QUICKDRAW PRELIMINARIES

Includes Demonstration Program GDevicePascal

QuickDraw and Imaging

QuickDraw is a collection of system software routines that your application uses to perform most
imaging operations on Macintosh computers. Imaging entails the construction and display of
graphical information, including shapes, pictures, and text, which can be displayed on such output
devices as screens and printers.

Versions of QuickDraw

As the system software has developed, QuickDraw has progressed through the following three main
evolutionary stages:

- Basic QuickDraw, which was designed for the early black-and-white Macintoshes. System 7
added new capabilities to basic QuickDraw, including support for offscreen graphics worlds and
the extended version 2 picture format. Despite having been designed for the early black-and-
white Macintoshes, basic QuickDraw has always supported eight pre-defined colours.1

- The original version of Color QuickDraw, which was introduced with the first Macintosh Il
systems, and which could support up to 256 colours.

- The current version of Color QuickDraw, which was originally introduced as 32-bit Color
QuickDraw, and which is now part of System 7. This version has been expanded to support
millions of colours.

Applications which use only basic QuickDraw routines are compatible with all Macintosh systems.

However, applications which use routines specific to Color QuickDraw cannot run on computers
supporting only basic QuickDraw.

Graphics Ports

Your application performs all graphics operations in a graphics port. A graphics port is a drawing
environment which contains the information QuickDraw needs to transmit drawing operations from
bits in memory to onscreen pixels. There are two types of graphics port:

- A basic graphics port, which is the drawing environment provided by basic QuickDraw. A
basic graphics port contains the information basic QuickDraw uses to create and manipulate

'Basic QuickDraw is still used on black-and-white Macintoshes such as the Classic.

onscreen black-and-white images, or colour images that employ basic QuickDraw's eight-colour
system. A basic graphics port is defined in a Grafrort record.

- A colour graphics port, which is the sophisticated colour drawing environment provided by
Color QuickDraw. A colour graphics port is defined in a cGrafport record.

A graphics port:

- Specifies the bitmap or pixel map (see below) that points to the area of memory in which your
drawing operations take place.

- Contains a metaphorical graphics pen with which to perform drawing operations. (You can set
this pen to different sizes, patterns and colours.)

- Holds information about text, which is styled and sized according to information in the graphics
port.

The fields of a graphics port are maintained by QuickDraw. QuickDraw provides routines for

changing and reading those fields. For example, routines are available to reshape and resize the pen,
change the pen's pattern and colour, switch fonts, point to an image in another part of memory, etc.

Bitmaps and PixelMaps

The visible image in a graphics port is contained in one or other of the following:

- A bitmap, which is defined in a data structure of type Bitmap and which represents the
positions and states of a corresponding set of pixels. The pixels can be either black and white or
one of the eight basic colours provided by basic QuickDraw. A bitmap is contained within a
basic graphics port.

- A pixel map, which is defined by a data structure of type pixmap and which represents the

positions and states of a corresponding set of colour pixels. A handle to a pixel map is contained
within a colour graphics port.

Printing Graphics Port

Your application can print the images it prepares in graphics ports by drawing into a printing
graphics port using QuickDraw drawing routines. A printing graphics port is the printing
environment defined by a TPrrort record?

Offscreen Graphics Worlds

While your application can draw directly into basic and colour graphics ports, you can often improve
aspects of your application's appearance and performance by constructing images in offscreen
graphics worlds and then copying them to onscreen graphics ports. An offscreen graphics world is
defined in a private data structure referred to by a pointer of type cworidptr and contains a graphics
port of its own®.

Colour

The earliest Macintosh models all used basic QuickDraw to draw to built-in screens with known
characteristics. The Macintosh Il introduced Color QuickDraw, which supports a variety of screens of
differing sizes and colour capabilities.

*See Chapter 13 — Printing.
*See Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and Icons.

Pixels and Colour

A pixel (picture element) is the smallest dot that QuickDraw can draw. On a black-and-white monitor,
one pixel is a single-colour phosphor dot that displays in one of two states — black or white. On a
colour screen, three phosphor dots (red, green and blue) comprise each colour pixel.

Foreground and Background Colour

A pair of fields in the graphics port specify a foreground colour and background colour. The
foreground colour (which, by default, is black) is the colour used for bit patterns and for the graphics
pen when drawing. The background colour (which, by default is white) is the colour of the pixels in
the bitmap or pixel map where no drawing has taken place.

