
18
SCRAP

Includes Demonstration Program Scrap

The Scrap Manager and the Desk Scrap
Introduction

For each open application, the Scrap Manager maintains a storage area to hold the last
data cut or copied by the user. This area is called the scrap or, sometimes, the desk
scrap. The desk scrap can reside in memory or on disk. All applications which support
cut, copy, and paste operations write data to, and read data from, the desk scrap.
Typically, that data relates to text, graphics, sounds, or movies.

Your application specifies the format, or formats, in which data is written to, and read
from, the desk scrap. Your application should write that data using the so-called
standard formats (in addition to any other format it might specify), since this ensures
that a user can copy and paste data between documents created by your application and
other applications as well as within and between documents created by your application.
The ultimate aim is to allow the user to:

• Copy and paste data within a document created by your application.

• Copy and paste data between different documents created by your application.

• Copy and paste data between documents created by your application and documents
created by other applications.

Scrap Data Formats

Standard Formats

Your application must be capable of writing at least one of the following standard formats
to the scrap and should be capable of reading both:

• 'TEXT', that is, a series of ASCII characters.

• 'PICT', that is, a QuickDraw picture.

Optional Formats

Your application may also choose to support the following optional scrap format types:

Scrap CLASSIC EDITION — Version 2.3 18-1

• 'snd ', that is, a series of bytes which define a sound, and which have the same format
as a 'snd ' resource.

• 'movv', that is, a series of bytes which define a movie, and which have the same
format as a 'movv' resource.

• 'styl', that is, a series of bytes which have the same format as a TextEdit 'styl'
resource, and which describe styled text data.

Private Formats

It is also possible for your application to use its own private format, or formats, but this
should be in addition to one of the standard formats.

Location of the Desk Scrap and Getting Information About the
Scrap

Location of the Desk Scrap

System software allocates space in each application's heap for the desk scrap and
allocates a handle to reference the scrap. The system global variable Scraphandle contains a
handle to the desk scrap of the current process.

When system software launches an application, it copies the data from the scrap of the
previously active application into the application heap of the newly active application. If
the scrap is too large to fit in the application's application heap, system software copies
the scrap to disk and sets the value of the handle to the scrap in the application's heap to
NULL to indicate that the scrap is on disk.

Getting Information About the Desk
Scrap

To get information about the scrap, you can use InfoScrap, which returns a pointer to a
scrap information structure, which is defined by the data type ScrapStuff. The information
in the scrap information structure includes:

• The size, in bytes, of the scrap.

• A handle to the scrap (if it is in memory).

• The location of the scrap (memory or disk).

• The filename of the scrap when it is on disk.

Using the Desk Scrap - Implementing Edit Menu Commands
You use the Edit menu Cut, Copy, and Paste commands to implement cutting, copying, and
pasting of data within or between documents. The following are the actions your
application should perform to support these three commands:

Edit
Command

Actions Performed by Your Application

Cut If there is a current selection range, copy the data in the selection range to the
desk scrap and remove the data from the document.

Copy If there is a current selection range, copy the data in the selection range to the
desk scrap.

Paste Read the desk scrap and insert the data (if any) at the insertion point,
replacing any current selection.1

18-2 CLASSIC EDITION — Version 2.3 Scrap

Note that, if your application implements a Clear command, it should remove the data in
the current selection range but should not save the data to the desk scrap.

Cut and Copy — Putting Data in the
Scrap

A typical approach to implementing the Cut and Copy commands is as follows:

• Determine whether the frontmost window is a document window or a dialog box.

• If the frontmost window is a document window:

• Call an application-defined function which determines whether the current
selection contains text or whether it contains graphics.

• Get a pointer to the selection range data and get the selection length.

• Call ZeroScrap to purge the current contents of the desk scrap.

• Call PutScrap to write the data to the scrap, specifying 'TEXT' or 'PICT', as
appropriate, as the format type.

• If the command was the Cut command, delete the selection from the current
document.

• If the frontmost window is a dialog box, use the Dialog Manager functions DialogCut or
DialogCopy, as appropriate, to write the selected data to the scrap.

Paste - Getting Data From the Scrap

When the user chooses the Paste command, your application should paste the data last cut
or copied by the user. Your application gets the data to paste by reading the data from
the desk scrap.

When you read the data from the scrap, your application should request the data in the
application's preferred format type. If your application determines that that format does
not exist in the scrap, it should then request the data in another format. If your
application does not have a preferred format type, it should read each format type that
your application supports.

If you request a scrap format that is not in the scrap, the Scrap Manager uses the
Translation Manager to convert any one of the scrap format types currently in the scrap
into the scrap format requested by your application. The Translation Manager looks in the
Extensions folder for a translator that can perform one of these translations. If such a
translator is available, the Translation Manager uses the translator to translate the data in
the scrap into the requested format type.

A typical approach, for an application that prefers a data format other than 'TEXT' or 'PICT' as
its first preference, is as follows:

• Determine whether the frontmost window is a document window or a dialog box.

• If the frontmost window is a document window:

• Call GetScrap to search the scrap for the preferred format type. (If you specify a
NULL handle as the location to which to return the data, GetScrap does not return
the data but does return as its function result the number of bytes (if any) of

1 The insertion point in a text document is represented by the blinking vertical bar known as the caret. There is a close
relationship between the selection range and the insertion point in that the insertion point is, in effect, an empty selection
range.

Scrap CLASSIC EDITION — Version 2.3 18-3

data in the specified format that exists in the scrap. Thus, if GetScrap returns a
non-positive value, data of that format type does not exist.)

• If data of the specified format does exist, allocate a handle to hold the data
from the scrap and call GetScrap again to read in the data in that format.
(GetScrap automatically resizes the handle passed to it to the required size.)

• If the scrap does not contain data of the preferred format type, repeat the
above process specifying 'TEXT' as the format type in the calls to GetScrap. If this
is not successful, repeat the process again specifying 'PICT' as the format type.

• Paste the data to the current document.

• If the frontmost window is a dialog box, use the Dialog Manager function DialogPaste
to paste the text from the scrap in the dialog.

Example

Fig 1 illustrates two cases, both of which deal with a user copying a picture consisting of
text from a source document created by one application to a destination document created
by another application.

