
Controls 5-1

5Version 1.2 (Frozen)

CONTROLS
Includes Demonstration Programs Controls1Pascal and
Controls2Pascal

Introduction

Controls are on-screen objects which the user can manipulate to cause an immediate action or to
change settings to modify a future action.

You can use the Control Manager to create and manage controls. An alternative method is to use the
Dialog Manager to more easily create and manage controls in alert boxes or dialog boxes. Note,
however, that the Control Manager is usually used to implement the more complex dialog boxes.

Every control you create must be associated with a particular window. All the controls for a window
are stored in a control list referenced by the window's window record.

Standard and Other Controls

The standard controls provided by the Control Manager are illustrated at Fig 1.

BUTTONS

CHECKBOXES

RADIO BUTTONS

SCROLL BAR

POP-UP MENU

FIG 1 - STANDARD CONTROLS PROVIDED BY THE CONTROL MANAGER

The Control Manager displays these controls in colours which provide consistency across all monitors,
from black and white to colour displays. To retain this consistency, you should not change the default
colours.

5-2 Controls

Buttons

You normally use buttons in alert boxes and dialog boxes. Buttons typically allow the user to perform
actions instantaneously, for example, completing the actions in a dialog box or acknowledging an error
in an alert box. In every window or dialog box in which you display buttons, you should designate one
button as the default button by drawing a thick black outline around it. (In alert boxes, the Dialog
Manager automatically outlines the default button; however, your application must outline the button
in dialog boxes.)

Your application should respond to key-down events involving the Enter and Return keys as if the user
had clicked the default button.

Checkboxes

Checkboxes are typically used in dialog boxes so that the user can supply additional information
necessary for completing a command. Checkboxes provide alternative choices and act like toggle
switches, turning a setting on or off. SetControlValue is used to place an X in the box when the user
selects it and to remove the X when the user deselects it.

Each checkbox has a title, which should reflect two clearly opposite states. If you cannot devise a title
which clearly implies two opposite states, you might be better off providing two radio buttons.

Radio Buttons

Like checkboxes, radio buttons retain and display an on or off setting and are typically used inside
dialog boxes. Radio buttons represent choices that are related but not necessarily opposite.
SetControlValue is used to fill a selected button with a small black dot. The user can have only one
radio button setting in effect at one time; in other words, radio buttons within a group are mutually
exclusive. The Control Manager, however, cannot tell how your radio buttons are grouped; therefore,
when the user turns on one radio button, it is up to your application to use SetControlValue to turn off
the others in that group.

A group of radio buttons must comprise at least two radio buttons. Each group must have a label
which identifies the kind of choices the group offers and each button must have a title identifying what
the radio button does. If you need to display more than seven items, or if the items change as the
context changes, you should use a pop-up menu instead.

Pop-Up Menus

Pop-up menus provide the user with a simple way to choose from a list of choices without having to
move the cursor to the menu bar. As an alternative to a group of radio buttons, a pop-up menu is
useful for specifying a group of settings or values that number five or more, or whose settings or values
might change. Like the items in a group of radio buttons, the items in a pop-up menu are mutually
exclusive.

Scroll Bars

Scroll bars change the portion of a document that the user can view within a document's window. A
scroll bar is a light gray rectangle with scroll arrows at each end. Inside the scroll bar is a square
called the scroll box. The rest of the scroll box is called the gray area. If the user drags the scroll box,
clicks a scroll arrow or clicks in the gray region, your application scrolls the document accordingly.

Scroll Box

SetControlValue or SetControlMaximum are used to move the scroll box whenever your application
resizes a window and whenever it scrolls through a document for any reason other than responding to
the user dragging the scroll box. If the user drags the scroll box, the Control Manager redraws the
scroll box in its new position. You then use GetControlValue to determine the position of the control
box, and to display the appropriate portion of the document.

Controls 5-3

Scroll Arrows

When the scroll arrows are clicked, your application uses SetControlValue to move the scroll box in the
direction of the arrow being clicked. Each click should move the document one unit in the chosen
direction. (In a text document, a unit would typically be one line of text.)

Gray Area

When the gray area is clicked above the scroll box, your application should move the document up so
that the bottom line of the previous view is at the top of the new view, and it should move the scroll
box accordingly. A similar, but downward movement, should occur when the user clicks in the gray
area below the scroll box.

Custom Controls

If you need controls other than the standard controls, you can design and implement your own custom
controls. Typically, the only types of controls you might need to implement are sliders or dials to
represent a range of values1.

If you need a custom control, you must provide your own control definition function. Custom control
definition functions are addressed at Chapter 19 — Custom Control Definition Functions and VBL
Tasks.

Visual Feedback From Controls

The TrackControl function, which is called in response to a mouse-down event in a control, provides
visual feedback when a mouse-down occurs in an active control by:

• Displaying buttons in inverse video.

• Drawing checkboxes and radio buttons with heavy lines.

• Highlighting the titles of, and displaying the items in, pop-up menus.

• Highlighting the scroll arrows.

• Moving outlines of scroll boxes when the user drags them.

Active and Inactive Controls

A control can be either active or inactive. Whenever it is inappropriate for your application to
respond to a mouse-down event in a control, you should make it inactive. The Control Manager
continues to display inactive controls so that they remain visible, but in a manner which indicates their
state to the user. The Control Manager:

• Dims inactive buttons, checkboxes, radio buttons and pop-up menus. (Actually, only the titles of
buttons, checkboxes and radio buttons are dimmed.)

• Lightens the gray area and removes the scroll box from inactive scroll bars.

Activating and Deactivating Controls Other
Than Scroll Bars

You use HiliteControl to make active buttons, checkboxes, radio buttons and pop-up menus inactive
and vice versa. You should make buttons, checkboxes, radio buttons and pop-up menus inactive when
they are not relevant to the current context and when their windows are not frontmost.

1A scroll bar is a slider representing the entire contents of a document, and the user uses the scroll box to move to a specific location in that
document. To conform to user interface guidelines, do not use scroll bars to represent any other concept (for example, for changing a setting).

5-4 Controls

Activating and Deactivating Scroll Bars

You make scroll bars inactive when the document is smaller than the window in which it is being
displayed. To make a scroll bar inactive, you typically use SetControlMaximum to make the scroll bar's
maximum value equal to its minimum value, which causes the Control Manager to automatically make
the scroll bar inactive and display it in the inactive state. To make the scroll bar active again,
SetControlMaximum should be used to set its maximum value larger than its minimum value.

Hiding and Showing Controls

HideControl should be used to hide scroll bars when their windows are not frontmost. HideControl
erases a control by filling its enclosing rectangle with the owning window's background pattern.
ShowControl reverses this situation. Hiding a control is not the same as making a control inactive.

The Control Definition Function

A control definition function determines the appearance and behaviour of a control. Various
Control Manager routines call a control definition function when they need to perform some control-
related action.

Control definition functions are stored as resources of type 'CDEF'. The System file includes three
standard control definition functions, stored with resource IDs of 0, 1, and 63:

• The 'CDEF' resource with ID 0 defines the appearance and behaviour of buttons, checkboxes and
radio buttons.

• The 'CDEF' resource with ID 1 defines the appearance and behaviour of scroll bars.

• The 'CDEF' resource with ID 63 defines the appearance and behaviour of pop-up menus.

Just as a window definition function can describe variations of the same basic window, a control
definition function can use a variation code to describe variations of the same control. You specify a
particular control with a control definition ID, which is an integer containing the resource ID of the
control definition function in the upper 12 bits and the variation code in the lower four bits.

The control definition ID is arrived at by multiplying the resource ID by 16 and adding the variation
code. The following shows the control definition IDs for the standard controls, together with the
derivation of those IDs:

Control Resource
ID

Variation
Code

Control Definition
ID

(Decimal)

Control Definition
ID

(Constant)
Button 0 0 0 * 16 + 0 = 0 pushButProc

Checkbox 0 1 0 * 16 + 0 = 1 checkBoxProc

Radio button 0 2 0 * 16 + 0 = 2 radioButProc

Scroll bar 1 0 1 * 16 + 0 = 16 scrollBarProc

Pop-up menu 63 0 63 * 16 + 0 = 1008 popupMenuProc

The control definition function for scroll bars determines whether a scroll bar is vertical or horizontal
from the rectangle you specify when you create the control.

Creating and Displaying Controls

Creating a 'CNTL' Resource

The first step in creating a control is to create a 'CNTL' resource. An example of a 'CNTL' resource, in
Rez input format, is as follows:

Controls 5-5

resource 'CNTL' (rCancelButton, preload, purgeable)
{

{87, 187, 107, 247}, /* Rectangle (local coordinates) for size and location. */
0, /* Initial setting of control. */
visible, /* Make control visible. */
1, /* Maximum setting of control. */
0, /* Minimum setting of control. */
pushButProc, /* Control Definition ID. */
0, /* Reference constant for application use. */
"Cancel" /* Title of control. */

};

Rectangle. The example resource is for a button. Buttons are drawn to fit the specified rectangle
exactly. To allow for the tallest characters in the system font, there should be at least a 20 point
difference between the top and bottom coordinates of the rectangle. For a checkbox or radio button,
allow at least a 16 point difference between the top and bottom coordinates of its rectangle to
accommodate the tallest characters in the system font.

Initial, Minimum and Maximum Settings. For buttons, checkboxes and radio buttons, these
settings should be supplied in the initial, maximum, and minimum setting fields:

• For buttons, which do not retain a setting, specify 0 for the initial and minimum settings field
and 1 in the maximum settings field.

• For checkboxes and radio buttons, which retain an on-off setting, specify 0 when you want the
control to be initially off. To turn a checkbox or radio button on, assign an initial setting of 1,
which will cause the Control Manager to place an X in a checkbox or a black dot in a radio
button. The maximum and minimum settings should be specified as 1 and 0 respectively.

Control Definition ID. The example specifies a button in the control definition ID field. For
checkboxes, specify checkBoxProc and for radio boxes, specify radioButProc. Add the constant
popupUseWFont to cause the control's text to be drawn in the current graphics port's font rather than the
system font.

Reference Constant. Except when you add the popupUseAddResMenu variation code to the
popupMenuProc control definition ID (see below), the reference constant field may be used for any
purpose.

Title. The title of the control2 is specified at the last field. By default, the Control Manager displays
the title in the system font. When specifying a title, make sure that it will fit into the control's rectangle,
otherwise the Control Manager will truncate the title.3 For scroll bars, the title field should contain an
empty string.)

Note that the values you supply in a control resource for a pop-up menu differ from those you specify
for buttons, checkboxes, radio buttons and scroll bars. (See below.)

A further example 'CNTL' resource, this time for a group of three radio buttons, is as follows:

resource 'CNTL' (cDroplet, preload, purgeable)
{

{13, 23, 31, 142}, /* Rectangle (local coordinates) for size and location. */
1, /* Initial setting of control. */
visible, /* Make control visible. */
1, /* Maximum setting of control. */
0, /* Minimum setting of control. */
radioButProc, /* Control Definition ID. */
0, /* Reference constant for application use. */
"Droplet" /* Title of control. */

};

2Book title style should be used, ie, capitalize one word titles, nouns, adjectives, verbs and prepositions of four or more letters in multiple
word titles.
3The Control Manager allows button, checkbox and radio button titles on multiple lines. End each line with the character code $0D (carriage
return). If the control is a button, each line is horizontally centered.

