse(previousMouse);649

650

while StillDown do651

begin652

GetMouse(currentMouse);653

654

if ((currentMouse.v <> previousMouse.v) or (currentMouse.h <> previousMouse.h))655

then begin656

FrameRect(drawRect);657

658

drawRect.right := currentMouse.h;659

drawRect.bottom := currentMouse.v;660

661

FrameRect(drawRect);662

end;663

664

previousMouse.v := currentMouse.v;665

previousMouse.h := currentMouse.h;666

end;667

668

FrameRect(drawRect);669

670

PenMode(patCopy);671

672

PenSize(2, 2);673

PenPat(qd.black);674

ForeColor(redColor);675

FrameRect(drawRect);676

677

InsetRect(drawRect, 10, 10);678

PenSize(8, 8);679

GetIndPattern(thePattern ,0, 5);680

PenPat(thePattern);681

ForeColor(blueColor);682

FrameRoundRect(drawRect, 40, 40);683

684

InsetRect(drawRect, 16, 16);685

PenSize(14, 14);686

GetIndPattern(thePattern,0, 6);687

PenPat(thePattern);688

ForeColor(greenColor);689

PaintOval(drawRect);690

Basic QuickDraw 10-31

691

PenMode(patCopy);692

ForeColor(blackColor);693

694

end;695

{of procedure DoDrawWithMouse}696

697

{ ## DoDemonstrationMenu }698

699

procedure DoDemonstrationMenu(menuItem : integer);700

701

begin702

703

gDrawWithMouseActivated := false;704

705

case (menuItem) of706

707

iLine:708

begin709

DoLines;710

end;711

712

iRectAndOval:713

begin714

DoRectOval;715

end;716

717

iArcAndWedge:718

begin719

DoArcWedge;720

end;721

722

iPolygon:723

begin724

DoPolygon;725

end;726

727

iRegion:728

begin729

DoRegion;730

end;731

732

iTransferMode:733

begin734

DoTransferMode;735

end;736

737

iCopyBits:738

begin739

DoCopyBits;740

end;741

742

iText:743

begin744

DoText;745

end;746

747

iBasicColour:748

begin749

DoBasicColours;750

end;751

752

iDrawWithMouse:753

begin754

FillRect(gWindowPtr^.portRect, qd.white);755

MoveTo(10, 25);756

DrawString('Click in the window and drag the mouse to the right and down');757

gDrawWithMouseActivated := true;758

end;759

760

end;761

{of case statement}762

end;763

{of procedure DoDemonstrationMenu}764

765

{ ### DoMenuChoice }766

767

10-32 Basic QuickDraw

procedure DoMenuChoice(menuChoice : longint);768

769

var770

menuID, menuItem : integer;771

itemName : string;772

daDriverRefNum : integer;773

774

begin775

menuID := HiWord(menuChoice);776

menuItem := LoWord(menuChoice);777

778

if (menuID = 0) then779

Exit(DoMenuChoice);780

781

case (menuID) of782

783

mApple:784

begin785

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);786

daDriverRefNum := OpenDeskAcc(itemName);787

end;788

789

mFile:790

begin791

if (menuItem = iQuit) then792

gDone := true;793

end;794

795

mDemonstration:796

begin797

DoDemonstrationMenu(menuItem);798

end;799

800

end;801

{of case statement}802

803

HiliteMenu(0);804

end;805

{of procedure DoMenuChoice}806

807

{ ## DoMouseDown }808

809

procedure DoMouseDown(var theEvent : EventRecord);810

811

var812

myWindowPtr : WindowPtr;813

partCode : integer;814

815

begin816

partCode := FindWindow(theEvent.where, myWindowPtr);817

818

case (partCode) of819

820

inMenuBar:821

begin822

DoMenuChoice(MenuSelect(theEvent.where));823

end;824

825

inSysWindow:826

begin827

SystemClick(theEvent, myWindowPtr);828

end;829

830

inContent:831

begin832

if (myWindowPtr <> FrontWindow)833

then SelectWindow(myWindowPtr)834

else if gDrawWithMouseActivated = true then835

DoDrawWithMouse;836

end;837

838

inDrag:839

begin840

DragWindow(myWindowPtr, theEvent.where, qd.screenBits.bounds);841

end;842

843

inGoAway:844

Basic QuickDraw 10-33

begin845

if (TrackGoAway(myWindowPtr, theEvent.where)) then846

gDone := true;847

end;848

849

end;850

{of case statement}851

end;852

{of procedure DoMouseDown}853

854

{ ### DoEvents }855

856

procedure DoEvents(var theEvent : EventRecord);857

858

var859

myWindowPtr : WindowPtr;860

charCode : char;861

862

begin863

myWindowPtr := WindowPtr(theEvent.message);864

865

case (theEvent.what) of866

867

mouseDown:868

begin869

DoMouseDown(theEvent);870

end;871

872

keyDown, autoKey:873

begin874