In the first case, the source application has chosen to write only the 'PICT' format to the
desk scrap, and the destination application has pasted the data to its document in that
format.

In the second case, the source application has chosen to write both the 'PICT' and the 'TEXT'
formats to the desk scrap, and the destination application has chosen the 'TEXT' format as
the preferred format for the paste. The data is thus inserted into the document as
editable text.

FIG 1 - SPECIFYING FORMATS TO WRITE TO AND READ FROM THE DESK SCRAP

CASE 1 - SOURCE APPLICATION WRITES 'PICT' FORMAT ONLY

Costly thy habit as thy purse can buy,
But not express'd in fancy; rich not gaudy;
For the apparel oft proclaims the man,
And they in France of the bext rank and station
Are of the most select and generous chief in that.

Neither a borrower nor a lender be

For loan oft loses both itself and friend,
And borrowing dulls the edge of husbandry.
This above all: to thine own self be true,
And it must follow, as the night the day,
Thou canst not then be false to any man.

Costly thy habit as thy purse can buy,
But not express'd in fancy; rich not gaudy;
For the apparel oft proclaims the man,
And they in France of the bext rank and station
Are of the most select and generous chief in that.

CASE 2 : SOURCE APPLICATION WRITES 'TEXT' AND 'PICT' FORMATS, DESTINATION APPLICATION SPECIFIES 'TEXT' AS PREFERRED FORMAT FOR READ

Document created by source application Desk scrap Document created by destination application

Document created by source application Desk scrap Document created by destination application

The Clipboard
The Clipboard refers to what the user views as residing in the scrap. Your application
can provide a Show Clipboard command which, when chosen, should show a window which

18-4 CLASSIC EDITION — Version 2.3 Scrap

displays the current contents of the desk scrap. Such a window is known as a Clipboard
window. The Show Clipboard command should be toggled with a Hide Clipboard command to
allow the user to hide the Clipboard window when required.

Although multiple scrap format types can reside in the desk scrap, applications which
support a Clipboard window typically display the data in one format only.

Transferring the Desk Scrap to Disk
Although the scrap is usually located in memory, your application can write the contents
of the scrap in memory to a scrap file using UnloadScrap. You should do this only if memory
is not large enough to hold the data you need to write to the scrap. After writing the
contents of the scrap to disk, UnloadScrap releases the memory previously occupied by the
scrap. Thereafter, any operations your application performs on data in the scrap affect
the scrap as stored in the scrap file on disk. You can use LoadScrap to read the contents of
the scrap file back into memory.

Private Scrap
As an alternative to writing to and reading from the desk scrap whenever the user cuts,
copies and pastes data, your application can choose to use its own private scrap. An
application which uses a private scrap copies data to its private scrap when the user
chooses the Cut or Copy command and pastes data from the private scrap when the user
chooses the Paste command.

In addition, an application which uses a private scrap must take the following actions on
receipt of suspend and resume events:

• Suspend Event. On receipt of a suspend event, the data from the private scrap
must be copied to the desk scrap. If your application supports the Show Clipboard
command, the Clipboard window must be hidden if it is currently showing (because
the contents of the scrap may change while the application yields time to another
application).

• Resume Event. On receipt of a resume event, your application must determine if
the data in the desk scrap has changed since the previous suspend event and, if so,
copy the data from the desk scrap to its private scrap either immediately or when
the user next chooses the Paste command. In addition, if your application supports
the Show Clipboard command, and if the data in the desk scrap has changed, your
application must update the contents of the Clipboard window.

Note that, when the contents of the desk scrap have changed since the last suspend event,
system software sets the convertClipboardFlag bit in the message field of the resume event
structure.

The process of copying data between an application's document, an application's private
scrap, and the desk scrap in response to suspend and resume events is shown
diagrammatically at Fig 2.

Scrap CLASSIC EDITION — Version 2.3 18-5

FIG 2 - USING A PRIVATE SCRAP

APPLICATION USES
PRIVATE SCRAP

APPLICATION DOCUMENT APPLICATION PRIVATE SCRAP DESK SCRAP

ON SUSPEND EVENT,
APPLICATION COPIES
PRIVATE SCRAP TO
DESK SCRAP

ON RESUME EVENT, IF
CONTENTS OF DESK
SCRAP HAVE CHANGED,
APPLICATION COPIES
DESK SCRAP TO
PRIVATE SCRAP

APPLICATION USES
UPDATED SCRAP

WRITE

READ

WRITE

WRITE

READ

READ

Copying Data Between Private Scrap
and the Desk Scrap

A typical approach to copying data between the private scrap and the desk scrap is as
follows:

• Resume Event. When a resume event is received, and a check indicates that the
contents of the desk scrap have changed since the last suspend event:

• Call GetScrap, with NULL passed as the destHandle parameter, to determine if the
scrap contains data in the 'PICT' format type. If data of that format type exists:

• Allocate a handle to hold the data from the scrap and call GetScrap again
to read in the data.

• Call an application-defined function to copy the data to the private scrap.

• Dispose of the handle.

• If data of the 'PICT' format type does not exist in the scrap, repeat this process
specifying 'TEXT' as the data format type.

• Suspend Event. When a suspend event is received:

• Call an application-defined function which determines if there is any data in
the private scrap. If there is data in the private scrap, call ZeroScrap to empty
the desk scrap.

18-6 CLASSIC EDITION — Version 2.3 Scrap

• Create a non-relocatable block to receive the private scrap data.

• For each appropriate data format type:

• Determine if data in that format exists in the private scrap.

• If data in that format type exists in the private scrap, call an application-
defined function which gets the data from the private scrap into the
nonrelocatable block. Then call PutScrap to copy the data from the
nonrelocatable block to the scrap.

• Dispose of the nonrelocatable block.

TextEdit, Dialog Boxes, and Scrap
TextEdit and Scrap

TextEdit is a collection of functions and data structures which you can use to provide your
application with basic text editing capabilities.

If your application uses TextEdit in its windows, be aware that TextEdit maintains its own
private scrap. Accordingly:

• PutScrap is not used and the special TextEdit functions TECut, TECopy, and TEToScrap are
used in the processes of cutting text from the document and copying text to the
TextEdit private scrap and to the desk scrap.