5-6 Controls

resource 'CNTL' (cQuack, preload, purgeable)
{

{31, 23, 49, 142}, /* Rectangle (local coordinates) for size and location. */
0, /* Initial setting of control. */
visible, 1, 0, radioButProc, 0, "Quack"};

};

resource 'CNTL' (cWildEep, preload, purgeable)
{

{49, 23, 67, 142}, /* Rectangle (local coordinates) for size and location. */
0, /* Initial setting of control. */
visible, 1, 0, radioButProc, 0, "WildEep"};

};

Creating a Control

GetNewControl and NewControl are used to create a new control in a window. You usually use
GetNewControl, which takes a 'CNTL' resource ID and a pointer to the window, creates a data structure
called a control record from the information in the resource, adds the control record to the control list
for your window, and returns a handle to the control. A control record is defined by the data type
ControlRecord in the Universal Interface file controls.p:

type
ControlRecord = packed record

nextControl: ControlRef;
contrlOwner: WindowRef;
contrlRect: Rect;
contrlVis: UInt8;
contrlHilite: UInt8;
contrlValue: SInt16;
contrlMin: SInt16;
contrlMax: SInt16;
contrlDefProc: Handle;
contrlData: Handle;
contrlAction: ControlActionUPP;
contrlRfCon: SInt32;
contrlTitle: Str255;

end;

ControlPtr = ^ControlRecord;
ControlHandle = ^ControlPtr;
ControlRef = ControlHandle;

If the 'CNTL' resource specifies that a control is initially visible, the Control Manager uses the control
definition function to draw the control. (The Control Manager draws the control immediately and does
not wait for the window updating mechanism.) If the 'CNTL' resource specifies that the control is to be
initially invisible, ShowControl may be used to draw the control when required.

Note that when you use the Dialog Manager to implement buttons, radio buttons, checkboxes or pop-
up menus in alert boxes or dialog boxes, Dialog Manager routines automatically use Control Manager
routines to create the controls for you.

Updating Controls

When your application receives an update event for a window containing controls, your application
should call UpdateControls between the BeginUpdate and EndUpdate calls in its updating code.

Note that when you use the Dialog Manager to implement buttons, radio buttons, checkboxes or pop-
up menus in alert boxes or dialog boxes, Dialog Manager routines automatically use Control Manager
routines to update the controls for you.

Removing Controls

When you no longer need a control in a window that you wish to keep, you use DisposeControl to
remove it from the screen, delete it from the window's control list, and release the control record and
associated data structures from memory. KillControls will dispose of all of a window's controls at
once.

Controls 5-7

Creating Scroll Bars

The 'CNTL' resource for scroll bars should specify scrollBarProc as the control definition ID.
Typically, you make the scroll bar invisible, set the initial, minimum and maximum settings to 0 and
supply an empty string for the title.

After you create the window, use GetNewControl to create the scroll bar. Then use MoveControl,
SizeControl, SetControlMaximum and SetControlValue to adjust the size, location and settings. Finally,
use ShowControl to display the control bar.

Most applications allow the user to change the size of windows, add information to the document and
remove information from the document. It is therefore necessary, in your window handling code, to
calculate a changing maximum setting based on the document's current size and its window's current
size. For new documents which have no content to scroll, assign an initial value of 0 as the maximum
setting (which will, as previously stated, make the scroll bars inactive). Thereafter, your window-
handling code should set and maintain the maximum setting.

By convention, a scroll bar is 16 pixels wide; accordingly, there should be a sixteen-pixel difference
between the left and right coordinates of a vertical scroll bar's rectangle and between the top and
bottom coordinates of a horizontal scroll bar. (If you do not specify a 16-pixel width, the Control
Manager scales the scroll bar to fit the width you specify.) A standard scroll bar should be at least 48
pixels long to allow room for the scroll arrows and scroll box.

The Control Manager draws one-pixel lines for the rectangle enclosing the scroll bar. As shown at Fig
2, the outside lines of the scroll bar should overlap the lines of the window frame.

FIG 2 - CORRECT OVERLAP OF SCROLL BAR ON WINDOW FRAME

1 PIXEL OVERLAP

16 PIXELS

The following calculations4 determine the rectangle for a vertical scroll bar:

Coordinate Calculation
Top Combined height of any items above the scroll bar - 1.
Left Width of window - 15.
Bottom Height of window - 14.
Right Width of window +1.

The following calculations determine the rectangle for a horizontal scroll bar.

Coordinate Calculation
Top Height of window -15.
Left Combined width of any items to the left of the scroll bar - 1.
Bottom Height of window + 1.
Right Width of window - 14.

4Do not include the title bar area in these calculations.

5-8 Controls

The top coordinate of a vertical scroll bar and the left coordinate of a horizontal scroll bar is -1 unless
your application uses part of the window's typical scroll bar area for displaying information or
specifying additional controls.

Just as the maximum settings change when the user resizes a document's window, so too do the scroll
bar's coordinate locations change when the user resizes the window. The initial maximum settings and
location, as specified in the 'CNTL' resource, must therefore be changed dynamically by the application
as required. Typically, this is achieved by storing handles to each scroll bar in a document record
associated with the window and then using Control Manager routines to change control settings.

Creating Pop-Up Menus

The values you specify in a 'CNTL' resource for a pop-up menu differ from those you supply in 'CNTL'
resources for other controls. An example of such a resource, in Rez input format, is as follows:

resource 'CNTL' (kPopUpCNTL, preload, purgeable)
{

{90, 18, 109, 198}, /* Rectangle of control. */
popupTitleLeftJust, /* Title position. */
visible, /* Make control visible. */
50, /* Pixel width of title. */
kPopupMenu, /* 'MENU' resource ID. */
popupMenuProc, /* Control definition ID. */
0, /* Reference value .*/
"Speed:" /* Control title. */

};

Rectangle. Fig 3 illustrates the rectangle for this pop-up menu.

50 PIXELS
(TITLE WIDTH)

(109,198)
LOWER RIGHT CORNER

OF RECTANGLE

FIG 3 - DIMENSIONS OF SAMPLE POP-UP MENU

Title Position. The example 'CNTL' resource specifies the title position in place of the initial control
setting used for other types of controls. The example uses the popupTitleLeftJust constant to specify
the position of the control title. Constants (and their values) which inform the Control Manager how to
draw the menu's title are as follows:

Constant Value
popupTitleBold $0100
popupTitleItalic $0200
popupTitleUnderline $0400
popupTitleOutline $0800
popupTitleShadow $1000
popupTitleCondense $2000
popupTitleExtend $4000
popupTitleNoStyle $0800
popupTitleLeftJust $0000
popupTitleCenterJust $0001
popupTitleRightJust $00FF

Title Width. The example 'CNTL' resource specifies the width of the control title in place of the
maximum setting used for other types of controls.

Menu Resource ID. The example 'CNTL' resource specifies the appropriate 'MENU' resource ID in
place of the minimum setting used for other types of controls. The 'MENU' resource provides the pop-
up menu's items

Control Definition ID. You can specify a different control definition ID by adding any or all of the
following constants to the popupMenuProc constant:

Controls 5-9

Constant Setting Description
popupFixedWidth $0001 Uses a constant control width, that is, does not resize the menu horizontally

to fit long menu items. If a menu item does not fit in the space provided, it
is truncated to fit and the ellipsis character (…) is appended at the end.

popupUseAddResMenu $0004 Gets menu items from a resource other than a 'MENU' resource. The control
definition function will interpret the value in the contrlRfCon field of the
control record as a value of type ResType. The control definition function
uses AppendResMenu to add resources of that type to the menu.

popupUseWFont $0008 Uses the font of the specified window. The control definition function
draws the pop-up menu title using the font and size of the window
containing the control.

Reference Value. The Control Manager assigns the reference value to the control record's
contrlRfCon field. When you create pop-up menus, your application should store handles for them,
typically in a record pointed to by the contrlRfCon field of the window record. Storing these handles
allows your application to respond to user's choices in pop-up menus.5

Menu Items and Control Values

When it creates the control, GetNewControl assigns the item number of the first menu item to the
contrlValue field of the control record and sets the contrlMax field to the number of items in the pop-
up menu. When the user chooses a different menu item, the Control Manager changes the contrlValue
field to that item number.

Adding Resource Names as Items

If you specify popupUseAddResMenu as a variation code, the Control Manager coerces the value in the
contrlRfCon field to the type ResType and then uses AppendResMenu to add items of that type. For
example, if you specify a reference value of type (SInt32) 'FONT', the control definition function
appends a list of fonts installed in the system to the menu associated with the pop-up menu.

Note that, after the control has been created, your application can use the contrlRfCon field for
whatever purpose it requires.

Menu Width Adjustment

Whenever the pop-up menu is redrawn, its control definition function calls CalcMenuSize to calculate
the size of the menu associated with the control (to allow for item additions and deletions). The pop-
up control definition function may also update the width of the pop-up menu to the sum of the width
of the pop-up title, the width of the longest item in the menu, the width of the downward pointing
arrow and a small amount of white space. Your application can override this behaviour by adding the
popupFixedWidth variation code to the pop-up control definition ID.

Handling Mouse Events in Controls

Overview

For mouse events in controls, you usually perform the following tasks:

• Use FindWindow to determine the window in which the mouse-down event occurred.

• If the mouse-down event occurred in the content region of the active window, use FindControl
to determine whether the event occurred in a control and, if so, which control.

5You should not use the Menu Manager function GetMenuHandle to obtain a handle to a menu associated with a pop-up menu control. If
necessary, you can obtain a menu handle (and a menu ID) of a pop-up menu by dereferencing the contrlData field of the pop-up menu's
control record. That field is a handle to a block of private information. For pop-up menus, it is a handle to a pop-up private data record.

5-10 Controls

• Call TrackControl to handle user interaction for the control as long as the user holds the mouse
button down. The actionProc parameter passed to TrackControl should be as follows:

• NIL for the scroll box and other standard controls.

• For scroll arrows and gray areas of scroll bars, an application-defined action procedure
which causes the document to scroll as long as the user holds the mouse button down.

• ControlActionUPP(-1) for pop-up menus. This causes TrackControl to use the action
procedure defined within the pop-up control definition function.

• When TrackControl reports that the user has released the mouse button with the cursor in a
control, respond appropriately, that is:

• Perform the task identified by the button title if the cursor is over a button.

• Toggle the value of the checkbox when the cursor is over a checkbox. (The Control
Manager then redraws or removes the checkmark, as appropriate.)

• Turn on the radio button, and turn off all other radio buttons in the group, when the
cursor is over an active radio button.

• Use the new setting chosen by the user when the cursor is over a pop-up menu.

• Show more of the document in the direction of the scroll arrow when the cursor is over
the scroll arrow or gray area of a scroll bar, and move the scroll box accordingly.

• Determine where the user has dragged the scroll box when the cursor is over the scroll
box, and then display the corresponding portion of the document.

Determining a Mouse-Down Event in a Control

When the mouse-down event occurs in a visible, active control, FindControl returns a handle to that
control as well as a part code identifying that control's part. (When the mouse-down occurs in an
invisible or inactive control, or when the cursor is not in a control, FindControl sets the control handle
to NULL and returns 0 as its part code.)

A part code is an integer from 1 to 253. Part codes are assigned to a control by its control definition
function. The standard control definition functions define the following part codes:

Constant Old Name Part
Code

Control Part

kControlButtonPart inButton 10 Button.

kControlCheckBoxPart inCheckBox 11 Entire checkbox or radio button.

kControlUpButtonPart inUpButton 20 Up scroll arrow (vertical scroll bar).
Left scroll arrow (horizontal scroll bar).

kControlDownButtonPart inDownButton 21 Down scroll arrow (vertical scroll bar).
Right scroll arrow (horizontal scroll bar).

kControlPageUpPart InPageUp 22 Gray area above scroll box (vertical scroll bar).
Gray area to left of scroll box (horizontal scroll bar).

kControlPageDownPart inPageDown 23 Gray area below scroll box (vertical scroll bar).
Gray area to right of scroll box (horizontal scroll bar).

kControlIndicatorPart inThumb 129 Scroll box.