Basic QuickDraw's Eight-Colour System

Because basic QuickDraw supports an eight-colour system, you can draw in colour on a colour screen
even when you are using a basic graphics port. Because Color QuickDraw also supports this eight-
colour system, it is compatible across all Macintosh platforms. Basic QuickDraw defines the following
constants for those standard colours:

Constant Value
blackColor 33

whiteColor 30

redColor 205
greenColor 341
blueColor 409
cyanColor 273

magentaColor 137
yellowColor 69

These are the only colours available in basic QuickDraw (or with Color QuickDraw drawing into a
basic graphics port). When you specify these colours on a Macintosh computer with Color QuickDraw,
Color QuickDraw draws the colours if the user has set the screen (using the Monitors control panel) to
colour mode.

It is important to note that, while these colours are recorded when drawing into a QuickDraw
picture’, they cannot be stored in a bitmap.

Advantages and Disadvantages

The advantages of using basic QuickDraw's colour system are that it is available across all platforms
and is much simpler to use than Color QuickDraw. The main disadvantage is the eight-colours limit.
Another problem is that, if the graphics port you are working in happens to be a colour graphics port,
the two colour systems may clash.

Color QuickDraw Routines Available to Basic QuickDraw

In System 7, the Color QuickDraw routines rRGBForecColor (set the foreground colour), ReBBackcolor,
(set the background colour) GetrForecolor, (get the foreground colour) and GetBackColor (get the
background colour) are available to basic QuickDraw. These routines can assist you in manipulating
the eight-colour system of basic QuickDraw. Without using a colour graphics port, you can use both
ForeColor and Color QuickDraw's rRGBForeColor to set the drawing colour, and either BackColor oOr
Color QuickDraw's reBBackcolor to set the background colour, on a colour screen.

Colours in Color QuickDraw

In Color QuickDraw, a colour pixel represents up to 48 bits in memory.

‘See Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and Icons.

Device-Independent Colour

Color QuickDraw is device-independent. Accordingly, you do not have to concern yourself with the
capabilities of individual screens. For example, if your application uses an rReBColor record to specify a
colour by its red, green and blue components, with each component defined in a 16-bit integer, Color
QuickDraw compares the resulting 48-bit value with the colours actually available on a video device
(such as a plug-in video card or a built-in video interface) at execution time and then chooses the
closest match. What the user finally sees depends on the characteristics of the actual video device and
screen.

Influence of the Video Device

Screens may display colour or black-and-white; the video device that controls them may have either:
- Indexed colours, which support pixels of 1-bit, 2-bit, 4-bit, or 8-bit depths.?
- Direct colours, which support pixels of 16-bit or 32-bit depths.

Color QuickDraw automatically determines which method is used by the video device and matches
your requested colour with the closest available colour.

About Indexed Colour and Direct Colour

Indexed Colours

Video devices using indexed colours support a maximum of 256 colours at any one time, that is, with
indexed colour, the maximum value of a pixel in arixmap record is limited to a single byte, with each
pixel's byte specifying one of 256 (28) different values.

Video devices implementing indexed colour contain a data structure called a colour lookup table (or,
more commonly, a CLUT). The CLUT, in turn, contains entries for all possible colour values.

256 colours is, for many images, sufficient for near-photographic quality. The problem is that the
colours needed for one photographic image may not be appropriate for another. Because most indexed
video devices use avariable CLUT, however, you can display one image using one set of 256 colours
and then use system software to reload the CLUT with a second set of 256 colours that are appropriate
for the next image.® If your application needs this sort of control on indexed video devices, you can use
the Palette Manager to arrange palettes (that is, sets of colours) for particular images and for video
devices with differing colour capabilities.

If your application uses a 48-bit reBColor record to specify a colour, the Color Manager examines the
colours available in the CLUT on the video device. Comparing the CLUT entries to the rReBcolor record
you specify, the Color Manager determines which colour in the CLUT is closest, and gives Color
QuickDraw the index to this colour. Color QuickDraw then draws with this colour.

Fig 1 illustrates this process. In Fig 1, the user selects a colour for some object in an application (1).
Using a 48-bit reBcolor record to specify the colour, the application calls a Color QuickDraw routine to
draw the object in that colour (2).