• GetScrap is not used and the special TextEdit functions TEPaste, TEStylePaste, and
TEFromScrap are used in the processes of pasting text from the TextEdit private scrap
and copying text from the desk scrap to the TextEdit private scrap.

Chapter 19 — Text and TextEdit describes TextEdit, including the TextEdit private scrap
and the TextEdit scrap-related functions.

Dialog Boxes and Scrap
Dialog boxes may contain editable text items, and the Dialog Manager uses TextEdit to
perform the editing operations within those editable text items.

You can use the Dialog Manager to handle most editing operations within dialog boxes.
The Dialog Manager functions DialogCut, DialogCopy, and DialogPaste may be used to implement
Cut, Copy and Paste commands within editable text items in dialog boxes. (See the
demonstration program at Chapter 8 — Dialogs and Alerts.)

TextEdit's private scrap facilitates the copying and pasting of data between dialog boxes.
However, your application must ensure that the user can copy and paste data between
your application's dialog boxes and its document windows. If your application uses
TextEdit for all editing operations within its document windows, this is easily achieved
because TextEdit's TECut, TECopy, TEPaste, and TEStylePaste functions and the Dialog Manager's
DialogCut, DialogCopy, and DialogPaste functions all use TextEdit's private scrap.

If your application does not use TextEdit for text handling within its document windows,
and if it uses a private scrap, then, when the user activates a dialog box, you should copy
any data in your private scrap to TextEdit's private scrap. Also, when a document window
becomes active, and there is data in TextEdit's private scrap, that data should be copied to
your application's private scrap (or to the desk scrap if your application does not use a
private scrap).

Scrap CLASSIC EDITION — Version 2.3 18-7

Similarly, before displaying the Standard File Package's save dialog box, your application
should copy any text data in its private scrap to the desk scrap. The Standard File
Package reads the data from the desk scrap whenever the user chooses an editing
operation and a standard file dialog box is active. Accordingly, your application needs to
put the text data (if any) from the last cut or copy in the desk scrap before calling
StandardPutFile.

Main Scrap Manager Data Types and Functions
Data Types
Scrap Information Structure
struct ScrapStuff
{

SInt32 scrapSize; // Size of scrap in bytes.
Handle scrapHandle; // Handle to scrap.
SInt16 scrapCount; // Indicates whether contents of scrap have changed.
SInt16 scrapState; // Indicates state and location of scrap
StringPtr scrapName; // Filename of scrap.

};
typedef struct ScrapStuff ScrapStuff;
typedef ScrapStuff *PScrapStuff;
typedef ScrapStuff *ScrapStuffPtr;

Functions
Getting Information About the Scrap
ScrapStuffPtr InfoScrap(void);

Writing Information to the Scrap
SInt32 ZeroScrap(void);
SInt32 PutScrap(long length,ResType theType,void *source);

Reading Information From the Scrap
SInt32 GetScrap(Handle hDest,ResType theType,long *offset);

Transferring the Scrap Between Memory and Disk
SInt32 UnloadScrap(void);
SInt32 LoadScrap(void);

Demonstration Program
// ◊◊
// Scrap.c
// ◊◊
//
// This program utilises the desk scrap and Scrap Manager routines to allow the user to:
//
// • Cut, copy and clear pictures from, and paste pictures to, two windows opened by the
// program.
//
// • Paste pictures cut or copied from another application to the two windows opened
// by the program.
//
// • Open and close a Clipboard window, in which the current contents of the desk scrap
// are displayed.
//
// In addition to the pictures cut and copied from either the program's windows or from
// another application's windows, the Clipboard window will display text copied to the
// desk scrap as a result of text cut and copy operations in another application. The
// program, however, does not support the pasting of this text to documents displayed in

18-8 CLASSIC EDITION — Version 2.3 Scrap

// the program's windows. (The demonstration program at Chapter 19 — Text and TextEdit
// shows how to cut, copy and paste text from and to a TextEdit edit structure using the
// desk scrap.)
//
// The program utilises the following resources:
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, and Edit menus (preload,
// non-purgeable).
//
// • Three 'WIND' resources (purgeable) (initially visible), two for the program's main
// windows and one for the Clipboard window.
//
// • A 'PICT' resource (non-purgeable) containing a picture which may be cut, copied,
// and pasted between the windows.
//
// • A 'STR#' resource (purgeable) containing strings to be displayed in the error
// Alert.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch, and
// is32BitCompatible flags set.
//
// ◊◊

//
………
…………………………………… includes

#include <Appearance.h>
#include <Devices.h>
#include <LowMem.h>
#include <Scrap.h>
#include <Sound.h>
#include <ToolUtils.h>

//
………
……………………………………… defines

#define mApple 128
#define iAbout 1
#define mFile 129
#define iClose 4
#define iQuit 11
#define mEdit 130
#define iCut 3
#define iCopy 4
#define iPaste 5
#define iClear 6
#define iClipboard 9
#define rMenubar 128
#define rWindow 128
#define rClipboardWindow 130
#define rPicture 128
#define rErrorStrings 128
#define eFailMenu 1
#define eFailWindow 2
#define eFailDocStruc 3
#define eZeroScrap 4
#define ePutScrap 5
#define eNoPictInScrap 6
#define kDocumentType 1
#define kClipboardType 2
#define MAXLONG 0x7FFFFFFF

//
………
…………………………………… typedefs

typedef struct
{

PicHandle pictureHdl;
Boolean selectFlag;
SInt16 windowType;

} docStructure, **docStructureHandle;

//
………
……………… global variables

Scrap CLASSIC EDITION — Version 2.3 18-9

Boolean gDone;
Boolean gInBackground;
SInt16 gPixelDepth;
Boolean gIsColourDevice = false;
WindowPtr gWindowPtrs[2];
WindowPtr gClipboardWindowPtr = NULL;
Boolean gClipboardShowing = false;