charCode := chr(BAnd(theEvent.message, charCodeMask));875

if (BAnd(theEvent.modifiers, cmdKey) <> 0) then876

DoMenuChoice(MenuKey(charCode));877

end;878

879

updateEvt:880

begin881

BeginUpdate(myWindowPtr);882

EndUpdate(myWindowPtr);883

end;884

end;885

{of case statement}886

end;887

{of procedure DoEvents}888

889

{ ## start of main program }890

891

begin892

893

{ …… initialize managers }894

895

DoInitManagers;896

897

{ …… set random number generator }898

899

GetDateTime(UInt32(qd.randSeed));900

901

{ …… set up menu bar and menus }902

903

menubarHdl := GetNewMBar(rMenubar);904

if (menubarHdl = nil) then905

ExitToShell;906

SetMenuBar(menubarHdl);907

DrawMenuBar;908

909

menuHdl := GetMenuHandle(mApple);910

if (menuHdl = nil)911

thenExitToShell912

elseAppendResMenu(menuHdl, 'DRVR');913

914

{ …… open window }915

916

gWindowPtr := GetNewWindow(rWindow, nil, WindowPtr(-1));917

if (gWindowPtr = nil) then918

ExitToShell;919

920

SetPort(gWindowPtr);921

10-34 Basic QuickDraw

TextSize(10);922

923

{ …… eventLoop }924

925

gDone := false;926

927

while not (gDone) do928

begin929

gotEvent := WaitNextEvent(everyEvent, eventRec, kMaxLong, nil);930

if (gotEvent) then931

DoEvents(eventRec);932

end;933

934

end.935

{of program}936

937

{ ## }938

Demonstration Program Comments
When this program is run, the user should invoke demonstrations of various basic QuickDraw
drawing operations by choosing items from the Demonstration menu.

The constant declaration block

Lines 45-67 establish constants related to menu, window, icon, string list, and picture
resources, menu IDs, and menu item numbers. Line 68 defines kMaxLong as the maximum possible
long value. This value will be assigned to WaitNextEvent's sleep parameter.

The variable declaration block

gDone will be set to true when the user selects Quit from the File menu or clicks the window's
close box, thus causing program termination. gWindowPtr will be assigned the pointer to the
main window's graphics port. gDrawWithMouseActivated will be set to true when the Draw With
Mouse item is chosen from the Demonstration menu, and to false when other items are chosen.

The procedure DoRandomNumber

DoRandomNumber generates and returns a random number between 0 and the value passed to it.
Random returns a random number between -32,767 to 32,767, which is then made positive by
taking its absolute value. Applying 'mod' to this returns a number between 0 and range, and
this is the value returned.

The procedure DoRectOval

DoRectOval draws a framed rectangle, a painted rectangle, a filled round rectangle, and a
framed oval. It then inverts the round rectangle and erases the oval.

Lines 120-124 fill the port rectangle with the pattern white, set the pen pattern to black,
set the pen size to 10 pixels wide by 20 pixels high, and set the pen mode to patCopy. Line
126 defines the Rect required as a parameter by the drawing routines.

Line 130 draws a framed rectangle.

Lines 135-137 offset the rectangle to the right, set the pen pattern to ltGray and paint a
rectangle.

Lines 142-144 offset the rectangle to the left and down, retrieve one of the system patterns,
and fill a rounded rectangle with that pattern. The rounded rectangle is drawn with corner
curvatures of 120 wide and 60 high.

Lines 149-152 offset the rectangle to the right, set the pen size to 40 pixels wide by 20
pixels high, set the pen pattern to dkGray and frame an oval.

After waiting for the user to click the mouse button, and after some text is erased (Lines
155-159, Lines 164-165 offset the rectangle so that it is back over the rounded rectangle and
invert the rounded rectangle with a call to InvertRoundRect.

Lines 170-171 offset the rectangle so that it is back over the oval and erase the oval with a
call to EraseOval.

Basic QuickDraw 10-35

The procedure DoArcWedge

DoArcWedge draws an arc and a two wedges. The drawing of the arc is animated.

Lines 186-190 fill the port rectangle with the pattern white, and set the pen size, pattern,
and mode. Line 192 defines the bounding rectangle for the arc and wedges.