Color QuickDraw uses the Color Manager to determine what colour in the video devices's CLUT comes
closest to the requested colour (3). At startup, the video device's declaration ROM supplies information
for the creation of the cpevice record that describes the characteristics of the device. The resulting
record contains a colorTable record that is kept synchronised with the card's CLUT. The Color
Manager examines the cpevice record to find what colours are currently available (4) and to decide
which colour comes closest to the one requested by the application. The Color Manager gets the index

*The indexed colour system was introduced with the Macintosh 11, i.e., at a time when memory was scarce and moving megabyte images
around was impractical.

*Some Macintosh computers, such as grayscale PowerBook computers, have a fixed CLUT, which your application cannot change.

value for the best match and returns the value to Color QuickDraw (5), which puts the index value into
those places in video RAM which store the object.

VIDEO RAM VIDEO CARD
[CLUT 8
== 7 COLOURTABLE |—>| R 1 9
| 1= — 6 = —
| —>[B
[N
6 3 .
@ 1— 2 _,| CoLor —| color 4 | GDevice RECORD
@ QUICKDRAW 5 MANAGER |— COL.OUR TABLE

USER APPLICATION

FIG 1 - INDEXED COLOUR SYSTEM

The video device continually displays video RAM by taking the index values, converting them to
colours according to CLUT entries at those indexes (7), and sending them to the digital-to-analog
converters (8) which produce a signal for the screen (9).

Direct Colours

Video devices which implement direct colour eliminate the competition for limited table spaces and
remove the need for colour table matching. By using direct colour, video devices can support
thousands or millions of colours.

When you specify a colour using a 48-bit rReBcolor record on a direct colour system, Color QuickDraw
truncates the least significant bits of its red, green and blue components to either 16 bits (five bits each
for red, green and blue, with one bit unused) or 32 bits (eight bits for red, green and blue, with eight
bits unused). Using 16 bits, direct video devices can display 32,768 colours. Using 32 bits, the device
can display 16,777,215 different colours.

Fig 2 illustrates the direct colour system. A user chooses a colour for some object (1) and, using a 48-bit
RGBColor record to specify the colour, the application uses a Color QuickDraw routine to draw the
object in that colour (2). Color QuickDraw knows from the cpevice record (3) that the screen is
controlled by a direct device in which pixels are 32 bits deep, which means that eight bits are used for
each of the red, green and blue components of the requested colour. Colour QuickDraw passes the
high eight bits from each 16-bit component of the 48-bit ReBcolor record to the video device (4), which
stores the resulting 24-bit value in video RAM for the object. The video device continually displays
video RAM by sending the 8-bit red, green and blue values for the colour to digital-to-analog
converters (5) which produce a signal for the screen (6).

VIDEO RAM VIDEO CARD
[5 = 6
— G % L
] B
‘l
'@] 1 2 COLOR 3 GDevice RECORD
H ﬁ
@ QUICKDRAW -
PixMap
USER APPLICATION R

FIG 2 - DIRECT COLOUR SYSTEM

Direct colour not only removes much of the complexity of the CLUT mechanism for video device
developers, but it also allows the display of thousands or millions of colours simultaneously, resulting
in near-photographic resolution.

Graphics Devices and GDevice Records

Graphics Devices

A graphics device is anything into which QuickDraw can draw. There are three types of graphics

device:

- Video devices, such as video cards and built-in video interfaces, that control screens.

- Offscreen graphics worlds, which allow your application to build complex images offscreen
before displaying them.’

- Printing graphics ports for printers.?

GDevice Record

For a video device or an offscreen graphics world, Color QuickDraw automatically creates, and stores
state information in, a Gbevice record. Note that printers do not have cpevice records. Note also that
basic QuickDraw, unlike Color QuickDraw, does not create Gbevice records.

When the system starts up, QuickDraw uses information supplied by the Slot Manager to create and
initialise a epevice record for each video device found during startup. When you use the NewGWworld
function to create an offscreen graphics world, Color QuickDraw automatically creates a Gpevice
record.

All existing cpevice records are linked together in a list called a device list The global variable
peviceList holds a handle to the first record in the list. At any given time, exactly one graphics device
is the current device (called the active device), that is, the one in which drawing is actually taking
place. A handle to its cpevice record is stored in the global variable TheGbevice. By default, the
Gbevice record corresponding to the first video device found is marked as the current device.