//
………
……… function prototypes

void main (void);
void doInitManagers (void);
void doEvents (EventRecord *);
void doUpdate (EventRecord *);
void doOSEvent (EventRecord *);
void doAdjustMenus (void);
void doMenuChoice (SInt32);
void doErrorAlert (SInt16);
void doOpenWindows (void);
void doCloseWindow (void);
void doInContent (Point);
void doCutCopyCommand (Boolean);
void doPasteCommand (void);
void doClearCommand (void);
void doClipboardCommand (void);
void doDrawClipboardWindow (void);
void doDrawPictureWindow (WindowPtr);
Rect doSetDestRect (Rect *,WindowPtr);
void doGetDepthAndDevice (void);

// ◊◊◊ main

void main(void)
{

Handle menubarHdl;
MenuHandle menuHdl;
Boolean gotEvent;
EventRecord eventStructure;

//
………
… initialise managers

doInitManagers();

// …… set
up menu bar and menus

menubarHdl = GetNewMBar(rMenubar);
if(menubarHdl == NULL)

doErrorAlert(eFailMenu);
SetMenuBar(menubarHdl);
DrawMenuBar();

menuHdl = GetMenuHandle(mApple);
if(menuHdl == NULL)

doErrorAlert(eFailMenu);
else

AppendResMenu(menuHdl,'DRVR');

//
………
…………………… open windows

doOpenWindows();

// …………………………… get pixel depth and whether colour device for function SetThemeTextColor

doGetDepthAndDevice();

//
………
…………… enter eventLoop

gDone = false;

while(!gDone)

18-10 CLASSIC EDITION — Version 2.3 Scrap

{
gotEvent = WaitNextEvent(everyEvent,&eventStructure,MAXLONG,NULL);

if(gotEvent)
doEvents(&eventStructure);

}
}

// ◊◊◊ doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

RegisterAppearanceClient();
}

// ◊◊◊ doEvents

void doEvents(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
SInt16 partCode;
SInt8 charCode;

switch(eventStrucPtr->what)
{

case mouseDown:
partCode = FindWindow(eventStrucPtr->where,&windowPtr);

switch(partCode)
{

case inMenuBar:
doAdjustMenus();
doMenuChoice(MenuSelect(eventStrucPtr->where));
break;

case inContent:
if(windowPtr != FrontWindow())

SelectWindow(windowPtr);
else

doInContent(eventStrucPtr->where);
break;

case inDrag:
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);
break;

case inGoAway:
if(TrackGoAway(windowPtr,eventStrucPtr->where) == true)

doCloseWindow();
break;

}
break;

case keyDown:
case autoKey:

charCode = eventStrucPtr->message & charCodeMask;
if((eventStrucPtr->modifiers & cmdKey) != 0)
{

doAdjustMenus();
doMenuChoice(MenuEvent(eventStrucPtr));

}
break;

case updateEvt:
doUpdate(eventStrucPtr);
break;

Scrap CLASSIC EDITION — Version 2.3 18-11

case activateEvt:
windowPtr = (WindowPtr) eventStrucPtr->message;
if(windowPtr == gClipboardWindowPtr)

doDrawClipboardWindow();
break;

case osEvt:
doOSEvent(eventStrucPtr);
HiliteMenu(0);
break;

}
}

// ◊◊◊ doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
SInt32 windowType;

windowPtr = (WindowPtr) eventStrucPtr->message;
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
windowType = (*docStrucHdl)->windowType;

BeginUpdate(windowPtr);

if(windowType == kDocumentType)
{

if((*docStrucHdl)->pictureHdl != NULL)
doDrawPictureWindow(windowPtr);

}
else if(windowType == kClipboardType)

doDrawClipboardWindow();

EndUpdate(windowPtr);
}

// ◊◊ doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{

switch((eventStrucPtr->message >> 24) & 0x000000FF)
{

case suspendResumeMessage:
gInBackground = (eventStrucPtr->message & resumeFlag) == 0;
if(gClipboardWindowPtr && gClipboardShowing)
{

if(gInBackground)
ShowHide(gClipboardWindowPtr);

else
ShowWindow(gClipboardWindowPtr);

}
break;

case mouseMovedMessage:
break;

}
}

// ◊◊ doAdjustMenus

void doAdjustMenus(void)
{

MenuHandle fileMenuHdl, editMenuHdl;
docStructureHandle docStrucHdl;
SInt32 scrapOffset;

fileMenuHdl = GetMenuHandle(mFile);
editMenuHdl = GetMenuHandle(mEdit);

docStrucHdl = (docStructureHandle) GetWRefCon(FrontWindow());

if((*docStrucHdl)->windowType == kClipboardType)
EnableItem(fileMenuHdl,iClose);

else
DisableItem(fileMenuHdl,iClose);

18-12 CLASSIC EDITION — Version 2.3 Scrap

if((*docStrucHdl)->pictureHdl && (*docStrucHdl)->selectFlag)
{

EnableItem(editMenuHdl,iCut);
EnableItem(editMenuHdl,iCopy);
EnableItem(editMenuHdl,iClear);

}
else
{

DisableItem(editMenuHdl,iCut);
DisableItem(editMenuHdl,iCopy);
DisableItem(editMenuHdl,iClear);

}

if(GetScrap(NULL,'PICT',&scrapOffset) && (*docStrucHdl)->windowType != kClipboardType)
EnableItem(editMenuHdl,iPaste);

else
DisableItem(editMenuHdl,iPaste);

DrawMenuBar();
}

// ◊◊◊ doMenuChoice

void doMenuChoice(SInt32 menuChoice)
{

SInt16 menuID, menuItem;
Str255 itemName;
SInt16 daDriverRefNum;

menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);

if(menuID == 0)
return;

switch(menuID)
{

case mApple:
if(menuItem == iAbout)

SysBeep(10);
else
{

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);
daDriverRefNum = OpenDeskAcc(itemName);

}
break;

case mFile:
if(menuItem == iClose)

doCloseWindow();
else if(menuItem == iQuit)

gDone = true;
break;

case mEdit:
switch(menuItem)
{

case iCut:
doCutCopyCommand(true);
break;

case iCopy:
doCutCopyCommand(false);
break;

case iPaste:
doPasteCommand();
break;

case iClear:
doClearCommand();
break;

case iClipboard:
doClipboardCommand();
break;

}
break;