The pop-up menu definition function does not define part codes for pop-up menus. Instead, and as
previously stated, your application should store the handles for your pop-up menus when you create
them and then test the handles you store against the handles returned by FindControl.

Controls 5-11

Tracking the Cursor in a Control

After calling FindControl to determine that the user pressed the mouse button while the cursor was in
a control, call TrackControl to follow and respond to the user's movements and to determine the
control part.

You can also use an action procedure to undertake additional actions as long as the user holds the
mouse button down. Typically, action procedures are used to continuously scroll the window's
contents while the cursor is on a scroll arrow. As previously stated, you pass a pointer to this action
procedure as the third parameter in the TrackControl call.

The TrackControl function returns the control's part code if the user releases the mouse button while
the cursor is still inside the control part, or 0 if the cursor is outside the control part when the button is
released. Your application should then respond appropriately to a mouse-up event in that part.

Determining and Changing Control Settings

When the user clicks a control, your application often needs to determine the current setting and other
values of that control. When the user clicks a checkbox, for example, your application must determine
whether the box is checked before it can decide whether to clear or draw a checkmark inside the
checkbox.

Applications must adjust some controls in response to events other than mouse events in the controls
themselves. For example, when the user resizes a window, your application must use MoveControl and
SizeControl to move and resize the scroll bars appropriately.

Your application can use GetControlValue to determine the current setting of a control, and it can use
GetControlMaximum to determine a control's maximum setting. SetControlValue is used to change a
control's setting and possibly redraw the scroll box accordingly. SetControlMaximium is used to change
a control's maximum setting and to redraw the scroll box accordingly.

Moving and Resizing Scroll Bars

Your application must be able to size and move scroll bars dynamically in response to the user resizing
your windows. The steps involved are:

• Resize the window.

• Use HideControl to make each scroll bar invisible.

• Use MoveControl to move the scroll bars to the appropriate edges of the window.

• Use SizeControl to lengthen or shorten each scroll bar as appropriate.

• Recalculate the maximum settings for the scroll bars and use SetControlMaximum to update the
settings and to redraw the scroll boxes appropriately.

• Use ShowControl to make each scroll bar visible at its new location.

Each of the functions involved require a handle to the relevant scroll bar. When your application
creates a window, it should store handles for each scroll bar in a document record associated with that
window.

5-12 Controls

Scrolling Operations With Scroll Bars

Scrolling Basics

Spatial Relationships - Document, Window,
and Scroll Bar

Spatial relationships between a document and a window, and their representation in a scroll bar, are
shown at Fig 4.

FIG 4 - SPATIAL RELATIONSHIP BETWEEN A DOCUMENT AND A WINDOW,
AND THEIR REPRESENTATION IN A SCROLL BAR

030

30

45 90

105

90

SCROLL BAR VALUES

MAXIMUM
SCROLLING VALUE

END OF DOCUMENT

START OF DOCUMENT 0

Distance and Direction to Scroll

When the user scrolls a document using scroll bars, your application must first determine the distance
and direction to scroll. The distance to scroll is as follows:

• When the user drags the scroll box to a new location, your application should scroll a
corresponding distance in the document.

• When the user clicks on a scroll arrow, your application must determine an appropriate amount
to scroll. Word processor applications typically scroll one line of text vertically, and horizontally
by the average character width. Graphics applications typically scroll to display an entire object.

• When the user clicks in the gray area, your application must determine an appropriate amount
to scroll. Typically, applications scroll by a distance of just less than the height or width of the
window.6

6To determine this height and width, you can use the contrlOwner field of the scroll bar's control record, which contains a pointer to a
window record.

Controls 5-13

The direction to scroll is determined by whether the scrolling distance is expressed as a positive or
negative number. For example, when the user scrolls from the beginning of a document to a line 200
pixels down, the scrolling distance is -200 pixels on the vertical scroll bar.

Scrolling the Pixels

With the distance and direction to scroll determined, the next step is to scroll the pixels displayed in the
window by that distance and in that direction. Typically, ScrollRect is used for that purpose.

Moving the Scroll Box

If the user did not effect the scroll using the scroll box, the scroll box must then be repositioned using
SetControlValue.

Updating the Window

The final step is to either call a routine which generates an update event or directly call your
application's update function. Your application's update function should call UpdateControls (to
update the scroll bars) and redraw the appropriate part of the document in the window.

Scrolling Example

Half the complexity of scrolling lays in ensuring that that part of the document which is displayed in
the window correlates with the scroll bar control value, and vice versa, at all times.

Consider the left-top of Fig 5, which illustrates the situation where the user has just opened an existing
document. The document consists of 35 lines of monostyled text and the line height throughout is 10
pixels. The document is, therefore, 350 pixels long. When the user opens the document, the window
origin is identical to the upper-left point of the document's space, that is, both are at (0,0).

In this example, the window displays 15 lines of text, which amounts to 150 pixels. Hence the
maximum setting for the scroll bar is equivalent to 200 pixels down in the document. (As shown at Fig
2, a vertical scroll bar's maximum setting equates to the length of the document minus the height of the
window.)

Now assume that the user drags the scroll box about halfway down the vertical scroll bar. Because the
user wishes to scroll down, your application must move the text of the document up. Moving a
document up in response to a user's request to scroll down requires a negative scrolling value.

Your application, using GetControlValue, determines that the scroll bar's control value is 100 and that it
must therefore move the document up by 100 pixels. It then uses ScrollRect to shift the bits displayed
in the window by a distance of -100 pixels (that is, 10 lines of text). As shown at the top-right of Fig 5,
five lines from the bottom of the previous window display now appear at the top of the window. Your
application adds the rest of the window to an update region for later updating.

Note that ScrollRect does not change the coordinate system of the window; instead it moves the bits in
the window to new coordinates that are still in the window's local coordinate system. (For the
purposes of updating the window, you can think of this as changing the coordinates of the entire
document, as is illustrated at the right-top of Fig 5.) In terms of the window's local coordinate system,
then, the upper left corner of the document is now at (-100,0).

To facilitate updating of the window, SetOrigin must now be used to change the local coordinate
system of the window so that the application can treat the upper left corner of the document as again
lying at (0,0). This restoration of the document's original coordinate space makes it easier for the
application to determine which lines of the document to draw in the update region of the window.
(See bottom-left of Fig 5.)

Your application should now update the window by drawing lines 16 to 24, which it stores in its
document record as beginning at (160,0) and ending at (250,0).

5-14 Controls

UPDATE REGION

WHEN THE USER FIRST OPENS THE DOCUMENT AFTER APPLICATION MOVES DOCUMENT VERTICALLY BY -100 PIXELS

AFTER APPLICATION UPDATES WINDOW'S CONTENTSAFTER APPLICATION RESTORES DOCUMENT'S ORIGINAL COORDINATES

(0,0)

(150,0)

(350,0)

(-100,0)

(0,0)

(150,0)

(250,0)

(100,0)

(350,0)

(-100,0)

(0,0)

(150,0)

(250,0)

(0,0)

(250,0)

UPDATE REGION

FIG 5 - SCROLLING A DOCUMENT IN A WINDOW

Finally, because the Window and Control Managers always assume that the window's upper-left point
is at (0,0) when they draw in the window, the window origin cannot be left at (100,0). Accordingly, the
application must use SetOrigin to reset it to (0,0) after performing its own drawing, (See bottom-right
of Fig 5.)

To summarise:

• The user dragged the scroll box about half way down the vertical scroll bar. The application
determined that this distance amounted to a scroll of -100 pixels.

• The application passed this distance to ScrollRect, which shifted the bits in the window 100
pixels upwards and created an update region in the vacated area of the window.

• The application passed the vertical scroll bar's current setting (100) in a parameter to SetOrigin
so that the document's local coordinates were used when the update region of the window was
redrawn. This changed the window's origin to (100,0).

• The application drew the text in the update region.

• The application reset the window's origin to (0,0)

Alternative to SetOrigin

There are alternatives to the SetOrigin methodology. SetOrigin simply helps you to offset the
window's origin by the scroll bar's current settings when you update the window so that you can locate
objects in a document using a coordinate system where the upper-left corner of the document is always
at (0,0).

As an alternative to this approach, your application can leave the upper-left corner of the window at
(0,0) and instead offset the items in your document, using OffsetRect, by an amount equal to the scroll
bar's settings.

Controls 5-15

Scrolling a TextEdit Document

TextEdit is a collection of routines and data structures which you can use to provide your application
with basic text editing capabilities. Chapter 17 — Text and TextEdit addresses, amongst other things,
the scrolling of TextEdit documents.

Scrolling Using the List Manager

For scrolling lists of graphic or textual information, your application can use the List Manager to
implement scroll bars. (See Chapter 18 — Lists and Custom List Definition Functions .)

Main Control Manager Constants, Data Types and Routines

Constants

Control Definition IDs

pushButProc = 0
checkBoxProc = 1
radioButProc = 2
scrollBarProc = 16
popupMenuProc = 1008

useWFont = 8 Add to pushButProc, checkBoxProc, radioButProc, to display
control title in the window font.

Pop-up Menu Variation Codes

popupFixedWidth = 1 * (2**(0));
popupVariableWidth = 1 * (2**(1));
popupUseAddResMenu = 1 * (2**(2));
popupUseWFont = 1 * (2**(3)); Add to popupMenuProc to display title in the

window font.

Pop-up Title Characteristics

popupTitleBold = 1 * (2**(8));
popupTitleItalic = 1 * (2**(9));
popupTitleUnderline = 1 * (2**(10));
popupTitleOutline = 1 * (2**(11));
popupTitleShadow = 1 * (2**(12));
popupTitleCondense = 1 * (2**(13));
popupTitleExtend = 1 * (2**(14));
popupTitleNoStyle = 1 * (2**(15));

popupTitleLeftJust = $00000000;
popupTitleCenterJust = $00000001;
popupTitleRightJust = $000000FF;

Part Codes

inLabel = 1
inMenu = 2
inTriangle = 4
inButton = 10
inCheckBox = 11
inUpButton = 20
inDownButton = 21
inPageUp = 22
inPageDown = 23
inThumb = 129

Control Color Table Part Codes

cFrameColor = 0
cBodyColor = 1
cTextColor = 2
cThumbColor = 3

5-16 Controls

Data Types

typedef SInt16 ControlPartCode;

Control Record

ControlRecord = packed record
nextControl: ControlRef;
contrlOwner: WindowRef;
contrlRect: Rect;
contrlVis: UInt8;
contrlHilite: UInt8;
contrlValue: SInt16;
contrlMin: SInt16;
contrlMax: SInt16;
contrlDefProc: Handle;
contrlData: Handle;
contrlAction: ControlActionUPP;
contrlRfCon: SInt32;
contrlTitle: Str255;
end;

ControlPtr = ^ControlRecord;
ControlHandle = ^ControlPtr;
ControlRef = ControlHandle;

Auxiliary Control Record

AuxCtlRec = record
acNext: Handle;
acOwner: ControlRef;
acCTable: CCTabHandle;
acFlags: SInt16;
acReserved: SInt32;
acRefCon: SInt32;
end;

AuxCtlPtr = ^AuxCtlRec;
AuxCtlHandle = ^AuxCtlPtr;

Control Color Table Record

CtlCTab = record
ccSeed: SInt32;
ccRider: SInt16;
ctSize: SInt16;
ctTable: ARRAY [0..3] OF ColorSpec;
end;

CCTabPtr = ^CtlCTab;
CCTabHandle = ^CCTabPtr;

Routines

Note: Some Control Manager routines can be accessed using more than one spelling of the routine's name,
depending on the interface files supported by your development environment. The following reflects the newest
spellings, as specified in version 2.1 of the Universal Interfaces.