The cpevice record is as follows:

type

GDevice = record
gdRefNum: integer; {Reference Number of Driver.}
gdlID: integer; {Client ID for search procedures.}
gdType: integer; {Type of device (indexed or direct).}
gdlTable: ITabHandle; {Handle to inverse lookup table for Color Manager.}
gdResPref: integer; {Preferred resolution of GDITable.}
gdSearchProc: SProcHndl; {Handle to list of search procedures.}
gdCompProc: CProcHndl ; {Handle to list of complement functions.}
gdFlags: integer; {Graphics device flags.}
gdPMap: PixMapHandle; {Handle to pixel map for displayed image.}
gdRefCon: longint; {Reference value.}
gdNextGD: Handle; {Handle to next GDevice record.}
gdRect: Rect; {Device"s bounds in global coordinates.}
gdMode: longint; {Device®"s current mode.}
gdCCBytes: integer; {Depth of expanded cursor data.}
gdCCDepth: integer; {Depth of expanded cursor data.}
gdCCXData: Handle; {Handle to cursor®"s expanded data.}
gdCCXMask: Handle; {Handle to cursor®"s expanded mask.}
gdReserved: longint; {Reserved for future use. Must be 0.}
end;

GDPtr = ~GDevice;
GDHandle = ~GDPtr;

'See Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and lcons.
*See Chapter 13 — Printing.

Field Descriptions

Descriptions of some key fields in the cbevice record are as follows:

gdType The general type of device, that is, a fixed CLUT device, a variable CLUT device, or a
direct device.

gdiTable Points to an inverse table. An inverse table is a special Color Manager data structure
arranged in such a manner that, given an arbitrary RGB colour, its pixel value (that is, its
index number in the CLUT) can be found quickly. The process is very fast once the table
has been built; however, if a colour is changed in the video device's CLUT, the Color
Manager must rebuild the inverse table the next time it has to find a colour.

gdFlags Device attributes (that is, whether the device is a screen, whether it is the main screen,
whether it is set to black-and-white or colour, whether it is the active device, etc.)

gdPMap Contains a handle to the pixel map (Pixmap) record, which contains the dimensions of the
image buffer, along with the characteristics of the graphics device (resolution, storage
format, pixel depth (see below) and colour table.

Note that Color QuickDraw automatically synchronises the pixel map's colour table
(cotorTabie) record with the CLUT on the video device.

gdRect Describes the graphics device's boundary rectangle in global coordinates. Color

QuickDraw maps the (0, 0) origin point of the global coordinate plane to the main screen's
upper left corner.

Setting a Device's Pixel Depth

As stated in the description of the gdpPmap field of the Gbevice record, the pixel map's rixelsize field
contains the pixel depth of the device.

The Monitors control panel is the user interface for changing the pixel depth and colour capabilities of
video devices. Note that, when a user uses the Monitors control panel to set a 16-bit or 32-bit device to
use 2, 4, 16 or 256 colours as a grayscale or colour device, the direct device creates a CLUT and operates
like an indexed device.

Since the user can control the capabilities of the video device, your application should be flexible, that
is, although it may have a preferred pixel depth, it should do its best to accommodate less than ideal
conditions. Your application can use the setpepth function to change the pixel depth, but it should not
do so without the consent of the user. Before calling setbepth, you should use the HasDepth function to
determine whether the available hardware can support the pixel depth you require.

Other Graphics Managers

In addition to the QuickDraw routines, several other collections of system software routines are
available to assist you in drawing images.

Palette Manager

To provide more sophisticated colour support on indexed graphics devices, your application can use
the Palette Manager. The Palette Manager allows your application to specify sets of colours that it
needs on a window-by-window basis. On a video device that uses a variable CLUT, your application
can use the Palette Manager to display any number of palettes (that is, sets of colours) consisting of 256
colours each. Remember, though, that only one set of colours (palette) can be displayed at any one
time.

Color Picker Utilities

To solicit colour choices from users, your application can use the Color Picker Utilities. The Color
Picker Utilities also provide routines that allow your application to convert between colours specified

in RGBColor records and colou

rs specified for other colour models, such as the CMYK (cyan, magenta,

yellow, key - usually black) model used for many colour printers. (See Chapter 22— Miscellany.)

Main Constants, Data Types and Routines Relating to Graphics

Devices

Constants

Flag Bits of gdType Field of GDevice Record

that is, one with colours mapped with colour lookup table.
that is, colour lookup table cannot be changed.

clutType =0 CLUT device,
fixedType =1 Fixed colours,
directType =2 Direct RGB colours.