}

Scrap CLASSIC EDITION — Version 2.3 18-13

HiliteMenu(0);
}

// ◊◊◊ doErrorAlert

void doErrorAlert(SInt16 errorCode)
{

AlertStdAlertParamRec paramRec;
Str255 errorString;
SInt16 itemHit;

paramRec.movable = true;
paramRec.helpButton = false;
paramRec.filterProc = NULL;
paramRec.defaultText = (StringPtr) kAlertDefaultOKText;
paramRec.cancelText = NULL;
paramRec.otherText = NULL;
paramRec.defaultButton = kAlertStdAlertOKButton;
paramRec.cancelButton = 0;
paramRec.position = kWindowDefaultPosition;

GetIndString(errorString,rErrorStrings,errorCode);

if(errorCode < ePutScrap)
{

StandardAlert(kAlertStopAlert,errorString,NULL,¶mRec,&itemHit);
ExitToShell();

}
else

StandardAlert(kAlertCautionAlert,errorString,NULL,¶mRec,&itemHit);
}

// ◊◊ doOpenWindows

void doOpenWindows(void)
{

SInt16 a;
WindowPtr windowPtr;
docStructureHandle docStrucHdl;

for(a=0;a<2;a++)
{

if(!(windowPtr = GetNewCWindow(rWindow + a,NULL,(WindowPtr)-1)))
doErrorAlert(eFailWindow);

gWindowPtrs[a] = windowPtr;

if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
doErrorAlert(eFailDocStruc);

SetWRefCon(windowPtr,(SInt32) docStrucHdl);

(*docStrucHdl)->pictureHdl = NULL;
(*docStrucHdl)->windowType = kDocumentType;
(*docStrucHdl)->selectFlag = false;

}

SetPort(windowPtr);

(*docStrucHdl)->pictureHdl = GetPicture(rPicture);
}

// ◊◊ doCloseWindow

void doCloseWindow(void)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
MenuHandle editMenuHdl;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

if((*docStrucHdl)->windowType == kClipboardType)
{

DisposeWindow(windowPtr);
gClipboardWindowPtr = NULL;
gClipboardShowing = false;
editMenuHdl = GetMenu(mEdit);
SetMenuItemText(editMenuHdl,iClipboard,"\pShow Clipboard");

18-14 CLASSIC EDITION — Version 2.3 Scrap

}
}

// ◊◊ doInContent

void doInContent(Point mouseXY)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
GrafPtr oldPort;
Rect pictRect;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

if((*docStrucHdl)->windowType == kClipboardType)
return;

GetPort(&oldPort);
SetPort(windowPtr);

if((*docStrucHdl)->pictureHdl != NULL)
{

pictRect = doSetDestRect(&(*(*docStrucHdl)->pictureHdl)->picFrame,windowPtr);

GlobalToLocal(&mouseXY);

if(PtInRect(mouseXY,&pictRect) && (*docStrucHdl)->selectFlag == false)
{

(*docStrucHdl)->selectFlag = true;
InvertRect(&pictRect);

}
else if(!PtInRect(mouseXY,&pictRect) && (*docStrucHdl)->selectFlag == true)
{

(*docStrucHdl)->selectFlag = false;
InvertRect(&pictRect);

}
}

SetPort(oldPort);
}

// ◊◊◊ doCutCopyCommand

void doCutCopyCommand(Boolean cutFlag)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
Size dataLength;
SInt32 errorCode;
GrafPtr oldPort;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

if((*docStrucHdl)->selectFlag == false)
return;

if(ZeroScrap() == noErr)
{

dataLength = GetHandleSize((Handle) (*docStrucHdl)->pictureHdl);
HLock((Handle) (*docStrucHdl)->pictureHdl);

errorCode = PutScrap((SInt32) dataLength,'PICT',*((Handle) (*docStrucHdl)->pictureHdl));
if(errorCode != noErr)

doErrorAlert(ePutScrap);

HUnlock((Handle) (*docStrucHdl)->pictureHdl);
}
else

doErrorAlert(eZeroScrap);

if(cutFlag)
{

GetPort(&oldPort);
SetPort(windowPtr);

DisposeHandle((Handle) (*docStrucHdl)->pictureHdl);
(*docStrucHdl)->pictureHdl = NULL;

Scrap CLASSIC EDITION — Version 2.3 18-15

(*docStrucHdl)->selectFlag = false;
EraseRect(&windowPtr->portRect);

SetPort(oldPort);
}

if(gClipboardWindowPtr != NULL)
doDrawClipboardWindow();

}

// ◊◊◊ doPasteCommand

void doPasteCommand(void)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
GrafPtr oldPort;
SInt32 sizeOfPictData, scrapOffset;
Handle tempHdl;
Rect destRect;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

GetPort(&oldPort);
SetPort(windowPtr);

sizeOfPictData = GetScrap(NULL,'PICT',&scrapOffset);
if(sizeOfPictData > 0)
{

tempHdl = NewHandle((Size) sizeOfPictData);
HLock(tempHdl);

sizeOfPictData = GetScrap(tempHdl,'PICT',&scrapOffset);

EraseRect(&windowPtr->portRect);
(*docStrucHdl)->selectFlag = false;
destRect = doSetDestRect(&(*(PicHandle) tempHdl)->picFrame,windowPtr);

DrawPicture((PicHandle) tempHdl,&destRect);

if((*docStrucHdl)->pictureHdl != NULL)
DisposeHandle((Handle) (*docStrucHdl)->pictureHdl);

(*docStrucHdl)->pictureHdl = (PicHandle) NewHandle((Size) sizeOfPictData);
BlockMoveData(*tempHdl,*((*docStrucHdl)->pictureHdl),(Size) sizeOfPictData);

HUnlock(tempHdl);
DisposeHandle(tempHdl);

}

SetPort(oldPort);
}

// ◊◊◊ doClearCommand

void doClearCommand(void)
{

WindowPtr windowPtr;
docStructureHandle docStrucHdl;
GrafPtr oldPort;

windowPtr = FrontWindow();
docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);

GetPort(&oldPort);
SetPort(windowPtr);

DisposeHandle((Handle) (*docStrucHdl)->pictureHdl);
(*docStrucHdl)->pictureHdl = NULL;
(*docStrucHdl)->selectFlag = false;
EraseRect(&windowPtr->portRect);