Lines 196-197 draw an arc with the routine FrameArc 274 times. The starting angle remains
fixed at 135 and the extent of the arc is incremented by one each time around the loop. The
effect is to animate the drawing of an arc in the shape of a large C.

Lines 202-207 offset the rectangle to the right, retrieve one of the system patterns, use that
pattern in a call to FillArc to draw a 270° wedge from the 10.30 o'clock position, offset the
rectangle to the left, and call FillArc to draw a 90° wedge from the 7.30 o'clock position
with the same pattern.

The procedure DoPolygon

DoPolygon draws a framed and filled polygon.

Lines 221-225 fill the port rectangle with the pattern white, and set the pen size, pattern,
and mode.

Lines 227-234 initiate the recording of the polygon definition (Line 227), define the polygon
(Lines 228-233), and stop the recording (Line 234). Note that, in this demonstration, the
last vertex is not joined to the first vertex.

Line 238 draws the polygon with the FramePoly routine. (Because the last vertex was not
joined to the first during definition, FramePoly does not draw that part of the polygon. Note
also that the pen hangs to the right and down of the (infinitely thin) lines which define the
polygon.)

Lines 243-245 offset the polygon to the right, retrieve one of the system patterns and draw a
filled polygon with that pattern. (Note that FillPoly, in effect, joins the last vertex to
the first when it draws the shape.)

Line 247 deallocates the memory used to store the polygon.

The procedure DoRegion

DoRegion draws a framed region and a filled region. DoRegion then demonstrates the effects of
the InsetRgn routine to shrink and then expand the region.

Lines 261-263 fill the port rectangle with the pattern white, and set the pen pattern and
mode.

Line 265 allocates memory for a new region and a region pointer, initialises the contents of
the region and make it an empty rectangle.

Lines 267-274 initiate the recording of a region shape (Line 267), create a region definition
comprising two rectangles and an overlapping oval (Lines 268-273) and terminate the recording
(Line 274).

Lines 278-280 set the pen pattern and pen size and draw a framed region based on the region
definition.

Lines 285-286 offset the region to the right and then draw a filled region with the pattern
dkGray.

Lines 291-294 offset the region to the left and down, inset (shrink) the region by 10 pixels
horizontally and vertically, and paint the shrunken region. (Note that the inset is applied
to each outline in the region).

Lines 299-302 offset the region to the right, inset (expand) the region by 10 pixels
horizontally and vertically and paint the expanded region. (Note that the inset is once again
applied to each outline in the region. Note also that the demonstration shows that
information can be lost when a region is shrunk and then expanded again.).

Line 304 deallocates the memory used to store the region.

The procedure DoTransferMode

DoTransferMode demonstrates the effects of the source modes srcCopy, srcOr, srcXor, and
srcBic.

10-36 Basic QuickDraw

Lines 322-327 fill the port rectangle with the pattern white, and set the pen size, pattern,
and mode.

Lines 329-336 retrieve two 32 bit by 32 bit 'ICON' resources. One icon contains the image of
a cross and the other contains the image of a square.

Lines 344 and 350 use PlotIcon to draw the icons, expanding them into the 71 pixel by 71 pixel
rectangle defined at Lines 343 and 349. The expanded icons are then outlined in a one pixel
line and identified to the user as the destination image (the square) and the source image
(the cross).

Lines 355-363 then draw the cross icon, once again expanded into a 71 pixel by 71 pixel
square, eight times in two rows of four images.

As a preamble to what is to come, note that there is no special data type for an icon. It is
simply 128 bytes of bit data arranged as 32 rows of 4 bytes per row. All that is available is
a handle to that 128 bytes of data. The intention is to cause the 128 bytes of data which
constitutes the square icon to be regarded as bitmap data pointed to by the baseAddr field of
a BitMap record. That way, the CopyBits routine can be used to copy the bitmap into the
graphics port.

Because CopyBits is one of those functions which can move memory around, the first action is
to lock the icon data in the heap (Line 366). The address of the square icon image data is
then assigned to the baseAddr field of a BitMap record (Line 368), the rowBytes field is
assigned the value 4 (Line 369), and the bounds field is assigned a rectangle defining the
normal icon size (Line 370).

Lines 372-387 copy the bit image into the graphics port eight times, overdrawing the
previously drawn cross icons. Line 379 establishes the expanded destination rectangle which
governs the size at which the image will be drawn. This is used in the call to CopyBits at
Line 380. Note that, in this call, the value of the parameter which specifies the source mode
is incremented each time through the loop so that the square image overdraws the cross image
once in each of the eight available source modes. Lines 383-385 retrieve the appropriate
string containing the relevant source mode from the 'STR#' resource and print this string
under each image.