Flag Bits of gdFlags Field of GDevice Record

gdDevType =0 0 = black-and-white. 1 = color.
burstDevice =7 If bit is set to 1, graphics device supports block transfer.
ext32Device =8 If bit is set to 1, graphics device must be used in 32-bit mode
ramlnit = 10 |If bit is set to 1, graphics device was initialised from RAM.
mainScreen = 11 If bit is set to 1, graphics device is the main screen.
alllnit = 12 If bit is set to 1, all devices were initialised from "scrn®" resource.
screendevice = 13 If bit is set to 1, graphics device is a screen device.
noDriver = 14 If bit is set to 1, GDevice record has no driver.
screenActive = 15 If bit is set to 1, graphics device is current device.
Data Types
QDErr = integer;
GDevice Record
GDevice = record
gdRefNum: integer; {Reference Number of Driver.}
gdlID: integer; {Client ID for search procedures.}
gdType: integer; {Type of device (indexed or direct).}
gdlTable: I1TabHandle; {Handle to inverse lookup table for Color Manager.}
gdResPref: integer; {Preferred resolution of GDITable.}
gdSearchProc: SProcHndl; {Handle to list of search procedures.}
gdCompProc: CProcHndl ; {Handle to list of complement functions.}
gdFlags: integer; {Graphics device flags.}
gdPMap: PixMapHandle; {Handle to pixel map for displayed image.}
gdRefCon: longint; {Reference value.}
gdNextGD: Handle; {Handle to next GDevice record.}
gdRect: Rect; {Device"s bounds in global coordinates.}
gdMode: longint; {Device"s current mode.}
gdCCBytes: integer; {Depth of expanded cursor data.}
gdCCDepth: integer; {Depth of expanded cursor data.}
gdCCXData: Handle; {Handle to cursor®"s expanded data.}
gdCCXMask: Handle; {Handle to cursor"s expanded mask.}
gdReserved: longint; {Reserved for future use. Must be 0.}
end;
GDPtr = ~GDevice;

GDHandle = ~GDPtr;

Routines

Creating, Setting and Disposing of Graphics Device Records

function NewGDevice(refNum: integer; mode: longint): GDHandle;

procedure InitGDevice(qdRefNum: integer; mode: longint; gdh: GDHandle);
procedure SetDeviceAttribute(gdh: GDHandle; attribute: integer; value: boolean);
procedure SetGDevice(gd: GDHandle);

procedure

DisposeGDevice(gdh: GDHandle);

Getting the Available Graphics Devices

function GetGDevice: GDHandle;

function GetDevicelList: GDHandle;

function LMGetMainDevice: GDHandle;

function GetNextDevice(curDevice: GDHandle): GDHandle;
function LMGetDevicelList GDHandle;

Determining the Characteristics of a Video Device

function testdeviceattribute(gdh: GDhandle; attribute: integer): boolean;
procedure ScreenRes(var scrnHRes: integer; var scrnVRes: integer);
Changing the Pixel Depth of a Video Device
function SetDepth(gd: GDHandle; depth: integer; whichFlags: integer; flags: integer): OSErr;
function HasDepth(gd: GDHandle; depth: integer; whichFlags: integer; flags: integer):
integer;
Demonstration Program
1 { ##H#HHBHHBRH R H R R R R R R R R R R R R R R R R R R
2 // GDevicePascal.p
3
4 //
5 // This program opens a small window, gets a handle to the GDevice record for the main
6 // device and displays some information obtained from that record.
7 //
8 // The program will run only on Macintoshes with Color QuickDraw.
9 //
10 // The program utilises an "ALRT" resource, a "DITL" resource, and a "WIND" resource.
11 //
12 /1 BHUBHHBRH SRR H R R H R R H R H R TR R R R R R R # 3
13
14 program GDevicePascal (input, output);
15
16 e EICTUDE Ehe Following Universal Interfaces }
17
18 uses
19
20 Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,
21 Events, TextUtils, ToolUtils, Devices, GestaltEqu, LowMem, Segload;
22
23 o e e e e e s s e D€ FENE the Followling constants }
24
25 const
26
27 rAlert = 128;
28 rWindow = 128;
29
30 L 1 1 e e e e e e e @ TODAT Variables
31
32 var
33
34 theErr, ignored : OSErr;
35 response longint;
36 myWindowPtr : WindowPtr;
37 deviceHdl : GDHandle;
38 deviceType, bytesPerRow : integer;
39 theRect Rect;
40 theString : string;
41 pixMapHdl : PixMapHandle;
42
43 { ##H#HHBRHBRH B RH B R R # R #H# start of main program }
44
45 begin
46
47 o e e e e e e e e e e e ENEETATTSE Managers 3
48
49 InitGraf(@qd.thePort);
50 InitFonts;