SetPort(oldPort);
}

// ◊◊◊ doClipboardCommand

void doClipboardCommand(void)

18-16 CLASSIC EDITION — Version 2.3 Scrap

{
MenuHandle editMenuHdl;
docStructureHandle docStrucHdl;

editMenuHdl = GetMenu(mEdit);

if(gClipboardWindowPtr == NULL)
{

if(!(gClipboardWindowPtr = GetNewCWindow(rClipboardWindow,NULL,(WindowPtr)-1)))
doErrorAlert(eFailWindow);

if(!(docStrucHdl = (docStructureHandle) NewHandle(sizeof(docStructure))))
doErrorAlert(eFailDocStruc);

SetWRefCon(gClipboardWindowPtr,(SInt32) docStrucHdl);
(*docStrucHdl)->windowType = kClipboardType;

gClipboardShowing = true;

SetMenuItemText(editMenuHdl,iClipboard,"\pHide Clipboard");
}
else
{

if(gClipboardShowing)
{

HideWindow(gClipboardWindowPtr);
gClipboardShowing = false;
SetMenuItemText(editMenuHdl,iClipboard,"\pShow Clipboard");

}
else
{

ShowWindow(gClipboardWindowPtr);
gClipboardShowing = true;
SetMenuItemText(editMenuHdl,iClipboard,"\pHide Clipboard");

}
}

}

// ◊◊ doDrawClipboardWindow

void doDrawClipboardWindow(void)
{

GrafPtr oldPort;
Rect theRect, destRect;
RGBColor blackColour = { 0x0000, 0x0000, 0x0000 };
SInt32 sizeOfPictData, sizeOfTextData, scrapOffset;
Handle tempHdl;

GetPort(&oldPort);
SetPort(gClipboardWindowPtr);

EraseRect(&gClipboardWindowPtr->portRect);

SetRect(&theRect,-1,-1,597,24);
DrawThemeWindowHeader(&theRect,gClipboardWindowPtr == FrontWindow());

if(gClipboardWindowPtr == FrontWindow())
SetThemeTextColor(kThemeTextColorWindowHeaderActive,gPixelDepth,gIsColourDevice);

else
SetThemeTextColor(kThemeTextColorWindowHeaderInactive,gPixelDepth,gIsColourDevice);

TextSize(10);
MoveTo(7,16);
DrawString("\pClipboard Contents:");

sizeOfPictData = GetScrap(NULL,'PICT',&scrapOffset);
if(sizeOfPictData > 0)
{

MoveTo(105,16);
DrawString("\pPicture");

tempHdl = NewHandle((Size) sizeOfPictData);
HLock(tempHdl);

sizeOfPictData = GetScrap(tempHdl,'PICT',&scrapOffset);

destRect = (*(PicHandle) tempHdl)->picFrame;
OffsetRect(&destRect,-((*(PicHandle) tempHdl)->picFrame.left - 2),

 -((*(PicHandle) tempHdl)->picFrame.top - 26));
DrawPicture((PicHandle) tempHdl,&destRect);

Scrap CLASSIC EDITION — Version 2.3 18-17

HUnlock(tempHdl);
DisposeHandle(tempHdl);

}

sizeOfTextData = GetScrap(NULL,'TEXT',&scrapOffset);
if(sizeOfTextData > 0)
{

MoveTo(105,16);
DrawString("\pText");

tempHdl = NewHandle((Size) sizeOfTextData);
HLock(tempHdl);

sizeOfTextData = GetScrap(tempHdl,'TEXT',&scrapOffset);

destRect = gClipboardWindowPtr->portRect;
destRect.top += 24;
InsetRect(&destRect,2,2);

RGBForeColor(&blackColour);

TETextBox(*tempHdl,sizeOfTextData,&destRect,0);

HUnlock(tempHdl);
DisposeHandle(tempHdl);

}

SetPort(oldPort);
}

// ◊◊ doDrawPictureWindow

void doDrawPictureWindow(WindowPtr windowPtr)
{

GrafPtr oldPort;
Rect destRect;
docStructureHandle docStrucHdl;

GetPort(&oldPort);
SetPort(windowPtr);

docStrucHdl = (docStructureHandle) GetWRefCon(windowPtr);
destRect = doSetDestRect(&(*(*docStrucHdl)->pictureHdl)->picFrame,windowPtr);

DrawPicture((*docStrucHdl)->pictureHdl,&destRect);

if((*docStrucHdl)->selectFlag)
InvertRect(&destRect);

SetPort(oldPort);
}

// ◊◊ doSetDestRect

Rect doSetDestRect(Rect *picFrame,WindowPtr windowPtr)
{

Rect destRect;
SInt16 diffX, diffY;

destRect = *picFrame;

OffsetRect(&destRect,-(*picFrame).left,-(*picFrame).top);

diffX = (windowPtr->portRect.right - windowPtr->portRect.left) -
((*picFrame).right - (*picFrame).left);

diffY = (windowPtr->portRect.bottom - windowPtr->portRect.top) -
((*picFrame).bottom - (*picFrame).top);

OffsetRect(&destRect,diffX / 2,diffY / 2);

return(destRect);
}

// ◊◊ doGetDepthAndDevice

void doGetDepthAndDevice(void)
{

GDHandle deviceHdl;

18-18 CLASSIC EDITION — Version 2.3 Scrap

deviceHdl = LMGetMainDevice();
gPixelDepth = (*(*deviceHdl)->gdPMap)->pixelSize;
if(BitTst(&(*deviceHdl)->gdFlags,gdDevType))

gIsColourDevice = true;
}

// ◊◊

Demonstration Program Comments
When this program is run, the user should choose the Edit menu's Show Clipboard command to open the Clipboard window.
The user should then cut, copy, clear and paste the supplied picture from/to the two windows opened by the program, noting
the effect on the desk scrap as displayed in the Clipboard window. (The picture inverts when the user selects it with the
mouse.) The user should also copy some text from another application's window and observe the changes to the contents of
the Clipboard window.

The user should note that, when the Clipboard window is open and showing, it will be hidden when the program is sent to the
background and shown again when the program is brought to the foreground.

The user may also copy pictures from another application's window and paste them in the demonstration program's
windows.