Creating Controls

function NewControl(theWindow: WindowRef; var boundsRect: Rect; title: ConstStr255Param;
visible: boolean; value: SInt16; min: SInt16; max: SInt16; procID: SInt16;
refCon: SInt32): ControlRef;

function GetNewControl(controlID: SInt16; owner: WindowRef): ControlRef;

Drawing Controls

procedure ShowControl(theControl: ControlRef);
procedure UpdateControls(theWindow: WindowRef; updateRegion: RgnHandle);
procedure DrawControls(theWindow: WindowRef);
procedure Draw1Control(theControl: ControlRef);

Controls 5-17

Handling Mouse Events in Controls

function FindControl(thePoint: Point; theWindow: WindowRef; var theControl: ControlRef):
ControlPartCode;

function TrackControl(theControl: ControlRef; thePoint: Point;
actionProc: ControlActionUPP): ControlPartCode;

function TestControl(theControl: ControlRef; thePoint: Point): ControlPartCode;

Changing Control Settings and Display

procedure SetControlValue(theControl: ControlRef; newValue: SInt16);
procedure SetControlMinimum(theControl: ControlRef; newMinimum: SInt16);
procedure SetControlMaximum(theControl: ControlRef; newMaximum: SInt16);
procedure SetControlTitle(theControl: ControlRef; title: ConstStr255Param);
procedure HideControl(theControl: ControlRef);
procedure MoveControl(theControl: ControlRef; h: SInt16; v: SInt16);
procedure SizeControl(theControl: ControlRef; w: SInt16; h: SInt16);
procedure HiliteControl(theControl: ControlRef; hiliteState: ControlPartCode);
procedure DragControl(theControl: ControlRef; startPoint: Point; var limitRect: Rect;

var slopRect: Rect; axis: DragConstraint);
procedure SetControlAction(theControl: ControlRef; actionProc: ControlActionUPP);
procedure SetControlColor(theControl: ControlRef; newColorTable: CCTabHandle);

Determining Control Values

function GetControlValue(theControl: ControlRef): SInt16;
function GetControlMinimum(theControl: ControlRef): SInt16;
function GetControlMaximum(theControl: ControlRef): SInt16;
function GetControlTitle(theControl: ControlRef; var title: Str255);
function GetControlReference(theControl: ControlRef): SInt32;
function SetControlReference(theControl: ControlRef; data: SInt32);
function GetControlAction(theControl: ControlRef): ControlActionUPP;
function GetControlVariant(theControl: ControlRef): SInt16;

Removing Controls

procedure DisposeControl(theControl: ControlRef);
procedure KillControls(theWindow: WindowRef);

Demonstration Program 1
{ ##1

// Controls1Pascal.p2

// ###3

//4

// This program opens a zoomDocProc window containing:5

//6

// • A pop-up menu.7

//8

// • Three radio buttons.9

//10

// • Two checkboxes.11

//12

// • One button.13

//14

// • Vertical and horizontal scroll bars.15

//16

// The pop-up menu, radio buttons, checkboxes, and button work correctly except that the17

// control values are not used for any specific purpose.18

//19

// The scroll bars are moved and resized when the user resizes or zooms the window;20

// however, no action is taken when the scroll box is moved or the scroll arrows or gray21

// areas are clicked.22

//23

// The program utilises the following resources:24

//25

// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit menus and a26

// pop-up menu (preload, non-purgeable).27

//28

// • A 'WIND' resource (purgeable) (initially not visible).29

//30

// • 'CNTL' resources for the pop-up menu, radio buttons, checkboxes, button and31

// scroll bars (preload, purgeable) (initially visible).32

5-18 Controls

//33

// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch34

// and is32BitCompatible flags set.35

//36

// ### }37

38

program Controls1Pascal(input, output);39

40

{ ……… include the following Universal Interfaces }41

42

uses43

44

Windows, Menus, Events, Types, Memory, Quickdraw, QuickdrawText, Fonts, Processes,45

TextUtils, Controls, OSUtils, TextEdit, Dialogs, ToolUtils, Devices, Segload, Sound;46

47

{ ……… define the following constants }48

49

const50

51

 rMenubar = 128;52

 rNewWindow = 128;53

54

 mApple = 128;55

 iAbout = 1;56

 mFile = 129;57

 iQuit = 11;58

 mEdit = 130;59

60

 cTimeZone = 128;61

 pSydney = 1;62

 pNewYork = 2;63

 pLondon = 3;64

 pRome = 4;65

 66

 cRed = 129;67

 cWhite = 130;68

 cBlue = 131;69

 cShowgrid = 132;70

 cShowrulers = 133;71

 cButton = 134;72

 cVScrollbar = 135;73

 cHScrollbar = 136;74

75

 kMaxLong = $7FFFFFFF;76

77

{ ……… user-defined types }78

79

type80

81

DocRec = record82

popupControlHdl: ControlHandle;83

redHdl: ControlHandle;84

whiteHdl: ControlHandle;85

blueHdl: ControlHandle;86

showGridHdl: ControlHandle;87

showRulersHdl: ControlHandle;88

okButtonHdl: ControlHandle;89

vScrollbarHdl: ControlHandle;90

hScrollbarHdl: ControlHandle;91

end;92

93

DocRecPointer = ^DocRec;94

DocRecHandle = ^DocRecPointer;95

96

{ ……… global variables }97

98

var99

100

gDone : boolean;101

gInBackground : boolean;102

menubarHdl : Handle;103

menuHdl : MenuHandle;104

myWindowPtr: WindowPtr;105

docRecHdl : DocRecHandle;106

eventRec : EventRecord;107

108

109

Controls 5-19

{ ### DoInitManagers }110

111

procedure DoInitManagers;112

113

begin114

MaxApplZone;115

MoreMasters;116

117

InitGraf(@qd.thePort);118

InitFonts;119

InitWindows;120

InitMenus;121

TEInit;122

InitDialogs(nil);123

124

InitCursor;125

FlushEvents(everyEvent, 0);126

end;127

{of procedure DoInitManagers}128

129

{ ### DoMenuChoice }130

131

procedure DoMenuChoice(menuChoice : longint);132

133

var134

menuID, menuItem : integer;135

itemName : string;136

daDriverRefNum : integer;137

138

begin139

menuID := HiWord(menuChoice);140

menuItem := LoWord(menuChoice);141

142

if (menuID = 0) then143

Exit(DoMenuChoice);144

145

case (menuID) of146

147

mApple:148

begin149

if (menuItem = iAbout)150

then SysBeep(10)151

elsebegin152

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);153

daDriverRefNum := OpenDeskAcc(itemName);154

end;155

end;156

157

mFile:158

begin159

if (menuItem = iQuit) then160

gDone := true;161

end;162

163

end;164

{of case statement}165

166

HiliteMenu(0);167

end;168

{of procedure DoMenuChoice}169

170

{ ## DoPopupMenuChoice }171

172

procedure DoPopupMenuChoice(controlValue : integer);173

174

begin175

case (controlValue) of176

177

pSydney:178

begin179

{ Action as appropriate.}180

end;181

182

pNewYork:183

begin184

{ Action as appropriate.}185

end;186

5-20 Controls

187

pLondon:188

begin189

{ Action as appropriate.}190

end;191

192

pRome:193

begin194

{ Action as appropriate.}195

end;196

end;197

{of case statement}198

199

SysBeep(10);200

end;201

{of procedure DoPopupMenuChoice}202

203

{ ### DoControls }204

205

procedure DoControls(controlHdl : ControlHandle; docRecHdl : DocRecHandle);206

207

begin208

if ((controlHdl = docRecHdl^^.redHdl) or (controlHdl = docRecHdl^^.whiteHdl) or209