Line 389 unlocks the icon image data.

The procedure DoCopyBits

DoCopyBits copies a bit image from one graphics port to another, resizing and reshaping the
image in the process.

Line 405 prepares the way by filling the port rectangle with the pattern white.

Line 407 opens a small window over the right side of the main window. Lines 411-412 save the
current graphics port and make the new window's port the current graphics port.

Line 414 loads a picture from a 'PICT' resource. Since the purgeable bit of the resource's
attributes is set, the resource is immediately made non-purgeable (Line 422), used immediately
(Line 424), and immediately made purgeable again (Line 425). The picture is drawn in the
current graphics port (the small window).

When the user clicks the mouse button (Line 428), a large rectangle is defined to represent
the size and shape in which the copied image is to be drawn (Line 430). This is used in the
call to CopyBits (Line 432), which copies the image from the small window's graphics port to
the main window's graphics port.

When the user again clicks the mouse button (Line 437), Lines 439-440 dispose of the small
window and reset the current graphics port to that of the main window.

The procedure DoText

DoText draws text in various fonts, sizes and styles. The last line of text is drawn using
the grayishTextOr transfer mode.

Line 454 prepares the way by filling the port rectangle with the pattern white.

Line 457 gets a position half way across the window. This will be used to centre the lines of
text in the window as they are drawn.

Line 459-512 is a loop within which the text font, size and style are changed, a string is
retrieved from a 'STR#' resource (Line 508), the width of the string in pixels is determined
(Line 509), and the string is drawn centrally (from left to right) in the window (Lines 510-
511).

Basic QuickDraw 10-37

Note that, the last time around the loop, the transfer mode is set to grayishTextOr (Line
501).

Lines 515-519 reset the font, size, transfer mode, and style back to the settings which
existed before doText was called.

The procedure DoBasicColours

DoBasicColours draws eight rectangles in each of the eight colours pre-defined by basic
QuickDraw. (On black and white screens, all colours except white will be drawn in black. On
greyscale screens the colours will appear as shades of gray.)

The procedure DoLines

DoLines demonstrates line drawing with various pen patterns. doLines also demonstrates
clipping. (Note that, as is the case with all drawing demonstration functions in this
program, some of the code is related to program execution (for example, delays, setting the
window title, waiting for mouse clicks before proceeding, etc) and not to drawing operations
per se. Those parts of the code will generally be disregarded in the following comments.)

At Line 569, FillRect is called to fill the entire port rectangle with the pattern white. At
Line 571, the pen mode is set to patCopy for the lines demonstration.

Lines 573-581 set the window's clipping region to a rectangle 10 pixels inside the port
rectangle. Lines 573-576 assign appropriate values to four variables which will be used to
define the Rect representing the new clipping region, Lines 578-579 save the old clipping
region, and Line 580 defines the Rect which is used in the call to ClipRect at Line 581 to
establish the new clipping region.

Lines 583-596 draw 38 lines using the 38 patterns in the 'PAT#' resource of the System file.
Each time around the loop, the variables b and c are assigned separate random numbers between
0 and the width of the port rectangle (Lines 585-586), the next system pattern is retrieved
(Line 588), the pen pattern is set to this pattern (Line 589), the width of the pen is
increased (Line 590), and a line is drawn from somewhere at the top of the port rectangle to
somewhere at the bottom of the port rectangle (Lines 592-593). The line drawing is, of
course, clipped to the clipping region established at Line 581, which is 10 pixels inside the
port rectangle.

Preparatory to the second part of the line drawing demonstration, the old clipping region is
restored and the memory in which it was saved is deallocated (Lines 598-599).

Lines 610-624 illustrate a well-known but nonetheless exotic capability of the humble line
when it operates in the pattern mode patXor. Lines 605-608 set all the port's pixels to
white, the pen size to 1 pixel by 1 pixel, the pen pattern to black and the pattern mode to
patXor. Proceeding clockwise, Lines 611-624 draw lines from points 10 pixels inside the
periphery of the port rectangle through the centre of the rectangle to points on the opposite
side of the rectangle. The effect of patXor on any destination pixel is to invert it if the
source pixel is black. Thus, any white pixel in the path of the drawn lines will be turned
black and any black pixel will be turned white. This produces a pattern known as a moiré
(watered silk) pattern.

The procedure DoDrawWithMouse

doDrawWithMouse is called when the user has chosen the Draw With Mouse item from the
Demonstration menu and subsequently clicks in the window. While the mouse button remains
down, a "rubber-band" rectangle is continually erased and redrawn as the mouse is moved. When
the mouse button is released, a rectangle, a rounded rectangle, and a painted rectangle are
drawn at a location and size determined by the "rubber-band" rectangle.