#define
kDocumentType and kClipboardType will enable the program to distinguish between the two "document" windows opened by
the program and the Clipboard window.

#typedef
Document structures will be attached to each of the two document windows. docStructure is the associated data type.

Global Variables
gDone controls program termination. gInBackground relates to foreground/background switching. The values assigned to
gPixelDepth and gIsColourDevice will be used by the Appearance Manager function SetThemeTextColor.

The WindowPtrs for the two document windows will be copied into the elements of gWindowPtrs. gClipBoardWindowPtr will
be assigned the WindowPtr for the Clipboard window when it is opened by the user. gClipBoardShowing will keep track of
whether the Clipboard window is currently hidden or showing.

doEvents
Note that, in the case of an activate event for the Clipboard window, the application-defined function
doDrawClipBoardWindow is called.

doUpdate
If the window is of the document type (as opposed to the Clipboard type), and if the window's document structure currently
contains a picture, the application-defined function doDrawPicture is called to draw that picture. If the window is the
Clipboard window, the application-defined function doDrawClipboardWindow is called to draw the Clipboard window.

doOSEvent
The if statement tests whether the Clipboard window has been opened by the user and whether it should be showing when
the demonstration program is in the foreground. If the window has previously been opened and gClipboardShowing contains
true, and if the event is a suspend event, the window is hidden. If the event is a resume event, the window is shown. Note
that ShowHide, rather than HideWindow is called to hide the window. This is to prevent activation of the first document
window in the list when the Clipboard window is in front and the application is switched out.

doAdjustMenus
If the front window is the Clipboard window, the Close item is enabled, otherwise it is disabled. If the document contains a
picture and that picture is currently selected, the Cut, Copy, and Clear items are enabled, otherwise they are disabled. If the
desk scrap contains data of type 'PICT' and the front window is not the Clipboard window, the Paste item is enabled,
otherwise it is disabled.

doOpenWindows
doOpenWindows opens the two document windows, creates document structures for each window, attaches the document
structures to the windows and initialises the fields of the document structures. The graphics port of the second window

Scrap CLASSIC EDITION — Version 2.3 18-19

created is then set as the current port and a picture is read in from a resource, its handle being assigned to the pictureHdl
field of the second window's document structure.

doCloseWindow
doCloseWindow closes the Clipboard window (the only window that can be closed from within the program).

If the window is the Clipboard window, The window is disposed of, the global variable which contains its pointer is set to
NULL, the global variable which keeps track of whether the window is showing or hidden is set to false, and the text of the
Show/Hide Clipboard menu item is set to Show Clipboard.

doInContent
doInContent handles mouse-down events in the content region of a document window. If the window contains a picture, and
if the mouse-down was inside the picture, the picture is selected. If the window contains a picture, and if the mouse-down
was outside the picture, the picture is deselected.

The first two lines get a pointer the front window and a handle to its document structure. If the front window is the Clipboard
window, the function returns immediately. GetPort and SetPort save the current graphics port and make the graphics port
associated with the front window the current graphics port.

If the front window contains a picture the following occurs. The application-defined function doSetDestRect is called to
return a rectangle of the same dimensions as that contained in the picture structure's picFrame field, but centred laterally
and vertically in the window. GlobalToLocal converts the mouse-down coordinates to local coordinates preparatory to the
call to PtInRect. If the mouse-down occurred within the rectangle and the picture has not yet been selected, the document
structure's selectFlag field is set to true and the picture is inverted. If the mouse-down occurred outside the rectangle and
the picture is currently selected, the document structure's selectFlag field is set to false, and the picture is re-inverted.

doCutCopyCommand
doCutCopyCommand handles the user's choice of the Cut and Copy items in the Edit menu.

The first two lines get a pointer to the front window and a handle to that window's document structure.

If the selectFlag field of the document structure contains false (meaning that the picture has not been selected), the function
returns immediately. (Note that no check is made as to whether the front window is the Clipboard window because the
menu adjustment function disables the Cut and Copy items when the Clipboard window is the front window, meaning that
this function can never be called when the Clipboard window is in front.)

ZeroScrap attempts to purge the desk scrap. If the call is successful, GetHandleSize gets the size of the picture structure,
HLock locks the picture structure, PutScrap copies the picture to the desk scrap, and HUnlock unlocks the picture structure.
If the calls to ZeroScrap and PutScrap are not successful, a caution alert is displayed to advise the user of the error.

If the menu choice was the Cut item, additional action is taken. Preparatory to a call to EraseRect, the current graphics port
is saved and the front window's port is made the current port. DisposeHandle is called to dispose of the picture structure
and the document structure's pictureHdl and selectFlag fields are set to NULL and false respectively. EraseRect then erases
the picture.

Finally, and importantly, if the Clipboard window has previously been opened by the user, an application defined function is
called to draw the current contents of the desk scrap in the Clipboard window.

doPasteCommand
doPasteCommand handles the user's choice of the Paste item from the Edit menu. Note that no check is made as to whether
the front window is the Clipboard window because the menu adjustment function disables the Paste item when the Clipboard
window is the front window, meaning that this function can never be called when the Clipboard window is in front.

In order to determine whether the desk scrap contains data of type 'PICT', GetScrap is called with the destHandle parameter
set to NULL. The following occurs if data of type 'PICT' is present in the desk scrap.

NewHandle and HLock create and lock a relocatable block of a size equivalent to the 'PICT' data in the scrap. GetScrap is
called again to copy the 'PICT' data in the scrap to the newly-created relocatable block. EraseRect erases the front window
and the next line sets the selectFlag field of the document structure associated with the front window to false. The call to
the application-defined function doSetDestRect returns a destination rectangle of the same dimensions as the picFrame
rectangle but centred in the front window. DrawPicture draws the picture in this rectangle.

If the document structure currently contains a picture, DisposeHandle is called to dispose of the picture structure.
NewHandle creates a new relocatable block the size of 'PICT' data and assigns its handle to the pictureHdl field of the
document structure. BlockMoveData then copies the bytes in the relocatable block created at the first line in the if block to
this new relocatable block. HUnlock and DisposeHandle then dispose of the block created at the first line in the if block.

doClearCommand
doClearCommand handles the user's choice of the Clear item in the Edit menu.