 (controlHdl = docRecHdl^^.blueHdl))210

 211

thenbegin212

SetControlValue(docRecHdl^^.redHdl, 0);213

SetControlValue(docRecHdl^^.whiteHdl, 0);214

SetControlValue(docRecHdl^^.blueHdl, 0);215

SetControlValue(controlHdl, 1);216

end217

218

elseif((controlHdl = docRecHdl^^.showGridHdl) or219

(controlHdl = docRecHdl^^.showRulersHdl))220

221

thenbegin222

if (GetControlValue(controlHdl) = 1)223

then SetControlValue(controlHdl, 0)224

else SetControlValue(controlHdl, 1);225

end226

227

else if ((controlHdl = docRecHdl^^.vScrollbarHdl) or228

(controlHdl = docRecHdl^^.hScrollbarHdl))229

then{Do scroll bars handling.}230

231

else{Must be button. Do button handling.};232

233

SysBeep(10);234

end;235

{of procedure DoControls}236

237

{ ## DoInContent }238

239

procedure DoInContent(eventRec : EventRecord; myWindowPtr : WindowPtr);240

241

var242

controlHdl : ControlHandle;243

controlValue : integer;244

docRecHdl : DocRecHandle;245

ignored : integer;246

247

begin248

GlobalToLocal(eventRec.where);249

250

if (FindControl(eventRec.where, myWindowPtr, controlHdl) <> 0) then251

begin252

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));253

if (controlHdl = docRecHdl^^.popupControlHdl)254

thenbegin255

ignored := TrackControl(controlHdl, eventRec.where, ControlActionUPP(-1));256

controlValue := GetControlValue(controlHdl);257

DoPopupMenuChoice(controlValue);258

end259

260

elseif (TrackControl(controlHdl, eventRec.where, nil) <> 0) then261

DoControls(controlHdl, docRecHdl);262

end;263

Controls 5-21

end;264

{of procedure DoInContent}265

266

{ ### DoAdjustScrollBars }267

268

procedure DoAdjustScrollBars(myWindowPtr : WindowPtr);269

270

var271

winRect : Rect;272

docRecHdl : DocRecHandle;273

274

begin275

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));276

277

winRect := myWindowPtr^.portRect;278

279

HideControl(docRecHdl^^.vScrollbarHdl);280

HideControl(docRecHdl^^.hScrollbarHdl);281

282

MoveControl(docRecHdl^^.vScrollbarHdl, winRect.right - 15, winRect.top - 1);283

MoveControl(docRecHdl^^.hScrollbarHdl, winRect.left -1, winRect.bottom -15);284

285

SizeControl(docRecHdl^^.vScrollbarHdl, 16, winRect.bottom - 13);286

SizeControl(docRecHdl^^.hScrollbarHdl, winRect.right - 13, 16);287

288

ShowControl(docRecHdl^^.vScrollbarHdl);289

ShowControl(docRecHdl^^.hScrollbarHdl);290

291

DrawGrowIcon(myWindowPtr);292

end;293

{of procedure DoAdjustScrollBars}294

295

{ ## DoEraseGrowIcon }296

297

procedure DoEraseGrowIcon(myWindowPtr : WindowPtr);298

299

var300

growBoxRect : Rect;301

302

begin303

SetPort(myWindowPtr);304

305

growBoxRect := myWindowPtr^.portRect;306

growBoxRect.left := growBoxRect.right - 15;307

growBoxRect.top := growBoxRect.bottom - 15;308

EraseRect(growBoxRect);309

end;310

{of procedure DoEraseGrowIcon}311

312

{ ## DoMouseDown }313

314

procedure DoMouseDown(eventRec : EventRecord);315

316

var317

myWindowPtr : WindowPtr;318

partCode : integer;319

growRect : Rect;320

newSize : longint;321

322

begin323

partCode := FindWindow(eventRec.where, myWindowPtr);324

325

case (partCode) of326

327

inMenuBar:328

begin329

DoMenuChoice(MenuSelect(eventRec.where));330

end;331

332

inSysWindow:333

begin334

SystemClick(eventRec, myWindowPtr);335

end;336

337

inContent:338

begin339

if(myWindowPtr <> FrontWindow)340

5-22 Controls

thenSelectWindow(myWindowPtr)341

elseDoInContent(eventRec, myWindowPtr);342

end;343

344

inDrag:345

begin346

DragWindow(myWindowPtr, eventRec.where, qd.screenBits.bounds);347

end;348

349

inGoAway:350

begin351

if (TrackGoAway(myWindowPtr,eventRec.where)) then352

gDone := true;353

end;354

355

inGrow:356

begin357

growRect := qd.screenBits.bounds;358

growRect.top := 200;359

growRect.left := 275;360

newSize := GrowWindow(myWindowPtr, eventRec.where, growRect);361

if (newSize <> 0) then362

begin363

DoEraseGrowIcon(myWindowPtr);364

SizeWindow(myWindowPtr, LoWord(newSize), HiWord(newSize), true);365

DoAdjustScrollBars(myWindowPtr);366

end;367

end;368

369

inZoomIn, inZoomOut:370

begin371

if (TrackBox(myWindowPtr, eventRec.where, partCode)) then372

begin373

SetPort(myWindowPtr);374

EraseRect(myWindowPtr^.portRect);375

ZoomWindow(myWindowPtr, partCode, false);376

InvalRect(myWindowPtr^.portRect);377

DoAdjustScrollBars(myWindowPtr);378

end;379

end;380

end;381

{of case statement}382

end;383

{of procedure DoMouseDown}384

385

{ ### DoUpdate }386

387

procedure DoUpdate(eventRec : EventRecord);388

389

var390

myWindowPtr : WindowPtr;391

392

begin393

myWindowPtr := WindowPtr(eventRec.message);394

395

BeginUpdate(myWindowPtr);396

397

if not (EmptyRgn(myWindowPtr^.visRgn)) then398

begin399

SetPort(myWindowPtr);400

UpdateControls(myWindowPtr, myWindowPtr^.visRgn);401

DrawGrowIcon(myWindowPtr);402

end;403

404

EndUpdate(myWindowPtr);405

end;406

{of procedure DoUpdate}407

408

{ ### DoActivateWindow }409

410

procedure DoActivateWindow(myWindowPtr : WindowPtr; becomingActive : boolean);411

412

var413

docRecHdl : DocRecHandle;414

hiliteState : integer;415

416

begin417

Controls 5-23

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));418

419

if (becomingActive)420

then hiliteState := 0421

else hiliteState := 255;422

423

HiliteControl(docRecHdl^^.popupControlHdl, hiliteState);424

HiliteControl(docRecHdl^^.redHdl, hiliteState);425

HiliteControl(docRecHdl^^.whiteHdl, hiliteState);426

HiliteControl(docRecHdl^^.blueHdl, hiliteState);427

HiliteControl(docRecHdl^^.showGridHdl, hiliteState);428

HiliteControl(docRecHdl^^.showRulersHdl, hiliteState);429

HiliteControl(docRecHdl^^.okButtonHdl, hiliteState);430

HiliteControl(docRecHdl^^.vScrollbarHdl, hiliteState);431

HiliteControl(docRecHdl^^.hScrollbarHdl, hiliteState);432

end;433

{of procedure DoActivateWindow}434

435

{ ### DoActivate }436

437

procedure DoActivate(eventRec : EventRecord);438

439

var440

myWindowPtr : WindowPtr;441

becomingActive : boolean;442

443

begin444

myWindowPtr := WindowPtr(eventRec.message);445

446

becomingActive := (BAnd(eventRec.modifiers, activeFlag) <> 0);447

448

DoActivateWindow(myWindowPtr, becomingActive);449

end;450

{of procedure DoActivate}451

452

{ ## DoOSEvent }453

454

procedure DoOSEvent(eventRec : EventRecord);455

456

begin457

case BAnd(BSR(eventRec.message, 24), $000000FF) of458

459

suspendResumeMessage:460

begin461

DrawGrowIcon(FrontWindow);462

gInBackground := boolean(BAnd(eventRec.message, resumeFlag));463

DoActivateWindow(FrontWindow, gInBackground);464

end;465

466

mouseMovedMessage:467

begin468

end;469

470

end;471

{of case statement}472

end;473

{of procedure DoOSEvent}474

475

{ ## DoEvents }476

477

procedure DoEvents(eventRec : EventRecord);478

479

begin480

case (eventRec.what) of481

mouseDown:482

begin483

DoMouseDown(eventRec);484

end;485

486

updateEvt:487

begin488

DoUpdate(eventRec);489

end;490

491

activateEvt:492

begin493

DoActivate(eventRec);494

5-24 Controls

end;495

496

osEvt:497

begin498

DoOSEvent(eventRec);499

HiliteMenu(0);500

end;501

end;502

{of case statement}503

end;504

{of procedure DoEvents}505

506

{ ## DoGetControls }507

508

procedure DoGetControls(myWindowPtr : WindowPtr);509

510

var511

docRecHdl : DocRecHandle;512

513

begin514

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));515

516

with docRecHdl^^ do517

begin518

popupControlHdl := GetNewControl(cTimeZone, myWindowPtr);519

if (popupControlHdl = nil) then520

ExitToShell;521

522

redHdl := GetNewControl(cRed, myWindowPtr);523

if (popupControlHdl = nil) then524

ExitToShell;525

526

whiteHdl := GetNewControl(cWhite, myWindowPtr);527

if (popupControlHdl = nil) then528

ExitToShell;529

530

blueHdl := GetNewControl(cBlue, myWindowPtr);531

if (popupControlHdl = nil) then532

ExitToShell;533

534

showGridHdl := GetNewControl(cShowgrid, myWindowPtr);535

if (popupControlHdl = nil) then536

ExitToShell;537

538

showRulersHdl := GetNewControl(cShowrulers, myWindowPtr);539

if (popupControlHdl = nil) then540

ExitToShell;541

542

okButtonHdl := GetNewControl(cButton, myWindowPtr);543

if (popupControlHdl = nil) then544

ExitToShell;545

546

vScrollbarHdl := GetNewControl(cVScrollbar, myWindowPtr);547

if (popupControlHdl = nil) then548

ExitToShell;549

550

hScrollbarHdl := GetNewControl(cHScrollbar, myWindowPtr);551

if (popupControlHdl = nil) then552

ExitToShell;553

end;554

{of with statement}555

556

end;557

{of procedure DoGetControls}558

559

{ ## start of main program }560

561

begin562

563

{ …… initialise managers }564

565

DoInitManagers;566

567

{ …… set up menu bar and menus }568

569

menubarHdl := GetNewMBar(rMenubar);570

if (menubarHdl = nil) then571

Controls 5-25

ExitToShell;572

SetMenuBar(menubarHdl);573

DrawMenuBar;574

575

menuHdl := GetMenuHandle(mApple);576

if (menuHdl = nil)577

then ExitToShell578

else AppendResMenu(menuHdl,'DRVR');579

580

{ …… open a window }581

582

myWindowPtr := GetNewWindow(rNewWindow, nil, WindowPtr(-1));583

if (myWindowPtr = nil) then584

ExitToShell;585

SetPort(myWindowPtr);586

587

{ ………………… get block for document record, assign handle to window record refCon field }588

589

docRecHdl := DocRecHandle(NewHandle(sizeof(DocRec)));590

if (docRecHdl = nil) then591

ExitToShell;592

593

SetWRefCon(myWindowPtr, longint(docRecHdl));594

595

{ ……… get controls and show window }596

597

DoGetControls(myWindowPtr);598

DoAdjustScrollBars(myWindowPtr);599

ShowWindow(myWindowPtr);600

601

{ …… enter eventLoop }602

603

gDone := false;604

605

while not (gDone) do606

if (WaitNextEvent(everyEvent, eventRec, kMaxLong, nil)) then607

DoEvents(eventRec);608

609

end.610

611

{ ## }612

Demonstration Program 1 Comments
When this program is run, the user should:

• Click on the various controls, noting particularly that the radio button settings are
mutually exclusive and that checkbox settings are not.

• Resize and zoom the window, noting that the scroll bars are moved and resized in
response to these actions.

• Send the program to the background and bring it to the foreground, noting the changes to
the appearance of the controls. (As a point of interest, users with a colour or
grayscale monitor and a Macintosh on which Color QuickDraw is present will note that,
when the controls are unhighlighted, the pop-up menu appears in a grey colour whereas
the titles of the other controls appears in the gray pattern. If the window is opened
using GetNewCWindow, rather than GetNewWindow, the titles of these latter controls will
appear in a grey colour. The control definition functions determine this behaviour.)

The const declaration block

Line 52-76 establish constants representing menu, window and control resource IDs, menu IDs
and menu items. Line 76 defines kMaxLong as the maximum possible long value. This value will
be assigned to WaitNextEvent's sleep parameter.

The type definition block

At Lines 80-95, a data type for a document record is created. The document record structure
comprises fields in which the handles to the control records for the various controls will be
stored.

5-26 Controls

The var declaration block

gDone is used to control termination of the program, which will occur when the user selects
Quit from the File menu or clicks in the window's close box. gInBackground relates to
foreground/background switching.

The procedure DoMenuChoice

DoMenuChoice handles user choices from the drop-down menus.

The procedure DoPopUpMenuChoice

DoPopupMenuChoice branches according to the menu item number passed to it from Line 258.

The procedure DoControls

DoControls receives control and document record handles and switches according to whether the
control handle matches one of the radio button handles, one of the checkbox handles or the
button handle.

If the control handle matches one of the radio button handles (Lines 209-210), the control
values of all radio buttons are set to 0 before that for the selected control is set to 1
(Lines 213-216). If the control handle matches one of the checkboxes (Lines 219-220), the
control value for that control is flipped (Lines 223-225). If the control handle matches that
of one the scroll bars (Lines 228-229), appropriate scrolling handling is invoked (Line 230).

If a match has still not been found, the handle must be a match for the button's handle (Line
232, in which case the appropriate action is taken (Line 232).

The procedure DoInContent

DoInContent further processes mouse-down events in the content region.

Line 249 converts the mouse coordinates in the event record's where field to the local
coordinates required in the call to FindControl at Line 251.

If there is a control at the cursor location at which the mouse button is released, the
control handle returned by the FindControl call at Line 251 is compared with the handle to the
pop-up control stored in the window's document record (Line 254). If they match, TrackControl
is called (Line 256) with the procPtr field set to (-1) so as to cause an action procedure
within the control's control definition function to be repeatedly invoked while the mouse
button remains down. When TrackControl returns, the control value is obtained by a call to
GetControlValue (Line 257). For a pop-up menu, this value represents the menu item number.
At Line 258, the menu item number is passed to an application-defined procedure which handles
the menu choice.