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);
InitCursor;

L o e e e e e e s s e s s s CNECK O Color QuickDraw }
theErr := Gestalt(gestaltQuickdrawVersion, response);
if (response < gestalt8BitQD) then
begin
ParamText("This program will run only on Macintoshes with Color QuickDraw",
e, Ty

ignored := StopAlert(rAlert, nil);
ExitToShell;
end;

o e 0 1 8 1 1 1 1 8 8B B 1 1 1 s . OPEN A WENDOW }
myWindowPtr := GetNewWindow(128, nil, WindowPtr(-1));
it (myWindowPtr = nil) then

ExitToShell;

SetPort(myWindowPtr);
TextSize(10);

{ . (€T hand e to GDevice record for main device }
deviceHdl := LMGetMainDevice;
L . PEENTE SOme iNnFormation from the GDevice record }

MoveTo (10, 20);
deviceType := deviceHdI™ _gdType;
case (deviceType) of

O:begin
DrawString("Indexed device with variable CLUT.");
end;

1:begin
DrawString("Indexed device with fixed CLUT.");
end;

2:begin
DrawString("Direct device.");
end;

end;
{of case statement}

MoveTo (10, 40);

theRect := deviceHdI™ _gdRect;
DrawString("Boundary rectangle top = ");;
NumToString(longint(theRect.top), theString);
DrawString(theString);

MoveTo (10, 55);

DrawString("Boundary rectangle left = ");;
NumToString(longint(theRect.left), theString);
DrawString(theString);

MoveTo (10, 70);

DrawString("Boundary rectangle bottom = ");;
NumToString(longint(theRect._bottom), theString);
DrawString(theString);

MoveTo (10, 85);

DrawString("Boundary rectangle right = ");;
NumToString(longint(theRect.right), theString);
DrawString(theString);

MoveTo (10, 105);

pixMapHdl := deviceHdI”"_gdPMap;

DrawString("Pixel depth = ");
NumToString(longint(pixMapHdI™ _pixelSize), theString);
DrawString(theString);

128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

MoveTo (10, 120);

bytesPerRow := BAnd(pixMapHdI™ _rowBytes, $7FFF);
DrawString("Bytes per row = ");
NumToString(longint(bytesPerRow), theString);
DrawString(theString);

MoveTo (10, 135);

DrawString("Total pixel image bytes = ");
NumToString(longint(bytesPerRow) * theRect.bottom, theString);
DrawString(theString);

MoveTo (10, 155);
if (pixMapHdI™ _hRes = $00480000) then
DrawString("Resolution = 72 dpi®);

MoveTo (10, 175);
ifT (BitTst(@deviceHdI™ .gdFlags, screenActive))

then DrawString("Device is the current device®)

else DrawString("Device is not the current device");
while not (Button) do ;

end.

Demonstration Program Comments

This program is not a demonstration per se. It simply opens a window and prints some
information retrieved from the GDevice record for the main device.

The first item indicates whether the device is a direct device, an indexed device with a fixed
CLUT or an indexed device with a variable CLUT. Other items include the boundary rectangle,
the pixel depth, the number of bytes per row, the total bytes in the pixel image, the
resolution, and whether the device is the current device.

Users with colour monitors should open the Monitors control panel, change the settings in the
monitor characteristics section, run the program again, and note the changes to the pixel
depth, bytes per row, and total pixel image bytes.

Users with direct devices capable of supporting 32-bit colour (16, 777, 215 colours) and/or
16-bit colour (32, 768 colours) should note particularly that, when the 256 colours setting is
selected in the Monitors control panel, the gdType field of the GDevice record reports that
the device is an indexed device with a variable CLUT. This happens because, when a 16-bit or
32-bit device is set to use 2, 4, 16 or 256 colours as a grayscale or colour device, the
direct device creates a CLUT and operates like an indexed device.

Also note that the subject of coping with a multiple monitors environment is addressed at
Chapter 22 — Miscellany.