18-20 CLASSIC EDITION — Version 2.3 Scrap

Note that, as was the case in the doCutCopyCommand function, no check is made as to whether the front window is the
Clipboard window because the menu adjustment function disables the Clear item when the Clipboard window is the front
window.

DisposeHandle dispose of the picture structure. The next two three lines set the pictureHdl field of the document structure
to NULL, set the selectFlag field of the document structure to false, and erase the window's port rectangle.

doClipboardCommand
doClipboardCommand handles the user's choice of the Show/Hide Clipboard command in the Edit menu.

The first line gets the handle to the Edit menu. This will be required in order to toggle the Show/Hide Clipboard item's text
between Show Clipboard and Hide Clipboard.

The if statement checks whether the Clipboard window has been created. If not, the Clipboard window is created by the call
to GetNewCWindow, a document structure is created and attached to the window, the windowType field of the document
structure is set to indicate that the window is of the Clipboard type, a global variable which keeps track of whether the
Clipboard window is currently showing or hidden is set to true, and the text of the menu item is set to Hide Clipboard.

If the Clipboard window has previously been created, and if the window is currently showing, the window is hidden, the
Clipboard-showing flag is set to false, and the item's text is set to Show Clipboard. If the window is not currently showing,
the window is made visible, the Clipboard-showing flag is set to true, and the item's text is set to Hide Clipboard.

doDrawClipboardWindow
doDrawClipboardWindow draws the contents of the desk scrap in the Clipboard window. It supports the drawing of both
'PICT' and 'TEXT' data.

The first three lines save the current graphics port, make the Clipboard window's graphics port the current graphics port and
erase the window's content region.

DrawThemeWindowHeader draws a window header in the top of the window. Text describing the type of data in the desk
scrap will be drawn in this header. The theme-compliant colour for this text is set at the next four lines. The following three
lines set the text size to 10pt and draw some text in the header.

The call to GetScrap, with NULL passed as the destHandle parameter, checks whether data of type 'PICT' exists in the desk
scrap. If so, the following occurs. The word "Picture" is drawn in the window header. A relocatable block the size of the
'PICT' data is created and locked and GetScrap is called once again to copy the 'PICT' data from the scrap into the newly-
created block. A destination rectangle, based on the rectangle in the picFrame field of the picture structure, is created with
its left and top fields set to two pixels inside that part of the content area not occupied by the window header. The picture is
then drawn in this destination rectangle, following which the relocatable block created earlier is unlocked and disposed of.

The next call to GetScrap checks whether data of type 'TEXT' exists in the desk scrap. If so, much the same procedure is
followed, the differences being that the word "Text" is drawn in the window header, the destination rectangle is set to two
pixels inside that part of the content area not occupied by the window header., and the text is drawn in this rectangle using
TETextBox. (TETextBox is a TextEdit routine, and is described at Chapter 19 — Text and TextEdit.)

doDrawPictureWindow
doDrawPictureWindow draws the picture belonging to a document window in that window.

The third line gets the handle to the window's document structure. The call to the application-defined function
doSetDestRect returns a rectangle of the same dimensions as that contained in the picFrame field of the picture structure
(the handle to which is contained in the pictureHdl field of the document structure), but centred in the window. DrawPicture
draws the picture specified in the window's document structure in this rectangle.

If the selectFlag field of the document structure indicates that the picture is currently selected, the call to InvertRect inverts
the picture.

doSetDestRect
doSetDestRect takes the rectangle contained in the picFrame field of a picture structure and returns a rectangle of the same
dimensions but centred in the window's port rectangle.

The first line makes a local Rect variable equal to the rectangle in the picFrame field. OffsetRect then offsets this rectangle
so that its left and top fields both contain 0. The next four lines calculate the differences between the widths and heights of
the rectangle and the window's port rectangle. This is used at the next call to OffsetRect to further offset the rectangle to
the middle of the port rectangle. The rectangle is then returned to the calling function.

Scrap CLASSIC EDITION — Version 2.3 18-21

	SCRAP
	Includes Demonstration Program Scrap
	The Scrap Manager and the Desk Scrap
	Introduction
	Scrap Data Formats
	Standard Formats
	Optional Formats
	Your application may also choose to support the following optional scrap format types:
	Private Formats
	Location of the Desk Scrap and Getting Information About the Scrap
	Location of the Desk Scrap
	Getting Information About the Desk Scrap
	Using the Desk Scrap - Implementing Edit Menu Commands
	Cut and Copy — Putting Data in the Scrap
	A typical approach to implementing the Cut and Copy commands is as follows:
	Paste - Getting Data From the Scrap
	Example
	The Clipboard
	Transferring the Desk Scrap to Disk
	Private Scrap
	Copying Data Between Private Scrap and the Desk Scrap
	A typical approach to copying data between the private scrap and the desk scrap is as follows:
	TextEdit, Dialog Boxes, and Scrap
	TextEdit and Scrap
	Dialog Boxes and Scrap
	Main Scrap Manager Data Types and Functions
	Data Types
	Scrap Information Structure
	Functions
	Getting Information About the Scrap
	Writing Information to the Scrap
	Reading Information From the Scrap
	Transferring the Scrap Between Memory and Disk
	Demonstration Program
	RegisterAppearanceClient();
	BeginUpdate(windowPtr);
	GetIndString(errorString,rErrorStrings,errorCode);
	SetPort(windowPtr);
	GlobalToLocal(&mouseXY);
	DrawPicture((PicHandle) tempHdl,&destRect);
	EraseRect(&gClipboardWindowPtr->portRect);
	RGBForeColor(&blackColour);
	TETextBox(*tempHdl,sizeOfTextData,&destRect,0);
	DrawPicture((*docStrucHdl)->pictureHdl,&destRect);
	OffsetRect(&destRect,-(*picFrame).left,-(*picFrame).top);
	Demonstration Program Comments
	#define
	#typedef
	Global Variables
	doEvents
	doUpdate
	doOSEvent
	doAdjustMenus
	doOpenWindows
	doCloseWindow
	doInContent
	doCutCopyCommand
	doPasteCommand
	doClearCommand
	doClipboardCommand
	doDrawClipboardWindow
	doDrawPictureWindow
	doSetDestRect