If the control handle returned by the FindControl call does not match the pop-up control's
handle (Line 261), the handle must be to one of the other controls. In this case,
TrackControl is called (Line 261), with the procPtr field set to that required for a radio
button, checkbox, button or scroll bar. If the cursor is still within the control when the
mouse button is released, the handle to the control record found by FindControl, together with
the handle to the window's document record, is passed to the application-defined procedure
DoControls (Line 262).

The procedure DoAdjustScrollBars

DoAdjustScrollBars is called if the user resizes or zooms the window.

At Line 276, a handle to the window's document record is retrieved from the window record's
refCon field. At Line 278, the coordinates representing the window's current content region
are assigned to a Rect variable which will be used in calls to MoveControl and SizeControl.

Amongst other things, MoveControl and SizeControl both redraw the specified scroll bar. Since
SizeControl will be called immediately after MoveControl, this will causes a very slight
flickering of the scroll bars. To prevent this, the scroll bars will be hidden while these
two functions are executing.

Lines 280-281 hide the scroll bars. The calls to MoveControl at Lines 283-284 erase the
scroll bars, offset the contrlRect fields of their control records, and redraw the scroll bars
within the offset rectangle. The calls to SizeControl at Lines 286-287 hide the scroll bars
(in this program they are already hidden), adjust the contrlRect fields of their control
records, and redraw the scroll bars within the new rectangle. Lines 289-290 show the scroll
bars. Line 292 draws the grow icon.

Controls 5-27

The procedure DoEraseGrowIcon

DoEraseGrowIcon is called whenever the user resizes the window. It simply erases the size
box.

The procedure DoMouseDown

DoMouseDown branches according to the window part in which a mouseDown event occurs.

If the window in which the mouse-down occurred is the front window (Line 340), and since all
of the controls are located in the window's content region, a call to the application-defined
procedure DoInContent is made at Line 342.

Lines 357-368 handle re-sizing of the window, which is of particular significance to the
scroll bars. GrowWindow (Line 361) follows the mouse cursor while the mouse button remains
down, returning the new height and width of the window, or zero if no change was made. If a
change was made (Line 362), an application-defined procedure is called to erase the grow box,
SizeWindow is called to draw the window in its new size (Line 365), and an application-defined
procedure is called at Line 366 to erase, move, resize and redraw the scroll bars.

Lines 371-380 handle window zooming, which is also of significance to the scroll bars. If the
call to TrackBox at Line 372 returns a non-zero value, the window's content region is erased
(Lines 374-375), ZoomWindow is called at Line 376 to redraw the window in its new state,
InvalRect is called at Line 377 to add the entire content region to the update region, and an
application-defined procedure is called at Line 378 to erase, move, resize and redraw the
scroll bars.

The procedure DoUpdate

DoUpdate is called whenever the application receives an update event for its window. Between
the usual calls to BeginUpdate and EndUpdate, and if the window's visible region (which at
that point equates to the update region as it was prior to the BeginUpdate call) is not empty,
the window's graphics port is set as the current port for drawing (Line 400), UpdateControls
is called at Line 401 to draw those controls intersecting the current visible region, and
DrawGrowIcon is called to draw the grow icon (Line 402).

The procedure DoActivateWindow

DoActivateWindow switches according to whether the specified window is becoming active or is
about to be made inactive. (Actually, DoActivateWindow will never be called by DoActivate in
this program because the program only opens one window. It will however, be called by the
application-defined procedure DoOSEvent.)

At Line 417, a handle to the window's document record is retrieved from the window record's
refCon field.

Lines 420-427 assign either 0 or 255 to the variable hiliteState depending on whether the
window is becoming active or inactive. This variable is then used in the calls to
HiliteControl at Lines 424-432 to either un-dim the controls and render them active or dim
them and render them inactive.

The procedure DoActivate

DoActivate is called whenever the application receives an activate event for its window. At
Line 447, a variable is set to indicate whether the window is becoming active or is about to
be made inactive. This variable is then passed in the call to an application-defined
procedure DoActivateWindow at Line 449.

The procedure DoOSEvent

DoOSEvent handles operating system events.

If the event is a suspend or resume event (Line 460), DrawGrowIcon is called at Line 462 to
draw the grow icon in the appropriate state. A variable is then set to indicate whether the
program is coming to the foreground or is about to be sent to the background (Line 463). This
variable is passed in the call to DoActivateWindow at Line 464. (Recall that the
doesActivateOnFGSwitch flag is set in the 'SIZE' resource.)

The procedure DoEvents

DoEvents branches according to the event type reported.

5-28 Controls

The procedure DoGetControls

The DoGetControls procedure creates the controls from the various 'CNTL' resources. Firstly,
at Line 515, the handle to the structure in which the handles to the control records will be
stored is retrieved. Then, at Lines 517-554, calls to GetNewControl create a control record
for each control, insert the record into the control list for the specified window and draw
the control. At the same time, the handle to each control is assigned to the appropriate
field of the window's document record.

The main program block

Within the main function, the system software managers are initialised (Line 566), the menu
bar and drop-down menus are set up (Lines 570-579), and a zoomDocProc window is opened (Line
583).

At Line 590, a relocatable block the size of one document record is created. At Line 594, the
handle to the block is assigned to the window record's refCon field.

At Line 598, a call is made to the application-defined function which creates the controls.
Line 599 calls the application-defined function which resizes and locates the scroll bars
according to the dimensions of the window's port rectangle. With the controls created, Line
600 makes the window visible.

The main event loop is then entered (Lines 604-608).

Note that error handling here and in other areas of this demonstration program is somewhat
rudimentary. In the unlikely event that certain calls fail, ExitToShell is called to
terminate the program.

Demonstration Program 2
{ ##1

// Controls2Pascal.p2

// ###3

//4

// This program:5

//6

// • Opens a noGrowDocProc window with a horizontal scrollbar.7

//8

// • Allows the user to horizontally scroll a picture within the window using the9

// scroll box, the scroll arrows and the gray area.10

//11

// The program utilises the following resources:12

//13

// • An 'MBAR' resource, and 'MENU' resources for Apple, File and Edit (preload,14

// non-purgeable).15

//16

// • A 'WIND' resource (purgeable) (initially visible).17

//18

// • An 'CNTL' resource for the horizontal scroll bar (purgeable).19

//20

// • A 'PICT' resource containing the picture to be scrolled (non-purgeable).21

//22

// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch23

// and is32BitCompatible flags set.24

//25

// ### }26

27

program Controls2Pascal(input, output);28

29

{ ……… include the following Universal Interfaces }30

31

uses32

33

Windows, Fonts, Quickdraw, Events, Types, Memory, Processes, Controls, Menus,34

TextEdit, Dialogs, ToolUtils, OSUtils, Devices, Segload, Sound;35

36

{ ……… define the following constants }37

38

const39

40

rMenubar = 128;41

rNewWindow = 128;42

Controls 5-29

rPicture = 128;43

44

mApple = 128;45

 iAbout = 1;46

mFile = 129;47

 iQuit = 11;48

mEdit = 130;49

50

cHScrollbar = 128;51

52

kMaxLong = $7FFFFFFF;53

54

{ ……… user-defined types }55

56

type57

58

DocRec = record59

hScrollbarHdl : ControlHandle;60

end;61

62

DocRecHandle = ^^DocRec;63

64

{ ……… global variables }65

66

var67

68

gDone : boolean;69

gInBackground : boolean;70

gPictRect : Rect;71

gPictureHdl : PicHandle;72

menubarHdl : Handle;73

menuHdl : MenuHandle;74

myWindowPtr : WindowPtr;75

docRecHdl : DocRecHandle;76

eventRec : EventRecord;77

78

79

{ ### DoInitManagers }80

81

procedure DoInitManagers;82

83

begin84

MaxApplZone;85

MoreMasters;86

87

InitGraf(@qd.thePort);88

InitFonts;89

InitWindows;90

InitMenus;91

TEInit;92

InitDialogs(nil);93

94

InitCursor;95

FlushEvents(everyEvent, 0);96

end;97

{of procedure DoInitManagers}98

99

{ ## DoMoveScrollBox }100

101

procedure DoMoveScrollBox(controlHdl : ControlHandle; scrollDistance : integer);102

103

var104

oldControlValue, controlValue, controlMax : integer;105

106

begin107

oldControlValue := GetControlValue(controlHdl);108

controlMax := GetControlMaximum(controlHdl);109

110

controlValue := oldControlValue - scrollDistance;111

112

if (controlValue < 0)113

thencontrolValue := 0114

else if (controlValue > controlMax)115

then controlValue := controlMax;116

117

SetControlValue(controlHdl, controlValue);118

end;119

5-30 Controls

{of procedure DoMoveScrollBox}120

121

{ ## ActionProcedure }122

123

procedure ActionProcedure(controlHdl : ControlHandle; partCode : ControlPartCode);124

125

var126

myWindowPtr : WindowPtr;127

docRecHdl : DocRecHandle;128

scrollDistance : integer;129

controlValue : integer;130

updateRegion : RgnHandle;131

132

begin133

if (partCode > 0) then134

begin135

myWindowPtr := controlHdl^^.contrlOwner;136

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));137

138

case (partCode) of139

140

kControlUpButtonPart, kControlDownButtonPart:141

begin142

scrollDistance := 2;143

end;144

145

kControlPageUpPart, kControlPageDownPart:146

begin147

scrollDistance := (myWindowPtr^.portRect.right148

- myWindowPtr^.portRect.left) - 10;149

end;150

end;151

{of case statement}152

153

if ((partCode = kControlDownButtonPart) or (partCode = kControlPageDownPart))154

then scrollDistance := -scrollDistance;155

156

controlValue := GetControlValue(controlHdl);157

if (((controlValue = GetControlMaximum(controlHdl)) and (scrollDistance < 0)) or158