Lines 638-640 set the pen size to 1 pixel wide and high, the pen pattern to gray, and the pen
mode to patXOr.

Line 642 gets the mouse location where the mouse-down occurred. Those coordinates are then
used to initialise the fields of a Rect structure, the left and top fields of which will
remain unchanged from this point.

Line 649 assigns the same mouse location to another Point variable, which will be used for
comparison purposes within the while loop entered at Line 651.

The while loop continues to execute while the mouse button remains down. Within the loop, the
current mouse location is retrieved (Line 653) and compared with the previous mouse location
(Line 655). If the mouse has moved, FrameRect is called, the current mouse coordinates are
assigned to the bottom and right fields of the Rect, and FrameRect is again called (657-662).
Because the drawing mode is patXor, the first call to FrameRect erases the old rectangle.
Note that, because Lines 657-662 only execute if the mouse has moved, the flicker which would

10-38 Basic QuickDraw

otherwise occur when the mouse is stationary is avoided. At Lines 665-666, and preparatory to
the next Line 655 comparison, the current mouse position is assigned to the variable which
holds the previous mouse position.

When the mouse button is released, Line 669 erases the final "rubber-band" rectangle. Lines
671-693 then draw a rectangle, a rounded rectangle, and a painted rectangle based on the
location and size of the "rubber-band" rectangle when the mouse button was released.

The procedures DoDemonstrationMenu,
DoMenuChoice

DoMenuChoice and DoDemonstrationMenu handle menu choices from the Apple, File and
Demonstration menus. Note that, at Lines 753-759, the global variable gDrawWithMouseActivated
is set to true when the Draw With Mouse menu item is chosen.

The procedures DoMouseDown, DoEvents

DoEvents and DoMouseDown perform minimal event handling consistent with the satisfactory
operation of the drawing demonstration aspects of the program. Note that, at Lines 835-836,
the application-defined function doDrawWithMouse is called if the global variable
gDrawWithMouseActivated contains true.

The main program block

The main function initialises the system software managers (Line 896), seeds the random number
generator (Line 900), sets up the menus (Lines 904-913), opens the main window and sets its
graphics port as the current port for drawing operations (Lines 917-921), sets the text size
(Line 922), and enters the main event loop (Lines 926-933).

Random numbers are used in the application-defined function doLines. randSeed (Line 900) is a
QuickDraw global variable which holds the seed value for the random number generator. Unless
randSeed is modified, the same sequence of numbers will be generated each time the program is
run. Line 900 shows one way to seed the generator. The parameter to the GetDateTime call
receives the number of seconds since midnight, January 1, 1904, a value which is bound to be
different each time the program is run.

Note that error handling here, as in other areas of the program, is somewhat rudimentary: the
program simply terminates.

Creating 'PICT' Resources Using ResEdit

Open the chap10cw_demo demonstration program folder. Double-click on the BasicQuickDraw.µ.rsrc
icon to start ResEdit and open BasicQuickDraw.µ.rsrc. The BasicQuickDraw.µ.rsrc window opens.

Double-click the PICT icon. The PICTs from BasicQuickDraw.µ.rsrc window opens. A thumbnail
image of one 'PICT' resource (ID 128) appears in the window. Double-click the thumbnail image. The
PICT ID = 128 from BasicQuickDraw.µ.rsrc window opens, displaying the picture.

To procedure for creating the 'PICT' resource is as follows:

• Within a paint or draw application, copy an image to the Clipboard.

• Open BasicQuickDraw.µ.rsrc in ResEdit. Choose Resource/Create New Resource. A small
dialog opens. Click the PICT item in the scolling list, and then click the dialog's OK button. The
PICTs from BasicQuickDraw.µ.rsrc window opens, followed by the PICT ID = 128 from
BasicQuickDraw.µ.rsrc window. (ResEdit automatically assigns 128 as the resource ID of the
first 'PICT' resource you create.)

• Choose Edit/Paste. The picture appears in the PICT ID = 128 from BasicQuickDraw.µ.rsrc
window.

Further 'PICT' resources may be created by copying other images to the Clipboard and, within
ResEdit, choosing Edit/Paste while the PICTs from BasicQuickDraw.µ.rsrc window is open and in
front. (ResEdit automatically increments the resource ID at each successive paste.)

Basic QuickDraw 10-39

Another way to copy an image to the Clipboard for the purpose of creating a 'PICT' resource is to
capture the image directly from the screen using a screen capture utility such as Flash-It™.