 ((controlValue = GetControlMinimum(controlHdl)) and (scrollDistance > 0)))159

 then Exit(ActionProcedure);160

161

DoMoveScrollBox(controlHdl, scrollDistance);162

163

updateRegion := NewRgn;164

ScrollRect(gPictRect, scrollDistance, 0, updateRegion);165

InvalRgn(updateRegion);166

DisposeRgn(updateRegion);167

168

if((scrollDistance = 2) or (scrollDistance = -2)) then169

BeginUpdate(myWindowPtr);170

171

SetOrigin(GetControlValue(docRecHdl^^.hScrollbarHdl), 0);172

DrawPicture(gPictureHdl, gPictRect);173

SetOrigin(0, 0);174

175

if((scrollDistance = 2) or (scrollDistance = -2)) then176

EndUpdate(myWindowPtr);177

end;178

end;179

{of procedure ActionProcedure}180

181

{ ### DoScrollBars }182

183

procedure DoScrollBars(partCode : ControlPartCode; myWindowPtr : WindowPtr;184

controlHdl : ControlHandle; mouseXY : Point);185

186

var187

docRecHdl : DocRecHandle;188

oldControlValue : integer;189

scrollDistance : integer;190

updateRegion : RgnHandle;191

ignored : integer;192

193

begin194

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));195

196

Controls 5-31

197

case (partCode) of198

199

kControlIndicatorPart:200

begin201

oldControlValue := GetControlValue(controlHdl);202

if (TrackControl(controlHdl, mouseXY, nil) > 0) then203

begin204

scrollDistance := oldControlValue - GetControlValue(controlHdl);205

if (scrollDistance <> 0) then206

begin207

if (controlHdl = docRecHdl^^.hScrollbarHdl)208

thenbegin209

updateRegion := NewRgn;210

ScrollRect(gPictRect, scrollDistance, 0, updateRegion);211

InvalRgn(updateRegion);212

DisposeRgn(updateRegion);213

end214

215

elsebegin216

{Vertical scroll bar scroll box handling here.}217

end;218

end;219

end;220

end;221

222

kControlUpButtonPart, kControlDownButtonPart, kControlPageUpPart,223

kControlPageDownPart:224

225

begin226

if (controlHdl = docRecHdl^^.hScrollbarHdl)227

thenignored := TrackControl(controlHdl, mouseXY, @ActionProcedure)228

elsebegin229

 {Vertical scroll via horizontal scrolling action procedure here.}230

end;231

end;232

233

end;234

{of case statement}235

236

end;237

{of procedure DoScrollBars}238

239

{ ## DoIncontent }240

241

procedure DoInContent(eventRec : EventRecord; myWindowPtr : WindowPtr);242

243

var244

mouseXY : Point;245

partCode : ControlPartCode;246

controlHdl : ControlHandle;247

248

begin249

partCode := 0;250

mouseXY := eventRec.where;251

GlobalToLocal(mouseXY);252

253

partCode := FindControl(mouseXY, myWindowPtr, controlHdl);254

if (partCode <> 0) then255

DoScrollBars(partCode, myWindowPtr, controlHdl, mouseXY);256

end;257

{of procedure DoInContent}258

259

{ ### DoUpdate }260

261

procedure DoUpdate(eventRec : EventRecord);262

263

var264

myWindowPtr : WindowPtr;265

docRecHdl : DocRecHandle;266

267

begin268

myWindowPtr := WindowPtr(eventRec.message);269

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));270

271

BeginUpdate(myWindowPtr);272

273

5-32 Controls

if not (EmptyRgn(myWindowPtr^.visRgn)) then274

begin275

SetPort(myWindowPtr);276

UpdateControls(myWindowPtr, myWindowPtr^.visRgn);277

278

SetOrigin(GetControlValue(docRecHdl^^.hScrollbarHdl),0);279

DrawPicture(gPictureHdl, gPictRect);280

SetOrigin(0, 0);281

end;282

283

EndUpdate(myWindowPtr);284

end;285

{of procedure DoUpdate}286

287

{ ### DoActivateWindow }288

289

procedure DoActivateWindow(myWindowPtr : WindowPtr; becomingActive : boolean);290

291

var292

docRecHdl : DocRecHandle;293

294

begin295

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));296

297

if (becomingActive)298

thenHiliteControl(docRecHdl^^.hScrollbarHdl, 0)299

elseHiliteControl(docRecHdl^^.hScrollbarHdl, 255);300

301

end;302

{of procedure DoActivateWindow}303

304

{ ### DoActivate }305

306

procedure DoActivate(eventRec : EventRecord);307

308

var309

myWindowPtr : WindowPtr;310

becomingActive : boolean;311

312

begin313

myWindowPtr := WindowPtr(eventRec.message);314

315

becomingActive := (BAnd(eventRec.modifiers, activeFlag) <> 0);316

317

DoActivateWindow(myWindowPtr, becomingActive);318

end;319

{of procedure DoActivate}320

321

{ ## DoOSEvent }322

323

procedure DoOSEvent(eventRec : EventRecord);324

325

begin326

case BAnd(BSR(eventRec.message, 24), $000000FF) of327

328

suspendResumeMessage:329

begin330

gInBackground := boolean(BAnd(eventRec.message, resumeFlag));331

DoActivateWindow(FrontWindow, gInBackground);332

end;333

334

mouseMovedMessage:335

begin336

end;337

338

end;339

{of case statement}340

end;341

{of procedure DoOSEvent}342

343

{ ### DoMenuChoice }344

345

procedure DoMenuChoice(menuChoice : longint);346

347

var348

menuID, menuItem : integer;349

itemName : string;350

Controls 5-33

daDriverRefNum : integer;351

352

begin353

menuID := HiWord(menuChoice);354

menuItem := LoWord(menuChoice);355

356

if (menuID = 0) then357

Exit(DoMenuChoice);358

359

case (menuID) of360

361

mApple:362

begin363

if (menuItem = iAbout)364

then SysBeep(10)365

elsebegin366

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);367

daDriverRefNum := OpenDeskAcc(itemName);368

end;369

end;370

371

mFile:372

begin373

if (menuItem = iQuit) then374

gDone := true;375

end;376

377

end;378

{of case statement}379

380

HiliteMenu(0);381

end;382

{of procedure DoMenuChoice}383

384

{ ## DoMouseDown }385

386

procedure DoMouseDown(eventRec : EventRecord);387

388

var389

myWindowPtr : WindowPtr;390

partCode : integer;391

392

begin393

partCode := FindWindow(eventRec.where, myWindowPtr);394

395

case (partCode) of396

397

inMenuBar:398

begin399

DoMenuChoice(MenuSelect(eventRec.where));400

end;401

402

inSysWindow:403

begin404

SystemClick(eventRec, myWindowPtr);405

end;406

407

inContent:408

begin409

if(myWindowPtr <> FrontWindow)410

thenSelectWindow(myWindowPtr)411

elseDoInContent(eventRec, myWindowPtr);412

end;413

414

inDrag:415

begin416

DragWindow(myWindowPtr, eventRec.where, qd.screenBits.bounds);417

end;418

419

inGoAway:420

begin421

if (TrackGoAway(myWindowPtr,eventRec.where)) then422

gDone := true;423

end;424

425

end;426

{of case statement}427

5-34 Controls

end;428

{of procedure DoMouseDown}429

430

{ ## DoEvents }431

432

procedure DoEvents(eventRec : EventRecord);433

434

begin435

case (eventRec.what) of436

mouseDown:437

begin438

DoMouseDown(eventRec);439

end;440

441

updateEvt:442

begin443

DoUpdate(eventRec);444

end;445

446

activateEvt:447

begin448

DoActivate(eventRec);449

end;450

451

osEvt:452

begin453

DoOSEvent(eventRec);454

HiliteMenu(0);455

end;456

end;457

{of case statement}458

end;459

{of procedure DoEvents}460

461

462

{ ### DoGetControl }463

464

procedure DoGetControl(myWindowPtr : WindowPtr);465

466

var467

docRecHdl : DocRecHandle;468

469

begin470

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));471

472

docRecHdl^^.hScrollbarHdl := GetNewControl(cHScrollbar, myWindowPtr);473

end;474

{of procedure DoGetControl}475

476

{ ### DoGetPicture }477

478

procedure DoGetPicture;479

480

begin481

gPictureHdl := GetPicture(rPicture);482

483

gPictRect := gPictureHdl^^.picFrame;484

gPictRect.right := gPictRect.right - gPictRect.left;485

gPictRect.left := 0;486

gPictRect.bottom := gPictRect.bottom - gPictRect.top;487

gPictRect.top := 0;488

end;489

{of procedure DoGetPicture}490

491

{ ## start of main program }492

493

begin494

495

{ …… initialize managers }496

497

DoInitManagers;498

499

{ …… set up menu bar and menus }500

501

menubarHdl := GetNewMBar(rMenubar);502

if (menubarHdl = nil) then503

ExitToShell;504

Controls 5-35

SetMenuBar(menubarHdl);505

DrawMenuBar;506

507

menuHdl := GetMenuHandle(mApple);508

if (menuHdl = nil)509

thenExitToShell510

elseAppendResMenu(menuHdl,'DRVR');511

512

{ …… open a window }513

514

myWindowPtr := GetNewWindow(rNewWindow, nil, WindowPtr(-1));515

if (myWindowPtr = nil) then516

ExitToShell;517

518

SetPort(myWindowPtr);519

520

{ ………………… get block for document record, assign handle to window record refCon field }521

522

docRecHdl := DocRecHandle(NewHandle(sizeof(DocRec)));523

SetWRefCon(myWindowPtr, longint(docRecHdl));524

525

{ ……… get controls }526

527

DoGetControl(myWindowPtr);528

529

{ …… get picture }530

531

DoGetPicture;532

533

{ …… enter eventLoop }534

535

gDone := false;536

537

while not (gDone) do538

if (WaitNextEvent(everyEvent, eventRec, kMaxLong, nil)) then539

DoEvents(eventRec);540

541

542

end.543

544

{ ## }545

Demonstration Program 2 Comments
When the program is run, the user should scroll the picture by dragging the scroll box,
clicking in the scroll bar's gray areas, clicking in the scroll arrows and holding the mouse
button down while the cursor is in the gray areas and scroll arrows.

Note that the picture which is scrolled in this demonstration is 600 pixels wide and 185
pixels high, that the window is 200 pixels wide by 200 pixels high, and that the 'CNTL'
resource sets the control's maximum value to 400. Note also that the "SetOrigin" scrolling
methodology is employed.

The constant declaration block

Lines 41-53 establish constants relating to menu, window, picture, and control resources, menu
IDs and menu item numbers. Line 53 defines kMaxLong as the maximum possible long value. This
value will be assigned to WaitNextEvent's sleep parameter.

The type definition block

Lines 57-63 define a data type for a document record. The single field of the document record
will be assigned a handle to the control record for the vertical scroll bar.

The variable declaration block

gDone controls program termination. gInBackground has to do with foreground/background
switching.

gPictRect is a Rect for the picture to be scrolled. gPictureHdl will be assigned a handle to
the Picture structure associated with the 'PICT' resource.

5-36 Controls

The procedure DoMoveScrollBox

DoMoveScrollBox is called from within the action procedure to reset the control's current
value to reflect the scrolled distance, and to reposition the scroll box accordingly.

Line 108 retrieves the current control value. Line 109 retrieves the control's maximum value.
Line 111 calculates the new control value by subtracting the received distance to scroll from
the current control value. Lines 113-116 prevent the control's value from being set lower or
higher than the control's minimum and maximum values respectively. The call to
SetControlValue at Line 118 sets the new control value and repositions the scroll box.

The procedure ActionProcedure

ActionProcedure is the action procedure called by TrackControl. Because it is repeatedly
called by TrackControl while the mouse button remains down, the scrolling it performs
continues repeatedly until the mouse button is released, provided the cursor remains within
the scroll arrow or gray area.

Firstly, if the cursor is not still inside the scroll arrow or gray area (Line 134), execution
drops through to the bottom of the if statement and the action procedure exits. The following
occurs only when the cursor is within the control.

At Lines 136-137, the pointer to the window record for the window which "owns" this control is
retrieved from the control record's contrlOwner field, and the handle to the document record
is retrieved from the that window record's refCon field.

If the control part being used by the user to perform the scrolling is one of the scroll
arrows, the distance to scroll (in pixels) is set to 2 (Lines 141-144). If the control part
being used is one of the gray areas, the distance to scroll is set to the width of the
window's content region minus 10 pixels (Lines 146-150). (Subtracting 10 pixels ensures that
a small part of the pre-scroll display will appear at right or left (depending on the
direction of scroll) of the post-scroll display.)

Lines 154-155 convert the distance to scroll to the required negative value if the user is
scrolling to the right. Lines 157-160 defeat any further scrolling action if, firstly, the
left scroll arrow is being used, the mouse button is still down and the document is at the
minimum (left) scrolled position or, secondly, the right scroll arrow is being used, the mouse
button is still down and the document is at the maximum (right) scrolled position. Line 162
calls an application-defined procedure which adds/subtracts the distance to scroll to/from the
control's current value and repositions the scroll box accordingly.

Lines 164-167 scroll the picture's pixels by the specified amount, and in the specified
direction, as represented by the distance-to-scroll value. The "vacated" area is added to the
window's update region at Line 166.

Lines 169-177 perform a update of the window's content region. If the scroll arrows are being
used, the call to BeginUpdate ensures that QuickDraw redraws only the current two-pixel-wide
update region. At Line 172, the SetOrigin call resets the window origin so that that part of
the picture represented by the current scroll position is drawn. After the correct part of
the picture is drawn, the window origin is reset to (0,0) (Line 174).

The procedure DoScrollBars

DoScrollBars receives the part code, the window pointer, the control's handle, and the mouse-
down (local) coordinates, and performs the scrolling. The code is structured so that the
handling of a vertical scroll bar, in addition to the horizontal scroll bar, could be readily
included.

The handle to the window's document record is retrieved at Line 195.

Line 198 initiates a branch according to the received part code:

• If the mouse-down was in the scroll box (Line 200), the control's value at the time of
the mouse-down is retrieved (Line 202). Control is then handed over to TrackControl
(Line 203), which tracks user actions while the mouse button remains down. If the user
releases the mouse button with the cursor inside the control box, the scroll distance
(in pixels) is calculated by subtracting the control's value prior to the scroll from
its current value (Line 205). If the user moved the scroll box (Line 206), and if this
movement was to the horizontal scroll bar's scroll box (Line 208), the picture's pixels
are scrolled by the specified scroll distance in the appropriate direction (Line 211),
and the "vacated" area of the window following the scroll is added to the window's
update region (Line 212). Note that the handling of the scroll box in a vertical scroll
bar, if one existed, would be located at Line 217.

Controls 5-37

• If the mouse-down was in a scroll arrow or gray area (Lines 223-224), more specifically
in the one of the horizontal scroll bar's scroll arrows or gray areas (Line 227),
TrackControl takes control (Line 228) until the user releases the mouse button. This
call to TrackControl, however, differs from that at Line 203 in one key respect: the
third parameter contains a pointer to an action procedure. When a pointer to an action
procedure is passed as the third parameter, TrackControl:

• Repeatedly calls the action procedure while the mouse button remains down.

• Passes the action procedure (1) a handle to the control and (2) the control's part
code.

(As an alternative to passing a pointer to the action procedure as a parameter in the
TrackControl call, SetControlAction can be used to store a pointer to the action
procedure in the contrlAction field in the control record. When ControlActionUPP(-1),
instead of a procedure pointer, is passed to TrackControl, TrackControl uses the action
procedure pointed to in the control record.)

ACTION PROCEDURES

Action procedures (sometimes called hook procedures or call-back routines) refer to
the ability of a system routine to call an application-defined procedure (or
sometimes function) during its execution, thus extending the features of the
routine. For source code that is to be compiled as 680X0 code, but not as native
PowerPC code, installing an action procedure simply involves passing a procedure
pointer (that is, the address of the procedure) as an argument to the system
routine.

PROCEDURE POINTERS AND UNIVERSAL PROCEDURE POINTERS

This call to TrackControl, incidentally, is your first encounter with one of the principle
changes introduced by the Universal Interfaces.

Prior to the introduction of the Universal Interfaces, the prototype for TrackControl
looked like this:

function TrackControl(theControl: ControlHandle; thePoint: Point;
actionProc: ProcPtr): integer;

Indeed, you will still see it defined that way in Inside Macintosh and other references,
such as THINK Reference. Notice that the third parameter is of type ProcPtr (procedure
pointer). The third parameter is thus the address of a function, that is, an action
procedure.

In the Universal Interfaces, the prototype for TrackControl looks like this:

function TrackControl(theControl: ControlRef; thePoint: Point;
actionProc: ControlActionUPP): ControlPartCode;

Notice that the third parameter is now of type ControlActionUPP (universal procedure
pointer). Universal procedure pointers will be explained at Chapter 23 — Porting to the
Power Macintosh. For the first 23 Chapters of Macintosh C, however, you may simply assume
that, when the 680x0 compiler looks at a parameter which the Universal Headers say should
be of type ControlActionUPP (or, indeed, any other data type defined with a "UPP" as the
last three characters), it thinks that it is looking at a parameter of type ProcPtr. This
is why a 680x0 compiler will compile Line 228 without protest; the third parameter is the
address of the action procedure, so it is perfectly happy.

You will see in Chapter 23 that source code relating to system software routines like
TrackControl, which require a universal procedure pointer (UPP) as a parameter, must be
modified if it is to be capable of being compiled by a compiler which produces PowerPC
code (as well as a compiler which produces 680x0 code).

The procedure DoInContent

DoInContent establishes whether an inContent click was in a control.

Lines 251-252 extract the mouse-down coordinates from the where field of the event record and
convert them to the local coordinates required by FindControl. If the call to FindControl at
Line 254 returns a non-zero result, the mouse-down was in the control, in which case an
application-defined scrollbar handling procedure is called (Line 256).

5-38 Controls

The procedure DoUpdate

DoUpdate is called in response to update events.

Line 270 retrieves the handle to the window's document record. Line 276 ensures that the
window's graphics port as the current port for drawing. Line 277 redraws the control if it
intersects the window's visible region (which, between the BeginUpdate and EndUpdate calls,
equates to the update region as it was before it was cleared by BeginUpdate).

Line 279 sets the window origin to the current scroll position, that is, to the position
represented by the control's current value, ensuring that the correct part of the picture will
be drawn by Line 280. Line 281 resets the window's origin to (0,0).

The procedures DoActivateWindow,
doActivate and DoOSEvent

DoActivateWindow, DoActivate and DoOSEvent are identical in purpose to those functions of the
same name in the demonstration program Controls1Pascal.p

The procedure DoMenuChoice

DoMenuChoice handles menu choices from the Apple and File menus.

The procedure DoMouseDown

DoMouseDown branches according to the window part code associated with a mouse-down event.
Note that, in the case of a mouse-down in the content region, and if the program's window is
the front window, the application-defined procedure DoInContent is called.

The procedure DoEvents

DoEvents branches according to the type of event received.

The procedure DoGetControl

DoGetControl creates the horizontal scroll bar. The call to GetNewControl (Line 473)
allocates memory for the control record, inserts the control into the window's control list
and draws the control. The handle to the control record is assigned to the appropriate field
of the window's document record, which will maintain the association between the control and
the window.

The procedure DoGetPicture

DoGetPicture loads the 'PICT' resource. At Line 482, the resource is loaded and a handle to
the associated picture record is assigned to the global variable gPictureHdl. Line 484 copies
the picture record's picFrame field to the global variable gPictRect. Lines 485-488 offset
the rectangle so that the top and left fields are both set to 0.

The main program block

The main block initialises the system software managers (Line 498), sets up the menus (Lines
502-511), opens a window and sets its graphics port as the current port for drawing (Lines
515-519), creates a relocatable block for the document record and assigns the handle to this
block to the window record's refCon field (Lines 523-524), creates the control (Line 528),
loads the 'PICT' resource (Line 532), and then enters the main event loop (Lines 536-540).

Creating 'CNTL' Resources Using ResEdit

When learning to create the major resource types in ResEdit, it is recommended that you open
Macintosh C to the page containing the relevant example resource definition in Rez input format and
relate what you are doing within ResEdit to that definition. Accordingly, the methodology used in the
following is to "walk through" selected 'CNTL' resources for the Controls1 demonstration program,
relating what you see in ResEdit to the example definitions in this chapter.

Open the chap05pascal_demo demonstration program folder and double-click on the Controls1.µ.rsrc
icon to start ResEdit and open Controls1.µ.rsrc. The Controls1.µ.rsrc window opens.

Controls 5-39

Double-click the CNTL icon. The CNTLs from Controls1.µ.rsrc window opens. Several 'CNTL'

resources (IDs 128 to 136) appear in the list. These are, in sequence, the 'CNTL' resources for:

• The pop-up menu (ID 128).

• Three radio buttons (IDs 129-131).

• Three check boxes (IDs 132-134).

• The vertical and horizontal scroll bars (IDs 135-136).

Radio Button Control

Double-click the list entry for ID = 129. The CNTL ID = 129 from Controls1.µ.rsrc window opens.

The following relates the example 'CNTL' resources for radio buttons in Rez input format in this
chapter to the ResEdit display and interface:

resource 'CNTL' This was established when the resource was created by choosing
Resource/Create New Resource. A small dialog opened, the item CNTL was
clicked, and the dialog's OK button was clicked.

(cDroplet, cDroplet is the 'CNTL' resource ID (129). Choose Resource/Get Resource Info.
The Info for CNTL 129 ... window opens. Note the editable text item titled ID:.
This is where you set the 'CNTL' resource ID. (ResEdit automatically assigns
128 as the 'CNTL' resource ID of the first 'CNTL' resource you create.) Note also
that you can give the resource a name in this window. This is useful for
identifying the various 'CNTL' resources in the CNTL ID = 129 from
Controls1.µ.rsrc window.

preload, purgeable) While the Info for CNTL 129 ... window is open, compare the Attributes: check
boxes to the Resource Attributes table at Chapter 1. Note that both the
Purgeable and the Preload checkboxes are checked. Close the Info for CNTL
129 ... window.

 {13,23,31,142}, The control's rectangle. In the CNTL ID = 129 ... window, note the item
BoundsRect . The sequence is top, left, bottom, right.

 1, Initial setting. Note the item Value .

 visible, Is control to be visible? Note the item Visible and the two related radio
buttons.

 1, Maximum setting. Note the item Max .

 0, Minimum setting. Note the item Min .

 radioButProc, Control Definition ID. Note the item ProcID . (radioButProc = 2.)

 0, Reference constant. Note the item RefCon .

 "Droplet" Title of control. Note the item Title .

Close the CNTL ID = 129 ... window.

'CNTL' Resource For Pop-up Menu

In the CNTLs from Controls1.rsrc window, double-click the list entry for ID = 128. The CNTL ID = 128
from Controls1.µ.rsrc window opens.

The following relates the example 'CNTL' resources for a pop-up menu in Rez input format in this
chapter to the ResEdit display and interface:

5-40 Controls

resource 'CNTL' This was established when the resource was created by choosing
Resource/Create New Resource. A small dialog opened, the item CNTL was
clicked, and the dialog's OK button was clicked.

kPopUpCNTL, kPopUpCNTL is the 'CNTL' resource ID (128). Choose Resource/Get Resource
Info. The Info for CNTL 128 ... window opens. Note the editable text item
titled ID:. This is where you set the 'CNTL' resource ID. (ResEdit automatically
assigns 128 as the 'CNTL' resource ID of the first 'CNTL' resource you create and
automatically increments the IDs for subsequently created 'CNTL' resources.)

preload, purgeable) While the Info for CNTL 128 ... window is open, compare the Attributes: check
boxes to the Resource Attributes table at Chapter 1. Note that both the
Purgeable and Preload checkboxes are checked. Close the Info for CNTL 129
... window.

 {90,18,109,198}, The control's rectangle. In the CNTL ID = 128 ... window, note the item
BoundsRect . The sequence is top, left, bottom, right.

 popupTitle... , Title position. Note the item Value . 255 (0xFF) means popupTitleRightJust.

 visible, Is control to be visible? Note the item Visible and the two related radio
buttons.

 50, Pixel width of title. Note the item Max .

 kPopUpMenu, 'MENU' resource ID. Note the item Min .

 popupMenuProc, Control Definition ID. Note the item ProcID . (popupMenuProc = 1008.)

 0, Reference constant. Note the item RefCon .

 "Speed" Title of control. Note the item Title .

Close the CNTLs from Controls1.µ.rsrc window. Close the Controls1.µ.rsrc window without saving.

